บทคัดย่อ

จุดมุ่งหมายของงานวิจัยนี้เป็นการตรวจสอบการเคลื่อนที่ของอนุภาก และการกระจายของอุณหภูมิ
ภายในสเปาเต็ดเบดรูปทรงกระบอกด้วยวิธีดิสครีตอิลิเมนต์ โดยการเคลื่อนที่ของไหลได้คำนวณ
แบบ 2 มิติ และใช้สมการความต่อเนื่องกับสมการการเคลื่อนที่ ในขณะที่การเคลื่อนที่ของอนุภาค
ได้คำนวณแบบ 3 มิติ และใช้สมการการเคลื่อนที่ของนิวตัน สำหรับการคำนวณการถ่ายเทความ
ร้อนระหว่างแก๊สกับอนุภาคใช้ความสัมพันธ์ของ Ranz — Marshall และความสัมพันธ์ของ Kemp
โดยอนุภาคที่ใช้ในการคำนวณเป็นลูกแก้วขนาดเส้นผ่านศูนย์กลาง 3 มิลลิเมตร จำนวน 50,000
100,000 และ 150,000 อนุภาค ผลการวิจัยพบว่า การคำนวณกวามเร็วต่ำที่สุดในการเกิดสเปามีค่า
ใกล้เคียงกับผลที่ได้จากการทดลอง ในบริเวณสเปาต์ความเร็วตามแนวดิ่งของอนุภาคจะลดลงตาม
กวามสูงที่เพิ่มขึ้น ส่วนในแอนนูลัสนั้นอนุภาคมีความเร็วตามแนวดิ่งในทิสทางลงลดลงตามความ
สูงที่เพิ่มขึ้น ค่าสัมประสิทธิ์การถ่ายเทความร้อนในบริเวณสเปาต์และแอนนูลัสจะเพิ่มขึ้นตามเร็ว
ของแก๊สร้อนที่เพิ่มขึ้น ค่าสัมประสิทธิ์การถ่ายเทความร้อนในบริเวณสเปาต์จะมีค่าอุณหภูมิค่อนข้างสูงกว่าบริเวณ
แอนนูลัส อย่างไรก็ตามการกระจายอุณหภูมิพบว่าในบริเวณของสเปาต์จะมีค่าอุณหภูมิค่อนข้างสูงกว่าบริเวณ
แอนนูลัส อย่างไรก็ตามการกระจายอุณหภูมิในแอนนูลัสจะมีค่าค่อนข้างสม่าเสมอ สำหรับการ
ถ่ายเทมวลสารพบว่าในบริเวณสเปาต์จะมีการถ่ายเทมวลที่สูงกว่าบริเวณแอนนูลัส และการถ่ายเท
มวลสารจะเพิ่มขึ้นตามความเร็วของแก๊สที่เพิ่มขึ้น

คำสำคัญ: ดิสครีตอิลิเมนต์ การถ่ายเทความร้อน การถ่ายเทมวลสาร สเปาเต็ดเบด

Abstract

The aim of this research was to investigate particle dynamics and temperature distribution in a cylindrical spouted bed using Discrete Element Methods. Gas motion was calculated in two dimensionally with equation of continuity and equation of motion while the particle motion was calculated in three dimensionally with Newton's second law. The Ranz – Marshall and Kemp correlations were introduced for calculating heat transfer between gas and particle. Glass bead with diameter of 3 mm was used as the particles in the spouted beds. The number of glass bead used in this simulation was 50,000, 100,000 and 150,000 particles. The results of simulation revealed that the minimum spouting velocity agree well with that of experiment. In spout region, the vertical particle velocity decreased against the increased height while the downward particle

velocity decreased with an increase in the height in annulus. The heat transfer coefficient in

spout and annulus region increased with an increase in gas velocity. However, the heat transfer

coefficient decreased with an increase in the height. For temperature distribution, it was found

that the temperature in spout region was quite higher than that in annulus. However, the

temperature in annulus was quite uniform. For mass transfer, it was found that the mass transfer

in spout region was higher than that at annulus region and the mass transfer increased with an

increase in gas velocity.

Keywords: Discrete element, Heat transfer, Mass transfer, Spouted bed