FrEUItERTUANY T

Tasanis msiunilasniadnaginsalddyayiueoy

ANERSLINNsAaanTatnlaanis
(Securing Sensor Networks with Cryptography)

Tng a5, AuIANg wanlsuilsh wazamue

WOAINIEU 2551

FoutyLaadl MRG5080074

FEUIRERLLANY T

Tasanis msinileansadnaginsalddyaiunoy
AdRsuienN1sdagnsatnslaanns

(Securing Sensor Networks with Cryptography)

QW Qv @
AMEKIAE anm
1. A5. FUINNE waLlsulEA MAMNIAINSTH WA
ANIEAAINTTNANRAS

NWNINENNUBTTNANEAS

2. Prof. Dr. Mihir Bellare Department of Computer Science and
Engineering, University of California, San

Diego, USA

aduayulaenuNNmINgae uazdinaunawuaiuayunisIaE

(Aaiulusenuiiifluuagiae nuaer wazana. laidnduaasdiuaoeanalil)

1. UNAAYD

luififuiesemogunsatdsdanaldsuanuanladiuedimnn Wamnmielsznananmadninmiag
?Nﬁmsﬁm%wﬁwﬂumawauuaﬂmzﬁa’qé’mmwmﬁﬁ@wm 9 Lﬁaslﬁaﬂﬂmimmﬁﬁmm'wﬁ’u%’iumumﬁq 9
i sEuuamugu ANy stuudhdunaannenadon ssUUneINstaImMa ad dnwoe ddnylsemsuiia
ﬂawmm"uumumsm%ﬂnimmammmmiﬁﬂa ivuummm"umiﬂi"qwaﬂﬂsmmammmvlﬂuwummau@lfo\
ﬂnwuwa‘lwaﬂmmmammmauaw 9 Lwamvl,ﬂmmwmw fdel iufuduen 1%3“1J1J1/1Nﬂ1§’ﬂ?\1/161ﬂm
1 m‘mmiﬂuﬂummmmanaﬂawauamam ain Wssuuililumemsnns wioluszunSaamizwndonlu
Tiwmﬂgmmﬂsmm) m‘sﬂﬂﬂawauammu suiludosiivnmaluladlumemaniunamsdearsodaasafodu
o8B anuThmediddyesamiladie msmLMﬂTuTasJmmumﬂsﬂﬂmvuummﬂﬁaﬂmmmammmmwmﬂ
Uszananaiadnuasianuaunsanda ulasamsit ﬂmvmasﬂm‘mmsaammmﬁmmaﬂﬂﬂmﬂaammmsn
v llussuugnsaidsdaanald SEmsuaslilslaaoaitoanuam|dud yaduduanuuiaseesioyauuniswn
sruuuAnt uagsstumodudidnnseinduuunaniu lagiamdedt Amshauifilssansnm Snitmeaogity
faldidoutefigninadiamans WioBuduhszuumaritianuasafelumshanldasednde

dmdrdn: maniwiimsdessedinlasais myfigananulasaiy saduduanuuwiaseedoya wand aoidu
didnnyoiing gunyoiddyanm

Abstract

There has been much interest in sensor network applications in recent years. With decreasing prices of
processors as one of the major driving forces, many applications now equip sensors with processors and let them
cooperate to achieve a common goal. Applications of this type include traffic control, eco-system monitoring, and
forecasting systems. The most common applications involve scattering sensors in some environment so that they
can gather data for further analysis. Clearly, in mission-critical applications, it is undesirable to gather data that
are unreliable or potentially-corrupt (maliciously or otherwise). The need to protect information communicated
among the sensors can only be addressed by cryptography. The challenge is to adapt cryptographic technology
to the special needs of sensor network applications. Under this grant, we have designed schemes and protocols
that can be applied to sensor network applications. The schemes and protocols we investigated are blind message
authentication codes, CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Humans
Apart), and aggregate signatures. The proposed schemes and protocols are not only efficient but also provably

secure.

Keywords: cryptography, security proofs, message authentication codes, CAPTCHAs, digital signatures, sensor
networks

2. Executive Summary

2.1 Belavems

V) < l ¢ 1 [9) I I's 1 4‘] [y
mstnteunsemnvalnsatasdyanansmanIuninsdadsaglasany
Securing sensor networks with cryptography

2.2 Borhmilasemsy

HALAT. BTING wNlTNeRa
madrdeanssnilih angdanssuamans
NIMINNAEITNAEAT GUiTEN

9. AAOIMAN A. Unumit 12120

Phone: +662 564-3001-9 ¢ia 3063

FAX: +662 564-3010, +662 564-3001-9 ¢ 3037
E-mail: meaw @alum.mit.edu

2.3 dInMmNmauiie

Cryptography, Computer and network security, Distributed systems

2.5 JggsnIMaNUwNU
21l
2.6 flymiviimsiTe uag annardazevilam

Over the past decade, the Internet has become an important medium for digital communication. Few
technologies have seen such exponential growth in popularity. Naturally, as people, businesses, and govern-
ments become reliant upon the Internet and digital communication technologies in general, there has been an
ever-growing concern over the security issues involved in the communication. Cryptography is a field that
addresses these concerns. Over the years, modern cryptography has produced a myriad of tools for secure
communication, and many software packages have been written based on these tools and are in prevalent
use today.

More recently, however, a new type of network interconnection has emerged, namely the sensor network.
With decreasing prices of processors as one of the major driving forces, many applications now equip sensors
with processors and let them cooperate to achieve a common goal. Applications of this type include traffic
control, eco-system monitoring, and forecasting systems. The most common applications involve scattering
sensors in some environment so that they can gather data for further analysis. As a concrete example, in
civil engineering, sensors can be used to gather data in order to monitor current conditions of a structure
such as a bridge or a building. For disaster prevention, sensors can be used to monitor activities in the
ocean to detect disturbances or abnormal behaviors in order to issue warnings of a pending disaster. For

supawan
Text Box

2.7

2.8

29

the military, sensors may be used for surveillance by scattering them about in a volatile area to monitor

suspicious activities.

Clearly, in mission-critical applications, it is undesirable to gather data that are unreliable or potentially-
corrupt (maliciously or otherwise). Consider sensor networks in which devices gather sensitive information
such as temperatures in a nuclear reactor or voltage levels on a power line. Each device sends the information
to a data-gathering node which may later pass it along to others for further analysis or simply file it on
some permanent storage device. In these systems, it may be necessary to prevent tampering and/or forgery
of data being gathered so as to prevent malicious attackers from, say, triggering a false alarm indicating that
the reactor or the power grid are malfunctioning, or worse, preventing a true alarm from being noticed. As
part of a solution to this problem, each device may use a cryptographic construct, namely digital signatures,

to ensure the authenticity of every piece of the data that it sends to a data-gathering node.

This need, i.e., the need to protect information communicated among the sensors, can only be addressed
by cryptography. The challenge is to adapt cryptographic technology to the special needs of sensor network
applications. Current cryptographic tools are designed for applications on general purpose computers, not
tiny processors on low-powered sensors. The unique characteristics of sensor networks are limitations in
processing power, strict requirements in power consumption, and the typical large number of communicating
nodes involved. These factors pose a challenge for system designers to ensure that the nodes communicate
securely while meeting operational requirements of the applications.

There are a myriad of security goals in any particular sensor network application, e.g. to route messages
among the sensors securely, to ensure integrity and secrecy of messages, to prevent compromised nodes

from interfering with the operation of the network as a whole, and to do all of the above efficiently.

Taqilszaad

The goal of this project was three fold. First, it aimed to develop a common framework under which
one can readily evaluate existing schemes and protocols for sensor networks. Second, it aimed to use this
framework to further our understanding about how to design and evaluate schemes and protocols for sensor
network applications. Third, with this understanding, we aimed to design new simple, efficient, and secure
schemes or protocols for sensor network applications.

IS ada v
ICLUYUIDINY

We began by identifying sensor network application areas that are interesting, useful, and in need of
cryptographic solutions to ensure secure operations of the sensor network. Then, we focus on schemes and
protocols that can be applied to these sensor network applications. The approach has proved fruitful as
evidenced by our publication records. These publications explore in depth three constructs, namely blind
message authentication codes, CAPTCHAs (Completely Automated Public Turing tests to tell Computers
and Humans Apart), and aggregate signatures.

NAN13IAY

As mentioned in the previous section, rather than focusing on the framework issues, we decided instead
to focus on schemes and protocols that can be applied to sensor network applications. The constructs we
explored in depth were blind message authentication codes, CAPTCHAs, and aggreggate signatures. Each
of the constructs results in an international publication. Please see Section 4 for a complete list.

We briefly summarize our research results below. Details can be found in the next section and the

publications included in the appendices of this report.

Blind MACs. Blind signatures allow a signer to digitally sign a document without being able to glean any
information about the document. We investigate the symmetric analog of blind signatures, namely blind
message authentication codes (blind MACs). One may hope to get the same efficiency gain from blind
MAC constructions as is usually obtained when moving from asymmetric to symmetric cryptosystems. Our
main result is a negative one however: we show that the natural symmetric analogs of the unforgeability and
blindness requirements cannot be simultaneously satisfied. Faced with this impossibility, we show that blind
MACs do exist (under the one-more RSA assumption in the random oracle model) in a more restrictive
setting where users can share common state information.

CAPTCHAs. We propose a new construct, the Text-Graphics Character (TGC) CAPTCHA, for preventing
dictionary attacks against password authentication systems allowing remote access via dumb terminals.
Password authentication is commonly used for computer access control. But password authentication systems
are prone to dictionary attacks, in which attackers repeatedly attempt to gain access using the entries in a list
of frequently-used passwords. CAPTCHAs (Completely Automated Public Turing tests to tell Computers and
Humans Apart) are currently being used to prevent automated ‘‘bots’’ from registering for email accounts.
However, current CAPTCHASs are unsuitable for text-based remote access. TGC CAPTCHAs fill this gap.

Aggregate signatures. Secure use of the BGLS [8] aggregate signature schemes is restricted to the aggregation
of distinct messages (for the basic scheme) or per-signer distinct messages (for the enhanced, prepend-public-
key version of the scheme). We argue that these restrictions preclude interesting applications, make usage of
the schemes error-prone and are generally undesirable in practice. Via a new analysis and proof, we show
how the restrictions can be lifted, yielding the first truly unrestricted aggregate signature scheme. Via another
new analysis and proof, we show that the distinct signer restriction on the sequential aggregate signature
schemes of [16] can also be dropped, yielding an unrestricted sequential aggregate signature scheme.

3. W INIUIAY

To avoid duplications, all proofs have been omitted in this section. They can be found in the appendices.

Blind Message Authentication Codes. We define the syntax and security of blind MAC schemes in

analogy to those of blind signatures.

Definition 3.1 [Syntax of a blind MAC scheme.] A blind MAC scheme BMAC is a tuple of four polynomial-
time algorithms (Kg, User, Tag, Vf) where

— the randomized key generation algorithm Kg, on input 1% with k& € N, outputs a key K.

— User and Tag are possibly randomized interactive algorithms called the user and tagging algorithm, respec-
tively. The user runs the User algorithm on an initial state containing the security parameter 1¥ and a message
MSG € {0,1}*, and lets it interact with the Tag algorithm that is run by the tagger on initial state the key K.
' At the end of the protocol, the User algorithm either enters the halt state and outputs a MAC value 7 as its
outgoing message, or enters the fail state to indicate failure. The Tag algorithm simply enters the halt state at

the end of the protocol, without generating any output.

— the deterministic verification algorithm Vf takes a key K, a message MSG € {0,1}* and a MAC value 7 as
input, and outputs acc or rej to indicate acceptance or rejection of the MAC value, respectively.

Correctness of a blind MAC scheme requires that for all k¥ € N and for all M € {0,1}*, with probability 1 it
$

holds that Styser = halt and Vf(K,MSG,7) = acc whenever K & Kg(1¥) and (MSGrag, StTag, T, Stuser) <
[Tag(K) < User((1*, MSG)].

Security of blind MACs. Analogously to blind signatures, the security of a blind MAC scheme consists of an
unforgeability and a blindness requirement. For unforgeability, the experiment generates a fresh key K & Kg(1%),
and runs the adversary A on input 1. The adversary can interact in sequential sessions with a tagging oracle that
runs the Tag algorithm initialized with key K. At the end of its execution, A outputs m message-tag pairs and
wins the game if all messages are different, all tags are valid under key K, and m > n, where n is the number

of completed tagging sessions during the attack.

Definition 3.2 [Unforgeability of a blind MAC scheme.] Let BMAC = (Kg, User, Tag, Vf) be a blind message
authentication scheme. Let £ € N, and let A be a forger with access to the tagging oracle. Consider the following

experiment.

omu-sa

Experiment Expgyg -2 (k):
KiKg(lk); n«—0
{(M1,71), ..., (M, 7))} & A(1F : Tac(:))
If VI(K, M;,7;) =accforall 1 <i<m
and m >mn and M; # M; forall 1 <i<j<m
then return 1 else return 0,

where A’s queries to the tagging oracle are answered as follows:

'We need to pass 1% as a parameter to the User algorithm, because otherwise it would no longer be a polynomial-time algorithm if the
message is of logarithmic length. Moreover, since the user does not know the key itself, it is reasonable to give it 1¥ so that at least it can
check whether the tagger is using a key of the correct size.

Oracle TAG(MSGiy):
If MSGin = L then Strag < K ; MSGous «— L
else (MSGout, StTag) i Tag(MSGin: StTag[s])
If StTag =halt then n «—n+1
Return MSGous

The omu-sa advantage of A in breaking BMAC is defined as the probability that the above experiment returns 1:

Advipga(k) = Pr[Expmga(k) =1]
and BMAC is said to be one-more unforgeable under sequential attacks (omu-sa-secure) if the advantage

Adviyaa(k) is a negligible function in the security parameter & for all adversaries A with time complexi-
ty polynomial in k. |

In the blindness game, the experiment chooses a random bit b and generates a fresh key K & Kg(1*). On input
(1%, K), the adversary A first outputs two messages MSGq, MSG;. The adversary then sequentially interacts
with two User sessions, playing the role of the tagger. If b = 0, then the first user session is initialized with
message MSGy, and the second with MSGy; if b = 1, then the first session is initialized with message MSG1,
and the second with MSGg. If both User algorithms accept, the adversary gets to see both resulting tags ¢, 71
for messages MSGy, MSG;. It has to guess the value of b.

We stress that the experiment does not enforce the resulting tags to be valid under key K. While we could
include such restriction in the formal security notion, it would be out of touch with reality: the secret key K is
not known to the users, so there is nobody to enforce this restriction in the real world. In fact, as we will see in
the next section, it is exactly this lack of verifiability of tags that plays a central role in the proof of impossibility
of blind MACs. We give a formal blindness definition below.

Definition 3.3 [Blindness of a blind MAC scheme.] Let BMAC = (Kg, User, Tag, Vf) be a blind message
authentication scheme. Let £ € N, and let A be an adversary. Consider the following experiment.

Experiment Exp;,;‘iiq‘,g:ia(k):

b {0,1} K < Kg(1%); (MSGo, MSG1),Sta) < A(e, (1%, K))
(MSGa, Sta, 76, Sts) < [A(Sta) < User((1*, My))]
(MSGa, Sta, 715, St1_5) < [A(Sta) < User((1*, M;_,))]

If Stg = fail or Sty = fail then 7 « fail

Else 7 « (70,71)

d < A(r,Sta)

If b = d then return 1 else return O

The blind-sa advantage of A in breaking BMAC is

Advippt (k) = 2-Pr [Expmac a (k) =1] — 1
and BMAC is said to be blind under sequential attacks (blind-sa-secure) if the advantage Adv%‘y?(k) is a

negligible function in the security parameter k for all adversaries A with time complexity polynomial in k. |l

We show that blind MAC schemes simultaneously satisfying the one-more unforgeability and blindness re-
quirements cannot exist. In particular, we demonstrate a universal blindness adversary A and a universal forger F
so that for any candidate scheme, one of them always wins with non-negligible probability.

Theorem 3.4 [Secure blind MAC schemes do not exist.] Let BMAC be a blind MAC scheme. Either BMAC
is one-more forgeable under sequential attacks, or it is not blind under sequential attacks.

A construction based on blind signatures. If we allow users to share state, however, secure blind MACs do exist.
The main idea for the construction is to store the public key for the base blind signature scheme in the users’
common state information. Then, we use the algorithms of the blind signature scheme in a natural way.

Construction 3.5 [A blind MAC scheme for state-sharing users.] Let BS = (Kg,, User, Sign, Vf;) be a blind
signature scheme. We associate to it a blind MAC scheme BMAC = (Kg,,,, User,,, Tag, Vf,,):

* On input 1%, the key generation algorithm Kg,, runs Kg,(1*) to obtain a key pair (pk,sk), sets K «
(pk, sk) and returns K.

* On input K, the tagging algorithm Tag starts the interaction with User,, by parsing K as (pk, sk), sends
pk to User,,, runs Sign on initial state sk interacting with User,, to completion. It sets its state to whatever
Sign does.

e On inputs an initial state 1%, a message M, and an initial shared-state CSt, the algorithm User,, first receives
pk from Tag. If CSt = ¢, then User,, sets CSt « pk. Otherwise, it sets pk « CSt and runs User; on
the initial state (pk, M) interacting with Tag until the interaction completes. It sets its state and output to

those of User,.

* On input a key K, a message M, and a MAC value 7, the algorithm Vf,, parses K as (pk, sk), and returns
Vfs(pk, M, 7). 1

The following theorem states that, if the underlying blind signature scheme is one-more unforgeable and
dishonest-key blind, then the resulting blind MAC scheme is secure. The proof follows directly from the lemmas
below. For brevity, we provide only their proof sketches here.

Theorem 3.6 If a blind signature scheme ‘&S is one-more unforgeable and dishonest-key blind under sequential
attacks, then the blind MAC scheme with state-sharing users BMAC associated to RS as per Construction 3.5 is

one-more unforgeable and blind under sequential attacks.

Text-Graphics Character CAPTCHAS. We describe the TGC CAPTCHAs that we have implemented
following the formalization in [1].

Let Z be a set of images of all upper case English characters, 7 be a set of transformations on images, A
be the map from an image of a character to the (ASCII ID of) the character portrayed in the image, and 7 and
k be the security parameters. The TGC CAPTCHA TGC; is a tuple (Z,7,\,7,k) defining the test shown in
Figure 1. First, the verifier (i.e. server) draws iy, ... i, < Z — {*0’,*D’} and tq,...,t & T. Then, it sends to
the prover (i.e. user) the transformed images 1 (1), ..., tx(ix) and sets the timer for 7. The prover responds with
the labels [y, ..., i, each of which is (the ASCII ID of) a character in the English alphabet. The verifier accepts
if [; =)\(ij) for all 1 < j < k and if the timer has not expired. It rejects otherwise.

We describe here our choices for TGC; for the sets Z and 7. The reference image for each character, from the
standard X Window System ‘‘9x15’’ font, is shown in Figure 2. We use all of the uppercase English characters
except ‘O’ and ‘D’ which are practically indistinguishable when distorted. The transformation process involves
the following steps. First, ng distracters are chosen uniformly with replacement from the set of all distracter
images. In our implementation, we use ngy = 5 samples from a set of 26 9x15 bitmaps that share some features
with English letters but are easily classified as non-letters by humans.

The TGC CAPTCHA in Random Figlet Fonts TGCy = (Z,7, A, 7, k) is similar to TGC; shown in Figure 1.
The differences between the two are in the choices of the sets Z and 7. Specifically, Z is the set of English

Prover Verifier

i1, iy =T —{0,D}

tyeo oty & T
set timer for 7

compute

by, ool L0k 0 accept iff
V1<j <kl =A()

and the timer has not expired

g‘ﬂﬁ 1: Text-Graphics Character CAPTCHAs. An instance of a TGC CAPTCHA is TGC = (Z,7,\, 7, k). The
protocol shown is for TGC;. For TGCs, the set Z includes both upper and lower case English letters, and the
boxed text is replaced by i1, ..., 05 & Z — {T,L,0,‘D}.

AECEFGHI JEKLMHMPORSTUNWXY Z

g‘ﬂﬁ 2: Our choice for the reference image set Z for TGC;. We use only uppercase English characters but omit
the characters ‘O’ and ‘D’ because they are hard to distinguish when distorted.

characters in both upper and lower case excluding ‘I’, ‘L’, ‘O’, and ‘D’. The set 7 contains the figlet fonts
basic, big, block, broadway, colossal, cosmic, cybermedium, doh, doom, dotmatrix, epic,
fender, nancyj, ogre, pebbles, puffy, roman, rounded, starwars, stop, univers, and whimsy
[?]. A few examples are shown in Figure 3. Computing ¢(i) where ¢t € 7 and i € 7 yields character ¢ in the
figlet font t.

Putting CAPTCHA to Use in SSH. We have implemented a prototype TGC CAPTCHA password authentication
method compatible with the SSH user authentication protocol [19]. As a concrete example, we base our imple-
mentation on the TGC CAPTCHA TGC; and OpenSSH 3.6.1. However, the method could just as easily be based
on TGC,y and/or be incorporated into any SSH-compliant client or server. The latter is so because SSH was
specifically designed to allow new user authentication methods to be added in a modular fashion.

Theoretical Results. Intuitively, the following theorem states that each CAPTCHA TGC = (Z,7,\, 7, k) that
defined above is secure assuming that the underlying problem P27 7 is hard.

Theorem 3.7 Let k be the security parameter, and let Z,7, A be as previously defined. Let d, 7, «, 3 be non-
negative real numbers. Assume that TGC = (Z,7, A\, 7, k) is («, #)-human executable. If P27 1 is (3, 7+O(k))-
hard, then TGC is a («, 3,9)-CAPTCHA with respect to P2z 7 .

Experimental Results. We performed two experiments to assess the difficulty of our TGC CAPTCHAs for humans

and machines.

Experiment 1: Playing against humans. In this experiment, we set out to answer the question of whether our TGC
CAPTCHAs are easy enough for humans to be practical complements to password authentication.

.dssb.
d88P"88b I
888 888 I
) ¥ssh 888 e

"YBBEEE _
g\\t_ 888 A\
;N\ sb asse .
"Y88P"

[
|« v/
[(—
[—
| C
|
(/

dBERRSED .
'EBES:' 8.
888 Lemrinin
. 8.'888B. Y8 888 888
e 8. 8888, 888 888
588 888 [[[By Bes ses

888 .B8F 3% e
- 8. 8888,

888888K 88bo,__,0, 5.°8 8

888 "88b SYUMMMMME" E.i. gasg_ YBBEES

888 B8S b 8. BEES. 888

: ‘8b. ;8.°8888 Y8b dssP

#
BERERERER YBBBBP B8P’ "YBRP"

gﬂﬁ 3: Example TGC CAPTCHA characters for TGCs.

We ran two experiments, 1A and 1B, for TGC; and TGC,, respectively. For each experiment, 20 naive
subjects were recruited from the faculty, staff, and students of Thammasat University and the Asian Institute
of Technology. Each subject participated in an individual session lasting approximately 5 minutes. They were
instructed to maximize their accuracy without regard to time. The instructions were followed by two practice
trials with two different sequences of & = 8 characters displayed on a n, = 80 by n, = 24 screen. At the end
of each trial, the subjects received feedback on whether their response was correct or incorrect. If incorrect, their
response and the correct response were displayed.

Following the practice trials were 10 test trials with the same parameters. During the test trials, the subjects’
responses and response times were recorded. (They were not told that their response times were being recorded,
however.)

For Experiment 1A, we used only upper case English characters excluding ‘O’ and ‘D’ and displayed them on
noisy screens. For Experiment 1B, we used both upper and lower case English characters excluding ‘T’, ‘L’, ‘O’,
and ‘D’. In both experiments, the subjects were instructed that they could type either upper case or lower case
responses without penalty.

The subjects’ average per-character accuracy pj; on the test trials was 0.960 for Experiment 1A and 0.965 for
Experiment 1B. Their average word-level accuracy (the number of 8-letter TGC CAPTCHASs answered with 100%
accuracy) was 0.765 for Experiment 1A and 0.780 for Experiment 1B. (Assuming independence and p; = 0.960
for 1A and pj, = 0.965 for 1B, we would expect a word-level accuracy (py,)* of 0.721 for 1A and 0.752 for 1B.)

The fact that naive users achieve such high accuracy rates justifies the use of TGC CAPTCHAs in live systems.

Frequent users would very rapidly adapt to the statistics of the character set, achieving even higher accuracy rates.

Experiment 2: Playing against a machine. We ran two experiments, 2A and 2B, for TGC; and TGC,, respectively.
In each experiment, we sought to put an upper bound on the difficulty of each TGC CAPTCHA for machines. To
this end, we employed an Optical Character Recognition (OCR) system as an adversary against our CAPTCHAs.
We selected GOCR [17] because it is open-source, has an active developer community, and runs on a variety of
platforms including the UNIX-like operating systems that ship SSH by default.

Using the same parameters as Experiments 1A and 1B, for both Experiment 2A and 2B, we generated 100
TGC CAPTCHAs of length 8, for a total of 2 x 100 x 8 = 1600 text-graphics characters. We then converted each
textual display into a bitmap. Each row and column of the bitmap corresponds to a row and column in the text
display. We mapped the background text character to white and all other characters to black.

We then built the GOCR 0.39 program from source code using its default configuration, and fed each bitmap
directly to the program. In both experiments, we gave GOCR the legal set of characters it should detect, i.e.
the 24 characters ‘A’—‘Z’ excluding ‘D’ and ‘O’ for Experiment 2A and the 44 characters ‘A’—‘Z’ and ‘a’-‘z’
excluding both upper and lower case versions of ‘D’, ‘I’, ‘L’, and ‘O’. We call this the Naive GOCR adversary

10

Scheme Sign Aggregate verification process accepts iff

45-11[8] | H(m)* e(o,9) =[], e(H(m:),g*") and ma,...,m, all distinct

45-2 (8] | H(g"[|lm)* | e(o,9) = [I,—, e(H(g" [|m:), g"*) and

=1

Ln

gt |lma, ..., g""||msx all distinct

Aas-3 H(g"[lm)* | e(o,9) = [I;_, e(H(g" [Ims), g**)

miNﬁ 1: The aggregate signature schemes we discuss. Here e: G; X Gz — G is a bilinear map, g is a
generator of Gy known to all parties, and H: {0,1}* — Gy is a hash function. The second column shows
the signature of a message m under public key g%, generated using secret key x. In all cases, a sequence of
signatures is aggregated by simply multiplying them in G;. The third column shows under what conditions the
aggregate verification algorithm accepts o as a valid aggregate signature of messages ms, ..., m, under public
keys g1, ..., g"" respectively.

to emphasize that different configurations could in principle yield better adversaries. After running Naive GOCR
on each image, we classified its response as correct or incorrect.

For Experiment 2A, naive GOCR had a per-character accuracy p,, of 0.278 and 0.314 by the first (conservative)
and second (loose) criterion, respectively. The word-level accuracy was 0 by both criteria. For Experiment 2B,
without any extraneous noise in the image, naive GOCR had the same per-character accuracy p,, of 0.330 by

both the strict and loose evaluation criteria. The word-level accuracy was O.

Unrestricted Aggregate Signatures. We ask whether there exists a truly unrestricted proven-secure ag-
gregate signature scheme. Namely, there should be no distinctness-based restriction of any kind, whether on

messages or enhanced messages. We show that the answer is yes. Our result is a new, direct analysis of the
security of enhanced-message signature aggregation which shows that the distinctness condition in the aggregate
verification process of AS-2 —namely that this process rejects if any two enhanced messages are the same— can
be dropped without compromising security. In other words, an unrestricted scheme can be obtained by the natural
adaptation of AS-2 in which the distinctness condition in the verification is simply removed and all else is the
same. This scheme, which we denote A4S-3, is summarized in the last row of Table . The fact that A4S$-3 is very
close to AS-2 is a plus because it means existing implementations can be easily patched.

We clarify that the security of 4S-3 is not proved in [8]. They prove secure only AS-1. The security of A4S5-2
is a consequence, but the security of 4S-3 is not. What we do instead is to directly analyze security in the case
that signatures are on enhanced messages. Our analysis explicitly uses and exploits the presence of the prepended
public keys to obtain the stronger conclusion that AS$-3 (not just AS-2) is secure.

for practical reasons, AS-3 is a preferable scheme. But the results of [8] do not prove it secure. Here is an
example that helps to see what the problem is. Suppose there was an adversary A that, on input pk = X and
without making oracle query m, produced a forgery of the form (X, m), (X', m’),(X’,m’), o, for some m' # m
and X’ # X, that was accepted by the verification procedure of A4S-3. Since the output of A contains repeated
enhanced messages, the results of [8] do not allow us to rule out the existence of A. Yet, showing that 4S-3

meets the notion of security that we have defined does require ruling out the existence of such an A.

Theorem 3.8 If the coCDH problem is (', €')-hard, then the AS-3 aggregate signature scheme is (t, s, Nmax, qi,
€)-secure for any ¢, s, Nmax, qu, € satisfying € > e(gs+1) € and t < t' — texp(2qu + 29s + 3nmax +1) . |

11

Our approach to the proof is different from the one used by [8] to prove that AS-1 is secure if coCDH is hard.

They gave a direct reduction to coCDH, meaning, given an adversary attacking AS-1 they construct and analyze

an adversary attacking coCDH. But, in so doing, they end up duplicating a lot of the proof of the security of the

BLS scheme as given in [10]. Instead, we reduce the security of AS-3 to the security of BLS. That is, we prove

the following:

Lemma 3.9 If the BLS standard signature scheme is (t',qg, ¢y, €)-secure then the AS-3 aggregate signature

scheme is (%, s, max, g, €)-secure for any ¢, ¢s, Nmax, i, € satisfying € > €', gs < g5 —Nmax, qu < ¢f; and t <
tl - texp : (qH + Mmax + 1) . I

The theorem follows easily from Lemma 3.9 and known results. Our modular approach yields a simple proof

even though we obtain a somewhat stronger result.

Mg 0919949

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

L. von Ahn, M. Blum, N.J. Hopper, and J. Langford, ‘‘CAPTCHA: Using hard Al problems for security,”’
Advances in Cryptology — EUROCRYPT 2003, ed. E. Biham, Lecture Notes in Computer Science, vol.2656,
pp-294-311, Springer-Verlag, Berlin Germany, May 2003.

M. Bellare, A. Boldyreva, and J. Staddon. Randomness re-use in multi-recipient encryption schemeas.
In Y. Desmedt, editor, PKC 2003: 6th International Workshop on Theory and Practice in Public Key
Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 85-99. Springer-Verlag, Jan.
2003.

M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell, editor, Advances in
Cryptology — CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 390-420. Springer-
Verlag, Aug. 1992.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
ACM CCS 93: Ist Conference on Computer and Communications Security, pages 62—73. ACM Press, Nov.
1993.

M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. In
S. Vaudenay, editor, Advances in Cryptology — EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science. Springer-Verlag, May 2006. Available as Cryptology ePrint Report 2005/334.

M. Bellare and M. Yung. Certifying permutations: Noninteractive zero-knowledge based on any trapdoor
permutation. Journal of Cryptology, 9(3):149-166, 1996.

A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-
group signature scheme. In Y. Desmedt, editor, PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 31-46.
Springer-Verlag, Jan. 2003.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from bilinear
maps. In E. Biham, editor, Advances in Cryptology — EUROCRYPT 2003, volume 2656 of Lecture Notes
in Computer Science, pages 416—432. Springer-Verlag, May 2003.

12

(9]

[10]

[11]

[18]

[19]

D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey of two signature aggregation techniques. RSA’s
CryptoBytes, 6(2), Summer 2003.

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor, Advances
in Cryptology — ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 514-532.
Springer-Verlag, Dec. 2001.

D. Catalano, D. Pointcheval, and T. Pornin. Trapdoor hard-to-invert group isomorphisms and their application
to password-based authentication. Journal of Cryptology, 2006. To appear, available from http://www.

di.ens.fr/~pointche/.

J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Advances in Cryptology —
CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 229-235. Springer-Verlag, Aug.
2000.

S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281-308, Apr. 1988.

R. Hayashi, T. Okamoto, and K. Tanaka. An RSA family of trap-door permutations with a common domain
and its applications. In F. Bao, R. Deng, and J. Zhou, editors, PKC 2004: 7th International Workshop on
Theory and Practice in Public Key Cryptography, volume 2947 of Lecture Notes in Computer Science,
pages 291-304. Springer-Verlag, Mar. 2004.

S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate signatures and multisig-
natures without random oracles. In S. Vaudenay, editor, Advances in Cryptology — EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science. Springer-Verlag, May 2006. Available as Cryptology
ePrint Report 2006/096.

A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signatures from trapdoor
permutations. In C. Cachin and J. Camenisch, editors, Advances in Cryptology — EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 74-90. Springer-Verlag, May 2004.

J. Schulenburg et al., ‘“GOCR: open-source character recognition, version 0.39,”” 2004. Available at http:

//Jjocr.sourceforge.net/index.html.
H. Shacham. New Paradigms in Signature Schemes. PhD thesis, Stanford University, 2005.

T. Ylonen, ‘‘The secure shell (SSH) authentication protocol.”” IETF RFC 4252, Jan. 2006.

13

4. wanldmnlasans

Our results have been published as follows:

— Chanathip Namprempre, Gregory Neven, and Michel Abdalla. A Study of Blind Message Authentication
Codes. Special Section on Cryptography and Information Security in IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E90-A(1):179-186, January 2007.

— Chanathip Namprempre and Matthew Dailey. Mitigating Dictionary Attacks with Text-Graphics Character
CAPTCHAs. Special Section on Cryptography and Information Security in IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E90-A(1):75-82, January 2007.

— Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted Aggregate Signatures. In C.
Cachin, editor Automata, Languages and Programming, 34th International Colloquium — ICALP 2007,
volume 4596 of Lecture Notes in Computer Science, pages 411-422, Springer-Verlag, July 2007.

14

5. MANWIN

For completeness, we include in this report, the reprints of all three published papers and a full version of our
publication on aggregate signatures. We plan to revise the latter and eventually submit it to Journal of Cryptology

when the manuscript is ready.

— Chanathip Namprempre, Gregory Neven, and Michel Abdalla. A Study of Blind Message Authentication
Codes. Special Section on Cryptography and Information Security in IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E90-A(1):179-186, January 2007.

— Chanathip Namprempre and Matthew Dailey. Mitigating Dictionary Attacks with Text-Graphics Character
CAPTCHAs. Special Section on Cryptography and Information Security in IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E90-A(1):75-82, January 2007.

— Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted Aggregate Signatures. In C.
Cachin, editor Automata, Languages and Programming, 34th International Colloquium — ICALP 2007,
volume 4596 of Lecture Notes in Computer Science, pages 411-422, Springer-Verlag, July 2007.

— Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted Aggregate Signatures. I[ACR
Eprint report http://eprint.iacr.org/2006/285. Full version of the above publication.

15

6. UNANNEMTUNMITINYUNT

luififuesemogunsatdsdnanaldsuanuanladiuedimnn Wamnmibelsznaranmadninmiag
?Nﬁmsﬁm%wﬁwﬂumawauuaﬂmzﬁa’qé’mmwmﬁﬁ@wm 9 Lﬁaslﬁaﬂﬂmimmﬁﬁmm'wﬁ’u%’iumumﬁq 9
i sEuuamugu ANy stuudhdunaannenadon ssUUneINstaImMa ad dnwoe ddnylsemsuiia
ﬂawmm"uumumsm%ﬂnimmammmmiﬁﬂa ivuummm"umiﬂi"qwaﬂﬂsmmammmvlﬂuwummau@lfo\
ﬂnwuwa‘lwaﬂmmmammmauaw 9 Lwamvl,ﬂmmwmw fdel iufuduen 1%3“1J1J1/1Nﬂ1§’ﬂ?\1/161ﬂm
1 m‘mmiﬂuﬂummmmanaﬂawauamam ain Wssuuililumemsnns wioluszunSaamizwndonlu
Tiwmﬂgmmﬂsmm) m‘sﬂﬂﬂawauammu suiludosiivnmaluladlumemaniunamsdearsodaasafodu
o8B anuThmediddyesamiladie msmLMﬂTuTasJmmumﬂsﬂﬂmvuummﬂﬁaﬂmmmammmmwmﬂ
Uszananaiadnuasianuaunsanda ulasamsit ﬂmvmasﬂm‘mmsaammmﬁmmaﬂﬂﬂmﬂaammmsn
v llussuugnsaidsdaanald SEmsuaslilslaaoaitoanuam|dud yaduduanuuiaseesioyauuniswn
sruuuAnt uagsstumodudidnnseinduuunaniu lagiamdedt Amshauifilssansnm Snitmeaogity
faldidoutefigninadiamans WioBuduhszuumaritianuasafelumshanldasednde

There has been much interest in sensor network applications in recent years. With decreasing prices of
processors as one of the major driving forces, many applications now equip sensors with processors and let them
cooperate to achieve a common goal. Applications of this type include traffic control, eco-system monitoring, and
forecasting systems. The most common applications involve scattering sensors in some environment so that they
can gather data for further analysis. Clearly, in mission-critical applications, it is undesirable to gather data that
are unreliable or potentially-corrupt (maliciously or otherwise). The need to protect information communicated
among the sensors can only be addressed by cryptography. The challenge is to adapt cryptographic technology
to the special needs of sensor network applications. Under this grant, we have designed schemes and protocols
that can be applied to sensor network applications. The schemes and protocols we investigated are blind message
authentication codes, CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Humans
Apart), and aggregate signatures. The proposed schemes and protocols are not only efficient but also provably
secure.

16

	cover
	main

