

บทคัดย่อ

การวัดทางสเปคโดยสโคปนั้นมีความสำคัญต่อการวิเคราะห์คุณสมบัติของสารต่างๆ เป็นอย่างมาก โดยไม่ว่าจะเป็นทางด้านงานวิจัยหรือทางอุตสาหกรรมต่างก็ใช้เทคนิคทางสเปคโดยสโคปเพื่อศึกษาหาองค์ความรู้ใหม่ๆ อยู่ตลอดเวลา ทั้งนี้เพราการวัดทางสเปคโดยสโคปนั้นเป็นวิธีช่วยให้ผู้วัดสามารถทราบส่วนประกอบและพฤติกรรมของอะตอมหรือโมเลกุลที่เป็นส่วนประกอบของสารตัวอย่างได้อย่างตรงไปตรงมาวิธีหนึ่ง การวัดทางสเปคโดยสโคปนั้นมีหลากหลาย แต่การวัดที่ถือว่าง่ายที่สุดคือการวัดการดูดกลืนของแสงโดยพิจารณาสัดส่วนระหว่างแสงที่ตกระบกับแสงที่ถูกดูดกลืนไปที่ความยาวคลื่นต่างๆ ก็สามารถได้สเปคตั้งแต่การดูดกลืนแสงสำหรับการวิเคราะห์ทางสเปคโดยสโคปได้ทันที

อุปกรณ์ที่ใช้สำหรับการวัดการดูดกลืนแสงเป็นสเปคโดยมิเตอร์สามารถหาได้ในท้องตลาดอย่างกว้างขวาง อย่างไรก็ได้ราคาของอุปกรณ์เหล่านี้ยังอาจถือได้ว่ามีราคาสูง เพราะต้องนำเข้าจากต่างประเทศ นอกจากนั้นลักษณะของสเปคโดยมิเตอร์จะอยู่ในลักษณะของกล่องดำ นั่นคือผู้ใช้มักไม่มีโอกาสได้เห็นหรือสัมผัสส่วนประกอบที่อยู่ภายใน ดังนั้นการเรียนรู้การทำงานของสเปคโดยมิเตอร์มักจะเป็นการใช้อร์ฟแวร์ที่มากับเครื่องเสียงมากกว่า ดังนั้นผู้ใช้อาจขาดความรู้ขั้นพื้นฐานที่อาจมีส่วนช่วยให้สามารถเกิดความเข้าใจที่ลึกซึ้งและนำไปต่อยอดได้ในอนาคตได้ ประกอบกับต้นทุนของเครื่องที่สูง ผู้ใช้จะถูกจำกัดไม่ให้สามารถปรับแต่งสเปคโดยมิเตอร์หรือค้นเข้าไปดูกลไกภายในตามต้องการได้ เพราะจะมีผลต่อการรับประกันเครื่อง ดังนั้นงานวิจัยขั้นนี้จึงเน้นไปที่การสร้างสเปคโดยมิเตอร์สำหรับการวัดการดูดกลืนแสงที่ใช้สำหรับการเรียนการสอนในลักษณะที่ผู้ใช้สามารถเห็นและทำความเข้าใจกลไกได้ต่างๆ ที่ประกอบกันขึ้นเป็นสเปคโดยมิเตอร์ได้อย่างชัดเจน โดยทั้งหมดนี้จะสร้างขึ้นโดยใช้ต้นทุนที่ต่ำพอที่จะสามารถให้นักเรียนสามารถใช้อุปกรณ์นี้ได้อย่างกว้างขวาง ผลงานจึงที่ได้จากการนี้คืออุปกรณ์ต้นแบบสเปคโดยมิเตอร์ต้นทุนต่ำสำหรับการวัดการดูดกลืนแสงเพื่อใช้ในการเรียนการสอน

Abstract

Spectroscopic measurement is an important technique in material characterization. It has been used in both research and industrial applications for investigating hidden properties in the newly found materials. The spectroscopic methods are probing tools that help researcher looking into the atomic and molecular components that compose into the material of interest in a straight forward fashion. There are many kinds of spectroscopic measurement but the one that can be considered the simplest is the photoabsorption measurement. In this measurement the intensity ratio between the incident beam and the transmitted beam are monitor and calculated. When this calculation is done at different wavelength the result is the absorption spectrum.

The instruments for detect the absorption is the spectrophotometer which is widely available. The price is, however, still considered expensive due to the fact that the manufacturers are mainly based outside Thailand. Moreover, these commercial spectrometers are offered in a complete sealed packaging and being operated though the accompanied software. This means that the users are normally interact with the spectrometer through only the software and treat the hardware as a black box. This will disconnect the user from the actual internal working component inside the spectrometer. The knowledge that could be gained from the understanding of underlying component is very valuable and should not be neglected. As a consequent, the main goal of this work is to construct a prototype of spectrophotometer for absorption measurement that is aimed at academic uses. The spectrometer will be able to demonstrate the principles used from the components of the spectrometer to the signal read off to generate the absorption spectrum. Besides the construction will be cost efficient to be used widely in academic environment. The output of this work is a working prototype of low-cost spectrophotometer for photoabsorption measurement for academic purposes.