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รายงานฉบับนี้ไดนําเสนอขัน้ตอนวธิีจําแนกชนิดแบบสวนจุดภาพจากโมเดลการผสมแบบเชิงเสน  

โดยนาํขอมูลเบื้องตนเกีย่วกบัอัตราสวนของแตละชนิดวัสดุมาพิจารณาดวย  ขอมูลเบื้องตนเหลานี้ถูก

นําเสนอมาในรูปของคาความนาจะเปนทีจ่ะมีวัสดุแตละชนิดอยูและการแจกแจงของอัตราสวนวสัดุ ใน

จุดภาพหนึ่ง  นอกจากนี้รายงานชิน้นีย้ังไดนําเสนอการใชฟงกชันคาความผิดพลาดแบบตางๆ ซึ่งทําหนาที่

วัดความแตกตางระหวางคาสเปกตรัมสีสังเกตุไดในจุดภาพ (คาการสะทอนเชงิสเปกตรัม) และคา

สเปกตรัมสีที่ไดจากโมเดล และทําการเปรียบเทียบในรปูของผลกระทบเชิงประสทิธภิาพที่ได  จากโมเดล

เหลานี ้ระเบียบวิธีการคาความนาจะเปนภายหลงัสงูสุด (maximum a posteriori) ไดนํามาใชเปนเกณฑใน

การตัดสินใจเลือกคาที่เหมาะที่สุด  สุดทายรายงานชิน้นีย้ังไดนาํเสนอขั้นตอนวธิใีนการหาคําตอบภายใต

คาฟงกชนัความผิดพลาดแบบตางๆ ในรูปแบบของปญหาการหาคาเหมาะที่สุดแบบเชิงเสนและกําลงัสอง

ที่มีตัวแปรแบบผสมจํานวนเต็ม ผลการทดลองที่ไดแสดงใหเห็นวาประสิทธิภาพเชิงความถูกตองสามารถ

เพิ่มข้ึนอยามากโดยการนําขอมูลเบื้องตนมาพิจารณาดวย นอกจากนี้ประสิทธิภาพที่ไดจากการนําฟงกชัน

การวัดความผดิพลาดแบบตางๆใชยงัมีอยูในระดับตํ่าอีกดวย  

 

 

คําหลัก: การเรียนรูระยะไกล การจาํแนกชนิดแบบสวนจดุภาพ โมเดลผสมแบบเชิงเสน ตัวจําแนกชนิดที่

เหมาะที่สุด  
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This report introduces a new sub-pixel classification algorithm that incorporates prior 

information from known class proportions in the linear mixture model. The prior information is 

expressed in terms of the occurrence probabilities and the class proportion distribution of each 

land cover class in a pixel. The use of different error cost functions that measure the similarity 

between the model-derived mixed spectra and the observed spectra is also investigated. Under 

these assumptions, the maximum a posteriori (MAP) methodology is employed for optimization. 

Finally, optimization problems under the MAP criteria for different error cost functions are 

formulated and solved. Our numerical results illustrate that the performance of the sub-pixel 

classification algorithm can be significantly improved by incorporating prior information from the 

known class proportions. Further, there are marginal differences in accuracy when using 

different types of error cost functions.  
 
 
Keyword: Remote Sensing, Sub-pixel classification, Linear mixture model, Optimum 
classifier  
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1. บทสรุปของรายงาน 

ในโครงการนี้ไดดําเนินการศกึษาและพัฒนาวิธีการอยูหลายแบบโดยมุงเนนไปที่การสรางแผนทีจ่าํแนก

ชนิดจากภาพถายระยะไกลที่ขาดความสมบูรณ โดยถายในหลายๆสวนที่พบเหน็บอยในประเทศไทย และ

ไดพยายามศกึษาในปญหาของการที่ภาพถายระยะไกลมีความละเอียดชิงพืน้ที่ตํ่ากวาความละเอยีดเชิง

พื้นที่ของแผนที่วัสดุพืน้ผวิทีต่องการ และการมีอยูของเงาในถาพถายระยะไกล  โดยไดเร่ิมศึกษาในสวน

ของการสรางแผนที่จาํแนกชนิดแบบสวนของจุดภาพ (Sub-Pixel Classification) ซึ่งสามารถบงบอก

สวนประกอบของวสัดุพืน้ผวิในจุดภาพทีส่นใจ  

การมีแผนที่จาํแนกชนิดทีถ่กูตองมีสวนสาํคัญตอแผนการจัดการ แผนการการตรวจวัดและการ

วางแผนทรพัยากรที่มีอยู แผนที่เหลานีย้ังเปนสวนสําคัญในโมเดลทางดานนิเวศวิทยา การชลประทาน 

และการกสิกรรม  ภาพถายระยะไกลดวยคุณสมบัติที่สรางจากการมองมุมสูง และโครงสรางที่คลายแผนที ่

จึงมีสวนสําคญัในการสรางแผนที่จาํแนกชนิดที่มีประสิทธิภาพ วตัถุประสงคของการสรางแผนที่จาํแนก

ชนิดคือการบงชี้วาแตละจุดภาพของภาพถายระยะไกลนั้นมาจากวัสดุจําแนกชนิด ชนิดใดชนดิหนึง่เพยีง

ชนิดเดียว (การจําแนกแบบชัดเจน หรือทั้งจุดภาพ) หรือการบงชี้สวนประกอบของวัสดุพืน้ผวิแตละชนิดใน

จุดภาพ (การจําแนกชนิดแบบคลุมเครือ หรือเล็กกวาจุดภาพ) วธิีการจําแนกชนิดแบบชัดเจนไดมีการ

พัฒนาขึ้นโดยอาศัยวิธกีาร เชนการวิเคราะหทางสถิติ [1] การอาศัยเครือขายปญญาเสมือน [2] (Neural 

Network) และวิธีการอาศัยตนไมการตัดสนิใจ [3] (Decision Tree) ใชคาสถิติเชิงพืน้ที ่ [4] และ Markov 

random field model [5] ผลลัพธทีไ่ดคือการจําแนกแบบชัดเจน คือภาพการจําแนกชนิดที่แสดงการ

กระจายตวัเชงิพืน้ที่ของแตละชนิดวัสดุ โดยแตละจุดภาพสามารถขึ้นกับวสัดุพื้นผิวไดเพยีงชนิดเดียว 

สําหรับงานทัว่ไปแลวแผนทีแ่บบนี้ก็เกนิจาํเปน   

อยางไรก็ตาม โดยเฉพาะอยางยิง่ที่ภาพความละเอียดต่ําเชนที่ไดจาก Moderate Resolution 

Imaging Spectrometer (MODIS) และ Advanced Very High Resolution Radiometer (AVHRR) ที่ให

ขอมูลที่ความละเอียดเชิงพืน้ที่จาก 250 เมตรถึง 1.1 กิโลเมตร จดุภาพเกือบทัง้หมดจะเปนจดุภาพแบบ

ผสม (จุดภาพหนึ่งมีหลายวัสดุพื้นผวิอยู) ที่ระดับความละเอียดทีว่ัด  หรือแมกระทั้งที่ความละเอียด

ระดับกลาง (เชนที ่ 30 เมตร ของ LandSat ETM+) หรือที่ความละเอียดสูง (เชน 4 เมตรจาก IKONOS) 

การเปลี่ยนแปลงเชิงพืน้ที่ๆสงูของบางวัสดุพื้นผวิ เชนในเมืองก็อาจจะนําไปสูจุดแบบผสมจํานวนมาก [6] 

ปญหาของการเกิดจุดภาพผสมมีผลกระทบตอการสรางแผนที่จาํแนกชนิดที่มีความถูกตองจากภาพถาย

ระยะไกล ปญหานี้จึงนําไปสูการพัฒนาวิธีการจําแนกชนิดแบบสวนจุดภาพขึ้น ไดแก โมเดลการผสมแบบ

เชิงเสน เครือขายประสาทเทียม ทฤษฎีของเซตคลุมเครือ (Fuzzy Set Theory) และการใช Support 
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Vector Machine ฯลฯ ผลลัพธของวิธีการจําแนกชนิดแบบสวนจุดภาพ คือเซตของอัตราสวนของวัสดุ หรือ

เกรดการเปนสมาชิกของจดุภาพ ผลลัพธเหลานีถู้กนําเสนอในรูปของภาพอัตราสวน (หนึง่รูปภาพตอหนึ่ง

วัสดุ) [6-8].   

โมเดลที่ใชในการทาํการจําแนกชนิดแบบสวนจุดภาพ คือโมเดลการผสมแบบเชิงเสน ซึ่งสมมติให

ขอมูลแบบหลายสเปกตรัมทีแ่ตละจุดภาพเปนการรวมกบัแบบสัดสวนของสัญลักษณเชิงสเปกตรมัของ

ทุกๆวัสดุพื้นผวิ วตัถุประสงค คือการหาอัตราสวนของวัสดุทีท่ําใหผลรวมมคีาใกลกับคาที่สังเกตได 

ขอจํากัดหลายอยางไดถูกนาํเสนอ ตัวอยางเชน Settle และ Drake สมมติวาอัตราสวนตองไมติดลบและ

รวมกันได 1 โมเดลแบบนี้ไดถูกนาํเสนอโดย Chang กับคณะอีกดวย [9] สําหรับปญหาการตรวจจับ

เปาหมาย แบบสวนจุดภาพ ขอจํากัดของโมเดลผสมเชงิเสนเกิดขึ้นเมือ่มีจํานวนวัสดุพื้นผิวมากกวาจาํนวน

สเปกตรัม ในกรณีนี้ผลคําตอบที่ไดจากปญหาการหาสวนผสมเชิงสเปกตรัมอาจจะไมมีคําตอบเดียว ซึ่ง

หมายความวามีการผสมหลายแบบที่สามารถคาผสมเดียวกนั นอกจากนี้แลวการแยกสวนผสมที่อาศัยการ

โมเดลการผสมแบบเชิงเสนเพียงอยางเดียว ยังใหความสําคัญกับทกุๆวัสดุพื้นผวิเทาๆกัน แตในทางปฏิบัติ

แลววัสดุบางชนิดอาจจะมีความนาจะเปนที่จะปรากฏขึ้นมากกวาชนดิอื่น คาความนาจะเปนนีส้ามารถที่

จะนาํมารวมกบัโมเดลการผสมแบบเชิงเสนได ดังนัน้งานวิจยัชิ้นนี้จงึนําเสนอกระบวนการจําแนกชนิดแบบ

สวนจุดภาพทีน่ําเอาขอมูลเบื้องตนของอตัราสวนวัสดุมารวมกับโมเดลการผสมภาพแบบเชงิเสน  

นอกจากนีย้ังนําเอาฟงกชัน่คาความผิดพลาดแบบตางมาใชในการวดัความคลายระหวางคาสเปกตรัมผสม

ที่ไดจากโมเดล และคาที่ไดจากการสงัเกต ผลการทดลองแสดงใหเห็นประสทิธิภาพของขัน้ตอนวธิีที่

นําเสนอซึ่งเพิม่ข้ึนอยางมากจากวิธทีี่อาศยัโมเดลการผสมเชิงเสนเพียงอยางเดียว  

 

 

2.  วัตถุประสงคของงานวิจยั 

 

ผูวิจัยพบวาภาพถายระยะไกลที่ใชอยูในประเทศไทยและทั่วโลกนั้นประสบปญหาความไมสมบูรณของภาพ

เนื่องจากปญหาตางๆมากมายและบุคลากรของไทยยงัขาดความรูและความเขาใจในภาพถายระยะไกลทําให

ผูวิจัยเสนอโครงการนีโ้ดยมวีัตถุประสงคดังนี ้

1. เพื่อพัฒนาวิธวีิเคราะหภาพถายระยะไกลที่แบบตางๆ   
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2. เพื่อสรางบุคคลากรที่มีความรูความสามารถที่จะนําภาพถายดาวเทยีมมาใชใหเปนประโยชน
กับการพัฒนาประเทศ  เนื่องดวยวาประเทศไทยยงัขาดบุคคลากรทางดานนี้อยางมาก โดย

งานวิจยัชิ้นนีต้องการทีจ่ะสงเสริมใหคนไทยมีความตืน่ตัวในเรื่องนี้มากขึ้น 

 

3. การดําเนนิโครงการ 

 

ในโครงการนี้ไดดําเนินการศกึษาและพัฒนาวิธีการอยูหลายแบบโดยมุงเนนไปที่การสรางแผนทีจ่าํแนกชนิด

จากภาพถายระยะไกลที่ขาดความสมบูรณ โดยถายในหลายๆสวนที่พบเหน็บอยในประเทศไทย และได

พยายามศึกษาในปญหาของการที่ภาพถายระยะไกลมีความละเอียดชงิพืน้ที่ตํ่ากวาความละเอยีดเชิงพืน้ที่ของ

แผนที่วัสดุพื้นผิวที่ตองการ และการมีอยูของเงาในถาพถายระยะไกล  โดยไดเร่ิมศึกษาในสวนของการสราง

แผนที่จาํแนกชนิดแบบสวนของจุดภาพ (Sub-Pixel Classification) ซึ่งสามารถบงบอกสวนประกอบของวัสดุ

พื้นผวิในจุดภาพที่สนใจ  

การมีแผนที่จาํแนกชนิดทีถ่กูตองมีสวนสาํคัญตอแผนการจัดการ แผนการการตรวจวัดและการ

วางแผนทรพัยากรที่มีอยู แผนที่เหลานี้ยงัเปนสวนสําคัญในโมเดลทางดานนิเวศวทิยา การชลประทาน และการ

กสิกรรม  ภาพถายระยะไกลดวยคุณสมบัติที่สรางจากการมองมุมสูง และโครงสรางที่คลายแผนที่ จึงมีสวน

สําคัญในการสรางแผนที่จําแนกชนิดที่มีประสิทธิภาพ วัตถุประสงคของการสรางแผนที่จาํแนกชนิดคือการบงชี้

วาแตละจุดภาพของภาพถายระยะไกลนั้นมาจากวัสดุจาํแนกชนิด ชนดิใดชนิดหนึง่เพียงชนิดเดียว (การจําแนก

แบบชัดเจน หรือทั้งจุดภาพ) หรือการบงชี้สวนประกอบของวัสดุพืน้ผิวแตละชนิดในจุดภาพ (การจําแนกชนิด

แบบคลุมเครือ หรือเล็กกวาจดุภาพ) วิธีการจําแนกชนิดแบบชัดเจนไดมีการพฒันาขึน้โดยอาศยัวิธกีาร เชนการ

วิเคราะหทางสถิติ [1] การอาศัยเครือขายปญญาเสมอืน [2] (Neural Network) และวิธีการอาศัยตนไมการ

ตัดสินใจ [3] (Decision Tree) ใชคาสถิติเชิงพืน้ที ่ [4] และ Markov random field model [5] ผลลัพธที่ไดคือ

การจําแนกแบบชัดเจน คือภาพการจําแนกชนิดที่แสดงการกระจายตวัเชิงพื้นที่ของแตละชนิดวัสดุ โดยแตละ

จุดภาพสามารถขึ้นกับวัสดุพื้นผวิไดเพียงชนิดเดียว สําหรับงานทั่วไปแลวแผนที่แบบนี้ก็เกินจาํเปน   

อยางไรก็ตาม โดยเฉพาะอยางยิง่ที่ภาพความละเอียดต่ําเชนที่ไดจาก Moderate Resolution 

Imaging Spectrometer (MODIS) และ Advanced Very High Resolution Radiometer (AVHRR) ที่ให

ขอมูลที่ความละเอียดเชิงพืน้ที่จาก 250 เมตรถึง 1.1 กิโลเมตร จุดภาพเกือบทั้งหมดจะเปนจดุภาพแบบผสม 

(จุดภาพหนึ่งมีหลายวัสดุพืน้ผิวอยู) ที่ระดับความละเอยีดที่วัด  หรือแมกระทัง้ที่ความละเอียดระดับกลาง (เชน

ที่ 30 เมตร ของ LandSat ETM+) หรือทีค่วามละเอยีดสูง (เชน 4 เมตรจาก IKONOS) การเปลีย่นแปลงเชิง
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พื้นที่ๆสูงของบางวัสดุพืน้ผวิ เชนในเมอืงก็อาจจะนาํไปสูจุดแบบผสมจํานวนมาก [6] ปญหาของการเกิด

จุดภาพผสมมผีลกระทบตอการสรางแผนที่จําแนกชนิดที่มีความถกูตองจากภาพถายระยะไกล ปญหานีจ้ึง

นําไปสูการพฒันาวิธกีารจาํแนกชนิดแบบสวนจุดภาพขึ้น ไดแก โมเดลการผสมแบบเชิงเสน เครือขายประสาท

เทียม ทฤษฎีของเซตคลุมเครือ (Fuzzy Set Theory) และการใช Support Vector Machine ฯลฯ ผลลัพธของ

วิธีการจําแนกชนิดแบบสวนจุดภาพ คือเซตของอัตราสวนของวัสดุ หรือเกรดการเปนสมาชกิของจุดภาพ 

ผลลัพธเหลานี้ถูกนําเสนอในรูปของภาพอัตราสวน (หนึ่งรูปภาพตอหนึง่วัสดุ) [6-8].   

โมเดลที่ใชในการทาํการจําแนกชนิดแบบสวนจุดภาพ คือโมเดลการผสมแบบเชิงเสน ซึ่งสมมติให

ขอมูลแบบหลายสเปกตรัมทีแ่ตละจุดภาพเปนการรวมกบัแบบสัดสวนของสัญลักษณเชิงสเปกตรมัของทุกๆ

วัสดุพื้นผวิ วตัถุประสงค คือการหาอัตราสวนของวัสดุที่ทาํใหผลรวมมีคาใกลกับคาที่สังเกตได ขอจํากัดหลาย

อยางไดถกูนาํเสนอ ตัวอยางเชน Settle และ Drake สมมติวาอัตราสวนตองไมติดลบและรวมกันได 1 โมเดล

แบบนี้ไดถูกนาํเสนอโดย Chang กับคณะอีกดวย [9] สําหรับปญหาการตรวจจับเปาหมาย แบบสวนจุดภาพ 

ขอจํากัดของโมเดลผสมเชิงเสนเกิดขึ้นเมื่อมีจํานวนวัสดุพื้นผวิมากกวาจํานวนสเปกตรัม ในกรณีนี้ผลคําตอบที่

ไดจากปญหาการหาสวนผสมเชิงสเปกตรัมอาจจะไมมคํีาตอบเดียว ซึ่งหมายความวามกีารผสมหลายแบบที่

สามารถคาผสมเดียวกนั นอกจากนี้แลวการแยกสวนผสมที่อาศัยการโมเดลการผสมแบบเชิงเสนเพยีงอยาง

เดียว ยงัใหความสาํคัญกับทุกๆวัสดุพื้นผวิเทาๆกัน แตในทางปฏิบัติแลววัสดุบางชนิดอาจจะมีความนาจะเปน

ที่จะปรากฏขึ้นมากกวาชนดิอื่น คาความนาจะเปนนีส้ามารถที่จะนาํมารวมกับโมเดลการผสมแบบเชิงเสนได 

ดังนัน้งานวิจัยชิ้นนี้จงึนําเสนอกระบวนการจําแนกชนิดแบบสวนจุดภาพทีน่าํเอาขอมลูเบื้องตนของอัตราสวน

วัสดุมารวมกบัโมเดลการผสมภาพแบบเชิงเสน  นอกจากนีย้ังนําเอาฟงกชั่นคาความผิดพลาดแบบตางมาใชใน

การวัดความคลายระหวางคาสเปกตรัมผสมที่ไดจากโมเดล และคาที่ไดจากการสังเกต ผลการทดลองแสดงให

เห็นประสทิธิภาพของขัน้ตอนวิธทีีน่ําเสนอซึ่งเพิม่ข้ึนอยางมากจากวิธทีีอ่าศัยโมเดลการผสมเชิงเสนเพียงอยาง

เดียว  

 

3.1 โมเดลภาพที่ใช 

 

กําหนดให Y เปนภาพที่สังเกตไดที่ความละเอียดต่ําทีม่ขีนาด I × J จุดภาพ ซึง่แตละจุดภาพนั้นมากจากบริเวณ

จริงในบริเวณที่สนใจ ให X เปนแผนที่จําแนกชนิดที่ความละเอียดสูงขนาด P × Q จุดภาพเมื่อ P > I และ Q > 

J. สมมติวาทีค่วามละเอยีดสูง ทุกๆจุดภาพนัน้บริสุทธิ์ จุดภาพหนึ่งเปนของวัสดุจาํแนกชนิดเพยีงชนิดเดียว รูป
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ที่ 1 แสดงตัวอยางการจับจองจุดภาพของแผนที่จําแนกชนิดที่ความละเอียดสูง และภาพหลายสปกตรัมที่หลาย

ระดับของความละเอียด ทีค่วามละเอยีดสูง (รูปที ่ 1(ข)) 98.12% ของจุดภาพนั้นบริสุทธิ์ ทีค่วามละเอยีด

ระดับกลาง (รูปที่ 1(ค)) ความละเอียดต่ํา 85.12% และ 75% ของจุดภาพนั้นบริสุทธิต์ามลําดับ ดังนั้นที่จุดภาพ

ขนาดเล็กจุดภาพสวนใหญนัน้บริสุทธ หรือมีเพียงไมกีว่สัดุที่สามารถอยูในจุดภาพได อยางไรก็ตามเมื่อขนาด

จุดภาพของภาพหลายสเปกตรัมมีขนาดใหญ จุดภาพเกือบทัง้หมดจะผสม  กําหนดให S นั้นแทนเซตของ

จุดภาพที่ความละเอียดต่ําทัง้หมดของภาพหลายสเปกตรัมซึ่งสวนมากจะแทนในรูปของเวกเตอร K
js ℜ∈)(y  

สําหรับจุดภาพ sj เมื่อ ℜ  แทนเซตของจํานวนจริง(คาความเขมสี) และ K คือจํานวนของสเปกตรัม  จากที่

แสดงไวกอนหนานี ้ แตละจดุภาพของแผนที่ๆความละเอียดสูงนัน้สมมติใหเปนจุดภาพบริสุทธิ ์ ซึ่งหมายความ

วาคา x(t) (คาบงชี)้ จะแทนวัสดุพืน้ผวิเพียงหนึ่งชนิดเทานั้น ดังนั้น { }Ltx ,,1)( K∈  มีคาเปนจํานวนเต็มซึง่

ตรงกับวัสดุพืน้ผิวแตละชนดิที่จุดภาพ t ในบริเวณจริงเมื่อ L คือจํานวนของวัสดุพืน้ผิว  

 

         
(a) (b) 

          
(c) (d) 

รูปที่ 1:  ภาพหลายสเปกตรมั; (ก) ภาพจริง; (ข) ภาพที่อัตราสวน 1:10; (ค) ภาพที่อัตราสวน 1:50; และ (ง) 

ภาพที่อัตราสวน 1:100 
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สมมติวาที่ความละเอียดต่าํ วัสดุแตละชนดิมีสัญลักษณเชิงสเปกตรัมที่ไมเหมือนกนัโดยกาํหนดให 

{ } K
L ℜ∈μμμ ,,, 21 K  เปนสัญลักษณเชิงสเปกตรมัของวัสดุชนดิ 1, 2, …, L  การผสมของสเปกตรัมของวัสดุ

ในจุดภาพนั้นก็คือ  

 ( ) ( )∑
=

=
L

l
lili sbs

1
μr   (1) 

เมื่อ bl(s) คืออัตราสวนของวัสดุชนิด l ที่อยูในจุดภาพ si โดยที ่ 1)(
1

=∑
=

L

l
il sb  และ ( ) 0≥il sb   ในที่นี้จะแทน 

( ) ( ) ( )[ ]TiLii sbsbs L1=b  วาเปนเวกแตอรของอัตราสวนวัสดุ เมื่อ TA คือคาทรานสโพสของ A  จาก

สัญญาณรบกวนในขบวนการถายภาพคาสีที่แตละจุดภาพของภาพหลายสเปกตรัมจะเปนผลรวมของคาการ

ผสมของสเปกตรัมและสัญญาณรบกวนซึ่งคือ 

 ( ) ( ) ( )iii sss nry +=  (2) 

โดยที ่n(si) ∈ Kℜ  และ y(si) ∈ Kℜ  คือเวกเตอรสัญญาณรบกวนและคาสเปกตรัมผสมที่สังเกตไดที่จุดภาพ 

si ตามลําดับ  ในทีน่ี้สมมติใหสัญญาณรบกวนมีคาฟงกชั่นความหนาแนนของความนาจะเปน (PDF) )(nNf  

ซึ่งมีคาเปน 

 ( )( )nnN Ef −= exp)(  (3) 

โดยปกติแลวสวนของสัญญาณรบกวนจะสมมติใหเปนอิสระตอกันระหวางจุดภาพตางๆ และมรูีปรางเปนเกาส  

 เพื่อความสะดวกจะไมเขียน ( )is  ในสมการตอจากนี ้ การมีอยูและไมมีอยูของวัสดุพืน้ผิวตางๆนัน้ก็

เปนอิสระตอกนัเชนกัน ซึ่งหมายความวาสวนผสมตางๆสามารถเกิดขึ้นไดในจุดภาพ กําหนดให Nb เปนจาํนวน

วัสดุพื้นผวิที่อยูในจุดภาพ  วัสดุเหลานี้มีคาอัตราสวนที่ไมเปนศนูยในเวกเตอรสวนผสม สําหรับกรณีที่ Nb = 1 

จุดภาพนัน้บริสุทธิ์ ดังนัน้คาอัตราสวนของวัสดุหนึง่จะเปนหนึ่งจะมีคาเปน 1 ในขณะที่ ที่เหลอืมีคาเปน 0  

ดังนัน้คาความนาจะเปนของอัตราสวนมีคาเปน  

        [ ] [ ] Llll ,,2,1classth -  the tobelongs pixel aPrPr K=== bb  (4) 

เมื่อ lb  คือเวกเตอรความยาว L ซึ่งคา ณ ตําแหนงที่ l มีคาเปน 1 ในขณะที่เหลือมีคาเปน 0  เราสมมติให lp  

คือคาความนาจะเปนทีว่ัสดุชนิดที ่l อยูในจุดภาพ  สมการที่ (4) จึงเขยีนไดเปน 

 [ ]
( )

Ll
Z

pp
L

lmm
ml

l ,,2,1
1

Pr ,1 K=
−

==
∏

≠=bb  (5) 

เมื่อ Z คือคาทีท่ําใหความจะเปนมีคาเปนหนึ่ง  สมการขางบนจะใชไดก็ตอเมื่อการมีอยูหรือไมมีอยูของวัสดุ

ชนิดหนึ่ง ไมมีผลกับการมีอยูหรือไมมีอยูของวัสดุชนดิอื่นๆ  ขอกําหนดนี้ทาํใหวัสดุพืน้ผวิทีจุ่ดภาพขางกนั

จะตองเปนอิสระตอกัน โมเดลที่ซับซอนกวานีท้ี่ผลกระทบระหวางวัสดุพื้นผวิสามารถนํามาวเิคราะหได อยางไร
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ก็ตามกระบวนการในการหาคาทีเ่หมาะทีสุ่ดจะซับซอนเกินกวาที่จะนาํมาใชงานไดในทางปฏิบัติ  กาํหนดให 

lz  เปนตัวบงชี้ทีม่ีคาเปน 1 หรือ 0 ถามวีัสดุที่ l อยู ( 0>lb ) และ ไมอยู ( 0=lb ) ในจุดภาพตามลําดับ  

ดังนัน้∑
=

=
L

l
k Nz

1
b  กําหนดให 0L  และ 1L  เปนหมายเลขของ zl ที ่zl มีคาเปน 0 และ 1 ตามลําดับ ดังนั้นคา 

PDF มีคาเปน 

 [ ]
( )

Z

pp
Lr

r
Ll

l ∏∏
∈∈

−
= 10

1
Pr z . (6) 

เมื่อ [ ]TLzzz L21=z  เปนเวกเตอรตัวบงชี้  สําหรับเวกเตอรตัวบงชีห้นึง่วัสดุพื้นผิวที่มีคาตัวบงชี้เปน 1 

นั้นจะมีปรากฏอยูในจุดภาพ ซึง่หมายความวา วัสดุเหลานี้ตองมีคาอัตราสวนที่ไมเปนศูนย  สมมติใหคา PDF 

ของวัสดุพืน้ผวิที่มีคาอัตราสวนไมเปนศูนยมีคาการกระจายตัวแบบ Dirichlet [10] 

 [ ] ( )∏∏

∑

∈

−

∈

∈

Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

=
1

1

1 1

Ll
l

Ll
l

Ll
l

lbf α

α

α
zb  (7) 

เมื่อ lα  คือพารามิเตอร Dirichlet ของวัสดุชนิดที ่ l  วัสดุที่มีคา lα  ตํ่าจะมีความนาจะเปนที่จะผสมอยูเพียง

เล็กนอย  ในทางตรงกันขามวัสดุที่มีคา lα  สูงจะผสมอยูมาก  นอกจากนี้ในกรณีที่ 1=lα  สําหรับ 

Ll ,,2,1 K=  สมการที่ (7) ลดรูปเหลือ 

 [ ] ( ) ( ) LlbIzNf ll ,,2,1for    if!1 K==−= bzb  (8) 

เมื่อ ( ) 1=lbI  ถา 0>lb  และ ( ) 0=lbI  ถา 0=lb   ในกรณีนี้คาอัตราสวนของวัสดุที่มีคาอัตราสวนไมเปน

ศูนยมีโอกาสที่จะมีคาใดๆก็ไดระหวาง 0 และ 1 ตราบใดที่ผลรวมมคีาเปน 1  

จากโมเดลในสมการที ่(2) และ (3) PDF ของคาสีที่สังเกตได is เมื่อรูคาอัตราสวนมีคาเปน  

 ( ) ( )byby N Mff −=  (9) 

เมื่อ [ ]LM μμμ L21=   คา a posteriori PDF ของเวกเตอรอัตราสวนและเวกเตอรตัวบงชี้เมื่อรูคาสีที่

สังเกตไดมีคาเปน 

           

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

Z

pp
b

f
e

f
fMf

f
fMf

f

Lr
r

Ll
l

Ll
l

Ll
l

Ll
lME

l

∏∏
∏∏

∑
∈∈

∈

−

∈

∈
−−

−

Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

×=

−
=

−
=

10

1
1

1

1

)(
                 

)(
Pr

                  

)(
,

,

1α

α

α

y

y
zzbby

y
zbby

yzb

Y

by

Y

N

Y

N

 (9.1) 
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สําหรับ 1>bN  และ  

           ( )
( ) ( )

Z

pp

f
ef Lr

r
Ll

lME ∏∏
∈∈

−−
−

= 10

1

)(
   ,

y
yzb

Y

by

 (9.2) 

สําหรับ 1=bN  

 

คา a posteriori PDF ของ (9.1) ในการวเิคราะหดังนัน้ เฉพาะคา 1=lα  จะถูกพิจารณาในรายงานนี ้และคา 

a posteriori PDF ลดเหลือ 

 ( )
( )( ) ( )

.
)(

1!1
 , 10

Zf

ppNe
f Lr

r
Ll

l
ME

y
yzb

Y

b
by ∏∏

∈∈

−− −−
=  (10) 

 

3.2 คําตอบที่เหมาะทีสุ่ด 

 

ในรายงานนีก้ารแบงแยกแบบ maximum a posteriori (MAP) จะถูกนาํมาใชเพื่อหาคําตอบของสมการที ่(10) 

เพราะการแบงแยกแบบ MAP ใหคาความผิดพลาดต่ําสุดเมื่อเทีย่บกับวธิีอ่ืนๆ [11] ปริภูมิที่จะถูกมองหา

คําตอบของสมการที ่(10) ก็ตอเมื่อ  

 ( )ll bIz = , 0≥lb ,  (11) 

และ  

  1
1
∑
=

=
L

l
lb  for Ll ,,2,1 K=   (12) 

เปนจริง เซต B จะเปนเซตสมการที ่ (11) และ (12) เปนจริง  ดังนัน้วัตถุประสงค คือเลือกคาอตัราสวนและ

คาตัวบงชีท้ีท่าํใหสมการที ่(10) มีคาสูงสดุหรือ 

 ( ) ( )[ ]{ }  ,maxarg,
,

yzbzb
zb

f
B

optopt

∈
= . (13) 

สวนของ ( )yYf  ของสมการที่ (10) นั้นอิสระจากคา ( )zb,  และสวนนี้จะไมนํามาวิเคราะห  ดังนัน้สมการที ่

(13) กลายเปน 



สัญญาเลขที่ MRG5080174 

 

- 9 -

- 9 -

      

( )
( ) ( )[ ]

[ ] [ ]

( ) ( )[ ] ( ) [ ]

( ) ( )[ ]

[ ]
  

1log

1
log!1log

minarg                

  
log

1log1!1log
minarg                

  log1log
!1log

minarg,

1

1

,

1

1

,

,
10

⎪
⎪

⎭
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⎪

⎬

⎫
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⎪
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⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤
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⎣

⎡
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⎥
⎦

⎤
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⎣

⎡ −
+−−−

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−−−−−
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−−−

−−−
=

∑

∑

∑

∑

∑∑

=

=

∈

=

=

∈

∈∈
∈

L

l
l

L

l l

l
l

B

L

l
ll

L

l
ll

B

Ll
l

Ll
lB

optopt

p

p
p

zNME

pz

pzNME

pp
NME

b

zb

b

zb

b

zb

by

by

by
zb

 (14) 

สวนสุดทายในสมการสามารถนาํออกไดเพราะคาของมันไมข้ึนกับ ( )zb,   ดังนัน้สมการที่ (14) ลดเหลือ 

    

( ) ( ) ( )[ ]

( ) .  
1

loglogminarg                

 
1

log!1logminarg,

1

1

1,

1,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−−−=

∑∑

∑

=

−

=
∈

=
∈

L

l l

l
l

N

rB

L

l l

l
lB

optopt

p
p

zrME

p
p

zNME

b

by

byzb

zb

bzb

 (15) 

คา ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

l

l
l p

p
C

1
log  จะถูกเรยีกวาฟงกชนัราคาของคาอัตราสวน (class proportion cost function) ของ

วัสดุชนิด l  สวน ( )by ME −  ในสมการที่ (15) วัดความตางระหวางคาเวกเตอรที่สังเกตุได y  กับคาที่ไดจา

การผสมตามโมเดล bM   ดังนัน้จะเรียกสวนนี้วาเปนคาฟงกชัน่ราคาของความผิดพลาด (error cost 

function) โมเดลที่นิยมเกิดขึ้นเมื่อเวกเตอรสัญญาณรบกวนมีคาเปน multivariate Gaussian  คา error cost 

function ในกรณีนี้มีคาเปน 

 ( ) ( ) ( ) ( )[ ]Σ++−Σ−=− − log2log
2
1 1 πKMMME T bybyby   

เมื่อ Σ  เปนคา covariant matrix ของสัญญาณรบกวน  สวนที ่2 และ 3 ของสมการขางตนไมข้ึนกบัคาของ b 

ดังนัน้สามารถเอาออกทาํใหเหลือ  

 ( ) ( ) ( )bybyby MMME T −Σ−=− −1

2
1 . (16) 

สมการขางตนเปนที่รูจกักนัในชื่อ Mahalanobis distance [12]  ความถูกตองของโมเดลขางตนขึ้นกับการ

ประมวลคา covariance matrix ที่ถูกตอง ซึ่งจําเปนตองหาจากจํานวนตัวอยางเปนจํานวนมาก (ประมาณ 10 

ของจํานวนสเปกตรัม หรือ 10K) ซึ่งอาจจะยากตอการหาในทางปฏบัิติ ดังนั้นการวัดความตางแบบอื่นจึงถกู

นํามาใชในงานชิ้นนี้ซึง่คือ 
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 ( )pp

L

l
lp MgbE byμy −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

=1
 (17) 

เมื่อ 
p

 แทนคานอรมที่ p และ gp เปนฟงกชั่นทีม่ีคาเพิ่มข้ึน  ในงานชิน้นี้จะศึกษาเฉพาะคานอรมที่ 1 2 และ 

อนันต เทานัน้ เพราะปญหาการหาคาทีเ่หมาะทาสุดสามารถจัดใหอยูในรูปของปญหาการหาคาเหมาะที่สุด

แบบมาตรฐานได  และสามารถนาํเอากระบวนการทีม่ีอยูมาใชได ในกรณีของนอรมที่ 1 กําหนดให   

 ( ) ∑∑
==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

K

k
k

K

k
k eegME

11
11 βby . (18) 

เมื่อ ke  คือคาความแตกตางสมบูรณของ by M−  ที่สเปกตรัมที่ k β  คือคาสัมประสิทธิน์้ําหนกั  ในทีน่ี ้g1(x) 

= x ปญหาการหาคาเหมาะที่สุดคือ 

     ( ) .  
1

loglogminarg,
1

1

11, ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−= ∑∑∑

=

−

==
∈

L

l l

l
l

N

r

K

k
kB

optopt

p
p

zre
b

zb
zb β  (19) 

คาตางๆภายในวงเล็บดูเหมอืนจะเปนเชงิเสน  ดวยการจัดรูปบางสวนสมการที ่ (19) สามารถแปลงเปนปญหา

การเชิงเสนแบบผสมจํานวนจริง (mixed-integer linear program) ทีม่ีขอจํากัดเปนเชิงเสน  เพราะปญหานี้

ไดรับการศึกษาเปนอยางดีทาํใหมวีิธีการหาคําตอบที่รวดเร็วอยูมาก  

 สําหรับกรณีทีสั่ญญาณรบกวนมมีาจากคนละสเปกตรัมนั้นอิสระตอกนัและมีลักษณะเหมือนกนั คา 

covariance matrix มีคาเปน KI2σ=Σ  เมื่อ KI  คือเมตริกซเอกลกัษณขนาด KK ×   ในกรณีนี้กาํหนดคา 

error function เปน 

 ( ) ∑
=

=⎟
⎠
⎞

⎜
⎝
⎛ −=−

K

k
keMgME

1

222
2222 2

1 β
σ

byby . (20) 

จะเหน็วา g2(x) = x2 การหาคาเหมาะที่สุดของ (15) เขียนเปน 

 ( )   1loglogminarg,
1

1

11

22

, ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤
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⎣

⎡
⎟⎟
⎠

⎞
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⎝

⎛ −
+−= ∑∑∑

=

−

==
∈
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l l
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p
pzre

b

zb
zb β  (21) 

สมการขางตนอยูในรูปสมการกําลังสอง ดังนัน้ปญหาในสมการที ่ (21) ก็คือปญหาสมการกาํลังสองแบบผสม

จํานวนเตม็ 

 ในกรณีสุดทายคานอรมแบบอนันตถกูนาํมาใช และคา error cost function ถูกกาํหนดเปน 

 ( ) [ ] [ ] [ ]kKkkKkkKk
eegegE

,..,1,..,11,..,1
maxmaxmax,
=

∞
==

∞∞ =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= βby . (22) 

ให e เปนคาความผิดพลาดสมบูรณจากทุกสเปกตรัม หรือ [ ]kKk
ee

,..,1
max
=

=  ปญหาการหาคาเหมาะที่สุดจาก 

(15) เขียนไดเปน 

 ( ) .  
1

loglogminarg,
1

1
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zb β  (23) 
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เหมือนในกรณีนอรมที ่ 1 สมการขางบนเปนเชิงเสน และสามารถจัดใหอยูในรูปของปญหาเชิงเสนแบบผสม

จํานวนเตม็ 

 

3.3 กระบวนการหาคาเหมาะที่สุด 

 

ในหวัขอนี ้ปญหาการหาคาเหมาะที่สุดทีไ่ดนําเสนอใหหัวขอกอนหนานี ้ จะถูกจัดรูปใหอยูในรูปของปญหาการ

หาคาเหมาะสมที่สุดที่เปนมาตรฐานอยู ไดแกโปรแกรมผสมจํานวนจริงแบบเชิงเสน และกาํลังสอง การทาํ

เชนนี้สงผลใหสามารถนําเอากระบวนการที่มีอยูแลวมาใชหาคําตอบ  ในการศกึษานี้ขอจํากดัที่ใหอัตราสวน

ของวัสดุไมติดลบและรวมกนัเปนหนึ่งที่ถกูนําเสนอใน [9] จะถูกนาํมาใชกําหนดเซต B ในสมการที่ (15) ซึ่งทาํ

ใหเซต B คือเซตของเวกเตอรอัตราสวนทีเ่ปนตามสมการขางลาง 

 
Llb

b

l

L

l
l

,,2,1;0

1
1

K=≥

=∑
=  (24) 

การจัดรูปปญหาจะเริ่มจากกรณีที่คาฟงกชั่นความผิดพลาดเปนแบบคานอรมที่ 1 และตามดวยคานอรมที่ 2 

และอนันตตามลําดับ 

 

ฟงกชั่นความผิดพลาดแบบนอรมที่ 1 

การนาํคานอรมที่ 1 ที่กําหนดในสมการที่ (19) มาใชทําใหปญหาการหาคาเหมาะทีสุ่ดกลายเปน 
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such that

1
loglogmin

1

1

1

11,

1

K

K

b

bz
β

 (25) 

ตามที่ไดกลาวไวเบื้องตนที่คา ( )ll bIz =  และ [ ]1,0∈lb  ทําใหคา lb นั้นจะถูกจาํกดัโดย lz  หรือ 

ll zb ≤≤0  นอกจากนี้คาความผิดพลาดที่สเปกตรัมที่ k หรือ ek ยอมเปน-hv0edyf-v’ ∑
=

−
L

l
kllk by

1
,μ  ดังนั้น
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จะไดวา k

L

l
kllkk ebye ≤−≤− ∑

=1
,μ   เมื่อนําขอเท็จจริงเหลานี้มาใสลงในสมการที ่ (25) ปญหาการหาคา

เหมาะที่สุดสามารถเขียนไดเปน 
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such that
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loglogmin
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β
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b

 (26) 

กําหนดให lr  มีคาเปนหนึ่ง ถาอยางนอยมีวัสดุอยู l ชนิดที่มีคาอัตราสวนที่ไมเปนศูนยในจุดภาพที่สนใจและ

กําหนดใหเปนศูนยถาไมเปนเชนนั้น  ดังนั้นจะไดวา ( )∑∑
=

−

=

−=
L

l
l

N

r

rlr
2

1

1

1loglog
b

 ปญหาการหาคาเหมาะที่สุด

ใน (26) กลายเปน  
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 (27) 

ดวยการกําหนดให [ ]TKee L1=e  [ ]TLrr L1=r  ( )[ ]TL 1log)1log(0 −= Kg  และ 

⎥
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p 1log1log
1

1
1 Lc  ปญหาขางบนสามารถเขียนในรูปเมตริกซไดเปน 
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เมื่อ   
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และ 
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เปนเวกเตอรขนาด 3L+K  เมตริกซขอจํากดัแบบไมเทากนั 1A  ขนาด ( ) ( )KLKL +×+ 322  มีคาเปน 
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1 , 

เมื่อ TSO ,  เปนเมตริกซศูนยขนาด TS ×  TSP ,  เปนเมตรกิซ 1 ขนาด TS ×  และ LW  เปนเมตริกซแนวทะแยง

ที่มีคาแนวทะแยงเปน 1, 2, …, L ตามลาํดับ หรือ [ ]LW L21)(diag =   เมตริกซขอจํากัดแบบเทากนั 

D1 ขนาด ( )KL +× 31  มีคาเปน 

 [ ]T
KL

T
LD += 21 01 . 

เวกเตอรขอจํากัด c1 ขนาด 2L+2K มีคาเปน 
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จะเหน็ไดวาสมการที ่(28) อยูในรูปของปญหาโปรแกรมเชิงเสนแบบผสมจํานวนเตม็ 

 

ฟงกชั่นความผิดพลาดแบบนอรมที่ 2 
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ในหวัขอนี้ไดแทนคานอรมที่ 1 ดวยคานอรมที่ 2 ทําใหปญหากลายเปน 
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ซึ่งสามารถเขยีนในรูปเมตริกซเปน 
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ในทีน่ี้เมตริกซ  H เวกเตอร 2w  และ 2b  มีคาเปน 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

LLLL

LL
T

OO
OMM

H
2,2,2

2,
22β

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

r
z
b

x2 , 

และ 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

g
c
y

w 12

2 MT

 

ลําดับ  สวนเมตริกซขอจํากัดมีคาเปน 
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สวนเวกเตอรขอจํากัดคือ 

 [ ]L22 0m = . 

ปญหาการหาคาเหมาะที่สุดในสมการที่ (30) อยูในรูปของโปรแกรมกําลังสองแบบผสมจํานวนเต็ม  ถึงแมวาจะ

มีกระบวนการในการหาคําตอบของโปรแกรมกําลังสองแบบผสมจํานวนเต็ม  ปญหานี้กย็ังเปนปญหาที่ยากตอ

การแกหาคําตอบหรือเปนแบบ NP hard  ดังนั้นอตัราการลูเขาของกระบวนการที่ใชหาคาํตอบของ (30)  

อาจจะชาเกนิกวาที่จะนํามาใชจริงได  อยางไรก็ตามปญหาใน (28) ก็เปนปญหาแบบ hard เชนกนั  แต

โปรแกรมเชิงเสนแบบผสมจาํนวนเต็มไดรับการศึกษามาเปนอยางดี  ดังนัน้คําตอบของ of (28) สามารถหาได

ไมอยากนัก 

 

ฟงกชั่นความผิดพลาดแบบนอรมที่อนันต 

 

สําหรับกรณีนีป้ญหาสามารถเขียนไดเปน 
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เมื่อ ∞e  คาขนาดมากที่ของเวกเตอร ∑
=

−
L

l
llb

1
μy  ดังนั้นจะไดวา ∞

=
∞ ≤−≤− ∑ ebye

L

l
lklk

1
μ  สําหรับคา 

Kk ,,1K=  ปญหาการหาคาเหมาะที่สุดใน (31) กลายเปน 
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สังเกตไดวา (33) มีจํานวนขอจํากัดเทากบัใน (28) แตจํานวนตวัแปรมีนอยกวา K-1 ของ (28)  ขอสังเกตนีท้ํา

ใหปญหาการหาคาเหมาะทีสุ่ดใน (33) นั้นซับซอนนอยกวาใน (28) โดยเฉพาะอยางยิง่ในภาพถายแบบ 

Hyperspectral   

 

3.4 กระบวนการทดลอง 

 

โดยการทดลองนัน้ถูกแบงเปนสองการทดลองโดยการทดลองที่ 1 โครงการจะใชภาพที่ถายเซน็เซอร IKONOS 

ที่ประกอบดวยภาพ Multispectral (รูปที่ 2(a)) และภาพ Panchromatic (PAN)(ในรูปที ่ 2(b)) โดยมีความ

ละเอียด 4 เมตร และ 1 เมตรตามลําดบั  เพราะภาพ PAN มีความละเอียดมากกวาจึงถูกนํามาสรางแผนที่

อางอิง (reference map) ซึ่งไดถูกแสดงไวในรูปที ่ 3 โดยแบงเปน 6 ชนิดวัตถุประกอบดวย เงา (shadow), 

หญา (grass), ตนไม (tree), ถนน (road), หลงัคาเตนท (roof1) และหลังคาตกึ (roof2) โดยเรียงจากสีดําสุด

ไปสูสีขาวสุด  โดยทกุพกิเซลในแผนที่อางอิงนัน้สมมติใหเปนพิกเซลทีบ่ริสุทธิ์  ซึ่งหมายความวาบริเวณจริงที่

พิกเซลนั้นอยูประกอบดวยชนิดวัตถุชนิดเดียวเทานั้น  สวนรูปที่ 4 แสดงภาพอัตราสวนของวัสดุแตละชนิดโดย

คาสีดําแสดงวาไมมีวัสดุชนดินั้นอยูในจุดภาพเลย ในขณะที่สีขาวแสดงวามีอยูมาก 

 

           
(a)     (b) 

รูปที่ 2 :ภาพ IKONOS  ของมหาวิทยาลัย Syracuse University มลรฐันิวยอรค ประเทศสหรัฐอเมรกิา

; (a) ภาพ Multispectral โดยใชสีเทียม (ฟา: 0.45 - 0.52 μm, เขียว: 0.52 - 0.60 μm, แดง: 0.76 - 

0.90 μm) ที่ความละเอียด 4 เมตร  (b) ภาพ PAN ที่ความละเอียด 1 เมตร 
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รูปที่ 3: ภาพอางอิงที่ ความละเอียด 1 เมตรของมหาวิทยาลยั Syracuse University 
 

Grass Roof1

Tree Shadow

Road Roof2

 
รูปที่ 4 ภาพสดัสวนของแตละวัสดุชนิด 

 

หลังจากนั้นนาํเอาวิธีการแบงแยกแบบสวนจุดภาพที่ไดนําเสนอในงานชิน้นีโ้ดยใชคาฟงกชัน่ความผิดพลาด

แบบนอรมที่ 1, 2 และอนนัตมาใชสําหรบัคา β  ตางๆกนั ในงานนี้ไดใชวิธีการวัดประสิทธิภาพอยู 2 แบบคือ 

Euclidian distance [13] และ fuzzy error matrix ซึ่งวัดความเหมอืนและตางของแผนที่ ที่สรางและคาจริง 

[14-15] คา Euclidian distance ที่ตํ่าบงบอกวาแผนที ่ที่ผลิตขึ้นมาคาเหมือนกับคาจริง  สําหรับ fuzzy error 

Grass

Roof1

Roof2

Tree Shadow

Road



สัญญาเลขที่ MRG5080174 

 

- 19 -

- 19 -

matrix คาความถูกตองโดยรวมเปน 1 หมายถงึการเหมือนกนัโดยสมบูรณระหวางแผนที่กับคาจริงในขณะทีค่า

เปนศูนยบงบอกถึงความไมเหมือนกนัเลย  คาความถกูตองของ fuzzy error matrix ใหคาขอบจาํกัดดานบน

ของเปอรเซ็นตความถกูตองเมื่อแผนที่ถกูสรางที่ความละเอียดสูง (ทุกจุดภาพนัน้บริสุทธิ)์  คาความถูกตองของ 

fuzzy error matrix และ Euclidian distance กับ β  คาตางๆแสดงในรูปที ่ 5 และ 6 ตามลําดับ คา β  ที่

เหมาะสมที่สุดสําหรับ fuzzy error matrix คือคา 0.0085 0.0059 และ 0.0105 ในขณะที่คาดีที่สุดสําหรบั 

Euclidian distance คือคา 0.0085 0.0059 และ0.0155 ในกรณีที่คานอรมที ่1, 2 และอนันต  สําหรับกรณีคา

นอรมที ่ 1 และ 2 วิธีการวดัประสิทธิภาพทัง้สองมีคา β  ที่เหมาะสมเปนคาเดียวกนั  แตสําหรับกรณีคานอร

มอนันตคาที่เหมาะที่สุดนั้นไมเทากัน  นอกจากนี้ยงัสังเกตไดอีกวาคาฟงกชัน่คาความผิดพลาดแบบนอรมที่ 1 

(FNECF) ใหประสิทธิภาพดีที่สุด คือมากกวาคานอรมที่ 2 และ อนันต (SNECF และ INECF)  นอกจากนีย้ังได

ทําการเทยีบประสิทธิภาพกบัวิธีแบบของ Settle และ Drake [16] และของ Chang [9]. ในตารางที่ III พบวาวิธี

ที่เรานาํเสนอไดประสิทธิภาพที่ดีกวาเปนอยางมาก  

 
รูปที่ 5 คาความถูกตองของวิธกีารที่นําเสนอที่คา β ตางๆกนั. 

 
รูปที่ 6 คา Euclidean distance measure ของวธิีการที่นําเสนอทีค่า β ตางๆกัน. 
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ตารางที ่ 3 คาประสิทธภิาพสูงสุดของวิธีที่นาํเสนอ เทียบกบัวิธขีอง Settle และ Drake [16] และของ 

Chang [9] 

Method Euclidian Distance Overall Accuracy 

FNECF 0.2218 0.60176 

SNECF 0.2285 0.59277 

INECF 0.2253 0.59862 

LMM 0.2509 0.5238 

 

4.  สรุป 
 

วิธีการจําแนกชนิดแบบสวนจุดภาพโดยอาศัยโมเดลการผสมแบบเชิงเสนทีน่ําเอาขอมูลเบื้องตนของอัตราสวน

วัสดุมาใชไดถกูนํามาเสนอในรายงานนี ้  โมเดลสมมติใหคาสเปกตรัมสีที่สังเกตุในแตละจุดภาพ เปนอัตรา

สวนผสมของสเปกตรัมสีบริสุทธิ์ของวัสดุแตละชนิดที่อยูในจุดภาพ  อัตาสวนนี้ไดถูกอธิบายดวยการแจกแจง

แบบ Dirichlet  นอกจากนี้การมีอยูหรือไมมีอยูของวัสดุยังถกูอธิบายภายใตขอกําหนดของการเปนอิสระตอกัน

เชิงเสน  จากโมเดลนีฟ้งกชันราคาสองชนิดไดถูกนาํเสนอไดแก ราคาอัตราสวนชนดิวัสดุ และราคาคาความ

ผิดพลาด  ตอจากนั้นปญหาการหาคาเหมาะที่สุดไดถูกนาํเสนอ และขั้นตอนวธิีในการหาคาํตอที่เหมาะที่สุดก็

ไดนําเสนอเชนกนั  จากผลการทดลองที่ไดการนาํขอมูเบื้องตนมาพิจารณาดวยสามารถเพิ่มประสิทธิภาพได

อยางมาก 

อยางไรก็ตาม ยังมีขอที่ตองพิจารณาตอไปในอนาคต กลาวคือการหาขัน้ตอนวธิีที่มีประสิทธภิาพ

มากกวานี้เพื่อลดเวลาในการคํานวณ เพื่องสามารถนาํขัน้ตอนวธิีนี้ไปใชไดอยสงแพรหลาย  
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Abstract 

This paper introduces a new sub-pixel classification algorithm that 

incorporates prior information from known class proportions in the linear mixture 

model. The prior information is expressed in terms of the occurrence probabilities and 

the class proportion distribution of each land cover class in a pixel. The use of 

different error cost functions that measure the similarity between the model-derived 

mixed spectra and the observed spectra is also investigated. Under these assumptions, 

the maximum a posteriori (MAP) methodology is employed for optimization. Finally, 

optimization problems under the MAP criteria for different error cost functions are 

formulated and solved. Our numerical results illustrate that the performance of the 

sub-pixel classification algorithm can be significantly improved by incorporating 
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prior information from the known class proportions. Further, there are marginal 

differences in accuracy when using different types of error cost functions.  

 

I. Introduction 

 

The availability of accurate land cover maps is essential for a number of 

resource management, monitoring and planning programs. These also act as key 

inputs for a number of agricultural, hydrological, environmental and ecological 

models. Satellite remote sensing images due to their synoptic view and map like 

format are a viable source for producing effective land cover classification. The 

objective of land cover classification is to allocate each pixel of a remote sensing 

image into only one land cover class (i.e., crisp or per-pixel classification) or to 

associate the pixel with many land cover classes (i.e., fuzzy or sub-pixel 

classification). A number of crisp classifiers are in vogue based on approaches such as 

statistical analysis [1], neural networks [2], decision tree methods [3], geostatistic 

approach [4] and Markov random field model [5]. The output from a crisp classifier is 

a classified image depicting spatial distribution of land cover with each pixel 

belonging to only one land cover class. For most applications, this type of output may 

be sufficient. 

However, in general, and particularly in coarse spatial resolution images such 

as those obtained from Moderate Resolution Imaging Spectrometer (MODIS) and 

Advanced Very High Resolution Radiometer (AVHRR) that provide data at spatial 

resolutions ranging from 250 m to 1.1 km, a majority of pixels may be mixed (i.e., 

pixels containing more than one class) at the scale of measurement. Even where the 

spatial resolution is medium (e.g., 30m Landsat ETM+) or fine (e.g., 4m IKONOS 
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multi-spectral), the high spatial frequency of some classes such as urban and built-up 

areas may result in a large number of mixed pixels [6]. The causes for the occurrence 

of mixed pixels are well known and their presence is a recurring problem while 

extracting accurate land cover information from remote sensing images. This led to 

the development of a number of sub-pixel classification methods, namely, linear 

mixture modeling [6-9], neural networks [10], fuzzy set and possibilistic theories [11], 

and support vector machines [12]. The output from a sub-pixel classification method 

is a set of class proportions or membership grades for a pixel. These outputs are 

represented in the form of fraction images (one image for each land cover class) [6].   

The most common model for sub-pixel classification is the linear mixture 

model (LMM) which assumes that the observed multispectral data at each pixel is a 

proportional sum of the spectral signatures from all land cover classes. Due to noisy 

nature of the image acquisition process, the actual proportional sum may not be the 

same as the observation. Hence, the goal of sub-pixel classification is to estimate the 

class proportion that yields the minimum distance between the proportional sum of 

the spectral signatures and the observed spectral value. Different constraints [7-9] are 

usually imposed on LMMs. For instance, Settle and Drake [7] assume that the 

proportion must be non-negative and sum to one. A similar model has been proposed 

by Chang, et al. [11] for the sub-pixel target detection problem. The major limitation 

of the linear mixture model occurs when the number of land cover classes is more 

than the number of spectral bands. In this case, the solution to the spectral unmixing 

problem may not be unique. In other words, there are multiple mixing combinations 

that may yield the same spectrum value. Furthermore, the spectral unmixing based  on 

the existing form of linear mixture model places equal importance to all land cover 

classes present in the mixed pixels whereas, in the practical circumstances, some 
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classes may be more likely to exist than others. This likelihood can be taken into 

account in the linear mixture model by employing prior information from the known 

class proportions to further refine the estimates of sub-pixel classification from 

LMMs.  

The aim of this paper is to propose a new sub-pixel classification algorithm 

that incorporates the prior information from known class proportions in the linear 

mixture model. The prior information is expressed in terms of the occurrence 

probabilities and the class proportion distribution of each land cover class in a pixel. 

Here, only the uniform class proportion distribution is considered. Furthermore, we 

also investigate the use of different error cost functions that measure the similarity 

between the model-derived mixed spectra and the observed spectra. Under these 

assumptions, the maximum a posteriori (MAP) formulation is employed for 

optimization where the optimization problems for different error cost functions are 

developed. Our numerical results illustrate that the performance of the sub-pixel 

classification algorithm can be significantly improved by incorporating the prior 

information from the known class proportions. Further, there are marginal differences 

in accuracy when using different types of error cost functions.  

The paper is organized as follows. The next section will define the problem. In 

Section 3, we will derive the optimum sub-pixel classification method based on the 

model in Section 2. The optimization problem and its corresponding solution are 

presented in Section 4. Some numerical examples are provided in Section 5. Finally, 

concluding remarks are included in Section 6.  
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II. Problem Statement 

Let Y be an observed coarse spatial resolution multispectral image of size I × J pixels 

where each pixel occupies a finite region in the actual scene. Next, let X be a fine 

spatial resolution map of size P × Q pixels where P > I and Q > J. We assume that in 

the fine spatial resolution image, all pixels are pure, i.e., pixel belongs to only one 

land cover class. Figure 1 displays an example of pixel occupancy of both an 

observed multispectral image (synthetic) and fine spatial resolution maps at different 

pixel sizes of the observed multispectral image. At the fine spatial resolution (Figure 

1(b)), 98.12% of pixels are pure whereas, in case of medium (Figure 1(c)) and coarse 

(Figure 1(d)) spatial resolutions, 85.12% and 75% of pixels are pure respectively. 

Thus, as the pixel size increases, the number of mixed pixels increases. Let S denote 

the sets of all sites (i.e., pixels) of the observed multispectral image, which is usually 

represented in a vector form, as K
js ℜ∈)(y  for the pixel sj where ℜ  denotes the set 

of real numbers (i.e., intensity values) and K is the number of spectral bands. As 

stated earlier, each pixel in the fine spatial resolution map is assumed to be pure (i.e., 

the pixel’s configuration x(t) (i.e., attribute) denotes one and only one land cover 

class). Hence, { }Ltx ,,1)( K∈  can only take an integer value corresponding to the 

particular land cover class at a pixel t in the actual scene, where L is the number of 

land cover classes. 

         



สัญญาเลขที่ MRG5080174 

 

29

29

(b) (b) 

          

(c) (d) 

Figure 1: Multispectral Image at different scale sizes; (a) original; (b) at scale of 10; 

(c) at scale of 50; and (d) at scale of 100 

 

We assume that at coarse spatial resolution, each land cover class has a unique 

spectral signature (intensity value) and let { } K
L ℜ∈μμμ ,,, 21 K  be the spectral 

signatures of classes 1, 2, …, L. The mixed spectral response of all the classes in a 

pixel is given by, 

 ( ) ( )∑
=

=
L

l
lili sbs

1
μr   (1) 

where bl(s) is the class proportion of the land cover class l present in si such that 

1)(
1

=∑
=

L

l
il sb  and ( ) 0≥il sb . Here, we denote ( ) ( ) ( )[ ]TiLii sbsbs L1=b  as the 

class proportion vector  where TA  is the transpose of A. Due to the noisy nature of 

the image acquisition process, the observed vector at each pixel of the multispectral 

image is a combination of the combined spectral response and noises, i.e., 

 ( ) ( ) ( )iii sss nry +=  (2) 
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where n(si) ∈ Kℜ  and y(si) ∈ Kℜ are  the noise vector and observed vector at pixel si 

respectively Here, we assume that the noise vector has the corresponding probability 

density function )(nNf ,  given by,  

 ( )( )nnN Ef −= exp)( . (3) 

 In general, the noise term is assumed to be statistically independent between any two 

or more distinct pixels and takes Gaussian distribution [13].  

 For simplification, we omit the term ( )is  in all the equations throughout the 

manuscript. Next, the presence or absence of land cover classes in a pixel is assumed 

to be statistically independent. This implies that any combination of land cover 

classes can exist in a pixel. Let Nb be the number of land cover classes present in a 

pixel. These land cover classes have a non-zero value in the class proportion vector b. 

For Nb = 1, the pixel is pure. In this case, one of the class proportions is one while the 

rest are zero. Hence, the conditional probability of the class proportion vector is given 

by, 

           [ ] [ ] Llll ,,2,1classth -  the tobelongs pixel aPrPr K=== bb  (4) 

where lb  is a vector of length L whose l-th entry has the value of one and other 

entries have the value of zero. Here, let lp  denote the probability that the l-th class is 

present in a pixel. Then Equation (4) can be written as, 

 [ ]
( )

Ll
Z

pp
L

lmm
ml

l ,,2,1
1

Pr ,1 K=
−

==
∏

≠=bb  (5) 

where Z is the normalizing constant. Equation (5) is valid if the absence or presence 

of one class does not have any effect on the absence or presence of other classes. We 

acknowledge that this is a strong assumption since the land cover classes in 

neighboring regions must be mutually independent according to this assumption. 
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More complex models in which the interaction between classes is included can be 

considered. However, the corresponding optimization algorithm may be too complex 

to be implemented in practice. Furthermore, let lz  be the indicator parameter which 

takes the value of one or zero based on whether the l-th class is present ( 0>lb ) or 

absent ( 0=lb ) in a pixel, respectively. Thus,∑
=

=
L

l
k Nz

1
b . Let 0L  and 1L  be indices 

of zl such that zl takes the values of zero and one, respectively. The marginal 

probability of indicator parameters is given by, 

 [ ]
( )

Z

pp
Lr

r
Ll

l ∏∏
∈∈

−
= 10

1
Pr z . (6) 

where [ ]TLzzz L21=z  is the indicator vector. For a given indicator vector, we 

know that the land cover classes whose corresponding indicator parameters are one 

are present in a pixel. In other words, these classes must have a non-zero class 

proportion value. Here, we assume that the joint probability density function (PDF) 

for those non-zero class proportions takes the form of Dirichlet distribution [14], i.e., 

 [ ] ( )∏∏

∑

∈

−

∈

∈

Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

=
1

1

1 1

Ll
l

Ll
l

Ll
l

lbf α

α

α
zb  (7) 

where lα  is the Dirichlet parameter of the l-th class and Γ(x) is the gamma function of 

x. Note that, when Nb = 2, the Dirichlet distribution takes the same form as the Beta 

distribution. A class with a small value of lα  is likely to occupy a small area in a 

pixel. In contrast, a class with a high value of lα  corresponds to the class proportion 

close to one. Furthermore, for the special case where 1=lα  (i.e., all classes are likely 

to be present in a pixel.) for Ll ,,2,1 K= , Equation (7) reduces to, 
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 [ ] ( ) ( ) LlbIzNf ll ,,2,1for    if!1 K==−= bzb  (8) 

where ( ) 1=lbI  if 0>lb  and ( ) 0=lbI  if 0=lb . For this case, non-zero class 

proportions are equally likely to take any value between zero and one as long as these 

sum to one. The PDF in (8) has a higher value for the case of the class mixtures with 

a large number of non-zero land cover classes than the class mixture with few non-

zero classes because the region in the hyperplane where the class proportion is sum to 

one and non-zero becomes smaller as the dimension of the hyperplane increases. 

From Eq. (8), the class mixture with higher number of non-zero class proportion is 

more preferable from our model if all class mixtures are equally likely. This result, 

allows the uniqueness of the unmixing result when the number of land cover classes 

is more than the number of spectral bands.  

Next, based on the model given in Equations (2) and (3), the conditional 

probability density function (PDF) of the observed vector at a pixel is , given the class 

proportion vector, can be written as, 

 ( ) ( )byby N Mff −=  (9) 

where [ ]LM μμμ L21= . The joint probability density function of the class 

proportion vector and the indicator vector, given the observed data, is given by, 

          

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

Z

pp
b

f
e

f
fMf

f
fMf

f

Lr
r

Ll
l

Ll
l

Ll
l

Ll
lME

l

∏∏
∏∏

∑
∈∈

∈

−

∈

∈
−−

−

Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

×=

−
=

−
=

10

1
1

1

1

)(
                 

)(
Pr

                  

)(
,

,

1α

α

α

y

y
zzbby

y
zbby

yzb

Y

by

Y

N

Y

N

 (9.a) 

for 1>bN , and  
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          ( )
( ) ( )

Z

pp

f
ef Lr

r
Ll

lME ∏∏
∈∈

−−
−

= 10

1

)(
   ,

y
yzb

Y

by

 (9.b) 

for 1=bN .  

 

The PDF given in Equation (9.a) is complicated and very difficult to evaluate. Hence, 

only the case when 1=lα  (uniform class proportion) has been considered in this 

paper, and, thus, the PDF reduces to, 

 ( )
( ) ( ) ( )

.
)(

1!1
 , 10

Zf

ppNe
f Lr

r
Ll

l
ME

y
yzb

Y

b
by ∏∏

∈∈

−− −−
=  (10) 

Next, we derive the optimum classifier for our problem.  

 

III. The Optimum Classifier 

 

In this paper, we employ the maximum a posteriori (MAP) classifier based on the 

PDF given in Equation (10) since the MAP classifier provides the minimum 

probability of error among all classifiers [15-16]. The search space of the solution is 

restricted to the region such that the constraints,  

 ( )ll bIz = , 0≥lb ,  (11) 

and  

  1
1
∑
=

=
L

l
lb  for Ll ,,2,1 K=   (12) 

are satisfied. We denote as B the  set of those b that satisfy the above constraints in 

Eqs. (11) and (12). Hence, the goal is to select the class proportions and indicator 

vectors that maximize (10), i.e., 
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 ( ) ( )[ ]{ }  ,maxarg,
,

yzbzb
zb

f
B

optopt

∈
= . (13) 

The term ( )yYf  in Equation (10) is independent of the choice of ( )zb,  and, hence, it 

can be ignored. As a result, Equation (13) becomes, 

      

( )
( ) ( )[ ]

[ ] [ ]

( ) ( )[ ] ( ) [ ]

( ) ( )[ ]

[ ]
  

1log

1
log!1log

minarg                

  
log

1log1!1log
minarg                

  log1log
!1log

minarg,

1

1

,

1

1

,

,
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⎪
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⎥
⎥
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p
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pzNME

pp
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b
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b
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b
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by
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by
zb

 (14) 

The last term in the argument can be ignored since it does not depend on ( )zb, . 

Hence, Equation (14) can be reduced to, 

    

( ) ( ) ( )[ ]

( ) .  
1

loglogminarg                

 
1
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1
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∈
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 (15) 

We shall call the term ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

l

l
l p

p
C

1
log  as the class proportion cost function for 

Class l. The term ( )by ME −  in Equation (15) measures the differences between the 

observed spectral vector, y, and the model-derived spectral mixture, bM . Hence, we 

call this term the error cost function. This term provides the information on the 

closeness of the observed spectral values with derived spectral values. Hence, the 

most widely used model is multivariate Gaussian. The error cost function, in this 

case, is given by, 
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 ( ) ( ) ( ) ( )[ ]Σ++−Σ−=− − log2log
2
1 1 πKMMME T bybyby  (16)

  

where Σ  is the covariance matrix of the noise vector. Clearly, the second and the 

third terms in Equation (16) are independent of the choice of b. Hence, these can be 

ignored during optimization. As a result, the error cost function is given by, 

 ( ) ( ) ( )bybyby MMME T −Σ−=− −1

2
1 . (17)  

Equation (17) is the well-known as Mahalanobis distance [16]. The accuracy of the 

model given in Equation (17) depends on the estimate of the covariance matrix of the 

noise vector. To obtain an accurate estimate of the covariance matrix, we need a large 

number of samples (about 10 times the number of spectral bands, i.e., 10K) which 

may be difficult to obtain in practice. As a result, different distance metrics are 

employed as the error cost function in this paper. The less parametric distance metrics 

can be defined as, 

 ( )pp

L

l
lp MgbE byμy −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

=1
 (18) 

where 
p
 denotes the p-norm and gp is an increasing function. In this paper, we 

investigate the use of first, second and infinite norms only since, as stated in the next 

section, the optimization problems derived from these norms can be transformed into 

standard optimization problems. Hence, these can be solved with existing algorithms. 

In the case of the first norm, we define the error cost function as,  

 ( ) ∑∑
==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

K

k
k

K

k
k eegME

11
11 βby . (19) 

where ke  is the absolute difference of by M−  for the k-th band and β  is the weight 

factor.  Here, g1(x) = βx. The optimization problem is given by, 
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zre
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zb
zb β  (20) 

The argument inside the parentheses is linear. With some modifications, the 

optimization problem in Equation (20) can be transformed to a mixed-integer linear 

program with linear constraints. Linear programs have been well-studied in the 

literature. As a result, many computationally efficient algorithms to solve the problem 

have been developed.  

 When noises in different spectral bands are independent and identically 

distributed, the noise variance becomes KI2σ=Σ  where KI  is the identity matrix of 

size KK × . For this case, the error cost function can be written as, 

 ( ) ∑
=

=⎟
⎠
⎞

⎜
⎝
⎛ −=−

K

k
keMgME

1

222
2222 2

1 β
σ

byby . (21) 

Note that g2(x) = x2. The optimization of Equation (15) becomes, 
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The above optimization problem has a quadratic form. Hence, in the next section, we 

modify the optimization problem of Equation (15) into a mixed-integer quadratic 

program.  

 In the last case where the infinite norm is used, the error cost function is 

defined as, 

 ( ) [ ] [ ] [ ]kKkkKkkKk
eegegE

,..,1,..,11,..,1
maxmaxmax,
=

∞
==

∞∞ =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= βby . (23) 

Let e be defined as the maximum of absolute errors in all spectral bands, 

i.e., [ ]kKk
ee

,..,1
max
=

= . The optimization of Equation (15) is given by, 
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Similar to first norm case, the overall cost function is linear. Hence, it can be 

transformed into a mixed-integer linear programming problem. Next, we discuss the 

optimization problems in more detail. 

 

  

IV. Optimization Problems and Solutions 

 

In this section, the optimization problems given in the previous sections are 

transformed into standard optimization problems, namely mixed-linear and -quadratic 

programs, since we can apply the existing optimization algorithms to obtain the 

solution. In this section, we follow the work in [8] by constraining the class 

proportion values to be non-zero and that sum to one, i.e., 

 
Llb

b

l

L

l
l

,,2,1;0

1
1

K=≥

=∑
=  (25) 

First, we will start with the first norm case and then follow it up by the second and 

infinite norm cases for error cost functions, respectively. 

 

IV.A First Norm Cost Function 

Employing the first norm as the error function given in Equation (20), the problem 

becomes, 
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Next, we have that ( )ll bIz =  and [ ]1,0∈lb . As a result, lb , is bounded by lz , i.e., 

ll zb ≤≤0 . For the error cost function, the absolute error in band k, ek, is the bound of 

∑
=

−
L

l
kllk by

1
,μ . In other words, we have k

L

l
kllkk ebye ≤−≤− ∑

=1
,μ . By combining 

these facts into Equation (26), the optimization problem can be written as, 
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Furthermore, let lr  be one if at least l land cover classes are non-zero in a pixel of 

interest and be zero otherwise. Hence, we have ( )∑∑
=

−

=

−=
L

l
l

N

r
rlr

2

1

1
1loglog

b

. The 

optimization problem in Equation (27) can be written as,  
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By letting [ ]TKee L1=e , [ ]TLrr L1=r , ( )[ ]TL 1log)1log(0 −= Kg , and 
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⎦
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1 Lc , the equation can be written in a matrix form 

as, 
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where   
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are vectors of size 3L+K. The unequal constraints matrix, 1A , of size 

( ) ( )KLKL +×+ 322  is given by, 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−

=

KLLLLLL

KLLLLL

KLKLK

KLKLK

OWPO
OOII

IOOM
IOOM

A

,,,

,,

,,

,,

1 , 

where TSO ,  is a zero matrix of size TS × , TSP ,  is one matrix of size TS × , and LW  is 

a diagonal matrix whose diagonal entries are 1, 2, …, L, respectively. 

( [ ]LW L21)(diag = ). For this case, the equal constraint matrix D1 of size 

( )KL +× 31 is given by, 

 [ ]T
KL

T
LD += 21 01 . 

The bound vector c1 of size 2L+2K is given by, 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡−

=

L

L

0
0
y
y

m1 . 

Obviously, the optimization problem given in Equation (29) is in the form of a mixed-

integer linear programming problem.  

 

IV.B Second Norm Error Function 

In this subsection, we replace the first norm by the second norm and the optimization 

problem in Equation (22) can be written as, 
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which can be written in a matrix form as,  
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Here the matrix H, vectors 2w , and 2b  are given by, 
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respectively. The constraint matrices can be written as, 
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 [ ]T
L

T
LD 22 01= . 

Finally, the bound vector, c2 is given by, 

 [ ]L22 0m = . 

The optimization problem given in Equation (31) is in the form of mixed-integer 

quadratic programs. Although there are a number of algorithms designed to solve the 

mixed-integer quadratic programs, the mixed-integer quadratic programs remain a NP 

hard problem. As a result, the computational time of the problem given in Equation 

(31) may be slow to be practically implemented. We note here that even though the 

problem given in Equation (29) is also an NP hard problem, but the mixed-integer 

linear program has been well-studied. Hence, the solutions of Equation (29) can be 

obtained efficiently for most practical problems.  

 

IV.C Infinite Norm Error Function 

 

When the infinite norm is used as the measure of the error term, the optimization 

problem can be written as, 
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Let us assume that ∞e  is the maximum absolute difference of the vector ∑
=

−
L

l
llb

1
μy . 

Hence, we have that ∞
=

∞ ≤−≤− ∑ ebye
L

l
lklk

1

μ , for Kk ,,1K= . The optimization 

problem in Equation (32) becomes, 
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The matrix representation of the problem in Equation (33) is given by, 
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The constraint matrices are given by, 
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For this case, the equal constraint matrix D∞ of size ( )131 +× L is given by, 

 [ ]T
L

T
LD 12 +∞ = 01 . 

The bound vector c1 of size L+2K+2 is given by, 
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We observe that the optimization problem in Equation (34) has exactly the same 

number of constraints as in Equation (29) while the number of variables is only K-1 

less than those in Equation (29) This observation indicates that the optimization 

problem for the infinite norm error cost function is less complex than those given in 

the first norm case especially for remote sensing images with a large number of 

spectral bands such as hyperspectral images.  

 By solving the optimization problems given in Equations (29), (31) and (34) 

for all the pixels in Y, the fraction images for each land cover class are obtained for 

different models of error cost functions. In the next section, we investigate the 

performance of the sub-pixel classification approach proposed here for different error 

cost functions. As expected, different error cost functions result in different accuracy 

values. However, the best performances for each error cost function are very similar.   
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V. Numerical Examples and Results 

 

In this section, we consider the specific problem of sub-pixel classification based on 

the MAP detector given in Equation (15) by using the models proposed in Section 4. 

We apply our algorithm to two sets of remote sensing data, one at fine spatial 

resolution and another at medium spatial resolution. For the cases of the first and 

infinite norm error functions, the optimization problems are in the form of mixed-

integer problems. Hence, we apply the GNU Linear Programming library [17] to 

solve the problem. This library employs Branch-and-cut method [17] to solve the 

mixed-integer linear program. For the case of the second norm error function, we 

employ KNITRO 6.0 Library [18] to solve the mixed-integer quadratic program in 

Equation (24). Here, the branch-and-bound technique has been employed. We 

acknowledge that there may be a better optimization library to solve both the mixed-

integer linear and quadratic programs. However, the goal of this paper is to only 

demonstrate the feasibility of our approach and illustrate the performance of our 

models in terms of accuracy and not to focus on computational efficiency aspects.  

Experiment 1 

A small dataset from multi-spectral (spatial resolution 4 m) and panchromatic (spatial 

resolution 1 m) data acquired in 2001 from the IKONOS satellite has been used. It 

consists of (26 × 60) pixels of 4 bands of the multi-spectral image in blue, green, red 

and near infrared (NIR) regions and (97 × 237) pixels of the single band PAN image, 

and covers a portion of the Syracuse University campus site (Figures 2(a) and (b)). 

The corresponding reference image generated from a visual interpretation of the PAN 

image is shown in Figure 3. There are six land cover classes - grass, roof1, roof2, tree, 

shadow and road. Roof1 represents top cover of a tent whereas roof2 denotes roof of 
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buildings. Each pixel in this reference image has been assumed pure. Based on this 

reference image, fraction reference images, depicting the known class proportions for 

each land cover class at 4 m resolution, have also been generated to allow for 

accuracy assessment of intermediate sub-pixel classifications (Figures 4 (a) to (f)). 

Note that black and white shades indicate total absence and presence of classes 

whereas intermediate gray shades represent proportion of a class within a pixel of the 

coarse resolution image. These fraction reference images also assisted in identifying 

pure training pixels for initial sub-pixel classification of the multi-spectral image. 

 

 

           

(b)     (b) 

Figure 2: IKONOS images of a portion of the Syracuse University campus; (a) 
false color (Blue: 0.45 - 0.52 μm, Green: 0.52 - 0.60 μm, Red: 0.76 - 0.90 μm) 
composite of the multispectral image at 4 m resolution; (b) panchronometric 
image at 1m resolution 
 
 

 

Figure 3: Reference image at 1 m resolution of the Syracuse University campus 

Grass

Roof1

Roof2

Tree Shadow

Road
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Grass Roof1

Tree Shadow

Road Roof2

 

Figure 4: Fraction reference images of six land cover classes at 4 m resolution (a) 
grass; (b) roof1; (c) tree; (d) shadow; (e) road; and (f) roof2 
 

The procedure begins with the estimation of spectral responses associated with all the 

classes by selecting 20 training pixels for each class in the coarse resolution image. 

The training pixels are randomly chosen from the pixels that have at least 60% 

fraction of the class of interest. The total number of pixels that have at least 60% of 

each land cover classes are given in Table 1. We observe that, for the Class Roof1, 

there are only 13 pixels that have at least 60% fraction. Hence, we use only 13 pixels 

of Class Roof1. As a result, we have a total of 113 training pixels. In this work, we 

apply the least square estimate of the spectral responses, i.e., 

 ( ) 1ˆ −
= TT

T BBBYM , (26) 

where [ ]11321 yyy L=TY  is a matrix of size 1134×  whose columns are the 

observed spectral vectors of each training pixel, [ ]11321 bbb L=B  is a matrix 
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of size 1136×  whose columns are the class proportion vectors of each training pixel, 

and M̂  is a matrix of size 64×  whose columns are the estimates of spectral response 

vectors of each class. Furthermore, we also need to estimate the prior probability of 

the presence of each land cover class. For Class l, the portion of pixels that have non-

zero class proportion values of Class l yields the conditional probability Zpll /=θ . 

However, since the sum of the probabilities given in Equation (6) must be one, we 

have ( )∏
=

−−=
L

l
lZZ

1

11 θ  and the normalizing constant can be determined by solving 

the equation, 

 ( ) ( )∑
=

−=−
L

l
lZZ

1
1log1log θ . (27) 

By using the reference data shown in Figure 4, the normalizing constant has the value 

of Z = 0.61726. The conditional probability lθ , prior probability lp  and the class 

proportion cost function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

l

l

p
p1

log  are given in Table 2. 

Table 1: Number of pixels that have at least 60% of the fraction of the given 

classes. 

Class Number of Pixels 
Grass 378 
Roof1 13 
Tree 159 
Shadow 225 
Road 247 
Roof2 353 
 

 

 

 

 



สัญญาเลขที่ MRG5080174 

 

49

49

Table 2: The class proportion probabilities and cost function of IKONOS data 

Class θl pl log[(1-pl)/pl] 
Grass 0.36467 0.2251 1.2362 
Roof1 0.01733 0.0107 4.5268 
Tree 0.19800 0,1222 1.9716 
Shadow 0.27933 0.1724 1.5686 
Road 0.28867 0.1782 1.5287 
Roof2 0.26533 0.1638 1.6304 
 

 Next, we apply the sub-pixel classification model proposed in this paper for 

the first, second and infinite norm error functions for various values of β . Here, we 

employ a few performance evaluation techniques to quantify the accuracy of our 

algorithm. We adopt the Euclidian distance [19], and fuzzy error matrix [20] which 

measures the agreements and disagreements between the class proportions from 

reference data and classified image  [20-22] as the performance metrics. A lower 

value of the Euclidian distance indicates that the classification algorithm generates a 

sub-pixel classification that is closer to the fraction reference image, or, in other 

words, more accurate is the result. For the fuzzy error matrix, the overall accuracy of 

one indicates perfect match between fraction reference image and the model derived 

sub-pixel classification image whereas the value of zero corresponds to total 

disagreement. The accuracy values for both metrics for various value of β  are shown 

in Figures 5 and 6 for the fuzzy error matrix and the average Euclidean distance, 

respectively. The optimum values of β  for the fuzzy error matrix are 0.0085, 0.0059, 

and 0.0105 whereas the optimum values for the Euclidean distance are 0.0085, 

0.0059, 0.0155 for first, second and infinite norm cases, respectively. For first and 

second norm cases, both metrics achieve the highest performance at the same value of 

β . However, this is not the case for the infinite norm error function. We also observe 

that, for both metrics, the first norm error cost function (FNECF) outperforms the 
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second and infinite norm error cost (SNECF and INECF) in this example. 

Furthermore, we compare the performance of our algorithm with the linear mixture 

model (LMM) algorithm introduced by Settle and Drake [7] and similarly by Chang 

[9], in which the class proportion vectors are estimated such that the mean square 

errors of the observed spectral response vector and the mixed spectral response vector 

is minimum under the constraints that the class proportion are non-negative and sum 

to one. Table 3 compares the best performance for both the Euclidian distance and 

fuzzy set error matrix for all error functions and the LMM algorithm. Clearly, all of 

our approaches outperform the LMM algorithm since our algorithms consider the 

prior information from the known class proportions in the sub-pixel classification 

process. The user’s and producer’s accuracy based on the fuzzy error matrix are also 

shown in Table 4. Here, the user’s accuracies of our approaches are significantly 

higher than the LMM algorithm for the classes of Roof1, Tree and Roof2 for all error 

cost functions and slightly degraded for the classes of Grass and Road for some error 

cost functions. However, the producer’s accuracies of Class Roof1 and Tree are 

significantly lower while the large improvement can be seen for classes Grass, Road 

and Roof2.  

 

Figure 5: The overall accuracy of the proposed techniques for different values of 

β in Example 1. 
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Figure 6: The Euclidean distance measure of the proposed techniques for 

different value of β in Example 1. 

Table 3: The best accuracy measure for different sub-pixel classification 

techniques  

Method Euclidian Distance Overall Accuracy 
FNECF 0.2218 60.18% 
SNECF 0.2285 59.27% 
INECF 0.2253 59.86% 
LMM 0.2509 52.38% 
 

Table 4: The user’s and producer’s accuracies for different sub-pixel 

classification algorithm of Example 1  

FNECF SNECF INECF LMM Class 
User’s Producer’s User’s Producer’s User’s Producer’s User’s Producer’s 

Grass 63.65% 82.72% 62.49% 81.89% 60.65% 79.89% 62.87% 69.62% 

Roof1 62.93% 77.37% 64.68% 78.75% 88.87% 72.12% 18.65% 85.28% 

Tree 44.98% 13.86% 34.90% 12.49% 30.51% 12.76% 28.92% 24.16% 

Shadow 45.81% 62.80% 45.69% 60.54% 47.70% 59.26% 42.27% 65.45% 

Road 60.28% 65.86% 60.16% 63.23% 60.64% 63.55% 60.47% 34.08% 

Roof2 78.03% 50.99% 77.00% 52.48% 80.10% 58.06% 68.40% 49.54% 

 

Experiment 2 

In this experiment, we consider a multi-spectral image from Landsat ETM+ at 

spatial resolution 30 m acquired in 1999. A portion consisting of (221 × 327) pixels 

covering a part of Syracuse area has been selected. Only 6 non-thermal bands of 
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ETM+ image have been considered, since the spatial resolution of thermal band is 

different than the others. Figure 7 shows the false color composite (FCC) of the area 

selected. An existing land cover map, collected by Emerge® on July 13rd, 1999, has 

been used as the reference image for accuracy assessment purposes. This land cover 

map has been produced from a classification of digital aerial photographs at two-foot 

spatial resolution at an accuracy of 85%. Further details on this reference image may 

be found in [22]. The reference image is shown in Figure 8, with five land cover 

classes – tree, grass, bare soil, water and impervious represented in dark green, light 

green, brown, blue and yellow colors respectively. Each pixel in this reference image 

has been assumed pure. Based on the procedure given in Experiment 1, we generated 

the fraction reference images for each class at 30 m resolution corresponding to the 

ETM+ image (Figures 9 (a)-(e)). From the knowledge of these fractions, pixels with 

at least 60% fraction of each individual class were identified in the observed ETM+ 

image (Table 5). Twenty pixels for each class in Table 5 are randomly selected. As a 

result, there are the totals of 100 training pixels. Equation (27) is applied to estimate 

the spectral signature matrix, M. Similar to Example 1, the class proportion cost 

functions for each individual class are estimated and are given in Table VI.  Here, we 

found that 99863.0=Z . 
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Figure 12: False color composite of Landsat ETM+ image of a portion of the 
Syracuse area (Blue: Band1, Green: Band3, Red: Band4)  
 

 

Figure 13: Land cover map at two-foot spatial resolution, used as reference 

image  
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Figure 9: Fraction reference images of five land cover classes at 30 m resolution 

(a) tree; (b) grass; (c) bare soil; (d) water; and (e) impervious 

 

Table 5: Number of pixels that have at least 60% of the fraction of the given 

classes in Example 2. 

Class Number of Pixels 
Tree 8779 
Grass 5149 
Bare soil 98 
Water 3173 
Impervious 29184 
 

Table 6: The class proportion probabilities and cost function of TM data 

Class θl pl log[(1-pl)/pl] 
Tree 0.8459 0.8471 -1.7120 
Grass 0.8915 0.8927 -2.1184 
Bare soil 0.3239 0.3243 0.7341 
Water 0.0523 0.0523 2.8963 
Impervious 0.8760 0.8772 -1.9662 
 

Again, the fraction images for all cases of error function are obtained, and the 

performance evaluations are shown in Figures 7 and 8, for the fuzzy error matrix and 

(a) (b) (c) 

(d) (e) 
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the Euclidean distance, respectively. For the case of the second norm error function, 

only 42 values of β  are considered due to computation costs involved in solving a 

mixed-integer quadratic program. Table 7 compares the highest overall accuracies and 

the minimum Euclidean distance for all error cost functions and the LMM algorithm. 

Clearly, all of our proposed models outperform the LMM algorithm due to the use of 

the prior information. In this case, we observe that the performance of the IFNECF 

outperforms the FNECF, SNECF and LMM algorithms. The differences resulting 

from the choice of error functions in Examples 1 and 2 suggest that there exists an 

optimum type of error cost function. Nevertheless, for both Examples 1 and 2, there 

are relatively small variations in performances for different choices of the error cost 

functions. The optimum values of β  for different error cost functions and 

performance metrics (Table 8) appear to be the same except for FNECF. The user’s 

and producer’s accuracy based on the fuzzy error matrix are also shown in Table 9. 

Significant improvement can be found in individual accuracies of class Bare soil and 

classes Tree and Impervious. 

 

Figure 7: The overall accuracy of the proposed techniques for different values of 

β in Example 2. 
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Figure 8: The Euclidean distance measure of the proposed techniques for 

different value of β in Example 2. 

Table 7: The best accuracy measure for different sub-pixel classification 

techniques for Example 2.  

Method Minimum Distance Overall Accuracy 
FNECF 0.1844 67.40% 
SNECF 0.1658 70.61% 
INECF 0.1633 71.17% 
LMM 0.2067 59.79% 
 

Table 9: The optimum value of β for different performance evaluation 

techniques and error cost functions for Experiment 2. 

Method Minimum Distance Overall Accuracy 
FNECF 0.0150 0.0120 
SNECF 0.0134 0.0134 
INECF 0.0340 0.0340 
 

Table 9: The user and producer accuracies for different sub-pixel classification 

techniques of Experiment 2 

FNECF SNECF INECF LMM Class 

User’s Producer’s User’s Producer’s User’s Producer’s User’s Producer’s 

Tree 55.29% 87.65% 64.60% 82.57% 68.70% 75.30% 65.72% 71.90% 
Grass 69.97% 34.78% 71.22% 33.69% 66.08% 49.71% 66.51% 51.08% 
Bare soil 9.36% 47.91% 9.52% 47.71% 9.05% 47.78% 7.55% 78.98% 
Water 93.28% 92.93% 94.57% 92.37% 94.28% 92.53% 33.74% 94.78% 
Impervious 86.55% 70.36% 81.31% 80.26% 82.28% 77.98% 88.46% 54.73% 
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VI. Summary 

In this paper, new sub-pixel classification algorithms based on the linear mixture 

model through incorporation of the prior information from known class proportions 

have been proposed. The model assumes that the observed spectral data at each pixel 

is proportional to the sum of spectral signatures present in the pixel. This proportion 

was assumed to follow the Dirichlet distribution. Furthermore, the presence and 

absence of each land cover class has been characterized under the statistically 

independence assumption. Based on these models, two cost functions were 

introduced, namely the class proportion and error cost functions. Next, the general 

form of the optimization problem was stated and the optimization algorithms where 

the error cost functions were defined using the first, second and infinite norms have 

also been formulated. For the experimental studies, we found that all of our all 

proposed algorithms significantly outperform the LMM without prior information 

given in [7] and [9]. Furthermore, the classification accuracies were also similar for 

different cost functions.  

 

There are still several issues involved in sub-pixel classification that still need to be 

resolved, particularly in the optimization algorithm. More computational efficient 

algorithm may be employed to reduce the computational times of the optimization 

problems given in Equations (29), (31) and (33). The performance of the sub-pixel 

classification can be further improved with more knowledge of class proportion can 

be employed. In other words, one may specify unequal values of αI in Eq. (9.a). 
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