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ABSTRACT

Project Code: MRG5080174

Project Title: The development of image classification and restoration algorithms for remotely
sensed images

Name: Asst. Dr. Teerasit Kasetkasem

Email Address: fengtsk@ku.ac.th

Project Period 1 July 2007 — 30 June 2009

This report introduces a new sub-pixel classification algorithm that incorporates prior
information from known class proportions in the linear mixture model. The prior information is
expressed in terms of the occurrence probabilities and the class proportion distribution of each
land cover class in a pixel. The use of different error cost functions that measure the similarity
between the model-derived mixed spectra and the observed spectra is also investigated. Under
these assumptions, the maximum a posteriori (MAP) methodology is employed for optimization.
Finally, optimization problems under the MAP criteria for different error cost functions are
formulated and solved. Our numerical results illustrate that the performance of the sub-pixel
classification algorithm can be significantly improved by incorporating prior information from the
known class proportions. Further, there are marginal differences in accuracy when using

different types of error cost functions.

Keyword: Remote Sensing, Sub-pixel classification, Linear mixture model, Optimum
classifier
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Abstract

This paper introduces a new sub-pixel -classification algorithm that

incorporates prior information from known class proportions in the linear mixture
model. The prior information is expressed in terms of the occurrence probabilities and
the class proportion distribution of each land cover class in a pixel. The use of
different error cost functions that measure the similarity between the model-derived
mixed spectra and the observed spectra is also investigated. Under these assumptions,
the maximum a posteriori (MAP) methodology is employed for optimization. Finally,
optimization problems under the MAP criteria for different error cost functions are
formulated and solved. Our numerical results illustrate that the performance of the

sub-pixel classification algorithm can be significantly improved by incorporating
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prior information from the known class proportions. Further, there are marginal

differences in accuracy when using different types of error cost functions.

l. Introduction

The availability of accurate land cover maps is essential for a number of
resource management, monitoring and planning programs. These also act as key
inputs for a number of agricultural, hydrological, environmental and ecological
models. Satellite remote sensing images due to their synoptic view and map like
format are a viable source for producing effective land cover classification. The
objective of land cover classification is to allocate each pixel of a remote sensing
image into only one land cover class (i.e., crisp or per-pixel classification) or to
associate the pixel with many land cover classes (i.e., fuzzy or sub-pixel
classification). A number of crisp classifiers are in vogue based on approaches such as
statistical analysis [1], neural networks [2], decision tree methods [3], geostatistic
approach [4] and Markov random field model [5]. The output from a crisp classifier is
a classified image depicting spatial distribution of land cover with each pixel
belonging to only one land cover class. For most applications, this type of output may
be sufficient.

However, in general, and particularly in coarse spatial resolution images such
as those obtained from Moderate Resolution Imaging Spectrometer (MODIS) and
Advanced Very High Resolution Radiometer (AVHRR) that provide data at spatial
resolutions ranging from 250 m to 1.1 km, a majority of pixels may be mixed (i.e.,
pixels containing more than one class) at the scale of measurement. Even where the

spatial resolution is medium (e.g., 30m Landsat ETM+) or fine (e.g., 4m IKONOS
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multi-spectral), the high spatial frequency of some classes such as urban and built-up
areas may result in a large number of mixed pixels [6]. The causes for the occurrence
of mixed pixels are well known and their presence is a recurring problem while
extracting accurate land cover information from remote sensing images. This led to
the development of a number of sub-pixel classification methods, namely, linear
mixture modeling [6-9], neural networks [10], fuzzy set and possibilistic theories [11],
and support vector machines [12]. The output from a sub-pixel classification method
is a set of class proportions or membership grades for a pixel. These outputs are
represented in the form of fraction images (one image for each land cover class) [6].
The most common model for sub-pixel classification is the linear mixture
model (LMM) which assumes that the observed multispectral data at each pixel is a
proportional sum of the spectral signatures from all land cover classes. Due to noisy
nature of the image acquisition process, the actual proportional sum may not be the
same as the observation. Hence, the goal of sub-pixel classification is to estimate the
class proportion that yields the minimum distance between the proportional sum of
the spectral signatures and the observed spectral value. Different constraints [7-9] are
usually imposed on LMMs. For instance, Settle and Drake [7] assume that the
proportion must be non-negative and sum to one. A similar model has been proposed
by Chang, et al. [11] for the sub-pixel target detection problem. The major limitation
of the linear mixture model occurs when the number of land cover classes is more
than the number of spectral bands. In this case, the solution to the spectral unmixing
problem may not be unique. In other words, there are multiple mixing combinations
that may yield the same spectrum value. Furthermore, the spectral unmixing based on
the existing form of linear mixture model places equal importance to all land cover

classes present in the mixed pixels whereas, in the practical circumstances, some

26



Tyl MRG5080174

classes may be more likely to exist than others. This likelihood can be taken into
account in the linear mixture model by employing prior information from the known
class proportions to further refine the estimates of sub-pixel classification from
LMMs.

The aim of this paper is to propose a new sub-pixel classification algorithm
that incorporates the prior information from known class proportions in the linear
mixture model. The prior information is expressed in terms of the occurrence
probabilities and the class proportion distribution of each land cover class in a pixel.
Here, only the uniform class proportion distribution is considered. Furthermore, we
also investigate the use of different error cost functions that measure the similarity
between the model-derived mixed spectra and the observed spectra. Under these
assumptions, the maximum a posteriori (MAP) formulation is employed for
optimization where the optimization problems for different error cost functions are
developed. Our numerical results illustrate that the performance of the sub-pixel
classification algorithm can be significantly improved by incorporating the prior
information from the known class proportions. Further, there are marginal differences
in accuracy when using different types of error cost functions.

The paper is organized as follows. The next section will define the problem. In
Section 3, we will derive the optimum sub-pixel classification method based on the
model in Section 2. The optimization problem and its corresponding solution are
presented in Section 4. Some numerical examples are provided in Section 5. Finally,

concluding remarks are included in Section 6.
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I1. Problem Statement
Let Y be an observed coarse spatial resolution multispectral image of size | x J pixels
where each pixel occupies a finite region in the actual scene. Next, let X be a fine
spatial resolution map of size P x Q pixels where P > | and Q > J. We assume that in
the fine spatial resolution image, all pixels are pure, i.e., pixel belongs to only one
land cover class. Figure 1 displays an example of pixel occupancy of both an
observed multispectral image (synthetic) and fine spatial resolution maps at different
pixel sizes of the observed multispectral image. At the fine spatial resolution (Figure
1(b)), 98.12% of pixels are pure whereas, in case of medium (Figure 1(c)) and coarse
(Figure 1(d)) spatial resolutions, 85.12% and 75% of pixels are pure respectively.
Thus, as the pixel size increases, the number of mixed pixels increases. Let S denote

the sets of all sites (i.e., pixels) of the observed multispectral image, which is usually

represented in a vector form, as y(s;) € R for the pixel s; where R denotes the set

of real numbers (i.e., intensity values) and K is the number of spectral bands. As
stated earlier, each pixel in the fine spatial resolution map is assumed to be pure (i.e.,
the pixel’s configuration x(t) (i.e., attribute) denotes one and only one land cover
class). Hence, x(t) e {1 L} can only take an integer value corresponding to the
particular land cover class at a pixel t in the actual scene, where L is the number of

land cover classes.
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(b) (b)

(c) (d)
Figure 1: Multispectral Image at different scale sizes; (a) original; (b) at scale of 10;

(c) at scale of 50; and (d) at scale of 100

We assume that at coarse spatial resolution, each land cover class has a unique
spectral signature (intensity value) and let {ul,uz ..... uL}eiRK be the spectral

signatures of classes 1, 2, ..., L. The mixed spectral response of all the classes in a

pixel is given by,
r(si ) = Zbl (Si )lh (1)
where by(s) is the class proportion of the land cover class | present in s; such that

ZL:b, (s,)=1 and b,(s;)>0. Here, we denote b(s,)=[o,(s,) --- b.(s,)] as the

1=1
class proportion vector where A" is the transpose of A. Due to the noisy nature of
the image acquisition process, the observed vector at each pixel of the multispectral

image is a combination of the combined spectral response and noises, i.e.,

y(si)=r(s,)+n(s;) (2)
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where n(s;)) € R" and y(s;)) € R are the noise vector and observed vector at pixel s;
respectively Here, we assume that the noise vector has the corresponding probability

density function f(n), given by,

fx(n) = exp(~ E(n)). (3)
In general, the noise term is assumed to be statistically independent between any two
or more distinct pixels and takes Gaussian distribution [13].

For simplification, we omit the term (si) in all the equations throughout the

manuscript. Next, the presence or absence of land cover classes in a pixel is assumed
to be statistically independent. This implies that any combination of land cover
classes can exist in a pixel. Let N, be the number of land cover classes present in a
pixel. These land cover classes have a non-zero value in the class proportion vector b.
For Np = 1, the pixel is pure. In this case, one of the class proportions is one while the
rest are zero. Hence, the conditional probability of the class proportion vector is given
by,

Pr[b =b, ] = Pr[a pixel belongsto the | - th class] 1=12,...,L (4)
where b, is a vector of length L whose I-th entry has the value of one and other
entries have the value of zero. Here, let p, denote the probability that the I-th class is

present in a pixel. Then Equation (4) can be written as,

L

P H(l_ pm)

Prlb=b,]|= ”‘:WZ' 1=12,...,L (5)

where Z is the normalizing constant. Equation (5) is valid if the absence or presence
of one class does not have any effect on the absence or presence of other classes. We
acknowledge that this is a strong assumption since the land cover classes in

neighboring regions must be mutually independent according to this assumption.
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More complex models in which the interaction between classes is included can be
considered. However, the corresponding optimization algorithm may be too complex

to be implemented in practice. Furthermore, let z, be the indicator parameter which

takes the value of one or zero based on whether the I-th class is present (b, >0) or
L

absent (b, =0) in a pixel, respectively. Thus,sz =N, . Let L, and L, be indices
1=1

of zj such that z takes the values of zero and one, respectively. The marginal

probability of indicator parameters is given by,

[T@-p)[]p.

Pr[Z]= lelg Z rely . (6)

where z=[z, z, --- z,[ isthe indicator vector. For a given indicator vector, we

know that the land cover classes whose corresponding indicator parameters are one
are present in a pixel. In other words, these classes must have a non-zero class
proportion value. Here, we assume that the joint probability density function (PDF)

for those non-zero class proportions takes the form of Dirichlet distribution [14], i.e.,

f [blz] = %Ebﬁ.l

|€L]_

(7)

where ¢, is the Dirichlet parameter of the I-th class and I"(x) is the gamma function of

X. Note that, when N, = 2, the Dirichlet distribution takes the same form as the Beta

distribution. A class with a small value of ¢, is likely to occupy a small area in a
pixel. In contrast, a class with a high value of ¢, corresponds to the class proportion
close to one. Furthermore, for the special case where o, =1 (i.e., all classes are likely

to be present in a pixel.) for | =1,2,...,L, Equation (7) reduces to,

31



Tyl MRG5080174
fblz]=(N, -1} ifz =1(p) forl=12,...,L 8)
where I(b)=1 if b, >0 and I(b)=0 if b, =0. For this case, non-zero class

proportions are equally likely to take any value between zero and one as long as these
sum to one. The PDF in (8) has a higher value for the case of the class mixtures with
a large number of non-zero land cover classes than the class mixture with few non-
zero classes because the region in the hyperplane where the class proportion is sum to
one and non-zero becomes smaller as the dimension of the hyperplane increases.
From Eq. (8), the class mixture with higher number of non-zero class proportion is
more preferable from our model if all class mixtures are equally likely. This result,
allows the uniqueness of the unmixing result when the number of land cover classes
is more than the number of spectral bands.

Next, based on the model given in Equations (2) and (3), the conditional

probability density function (PDF) of the observed vector at a pixel s;, given the class
proportion vector, can be written as,

F(y}b)=f y(y—Mb) 9)
where M :[u1 m, - pL]. The joint probability density function of the class

proportion vector and the indicator vector, given the observed data, is given by,

(b, y) = fN(y—f M(l;;f(b,z)
1yl M)t b)ere) o
fy (y)
T F(IGZLlalJ aul;[(l_ p')rl;[ P,
o Tz

|€L]_

for N, >1, and

32



Tyl MRG5080174

ety L1@=POL T e

f b, _ lelgy rely 9b
( Z|y) fy (y) YA (50)

for N, =1.

The PDF given in Equation (9.a) is complicated and very difficult to evaluate. Hence,

only the case when ¢, =1 (uniform class proportion) has been considered in this

paper, and, thus, the PDF reduces to,

e =N, -~ T@-p)[ Tr

f(b,2ly)= f (;)L; b (10)

Next, we derive the optimum classifier for our problem.
[11. The Optimum Classifier

In this paper, we employ the maximum a posteriori (MAP) classifier based on the
PDF given in Equation (10) since the MAP classifier provides the minimum
probability of error among all classifiers [15-16]. The search space of the solution is
restricted to the region such that the constraints,

z,=1(b), b >0, (11)

and
L
> b=1 for1=12...,L (12)
1=1

are satisfied. We denote as B the set of those b that satisfy the above constraints in
Egs. (11) and (12). Hence, the goal is to select the class proportions and indicator

vectors that maximize (10), i.e.,

33



Tyl MRG5080174
(b, 2o )= argimag([f (b, zly)] } : (13)

The term f,(y) in Equation (10) is independent of the choice of (b,z) and, hence, it

can be ignored. As a result, Equation (13) becomes,

o E(y — Mb)—log[(N, —1)]
(b2 )=arg{ min _ 5 gl p,]- " loglp]

|ELO |€L1

E(y ~Mb) - log[(N, ~11]- (-2, )logla p;]
=argimin = (14)

b,zeB
- z z, log p,
1=1

=ly- M) tog(N, -+ 32, uog{ plﬂ

+ Z Iog[l— P ]

1=1

=arg< min
g b,zeB

The last term in the argument can be ignored since it does not depend on (b,z).

Hence, Equation (14) can be reduced to,

o) <0 s - )l -3 o P |

—arg{m'eg{ Nbflong; Iog[ Py j”

We shall call the term C, = Iog[ p'J as the class proportion cost function for
|

(15)

Class I. The term E(y—Mb) in Equation (15) measures the differences between the
observed spectral vector, y, and the model-derived spectral mixture, Mb . Hence, we
call this term the error cost function. This term provides the information on the
closeness of the observed spectral values with derived spectral values. Hence, the
most widely used model is multivariate Gaussian. The error cost function, in this

case, is given by,
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E(y - Mb)= %[(y ~ Mb) £y - Mb)+ K log(27) + log]]] (16)

where X is the covariance matrix of the noise vector. Clearly, the second and the
third terms in Equation (16) are independent of the choice of b. Hence, these can be

ignored during optimization. As a result, the error cost function is given by,
€y ~Mb)= (v~ Mb) =y - Mb). (17)

Equation (17) is the well-known as Mahalanobis distance [16]. The accuracy of the
model given in Equation (17) depends on the estimate of the covariance matrix of the
noise vector. To obtain an accurate estimate of the covariance matrix, we need a large
number of samples (about 10 times the number of spectral bands, i.e., 10K) which
may be difficult to obtain in practice. As a result, different distance metrics are
employed as the error cost function in this paper. The less parametric distance metrics

can be defined as,

L
e v Som - o,y ] as)

where || ||p denotes the p-norm and g, is an increasing function. In this paper, we

investigate the use of first, second and infinite norms only since, as stated in the next
section, the optimization problems derived from these norms can be transformed into
standard optimization problems. Hence, these can be solved with existing algorithms.

In the case of the first norm, we define the error cost function as,

K K
Ey(y —Mb)= g{Zek] =B & (19)
k=1 k=1

where e, is the absolute difference of y—Mb for the k-th band and £ is the weight

factor. Here, gi(x) = AX. The optimization problem is given by,
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(bopt1zopt):arg{mi€g|:ﬂiek Ni1|ogr+22 Iog( 0 ﬂ } (20)

The argument inside the parentheses is linear. With some modifications, the
optimization problem in Equation (20) can be transformed to a mixed-integer linear
program with linear constraints. Linear programs have been well-studied in the
literature. As a result, many computationally efficient algorithms to solve the problem
have been developed.

When noises in different spectral bands are independent and identically

distributed, the noise variance becomes ¥ = o1, where I, is the identity matrix of

size K x K . For this case, the error cost function can be written as,
2 K 2
£y~ Mb)= {55l - Wbl |- 57 3oet. @
k=1

Note that ga(x) = x. The optimization of Equation (15) becomes,

(bopt , Zopt) arg{mleg|:ﬂ Zek Nijlmg r+ ZL: Z, |Og£1_p—plj:| } (22)

The above optimization problem has a quadratic form. Hence, in the next section, we
modify the optimization problem of Equation (15) into a mixed-integer quadratic
program.

In the last case where the infinite norm is used, the error cost function is

defined as,

E..(y,b)= gw(krﬂﬁ?& [ex ]) = gl(krzqﬁ?; [ex ]) =f. maxe ] (23)

Let e be defined as the maximum of absolute errors in all spectral bands,

i.e,e= krpla)f([ek ] The optimization of Equation (15) is given by,
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(bopt ’ Zopt ) _ arg{mg{ﬁe B sz_llog [ i Z, IOg(l__p'H } . (24)

r=1 1=1 pl

Similar to first norm case, the overall cost function is linear. Hence, it can be
transformed into a mixed-integer linear programming problem. Next, we discuss the

optimization problems in more detail.

IV. Optimization Problems and Solutions

In this section, the optimization problems given in the previous sections are
transformed into standard optimization problems, namely mixed-linear and -quadratic
programs, since we can apply the existing optimization algorithms to obtain the
solution. In this section, we follow the work in [8] by constraining the class

proportion values to be non-zero and that sum to one, i.e.,

2.0 -1 (25)

1=1

b >0 ;1=12,...,L
First, we will start with the first norm case and then follow it up by the second and

infinite norm cases for error cost functions, respectively.
IV.A First Norm Cost Function

Employing the first norm as the error function given in Equation (20), the problem

becomes,
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. K et L 1-p
min BY.e.— D logr+> z log !
z k=1 r=1 I=1

P
such that
P =4b >20;1=12,...,L (26)
L
2.0,
1=1

z,=1(b)1=12,...,L

1

Next, we have that z, = 1(b,) and b, €[01]. As a result, b,, is bounded by z,, i.e.,

0<b, <z, . For the error cost function, the absolute error in band k, e, is the bound of

L
. In other words, we have —e, <y, —ZbuM,k <e,. By combining
1=1

L
Y — Z b, Hik
=1

these facts into Equation (26), the optimization problem can be written as,

K Nb*l L 1_ p
min| £, e, - > logr+>_z, Iog(—')
b k=1 r=1 1=1 pl
such that

L
P = —& = Vi _thULk <€, (27)

1=1
0<b <z;1=12,...,L

L

ZI=1

1=1

z, e {01}1=12,...,L

Furthermore, let r, be one if at least | land cover classes are non-zero in a pixel of

Np—1 L
interest and be zero otherwise. Hence, we have ) logr=>log(l-1)r,. The
r=1 1=2

optimization problem in Equation (27) can be written as,
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such that

L
—& =Y, _Zbllul,k <€,

1=1

P={0<b <z:1=12,...,L (28)

z, 21Ir;1=12,...,L

By lettinge=[e, - e |, r=[r, - r ], g=[0 log®) ... log(L-1)]", and

c, :{Iog(l_—plj Iog(ﬂﬂ, the equation can be written in a matrix form
Py

as,

min[wI xl]
X1
such that

P=AXx,<m; . (29)
D;x, =1,

x, 20,x, <1

where
b
Z
X, = ,
r
(¥
and
0L
¢
Wl =
-g
p1.
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are vectors of size 3L+K. The unequal constraints matrix, A, of size

(2L + 2K )x (3L + K) is given by,

-M OK,L OKL _IK
S
L L L,L LK

where O is a zero matrix of size SxT, P is one matrix of size SxT ,and W_ is
a diagonal matrix whose diagonal entries are 1, 2, ..., L, respectively.
(diag(\N):[l 2 - L]). For this case, the equal constraint matrix D; of size
1x (3L + K)is given by,

D, = [ITL 0;L+K] :

The bound vector ¢, of size 2L+2K is given by,

Obviously, the optimization problem given in Equation (29) is in the form of a mixed-

integer linear programming problem.
IV.B Second Norm Error Function

In this subsection, we replace the first norm by the second norm and the optimization

problem in Equation (22) can be written as,
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K L L 1-p
min| 87> eZ = log(1-1)r, + >z, Iog(—'ﬂ
bz k=L 1=2 =1 Py

such that

0<b <z;1=12,...,L
. (30)
z, 2Irn;1=12,...,L

M- I~

b, =1

z,,r, €{01}1=12,...,L

1]
UN

which can be written in a matrix form as,

mian; Hx, + wzxz}

X2
such that
P, =<AX, <m,, . (31)
D,x, =1,
x, >20,x, <1

Here the matrix H, vectors w,, and b, are given by,

’ {MZMTM OL,ZL}

O2L,L OZL,ZL
b
X, =z,
r
and
—-2y'M
W2 = Cl

-8

respectively. The constraint matrices can be written as,
A2=|:IL _IL OL,L:|
OL,L - PL,L WL
and
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D, =11 03]
Finally, the bound vector, c; is given by,

m, = [OZL].
The optimization problem given in Equation (31) is in the form of mixed-integer
quadratic programs. Although there are a number of algorithms designed to solve the
mixed-integer quadratic programs, the mixed-integer quadratic programs remain a NP
hard problem. As a result, the computational time of the problem given in Equation
(31) may be slow to be practically implemented. We note here that even though the
problem given in Equation (29) is also an NP hard problem, but the mixed-integer
linear program has been well-studied. Hence, the solutions of Equation (29) can be

obtained efficiently for most practical problems.
IV.C Infinite Norm Error Function

When the infinite norm is used as the measure of the error term, the optimization

problem can be written as,

h,z,CéA

such that

0<b =<z;1=12,...,L

P =<1 , (32)
>z 2Inl=12,..,L

1=1

L

Db =1

1=1

z, e{01;1=12,..,L
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L
Let us assume that e, is the maximum absolute difference of the vector y—Zb,p, :
1=1

L
Hence, we have that —ewgyk—Zbl,ulkSew, for k=1,...,K. The optimization
1=1

problem in Equation (32) becomes,

min | 3.€, - ZL: log(I -1)r, + ZL: Z, Iog(l_p—p'ﬂ

dg.z.C, I
such that
-6, <y—-Mb<e,
P,=40<b <z;l=12,...,L . (33)

z,2Ir;1=12,...,L

M- I

b =1

z,e{01}1=12,...,L

1]
i

The matrix representation of the problem in Equation (33) is given by,

min[w;xw]

such that

P =<Ax_<m_, (34)
D x, =1

x, >0

where

- N T

(0]

and
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The constraint matrices are given by,

For this case, the equal constraint matrix D, of size 1x (3L +1)is given by,

D =[1TL 0;L+l] '

0

The bound vector ¢; of size L+2K+2 is given by,

We observe that the optimization problem in Equation (34) has exactly the same
number of constraints as in Equation (29) while the number of variables is only K-1
less than those in Equation (29) This observation indicates that the optimization
problem for the infinite norm error cost function is less complex than those given in
the first norm case especially for remote sensing images with a large number of
spectral bands such as hyperspectral images.

By solving the optimization problems given in Equations (29), (31) and (34)
for all the pixels in Y, the fraction images for each land cover class are obtained for
different models of error cost functions. In the next section, we investigate the
performance of the sub-pixel classification approach proposed here for different error
cost functions. As expected, different error cost functions result in different accuracy

values. However, the best performances for each error cost function are very similar.

44



Tyl MRG5080174

V. Numerical Examples and Results

In this section, we consider the specific problem of sub-pixel classification based on
the MAP detector given in Equation (15) by using the models proposed in Section 4.
We apply our algorithm to two sets of remote sensing data, one at fine spatial
resolution and another at medium spatial resolution. For the cases of the first and
infinite norm error functions, the optimization problems are in the form of mixed-
integer problems. Hence, we apply the GNU Linear Programming library [17] to
solve the problem. This library employs Branch-and-cut method [17] to solve the
mixed-integer linear program. For the case of the second norm error function, we
employ KNITRO 6.0 Library [18] to solve the mixed-integer quadratic program in
Equation (24). Here, the branch-and-bound technique has been employed. We
acknowledge that there may be a better optimization library to solve both the mixed-
integer linear and quadratic programs. However, the goal of this paper is to only
demonstrate the feasibility of our approach and illustrate the performance of our
models in terms of accuracy and not to focus on computational efficiency aspects.
Experiment 1

A small dataset from multi-spectral (spatial resolution 4 m) and panchromatic (spatial
resolution 1 m) data acquired in 2001 from the IKONOS satellite has been used. It
consists of (26 x 60) pixels of 4 bands of the multi-spectral image in blue, green, red
and near infrared (NIR) regions and (97 x 237) pixels of the single band PAN image,
and covers a portion of the Syracuse University campus site (Figures 2(a) and (b)).
The corresponding reference image generated from a visual interpretation of the PAN
image is shown in Figure 3. There are six land cover classes - grass, roofl, roof2, tree,

shadow and road. Roof1 represents top cover of a tent whereas roof2 denotes roof of
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buildings. Each pixel in this reference image has been assumed pure. Based on this
reference image, fraction reference images, depicting the known class proportions for
each land cover class at 4 m resolution, have also been generated to allow for
accuracy assessment of intermediate sub-pixel classifications (Figures 4 (a) to (f)).
Note that black and white shades indicate total absence and presence of classes
whereas intermediate gray shades represent proportion of a class within a pixel of the
coarse resolution image. These fraction reference images also assisted in identifying

pure training pixels for initial sub-pixel classification of the multi-spectral image.

(b) (b)

Figure 2: IKONOS images of a portion of the Syracuse University campus; (a)
false color (Blue: 0.45 - 0.52 um, Green: 0.52 - 0.60 um, Red: 0.76 - 0.90 um)
composite of the multispectral image at 4 m resolution; (b) panchronometric
image at 1m resolution

Grass Tree Shadow

-

>, T
Road ‘i‘ﬁ & ol

Roofl
Figure 3: Reference image at 1 m resolution of the Syracuse University campus
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Grass Roofl

Tree Shadow

Road Roof2

Figure 4: Fraction reference images of six land cover classes at 4 m resolution (a)
grass; (b) roofl; (c) tree; (d) shadow; (e) road; and (f) roof2

The procedure begins with the estimation of spectral responses associated with all the
classes by selecting 20 training pixels for each class in the coarse resolution image.
The training pixels are randomly chosen from the pixels that have at least 60%
fraction of the class of interest. The total number of pixels that have at least 60% of
each land cover classes are given in Table 1. We observe that, for the Class Roof1,
there are only 13 pixels that have at least 60% fraction. Hence, we use only 13 pixels
of Class Roofl. As a result, we have a total of 113 training pixels. In this work, we

apply the least square estimate of the spectral responses, i.e.,

M =Y,B"(BB" )", (26)
where Y; =[y, y, - ¥yu5] is a matrix of size 4x113 whose columns are the
observed spectral vectors of each training pixel, B=[b, b, --- b,] is a matrix
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of size 6x113 whose columns are the class proportion vectors of each training pixel,

and M is a matrix of size 4x6 whose columns are the estimates of spectral response
vectors of each class. Furthermore, we also need to estimate the prior probability of
the presence of each land cover class. For Class |, the portion of pixels that have non-
zero class proportion values of Class | yields the conditional probabilityé, = p,/Z .

However, since the sum of the probabilities given in Equation (6) must be one, we

L
have Z :1—H(1—Z¢9|) and the normalizing constant can be determined by solving
1=1

the equation,

log(1-Z)= ilog(l— 26,). (27)

1=1
By using the reference data shown in Figure 4, the normalizing constant has the value
of Z = 0.61726. The conditional probability 6,, prior probability p, and the class

1-p,

P

proportion cost function Iog[ j are given in Table 2.

Table 1: Number of pixels that have at least 60% of the fraction of the given

classes.

Grass 378
Roofl 13
Tree 159
Shadow 225
Road 247
Roof2 353
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Table 2: The class proportion probabilities and cost function of IKONOS data

Class 4 pi log[(1-pi)/pi]
Grass 0.36467 0.2251 1.2362
Roofl 0.01733 0.0107 4.5268
Tree 0.19800 0,1222 1.9716
Shadow 0.27933 0.1724 1.5686
Road 0.28867 0.1782 1.5287
Roof2 0.26533 0.1638 1.6304

Next, we apply the sub-pixel classification model proposed in this paper for

the first, second and infinite norm error functions for various values of £. Here, we

employ a few performance evaluation techniques to quantify the accuracy of our
algorithm. We adopt the Euclidian distance [19], and fuzzy error matrix [20] which
measures the agreements and disagreements between the class proportions from
reference data and classified image [20-22] as the performance metrics. A lower
value of the Euclidian distance indicates that the classification algorithm generates a
sub-pixel classification that is closer to the fraction reference image, or, in other
words, more accurate is the result. For the fuzzy error matrix, the overall accuracy of
one indicates perfect match between fraction reference image and the model derived
sub-pixel classification image whereas the value of zero corresponds to total

disagreement. The accuracy values for both metrics for various value of £ are shown

in Figures 5 and 6 for the fuzzy error matrix and the average Euclidean distance,
respectively. The optimum values of g for the fuzzy error matrix are 0.0085, 0.0059,
and 0.0105 whereas the optimum values for the Euclidean distance are 0.0085,
0.0059, 0.0155 for first, second and infinite norm cases, respectively. For first and
second norm cases, both metrics achieve the highest performance at the same value of

S . However, this is not the case for the infinite norm error function. We also observe

that, for both metrics, the first norm error cost function (FNECF) outperforms the
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second and infinite norm error cost (SNECF and INECF) in this example.
Furthermore, we compare the performance of our algorithm with the linear mixture
model (LMM) algorithm introduced by Settle and Drake [7] and similarly by Chang
[9], in which the class proportion vectors are estimated such that the mean square
errors of the observed spectral response vector and the mixed spectral response vector
is minimum under the constraints that the class proportion are non-negative and sum
to one. Table 3 compares the best performance for both the Euclidian distance and
fuzzy set error matrix for all error functions and the LMM algorithm. Clearly, all of
our approaches outperform the LMM algorithm since our algorithms consider the
prior information from the known class proportions in the sub-pixel classification
process. The user’s and producer’s accuracy based on the fuzzy error matrix are also
shown in Table 4. Here, the user’s accuracies of our approaches are significantly
higher than the LMM algorithm for the classes of Roof1, Tree and Roof2 for all error
cost functions and slightly degraded for the classes of Grass and Road for some error
cost functions. However, the producer’s accuracies of Class Roofl and Tree are
significantly lower while the large improvement can be seen for classes Grass, Road

and Roof2.

— FMECF

60k X ———SNECF Y
T — — - INECF

Overall Accuracy

25 I I I I L L L L L
0 0005 001 0015 002 0025 003 0035 004 0045 005
B

Figure 5: The overall accuracy of the proposed techniques for different values of

fin Example 1.
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Figure 6: The Euclidean distance measure of the proposed techniques for
different value of fin Example 1.

Table 3: The best accuracy measure for different sub-pixel classification

techniques

FNECF 0.2218 60.18%
SNECF 0.2285 59.27%
INECF 0.2253 59.86%
LMM 0.2509 52.38%

Table 4: The wuser’s and producer’s accuracies for different sub-pixel

classification algorithm of Example 1

User’s = Producer’s User’s | Producer’s User’s | Producer’s User’s = Producer’s

Grass 63.65% = 82.72% 62.49% = 81.89% 60.65% | 79.89% 62.87% | 69.62%
62.93% = 77.37% 64.68% = 78.75% 88.87% | 72.12% 18.65% | 85.28%
Roof1l
44.98% = 13.86% 34.90% = 12.49% 30.51% = 12.76% 28.92% | 24.16%
Tree
Shadow 45.81% = 62.80% 45.69% = 60.54% 47.70% = 59.26% 42.27% = 65.45%
Road 60.28% = 65.86% 60.16% = 63.23% 60.64% = 63.55% 60.47% | 34.08%
Roof2 78.03% = 50.99% 77.00% | 52.48% 80.10% = 58.06% 68.40% | 49.54%

Experiment 2

In this experiment, we consider a multi-spectral image from Landsat ETM+ at
spatial resolution 30 m acquired in 1999. A portion consisting of (221 x 327) pixels

covering a part of Syracuse area has been selected. Only 6 non-thermal bands of
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ETM+ image have been considered, since the spatial resolution of thermal band is
different than the others. Figure 7 shows the false color composite (FCC) of the area
selected. An existing land cover map, collected by Emerge® on July 13", 1999, has
been used as the reference image for accuracy assessment purposes. This land cover
map has been produced from a classification of digital aerial photographs at two-foot
spatial resolution at an accuracy of 85%. Further details on this reference image may
be found in [22]. The reference image is shown in Figure 8, with five land cover
classes — tree, grass, bare soil, water and impervious represented in dark green, light
green, brown, blue and yellow colors respectively. Each pixel in this reference image
has been assumed pure. Based on the procedure given in Experiment 1, we generated
the fraction reference images for each class at 30 m resolution corresponding to the
ETM+ image (Figures 9 (a)-(e)). From the knowledge of these fractions, pixels with
at least 60% fraction of each individual class were identified in the observed ETM+
image (Table 5). Twenty pixels for each class in Table 5 are randomly selected. As a
result, there are the totals of 100 training pixels. Equation (27) is applied to estimate
the spectral signature matrix, M. Similar to Example 1, the class proportion cost
functions for each individual class are estimated and are given in Table VI. Here, we

found that Z = 0.99863.
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Figure 12: False color composite of Landsat ETM+ image of a portion of the
Syracuse area (Blue: Bandl, Green: Band3, Red: Band4)

Figure 13: Land cover map at two-foot spatial resolution, used as reference

image
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(e)

Figure 9: Fraction reference images of five land cover classes at 30 m resolution

(a) tree; (b) grass; (c) bare soil; (d) water; and (e) impervious

Table 5: Number of pixels that have at least 60% of the fraction of the given

classes in Example 2.

Class Number of Pixels

Tree 8779
Grass 5149
Bare soil 98
Water 3173
Impervious 29184

Table 6: The class proportion probabilities and cost function of TM data

Class 4 P log[(1-p)/p|]
Tree 0.8459 0.8471 -1.7120
Grass 0.8915 0.8927 -2.1184
Bare soil 0.3239 0.3243 0.7341
Water 0.0523 0.0523 2.8963
Impervious 0.8760 0.8772 -1.9662

Again, the fraction images for all cases of error function are obtained, and the

performance evaluations are shown in Figures 7 and 8, for the fuzzy error matrix and
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the Euclidean distance, respectively. For the case of the second norm error function,

only 42 values of £ are considered due to computation costs involved in solving a

mixed-integer quadratic program. Table 7 compares the highest overall accuracies and
the minimum Euclidean distance for all error cost functions and the LMM algorithm.
Clearly, all of our proposed models outperform the LMM algorithm due to the use of
the prior information. In this case, we observe that the performance of the IFNECF
outperforms the FNECF, SNECF and LMM algorithms. The differences resulting
from the choice of error functions in Examples 1 and 2 suggest that there exists an
optimum type of error cost function. Nevertheless, for both Examples 1 and 2, there
are relatively small variations in performances for different choices of the error cost
functions. The optimum values of S for different error cost functions and
performance metrics (Table 8) appear to be the same except for FNECF. The user’s
and producer’s accuracy based on the fuzzy error matrix are also shown in Table 9.
Significant improvement can be found in individual accuracies of class Bare soil and

classes Tree and Impervious.
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Figure 7: The overall accuracy of the proposed techniques for different values of

fin Example 2.
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Figure 8: The Euclidean distance measure of the proposed techniques for
different value of fin Example 2.
Table 7: The best accuracy measure for different sub-pixel classification

techniques for Example 2.

Method Minimum Distance Overall Accuracy

FNECF 0.1844 67.40%
SNECF 0.1658 70.61%
INECF 0.1633 71.17%
LMM 0.2067 59.79%

Table 9: The optimum value of S for different performance evaluation

techniques and error cost functions for Experiment 2.

Method Minimum Distance Overall Accuracy

FNECF 0.0150 0.0120
SNECF 0.0134 0.0134
INECF 0.0340 0.0340

Table 9: The user and producer accuracies for different sub-pixel classification

techniques of Experiment 2

Tree

Grass

Bare soil
Water
Impervious

User’s
55.29%
69.97%
9.36%
93.28%
86.55%

Producer’s
87.65%
34.78%
47.91%
92.93%
70.36%

User’s
64.60%
71.22%
9.52%
94.57%
81.31%

Producer’s
82.57%
33.69%
47.71%
92.37%
80.26%
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User’s
68.70%
66.08%
9.05%
94.28%
82.28%

Producer’s
75.30%
49.71%
47.78%
92.53%
77.98%

User’s
65.72%
66.51%
7.55%
33.74%
88.46%

Producer’s
71.90%
51.08%
78.98%
94.78%
54.73%
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VI. Summary
In this paper, new sub-pixel classification algorithms based on the linear mixture
model through incorporation of the prior information from known class proportions
have been proposed. The model assumes that the observed spectral data at each pixel
is proportional to the sum of spectral signatures present in the pixel. This proportion
was assumed to follow the Dirichlet distribution. Furthermore, the presence and
absence of each land cover class has been characterized under the statistically
independence assumption. Based on these models, two cost functions were
introduced, namely the class proportion and error cost functions. Next, the general
form of the optimization problem was stated and the optimization algorithms where
the error cost functions were defined using the first, second and infinite norms have
also been formulated. For the experimental studies, we found that all of our all
proposed algorithms significantly outperform the LMM without prior information
given in [7] and [9]. Furthermore, the classification accuracies were also similar for

different cost functions.

There are still several issues involved in sub-pixel classification that still need to be
resolved, particularly in the optimization algorithm. More computational efficient
algorithm may be employed to reduce the computational times of the optimization
problems given in Equations (29), (31) and (33). The performance of the sub-pixel
classification can be further improved with more knowledge of class proportion can

be employed. In other words, one may specify unequal values of o in Eq. (9.a).
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