าเทคัดย่อ

ออกซิโดสควาลีนไซเคลส เป็นเอนไซม์สำคัญในชีวสังเคราะห์ของไตรเทอร์ปีน ทำหน้าที่เปลี่ยนออก ซิโดสควาลีน ไปเป็นไตรเทอร์ปีนวงแหวน ได้หลากหลายชนิด โดยเอนไซม์นี้ถูกสร้างโดย ยีนออกซิโดสควาลีนไซเคลส โครงการนี้มีวัตถุประสงค์เพื่อโคลนยีนออกซิโดสควาลีนไซเคลส จากใบบัวบกและใบเปล้า น้อย ด้วยการเทคนิคพีซีอาร์ โดยออกแบบไพร์เมอร์ของ ออกซิโดสควาลีน ไซเคลส จากข้อมูลยีนที่มี รายงานมาก่อนนี้ ร่วมกับการใช้เทคนิคการหาลำดับนิวคลีโอไทด์ส่วยปลาย 3' และ 5' ของยีน ในการโคลน ยีนในส่วนกลางและปลายของยีน สามาถโคลนยีนจากบัวบกได้ 2 ชนิด คือ CAL และ CAM ซึ่งมีความยาว 1572 คู่เบส และ 1269 คู่เบส ตามลำดับ และโคลนยีนจากเปล้าน้อยได้ 2 ชนิดคือ CSC และ CSD ซึ่งมี ความยาว 1502 คู่เบส และ 1497 คู่เบส ตามลำดับ แต่ไม่สามารถโคลนยีนในส่วนต้น (ปลาย 5') ได้สำเร็จ อย่างไรก็ตามในการศึกษานี้ได้โคลนยีนออกซิโดสควาลีนไซเคลส ชนิด CabAS จากบัวบก ตามข้อมูลที่ รายงานไว้ก่อนหน้านี้ (Kim et al., 2005) เรียกยีนที่โคลนได้จากโครงการนี้ ว่า CAK โดยยีน CAK มีความ แตกต่างของลำดับนิวคลีโอไทด์ 3 ตำแหน่ง ส่งผลให้มีลำดับกรดอะมิโนต่างจากยีนCabAS 3 ตำแหน่งคือ V631G, V645A และ F692L ซึ่งผลการศึกษาบทบาทหน้าที่ของ CAK พบว่าเป็น multifunctional triterpene synthase ซึ่งสร้าง α-และ β-amyrin เป็นหลัก ต่างจาก CabAS ที่รายงานว่าเป็น dammarenediol synthase (Kim et al., 2009)

Abstract

Oxidosqualene cyclases (OSC) are significant enzymes in the triterpene biosynthesis. OSC convert 2,3-oxidosqualene to several cyclic triterpenes. The OSC was controlled by oxidosqualene cyclase gene (osc). In this study, oxidosqualene cyclases from Centella asiatica and Croton stellatopilosus leaves were cloned using homologybase PCR and RACE technics. Two partial cDNAs, 1572-bp CAL and 1269-bp CAM, were obtained from C. asiatica. Other two, 1502-bp CSC and 1497-bp CSD were obtained from C. stellatopilosus. These partial cDNA are the fragment from core to 3'-end of each gene. The 5'-end cDNA fragments have not been successfully cloned in this study. However another known osc gene from C. asiatica, namely CabAS (Kim et al., 2005), was cloned using local plant. The obtained cDNA was named as CAK. Three nucleotides of CAK was different from CabAS resulting in 3 amino acids different between both clones. Three amino acids include V631G, V645A and F692L. The functional analysis of CAK in mutant yeast was revealed that CAK codes for multifunctional triterpene synthase, which produced α -and β -amyrin as major product, while the CabAS was reported as dammarenediol synthase (Kim et al., 2009)