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Abstract

Transport and logistics operation is a large and complex decision problem, which cannot
simply be formulated into a mathematical form and cannot be solved to optimality within a
reasonable computer-runtime; in other words the solving algorithm fails to prove if the
optimal solution exists.

This research proposes a constrained local search (CLS) to solve several large and
complex logistics problems. The proposed algorithm is relatively flexible and can find the
good enough solution very quickly. The problem in a constraint satisfaction problem form
can handle additional constraints commonly found in real cases directly without modifying
any structures of the algorithm. We apply CLS and column generation method to solve bus
and crew scheduling problem as well as the pickup and delivery problem. The hybrid
algorithm is non-domain specific and can be applied to obtain a good quality solution within
a viable time.

The computational experiments are performed to evaluate the performance of the
proposed method compared with the best-known algorithms in the literature. The results
have shown that in all test cases, the solution costs from the hybrid algorithm are better

than those from CLS alone and are as good as the best-known solutions.

Keywords : Optimization methods, Hybrid column generation, Local search, Large-scale

logistics problems
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// RAlgorithm: CLS
// INPUT: soft and hard constraints
// OUTPUT: a best feasible solution found

1 A=initial solution assignment

Aﬁ =best solution

Vb =the best wviolation

WHILE (iteration < stopping criterion) DC
ne = Randr)m(numcol )
V, =MAX_INTEGER
FOR i<1 TO nc

Cﬁ_r =select-columns (A}

P:=select-variables (Cﬁ_, J

W o~ oy W e W R

w

10 V, =MAX_INTEGER

11 FOR j <1 10 Random(numcol)
re g

12 A= flip(C, C,, P)

13 H':=total hard violation(4’)

14 V':= total violation(4')

15 1r H'=0 anp V'<V,

16 A, A

17 V, <V’

18 END IF

19 1IF V'<V, THEN

20 A4« A

21 END IF

22 END FOR

23 IF ¥V, <V, THEN

24 A, < 4,

25 Ve <V,

26 END IF

27 END FOR

28 A4,

29 END WHILE
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@AN37497 3.2 Soft violation scheme

No. Soft constraints Vilolation
Pre-specified

A-1 Crew pair 0
A-2 #Break 0
A-3 Break day 0
A-4 Shift type 0
A-5 Sing-in/Sign-off time 0
Crew preference
B-1 Priority bus 5
B-2 Priority line (4 levels) 0,5,15,30
B-3 Duty spreadover 1
Schedule cost
C-1 #Crew 500
C-2 Duty operating cost (DOC)/min 1.05
C-3 Overtime (OT)/min 5

a1379% 3.2 Lﬁauvlmiamﬂé‘ﬂumjw Pre-specified {100 T@LEY (Violation) L¥innu 0
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WHNIUEDIW (#Crew) A1 ks AnanNIinuTaIntnIudamfl (Duty operation cost:
DOC) uazen kidnafiinanaalsiandaml (Overtime)

A1319N 3.3 WANINARDINITIAANITHNYINIIUVAINTNINH
CLS Hybrid

e #Crew Avg.Cost Best Cost Time to best #Crew Avg.Cost Best Cost Time

P1 75 254 19,834 19,696 14 24 19,182 19,155 31
p2 75 23 16,041 15,947 11 22 15,520 15,520 29
P3 75 24 17,023 16,982 15 23 16,471 16,442 36
P4 75 26 21,005 20,998 10 24 19,383 19,322 25
P5 75 19 13,236 13,221 9 18 12,950 12,950 32
Pe 72 25 19,885 19,885 10 24 19,416 19,410 26
p7 72 24 19,530 19,422 8 24 19,285 19,285 32
Pg 72 255 21,492 20,947 18 24 19,756 19,756 41
Pa 72 24 19,329 19,211 15 24 19,014 18,945 28
P10 72 26 22,032 22,004 20 25 21,498 21,329 37

=

‘V o b o ¢§
A13197 3.3 LRAIHANITNARDINNTIAGNTHNYINITUVAIN NI WD ITDU T N9 TIgne a2
= v ad v & & ° A v A ° Ao \ ad
muvl,mﬂmmuwu'gwauuummmmm@amﬂ,ﬂmﬂ BIANNaUNANEANINNINAT CLS Tag
fUNTNRATIWIUANTHNNW LA w9 wazludymAlswiknawsiwawyinwiauiTnge
dnltanatasnii lagalldauadnand Aadiaudandininiawanainalldaisainiian
Y9 wazan lmaa a1 TN a9 8 LA TN DINITANNTALEIIINNTENI SIWNIRLS

URZENEVRITUIEI NG

23000 A
— Hybrid
22500 A
CLS
22000 -

21500 A

21000 A

Total violation

20500 A

20000 - \
o

19500 - \K

19000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (seconds)

n.



76000
Hybrid

75000
74000 1 e \

73000 e
72000
71000

Total violation

70000
69000

68000
0 20 40 58 76 96 116 136 156 176 196 216

Time (seconds)

.
P = P [ o ' o
NN 3.2 mMatdIsun UUﬂqj‘WW%’]ﬂ’]@]aUluLL@aziaUﬂqiﬂ’]\‘ﬂu

INNWA 3.2 n. usasmMInamaaululdazsaumIuasilyn P1 sz 9. uaes
mIsnammaaulwidazsaunIvinwreddym P12 92iAwinis CLS  wlhaansnwmu
o Aaf v = | ad v ¢ A = 2 aa & |
daaundsuldadimiaiiniiTiunaw Wateszuziamiads cLs  wuazldananan
[ ° Aaf [ Aad v ¢ & a [ ° A o ' 1o A o & I3
Wad1aeunfaunld uasitiuinaunuaziuiawdaauitiniuddiaeuf lanwdu

A

Aaaun@aninic CLS

MINN 3.4 WANINARBINITIAN TNV BABNIBIIURADRE

7199 3.4 i ldnssamaerinnwnsinewlagnsnusadssimeransasiues
sansnaaswninnulunsiauldlunndym lasdanudaudiadduanuniasas
mosndszimevesninanuudas iz aindy uaainnudaudivesanNuLanan
AUITERINITE DA HTDININIIZANRS UAZFNlTIN0UIS M UNTINI W=D Fnaaas



3.3 TnIn1930/ d9IRWANEIRIVLIWNINRKE
ﬂtymms%’mé?umdmuwwuzlmﬁqm%’u/ #9na183a (Pickup and delivery problem:
PDP) it A ug uza9dgwinnandynin13aaiduniiuadununinue (Vehicle routing
& a A' g d' é a n' U g; Y A e
problem: VRP) G4azilgaiinduiunae 9 ik uazaaniunisangaisudunuldliyinmds
1 Q =) g: Q 1 =) U [l ] &
3064 9 lasanwazansvinianunduiisnmsiu wisnssidudatnalaatonis
wWinw wazillafuganuznuingnaituduineds lasdymmsiaiduniszassnuninu
o ' & % @ { A J o
lapfiyeiu/ snmpaauwizianududausasdyniuazfenlufiuinniulasazanansniy
LA FIRUA 1A LUITHI1IN
A A A a [% ak A o & o o
el tzlindIs@nTAnInsasaanaINUNAAI WU LIAIWI WA A B UV DI QYW
. . { 1 A v Qs A £
Benchmark (Li & Lim, 2003) fiagluama LR uaz LRC Tesznaudiugaiy/ ssdue (PD
points) 314I% 100 9 N32UAINLLY Randomly distributed a8 Clustered and randomly
. . o <« g L .. =
distributed @N&1AU wanan Ls’m@aaurmﬂrym LRC 283 Ropke and Pisinger (2006) T4
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BNUWNAUY, dist AaTeuzIlUMTVUES WAL time (s) AaliaN it lunTdszuianaluniae
Auh
A = v @ Al A o & ° Aa o A [
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M3 3.5 N, wamInaassnuilyw PDP 41w 100 94

39N 3.5 9. WanIaaaInuilywn PDP $1u3u 200 94

BVH (Bent & Hentenryck, 2006); Li and Lim (2003); SAM (SINTEF, 2003); RP (Ropke & Pisinger, 2006); TS (TetraSoft
A/S, 2003)
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Abstract: The paper proposes a heuristic algorithm for solving pickup and delivery problems
(PDP). The PDP involves an assignment of pickup and delivery jobs to different fleets in optimal
sequences to minimize the total logistic costs whilst satisfying several practical constraints (e.g.,
time-window constraint). An efficient pickup and delivery plan can reduce empty hauls and
transportation cost of logistic operators significantly. The PDP in the real world is a large NP-
hard problem. The paper handles this by combining column generation (CG) technique with
constrained local search method (CLS). The paper applies the proposed algorithm to several
well-known benchmark tests. The test results show satisfactory performance of the proposed
algorithm in all cases compared to the benchmarks. The paper also applies the proposed
algorithm to an actual PDP of a vehicle-carrier company in Thailand. The test result shows
potential significant saving of the logistic cost through reductions of empty hauls.

Keywords: Pickup and delivery problem, column generation method, constrained local search,
logistics efficiency, freight scheduling and planning
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INTRODUCTION

A pickup and delivery problem (PDP) underpins the efficiency and cost of logistics operations.
The PDP is an instance of the vehicle routing problem but involves more complex structures and
constraints. In the PDP, the customers put requests to logistics operators to pickup and delivery
commodities from and to certain locations potentially within certain time windows. There may
be several requests involving multiple pickup and delivery points in the network. The main aim
of the PDP is to assign these jobs to different vehicles in optimal sequences so as to minimize the
total transportation costs whilst satisfying several constraints (e.g., time-window constraint or job
sequencing). The problem has drawn a significant attention from researchers in the past few
decades (/).

The PDP is an NP-Hard problem with complex constraints and large problem size. Often
an optimal solution may not be found within a limited time. The PDP solution algorithms
proposed thus far are based on either exact method, heuristics method, or meta-heuristics method
(2, 3). Recently, due to the complexity of the practical constraints of the PDP and the need to
find a good solution within a limited time different heuristics have been employed either as the
main search algorithm or as a part of the hybrid approach (e.g., combined with an exact method
or other heuristics) (2).

Nanry and Barnes (4) proposed the Relative Tabu Search (TS) for solving the PDP. The
algorithm was tested with the modified version of the Solomon’s benchmark problem. Li and
Lim (5) proposed an approach which combines the TS and Simulated Annealing (SA) methods.
Their approach uses the SA to restart the search in a new feasible partition after the TS cannot
improve the solution anymore. This helps the algorithm to escape from local optima. Bent and
Hentenryck (/) proposed the hybrid algorithm with two stages in which the SA is used to reduce
the number of feasible routes or vehicles in the first stage. Then, in the second stage the large
neighbourhood search (LNS) method is applied to minimize the total travelled distances of
vehicles. The algorithm was reported to perform well with the test problem with around 600
pickup and delivery points. Ropke and Pisinger (6) also proposed the adaptive LNS approach
which is similar to the method proposed in (/).

Xu et al. (7) tackled the problem size issue of the PDP by using column generation (CGQG)
technique to set up a relaxed master problem (linear program) which then iteratively generates a
number of sub-problems. Each sub-problem (also an NP-hard problem) corresponds to each
vehicle and includes all complex PDP constraints (e.g., time window constraint). Thus, they
proposed two fast heuristics, called MERGE and TWO-PHASE to solve the sub-problems and
generate a new column for the relaxed master problem. The algorithm developed in this paper
follows the framework of Xu et al. (7) which integrates the strengths of the CG and heuristics.
However, our algorithm utilizes constrained local search (CLS) approach (8) to solve the sub-
problem. The main impetus for using the CLS is to increase flexibility of the algorithm in
handling complex constraints of the PDP. The framework of the CLS can be easily adjusted to
handle new types of such constraints.

The rest of the paper is structured into four sections. The next section formulates the
PDP. Then, the third section explains the proposed hybrid solution algorithm which combines
the CG and CLS. The proposed algorithm is then tested with different well-known PDP
benchmark cases in the fourth section. The algorithm is also applied to a real-world case of a car-
carrier company in Thailand. The final section concludes the paper and discusses future research
issues.
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PROBLEM FORMULATION

Consider a directed graph G = (4, N) where 4 and N are sets of links and nodes respectively.
Each link is defined by its start and end nodes, i.e., (i, j) where i, j € N. Each node can be a

pickup point, a delivery point, or a vehicle depot. Let L N, U < N, and D < N denote the
sets of pickup points, delivery points, and vehicle depots respectively. Each link, (i, j) € 4, is
associated with ¢, and 7, which are the transportation cost and time for vehicle k eV (V' is the

set of vehicles) to traverse from nodes i to j respectively. Each vehicle & € V' has the capacity of
Ok g5 denotes the amount of commodity with order s = 1,...,§ which will be picked up from

node o(s)e N and delivered to node d(s)e N . For each node i, let yi, ax, and s; denote the

amount of commodity carried by vehicle k to node i, arrival time of vehicle £ to node i, and
service time required at node i respectively. The decision variable for the PDP includes the

binary variables x,, €{0,1} in which x, =1 if vehicle k traverses through link (i, ), and
x;; =0 otherwise. Also, the decision variable e, € {0,1} represents the dummy variable in which
e, =1, if the order s is assigned to vehicle &, and e, =0 otherwise. The PDP can thus be
defined mathematically as follows:

min Y5 S'e, v,

Yk Ok ey ieN JjeN

S.t.
DXy =%, =0 Vie LOU;VkeV
JeN jeN !
DD x, =1 Viel
kel jeN
Zx ijd VseS;Vkel
JeN JjeN

(yjk _yik - Z ests + Z ekus’\injk :O VZ’JEN9VkEV

wifo(s)-i ws ()i (1)
O~y 20 Vie N;VkeV
(a. —a, +S.+t..) a =0 Vi,je N;VkeV
Ly =@y 2 051y >0 VseS
Xey €10,1) Vi,je N;VkeV;VseS.

The objective function of the PDP is the total transportation cost. The first and fourth constraints
are related to the flow conservation of the vehicles and commodities at all nodes. The second
constraint ensures the solution to assign each order to only one vehicle. Each vehicle, after pick
up the order, is required to deliver the order on the same itinerary which is represented by the
third constraint. The fifth constraint imposes the capacity constraint on each vehicle. The sixth
constraint defines the relationship between the arrival times of each vehicle to a sequence of
nodes on a vehicle’s route. The seventh constraint represents the time-window constraints for the

arrival times of vehicles to different nodes in which l and l denotes the latest times to pick
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up and deliver job s at nodes o(s) and d(s) respectively. The last constraint defines the decision
variables to be binary variables. (1) represents the standard PDP formulation. The structure of the
PDP as formulated in (1) involves a large number of decision variables and constraints. To
remedy this, the method of column generation (CG) (3) will be adopted. To apply the CG, the
PDP is reformulated on the basis of vehicle routes.

Let p € P, be a feasible service route of vehicle k£ in which P is a set of feasible service

routes of vehicle k. Any feasible service route included in Pj should satisfy all practical
constraints as defined in (1). Each service route is already associated with a number of job, i.e.,
the value of ey, 1s already defined in which if order s is assigned to route p of vehicle k, then e
=1, and ey, = 0 otherwise. The sequence of these jobs which will be picked up and delivered by
vehicle k is also already determined by the sub-problem which will be described later. From the
sequence of the assigned jobs, the arrival time of vehicle k& to node i on route p (a;x), can be

calculated. Let 2, €{0,1} denotes a binary decision variable in which 4, =1 if the route p of
vehicle k is selected, and 4, =0 otherwise.

The PDP now involves the selection of the best route from the set of P for each vehicle

such that all jobs are assigned to one and only one vehicle (route), i.e., z Z e, A =1. Note
keK peP,

that under this formulation all other constraints are already satisfied since P; contains only
feasible service routes. Note that at most one route can be selected for each vehicle,
ie., Z A, <1, in which vehicle £ may not be used at all at the optimal solution of the PDP. The
peh;
time-window constraint is also included as z Z Ay <1, where I; is the required arrival time
keK pePp,

at node i for pickup or delivery tasks. Thus, the PDP can be reformulated as:

n}m Z z cpk;tpk

Pk keK peP,
s.t. 2)
DA<l VkeK
peky
Z Z ety =1 Vses§
keK peP,
> > aui, <l VieN
keK peP,
lpke{O,l} VkeK;VpeP,.

Note that ¢, denotes the transportation cost for the service route p of vehicle & in which

Cp = Z\;;cyé}j’kp where &, ,, =1 if service route p of vehicle k uses link (i, j), and 054 =0
IS JE

otherwise. In (2), each column of the decision variable vector corresponds to a feasible service

route of each vehicle. The set P, can be extremely large and difficult to enumerate at once.

Nevertheless, the structure of (2) allows us to iteratively generate a new feasible route (and hence
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a new column/decision variable) as needed. The next section will present the application of the
CG and CLS to solve the PDP as defined in (2).

HYBRID SOLUTION ALGORITHM
General Framework and Column Generation Method

The general framework of the proposed hybrid algorithm is similar to that proposed in Xu et al.
(7) in which the CG is used to solve the relaxed problem (RP) of (2). However, in our proposed
algorithm the time-window constraint remains in the RP and the relaxation is only made against
the integer requirement of the decision variables in (2). Each feasible service route with an
assigned sequence of the jobs is considered as a column in (2) in which a new decision variable
associated with this route, lpk , 1s created. The CLS is used to solve a sub-problem which is to

find a new route that minimizes the reduced cost (defined by the dual variables of the RP). The
CLS also takes into account all practical constraints of the PDP. The new route found by the
CLS, if its reduced cost is negative, is then included as a new column in the RP. The algorithm
then solves the RP again as a linear program (e.g., using CPLEX) to find a new solution and to
form a new sub-problem. The proposed hybrid algorithm iterates between the RP and sub-
problem until a set of new routes with negative reduced costs can not be found from the sub-
problem. The outputs from the RP of (2) may not be integer solutions. Thus, the Branch and
Bound (B&B) method will be applied to (2) but formulated with only those columns generated
by the CG.
Let RP be the relaxed problem of (2) by excluding the integral requirement:

(RP) n}in z Z Epk/?“pk

Pk keK peP,
S.L.
> A, <1 VkeK
peb;
Z Z e Ay =1 Vses§
keK peP,
> > aui, <l VieN
keK peP,
0< A, <I VpePVkeK. 3)

Let RP' be the restricted version of the RP problem with a subset P'= U Pl c U B, =P ofall

keK keK
possible service paths of all vehicles and P’ be the set of the service routes with assigned jobs as
generated by the CLS. The RP’ can then be formulated as:
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(RP')  min) > 2,2,

Pk keK peP!
s.L.
D> A, <1 VkeK
pel
Z Z ety =1 Vses§
keK peP;
Z Z a Ay <l VieN
keK peP/
0< A, <l Vp e PiVk e K. )

The general framework of the algorithm can be summarized as follows:

Step 1 Generate a set of service routes (columns) P’ which satisfies all constraints in (2) by
using CLS, i.e., find the set of services that gives an initial feasible solution to the PDP.
Note that in this step the CLS is only used to find a feasible solution with the minimum
number of vehicles.

Step 2 With P’, formulate RP', as defined in (4), and then apply the Simplex method to solve
RP' to obtain 4, and dual variables.

Step 3 Define the reduced cost for each route based on A, and dual variables obtained from

Step 2, and then use the CLS to find a set of new service routes (one for each vehicle) to
minimize the total reduced costs. Let P be the set of these new service routes found by
the CLS.

Step 4 If the reduced costs from P is negative, then let P'=P'UP, and return to Step 2;
otherwise proceed to Step 5.

Step 5 If all 4, obtained from the Simplex method in Step 2 are binary variables, then terminate

the algorithm in which 4, is the solution of the PDP. Otherwise, apply the B&B

approach to the RP” with the integral constraint to get an integer solution of 4, .

As reported in Xu et al. (7), 4, found by the Simplex method are often already binaries. Thus,
the B&B approach should not take too much time in solving the problem in Step 5.

The optimal solution from RP' will be the solution of the original RP, if a new set of service
routes (columns) with a negative reduced cost can be found. The reduced cost is defined from the
optimal dual variables associated with the solution to the RP'. From (4), the reduced cost can be
defined as:
b =Cp— 2 2 (= )3y -7, ®)
VieN VjeN
where 7, is the optimal dual variable associated with the third constraint in (4) for node i; =, is

the dual variables associated with the first constraint in (4) for route p of vehicle £. To find new
columns, one needs to solve (5) for all vehicles simultaneously. This sub-problem is a set-
partitioning problem. The CLS will be used to solve this sub-problem which is still a NP-hard
problem. In fact, it is also possible to solve the sub-problem separately for each vehicle if (4)
only involves constraints defined separately for each vehicle. This may limit the flexibility of the
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PDP to include more complex constraints involving the whole fleets. In addition, the complexity
for the CLS in solving the sub-problem with all vehicles simultaneously is not significantly
higher than solving the sub-problem for each vehicle separately. Note that using the CLS alone
can also find a feasible solution for PDP, but in the expense of the solution quality. Therefore, we
only apply the CLS to construct an initial set of feasible columns and to find the solution of the
sub-problem (SP).

Constrained Local Search Method for Generating New Service Routes

The CLS is a type of meta-heuristic optimization method. The algorithm will start with an initial
solution and then iteratively moves to neighbour feasible solutions. Thus, the definition of the
neighbourhood solutions must be defined. The CLS will decide on the move to a neighbour
solution probabilistically.

The sub-problem of RP’ can be considered as a set partitioning problem (SP). The SP
involves assigning each job, s € §, to different vehicles, k € K . Fig. 1 illustrates the problem in
the structure of a set-partitioning problem. The upper column represents vehicle £ € K (e.g., K1
or K2). Under each upper column, the sub-columns (e.g., columns 1-4 under K1) are associated
with the job sequence for that vehicle. The number of sub-columns for each vehicle is defined by
the maximum number of jobs that vehicle is allowed to take. Each job, s € .S, is associated with
two rows (pickup and delivery tasks). For instance, rows 2+ and 2- represent the pickup and
delivery tasks for job 2 in this example.

If the job s is assigned to vehicle & in which the pickup task is defined as the wy-th job of
vehicle k, then the value in the sub-column wy, of vehicle & and in the row s+ will be set to 1, i.e.,

0" =1. Consequently, the delivery task of job s must also be allocated to vehicle , say defined
as task w, (w, <w}), in which 8" =1. Otherwise, 8" = 8" =0. Denote 0", and 0" as the
job numbers of the pickup and delivery of job s by vehicle & respectively. Denote l: =l —-rl as

the upper bound of the pickup and delivery late times for each customer.

From Fig. 1, there are two jobs with four tasks (pickup and delivery). There are two
vehicles, K1 and K2, and each vehicle can accept only four tasks. The cell values in the current
example indicate that the job 2 is assigned to vehicle K1 in which the pickup and delivery tasks
are its first and third tasks respectively. Similarly, job 1 is assigned to vehicle K2. This matrix
representation will be adopted in the CLS to solve the SP.

K1 K2
1 2 3 4 1 2 3 4
1+ 0 0 0 0 0 1 0 0
2+ 1 0 0 0 0 0 0 0
1- 0 0 0 0 0 0 1 0
2- 0 0 1 0 0 0 0 0

FIGURE 1 Example of representation of PDP as a set-partition problem.

Two types of constraints are defined for the SP following the CLS setting (3): soft and
hard constraints. The hard constraints involve all practical constraints of the PDP which are (6)-
(9) below where W denotes the maximum number of tasks allowed for each vehicle. Note that



N. Indra-Payoong, A. Sumalee, K. Vanitchakornpong, W.Y. Szeto 8

any other constraints can also be introduced without changing the search operators of the CLS.
This allows for a more flexible formulation of the PDP.

h —max[o Z{ZZ(@W _ )D ©

é(ejzwk -0) D : (7)
= ZZ(max (O,Of+ —off)), (8)

seS kel

h = ZZ(maX (O’yik _Qk))gz > )

keK ieN

h, zzZ(maX(O,a[k—l:.)). (10)

keK ieN

seS keK

h., =max[0,22{

(6) requires each order to be assigned to only one vehicle. (7) requires the order to be
picked up and delivered during the same trip. (8) and (9) ensure that the orders of pickup and
delivery tasks are in the correct sequences, and the vehicle load is less than vehicle capacity.
Note that &, is an additional weight given to the 4; constraint. (10) imposes the constraint on the

pickup and delivery times. Let H = h, +h, +h., +h, +h, to be the total violation function of the

hard constraints. H is required to be 0 due to the definition of the hard constraint. The soft
constraint is associated with the objective function of the sub-problem, i.e.,

}/v:max(O,ka], (11)

keV

V4 =maX(O,ZZZéi/xw‘], (12)
keV ieN jeN

where y, is the total number of vehicles used (v = 1 if vehicle £ is used and v; = 0 otherwise).
7418 the total reduced costs in which ¢, =c; —7,. Let Q =y, +y, which represents the total soft

constraint level.

The CLS will move from a current solution to its neighbour solutions with the aim to
reduce ® =Q + H . The neighbourhood search operators adopted in the CLS are (i) intra-vehicle
trial flip and (ii) inter-vehicle trial flip. The CLS will ensure the satisfaction of the hard
constraints as defined in (6)-(8) by the specifications of the search operators. The constraint (9)
and other additional constraints will be considered by the neighbourhood movement decision.
The overall steps of the CLS can be defined as follows:

Overall CLS algorithm

Step 1 Initialize by forming the SP matrix (denoted by A4) (see Figure. 1) and then for each job
s €S randomly select a vehicle for the job. Then, randomly select a task sequence,
1<w, <W, for the pickup task, and then set the row s+ and column w, to be I.
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Similarly, randomly select w;, W > w, > w,, for the delivery task and set the row s- and
column wj to be 1. After assigning all jobs, evaluate ® =Q + H for the solution 4.

Step2 Setu=1.

Step 3 Perform the intra-vehicle trial flip to define a set of neighbourhood solutions.

Step 4 If all neighbourhood solutions of 4 as found by the intra-vehicle trial flip cannot improve
® =Q+ H , then perform the inter-vehicle trial flip.

Step 5 Set u = u +1; if u > maxlter then terminate; otherwise return to Step 3.

Note that the maxlter parameter is predefined by the user. The details of the intra-vehicle trial
flip and inter-vehicle trial flip are as follows:

Intra-vehicle Trial Flip

There are two stages in the intra-vehicle trial flip operation: the exchange of the job
sequences and the insertion of the jobs into empty job sequences. The pseudo code for the
exchange phase of the intra-vehicle trial flip is as follows:

Intra-vehicle trial flip: exchange phase

Step 1 Randomly select a vehicle £ € K and a column 1< w, <W with an assigned task (either

pickup or delivery). Let ; be the row with value of 1 of the randomly selected column.
Set e = 0.
Step 2 Set e = e + 1. Randomly select another column, w,, with an assigned task (either pickup

or delivery). Let r; be the row of column w, with the value of 1.
Step 3 Exchange the values in the rows r; of columns wy and w; . Similarly exchange the values
in the rows 7, of columns wy and w, . Define the new solution as A'(e). Evaluate @'(e)

and &, If h., # 0, return to Step 3. Otherwise, go to Step 4.
Step 4 If e > maxSampling, go to Step 5. Otherwise return to Step 2.

Step 5 Let ®' be min(@'(e) te= 1,...,maxSampling). If ®< @', then set 4= A4'(e) and call the

insertion phase. Otherwise, call inter-vehicle trial flip.

Note that the parameter maxSampling is predefined by the users and represents the number of
neighbourhoods explored by each step of the CLS.

The exchange phase involves a random selection of a vehicle (normally those with
constraint violation) and a column of that vehicle with an assigned task. This is illustrated in
Figure 2a in which column 3 of vehicle K1 is randomly selected. Then, row 2+ is identified as
the row with 1. In Step 2, the operation then randomly selects the second column which is
assumed to be column 1 in this example in which row 3+ is identified. The values in these two
rows of columns 3 and 1 are then exchanged as shown in Fig. 2b. For this example the new
solution (in Fig. 2b) violates the constraint on the sequence of the tasks, i.e., the pickup task of
job 3 is after the delivery task of the same job. Thus, this neighbour solution will not be
considered. A new column will then be randomly selected instead (assume to be column 2 in this
example). The exchange of the values can then be carried out as shown in Fig. 2¢. For this
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solution, the sequence of the tasks is feasible. Thus, the algorithm will evaluate the ©'(e) of this

solution.
The algorithm will carry out the same operation for a number of times as defined by the

users (i.e., maxSampling parameter). Then, the solution with the lowest @'(e) among all feasible

neighbourhood solutions will be selected (as define in Step 5). If ®'(e) is less than the value of

the original solution, then the search will move to this new solution and perform the insertion
phase. Otherwise, the search will remain at the original solution and perform the inter-vehicle
flip instead.

K1 K1 K1
112]3 516 112]|3|4|51]6 11213 5]6
1+ 1 1+ 1 1+
2+ 1 2+ 1 0 2+ 14-0
3+| 1 3+10 —=1 3+ 1
1 1- 1 1
1 2- 1 1
1 3- 1 3- 0-p1
a) b) c)

FIGURE 2 Intra-vehicle trial flip operation: exchange phase.
The insertion phase is described as follows:

Intra-vehicle trial flip: insertion phase
Step 1 Randomly select a vehicle £ € K and a column 1< w, <W of that vehicle with a pickup

task. Let 7; be the row with the cell value of 1 under the randomly selected column. Let s
be the pickup task associated with column w, . Set r, to be s- and w} to be the column of

the cell in row r, with the cell value of 1. Set e = 0.
Step 2 Identify all columns in which all cells under those columns have value of 0 (i.e., no task
assigned to these vehicle sequences). Let A be the set of these column numbers in the

ascending order in which A(b) refers to the column number in the order b in the set A .
Step 3 Change the value of column w, and row r; to 0 and the value of column A (1) and row r;

to 1. Then, exclude A(1) from A and include column w, to A. Let |A| denote the size

of this set.
Step4 Sete=e+ 1.

Step 5 Change the value of column A (e) and row 7, to 1 and the value in the cell under column
w, and on row 75 to 0. Define this solution as A4'(e) and evaluate ©'(e).

Step 6 Ife= |A| then go to Step 7. Otherwise, return to Step 4.

Step 7 Compare the values of ©(e) forall e =1,...,
lowest ©'(e). Set A=4'(¢').

A| and define e’ as the solution with the
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Figure 3 illustrates the insertion phase of the intra-vehicle flip operation. From this
example, let suppose that column 4 of vehicle K1 is randomly selected (see Fig. 3a) in Step 1.
Then, as defined in Step 1, row 2+ can be identified, and also column 6 and row 2- can be
identified (as the corresponding delivery task of job 2). Then, the list of columns without any
tasked assigned to can be identified as {1, 2, 5, 8} in Step 2. The values in columns 4 and 1 on

row 2+ are then exchanged as shown in Fig. 3b. Then, A = {2, 4,5,8} . With this set, there are
only four possible moves. Fig. 3b, 3c, and 3d show three examples of the exchanges (out of four

possible moves) of the delivery task of job w from under its original column 6 to columns 2, 4,
and 8 respectively.

K1 K1
1|2|3]|4|5|6]|7]s8 1|2]|3]|4|5]|6|7]s8
1" 1 1" 1
2" 1 27| 19 0
1 1 i 1
2 1 2 1 0
a b)
K K1
1]2]3|4]|5]|6]|7]|8 1|2]3|4]|5]|6]|7]8
1" 1 1" 1
2| 14 0 2| 1€ 0
1 1 1 1
2 14— 0 2 01—p1
c) d)

FIGURE 3 Examples of in-vehicle trial flip operation: insertion phase.

Inter-vehicle Trial Flip

The inter-vehicle trial flip will be called if the exchange phase of the intra-vehicle trial
flip cannot find a solution with lower ®'. With a selected vehicle and column from the intra-
vehicle trial flip (from the exchange phase), the inter-vehicle flip will randomly select other
vehicles. Then, the insertion phase will be carried out but with the columns of other vehicles.
With a randomly selected vehicle, the set A will be created and then Steps 3-7 of the insertion
phase will be carried out. The CLS will move to a new solution whether ® < ® or not. This will
help the CLS to avoid local optima.

EXPERIMENT WITH BENCHMARK PROBLEMS AND REAL-WORLD CASE
Benchmark Tests Results

The proposed hybrid algorithm is applied to the benchmark tests as defined in (5). The
benchmarks are categorized into two types, LR (100 randomly distributed pickup/delivery

points) and LRC (100 randomly combined cluster pickup/delivery points), shown in Table 1la.
See the detail definitions of these two problem classes in (5). In addition, the LRC typed-
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problem with 200 pickup/delivery points as tested in (6) are also considered (see Table 1b). The
algorithm is implemented in JAVA language. The tests are carried out with Pentium IV (2.8
GHz) computer under Windows OS. ¢, in (9) and maxlter are set to be 10 and 20,000

respectively.
TABLE 1a) Test Results against 100 Points PDP Benchmarks
Problem Best known Full
veh dist ref. avg. dist avg.veh bestdist bestveh avg.time (s)
LR101 19 1650.8 Li & Lim 1650.8 19 1650.8 19 127
LR102 17 1487.57 Li & Lim 1529.11 17 1515.88 17 103
LR103 13 1292.68 Li & Lim 1349.39 13 1317.45 13 114
LR104 9 1013.39 Li & Lim 1061.54 9 1016.93 9 132
LR105 14 1377.11 Li & Lim 1406.32 14 1386.27 14 98
LR106 12 1252.62 Li & Lim 1257.82 12 1256.66 12 146
LR107 10 1111.31 Li & Lim 1111.31 10 1111.31 10 145
LR108 9 968.97 Li & Lim 968.97 9 968.97 9 123
LR109 11 1208.96 SAM 1228.58 11 1208.96 11 134
LR110 10 1159.35 Li & Lim 1191.02 10 1159.35 10 166
LR111 10 1108.9 Li & Lim 1108.9 10 1108.9 10 183
LR112 9 1003.77 Li & Lim 1005.43 9 1003.77 9 177
LRC101 14 1708.8 Li & Lim 1717.61 14 1708.8 14 131
LRC102 12 1558.07 SAM 1570.12 12 1558.07 12 146
LRC103 11 1258.74 Li & Lim 1272.33 11 1258.74 11 130
LRC104 10 1128.4 Li & Lim 1138.96 10 1128.4 10 125
LRC105 13 1637.62 Li & Lim 1644.05 13 1637.62 13 147
LRC106 11 1424.73 SAM 1424.73 11 1424.73 11 134
LRC107 11 1230.15 Li & Lim 1231.18 11 1230.15 11 124
LRC108 10 1147.43 SAM 1155.58 10 1147.43 10 112
TABLE 1b) Test Results against 200 Points PDP Benchmarks
Problem Best known Full
veh dist ref. avg. dist avg.veh  bestdist best veh avg. time (s)
LR1_2 1 20 4819.12 Li & Lim 5324.58 20 4948.79 20 1397
LR1_2 2 17 4621.21 RP 4749.88 18 4614.82 18 594
LR1_2 3 15 3612.64 TS 3912.3 15 3870.36 15 1111
LR1_2_4 10 3037.38 RP 3400.55 11 3111.16 11 852
LR1_2_5 16 4760.18 BVH 4721.72 17 4392.35 17 626
LR1_2_6 14 4175.16 BVH 4329.93 15 4218.42 15 699
LR1_2_7 12 3550.61 RP 3715.76 13 3468.55 13 1039
LR1_2_8 9 2784.53 RP 3005.28 9.63 2915.95 9 2235
LR1_2_9 14 4354.66 RP 4650.48 14.57 4404.79 14 1540
LR1_2_10 11 3714.16 RP 3792.87 12 3602.41 12 1324
LRC1_2_1 19 3606.06 SAM 3639.96 19 3625.46 19 1265
LRC1_2_2 15 3673.19 BVH 3958.43 16 3719.88 16 1407
LRC1_2_3 13 3161.75 BVH 3291.08 14 3371.52 14 1584
LRC1_2 4 10 2631.82 RP 2913.63 11 2713.94 11 2323
LRC1_2 5 16 3715.81 BVH 4043.92 17 4015.44 17 1425
LRC1_2_6 17 3368.66 SAM 3463.06 17 3441.72 17 1338
LRC1_2_7 14 3668.39 RP 3677.115 17 3580.77 15 1659
LRC1_2_8 13 3174.55 RP 3316.6 14 3228.94 14 1506
LRC1_2_9 13 3226.72 RP 3433.04 14 3307.79 14 1131
LRC1_2 10 12 2951.29 RP 3258.5 12.83 3409.05 12 744

BVH (4); Li & Lim (5); SAM (7); RP(6); TS (8)
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Table 1 presents the best known results from the literature in terms of the number of
optimal vehicles used (column 2) and total transportation distant (column 3) for all benchmark
tests. Due to the heuristic nature of the proposed algorithm, the algorithm is applied to each
benchmark case 20 times separately to collect the statistics of the results, e.g., best found and
average. Table 1 reports the results found by the proposed hybrid algorithm (average values over
20 runs and the best found) for all benchmark tests; in which the results in columns 5-9 show the
average travel distance, average number of vehicles used, best found total distant, best found
number of vehicles used, and average processing time used in seconds in that order.

From Table 1, the algorithm proposed performs satisfactorily against all benchmark tests
as compared to the best found solutions reported in the literature. In particular for the tests with
100 jobs (Table 1a), the numbers of vehicles used found by our proposed algorithm are the same
as the best results reported in the literature for all benchmark tests. In some cases (i.e., LR109,
LRC102, LRC106, and LRC108), the algorithm can even find better solutions compared to those
reported in (5). However, for the tests with 200 orders (Table 1b), the solutions found by the
proposed algorithm are slightly worse than the best results reported in the literature. This
illustrates the trade-off between the performance of the algorithm and its flexibility. The
proposed algorithm is very flexible for including additional constraints. On the other hand, most
algorithms with the best known results are problem specific to some extent in which some
specific heuristics are designed and used in the algorithms. Thus, with these specific heuristics
other PDP constraints cannot be introduced without modifying the algorithms. This issue will be
illustrated in the next section when a constraint on the arrival times of vehicles back to depots is
introduced.

A Real World PDP Case Study of a Vehicle-Carrier Company

The real world case study considered in this paper is related to a vehicle-carrier company in
Thailand. The company offers services to transport cars in different areas in Thailand. The main
origins of its customers are car factories and second-hand car depots. Similarly the main
destinations of the jobs are official car dealers and second-hand car dealers around Thailand. The
car PDP problem in this case involves an additional constraint on the arrival times of the trailers
back to the company depot (due to security and safety reasons). This constraint can be defined
as:

h, zmaX(O,ZZ(a,k—l,)J-a (13)

keV ieD

where D defines the set of company depots and a is the multiplier similar to ¢. This is similar to
the time-window constraint for the jobs or working-hour constraint for drivers. The proposed
algorithm, in particular the CLS, can solve the PDP with this new constraint straightaway
without any modification to its search operators or solution algorithm. In the test, a is set to be
10 and #; is included in the hard constraint violation function of the CLS. Table 2 shows five
datasets for the tests with different numbers of depots, types and numbers (#) of trailers, and
numbers of jobs. The datasets 1-3 are typical problems encountered in the day to day by
operation of the company. The datasets 4 and 5 are occasional cases with relatively large
numbers of jobs. These occasional cases normally occur when several car manufacturers release
new models during the same period.
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TABLE 2 Datasets for the Real-World Problem

Data Set Depot Trailers Orders PD Points

# Types
1 1 13 2 100 42
2 2 15 2 150 52
3 2 17 3 200 70
4 3 18 3 250 86
5 3 22 3 300 110

TABLE 3 Test Results with the Real-World Problem

Data Set Laden KM Empty KM CPU (s)
Manual DSS Diff (%) Manual DSS Diff (%)
1 7,232 6,445 1087 7,010 6,108 12.86 18
2 12,756 11,576 9.25 13,516 12,100 10.47 23
3 29,975 26,548 11.43 20,350 17,553 13.74 46
4
5

37,550 32,453 13,57 34,811 30,090 13.56 63
39,953 34,259 1425 38,055 32,182 15.43 112

In the Table 3, columns DSS and Manual show the results obtained by the proposed algorithm
and current plans of the company (generated manually) respectively. The columns Laden KM
and Empty KM show the total vehicle-kilometres covered by the loaded and empty vehicles
respectively. From Table 3, the algorithm can potentially help reducing the vehicle-kilometres
covered by both the loaded and empty vehicles at least 9.25% and 10.47% respectively for all
test cases. This can potentially result in a substantial saving in terms of the company logistics
costs. The computational times in all cases are also acceptable in which the runtime for the
largest problem (Data Set 5) is only around 2 minutes. This illustrates the practicality of the
proposed algorithm in handling a large scale realistic PDP.

CONCLUSION AND DISCUSSION

The paper proposed a hybrid method combining the column generation technique (CG) and
constrained local search (CLS) algorithm for tackling the Pickup and Delivery problem (PDP).
The algorithm developed is non-domain specific which allows any additional practical
constraints to be flexibly considered in the PDP. The hybrid CG and CLS also enhances the
stability and robustness of the algorithm in which the CG helps reducing the problem size (which
is typically very large for the realistic PDP) and the CLS provides the robustness in handling
complex constraints of the PDP. The algorithm proposed was tested against the well-known
benchmark cases. The proposed algorithm performed satisfactorily in all tests compared to the
best-known results. The algorithm was also applied to the real-world PDP based on the problem
of a car-carrier company in Thailand. Five different scenarios of job requests were chosen for the
tests. In all scenarios, the plans found by the proposed algorithm can significantly decrease the
total distances of the loaded and empty vehicles operated by the company compared to the
current manual plans (at least around 9%-14% and 10%-15% respectively). Future research will
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extend the algorithm to take into account uncertainties of travel times and dwell times of vehicles
in the PDP.
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TABLE 1a) Test Results against 100 Points PDP Benchmarks

Problem Best known Full
veh dist ref. avg. dist avg.veh bestdist bestveh avg.time (s)
LR101 19 1650.8 Li & Lim 1650.8 19 1650.8 19 127
LR102 17 1487.57 Li & Lim 1529.11 17 1515.88 17 103
LR103 13 1292.68 Li & Lim 1349.39 13 1317.45 13 114
LR104 9 1013.39 Li & Lim 1061.54 9 1016.93 9 132
LR105 14 1377.11 Li & Lim 1406.32 14 1386.27 14 98
LR106 12 1252.62 Li & Lim 1257.82 12 1256.66 12 146
LR107 10 1111.31 Li & Lim 1111.31 10 1111.31 10 145
LR108 9 968.97 Li & Lim 968.97 9 968.97 9 123
LR109 11 1208.96 SAM 1228.58 11 1208.96 11 134
LR110 10 1159.35 Li & Lim 1191.02 10 1159.35 10 166
LR111 10 1108.9 Li & Lim 1108.9 10 1108.9 10 183
LR112 9 1003.77 Li & Lim 1005.43 9 1003.77 9 177
LRC101 14 1708.8 Li & Lim 1717.61 14 1708.8 14 131
LRC102 12 1558.07 SAM 1570.12 12 1558.07 12 146
LRC103 11 1258.74 Li & Lim 1272.33 11 1258.74 11 130
LRC104 10 1128.4 Li & Lim 1138.96 10 1128.4 10 125
LRC105 13 1637.62 Li & Lim 1644.05 13 1637.62 13 147
LRC106 11 1424.73 SAM 1424.73 11 1424.73 11 134
LRC107 11 1230.15 Li & Lim 1231.18 11 1230.15 11 124
LRC108 10 1147.43 SAM 1155.58 10 1147.43 10 112

TABLE 1b) Test Results against 200 Points PDP Benchmarks

Problem Best known Full
veh dist ref. avg. dist avg.veh  bestdist best veh avg. time (s)
LR1_2 1 20 4819.12 Li & Lim 5324.58 20 4948.79 20 1397
LR1_2 2 17 4621.21 RP 4749.88 18 4614.82 18 594
LR1_2_3 15 3612.64 TS 3912.3 15 3870.36 15 1111
LR1_2_4 10 3037.38 RP 3400.55 11 3111.16 11 852
LR1_2_5 16 4760.18 BVH 4721.72 17 4392.35 17 626
LR1_2_6 14 4175.16 BVH 4329.93 15 4218.42 15 699
LR1_2 7 12 3550.61 RP 3715.76 13 3468.55 13 1039
LR1_2 8 9 2784.53 RP 3005.28 9.63 2915.95 9 2235
LR1_2 9 14 4354.66 RP 4650.48 14.57 4404.79 14 1540
LR1_2_10 11 3714.16 RP 3792.87 12 3602.41 12 1324
LRC1_2_1 19 3606.06 SAM 3639.96 19 3625.46 19 1265
LRC1_2_2 15 3673.19 BVH 3958.43 16 3719.88 16 1407
LRC1_2_3 13 3161.75 BVH 3291.08 14 3371.52 14 1584
LRC1_2_4 10 2631.82 RP 2913.63 11 2713.94 11 2323
LRC1_2_5 16 3715.81 BVH 4043.92 17 4015.44 17 1425
LRC1_2_6 17 3368.66 SAM 3463.06 17 3441.72 17 1338
LRC1_2_7 14 3668.39 RP 3677.115 17 3580.77 15 1659
LRC1_2_8 13 3174.55 RP 3316.6 14 3228.94 14 1506
LRC1_2 9 13 3226.72 RP 3433.04 14 3307.79 14 1131
LRC1 2 10 12 2951.29 RP 3258.5 12.83 3409.05 12 744
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TABLE 2 Datasets for the Real-World Problem

Data Set Depot Trailers Orders PD Points
# Types
1 1 13 2 100 42
2 2 15 2 150 52
3 2 17 3 200 70
4 3 18 3 250 86
5 3 22 3 300 110
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TABLE 3 Test Results with the Real-World Problem

Data Set Laden KM Empty KM CPU (s)
Manual DSS Diff (%) Manual DSS Diff (%)
1 7232 6,445 10.87 7,010 6,108 12.86 18
2 12,756 11,576 9.25 13,516 12,100 10.47 23
3 29,975 26,548 1143 20,350 17,553 13.74 46
4 37,550 32,453 13,57 34,811 30,090 13.56 63
5 39,953 34,259 1425 38,055 32,182 15.43 112
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K1 K2
1 2 3 4 1 2 3 4
1+ 0 0 0 0 0 1 0 0
2+ 1 0 0 0 0 0 0 0
1- 0 0 0 0 0 0 1 0
2- 0 0 1 0 0 0 0 0

FIGURE 1 Example of representation of PDP as a set-partition problem.
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11213
1+
2+ 1
3+ 1
1
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b)

K1
11213
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2+ 1€4-0
3+ 1
01
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FIGURE 2 In-vehicle trial flip operation: exchange phase.
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K1 K1
1|2]|3]|4|s5|6]|7]8 1|2]3]|4|5]|6|7]8
1" 1 1" 1
2" 1 27| 19 0
1 1 1 1
2 1 2 1€ 0
a) b)
K1 K1
1]12]3|4|5]|6]|7]|8 1]12]3|4]|5]|6]|7]8
1" 1 1" 1
2| 14 0 2| 1< 0
1 1 1 1
2 14— 0 2 04—p1
c) d)

FIGURE 3 Examples of in-vehicle trial flip operation: insertion phase.
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Abstract. This paper proposes a bus fleet scheduling model with multi-depot
and line change operations with the aim to reduce the operating costs. The
problem is constrained by various practical operational constraints, e.g.
headway, travel time, and route time restrictions. A constrained local search
method is developed to find better bus schedules. The method is tested with the
case study of the Bangkok bus system with nine bus service lines covering
around 688 trips per day. The test result shows that around 10% of the total
operating costs could be saved by the optimized schedule.

Keywords: Bus scheduling, Multi-depot and line change, Constrained local
search.

1 Introduction

Bus scheduling is a complex decision problem for transit operators. Generally, there
are four planning steps involved: i) bus routes and headway determination, ii) bus
timetabling, iii) vehicle scheduling, and iv) crew scheduling. These steps are highly
interdependent. (i) and (ii) are rather long-term plans whereas the other two are short-
term decisions. In this paper, we focus on the vehicle scheduling problem of bus
services with multi-depot and line change operations. We also focus on developing a
flexible algorithm that can accommodate additional side constraints commonly found
in real cases. Since the multi-depot vehicle scheduling problem is NP-hard, we
propose a local search method that uses a simple local move to obtain a good quality
solution within a viable time. The proposed model and algorithm are evaluated with
the real data from the bus system in Bangkok.

The paper is organized as follows: the next section reviews the literature on bus
scheduling; the following two sections describe the model formulation and the test
results from the Bangkok case study respectively. The conclusions and future research
are then discussed in the last section.

2 Literature Review

Relevant literature on the bus fleet scheduling problem can be categorized as: i)
problem formulation, ii) solution algorithm development; and iii) applications to real

M. Giacobini et al. (Eds.): EvoWorkshops 2008, LNCS 4974, pp. 669-678, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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life problems. Since the multi depot vehicle scheduling problem (MDVS) is NP-hard,
most of the algorithms proposed thus far in the literature are heuristic. Bertossi et al.
[1] proposed a multi-commodity matching model for MDVS and developed two
heuristics to solve the problem. Ribeiro and Soumis [2] formulated MDVS as a set
partitioning (SP) problem. They also proposed a method based on the column
generation (CG) and branch and bound methods. Lobel [3, 4] tackled MDVS with the
problem size of around 7,000 trips. The problem is formulated as a multi-commodity
flow problem, and the Lagrangian pricing method was adopted. The proposed
algorithm has been employed by three bus companies in Berlin and Hamburg cities.
Hadjar et al. [5] proposed a branch and cut algorithm for MDVS. They successfully
solved the problem with around 800 trips. Pepin et al. [6] and Kliewer et al. [7]
formulated the MDVS as a time-space model to reduce the number of decision
variables. With the proposed model, any off-shelf optimization software can be
adopted to solve the problem. The proposed method is tested with the bus data from
the Munich city.

In this paper, we propose a different algorithm for MDVS. The method is based on
a special type of local search algorithm which operates simple local moves to improve
the solution. The algorithm proposed is arguably more flexible, and can easily
accommodate additional side constraints. The users can easily introduce and/or
modify the constraints without any changes to the algorithm structure. For instance, a
strict time-window constraint can be easily converted to a time-window constraint
with some tolerances.

3 Problem Formulation

The vehicle scheduling process will be analyzed after the bus timetable has been
determined. The vehicle scheduling problem for bus systems involves assigning
different buses to different scheduled trips so as to minimize the total operating costs
whilst satisfying several practical constraints including (i) only one bus is assigned to
a scheduled trip, and (ii) other constraints (e.g. time-window or route restriction).

In this paper, the MDVS is formulated as a set partitioning problem as shown in
Fig. 1. Each row represents a scheduled trip, and each column represents a vehicle.

In Fig. 1, there are five scheduled trips with two different service lines: L1 and L2.
Vehicle il and i2 belong to L1, and i3 and i4 belongs to L2. A feasible solution is
shown in Fig. 1 in which for L1 bus i2 departs at 8:00 and 9:00, and il departs at
8:30; for L2, bus i3 and i4 depart at 8:15 and 8:35 respectively.

. . L1 L2
Timetabled trips ” 2 3 i
8:00 0 1 0 0
L1 8:30 1 0 0 0
9:00 0 1 0 0
8:15 0 0 1 0
L2 8:35 0 0 0 1

Fig. 1. Set partitioning formulation for vehicle scheduling problem
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To facilitate the discussion, the following notations are used: Z ={1,..., z} denotes a
set of depots, L ={1,...,1} is the set of bus lines and LZ' ={L,...,1,} is the set of bus lines
for depot z, W ={l,...,w}is the set of scheduled trips, W,'= {1,...,w, }is the set of trips
of line [, V ={l,..,v}is the set of buses, V,'={l,...,.k,} is the set of buses of line
[,D, ={l,...,d}is the ordered set of the trips served by bus i, Q,is the allowable
number of trips for bus i, ¢; is the fixed cost of bus i serving trip j,x,= 1 if bus i
serving trip j ; x, =0 otherwise, e, is the starting time of trip j for bus i, 7, is the trip
time for bus i servicing trip j, s, is the number of buses serving line /,w, is the
total trips of line [,k, is the number of dedicated buses of line I, f,= 1 if bus
i services at least 1 trip; f, = 0 otherwise, a;= 1 if bus i is used for the other lines
when serving trip j; a,= 0 otherwise, b, = 1 if bus iis shared between depots in
serving trip j ; b; = 0 otherwise.

The bus vehicle scheduling problem can be considered as a constraint satisfaction
problem in which the violation of hard constraints (operational constraints) is
prohibited, and the objective function is converted into a soft constraint. In general,
the constraint violation ( v ) can be written as:

Ax <b=v=max(0,Ax-b) . )

where A is coefficient value, x is decision variable, and b is a bound. A solution for
the problem is achieved when i) the hard violation ( H ) equals to zero, and ii) the soft
violation (S ) is minimized.

3.1 Hard Constraints

In this paper, the hard constraints are further categorized into the basic and side
constraints. The basic constraints are mainly concerned with the consistency of the
solution, e.g. one trip should be assigned to one vehicle. On the other hand, the side
constraints are related to additional operational constraints considered, e.g. time-
window constraint on arrival time of the vehicle back to the depot.

Basic constraints: Constraint (2) below states that each scheduled trip j must be

assigned to only one bus. /£, is the constraint violation level for this constraint.

> x, —1D . )

ieV

hp = max [0, z

Jjew

Constraint (3) ensures that the bus can only start the trip after finishing the previous
assigned trip.

s-refag gl )]

i€V jeD;
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Side constraints: These constraints are mainly for route-time constraint, line change
and vehicle transfer operations, and relaxed hard time windows.

In general, the route-time constraint may be associated with vehicle range (due to
fuel limit), maintenance period, and maximum driver’s working hours which can be
written as:

h, = max(O, z (ei,m*+1 — (€ 10 + bk))j ' “)
eV
Where m*= jmod m Vje D,, m is the longest continuous trip served by vehicle i,

bk is the break time (unit: min), and 5, is the violation for the constraints.

Constraint (5) ensures that the bus cannot run longer than the daily allowable
maximum working hours (its violation level is &, ):

h. = max [O,Z

ieV

ng-Qf‘] : )

Jjew

Line change and vehicle transfer operations are proposed to reduce the operating
costs by efficiently utilizing the current resources. Typically, the vehicles are assigned
to specific lines (routes) and depots. With this fixed plan, some vehicles may be
underutilized and some lines may be lack of vehicles at some periods due to the
fluctuation of travel times and demands during a day. The line change operation is the
assignment of a vehicle belonging to one line to serve a trip of another line. The
multi-depot operation (vehicle transfer) allows the vehicles to arrive or depart from
different depots from their original depots. Thus, the vehicle scheduling with multi-
depot and line change operations can potentially increase the efficiency of the bus
utilization. Nevertheless, some buses may not be available for this operation due to
some contractual/practical issues (e.g. advertisement media contract on a particular
line). The violation for the constraints can be formulated as:

h, =m[02|:2(2}n:l] : ©)

k, = max o,zz{z(z%]ﬂt} ™

€Z ieV | leLl\ jeW/

where m, =1 if bus i on line [ is prohibited to serve other lines, n, =1 if bus i on
depot Z cannot be transferred between depots. &, and h, are the constraint violation

levels for the constraints on line change and vehicle transfer respectively.

An additional relaxed time-window constraint is introduced to allow for journey
time variability. The late time-windows of @ in (3) are relaxed; where @ is the set of
scheduled trips. The time-window constraint is converted to a soft constraint as:
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h. = max[O,z > (e +t,)-¢ (1=, )] : ®)

i€V jeD;

s, = max (OZ > [(%,H +1,,,)—e; ]yj] )

ieV jeD;

Note that (3) is substituted by (8). (9) is a soft constraint y =l if je @;

otherwise y;=0.

3.2 Soft Constraint

The objective function of the problem is to minimize the total operating cost which
can be formulated as a soft violation, s, as:

S = maX(O,Z {z (c;x; + LCia, +VT b, )+ FVl.f,} + se} (10)

ieN | jeN

FV, is the fixed cost of running bus i. LC; is the fixed cost of line change operation,
and VT, is the fixed transfer cost of the vehicles between depots. From (2) - (8), the

hard violation can be defined as H = h, +h,+h +h, +h +h ., and the total constraint

violation is V = H +S . Note that for the Bangkok bus system, the depot is used for
the first and end bus stops; thus the deadhead trip is not considered.

4 Solution Methods

Typically, the bus travel time is defined as a fixed parameter. However, in a very
congested traffic network (like Bangkok) there exists a large variation of bus travel
time. Fig. 2 illustrates the travel time in a typical day for a bus service in Bangkok.
The travel time variability can seriously affect the vehicle schedule. In this study, the
travel time forecast model is based on the historical travel time in hourly timeslot of
the day and the day of the week with some expert rules. The detail of this model will
not be discussed here to the limited space.

The pre-processing step must be carried out by sequencing scheduled trips in an
ascending order, i.e. e;._l < e; Vje W ; where e;. is the departure time for scheduled

trip j . This process helps decreasing the complexity and size of the problem. Then,

the constrained local search (CLS) [8] is used to solve the vehicle scheduling
problem. The hard and soft constraints are represented in a constraint matrix. CLS
employs the random variable selection strategy and simple variable flip as a local
move. The move quality is assessed by its total constraint violation, V . The violation
scheme and redundant constraints are also used to guide the search into more
promising regions of the search space. In addition, the constraint propagation is
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Fig. 2. Travel time variation
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Fig. 3. Variable flip operations

maintained, i.e. once a bus is assigned to a particular scheduled trip the flip operations
associated with infeasible trips (e.g. those overlapping with the current assigned trip)
will be banned. This reduces the size of the search space and speed up the
computation time. Fig. 3 illustrates the variable flip operations.

Rows in the matrix represent the scheduled trips and columns represent the
vehicles. The flip operation is designed to ensure that a new solution will satisfy the
hard constraints (e.g. one trip is assigned to one vehicle). Thus, the consistency of
these constraints is always maintained. The overall pseudo-code of the CLS is
depicted in Fig. 4.

Referred to Fig 4, the procedure of CLS can be summarized into three steps:

- Step 1: Constraint selection. After the initial assignment, A , the number of columns
(nc in Line 5) are randomly selected in accordance with the violated constraints
(columns) are given the priority. (Line 1-5)

- Step 2: Variable selection. CLS selects the row (variable assigned to 1) to perform a
trial flip with other variables in the same row. (Line 8-12)

- Step 3: Move acceptance. CLS chooses the best V’ amongst the flipped variables in
every single iteration and assigns the best V' to the current solution, 4 < A”. (Line

15-20)

Adaptive upper bound. Since the set partitioning formulation has a large number of
columns and rows in the constraint matrix, the algorithm may spend too much
computational time to obtain a feasible solution. It is possible to improve the CLS by
introducing memory-based search, guided information obtained from linear
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// Algorithm: CLS
// INPUT: soft and hard constraints
// OUTPUT: a best feasible solution found

1 A:=initial solution assignment

2 A, =best solution

3 V, =the best violation

4 WHILE (iteration < stopping criterion) DO

5 ne = Random(numcol )

6 V, =MAX_INTEGER

7 FOR i<1 TO nc

8 (:ﬁtﬁzselect—columns (A)

9 ‘P:zselect—variablesﬁjﬁJ

10 V, :=MAX_INTEGER

11 FOR j<1 10 Random(numcol)
. .

12 4= flip(C,.C,, P)

13 H':=total hard violation(4')

14 V'= total violation(Aq

15 IF H'=0 axp V'<V,

16 A, A

17 V, <V’

18 END IF

19 IF V'<V, THEN

20 A4« A

21 END IF

22 END FOR

23 IF V, <V, THEN

24 A, < 4

25 vV, <V,

26 END IF

27 END FOR

28 A« 4,

29 END WHILE
Fig. 4. The procedure of CLS

programming relaxation, or other search intensification techniques. In this study, the
number of busses (columns) is gradually decreased and fixed iteratively when CLS
find a better feasible solution; thus intensifying the search in more promising regions.

5 Computational Experiments

5.1 The BMTA Case Study

We test the proposed model and algorithm with the data from the Bangkok mass
transit authority (BMTA), Thailand. There are currently 3,535 buses operating 108
routes (lines) clustered into 8 zones in the Bangkok city. In general, there are 3 - 4
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depots for each zone, and each depot operates 5-10 bus lines. The bus schedules are
currently determined by the BMTA planner manually once every few months without
any computer-based tool. The schedule plan is rather ad hoc and often completely
different from the actual services. For example, most of the buses are stuck in the
traffic during rush hours creating the bus bunching problem.

5.2 Potential Cost Savings with Multi-depot and Line Changes

The proposed solution applies to the BMTA data with nine bus lines and 125 buses
located in three depots. The model assumes that most buses are independently
operated, i.e. can be utilized for the other lines or depots with the penalty cost (soft
violation). The parameters in the model are set as follows: the fixed cost of each bus
is 5,000 Baht/vehicle/day (1 Euro = 46 Baht). The line change cost is 100 Baht. The
vehicle transfer cost is 500 Baht, which is excluded from running cost. The vehicle
operating cost per Km is 30 Baht. The computational results are shown in Table 1.

The first column shows the tested lines and their depot and number of vehicles.
The second column shows the number of scheduled trips for each line. The column
Pure-line presents the data regarding the current operation including the number of
buses required and the operating cost (in Baht). The column Line change (LC) reports
the results based on the optimized vehicle schedule which allows for the line change
operation. The next column then reports additional results when both line change and
multi depot operations are considered. The last column shows the maximum reduction
in terms of the required fleet size and total operating cost for each line. Time (sec)
represents the computational time for particular test cases.

From Table 1, the schedules with line change can decrease the vehicle size from 85
(in pure line case) to 27 vehicles in total. In addition, when allowing the multi-depot
operations the fleet size can be further reduced to 41 vehicles (almost 60% reduction).
In terms of the operating costs, the multi-depot with line change operations can save
around 91,000 Baht/day or 2.73 million Baht/month. From the computational point of

Table 1. Multiple-depot with line change operations

Line/ Trips Pure-line Line changes (LC) Multi-depot with LC Savings %
#Bus #Bus Cost  Time(sec) #Bus Cost #Bus Cost #Bus Cost
Depot 1
4[18] 75 8 80687.5 2.8 7 82287.5 4 756875 50.00 6.20
72 [5] 78 8 80950 2.6 7 83450 7 86550 12.50 -6.92
205 [12] 76 11 94900 25 4 64700 4 75600 63.64 20.34
552 [15] 62 10 134630 25 5 115230 3 119630  70.00 11.14
Time(sec): 23.4
Depot 2
62 [14] 79 9 94770 28 10 104370 5 92870 44.44 2.00
77 18] 101 12 155445 33 8 140445 4 131145 66.67 15.63
Time(sec): 10.8
Depot 3
12 [10] 66 7 69650 22 3 52450 3 64850 57.14 6.89
137 [18] 98 12 114880 3.1 8 101880 7 95780  41.67 16.63
551 [15] 53 8 91940 241 6 87240 4 84740  50.00 7.83
Time(sec) : 16.3 Time(sec) : 128.4

Total [125] 688 85 917852.5 58 832052.5 41 8268525 51.76 9.91
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Table 2. The schedule details

Scheduling Plan KPI
Buses 41
Lines 9
Trips 688
Total Distance (Km) 15421.5
- Transfer KM 1340
- Trip KM 14081.5
Total Cost (Baht) 826852.5
- Vehicle 205000
- Line Change 43600
- Vehicle Transfer 38500
- Service KM 539752.5

view, the multi-depot with line change considering 688 trips in three depots; CLS
provided a good quality solution in 128.4 seconds, which is practically acceptable.

Note that this is only the result with nine service lines. If a similar rate of
improvement is applied to all 108 lines, the total cost reduction can be around 33
million Baht/month. The scheduling plan can also be assessed by the KPI (key
performance indices) as shown in Table 2. The tests show that the proposed solution
can potentially improve the bus fleet scheduling operation in this particular case.

6 Conclusions

The paper considered the bus fleet scheduling problem with multi-depot and line
change operations, and proposed the constrained local search algorithm to solve the
problem. The computational experiments were performed to evaluate the performance
of the proposed method. The data sets from the Bangkok mass transit authority were
used for the case study. By scheduling nine bus lines with 688 scheduled trips, the
results indicated the potential operating cost savings by around 9.91 percent compared
to the current schedule (manually prepare). The future research will attempt to apply
the real-time information obtained from the automatic vehicle location system to
generate more reliable and robust feet schedules. In addition, the integrated bus and
crew schedule with improved algorithm will also be considered.
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