บทคัดย่อ

รหัสโครงการ: MRG5080117

ชื่อโครงการ: การประยุกต์ใช้โครงข่ายประสาทเพื่อสร้างแบบจำลองของการผลิตและห่วงโซ่

อุปทาน

ชื่อนักวิจัย : ผู้ช่วยศาสตราจารย์ ดร.วิมลิน เหล่าศิริถาวร

ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์

มหาวิทยาลัยเชียงใหม่

E-mail Address: wimalin@hotmail.com

ระยะเวลาโครงการ : 1 ธันวาคม 2549 – 30 พฤศจิกายน 2551

การจัดการห่วงโช่อุปทานได้รับความสนใจเป็นอย่างมากในปัจจุบัน เทคโนโลยีที่พัฒนาอย่างรวดเร็วส่งผล กระทบให้ใช่อุปทานมีความซับซ้อนมากขึ้น โดยทั่วไปแล้วหน่วยงานใดหน่วยงานหนึ่งในห่วงโช่อุปทาน มักสามารถวิเคราะห์หาจุดที่เหมาะสมในการดำเนินการได้ แต่อาจไม่ใช่จุดที่เหมาะสมเมื่อมองในภาพรวม ทั้งโช่อุปทาน ปัญหาที่พบในอุตสาหกรรมส่วนมากคือการขาดความรู้พื้นเกี่ยวกับโช่อุปทาน งานหนึ่งที่ สำคัญในการจัดการห่วงโช่อุปทานคือการพยากรณ์ โช่อุปทานที่มีขนาดใหญ่และซับซ้อนขึ้นทำให้วิธีการ พยากรณ์เชิงปริมาณ อาทิเช่น การหาค่าเฉลี่ยเคลื่อนที่ การปรับเรียบเอ็กซ์โพเนนเชียลไม่เหมาะสมในการ พยากรณ์เอ็กต่อไป ดังนั้นจึงมีความจำเป็นที่ต้องพัฒนาวิธีการที่สามารถรองรับความสัมพันธ์ที่ซับซ้อนและ ไม่เป็นเชิงเส้นนี้เพื่อให้สามารถพยากรณ์ได้แม่นยำยิ่งขึ้น งานวิจัยนี้มุ่งเน้นในการพัฒนาวิธีการในการ พยากรณ์ยอดขายผลิตภัณฑ์ที่มีความแม่นยำสูงโดยประยุกต์ใช้โครงข่ายประสาทและซัพพอร์ตเวคเตอร์ แมชชีน โดยจะได้ทำการเปรียบเทียบกับวิธีการพยากรณ์แบบเดิม ได้แก่ การหาค่าเฉลี่ยเคลื่อนที่ การปรับ เรียนเอ็กซ์โพเนนเซียล และอารีมา โดยจะยกตัวอย่างกรณีศึกษาของการพยากรณ์ยอดขายจริงจาก โรงงานสองแห่ง

คำสำคัญ: โซ่อุปทาน, พยากรณ์, โครงข่ายประสาท, ซัพพอร์ทเวคเตอร์แมชชีน

Abstract

Project Code: MRG5080117

Project Title: The application of neural network for manufacturing facility and supply

chain modelling

Investigator: Assistant Professor Wimalin Laosiritaworn, Ph.D.

Department of Industrial Engineering, Faculty of Engineering,

Chiang Mai University

E-mail Address: wimalin@hotmail.com

Project Period: 1 December 2006 – 30 November 2008

Supply Chain Management (SCM) has gained a great deal of attention in recent years. Rapid development in advanced technology has made the supply chain become larger and more complex. Usually, each of these entities is able to make a locally optimum decision. However, the performance of the entire supply chain depends on optimum decisions about the supply chain as a whole. A lack of fundamental knowledge about supply chain operation and behavior is a key problem faced by much of industry. One of the important tasks in supply chain management is forecasting. The errors results from inaccurate forecasting model got amplified as it passed along the supply chain. As the supply chain grows bigger and more complex, traditional forecasting techniques such as moving average and exponential smoothing are not always suitable to deal with the complexity and nonlinearity nature of the problem. As a result, there is a need for more reliable and accurate forecasting model. This research focused on the development of an accurate supply chain demand forecasting model by comparing between Neural network (NN), Support vector machine (SVM) and traditional statistical techniques including Moving Average, Exponential Smoothing, and Auto-Regressive Integrated Moving Average (ARIMA). Two case studies of demand forecasting were demonstrated using actual data.

Keywords: Supply chain, Forecasting, Neural network, Support vector machine