

Abstract

Project Code: MRG5080024

Project Title: Optimization of drying process of whole longan fruits with special reference to the quality for producing longan tea

Investigator: Asst.Prof.Dr.Busarakorn Mahayothee
Department of Food Technology
Faculty of Engineering and Industrial Technology
Silpakorn University

E-mail Address: busarakornm@yahoo.com

Project Period: 2 years

Flavor is one of important quality characteristic influencing customers' acceptance for dried whole longan of Chinese people. Chinese people believe that eating dried longan is good for health. Due to longan has a phenolic compound which has been shown to possess potent antioxidant activities. In this study, the effect of drying condition on the changes of volatile compounds and phenolic compounds of dried whole longan was investigated. Longan cv. Edor with size AA, Φ about 25 mm, and total soluble solid in the range of 17-20°Brix was selected. This quality is commercially used for the production of dried longan. The unpeeled fruits were dried in a single layer at four different hot air temperature (60, 70, 80 and 70°C) using a laboratory tray dryer. Hot air velocity was fixed at 0.2 m/s. Hot air was flowed through a layer of fruits from the bottom side. Fruits were dried until the water activity of flesh was approximately below 0.60. Drying time is about 55.5, 33.5, 22 and 19 hours for drying temperature at 60, 70, 80 and 90°C, respectively. In this work, it was found that drying rate increased when the drying temperature increased. The highest total phenolic content (1.23-1.28 mg/gram dry weight) was found in the highest drying condition (90°C/19 hrs) which relate with the highest antioxidant activity, too. The volatile compounds in fresh and dried longan were cis- β -ocimene, trans- β -ocimene, ethanol and ethyl acetate. Different drying condition caused the different amount of volatile compounds. The highest amount of

volatile compounds was found in drying condition of 70°C for 33 hrs, and also found the highest of key component, cis- β -ocimene, (9.74×10^7 peak area/gram dry weight) in this drying condition.

Keywords: LONGAN, LONGAN TEA, DRYING, VOLATILE COMPOUNDS, PHENOLIC COMPOUNDS

บทคัดย่อ

รหัสโครงการ: MRG5080024

ชื่อโครงการ: สมการที่เหมาะสมในการอบแห้งลำไยแบบทั้งผลเน้นคุณภาพเพื่อบริโภคในรูปชาลำไย

ผู้วิจัย: ผู้ช่วยศาสตราจารย์ ดร.บุศรากรณ์ มหาโยธี
ภาควิชาเทคโนโลยีอาหาร
คณะวิศวกรรมศาสตร์และเทคโนโลยีอุตสาหกรรม
มหาวิทยาลัยศิลปากร

อีเมลล์: busarakornm@yahoo.com

ระยะเวลาโครงการ: 2 ปี

กลิ่นรสเป็นคุณลักษณะที่สำคัญต่อการยอมรับของผลิตภัณฑ์ลำไยอบแห้งแบบทั้งผลของผู้บริโภคชาวจีน โดยชาวจีนนิยมบริโภคลำไยอบแห้งเนื่องจากเชื่อว่าจะส่งผลดีต่อสุขภาพ ซึ่งในลำไยมีสารประกอบฟินอลิกที่มีคุณสมบัติในการเป็นสารต้านอนุมูลอิสระ งานวิจัยนี้จึงได้ศึกษาผลของสมการในการอบแห้งต่อการเปลี่ยนแปลงของสารประกอบระบุอย่างที่ให้กลิ่นรส และสารประกอบฟินอลิกในลำไยอบแห้งทั้งผลพร้อมเบล็อก โดยเลือกศึกษาในลำไยพันธุ์อีดอเกรดเอเอที่มีเส้นผ่าศูนย์กลางประมาณ 25 มิลลิเมตร และปริมาณของเยื่อที่ละลายได้ทั้งหมดอยู่ในช่วง 17–20 องศาบริกก์ ซึ่งสอดคล้องกับคุณภาพของลำไยสดที่ใช้ในการผลิตลำไยอบแห้งในทางการค้า ลำไยสดทั้งผลจะถูกเรียงแบบชั้นเดียวแล้วนำไปอบแห้งด้วยเครื่องอบแห้งแบบถังที่อุณหภูมิแตกต่างกัน 4 ระดับ คือ 60, 70, 80 และ 90 องศาเซลเซียส ใช้ความเร็วลมคงที่ที่ 0.2 เมตรต่อวินาที กำหนดให้มีอัตราการอบแห้งที่ต่ำกว่า 0.6 ซึ่งใช้เวลาในการอบแห้งประมาณ 55.5, 33.5, 22 และ 19 ชั่วโมง สำหรับการอบแห้งที่อุณหภูมิ 60, 70, 80 และ 90 องศาเซลเซียส ตามลำดับ จากการศึกษาพบว่าอัตราเร็วของการอบแห้งจะเพิ่มขึ้นเมื่ออุณหภูมิในการอบแห้งเพิ่มขึ้น การอบแห้งที่สมการการอบแห้งที่สูงที่สุด (อุณหภูมิ 90 องศาเซลเซียส/19 ชั่วโมง) จะพบปริมาณสารประกอบฟินอลิกทั้งหมดสูงที่สุด โดยคิดเป็นปริมาณ 1.23-1.28 มิลลิกรัม/กรัมน้ำหนักแห้ง ซึ่งสอดคล้องกับความสามารถในการเป็นสารต้านอนุมูลอิสระที่มีปริมาณสูงที่สุดด้วยเช่นกัน สำหรับสารประกอบระบุอย่างที่ให้กลิ่นรสที่สำคัญซึ่งพบทั้งในลำไยสดและลำไยอบแห้ง ได้แก่ cis- β -ocimene, trans- β -ocimene, ethanol และ ethyl acetate การอบแห้ง

ที่สภาวะแตกต่างกันจะทำให้ได้ปริมาณของสารประกอบเหยง่ายที่ให้กลิ่นรสที่ต่างกัน โดยการอบแห้งที่อุณหภูมิ 70 องศาเซลเซียส เป็นเวลา 33 ชั่วโมง จะพบสารประกอบเหยง่ายที่ให้กลิ่นรสทั้งหมดในปริมาณมากที่สุด และพบ *cis*- β -ocimene ซึ่งเป็นสารประกอบเหยง่ายที่ให้กลิ่นรสตัวหลักในลำไยในปริมาณมากที่สุดด้วยเช่นกัน โดยพบในปริมาณ 9.74×10^7 (พื้นที่ใต้กราฟต่อกรัม น้ำหนักแห้ง)

คำสำคัญ: ลำไย, ชาลำไย, การอบแห้ง, สารประกอบเหยง่ายที่ให้กลิ่นรส,
สารประกอบฟีโนลิก