บทคัดย่อ

งานวิจัยนี้นำเอากระบวนการกวนทางกลร่วมกับเทคนิคคูลลิ่งเพลทมาใช้ในการผลิตอะลูมิเนียมคอมโพสิตเกรด A356 การกวนทางกลในสถานะกึ่งแข็งช่วยในการปรับปรุงความสามารถในการเปียกระหว่างอนุภาคผงซิลิกอน คาร์ไบด์ (SiC) และอะลูมิเนียม การกวนทางกลทำในหลายเงื่อนไขที่แตกต่างกันและผลกระทบจากการกวนเป็น สิ่งที่ถูกนำมาศึกษา เทคนิคคูลลิ่งเพลททำให้เกิดเกรนกลมละเอียด การปรับปรุงความสามารถในการเปียก (wettability) ของอนุภาค SiC เป็นสิ่งที่นำมาศึกษาโดยแบ่งออกเป็นการทำ oxidization treatment การเติม แมกนีเซียมในอะลูมิเนียม และการเคลือบผิวอนุภาค SiC ด้วยเทคนิค sol-gel ผลการวิจัยพบว่าการเติมอนุภาค SiC ลงในโลหะผสมที่มีของแข็งบางส่วนที่มีความหนืดสูงช่วยป้องกันอนุภาคจากการลอยตัว และ การเกาะกลุ่ม อย่างไรก็ตามอนุภาค SiC ที่ไม่ได้ทำการเตรียมผิวเกือบทั้งหมดเกิดการหลุดออกมาจากโลหะพื้นเมื่อทำการขัด หยาบและขัดละเอียดเนื่องจากการยึดติดที่ไม่ดีระหว่างโลหะพื้นและอนุภาคผง SiC ในทางตรงกันข้ามอนุภาค ผงที่มีการทำ oxidation treatment และการเคลือบผิวด้วย sol-gel มีการยึดติดที่ดีระหว่างสารเสริมแรงและโลหะ พื้น ทั้งนี้เนื่องมาจากการเกิดชั้นของซิลิกา (SiO₂) บนผิวของอนุภาคผง SiC นอกจากนั้นยังพบว่าการเติม แมกนีเซียมซึ่งทำหน้าที่เหมือนสารเพิ่มความสามารถในการเปียกสามารถเพิ่มความสามารถในการเปียก ระหว่าง SiC และอะลูมิเนียม พบการเกิดเฟสซิลิกอนยูเทคติค (eutectic silicon) เกิดขึ้นที่บริเวณผิวของอนุภาค SiC ระหว่างการเย็นตัวอาจจะเป็นผลเนื่องมาจากการเกิดนิวคลีเอชั่นซึ่งเป็นอิทธิพลจากอนุภาค SiC ข้อดีของ กระบวนการโลหะกึ่งแข็งเมื่อเทียบกับงานหล่อทั่วไปคือเป็นการป้องกันการเกิดเฟสอะลูมิเนียมคาร์ใบด์ (AI_4C_3) ที่ก่อให้เกิดอันตราย เนื่องจากอุณหภูมิในการทำงานต่ำกว่าอุณหภูมิการเกิดปฏิกิริยาระหว่าง อะลูมิเนียมหลอมเหลวและอนุภาค SiC ที่จะทำให้เกิดเฟส AI $_4$ C $_3$

Abstract

The research has used a mechanical stirring technique plus cooling plate technique for the fabrication of Al matrix composites based on Alloy 356. Stirring in a semi-solid state helps to promote wettability between SiC particles and Al-Si alloys. Stirring of these mixtures was performed under several different conditions, and the effect of this stirring action on the wettability enhancement was studied. The cooling plate technique produces fine globular grain structures. Improvement of the wettability of SiC particles was carried out, employing the oxidization of SiC particles, the use of wetting agents by adding magnesium into the matrix and the coating of SiC particles using a sol gel technique. It was found that the introduction of SiC particles into partially solidified alloy with high viscosity prevents the particles from floating, and agglomerating. However, untreated SiC particles are mostly detached from the Al matrix during the grinding and polishing of the composite suggesting poor adhesion and hence poor wettability between the matrix and the particles. On the contrary, oxidized SiC particles and solgel silica coated SiC particles indicate good binding between reinforcement and matrix. This is due to the formation of the SiO₂ layer on the surface of SiC particles. Furthermore, the use of magnesium as a wetting agent was found to promote wettability of SiC with A356 alloy. The eutectic silicon phase formed on the surface of SiC particles during solidification due to nucleation effects provided by the particles. The merit of semi-solid processing compared with ordinary casting process is the prevention of detrimental interfacial products Al₄C₃ formation because the working temperature is lower than the reaction temperature between molten Al and SiC to form Al₄C₃