

ร**ูปที่ 15** ตัวอย่างลักษณะผลผลิตของข้าวที่ได้จากการทดสอบประสิทธิภาพของเชื้อยีสต์ ทดสอบในการเพิ่มผลผลิตของข้าว หลังทำการทดสอบในระดับโรงเรือนปลูกพืช ทดลองเป็นเวลา 20 สัปดาห์

2.4 ข้อมูลด้านคุณภาพของผลผลิตข้าว

การศึกษาประสิทธิภาพของเชื้อจุลินทรีย์ทดสอบในการเพิ่มคุณภาพของเมล็ด ข้าวสามารถบันทึกข้อมูลได้ 3 ด้าน คือ เปอร์เซ็นต์เมล็ดดี เปอร์เซ็นต์เมล็ดเกิดโรค และ เปอร์เซ็นต์เมล็ดลีบ พบว่าเชื้อจุลินทรีย์ทดสอบจำนวน 3 ไอโซเลท ได้แก่ F01, B15 และ F19 มี จำนวนเมล็ดดีสูงกว่ากรรมวิธีควบคุมอย่างมีนัยสำคัญทางสถิติโดยมีเปอร์เซ็นต์เมล็ดดีที่ 85.90, 82.45 และ 81.75 เปอร์เซ็นต์ ตามลำดับ ในขณะที่กรรมวิธีควบคุมมีเปอร์เซ็นต์ของ เมล็ดดีที่ 73.55 เปอร์เซ็นต์ (ตารางที่ 7)

ด้านปริมาณของเมล็ดข้าวที่เกิดโรคพบว่าเชื้อจุลินทรีย์ทดสอบจำนวน 3 ไอโซเลท คือ F01, Y32 และ Y39 สามารถลดปริมาณของเมล็ดข้าวที่เกิดโรคได้ดีกว่ากรรมวิธีควบคุมอย่างมี นัยสำคัญทางสถิติโดยมีเปอร์เซ็นต์ของเมล็ดข้าวที่เกิดโรคที่ 5.75, 9.32 และ 9.73 เปอร์เซ็นต์ ตามลำดับ ในขณะที่กรรมวิธีควบคุมมีเปอร์เซ็นต์ของเมล็ดที่เกิดโรคที่ 12.37 เปอร์เซ็นต์ (ตารางที่ 7)

สำหรับปริมาณของเมล็ดข้าวที่ลีบพบว่าเชื้อจุลินทรีย์ทดสอบจำนวน 7 ไอโซเลท ได้แก่ B15, F19, F01, F29, F10, Y42 และ B36 สามารถลดจำนวนของเมล็ดข้าวที่ลีบได้ดีกว่า กรรมวิธีควบคุมอย่างมีนัยสำคัญทางสถิติโดยมีเปอร์เซ็นต์ของเมล็ดข้าวที่ลีบที่ 6.35, 7.35, 8.35, 9.35, 9.40, 9.82 และ 10.32 เปอร์เซ็นต์ ตามลำดับ ในขณะที่กรรมวิธีควบคุมมีเปอร์เซ็นต์ของ เมล็ดข้าวที่ลีบที่ 14.08 เปอร์เซ็นต์ (ตารางที่ 7)

ตารางที่ 7 แสดงเปอร์เซ็นต์เมล็ดข้าวดี เปอร์เซ็นต์เมล็ดข้าวเกิดโรค และเปอร์เซ็นต์เมล็ดข้าว ลีบหลังจากทดสอบประสิทธิภาพของเชื้อจุลินทรีย์ในการส่งเสริมการเจริญเติบโต ของข้าวในระดับโรงเรือนปลูกพืชทดลองเป็นเวลา 20 สัปดาห์

0000000	ปริมาณเ	มล็ดข้าวดี		ปริมาณเมล็	ดข้าวเสีย (%)
กรรมวิธี	(%	6) ^{1/}	เมล็ดข้าว	เกิดโรค²′	เมล็ดข้า	าวลีบ <u>³′</u>
B05	67.13	e ⁴¹	16.87	a ⁴ /	16.01	ab ⁴ /
B10	78.38	bc	10.33	cd	11.30	bcd
B15	82.45	ab	11.20	cd	6.35	f
B36	79.55	abc	10.13	cd	10.32	de
B45	77.90	bc	11.00	cd	11.10	cde
F01	85.90	а	5.75	е	8.35	ef
F10	79.30	abc	11.30	cd	9.40	ef
F19	81.75	ab	10.90	cd	7.35	ef
F28	68.35	е	14.10	а	17.55	а
F29	80.05	abc	10.60	cd	9.35	ef
Y05	72.98	cde	12.94	bc	14.09	abc
Y32	77.65	bc	9.32	d	13.03	bcd
Y39	76.25	bcd	9.73	d	14.02	abc
Y41	69.43	de	14.06	ab	16.52	ab
Y42	75.65	bcd	14.53	ab	9.82	ef
กรรมวิธีควบคุม	73.55	cde	12.37	bc	14.08	abc

^{*} รหัสเชื้อจุลินทรีย์ที่ขึ้นต้นด้วยตัวอักษร B หมายถึงเชื้อแบคทีเรีย, F หมายถึงเชื้อรา และ Y หมายถึงเชื้อยีสต์

 $^{^{1/2}}$ ค่าเฉลี่ยเปอร์เซ็นต์เมล็ดข้าวดีจาก 4 ซ้ำ ภายหลังทำการทดสอบเป็นเวลา 20 สัปดาห์

 $^{^{2}l}$ ค่าเฉลี่ยเปอร์เซ็นต์เมล็ดข้าวเกิดโรคจาก 4 ซ้ำ ภายหลังทำการทดสอบเป็นเวลา 20 สัปดาห์

 $^{^{}rac{3l}{2}}$ ค่าเฉลี่ยเปอร์เซ็นต์เมล็ดข้าวลีบจาก 4 ซ้ำ ภายหลังทำการทดสอบเป็นเวลา 20 สัปดาห์


ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติตาม
วิธี Duncan's New Multiple Rang Test (DMRT) P=0.05

ร**ูปที่ 16** ตัวอย่างลักษณะคุณภาพผลผลิตของข้าวที่ได้จากการทดสอบประสิทธิภาพของ เชื้อราทดสอบในการเพิ่มผลผลิตของข้าว หลังทำการทดสอบในระดับโรงเรือน ปลูกพืชทดลองเป็นเวลา 20 สัปดาห์

รูปที่ 17 ตัวอย่างลักษณะคุณภาพผลผลิตของข้าวที่ได้จากการทดสอบประสิทธิภาพของ เชื้อแบคทีเรียทดสอบในการเพิ่มผลผลิตของข้าว หลังทำการทดสอบในระดับ โรงเรือนปลูกพืชทดลองเป็นเวลา 20 สัปดาห์

รูปที่ 18 ตัวอย่างลักษณะคุณภาพผลผลิตของข้าวที่ได้จากการทดสอบประสิทธิภาพของ เชื้อยีสต์ทดสอบในการเพิ่มผลผลิตของข้าว หลังทำการทดสอบในระดับโรงเรือน ปลูกพืชทดลองเป็นเวลา 20 สัปดาห์

2.5 ปริมาณเชื้อจุลินทรีย์ในดินปลูกข้าว

จากการทดลองพบว่าสามารถตรวจพบเชื้อราทดสอบในทุกกรรมวิธีที่ใส่เชื้อรา ดังกล่าว โดยปริมาณของเชื้อราทดสอบส่วนใหญ่ที่ตรวจพบมีแนวโน้มสูงขึ้นในทุก 4 สัปดาห์ และพบว่าในสัปดาห์ที่ 12 เชื้อราทดสอบส่วนใหญ่มีปริมาณสูงที่สุด โดยเฉพาะกรรมวิธีที่ใส่เชื้อรา ทดสอบไอโซเลท F01 ซึ่งสามารถตรวจพบที่ปริมาณ 119.50x10³ CFU/ดินปลูก 1 กรัม ส่วน กรรมวิธีที่ใส่เชื้อราทดสอบไอโซเลท F10 สามารถตรวจพบปริมาณสูงที่สุดในสัปดาห์ที่ 16 โดยพบ ในปริมาณ 135.75x10³ CFU/ดินปลูก 1 กรัม นอกจากนี้ยังพบว่าเชื้อราทดสอบสามารถลด ปริมาณของเชื้อจุลินทรีย์อื่นในดินปลูกข้าวได้แตกต่างอย่างมีนัยสำคัญทางสถิติเมื่อเปรียบเทียบ กับกรรมวิธีควบคุมดังรายละเอียดในตารางที่ 8

ส่วนการตรวจสอบปริมาณเชื้อแบคทีเรียทดสอบพบว่าสามารถตรวจพบ เชื้อแบคทีเรียดังกล่าวในทุกกรรมวิธีที่ใส่เชื้อแบคทีเรียทดสอบ โดยพบว่าเชื้อแบคทีเรียทดสอบ ส่วนใหญ่มีปริมาณสูงที่สุดในสัปดาห์ที่ 8 โดยเฉพาะเชื้อแบคทีเรียทดสอบไอโซเลท B36 และ B05 ที่ตรวจพบที่ปริมาณ 115.00x10⁵ และ 100.00x10⁵ CFU/ดินปลูก 1 กรัม ตามลำดับ ดังรายละเอียดใน ตารางที่ 8

สำหรับปริมาณของเชื้อยีสต์ทดสอบพบว่าสามารถตรวจพบเชื้อยีสต์ดังกล่าวใน ทุกกรรมวิธีที่ใส่เชื้อยีสต์ทดสอบ โดยพบว่าเชื้อยีสต์ทดสอบส่วนใหญ่มีปริมาณสูงที่สุดในสัปดาห์ ที่ 4 โดยเฉพาะเชื้อยีสต์ทดสอบไอโซเลท Y42 ที่ตรวจพบที่ปริมาณ 70.67x10⁵ CFU/ดินปลูก 1 กรัม ตามลำดับ ดังรายละเอียดในตารางที่ 8

ตารางที่ 8 ปริมาณเชื้อราทดสอบและเชื้อจุลินทรีย์ปนเปื้อนที่ตรวจพบในดินปลูกข้าวในช่วงเวลาต่าง ๆ ขณะทำการทดลองประสิทธิภาพของเชื้อจุลินทรีย์ในการ ส่งเสริมการเจริญเติบโตและเพิ่มผลผลิตของข้าว โดยทดสอบนะดับโรงเรือนปลูกพืชทดลอง

	ปริมาณเชื้อราทดสอบและเชื้อจุลินทรีย์ปนเปื้อน (1 x 10³ CFU/ดิน 1 กรัม) ^บ																			
กรรมวิธี	สัปดาห์ที่ 0				สัปดาห์ที่ 4			สัปดาห์ที่ 8			สัปดาห์ที่ 12			สัปดาห์ที่ 16						
	เชื้อทดสอ	อบ	เชื้อปน	มเปื้อน -	เชื้อทด	าสอบ	เชื้อปน	เปื้อน	เชื้อทด	สอบ	เชื้อปน	เปื้อน	เชื้อทด	สอบ	เชื้อปนเร็	ป้อน	เชื้อทดส	สอบ	เชื้อปร	นเปื้อน
F01	0.00 a	<u>2/</u>	46.94	a ^{2/}	70.67	a ^{2/}	5.67	b ^{2/}	45.50	a ^{2/}	2.70	b ^{2/}	119.50	a ^{2/}	2.25	b ^{2/}	83.75	b ^{2/}	1.50	a ^{2/}
F10	0.00 a	ı	46.94	а	32.33	b	5.67	b	8.50	b	1.50	b	61.50	bc	2.25	b	135.75	а	4.50	а
F19	0.00 a	l	46.94	а	5.67	С	6.33	b	1.25	b	1.25	b	22.75	d	24.50	а	24.75	С	3.00	а
F28	0.00 a	l	46.94	а	31.67	b	6.67	b	63.25	а	3.50	b	52.25	С	6.00	b	38.75	С	4.75	а
F29	0.00 a	l	46.94	а	40.00	b	9.33	b	41.75	а	4.25	b	77.75	b	2.25	b	40.25	С	1.75	а
กรรมวิธีควบคุม	0.00 a	l	46.94	а	0.00	С	21.00	а	0.00	С	32.00	а	0.00	d	24.00	а	0.00	d	64.25	b

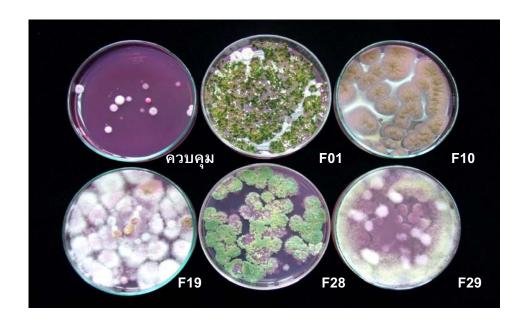
 $^{^{1/2}}$ ค่าเฉลี่ยปริมาณเชื้อราทดสอบและเชื้อจุลินทรีย์ปนเปื้อนจาก 4 ซ้ำ ภายหลังทำการทดลองทุก 4 สัปดาห์

[🋂] ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติตามวิธี Duncan's New Multiple Rang Test (DMRT) P=0.05

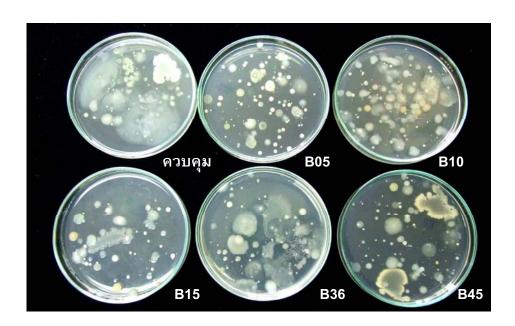
ตารางที่ 9 ปริมาณเชื้อแบคทีเรียทดสอบและเชื้อจุลินทรีย์ปนเปื้อนที่ตรวจพบในดินปลูกข้าวในช่วงเวลาต่าง ๆ ขณะทำการทดลองประสิทธิภาพของเชื้อจุลินทรีย์ ในการส่งเสริมการเจริญเติบโตและเพิ่มผลผลิตของข้าว โดยทดสอบนะดับโรงเรือนปลูกพืชทดลอง

	ปริมาณเชื้อแบคทีเรียทดสอบและเชื้อจุลินทรีย์ปนเปื้อน (1 x 10⁵ CFU/ดิน 1 กรัม) ^บ																			
กรรมวิธี	สั	สัปดาห์ที่ 0			สัปดาห์ที่ 4				สัปดาห์ที่ 8			สัปดาห์ที่ 12			สัปดาห์ที่ 16					
	เชื้อทดสอ	บ	เชื้อปน	เปื้อน	เชื้อทด	เสอบ	เชื้อปา	นเปื้อน	เชื้อทดส	อบ	เชื้อปนเว็	ป้อน	เชื้อทด	สอบ	เชื้อปนเร็	ป้อน	เชื้อทดเ	สอบ	เชื้อปนเร็	 ปื้อน
B05	0.00 a ²	<u>/</u>	16.22	a ^{2/}	10.33	a ^{2/}	26.00	b ^{2/}	100.00	a ^{2/}	126.75	a ^{2/}	12.50	a ^{2/}	24.50	d ^{2/}	55.00	a ^{2/}	35.00	b ^{2/}
B10	0.00 a		16.22	а	30.33	а	3.33	b	57.50	ab	41.00	b	32.50	а	126.25	а	75.00	а	44.50	b
B15	0.00 a		16.22	а	1.00	а	1.00	b	25.00	b	69.25	b	70.00	а	33.25	cd	97.50	а	180.50	а
B36	0.00 a		16.22	а	28.00	а	8.00	b	115.00	а	145.00	а	60.00	а	63.25	bc	85.00	а	27.25	b
B45	0.00 a		16.22	а	12.33	а	23.67	b	75.00	ab	65.50	b	57.50	а	82.00	b	47.50	а	61.25	b
กรรมวิธีควบคุม	0.00 a		16.22	а	0.00	b	80.33	а	0.00	b	141.25	а	0.00	b	67.50	bc	0.00	b	12.50	b

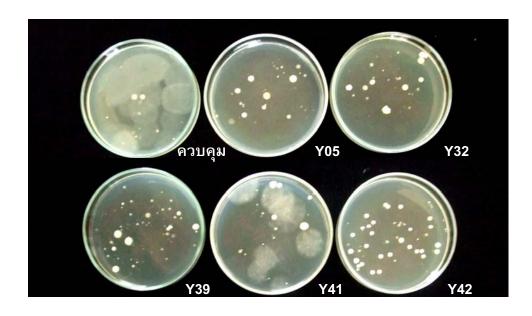
 $^{^{1/2}}$ ค่าเฉลี่ยปริมาณเชื้อแบคทีเรียทดสอบและเชื้อจุลินทรีย์ปนเปื้อนจาก 4 ซ้ำ ภายหลังทำการทดลองทุก 4 สัปดาห์


² ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติตามวิธี Duncan's New Multiple Rang Test (DMRT) P=0.05

ตารางที่ 10 ปริมาณเชื้อยีสต์ทดสอบและเชื้อจุลินทรีย์ปนเปื้อนที่ตรวจพบในดินปลูกข้าวในช่วงเวลาต่าง ๆ ขณะทำการทดลองประสิทธิภาพของเชื้อจุลินทรีย์ใน การส่งเสริมการเจริญเติบโตและเพิ่มผลผลิตของข้าว โดยทดสอบนะดับโรงเรือนปลูกพืชทดลอง


	ปริมาณเชื้อยีสต์ทดสอบและเชื้อจุลินทรีย์ปนเปื้อน (1 x 10⁵ CFU/ดิน 1 กรัม) ¹ ′																			
กรรมวิธี	สัปดาห์ที่ 0			สัปดาห์ที่ 4			สัปดาห์ที่ 8			สัปดาห์ที่ 12			สัปดาห์ที่ 16							
	เชื้อทดส	เอบ	เชื้อปา	นเปื้อน	เชื้อทด	สอบ	เชื้อปา	มเปื้อน -	เชื้อทด	สอบ	เชื้อปนเร็	ปื้อน	เชื้อทด	สอบ	เชื้อปนเ	ปื้อน	เชื้อทด	สอบ	เชื้อปา	นเปื้อน
Y05	0.00	a ^{2/}	50.00	a ^{2/}	41.00	ab ^{2/}	8.33	b ^{2/}	2.50	c ^{2/}	159.25	a ^{2/}	10.00	b ^{2/}	42.25	b ^{2/}	10.50	a ^{2/}	17.00	bc ^{2/}
Y32	0.00	а	50.00	а	25.33	b	4.67	b	9.75	b	28.00	b	11.00	b	30.00	b	15.75	а	30.25	b
Y39	0.00	а	50.00	а	30.33	b	7.00	b	14.50	b	55.50	b	8.00	b	12.50	b	9.00	а	23.00	bc
Y41	0.00	а	50.00	а	33.33	b	4.00	b	26.50	а	36.50	b	32.25	а	26.25	b	9.25	а	49.75	а
Y42	0.00	а	50.00	а	70.67	а	7.67	b	10.75	b	36.25	b	6.75	b	35.50	b	14.25	а	11.50	С
กรรมวิธีควบคุม	0.00	а	50.00	а	0.00	С	97.67	а	0.00	С	101.50	а	0.00	С	126.00	а	0.00	b	17.50	bc

 $^{^{1/2}}$ ค่าเฉลี่ยปริมาณเชื้อยีสต์ทดสอบและเชื้อจุลินทรีย์ปนเปื้อนจาก 4 ซ้ำ ภายหลังทำการทดลองทุก 4 สัปดาห์


[🋂] ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติตามวิธี Duncan's New Multiple Rang Test (DMRT) P=0.05

รูปที่ 19 ปริมาณเชื้อราทดสอบและเชื้อจุลินทรีย์ปนเปื้อนในการตรวจสอบปริมาณ เชื้อจุลินทรีย์ในดินปลูกข้าว ในการทดสอบประสิทธิภาพของเชื้อจุลินทรีย์ในการ ส่งเสริมการเจริญเติบโตและเพิ่มผลผลิตของข้าวในระดับโรงเรือนปลูกพืชทดลอง ภายหลังทำการทดลองเป็นเวลา 12 สัปดาห์

รูปที่ 20 ปริมาณเชื้อแบคทีเรียทดสอบและเชื้อจุลินทรีย์ปนเปื้อนในการตรวจสอบปริมาณ เชื้อจุลินทรีย์ในดินปลูกข้าว ในการทดสอบประสิทธิภาพของเชื้อจุลินทรีย์ในการ ส่งเสริมการเจริญเติบโตและเพิ่มผลผลิตของข้าวในระดับโรงเรือนปลูกพืชทดลอง ภายหลังทำการทดลองเป็นเวลา 8 สัปดาห์

รูปที่ 21 ปริมาณเชื้อยีสต์ทดสอบและเชื้อจุลินทรีย์ปนเปื้อนในการตรวจสอบปริมาณ เชื้อจุลินทรีย์ในดินปลูกข้าว ในการทดสอบประสิทธิภาพของเชื้อจุลินทรีย์ในการ ส่งเสริมการเจริญเติบโตและเพิ่มผลผลิตของข้าวในระดับโรงเรือนปลูกพืชทดลอง ภายหลังทำการทดลองเป็นเวลา 4 สัปดาห์

3. ทดสอบประสิทธิภาพของเชื้อจุลินทรีย์ที่ผ่านการคัดเลือกและสารสกัดในการเพิ่ม ผลผลิตของข้าวในสภาพแปลงปลูก

จากการทดสอบเพื่อคัดเลือกเชื้อจุลินทรีย์ทดสอบในระดับโรงเรือนปลูกพืชทดลองพบว่า มีเชื้อจุลินทรีย์ทดสอบที่ผ่านการคัดเลือกจำนวน 2 ไอโซเลท ได้แก่ ไอโซเลท F01 และ B15 ซึ่ง เป็นเชื้อราและเชื้อแบคทีเรียตามลำดับ เมื่อนำเชื้อจุลินทรีย์ทดสอบดังกล่าวมาศึกษา ประสิทธิภาพในการส่งเสริมการเจริญเติบโตและการเพิ่มผลผลิตของข้าวในสภาพแปลงปลูกข้าว พบว่าได้ผลการทดลองดังต่อไปนี้

3.1 การเพิ่มการเจริญเติบโตและผลผลิตของข้าว

จากการศึกษาสามารถบันทึกข้อมูลด้านประสิทธิภาพของเชื้อจุลินทรีย์ทดสอบ ในการเพิ่มการเจริญเติบโตและผลผลิตของข้าว โดยบันทึกเป็นจำนวนเฉลี่ยของตันข้าวต่อกอ และจำนวนผลผลิตเฉลี่ยของข้าวต่อไร่ ซึ่งด้านจำนวนเฉลี่ยของตันข้าวต่อกอพบว่ากรรมวิธีที่ใช้ เชื้อราไอโซเลท F01 และกรรมวิธีที่ใช้สารสกัดจากเชื้อรา *T. harzianum* สายพันธุ์ T-50-co4 สามารถเพิ่มจำนวนตันข้าวเฉลี่ยต่อกอสูงกว่ากรรมวิธีควบคุมอย่างมีนัยสำคัญทางสถิติ โดยให้ ค่าเฉลี่ยของตันข้าวต่อกอที่ 15.80 และ 15.20 ตันต่อกอ ตามลำดับ ในขณะที่กรรมวิธีควบคุมมี ค่าเฉลี่ยของจำนวนตันข้าวต่อกอที่ 13.30 ตันต่อกอ ดังรายละเอียดในตารางที่ 11

ส่วนด้านผลผลิตของข้าวต่อไร่พบว่ากรรมวิธีที่ใช้เชื้อจุลินทรีย์ทดสอบไอโซเลท F01 สามารถเพิ่มผลผลิตของข้าวต่อไร่ได้สูงกว่ากรรมวิธีควบคุมอย่างมีนัยสำคัญทางสถิติ โดย พบว่ามีผลผลิตของข้าวเฉลี่ยต่อไร่ที่ 969.83 กิโลกรัมต่อไร่ ในขณะที่กรรมวิธีควบคุมมีผลผลิต ของข้าวเฉลี่ยต่อไร่ที่ 883.18 กิโลกรัมต่อไร่ ดังรายละเอียดในตารางที่ 11

ตารางที่ 11 ประสิทธิภาพของเชื้อจุลินทรีย์ทดสอบในการเพิ่มจำนวนต้นข้าวต่อกอและผลผลิต ข้าวต่อไร่ หลังทำการทดสอบในสภาพแปลงปลูกข้าวเป็นเวลา 20 สัปดาห์

กรรมวิธี	จำนวนต้นข้าวต่อกอ ¹ ′	ผลผลิตข้าว (กิโลกรัมต่อไร่) ²
B15	14.50 ab ^{3/}	888.73 bc ^{3/}
F01	15.80 a	969.83 a
T-CB-Pin-01	13.20 b	827.35 c
T-35-co4	14.30 ab	897.65 b
สารสกัดจาก T-50-co4	15.20 a	912.08 ab
กรรมวิธีควบคุม	13.30 b	883.18 bc

^{*} รหัสเชื้อจุลินทรีย์ที่ขึ้นต้นด้วยตัวอักษร B หมายถึงเชื้อแบคทีเรีย, F หมายถึงเชื้อรา และ T หมายถึงเชื้อรา Trichoderma harzianum

3.2 ข้อมูลด้านคุณภาพของผลผลิตข้าว

การศึกษาประสิทธิภาพของเชื้อจุลินทรีย์ทดสอบในการเพิ่มคุณภาพของเมล็ด ข้าวสามารถบันทึกข้อมูลได้ 3 ด้าน คือ เปอร์เซ็นต์เมล็ดดี เปอร์เซ็นต์เมล็ดเกิดโรค และ เปอร์เซ็นต์เมล็ดลีบ พบว่ากรรมวิธีที่ใช้สารสกัดจากเชื้อรา *T. harzianum* สายพันธุ์ T-50-co4 และกรรมวิธีที่ใช้เชื้อราทดสอบไอโซเลท F01 มีจำนวนเมล็ดข้าวดีสูงกว่ากรรมวิธีควบคุมอย่าง มีนัยสำคัญทางสถิติโดยมีเปอร์เซ็นต์เมล็ดข้าวดีที่ 93.88 และ 90.50 เปอร์เซ็นต์ ตามลำดับ ในขณะ ที่กรรมวิธีควบคุมมีเปอร์เซ็นต์ของเมล็ดข้าวดีที่ระดับต่ำคือ 83.90 เปอร์เซ็นต์ ดังรายละเอียดใน ตารางที่ 12

ด้านปริมาณของเมล็ดข้าวที่เกิดโรคพบว่าทุกกรรมวิธีที่ใช้สารสกัดจากเชื้อรา

T. harzianum สายพันธุ์ T-50-co4 และกรรมวิธีที่ใช้เชื้อจุลินทรีย์ทดสอบทุกกรรมวิธียกเว้นกรรมวิธีที่
ใช้เชื้อรา T. harzianum สายพันธุ์ T-CB-Pin-01 สามารถลดปริมาณของเมล็ดข้าวที่เกิดโรค
ได้ดีกว่ากรรมวิธีควบคุมอย่างมีนัยสำคัญทางสถิติ โดยเฉพาะกรรมวิธีที่ใช้สารสกัดจากเชื้อรา

 $^{^{1/2}}$ ค่าเฉลี่ยจำนวนต้นต่อกอจาก 4 ซ้ำ (จำนวน 1 กอ/ซ้ำ) ภายหลังทำการทดสอบเป็นเวลา 20 สัปดาห์

 $^{^{2}}$ ค่าเฉลี่ยผลผลิตข้าวต่อไร่จาก 4 ซ้ำ ภายหลังทำการทดสอบเป็นเวลา 20 สัปดาห์

^{3/} ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติตาม
วิธี Duncan's New Multiple Rang Test (DMRT) P=0.05

T. harzianum สายพันธุ์ T-50-co4 และกรรมวิธีที่ใช้เชื้อราทดสอบไอโซเลท F01 ที่มีเปอร์เซ็นต์ ของเมล็ดข้าวที่เกิดโรคที่ต่ำมากคือที่ระดับ 3.93 และ 4.24 เปอร์เซ็นต์ ตามลำดับ ในขณะที่ กรรมวิธีควบคุมมีเปอร์เซ็นต์ของเมล็ดที่เกิดโรคที่สูงที่สุดที่ 10.09 เปอร์เซ็นต์ ดังรายละเอียดใน ตารางที่ 12

สำหรับปริมาณของเมล็ดข้าวที่ลีบพบว่าทุกกรรมวิธีที่ใช้สารสกัดจากเชื้อรา

T. harzianum สายพันธุ์ T-50-co4 และกรรมวิธีที่ใช้เชื้อจุลินทรีย์ทดสอบทุกกรรมวิธียกเว้น
กรรมวิธีที่ใช้เชื้อรา T. harzianum สายพันธุ์ T-35-co4 สามารถลดจำนวนของเมล็ดข้าวที่ลีบ
ได้ดีกว่ากรรมวิธีควบคุมอย่างมีนัยสำคัญทางสถิติ โดยเฉพาะกรรมวิธีที่ใช้สารสกัดจากเชื้อรา

T. harzianum สายพันธุ์ T-50-co4 และกรรมวิธีที่ใช้เชื้อราทดสอบไอโซเลท F01 ที่มีเปอร์เซ็นต์ของ
เมล็ดข้าวที่ลีบที่ต่ำมากคือที่ระดับ 2.18 และ 5.25 เปอร์เซ็นต์ ตามลำดับ ในขณะที่กรรมวิธีควบคุม
มีเปอร์เซ็นต์ของเมล็ดข้าวที่ลีบที่ระดับสูงคือที่ 6.01 เปอร์เซ็นต์ ดังรายละเอียดในตารางที่ 12

ตารางที่ 12 แสดงเปอร์เซ็นต์เมล็ดข้าวดี เปอร์เซ็นต์เมล็ดข้าวเกิดโรค และเปอร์เซ็นต์เมล็ด ข้าวลีบ หลังจากทดสอบประสิทธิภาพของเชื้อจุลินทรีย์ในการส่งเสริมการ เจริญเติบโตและเพิ่มผลผลิตของข้าวในแปลงปลูกข้าวเป็นเวลา 20 สัปดาห์

	ปริมาณเมล็ดข้าวดี	ปริมาณเมล็ดข้าวเสีย (%)					
11990 913	(%) ^{1/}	เมล็ดข้าวเกิดโรค ²	เมล็ดข้าวลีบ ^{3/}				
B15	86.25 bc ^{4/}	7.83 b ^{4/}	5.92 b ^{4/}				
F01	90.50 ab	4.24 c	5.25 c				
T-CB-Pin-01	84.15 c	10.01 a	5.85 b				
T-35-co4	86.28 bc	7.52 b	6.23 a				
สารสกัดจาก T-50-co4	93.88 a	3.93 с	2.18 d				
กรรมวิธีควบคุม	83.90 c	10.09 a	6.01 a				

^{*} รหัสเชื้อจุลินทรีย์ที่ขึ้นต้นด้วยตัวอักษร B หมายถึงเชื้อแบคทีเรีย, F หมายถึงเชื้อรา และ T หมายถึงเชื้อรา Trichoderma harzianum

 $^{^{1/}}$ ค่าเฉลี่ยเปอร์เซ็นต์เมล็ดข้าวดีจาก 4 ซ้ำ ภายหลังทำการทดสอบเป็นเวลา 20 สัปดาห์

 $^{^{2}l}$ ค่าเฉลี่ยเปอร์เซ็นต์เมล็ดข้าวเกิดโรคจาก 4 ซ้ำ ภายหลังทำการทดสอบเป็นเวลา 20 สัปดาห์

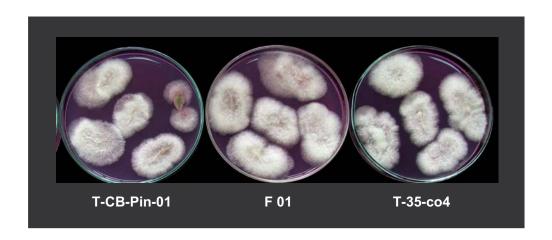
 $^{^{}rac{3l}{2}}$ ค่าเฉลี่ยเปอร์เซ็นต์เมล็ดข้าวลีบจาก 4 ซ้ำ ภายหลังทำการทดสอบเป็นเวลา 20 สัปดาห์

ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติตาม
วิธี Duncan's New Multiple Rang Test (DMRT) P=0.05

3.3 ประสิทธิภาพของเชื้อจุลินทรีย์ทดสอบในการครอบครองรากข้าว

จากการทดลองพบว่าทุกกรรมวิธีที่ใช้เชื้อจุลินทรีย์ทดสอบสามารถตรวจพบการ ครอบครองรากของข้าวในทุกเดือนที่ทำการทดลอง โดยพบว่าเชื้อจุลินทรีย์ทุกไอโซเลทสามารถ เจริญเติบโตเข้าครอบครองรากของข้าวได้ในอัตราที่สูงที่สุดในเดือนที่ 1 จากนั้นความสามารถ ของเชื้อจุลินทรีย์ทดสอบในการครอบครองรากข้าวมีแนวโน้มลดลงเรื่อยๆ และพบว่าลดต่ำที่สุด ในเดือนที่ 4 ของการทดลอง (ตารางที่ 13)

เมื่อเปรียบเทียบระหว่างไอโซเลทของเชื้อจุลินทรีย์ทดสอบพบว่าเชื้อรา *T. harzianum* ไอโซเลท T-35-co4 มีประสิทธิภาพในการครอบครองรากข้าวได้สูงที่สุดและมี ความแตกต่างจากเชื้อจุลินทรีย์ทดสอบอื่นๆ อย่างมีนัยสำคัญทางสถิติ โดยพบว่าในเดือนที่ 1 เชื้อรา *T. harzianum* ไอโซเลท T-35-co4 มีประสิทธิภาพในการครอบครองรากข้าวได้สูงที่สุดที่ 69.31 เปอร์เซ็นต์ ส่วนเชื้อจุลินทรีย์ทดสอบที่มีประสิทธิภาพในการครอบครองรากข้าวรองลงมา ได้แก่ เชื้อจุลินทรีย์ทดสอบไอโซเลท F01, T-CB-Pin-01 และ B15 ตามลำดับ ดังรายละเอียดใน ตารางที่ 13


ตารางที่ 13 ประสิทธิภาพของเชื้อจุลินทรีย์ทดสอบในการเจริญเติบโตเข้าครอบครองรากข้าว ในช่วงเวลาต่าง ๆ ขณะทำการทดลองในแปลงปลูกข้าว

กรรมวิธี		การครอบครองรากข้าว (%) ^{1/}										
פניאנינוז	- เดือนที่ 0	เดือนที่ 1	เดือนที่ 2	เดือนที่ 3	เดือนที่ 4							
B15	0.00 a ^{2/}	48.46 b ^{2/}	45.79 c ^{2/}	41.75 c ^{2/}	36.18 b ^{2/}							
F01	0.00 a	66.44 a	62.26 a	53.57 b	41.60 b							
T-CB-Pin-01	0.00 a	52.30 b	51.01 b	50.92 b	37.13 b							
T-35-co4	0.00 a	69.31 a	64.83 a	63.27 a	50.09 a							
สารสกัดจาก T-50-co4	0.00 a	0.00 c	0.00 d	0.00 d	0.00 c							
กรรมวิธีควบคุม	0.00 a	0.00 c	0.00 d	0.00 d	0.00 c							

^{*} รหัสเชื้อจุลินทรีย์ที่ขึ้นต้นด้วยตัวอักษร B หมายถึงเชื้อแบคทีเรีย, F หมายถึงเชื้อรา และ T หมายถึงเชื้อรา Trichoderma harzianum

 $^{^{1/2}}$ ค่าเฉลี่ยเปอร์เซ็นต์การครอบครองรากข้าวจาก 4 ซ้ำ ภายหลังทำการทดสอบทุก 1 เดือน

² ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติตาม วิธี Duncan's New Multiple Rang Test (DMRT) P=0.05

ร**ูปที่ 22** ลักษณะของเชื้อจุลินทรีย์ทดสอบไอโซเลทต่างๆ ในการเจริญเติบโตเข้าครอบครองราก ของข้าวในการทดสอบในสภาพแปลงปลูกข้าว หลังจากทำการทดสอบเป็นเวลา 1 เดือน

3.4 ปริมาณเชื้อจุลินทรีย์ทดสอบในดินและในน้ำในแปลงปลูกข้าว

จากการทดลองพบว่าสามารถตรวจพบเชื้อจุลินทรีย์ทดสอบในน้ำที่แปลงปลูก ข้าวในทุกกรรมวิธีที่ใส่เชื้อจุลินทรีย์ทดสอบ โดยปริมาณของเชื้อจุลินทรีย์ทดสอบส่วนใหญ่ที่ ตรวจพบมีปริมาณมากที่สุดในเดือนที่ 1 ของการทดลองและปริมาณของเชื้อจุลินทรีย์ที่ตรวจพบ ดังกล่าวมีแนวโน้มที่ลดลงเรื่อยๆ เมื่อระยะเวลานานขึ้น ซึ่งพบว่ากรรมวิธีที่ใส่เชื้อรา *T. harzianum* ไอโซเลท T-35-co4 สามารถตรวจพบในปริมาณมากที่สุดโดยตรวจพบในเดือนที่ 1 ปริมาณ 0.27x10² CFU/น้ำ 1 มิลลิลิตร ส่วนเชื้อจุลินทรีย์ทดสอบที่มีปริมาณที่ตรวจพบรองลงมา ได้แก่ ไอโซเลท F01, B15 และ T-CB-Pin-01 ตามลำดับ ดังรายละเอียดในตารางที่ 14

ส่วนการตรวจสอบปริมาณเชื้อจุลินทรีย์ทดสอบในดินปลูกข้าวพบว่าสามารถตรวจพบเชื้อจุลินทรีย์ทดสอบดังกล่าว โดยปริมาณของ เชื้อจุลินทรีย์ทดสอบส่วนใหญ่สามารถตรวจพบมากที่สุดในเดือนที่ 1 ของการทดลองและ ปริมาณของเชื้อจุลินทรีย์ดังกล่าวมีแนวโน้มที่ลดลงเรื่อย ๆ เมื่อระยะเวลาของการทดลองนานขึ้น ซึ่งพบว่ากรรมวิธีที่ใส่เชื้อรา *T. harzianum* ไอโซเลท T-35-co4 สามารถตรวจพบในปริมาณมากที่สุด โดยพบในเดือนที่ 1 ที่ปริมาณ 1.40x10 ⁴ CFU/ดินปลูก 1 กรัม ส่วนเชื้อจุลินทรีย์ทดสอบที่มีปริมาณ ที่ตรวจพบรองลงมา ได้แก่ ไอโซเลท F01, T-CB-Pin-01 และ B15 ตามลำดับ ดังรายละเอียดใน ตารางที่ 14

ตารางที่ 14 ปริมาณเชื้อจุลินทรีย์ทดสอบทดสอบที่ตรวจพบในดินและในน้ำที่แปลงปลูกข้าวในช่วงเวลาต่างๆ ขณะทำการทดลองประสิทธิภาพของเชื้อจุลินทรีย์ ในการส่งเสริมการเจริญเติบโตและเพิ่มผลผลิตของข้าว โดยทดสอบนะดับโรงเรือนปลูกพืชทดลอง

				ปริมาณเชื้อจุลิน	กรีย์ทดสอบ			
กรรมวิธี -	ી	นน้ำ (1 x 10 ² CFU				ในดิน (1 x 10⁴ (CFU/ดิน 1 กรัม)	<u>2/</u>
-	เดือนที่ 1	เดือนที่ 2	เดือนที่ 3	เดือนที่ 4	เดือนที่ 1	เดือนที่ 2	เดือนที่ 3	เดือนที่ 4
B15	0.18 b ^{3/}	0.15 b ^{3/}	0.10 b ^{3/}	0.04 b ^{3/}	0.86 b ^{3/}	0.80 b ^{3/}	0.41 b ^{3/}	0.92 ab ^{3/}
F01	0.24 ab	0.22 a	0.19 a	0.13 a	1.13 ab	1.10 ab	1.09 a	1.00 a
T-CB-Pin-01	0.17 b	0.10 b	0.09 b	0.05 b	0.90 ab	0.84 b	0.31 b	0.59 b
T-35-co4	0.27 a	0.26 a	0.21 a	0.14 a	1.40 a	1.38 a	1.20 a	0.96 ab
สารสกัดจาก T-50-co4	0.00 c	0.00 c	0.00 c	0.00 c	0.00 c	0.00 c	0.00 c	0.00 c
กรรมวิธีควบคุม	0.00 c	0.00 c	0.00 c	0.00 c	0.00 c	0.00 c	0.00 c	0.00 c

^{*} รหัสเชื้อจุลินทรีย์ที่ขึ้นต้นด้วยตัวอักษร B หมายถึงเชื้อแบคทีเรีย, F หมายถึงเชื้อรา และ T หมายถึงเชื้อรา *Trichoderma harzianum*

¹ ค่าเฉลี่ยปริมาณเชื้อทดสอบในน้ำที่แปลงปลูกข้าวจาก 4 ซ้ำ ภายหลังทำการทดลองทุก 1 เดือน

² ค่าเฉลี่ยปริมาณเชื้อทดสอบในดินที่แปลงปลูกข้าวจาก 4 ซ้ำ ภายหลังทำการทดลองทุก 1 เดือน

[🌁] ค่าเฉลี่ยที่ตามหลังด้วยตัวอักษรที่เหมือนกันในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติตามวิธี Duncan's New Multiple Rang Test (DMRT) P=0.05

4. ชนิดของเชื้อจุลินทรีย์

จากการจำแนกชนิดของเชื้อจุลินทรีย์ทั้งสองชนิดที่มีประสิทธิภาพสูงในการส่งเสริมการ เจริญเติบโตและเพิ่มผลผลิตของข้าวในโครงการวิจัยของ รศ.ดร. จิระเดช แจ่มสว่าง พบว่า เชื้อจุลินทรีย์ไอโซเลท B15 คือเชื้อแบคทีเรีย Bacillus subtilis และ F01 คือเชื้อรา Trichoderma harzianum

ร**ูปที่ 23** ลักษณะของเชื้อราทดสอบไอโซเลท F01 (*Trichoderma harzianum*) ขณะเจริญเติบโต บนอาหารเลี้ยงเชื้อ potato dextrose agar (PDA) ที่อุณหภูมิห้องเป็นเวลา 7 วัน และเชื้อแบคทีเรียทดสอบไอโซเลท B15 (*Bacillus subtilis*) ขณะเจริญเติบโตบน อาหารเลี้ยงเชื้อ nutrient agar (NA) ที่อุณหภูมิห้องเป็นเวลา 2 วัน

บทวิจารณ์

จากการทดสอบประสิทธิภาพของเชื้อจุลินทรีย์ในการส่งเสริมการเจริญเติบโตของต้นกล้า ข้าวในระดับห้องปฏิบัติการเป็นเวลา 21 วัน พบว่าเชื้อจุลินทรีย์ทดสอบจำนวน 14 ไอโซเลท จาก ทั้งหมดจำนวน 125 ไอโซเลท สามารถเพิ่มการเจริญเติบโตของต้นกล้าข้าวได้โดยช่วยให้ต้นกล้า ข้าวมีน้ำหนักสดและน้ำหนักแห้งมากกว่ากรรมวิธีควบคุมที่ไม่ใช้เชื้อจุลินทรีย์อย่างมีนัยสำคัญ ทางสถิติ จากผลการทดลองนี้แสดงให้เห็นว่าเชื้อจุลินทรีย์ทดสอบจำนวน 14 ไอโซเลท ดังกล่าว นี้มีศักยภาพในการเป็นเชื้อจุลินทรีย์ส่งเสริมการเจริญเติบโตของพืชได้ (plant growth promoting microorganism, PGPM) ซึ่งผลการทดลองที่ได้นี้สามารถสนับสนุนโดยการรายงานของ James et al. (2002) ที่กล่าวว่าเชื้อจุลินทรีย์หลายชนิดโดยเฉพาะเชื้อจุลินทรีย์ในกลุ่มเชื้อแบคทีเรียมี ศักยภาพสูงในการเป็นเชื้อจุลินทรีย์ PGPM โดยสามารถช่วยเพิ่มน้ำหนักสดของต้นกล้าข้าวได้ ดีกว่ากรณีไม่ใช้เชื้อจุลินทรีย์หลังจากทำการเพาะต้นกล้าข้าวเป็นเวลา 5-7 วัน ซึ่งการช่วย ส่งเสริมการเจริญเติบโตแก่ต้นข้าวในระยะต้นกล้านี้ถือเป็นปัจจัยที่สำคัญอย่างมากต่อการให้ ผลผลิตของต้นข้าว เพราะในการรายงานของ Ottis and Talbert (2005) ได้กล่าวว่าต้นข้าวที่มี การเจริญเติบโตที่ดีในระยะต้นกล้ามักส่งผลให้ต้นข้าวเหล่านั้นมีแนวโน้มที่จะให้ผลผลิตสูงกว่า ต้นข้าวที่มีการเจริญเติบโตในในระยะต้นกล้าไม่ดีเสมอ

มีรายงานหลายรายงานที่กล่าวว่าเชื้อจุลินทรีย์หลายชนิดไม่ว่าจะเป็นกลุ่มเชื้อจุลินทรีย์ใน กลุ่มเชื้อแบคทีเรียซึ่งได้แก่ Bacillus spp., Rhizobium leguminosarum, Pseudomonas fluorescens, Delftia tsurusatensis, Burkholderia vietnamensis และ Herbaspirillum seropedicae และ กลุ่มเชื้อรา ได้แก่ Trichoderma spp. สามารถส่งเสริมการเจริญเติบโตและเพิ่มผลผลิตของข้าว ได้ทั้งในระดับโรงเรือนปลูกพืชทดลองและในสภาพแปลงปลูกข้าว โดยสามารถทำให้ต้นข้าวมี การเจริญเติบโตที่ดีขึ้น มีจำนวนต้นต่อกอมากขึ้น และให้ผลผลิตมากกว่ากรรมวิธีควบคุมที่ไม่ใส่ เชื้อจุลินทรีย์ดังกล่าวอย่างมีนัยสำคัญทางสถิติ (Biswas *et al.*, 2000; Govindarajan *et al.*, 2008; Han et al., 2005; James et al., 2002; Kumar et al., 2002; Lawongsa et al., 2008; Park et al., 2006; จิระเดช และวรรณวิไล, 2550 และ จิระเดช และคณะ, 2548) จากการ รายงานข้างต้นแสดงให้เห็นว่าเชื้อจุลินทรีย์เหล่านี้มีศักยภาพในการเป็นเชื้อจุลินทรีย์ส่งเสริม การเจริญเติบโตและเพิ่มผลผลิตของข้าวได้อย่างแท้จริง ซึ่งเป็นเช่นเดียวกับผลการทดสอบใน ครั้งนี้ที่พบว่าเชื้อจุลินทรีย์สองชนิด คือ เชื้อแบคทีเรีย Bacillus subtilis (ไอโซเลท B15) และ เชื้อรา *Trichoderma harzianum* (ไอโซเลท F01) สามารถช่วยส่งเสริมการเจริญเติบโตของต้น ข้าวได้ โดยสามารถเพิ่มจำนวนต้นข้าวต่อกอ เพิ่มปริมาณผลผลิตรวมของข้าว ตลอดจนช่วยให้ เมล็ดข้าวที่ได้มีคุณภาพที่ดีกว่ากรรมวิธีควบคุมที่ไม่ใช้เชื้อจุลินทรีย์ทดสอบอย่างมีนัยสำคัญทาง สถิติทั้งการทดลองในระดับโรงเรือนปลูกพืชทดลองและในสภาพแปลงปลูกข้าว

จากข้อมูลด้านคุณภาพของผลผลิตข้าวพบว่ากรรมวิธีที่ใช้เชื้อจุลินทรีย์ทดสอบและ กรรมวิธีที่ใช้สารสกัดจากเชื้อรา T. harzianum สายพันธุ์ T-50-co4 สามารถช่วยให้เมล็ดข้าวมี คุณภาพดีกว่ากรรมวิธีควบคุมที่ไม่ใช้เชื้อจุลินทรีย์และสารสกัดอย่างมีนัยสำคัญสำคัญทางสถิติ ทั้งการทดสอบในระดับโรงเรือนปลูกพืชทดลองและในสภาพแปลงปลูก โดยผลผลิตของข้าวมี สัดส่วนของเมล็ดข้าวที่ดีสูงกว่ากรรมวิธีควบคุม และยังสามารถช่วยลดจำนวนของเมล็ดข้าวที่ เกิดโรคได้ดีกว่ากรรมวิธีควบคุม ซึ่งผลการทดลองดังกล่าวแสดงให้เห็นว่าเชื้อจุลินทรีย์ทดสอบ และสารสกัดจากเชื้อรา T. harzianum สายพันธุ์ T-50-co4 นอกจากจะช่วยส่งเสริมการเจริญเติบโต และเพิ่มผลผลิตของข้าวแล้วยังสามารถช่วยลดความเสียหายของผลผลิตข้าวที่เกิดจากเชื้อโรคข้าว ได้ โดยผลการศึกษานี้สอดคล้องกับการรายงานหลายรายงานที่กล่าวว่าเชื้อจุลินทรีย์ปฏิปักษ์ หลายชนิดรวมทั้งสารสกัดจากเชื้อจุลินทรีย์ปฏิปักษ์หลายชนิด เช่น เชื้อแบคทีเรียปฏิปักษ์ Bacillus vallismortis, Delftia tsuruhatensis, Bacillus spp. และ Pseudomonas fluorescens และเชื้อราปฏิปักษ์ Trichoderma spp. มีศักยภาพสูงทั้งในด้านการส่งเสริมการเจริญเติบโต การ เพิ่มผลผลิตของข้าว และการลดความเสียหายของผลผลิตข้าวที่เกิดจากโรคพืชได้ โดยสามารถ ช่วยลดจำนวนของเมล็ดข้าวที่เกิดโรคและลดความรุนแรงของโรคที่เกิดกับเมล็ดข้าวได้ (Beneduzi et al., 2008; Han et al., 2005; Kumar et al., 2002; Mew et al., 2004; Park et al., 2006; จิระเดช และวรรณวิไล, 2550 และ จิระเดช และคณะ, 2548)

นอกจากนี้ในการทดสอบยังพบว่าในกรรมวิธีที่ใช้สารสกัดจากเชื้อรา *T. harzianum* สายพันธุ์ T-50-co4 นั้นมีตันทุนในการทดลองสูงกว่าและมีความยุ่งยากในการเตรียมสารสกัด มากกว่าการใช้ตัวเชื้อจุลินทรีย์ทดสอบโดยตรง ซึ่งคาดว่าอาจไม่เหมาะสมกับการนำไปใช้ในการ ปลูกข้าวในสภาพแปลงที่มีพื้นที่ขนาดใหญ่ดังในรายงานของ Intana (2003) และทักษิณ (2550) ที่กล่าวว่าในการเตรียมสารสกัดจากเชื้อรา *T. harzianum* ให้ได้ผลนั้น ต้องนำเชื้อราดังกล่าวไป เลี้ยงในอาหาร PDB ที่มีความเข้มข้น 1/5 เท่าของความเข้มข้นปกติ ที่อุณหภูมิห้อง เป็นเวลา 28 วัน ก่อนนำอาหารเหลวที่ได้มากรองเพื่อแยกเส้นใยและสปอร์ของเชื้อราออกและนำอาหารเหลว ดังกล่าวไปสกัดด้วย ethyl acetate (EtOAc) ซึ่งเป็นวิธีการที่ใช้ขบวนการหลายขั้นตอน อย่างไรก็ ตามผลการทดลองพบว่าการใช้สารสกัดที่ได้ ช่วยทำให้ผลผลิตของข้าวดีกว่ากรรมวิธีควบคุม อย่างมีนัยสำคัญทางสถิติ ทั้งการช่วยเพิ่มจำนวนเมล็ดข้าวดี ช่วยลดจำนวนเมล็ดข้าวที่เกิดโรค และจำนวนเมล็ดข้าวลีบ ดังนั้นการศึกษาเพื่อหาแนวทางที่เหมาะสม ง่าย และสะดวกในการ เลี้ยงเชื้อจุลินทรีย์รวมถึงวิธีการในการสกัดสารจากเชื้อจุลินทรีย์จึงเป็นเรื่องที่น่าสนใจมาก

จากการศึกษาในครั้งนี้พบว่าเชื้อจุลินทรีย์ทดสอบสามารถปรับตัวและมีชีวิตรอดในดิน ปลูกข้าวได้ทั้งในการทดสอบในระดับโรงเรือนปลูกพืชทดลองและในสภาพแปลงปลูกข้าว ซึ่ง แสดงให้เห็นว่าเชื้อจุลินทรีย์ทดสอบเหล่านี้มีศักยภาพสูงในการเพิ่มปริมาณและปรับตัวให้มีชีวิต รอดในดินปลูกข้าวทั้งในโรงเรือนปลูกพืชทดลองและในสภาพแปลงปลูกข้าวได้ โดยผลการ ทดลองนี้ให้ผลเช่นเดียวกับรายงานหลายรายงานที่ว่าเชื้อจุลินทรีย์ในกลุ่มเชื้อแบคทีเรียไม่ว่าจะ เป็น Bacillus spp., R. leguminosarum, Ps. fluorescens, D. tsurusatensis, Bu. vietnamensis และ H. seropedicae และ เชื้อรา Trichoderma spp. ถูกจัดเป็นเชื้อจุลินทรีย์ที่มีความสามารถสูงในการ ปรับตัวและมีชีวิตรอดในดินปลูกข้าว โดยสามารถปรับตัวให้มีชีวิตรอดในดินปลูกข้าวในพื้นที่ ต่างๆ ได้เป็นเวลานานมากกว่า 3 เดือน (Biswas et al., 2000; Govindarajan et al., 2008; Han et al., 2005; James et al., 2002; Kumar et al., 2002; Lawongsa et al., 2008; Park et al., 2006; จิระเดช และวรรณวิไล, 2550 และ จิระเดช และคณะ, 2548)

สำหรับการทดสอบในระดับแปลงปลูกข้าวยังพบว่าเชื้อจุลินทรีย์ทดสอบทั้งสองชนิด คือ เชื้อแบคทีเรีย B. subtilis และเชื้อรา T. harzianum สามารถปรับตัวและมีชีวิตรอดในน้ำในแปลง ปลูกข้าวได้ตลอดระยะเวลาในการทดลอง ซึ่งแสดงให้เห็นว่าเชื้อจุลินทรีย์ทดสอบเหล่านี้สามารถ ปรับตัวให้มีชีวิตรอดในสภาพพื้นที่ที่มีน้ำขังได้ดี โดยผลการทดลองนี้สามารถสนับสนุนโดยการ รายงานของ จิระเดช และวรรณวิไล (2550) ที่กล่าวว่าสามารถตรวจพบเชื้อรา T. harzianum สายพันธุ์กลาย 23/03-7 และ 03/7-134 (เกิดจากการฉายรังสีแกมมา) ในน้ำในแปลงปลูกข้าวได้ หลังจากใส่เชื้อราดังกล่าวในแปลงปลูกข้าวเป็นเวลา 10 วัน

ในปี ค.ศ. 2003 Intana และในปี พ.ศ. 2550 จิระเดช และวรรณวิไล กล่าวว่าเชื้อจุลินทรีย์ ปฏิปักษ์หลายชนิดรวมทั้งเชื้อแบคทีเรีย Bacillus sp. และเชื้อรา Trichoderma spp. เป็น เชื้อจุลินทรีย์ปฏิปักษ์ที่มีศักยภาพสูงในการเจริญเติบโตและเข้าครอบครองรากพืชหลายชนิดได้ ดี ไม่ว่าจะเป็นการครอบครองรากของแตงกวา คะน้า ถั่วฝักยาว รวมทั้งข้าว ซึ่งคุณสมบัติด้าน การเจริญเติบโตเพื่อเข้าครอบครองรากพืชนี้ถือเป็นคุณสมบัติที่สำคัญของเชื้อจุลินทรีย์ปฏิปักษ์ ในการนำไปสู่ความสำเร็จในการปกป้องต้นพืชจากการเกิดโรคต่างๆ รวมทั้งการช่วยส่งเสริม และเพิ่มผลผลิตของต้นพืชได้ ซึ่งการรายงายนี้ให้ผลการทดลองเช่นเดียวกับผลการทดลองของ โครงการวิจัยในครั้งนี้ที่พบว่าเชื้อแบคทีเรีย B. subtilis และเชื้อรา T. harzianum สามารถ เจริญเติบโตและเข้าครอบครองรากของต้นข้าวได้ดีตลอดระยะเวลาของการทดลองเป็น สัปดาห์ ซึ่งการเข้าครอบครองรากพืชนี้อาจเป็นปัจจัยหนึ่งที่สำคัญที่ทำให้ เชื้อจุลินทรีย์ทดสอบทั้งสองชนิดประสบความสำเร็จในการส่งเสริมการเจริญเติบโตและเพิ่ม ผลผลิตของต้นข้าวดังกล่าวได้ นอกจากนี้แล้วผลการทดลองนี้ยังสามารถสนับสนุนได้จากการ รายงานของ Harman (2000) ที่กล่าวว่ากลไกที่สำคัญที่ทำให้เชื้อจุลินทรีย์ปฏิปักษ์ประสบ ความสำเร็จในการควบคุมโรคพืชมีหลายกลไก ได้แก่ กลไกการเป็นเชื้อปรสิต การสร้างสาร ปฏิชีวนะ การซักนำให้เกิดความต้านทานต่อโรคในต้นพืช การแข่งขันกับเชื้อจุลินทรีย์อื่นใน สภาพแวดล้อมต่างๆ การเจริญเติบโตเพื่อเข้าครอบครองส่วนต่างๆ ของต้นพืช และการช่วย ส่งเสริมการเจริญเติบโตของต้นพืช ซึ่งหากเชื้อจุลินทรีย์ปฏิปักษ์ชนิดใดมีกลไกที่สำคัญเหล่านี้ อย่างมีประสิทธิภาพมักมีแนวโน้มสูงมากที่จะประสบความสำเร็จในการนำไปใช้ในการควบคุม โรคพืชต่อไป

สำหรับข้อมูลการเจริญเติบโตของต้นข้าวในด้านจำนวนต้นต่อกอเมื่อเปรียบเทียบกัน ระหว่างการทดลองในระดับโรงเรือนปลูกพืชทดลองและการทดลองในสภาพแปลงปลูกข้าว พบว่าจำนวนเฉลี่ยของต้นข้าวต่อกอในการทดลองระดับโรงเรือนมีค่าสูงกว่าการทดลองในสภาพ แปลงปลูก ทั้งนี้อาจเนื่องมาจากปัจจัยด้านความหนาแน่นของต้นข้าวที่พบว่าในโรงเรือนทดลอง ต้นข้าวมีความหนาแน่นต่อพื้นที่น้อยกว่าในสภาพแปลงปลูกจึงส่งผลให้ต้นข้าวสามารถแตกกอ ได้มากกว่า ดังนั้นจึงมีค่าเฉลี่ยของจำนวนต้นข้าวต่อกอสูงกว่าในสภาพแปลงปลูก เพราะใน สภาพแปลงปลูกข้าวผู้วิจัยได้ทำการทดลองโดยหว่านเมล็ดข้าวในแปลงดังกล่าวด้วยอัตราเมล็ด ข้าวที่ 15 กิโลกรัมต่อไร่ ทำให้ต้นข้าวมีความหนาแน่นสูงจึงมีการแตกกอได้น้อยกว่า ซึ่งผลการ ทดลองนี้สามารถสนับสนุนโดยการรายงานของอริตา (2543) ที่กล่าวว่าการปลูกข้าวพันธุ์กข 6 และขาวดอกมะลิ 105 ในสภาพนาหว่านทำให้ต้นข้าวมีความหนาแน่นสูง ดังนั้นต้นข้าวจึงมีการ แตกกอน้อยกว่าการปลูกในสภาพนาดำ

หนังสืออ้างอิง

- จิระเดช แจ่มสว่าง และวรรณวิไล อินทนู. (2550). ประสิทธิภาพของเชื้อรา *Trichoderma* harzianum สายพันธุ์กลายที่ได้จากการฉายรังสีแกมมาในการลดโรคเมล็ดด่าง และเพิ่ม ผลผลิตของข้าว. หน้า 278-293. วันที่ 19-22 พฤศจิกายน 2550. ใน รายงานการ ประชุมวิชาการอารักขาพืชแห่งชาติ ครั้งที่ 8: อารักขาพืชไทยใต้ร่มพระบารมี, โรงแรม อัมรินทร์ลากูน, พิษณุโลก.
- จิระเดช แจ่มสว่าง วรรณวิไล อินทนู และสริตา ภาคพิเศษ. (2548). การใช้เชื้อรา *Trichoderma* harzianum และ Bacillus sp. เพื่อเพิ่มผลผลิตของข้าวและลดโรคกาบใบแห้ง และโรค เมล็ดด่างของข้าว. หน้า 292-304. วันที่ 2-4 พฤศจิกายน 2548. ใน รายงานการประชุม วิชาการอารักขาพืชแห่งชาติ ครั้งที่ 7: อารักขาพืช เพื่อคุณภาพชีวิตและสิ่งแวดล้อม, โรงแรมโลตัสปางสวนแก้ว, เชียงใหม่.
- ทักษิณ สุวรรณโน. (2550). ประสิทธิภาพของสารสกัดบริสุทธิ์ต่อต้านเชื้อราจาก *Trichoderma* harzianum สายพันธุ์กลาย ในการควบคุมโรคแอนแทรคโนสของพริกที่เกิดจากเชื้อรา Colletotrichum capsici. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์ การเกษตร (พืชศาสตร์). มหาวิทยาลัยวลัยลักษณ์. 87 หน้า.
- อริตา อินทสิน. (2543). การเปรียบเทียบการเจริญเติบโตของข้าวพันธุ์กข 6 และขาวดอกมะลิ 105 ในนาหว่าน. วิทยานิพนธ์วิทยาศาสตร์บัณฑิต สาขาวิทยาศาสตร์สิ่งแวดล้อม คณะ วิทยาศาสตร์. มหาวิทยาลัยขอนแก่น. 35 หน้า.
- Beneduzi, A., Peres, D., Vargas, L.K., Bodanese-Zanettini, M.H. and Passaglia, L.M.P. (2008). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Ecology 39: 311-320.
- Biswas, J.C., Ladha, J.K. and Dazzo, F.B. (2000). Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Science Society of America Journal 64: 1644-1650.
- Govindarajan, M., Balandreau, J., Kwon, S.-W., Weon, H.-Y. and Lakshminarasimhan, C. (2008). Effects of the inoculation of *Burkholderia vietnamensis* and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology 55: 21-37.
- Han, J., Sun, L., Dong, X., Cai, Z., Sun, X., Yang, H., Wang, Y. and Song, W. (2005).
 Characterization of a novel plant growth-promoting bacteria strain *Delftia tsuruhatensis* HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Systematic and Applied Microbiology 28: 66-76.

- Harman, E.G. (2000). Myths and dogmas of biocontrol changes in perception derived from research on *Trichoderma harzianum* T-22. Plant Disease 84: 377-393.
- Intana, W. (2003). Selection and development of *Trichoderma* spp. for high glucanase, antifungal metabolites producing and plant growth promoting isolates for biological control of cucumber damping-off caused by *Pythium* spp. Ph.D. Dissertation. Kasetsart University, Bangkok. 202 pp.
- James, E.K., Gyaneshwar, P., Mathan, N., Barraquio, W.L., Reddy, P.M., Iannetta, P.P.M., Olivares, F.L. and Ladha J.K. (2002). Infection and colonization of rice seedlings by the plant growth-promoting bacterium *Herbaspirillum seropedicae* Z67. Molecular Plant-Microbe Interactions 15(9): 894-906.
- Kumar, N. R., Arasu, V.T. and Gunasekaran, P. (2002). Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, *Pseudomonas* fluorescens. Current Science 82(12): 1463-1466.
- Lawongsa, P., Boonkerd, N., Wongkaew, S., O'Gara, F. and Teaumroong, N. (2008).

 Molecular and phenotypic characterization of potential plant growth-promoting

 Pseudomonas from rice and maize rhizospheres. World Journal of Microbiology

 & Biotechnology 24:1877-1884.
- Mew, T.W., Cottyn, B., Pamplona, R., Barrios, H., Xiangmin, L., Zhiyi, C., Fan, L., Nilpanit, N., Arunyanart, P., Kim, P.V. and Du, P.V. (2004). Applying rice seed-associated antagonistic bacteria to manage rice sheath blight in developing countries. Plant Disease 88: 557-564.
- Ottis, B.V. and Talbert, R.E. (2005). Rice yield components as affected by cultivar and seeding rate. Agronomy Journal 97: 1622-1625.
- Park, K., Paul, D. and Yeh, W-H. (2006). *Bacillus vallismortis* EXTN-1-Mediated growth promotion and disease suppression in rice. Plant Pathology Journal 22(3): 278-282.

ผลลัพธ์ที่ได้จากโครงการ

- 1. Intana, W. and Chamswarng, C. (2008). Increasing growth of rice using promising strains of microorganisms. หน้า 342. วันที่ 16-18 ตุลาคม 2551. ใน งานประชุม นักวิจัยรุ่นใหม่พบเมธีวิจัยอาวุโส สกว. ครั้งที่ 8: โรงแรมฮอลิเดย์อินน์ รีสอร์ท รีเจนท์ บีช ชะอำ, จังหวัดเพชรบุรี.
- Intana, W. and Chamswarng, C. (2009). Increasing growth and yield of rice using promising strains of microorganisms. The Philippine Agricultural Scientist. (preparing).

ภาคผนวก

ภาคผนวก

สูตรอาหารเลี้ยงเชื้อจุลินทรีย์

1. Potato Dextrose Agar (PDA) (อาหารเลี้ยงเชื้อสำเร็จรูปของ HIMEDIA®)

ผงอาหาร PDA สำเร็จรูป 39.0 กรัม

Distilled water 1,000.0 มิลลิลิตร

2. Potato Dextrose Broth (PDB) 1/5 เท่า (อาหารเลี้ยงเชื้อสำเร็จรูปของ HIMEDIA®)

ผงอาหาร PDB สำเร็จรูป

4.8 กรัม

Distilled water

1,000.0 มิลลิลิตร

3. Nutrient Agar (NA) (อาหารเลี้ยงเชื้อสำเร็จรูปของ HIMEDIA®)

ผงอาหาร NA สำเร็จรูป

28.0 กรัม

Distilled water

1,000.0 มิลลิลิตร

4. Yeast Malt extract Agar (YMA)

Yeast extract	5.0	กรัม	
Malt extract	3.0	กรัม	
Bacto-peptone	5.0	กรัม	
Glucose	10.0	กรัม	
Agar	15.0	กรัม	

Distilled water 1,000.0 มิลลิลิตร

5. Martin's medium

KH ₂ PO ₄	1.0	กรัม
MgSO ₄ .7H ₂ O	0.5	กรัม
Peptone	5.0	กรัม
Dextrose	10.0	กรัม
Rose Bengal (1%)	0.033	กรัม
Streptomycin	1.0	กรัม
Agar	15.0	กรัม
Distilled water	1,000.0	มิลลิลิตร