

รายงานวิจัยฉบับสมบูรณ์

โครงการ การพัฒนาขั้นตอนวิธีจัดแนกชนิดและแก้ไขภาพสำหรับภาพถ่ายระยะใกล้

โดย พศ. ดร. วีรสิทธิ์ เกษตรเกษม

กรกฎาคม 2552

รายงานวิจัยฉบับสมบูรณ์

โครงการ การพัฒนาขั้นตอนวิธีจำแนกชนิดและแก้ไขภาพสำหรับภาระภ่ายระยะไกล

ผศ. ดร. นีรศิธี เกษตรเกษตร

มหาวิทยาลัยเกษตรศาสตร์

สนับสนุนโดยสำนักงานคณะกรรมการอุดมศึกษา

และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย ศกอ. และ สกอ. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

งานวิจัยฉบับนี้ไม่อาจจะสำเร็จได้โดยปราศจากความช่วยเหลือจากนักวิจัยที่ปรึกษา รองศาสตราจารย์ ดร. โคตร์ วุฒิพงศ์ อารีกุล ที่ให้ความเห็นในงานวิจัยและการนำงานวิจัยไปใช้งานอย่างมีประสิทธิภาพ นอกจากนี้ผู้วิจัยยังขอขอบคุณ Prof. Pramod K. Varshney จาก Syracuse University ประเทศ สหรัฐอเมริกา และ Dr. Monoj K. Arora จาก IIT Roorkee จากประเทศอินเดีย ที่ให้ความช่วยเหลือในการตีพิมพ์งานวิจัย และการนำเสนอผลงานวิจัย

สุดท้ายผู้วิจัยขอขอบคุณสำนักงานคณะกรรมการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย ที่ให้ความโอกาสในการทำงานวิจัยชิ้นนี้

บทคัดย่อ

รหัสโครงการ: MRG4080174

ชื่อโครงการ: การพัฒนาขั้นตอนวิธีจำแนกชนิดและแก้ไขภาพสำหรับภาพถ่ายระยะไกล

ชื่อนักวิจัย: ผศ. ดร. วีรศิทธิ์ เกษตรเกชม

Email Address: fengtsk@ku.ac.th

ระยะเวลาโครงการ: 1 กรกฎาคม 2550 – 30 มิถุนายน 2552

รายงานฉบับนี้ได้นำเสนอขั้นตอนวิธีจำแนกชนิดแบบส่วนจุดภาพจากไมเดลภาพสมแบบเชิงเส้น โดยนำข้อมูลเบื้องต้นเกี่ยวกับอัตราส่วนของแต่ละชนิดวัสดุมาพิจารณาด้วย ข้อมูลเบื้องต้นเหล่านี้ถูกนำเสนอมามainรูปของค่าความน่าจะเป็นที่จะมีวัสดุแต่ละชนิดอยู่และการแยกของอัตราส่วนวัสดุ ในจุดภาพหนึ่ง นอกจานนี้รายงานขึ้นนี้ยังได้นำเสนอการใช้ฟังก์ชันค่าความผิดพลาดแบบต่างๆ ซึ่งทำหน้าที่วัดความแตกต่างระหว่างค่าสเปกตัรัมสีสังเกตุได้ในจุดภาพ (ค่าการสะท้อนเชิงสเปกตัรัม) และค่าสเปกตัรัมสีที่ได้จากไมเดล และทำการเปรียบเทียบในรูปของผลกรวยที่เชิงประสิทธิภาพที่ได้ จากไมเดลเหล่านี้ ระเบียบวิธีการค่าความน่าจะเป็นภายหลังสูงสุด (maximum a posteriori) ได้นำมาใช้เป็นเกณฑ์ในการตัดสินใจเลือกค่าที่เหมาะสมที่สุด สุดท้ายรายงานขึ้นนี้ยังได้นำเสนอขั้นตอนวิธีในการหาคำตอบให้ค่าฟังก์ชันความผิดพลาดแบบต่างๆ ในรูปแบบของปัญหาการหาค่าเหมาะสมที่สุดแบบเชิงเส้นและกำลังสองที่มีตัวแปรแบบสมจำนวนเต็ม ผลการทดลองที่ได้แสดงให้เห็นว่าประสิทธิภาพเชิงความถูกต้องสามารถเพิ่มขึ้นอย่างมากโดยการนำข้อมูลเบื้องต้นมาพิจารณาด้วย นอกจากนี้ประสิทธิภาพที่ได้จากการนำฟังก์ชันการวัดความผิดพลาดแบบต่างๆ ใช้ยังมีอยู่ในระดับต่ำอีกด้วย

คำหลัก: การเรียนรู้ระยะไกล การจำแนกชนิดแบบส่วนจุดภาพ ไมเดลภาพสมแบบเชิงเส้น ตัวจำแนกชนิดที่เหมาะสมที่สุด

ABSTRACT

Project Code: MRG5080174

Project Title: The development of image classification and restoration algorithms for remotely sensed images

Name: Asst. Dr. Teerasit Kasetkasem

Email Address: fengtsk@ku.ac.th

Project Period 1 July 2007 – 30 June 2009

This report introduces a new sub-pixel classification algorithm that incorporates prior information from known class proportions in the linear mixture model. The prior information is expressed in terms of the occurrence probabilities and the class proportion distribution of each land cover class in a pixel. The use of different error cost functions that measure the similarity between the model-derived mixed spectra and the observed spectra is also investigated. Under these assumptions, the maximum a posteriori (MAP) methodology is employed for optimization. Finally, optimization problems under the MAP criteria for different error cost functions are formulated and solved. Our numerical results illustrate that the performance of the sub-pixel classification algorithm can be significantly improved by incorporating prior information from the known class proportions. Further, there are marginal differences in accuracy when using different types of error cost functions.

Keyword: Remote Sensing, Sub-pixel classification, Linear mixture model, Optimum classifier

ສາຮບັນ

ກົດຕິກວາມປະກາສ	๒
ບທຄົດຢ່ອ	๓
ABSTRACT	๔
ສາຮບັນ	៥
1.ບທສຽບຂອງຮາຍງານ	- 1 -
2.ວັດຖຸປະສົງຄົງຂອງງານວິຈີຍ	- 2 -
3. ກາຣດຳເນີນໂຄຮງກາຣ	- 3 -
3.1 ໂມເດລກາພທີ່ໃໝ່	- 4 -
3.2 ຄຳຕອບທີ່ເໝາະທີ່ສຸດ	- 8 -
3.3 ກະບວນກາວທາຄ່າເໝາະທີ່ສຸດ	- 11 -
3.4 ກະບວນກາວທດລອງ	- 17 -
4. ສ່ວນ	- 20 -
5 ເອກສາຮອ້າງອີງ	- 20 -
6 ຜລທີ່ໄດ້ຮັບ	- 22 -
ກາຄົນວກ 1:	- 23 -

1. บทสรุปของรายงาน

ในโครงการนี้ได้ดำเนินการศึกษาและพัฒนาวิธีการอยู่ที่หลายแบบโดยมุ่งเน้นไปที่การสร้างแผนที่จำแนกชนิดจากภาพถ่ายระยะใกล้ที่ขาดความสมบูรณ์ โดยถ่ายในหลายส่วนที่พบเห็นบ่อยในประเทศไทย และได้พยายามศึกษาในปัญหาของการที่ภาพถ่ายระยะใกล้มีความละเอียดซึ่งพื้นที่ต่างกันที่กว้างกว่าความละเอียดเชิงพื้นที่ของแผนที่วัสดุพื้นผิวที่ต้องการ และการมีอยู่ของเงาในภาพถ่ายระยะใกล้ โดยได้เริ่มศึกษาในส่วนของการสร้างแผนที่จำแนกชนิดแบบส่วนของจุดภาพ (Sub-Pixel Classification) ซึ่งสามารถบ่งบอกส่วนประกอบของวัสดุพื้นผิวในจุดภาพที่สนใจ

การมีแผนที่จำแนกชนิดที่ถูกต้องมีส่วนสำคัญต่อแผนการจัดการ แผนการการตรวจสอบจัดและการวางแผนทรัพยากรที่มีอยู่ แผนที่เหล่านี้ยังเป็นส่วนสำคัญในโมเดลทางด้านนิเวศวิทยา การชลประทาน และการสิ่งแวดล้อม ภาพถ่ายระยะใกล้ด้วยคุณสมบัติที่สร้างจากการมองมุมสูง และโครงสร้างที่คล้ายแผนที่ จึงมีส่วนสำคัญในการสร้างแผนที่จำแนกชนิดที่มีประสิทธิภาพ วัตถุประสงค์ของการสร้างแผนที่จำแนกชนิดคือการบ่งชี้ว่าแต่ละจุดภาพของภาพถ่ายระยะใกล้นั้นมาจากวัสดุจำแนกชนิด ชนิดใดชนิดหนึ่งเพียงชนิดเดียว (การจำแนกแบบชัดเจน หรือทั้งจุดภาพ) หรือการบ่งชี้ส่วนประกอบของวัสดุพื้นผิวแต่ละชนิดในจุดภาพ (การจำแนกชนิดแบบคลุมเครือ หรือเล็กกว่าจุดภาพ) วิธีการจำแนกชนิดแบบชัดเจนได้มีการพัฒนาขึ้นโดยอาศัยวิธีการ เช่นการวิเคราะห์ทางสถิติ [1] การอาศัยเครือข่ายปัญญาเตือน [2] (Neural Network) และวิธีการอาศัยต้นไม้การตัดสินใจ [3] (Decision Tree) ใช้ค่าสถิติเชิงพื้นที่ [4] และ Markov random field model [5] ผลลัพธ์ที่ได้คือการจำแนกแบบชัดเจน คือภาพการจำแนกชนิดที่แสดงการกระจายตัวเชิงพื้นที่ของแต่ละชนิดวัสดุ โดยแต่ละจุดภาพสามารถขึ้นกับวัสดุพื้นผิวได้เพียงชนิดเดียว สำหรับงานทั่วไปแล้วแผนที่แบบนี้ก็เกินจำเป็น

อย่างไรก็ตาม โดยเฉพาะอย่างยิ่งที่ภาพความละเอียดต่ำ เช่นที่ได้จาก Moderate Resolution Imaging Spectrometer (MODIS) และ Advanced Very High Resolution Radiometer (AVHRR) ที่ให้ข้อมูลที่ความละเอียดเชิงพื้นที่จาก 250 เมตรถึง 1.1 กิโลเมตร จุดภาพเกือบทั้งหมดจะเป็นจุดภาพแบบผสม (จุดภาพหนึ่งมีหลายวัสดุพื้นผิวอยู่) ที่ระดับความละเอียดที่วัด หรือแม้กระทั้งที่ความละเอียดระดับกล้อง (เช่นที่ 30 เมตร ของ LandSat ETM+) หรือที่ความละเอียดสูง (เช่น 4 เมตรจาก IKONOS) การเปลี่ยนแปลงเชิงพื้นที่สูงของบางวัสดุพื้นผิว เช่นในเมืองก็อาจจะน้ำไปสู่จุดแบบผสมจำนวนมาก [6] ปัญหาของการเกิดจุดภาพผสมมีผลกระทบต่อการสร้างแผนที่จำแนกชนิดที่มีความถูกต้องจากภาพถ่ายระยะใกล้ ปัญหานี้จึงนำไปสู่การพัฒนาวิธีการจำแนกชนิดแบบส่วนจุดภาพขึ้น ได้แก่ โมเดลการผสมแบบเชิงเส้น เครือข่ายประสาทเทียม ทฤษฎีของเซตคลุมเครือ (Fuzzy Set Theory) และการใช้ Support

Vector Machine ฯลฯ ผลลัพธ์ของวิธีการจำแนกชนิดแบบส่วนจุดภาพ คือเซตของอัตราส่วนของวัสดุ หรือ เกรดการเป็นสมาชิกของจุดภาพ ผลลัพธ์เหล่านี้ถูกนำมาเสนอในรูปของภาพอัตราส่วน (หนึ่งรูปภาพต่อหนึ่ง วัสดุ) [6-8].

โมเดลที่ใช้ในการทำการจำแนกชนิดแบบส่วนจุดภาพ คือโมเดลการสมแบบเชิงเส้น ซึ่งสมมติให้ ข้อมูลแบบหลายสเปกตรัมที่แต่ละจุดภาพเป็นการรวมกับแบบสัดส่วนของสัญลักษณ์เชิงสเปกตรัมของ ทุกๆวัสดุพื้นผิว วัตถุประสงค์ คือการหาอัตราส่วนของวัสดุที่ทำให้ผลรวมมีค่าใกล้กับค่าที่สังเกตได้ ข้อจำกัดหล่ายอย่างได้ถูกนำมาเสนอ ตัวอย่างเช่น Settle และ Drake สมมติว่าอัตราส่วนต้องไม่ติดลบและ รวมกันได้ 1 โมเดลแบบนี้ได้ถูกนำมาโดย Chang กับคณะอีกด้วย [9] สำหรับปัญหาการตรวจจับ เป้าหมาย แบบส่วนจุดภาพ ข้อจำกัดของโมเดลการสมเชิงเส้นเกิดขึ้นเมื่อมีจำนวนวัสดุพื้นผิวมากกว่าจำนวน สเปกตรัม ในกรณีผลคำตอบที่ได้จากการปัญหาการหาส่วนผสมเชิงสเปกตรัมอาจจะไม่มีคำตอบเดียว ซึ่ง หมายความว่ามีการสมหลายแบบที่สามารถคำนวณเดียวกัน นอกจ้านี้แล้วการแยกส่วนผสมที่อาศัยการ โมเดลการสมแบบเชิงเส้นเพียงอย่างเดียว ยังให้ความสำคัญกับทุกๆวัสดุพื้นผิวเท่าๆกัน แต่ในทางปฏิบัติ แล้ววัสดุบางชนิดอาจจะมีความน่าจะเป็นที่จะป่วยขึ้นมากกว่าชนิดอื่น ค่าความน่าจะเป็นนี้สามารถที่ จะนำมารวมกับโมเดลการสมแบบเชิงเส้นได้ ดังนั้นงานวิจัยที่นี้จึงนำเสนอกระบวนการจำแนกชนิดแบบ ส่วนจุดภาพที่นำเอาข้อมูลเบื้องต้นของอัตราส่วนวัสดุรวมกับโมเดลการสมภาพแบบเชิงเส้น นอกจ้านี้ยังนำเอาฟังก์ชันค่าความผิดพลาดแบบต่างมาใช้ในการวัดความคล้ายระหว่างค่าสเปกตรัมสม ที่ได้จากโมเดล และค่าที่ได้จากการสังเกต ผลการทดลองแสดงให้เห็นประสิทธิภาพของขั้นตอนวิธีที่ นำเสนอซึ่งเพิ่มขึ้นอย่างมากจากวิธีที่อาศัยโมเดลการสมเชิงเส้นเพียงอย่างเดียว

2. วัตถุประสงค์ของงานวิจัย

ผู้จัดพับว่าภาพถ่ายระยะใกล้ที่ใช้อยู่ในประเทศไทยและทั่วโลกนั้นประสบปัญหาความไม่สมบูรณ์ของภาพ เนื่องจากปัญหาต่างๆมากมายและบุคลากรของไทยยังขาดความรู้และความเข้าใจในภาพถ่ายระยะใกล้ทำให้ ผู้จัดเสนอโครงการนี้โดยมีวัตถุประสงค์ดังนี้

1. เพื่อพัฒนาวิธีเคราะห์ภาพถ่ายระยะใกล้ที่แบบต่างๆ

2. เพื่อสร้างบุคลากรที่มีความรู้ความสามารถที่จะนำภาพถ่ายดาวเทียมมาใช้ให้เป็นประโยชน์ กับการพัฒนาประเทศ เนื่องด้วยว่าประเทศไทยยังขาดบุคลากรทางด้านนี้อย่างมาก โดย งานวิจัยขึ้นนี้ต้องการที่จะส่งเสริมให้คนไทยมีความตื่นตัวในเรื่องนี้มากขึ้น

3. การดำเนินโครงการ

ในโครงการนี้ได้ดำเนินการศึกษาและพัฒนาวิธีการอยู่หลายแบบโดยมุ่งเน้นไปที่การสร้างแผนที่จำแนกชนิด จากรูปภาพถ่ายระยะใกล้ที่ขาดความสมบูรณ์ โดยถ่ายในหลาย ๆ ส่วนที่พบเห็นบ่อยในประเทศไทย และได้พยายามศึกษาในปัญหาของการที่ภาพถ่ายระยะใกล้มีความละเอียดซึ่งพื้นที่ต่างกันความละเอียดเชิงพื้นที่ของ แผนที่วัสดุพื้นผิวที่ต้องการ และการมีอยู่ของเงาในภาพถ่ายระยะใกล้ โดยได้เริ่มศึกษาในส่วนของการสร้าง แผนที่จำแนกชนิดแบบส่วนของจุดภาพ (Sub-Pixel Classification) ซึ่งสามารถบ่งบอกส่วนประกอบของวัสดุ พื้นผิวในจุดภาพที่สนใจ

การมีแผนที่จำแนกชนิดที่ถูกต้องมีส่วนสำคัญต่อแผนการจัดการ แผนการการตรวจวัดและการ วางแผนทรัพยากรที่มีอยู่ แผนที่เหล่านี้ยังเป็นส่วนสำคัญในโมเดลทางด้านนิเวศวิทยา การชลประทาน และการ กสิกรรม ภาพถ่ายระยะใกล้ด้วยคุณสมบัติที่สร้างจากการมองมุมสูง และโครงสร้างที่คล้ายแผนที่ จึงมีส่วน สำคัญในการสร้างแผนที่จำแนกชนิดที่มีประสิทธิภาพ วัตถุประสงค์ของการสร้างแผนที่จำแนกชนิดคือการป้องกัน จุดภาพของภาพถ่ายระยะใกล้นั้นมาจากการวัดจำแนกชนิด ชนิดใดชนิดหนึ่งเพียงชนิดเดียว (การจำแนก แบบชัดเจน หรือทั้งจุดภาพ) หรือการป้องกันส่วนประกอบของวัสดุพื้นผิวแต่ละชนิดในจุดภาพ (การจำแนกชนิด แบบคลุ่มเครือ หรือเล็กกว่าจุดภาพ) วิธีการจำแนกชนิดแบบชัดเจนได้มีการพัฒนาขึ้นโดยอาศัยวิธีการ เช่น การ วิเคราะห์ทางสถิติ [1] การอาศัยเครือข่ายปัญญาเสมี昂 [2] (Neural Network) และวิธีการอาศัยต้นไม้การ ตัดสินใจ [3] (Decision Tree) ใช้ค่าสถิติเชิงพื้นที่ [4] และ Markov random field model [5] ผลลัพธ์ที่ได้คือ การจำแนกแบบชัดเจน คือภาพการจำแนกชนิดที่แสดงการกระจายตัวเชิงพื้นที่ของแต่ละชนิดวัสดุ โดยแต่ละ จุดภาพสามารถขึ้นกับวัสดุพื้นผิวได้เพียงชนิดเดียว สำหรับงานที่ไปแล้วแผนที่แบบนี้ก็เกินจำเป็น

อย่างไรก็ตาม โดยเฉพาะอย่างยิ่งที่ภาพความละเอียดต่ำ เช่นที่ได้จาก Moderate Resolution Imaging Spectrometer (MODIS) และ Advanced Very High Resolution Radiometer (AVHRR) ที่ให้ ข้อมูลที่ความละเอียดเชิงพื้นที่จาก 250 เมตรถึง 1.1 กิโลเมตร จุดภาพเกือบทั้งหมดจะเป็นจุดภาพแบบผสม (จุดภาพหนึ่งมีหลายวัสดุพื้นผิวอยู่) ที่ระดับความละเอียดที่วัด หรือแม้กระทั่งที่ความละเอียดระดับกลาง (เช่น ที่ 30 เมตร ของ LandSat ETM+) หรือที่ความละเอียดสูง (เช่น 4 เมตรจาก IKONOS) การเปลี่ยนแปลงเชิง

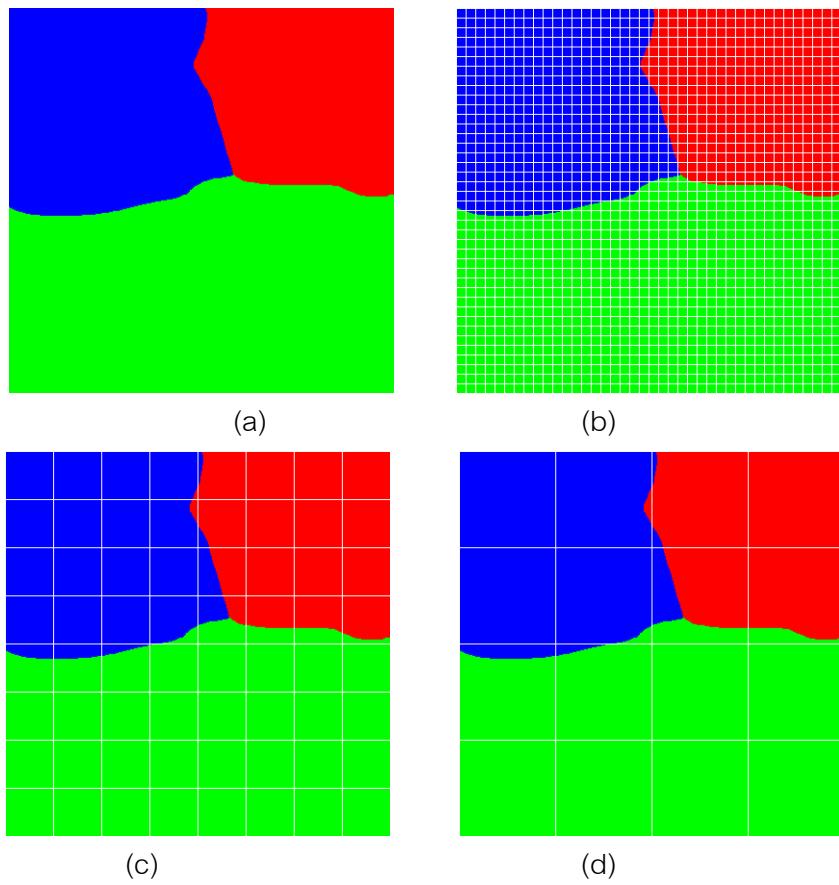
พื้นที่สูงของบางวัสดุพื้นผิว เช่นในเมืองก็อาจจะนำไปสู่จุดแบบผสมจำนวนมาก [6] ปัญหาของการเกิดจุดภาพผสมมีผลกระทบต่อการสร้างแผนที่จำแนกชนิดที่มีความถูกต้องจากภาพถ่ายระยะใกล้ ปัญหานี้จึงนำไปสู่การพัฒนาวิธีการจำแนกชนิดแบบส่วนจุดภาพขึ้น ได้แก่ โมเดลการผสมแบบเชิงเส้น เครือข่ายประสาทเทียม ทฤษฎีของเซตคลุมเครือ (Fuzzy Set Theory) และการใช้ Support Vector Machine ฯลฯ ผลลัพธ์ของวิธีการจำแนกชนิดแบบส่วนจุดภาพ คือเซตของอัตราส่วนของวัสดุ หรือการเป็นสมาชิกของจุดภาพ ผลลัพธ์เหล่านี้ถูกนำมาเสนอในรูปของภาพอัตราส่วน (หนึ่งรูปภาพต่อหนึ่งวัสดุ) [6-8].

โมเดลที่ใช้ในการทำการจำแนกชนิดแบบส่วนจุดภาพ คือโมเดลการผสมแบบเชิงเส้น ซึ่งสมมติให้ข้อมูลแบบหลายสเปกตรัมที่แต่ละจุดภาพเป็นการรวมกับแบบสัดส่วนของสัญลักษณ์เชิงสเปกตรัมของทุกๆ วัสดุพื้นผิว วัดดูประสิทธิ์ คือการหาอัตราส่วนของวัสดุที่ทำให้ผลรวมมีค่าใกล้กับค่าที่สังเกตได้ ข้อจำกัดหลายอย่างได้ถูกนำมาใช้ เช่น Settle และ Drake สมมติว่าอัตราส่วนต้องมีติดลบและรวมกันได้ 1 โมเดลแบบนี้ได้ถูกนำมาใช้โดย Chang กับคณะอีกด้วย [9] สำหรับปัญหาการตรวจสอบจับเป้าหมาย แบบส่วนจุดภาพ ข้อจำกัดของโมเดลการผสมเชิงเส้นเกิดขึ้นเมื่อมีจำนวนวัสดุพื้นผิวมากกว่าจำนวนสเปกตรัม ในกรณีผลคำตอบที่ได้จากปัญหาการหาอัตราส่วนผสมเชิงสเปกตรัมอาจจะไม่มีคำตอบเดียว ซึ่งหมายความว่ามีการผสมหลายแบบที่สามารถคำนวณเดียวกัน นอกจ้านี้แล้วการแยกส่วนผสมที่อาศัยการโมเดลการผสมแบบเชิงเส้นเพียงอย่างเดียว ยังให้ความสำคัญกับทุกๆ วัสดุพื้นผิวเท่าๆ กัน แต่ในทางปฏิบัติแล้วส่วนของชนิดอาจจะมีความน่าจะเป็นที่จะป่วยกันมากกว่าชนิดอื่น ค่าความน่าจะเป็นนี้สามารถที่จะนำรวมกับโมเดลการผสมแบบเชิงเส้นได้ดังนั้นงานวิจัยนี้จึงนำเสนอกระบวนการจำแนกชนิดแบบส่วนจุดภาพที่นำเข้าข้อมูลเบื้องต้นของอัตราส่วนวัสดุรวมกับโมเดลการผสมภาพแบบเชิงเส้น นอกจ้านี้ยังนำเข้าฟังก์ชันค่าความผิดพลาดแบบต่างมาใช้ในการวัดความคล้ายระหว่างค่าสเปกตรัมผสมที่ได้จากโมเดล และค่าที่ได้จากการสังเกต ผลการทดลองแสดงให้เห็นประสิทธิภาพของขั้นตอนวิธีที่นำเสนอซึ่งเพิ่มขึ้นอย่างมากจากวิธีที่อาศัยโมเดลการผสมเชิงเส้นเพียงอย่างเดียว

3.1 โมเดลภาพที่ใช้

กำหนดให้ Y เป็นภาพที่สังเกตได้ที่ความละเอียดต่ำที่มีขนาด $I \times J$ จุดภาพ ซึ่งแต่ละจุดภาพนั้นมากจากบริเวณจริงในบริเวณที่สนใจ ให้ X เป็นแผนที่จำแนกชนิดที่ความละเอียดสูงขนาด $P \times Q$ จุดภาพ เมื่อ $P > I$ และ $Q > J$. สมมติว่าที่ความละเอียดสูง ทุกๆ จุดภาพนั้นบวกรวมกันเป็นหนึ่งเดียว จุดภาพหนึ่งเป็นของวัสดุจำแนกชนิดเดียวกัน รูป

ที่ 1 แสดงตัวอย่างการจัดของจุดภาพของแผนที่จำแนกชนิดที่ความละเอียดสูง และภาพหลายสเกตตรัมที่ulatory ระดับของความละเอียด ที่ความละเอียดสูง (รูปที่ 1(ข)) 98.12% ของจุดภาพนั้นบวสุทธิ์ ที่ความละเอียดระดับกลาง (รูปที่ 1(ค)) ความละเอียดต่ำ 85.12% และ 75% ของจุดภาพนั้นบวสุทธิ์ตามลำดับ ดังนั้นที่จุดภาพขนาดเล็กจุดภาพส่วนใหญ่นั้นบวสุทธิ์ หรือมีเพียงไม่กี่สัดส่วนสามารถอยู่ในจุดภาพได้ อย่างไรก็ตามเมื่อขนาดจุดภาพของภาพหลายสเกตตรัมมีขนาดใหญ่ จุดภาพเกือบทั้งหมดจะผสม กำหนดให้ S นั้นแทนเขตของจุดภาพที่ความละเอียดต่ำทั้งหมดของภาพหลายสเกตตรัมซึ่งส่วนมากจะแทนในรูปของเวกเตอร์ $\mathbf{y}(s_j) \in \mathbb{R}^K$ สำหรับจุดภาพ s_j เมื่อ \mathbb{R} แทนเขตของจำนวนจริง(ค่าความเข้มสี) และ K คือจำนวนของสเกตตรัม จากที่แสดงไว้ก่อนหน้านี้ แต่ละจุดภาพของแผนที่ความละเอียดสูงนั้นสมมติให้เป็นจุดภาพบวสุทธิ์ ซึ่งหมายความว่าค่า $x(t)$ (ค่าปัจจุบัน) จะแทนวัสดุพื้นผิวเพียงหนึ่งชนิดเท่านั้น ดังนั้น $x(t) \in \{1, \dots, L\}$ มีค่าเป็นจำนวนเต็มซึ่งตรงกับวัสดุพื้นผิวแต่ละชนิดที่จุดภาพ t ในบริเวณจริงเมื่อ L คือจำนวนของวัสดุพื้นผิว



รูปที่ 1: ภาพหลายสเกตตรัม; (ก) ภาพจริง; (ข) ภาพที่อัตราส่วน 1:10; (ค) ภาพที่อัตราส่วน 1:50; และ (ง) ภาพที่อัตราส่วน 1:100

สมมติว่าที่ความละเอียดตា

วัสดุแต่ละชนิดมีสัญลักษณ์เชิงสเปกตรัมที่ไม่เหมือนกันโดยกำหนดให้

$\{\mu_1, \mu_2, \dots, \mu_L\} \in \Re^K$ เป็นสัญญาณเชิงสเปกตรัมของวัสดุชนิด 1, 2, ..., L การผสมของสเปกตรัมของวัสดุในจุดภาพนั้นก็คือ

$$\mathbf{r}(s_i) = \sum_{l=1}^L b_l(s_i) \mathbf{u}_l \quad (1)$$

เมื่อ $b_l(s)$ คืออัตราส่วนของวัสดุชนิด l ที่อยู่ในจุดภาพ s โดยที่ $\sum_{l=1}^L b_l(s_i) = 1$ และ $b_l(s_i) \geq 0$ ในที่นี่จะแทน

$\mathbf{b}(s_i) = [b_1(s_i) \ \dots \ b_L(s_i)]^T$ ว่าเป็นเวกเตอร์ของอัตราส่วนวัสดุ เมื่อ A^T คือค่าทวนส์โพสของ A จากสัญญาณรบกวนในขบวนการถ่ายภาพค่าสีที่แต่ละจุดภาพของภาพหล่ายสเปกตรัมจะเป็นผลรวมของค่าการผสมของสเปกตรัมและสัญญาณรบกวนซึ่งคือ

$$\mathbf{y}(s_i) = \mathbf{r}(s_i) + \mathbf{n}(s_i) \quad (2)$$

โดยที่ $n(s_i) \in \mathbb{R}^K$ และ $y(s_i) \in \mathbb{R}^K$ คือเกตเตอร์สัญญาณรบกวนและค่าสเปกตรัมผสมที่สังเกตได้ที่จุดภาพ s_i ตามลำดับ ในที่นี่สมมติให้สัญญาณรบกวนมีค่าฟังก์ชันความหนาแน่นของความน่าจะเป็น (PDF) $f_N(\mathbf{n})$ ซึ่งมีค่าเป็น

$$f_N(\mathbf{n}) = \exp(-E(\mathbf{n})) \quad (3)$$

โดยปกติแล้วส่วนของสัญญาณรูปกวนจะสมมติให้เป็นอิสระต่อกันระหว่างจุดภาพต่างๆ และมีรูปทรงเป็นเก้าส์

เพื่อความสะดวกจะไม่เขียน (s_i) ในสมการต่อจากนี้ การมีอยู่และไม่มีอยู่ของวัสดุพื้นผิวต่างๆนั้นก็เป็นอิสระต่อกัน เช่นกัน ซึ่งหมายความว่าส่วนผสมต่างๆสามารถเกิดขึ้นได้ในจุดภาพ กำหนดให้ N_b เป็นจำนวนวัสดุพื้นผิวที่อยู่ในจุดภาพ วัสดุเหล่านี้มีค่าอัตราส่วนที่ไม่เป็นศูนย์ในเวกเตอร์ส่วนผสม สำหรับกรณีที่ $N_b = 1$ จุดภาพนั้นบวสุทธิ์ ดังนั้นค่าอัตราส่วนของวัสดุหนึ่งจะเป็นหนึ่งจะมีค่าเป็น 1 ในขณะที่ ที่เหลือมีค่าเป็น 0 ดังนั้นค่าความนำจะเป็นของอัตราส่วนมีค่าเป็น

$$\Pr[\mathbf{b} = \mathbf{b}_l] = \Pr[\text{a pixel belongs to the } l\text{-th class}] \quad l = 1, 2, \dots, L \quad (4)$$

เมื่อ b_1 คือเวกเตอร์ความยาว L ซึ่งค่า ณ ตำแหน่งที่ i มีค่าเป็น 1 ในขณะที่เหลือมีค่าเป็น 0 เราสมมติให้ p_i คือค่าความน่าจะเป็นที่วัสดุชนิดที่ i อยู่ในจุดภาพ สมการที่ (4) จึงเขียนได้เป็น

$$\Pr[\mathbf{b} = \mathbf{b}_l] = \frac{p_l \prod_{m=1, m \neq l}^L (1 - p_m)}{Z} \quad l = 1, 2, \dots, L \quad (5)$$

เมื่อ Z คือค่าที่ทำให้ความจำเป็นมีค่าเป็นหนึ่ง สมการข้างบนจะให้ได้ก็ต่อเมื่อการมีอยู่หรือไม่มีอยู่ของวัสดุชนิดหนึ่ง ไม่มีผลกับการมีอยู่หรือไม่มีอยู่ของวัสดุชนิดอื่นๆ ข้อกำหนดนี้ทำให้วัสดุพื้นผิวที่จุดภาพข้างกันจะต้องเป็นอิสระต่อกัน ไม่เดลที่ซับซ้อนกว่านี้ที่ผลกราฟทบระหัวว่าวัสดุพื้นผิวสามารถนำมาวิเคราะห์ได้ อย่างไร

ก็ตามกระบวนการในการหาค่าที่เหมาะสมที่สุดจะซับซ้อนเกินกว่าที่จะนำมาใช้งานได้ในทางปฏิบัติ กำหนดให้ z_l เป็นตัวบ่งชี้ที่มีค่าเป็น 1 หรือ 0 ถ้ามีวัสดุที่ / อยู่ ($b_l > 0$) และ ไม่อยู่ ($b_l = 0$) ในจุดภาพตามลำดับ ดังนั้น $\sum_{l=1}^L z_l = N_b$ กำหนดให้ L_0 และ L_1 เป็นหมายเลขอของ z_l ที่ z_l มีค่าเป็น 0 และ 1 ตามลำดับ ดังนั้นค่า PDF มีค่าเป็น

$$\Pr[\mathbf{z}] = \frac{\prod_{l \in L_0} (1 - p_l) \prod_{r \in L_1} p_r}{Z} . \quad (6)$$

เมื่อ $\mathbf{z} = [z_1 \ z_2 \ \dots \ z_L]^T$ เป็นเวกเตอร์ตัวบ่งชี้ สำหรับเวกเตอร์ตัวบ่งชี้หนึ่งวัสดุพื้นผิวที่มีค่าตัวบ่งชี้เป็น 1 นั้นจะมีปรากฏอยู่ในจุดภาพ ซึ่งหมายความว่า วัสดุเหล่านี้ต้องมีค่าอัตราส่วนที่ไม่เป็นศูนย์ สมมติให้ค่า PDF ของวัสดุพื้นผิวที่มีค่าอัตราส่วนไม่เป็นศูนย์มีค่าการกระจายตัวแบบ Dirichlet [10]

$$f[\mathbf{b}|\mathbf{z}] = \frac{\Gamma\left(\sum_{l \in L_1} \alpha_l\right)}{\prod_{l \in L_1} \Gamma(\alpha_l)} \prod_{l \in L_1} b_l^{\alpha_l-1} \quad (7)$$

เมื่อ α_l คือพารามิเตอร์ Dirichlet ของวัสดุชนิดที่ / วัสดุที่มีค่า α_l ต้องมีความน่าจะเป็นที่จะผสมอยู่เพียง เท่านั้น ในการตั้งค่า α_l ให้ $\alpha_l = 1$ สำหรับ $l = 1, 2, \dots, L$ สมการที่ (7) ลดรูปเหลือ

$$f[\mathbf{b}|\mathbf{z}] = (N_b - 1)! \quad \text{if } z_l = I(b_l) \text{ for } l = 1, 2, \dots, L \quad (8)$$

เมื่อ $I(b_l) = 1$ ถ้า $b_l > 0$ และ $I(b_l) = 0$ ถ้า $b_l = 0$ ในกรณีนี้ค่าอัตราส่วนของวัสดุที่มีค่าอัตราส่วนไม่เป็น ศูนย์มีโอกาสที่จะมีค่าได้แก่ 0 และ 1 ตราบได้ที่ผลรวมมีค่าเป็น 1

จากโมเดลในสมการที่ (2) และ (3) PDF ของค่าสีที่สังเกตได้ s_i เมื่อรู้ค่าอัตราส่วนมีค่าเป็น

$$f(\mathbf{y}|\mathbf{b}) = f_{\mathbf{N}}(\mathbf{y} - M\mathbf{b}) \quad (9)$$

เมื่อ $M = [\mathbf{\mu}_1 \ \mathbf{\mu}_2 \ \dots \ \mathbf{\mu}_L]$ ค่า a posteriori PDF ของเวกเตอร์อัตราส่วนและเวกเตอร์ตัวบ่งชี้เมื่อรู้ค่าสีที่ สังเกตได้มีค่าเป็น

$$\begin{aligned} f(\mathbf{b}, \mathbf{z}|\mathbf{y}) &= \frac{f_{\mathbf{N}}(\mathbf{y} - M\mathbf{b}) f(\mathbf{b}, \mathbf{z})}{f_{\mathbf{Y}}(\mathbf{y})} \\ &= \frac{f_{\mathbf{N}}(\mathbf{y} - M\mathbf{b}) f(\mathbf{b}|\mathbf{z}) \Pr(\mathbf{z})}{f_{\mathbf{Y}}(\mathbf{y})} \\ &= \frac{e^{-E(\mathbf{y} - M\mathbf{b})}}{f_{\mathbf{Y}}(\mathbf{y})} \times \frac{\Gamma\left(\sum_{l \in L_1} \alpha_l\right)}{\prod_{l \in L_1} \Gamma(\alpha_l)} \prod_{l \in L_1} b_l^{\alpha_l-1} \frac{\prod_{l \in L_0} (1 - p_l) \prod_{r \in L_1} p_r}{Z} \end{aligned} \quad (9.1)$$

สำหรับ $N_b > 1$ และ

$$f(\mathbf{b}, \mathbf{z} | \mathbf{y}) = \frac{e^{-E(\mathbf{y} - M\mathbf{b})} \prod_{l \in L_0} (1 - p_l) \prod_{r \in L_1} p_r}{f_X(\mathbf{y}) Z} \quad (9.2)$$

สำหรับ $N_b = 1$

ค่า $a posteriori$ PDF ของ (9.1) ในการวิเคราะห์ดังนั้น เนพาะค่า $\alpha_i = 1$ จะถูกพิจารณาในรายงานนี้ และค่า $a posteriori$ PDF ลดเหลือ

$$f(\mathbf{b}, \mathbf{z} | \mathbf{y}) = \frac{e^{-E(\mathbf{y} - M\mathbf{b})} (N_b - 1) \prod_{l \in L_0} (1 - p_l) \prod_{r \in L_1} p_r}{f_y(\mathbf{y}) Z}. \quad (10)$$

3.2 คำตอบที่เหมาะสมที่สุด

ในรายงานนี้การแบ่งแยกแบบ maximum *a posteriori* (MAP) จะถูกนำมาใช้เพื่อหาค่าตอบของสมการที่ (10) เพื่อการแบ่งแยกแบบ MAP ให้ค่าความผิดพลาดต่ำสุดเมื่อเทียบกับวิธีอื่นๆ [11] ปัจจุบันที่จะถูกมองหาค่าตอบของสมการที่ (10) ก็ต่อเมื่อ

$$z_l = I(b_l), \quad b_l \geq 0, \quad (11)$$

၁၁၈

$$\sum_{l=1}^L b_l = 1 \quad \text{for } l = 1, 2, \dots, L \quad (12)$$

เป็นจริง เซต B จะเป็นเซตสมการที่ (11) และ (12) เป็นจริง ดังนั้นวัตถุประஸงค์ คือเลือกค่าอัตราส่วนและค่าตัวบ่งชี้ที่ทำให้สมการที่ (10) มีค่าสูงสุดหรือ

$$(\mathbf{b}^{opt}, \mathbf{z}^{opt}) = \arg \left\{ \max_{\mathbf{b}, \mathbf{z} \in P} [f(\mathbf{b}, \mathbf{z} | \mathbf{y})] \right\}. \quad (13)$$

ส่วนของ $f_Y(y)$ ของสมการที่ (10) นั้นอิสระจากค่า (b, z) และส่วนนี้จะไม่นำมาวิเคราะห์ ดังนั้นสมการที่ (13) กลายเป็น

$$\begin{aligned}
(\mathbf{b}^{opt}, \mathbf{z}^{opt}) &= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \log[(N_b - 1)!] - \sum_{l \in L_0} \log[1 - p_l] - \sum_{l \in L_1} \log[p_l] \right] \right\} \\
&= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \log[(N_b - 1)!] - \sum_{l=1}^L (1 - z_l) \log[1 - p_l] - \sum_{l=1}^L z_l \log p_l \right] \right\} \\
&= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \log[(N_b - 1)!] + \sum_{l=1}^L z_l \log \left[\frac{1 - p_l}{p_l} \right] + \sum_{l=1}^L \log[1 - p_l] \right] \right\}
\end{aligned} \tag{14}$$

ສ່ວນສຸດທ້າຍໃນສມກາຣສາມາດນຳອອກໄດ້ເພວະຄ່າຂອງມັນໄມ້ເຂົ້າກັບ (\mathbf{b}, \mathbf{z}) ດັ່ງນັ້ນສມກາຣທີ (14) ລດເໜືອ

$$\begin{aligned}
(\mathbf{b}^{opt}, \mathbf{z}^{opt}) &= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \log[(N_b - 1)!] + \sum_{l=1}^L z_l \log \left(\frac{1 - p_l}{p_l} \right) \right] \right\} \\
&= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1 - p_l}{p_l} \right) \right] \right\}.
\end{aligned} \tag{15}$$

ຄ່າ $C_l = \log \left(\frac{1 - p_l}{p_l} \right)$ ຈະຖູກເຮີຍກວ່າຝຶກໜ້າການຂອງຄ່າອັດຕາສ່ວນ (class proportion cost function) ຂອງ

ວັດຖຸນິດ / ສ່ວນ $E(\mathbf{y} - M\mathbf{b})$ ໃນສມກາຣທີ (15) ວັດຄວາມຕ່າງຮະໝວງຄ່າເວັກເຕອວີ່ສັງເກົດໄດ້ \mathbf{y} ກັບຄ່າທີ່ໄດ້ຈາກກາຣົມຕາມມີໂຄດ ມີໂຄດ $M\mathbf{b}$ ດັ່ງນັ້ນຈະເຮີຍກວ່າສ່ວນນີ້ວ່າເປັນຄ່າຝຶກໜ້າການຂອງຄວາມຝຶດພລາດ (error cost function) ມີໂຄດທີ່ນີ້ມີກີດຂຶ້ນເມື່ອເວັກເຕອວີ່ສະບູບາເລີກຮັບກວນມີຄ່າເປັນ multivariate Gaussian ຄ່າ error cost function ໃນກຣົນນີ້ມີຄ່າເປັນ

$$E(\mathbf{y} - M\mathbf{b}) = \frac{1}{2} \left[(\mathbf{y} - M\mathbf{b})^T \Sigma^{-1} (\mathbf{y} - M\mathbf{b}) + K \log(2\pi) + \log|\Sigma| \right]$$

ເມື່ອ Σ ເປັນຄ່າ covariant matrix ຂອງສະບູບາເລີກຮັບກວນ ສ່ວນທີ່ 2 ແລະ 3 ຂອງສມກາຣຂ້າງຕົ້ນໄມ້ເຂົ້າກັບຄ່າຂອງ \mathbf{b} ດັ່ງນັ້ນສາມາດເອົາອອກທຳໄໜ້ເໜືອ

$$E(\mathbf{y} - M\mathbf{b}) = \frac{1}{2} (\mathbf{y} - M\mathbf{b})^T \Sigma^{-1} (\mathbf{y} - M\mathbf{b}). \tag{16}$$

ສມກາຣຂ້າງຕົ້ນເປັນທີ່ຮູ້ຈັກກັນໃນຫຼື້ອ Mahalanobis distance [12] ຄວາມຖູກຕ້ອງຂອງມີໂຄດຂ້າງຕົ້ນນີ້ນັ້ນກັບກາຣປະມວລຄ່າ covariance matrix ທີ່ຖູກຕ້ອງ ສື່ງຈາເປັນຕ້ອງໜາຈາກຈຳນວນຕ້ວອຍ່າງເປັນຈຳນວນນາກ (ປະມານ 10 ຂອງຈຳນວນສເປັກຕົວນັ້ນ 10K) ສື່ງອາຈະຍາກຕ່ອກຮາໃນທາງປົງປັດ ດັ່ງນັ້ນກາຣວັດຄວາມຕ່າງແບບອື່ນຈຶ່ງຖູກນຳມາໃໝ່ໃນງານນີ້ນີ້ສື່ງຄືອ

$$E_p \left(\mathbf{y} - \sum_{l=1}^L b_l \mathbf{u} \right) = g_p \left(\|\mathbf{y} - M\mathbf{b}\|_p \right) \quad (17)$$

เมื่อ $\|\cdot\|_p$ แทนค่า norm ที่ p และ g_p เป็นฟังก์ชันที่มีค่าเพิ่มขึ้น ในงานชิ้นนี้จะศึกษาเฉพาะค่า norm ที่ 1 2 และอนันต์ เท่านั้น เพราะปัญหาการหาค่าที่เหมาะสมท่าสุดสามารถจัดให้อยู่ในรูปของปัญหาการหาค่าเหมาะสมที่สุดแบบมาตราฐานได้ และสามารถนำเอกสารวนการที่มีอยู่มาใช้ได้ ในการนี้ของอนันต์ที่ 1 กำหนดให้

$$E_1(\mathbf{y} - M\mathbf{b}) = g_1 \left(\sum_{k=1}^K e_k \right) = \beta \sum_{k=1}^K e_k. \quad (18)$$

เมื่อ e_k คือค่าความแตกต่างสมบูรณ์ของ $\mathbf{y} - M\mathbf{b}$ ที่สเปกตรัมที่ k β คือค่าสัมประสิทธิ์น้ำหนัก ในที่นี่ $g_1(x) = x$ ปัญหาการหาค่าเหมาะสมที่สุดคือ

$$(\mathbf{b}^{opt}, \mathbf{z}^{opt}) = \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[\beta \sum_{k=1}^K e_k - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \right\}. \quad (19)$$

ค่าต่างๆภายในวงเล็บดูเหมือนจะเป็นเชิงเส้น ด้วยการจัดรูปบางส่วนสมการที่ (19) สามารถแปลงเป็นปัญหาการเชิงเส้นแบบผสมจำนวนจริง (mixed-integer linear program) ที่มีข้อจำกัดเป็นเชิงเส้น เพราะปัญหานี้ได้รับการศึกษาเป็นอย่างดีทำให้มีวิธีการหาคำตอบที่รวดเร็วอยู่มาก

สำหรับกรณีที่สัญญาณรบกวนมีมาจากการคนละสเปกตรัมนั้นอิสระต่อกันและไม่ลักษณะเหมือนกัน ค่า covariance matrix มีค่าเป็น $\Sigma = \sigma^2 I_K$ เมื่อ I_K คือเมตริกซ์เอกลักษณ์ขนาด $K \times K$ ในกรณีนี้กำหนดค่า error function เป็น

$$E_2(\mathbf{y} - M\mathbf{b}) = g_2 \left(\frac{1}{2\sigma^2} \|\mathbf{y} - M\mathbf{b}\|_2^2 \right) = \beta^2 \sum_{k=1}^K e_k^2. \quad (20)$$

จะเห็นว่า $g_2(x) = x^2$ การหาค่าเหมาะสมที่สุดของ (15) เขียนเป็น

$$(\mathbf{b}^{opt}, \mathbf{z}^{opt}) = \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[\beta^2 \sum_{k=1}^K e_k^2 - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \right\} \quad (21)$$

สมการข้างต้นอยู่ในรูปสมการกำลังสอง ดังนั้นปัญหาในสมการที่ (21) ก็คือปัญหาสมการกำลังสองแบบผสมจำนวนเต็ม

ในกรณีสุดท้ายค่า norm แบบอนันต์ถูกนำมาใช้ และค่า error cost function ถูกกำหนดเป็น

$$E_\infty(\mathbf{y}, \mathbf{b}) = g_\infty \left(\max_{k=1, \dots, K} [e_k] \right) = g_1 \left(\max_{k=1, \dots, K} [e_k] \right) = \beta_\infty \max_{k=1, \dots, K} [e_k]. \quad (22)$$

ให้ e เป็นค่าความผิดพลาดสมบูรณ์จากทุกสเปกตรัม หรือ $e = \max_{k=1, \dots, K} [e_k]$ ปัญหาการหาค่าเหมาะสมที่สุดจาก (15) เขียนได้เป็น

$$(\mathbf{b}^{opt}, \mathbf{z}^{opt}) = \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[\beta e - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \right\}. \quad (23)$$

ເທົ່ານີ້ໃນການອົບປະກົດທີ 1 ສມກາຮ້າງບນເປັນເຊີງເສັ້ນ ແລະສາມາດອັດໄຫ້ອູ້ໃນຮູບປຸງຂອງປ່ານຫາເຊີງເສັ້ນແບບຜສມ
ຈຳນວນເຕີມ

3.3 ກະບວນກາຮ້າງຫາຄ່າເໝາະທີ່ສຸດ

ໃນທັງໝົດນີ້ ປ່ານຫາກາຮ້າງຫາຄ່າເໝາະທີ່ສຸດທີ່ໄດ້ນຳເສັນອີ້ຫ້ວ້າຂອກອນໜ້ານີ້ ຈະຖືກຈັດຮູບປຸງໄຫ້ອູ້ໃນຮູບປຸງຂອງປ່ານຫາກາຮ້າງຫາຄ່າເໝາະສົມທີ່ສຸດທີ່ເປັນມາຕຽບຮູ່ອູ້ ໄດ້ແກ່ໂປຣແກຣມຜສມຈຳນວນຈົງແບບເຊີງເສັ້ນ ແລະກຳລັງສອງ ກາຮ້າງທຳເໜັນນີ້ສັງລຸໃຫ້ສາມາດນຳເຄົກກະບວນກາຮ້າທີ່ມີອູ້ແລ້ວມາໃໝ່ຫາຄ່າຕອບ ໃນກາຮ້າງທີ່ກິ່ານີ້ຂ້ອງຈຳກັດທີ່ໃຫ້ອັດຈາກສ່ວນຂອງວັດຖຸໄມ້ຕິດລົບແລະຮວມກັນເປັນຫົ່ງທີ່ຖືກນຳເສັນອີ້ນ [9] ຈະຖືກນຳມາໃໝ່ກຳນົດເຊືດ B ໃນສມກາຮ້າທີ່ (15) ຜຶ່ງທຳໃຫ້ເຊືດ B ດືອນເຊືດຂອງເກຣເຕອຣົກຕາສ່ວນທີ່ເປັນຕາມສມກາຮ້າງໜ້າງລ່າງ

$$\begin{aligned} \sum_{l=1}^L b_l &= 1 \\ b_l &\geq 0 \quad ; l = 1, 2, \dots, L \end{aligned} \tag{24}$$

ກາຮ້າງທີ່ຈະເຈີນຈາກກຣັນທີ່ຄ່າຝັ້ງກໍ່ນັ້ນຄວາມຜິດພລາດເປັນແບບຄ່ານອົມທີ່ 1 ແລະຕາມດ້ວຍຄ່ານອົມທີ່ 2 ແລະອັນນົດຕາມລຳດັບ

ຝັ້ງກໍ່ນັ້ນຄວາມຜິດພລາດແບບນອົມທີ່ 1

ກາຮ້າງທີ່ຄ່ານອົມທີ່ 1 ທີ່ກຳນົດໃນສມກາຮ້າທີ່ (19) ມາໃໝ່ທຳໃຫ້ປ່ານຫາກາຮ້າຄ່າເໝາະທີ່ສຸດກລາຍເປັນ

$$P_1 = \begin{cases} \min_{\mathbf{z}, \mathbf{b}} \left[\beta \sum_{k=1}^K e_k - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \\ \text{such that} \\ \begin{cases} b_l \geq 0; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l = I(b_l); l = 1, 2, \dots, L \end{cases} \end{cases} \tag{25}$$

ຕາມທີ່ໄດ້ກລ່າວໄວ້ເບື້ອງຕົ້ນທີ່ຄ່າ $z_l = I(b_l)$ ແລະ $b_l \in [0, 1]$ ທຳເກີດຕ່າງໆ b_l ນັ້ນຈະຖືກຈຳກັດໂດຍ z_l ທີ່ຈະ $0 \leq b_l \leq z_l$ ນອກຈາກນີ້ຄ່າຄວາມຜິດພລາດທີ່ສະເປັດຕົວທີ່ k ທີ່ຈະ e_k ຍ່ອມເປັນ $-hv0edyf-v'$ $\left| y_k - \sum_{l=1}^L b_l \mu_{l,k} \right|$ ດັ່ງນັ້ນ

ຈະໄດ້ວ່າ $-e_k \leq y_k - \sum_{l=1}^L b_l \mu_{l,k} \leq e_k$ ເນື່ອນໍາຂໍອເທົຈຈິງເລັ້ນນີ້ມາໄສລົງໃນສົມກາກົກໍ (25) ປັບຫາກວາຫາກ່າວ
ເໝາະທີ່ສຸດສາມາດເຂົ້າຢືນໄດ້ເປັນ

$$P_1 = \begin{cases} \min_{\mathbf{b}} \left[\beta_1 \sum_{k=1}^K e_k - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \\ \text{such that} \\ -e_k \leq y_k - \sum_{l=1}^L b_l \mu_{l,k} \leq e_k, \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases} \quad (26)$$

ກໍານົດໃຫ້ r_l ມີຄ່າເປັນໜຶ່ງ ດ້ວຍຢ່າງນ້ອຍມີວັດດຸດູ່ / ຈົນທີ່ມີຄ່າອັດຕາສ່ວນທີ່ໄມ່ເປັນຄູນຍື່ນຈຸດກາພທີ່ສົນໃຈແລະ
ກໍານົດໃຫ້ເປັນຄູນຍື່ນດ້ານໜຶ່ງນີ້ ດັ່ງນີ້ຈະໄດ້ວ່າ $\sum_{r=1}^{N_b-1} \log r = \sum_{l=2}^L \log(l-1)r_l$ ປັບຫາກວາຫາກ່າວເໝາະທີ່ສຸດ
ໃນ (26) ກລາຍເປັນ

$$P_1 = \begin{cases} \min_{\mathbf{b}} \left[\beta \sum_{k=1}^K e_k - \sum_{l=2}^L \log(l-1)r_l + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \\ \text{such that} \\ -e_k \leq y_k - \sum_{l=1}^L b_l \mu_{l,k} \leq e_k, \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L z_l \geq lr_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases} \quad (27)$$

ດ້ວຍການກໍານົດໃຫ້ $\mathbf{e} = [e_1 \ \dots \ e_K]^T$ $\mathbf{r} = [r_1 \ \dots \ r_L]^T$ $\mathbf{g} = [0 \ \log(1) \ \dots \ \log(L-1)]^T$ ແລະ
 $\mathbf{c}_1 = \left[\log \left(\frac{1-p_1}{p_1} \right) \ \dots \ \log \left(\frac{1-p_L}{p_L} \right) \right]$ ປັບຫາຂໍ້າງບນສາມາດເຂົ້າຢືນໃນຄູປ່າມເຕີກ້າໄດ້ເປັນ

$$P_1 = \begin{cases} \min_{\mathbf{x}_1} [\mathbf{w}_1^T \mathbf{x}_1] \\ \text{such that} \\ A_1 \mathbf{x}_1 \leq \mathbf{m}_1 \\ D_1 \mathbf{x}_1 = 1, \\ \mathbf{x}_1 \geq 0, \mathbf{x}_1 \leq 1 \end{cases} \quad (28)$$

ເມື່ອ

$$\mathbf{x}_1 = \begin{bmatrix} \mathbf{b} \\ \mathbf{z} \\ \mathbf{r} \\ \mathbf{e} \end{bmatrix},$$

ແລະ

$$\mathbf{w}_1 = \begin{bmatrix} \mathbf{0}_L \\ \mathbf{c}_1 \\ -\mathbf{g} \\ \beta \mathbf{1}_L \end{bmatrix}$$

ເປັນແກເຕອງໝາດ $3L+K$ ເມຕິກ້າຂໍອຈຳກັດແບບໄໝເທົກນ A_1 ແນວດ $(2L+2K) \times (3L+K)$ ມີຄ່າເປັນ

$$A_1 = \begin{bmatrix} -M & O_{K,L} & O_{K,L} & -I_K \\ M & O_{K,L} & O_{K,L} & -I_K \\ I_L & -I_L & O_{L,L} & O_{L,K} \\ O_{L,L} & -P_{L,L} & W_L & O_{L,K} \end{bmatrix},$$

ເມື່ອ $O_{S,T}$ ເປັນເມຕິກ້າສູນຍົນນາດ $S \times T$ $P_{S,T}$ ເປັນເມຕິກ້າ 1 ແນວດ $S \times T$ ແລະ W_L ເປັນເມຕິກ້າແນວທະແຍງທີ່ມີຄ່າແນວທະແຍງເປັນ 1, 2, ..., L ຕາມລຳດັບ ອ້ອງ $\text{diag}(W) = [1 \ 2 \ \dots \ L]$ ເມຕິກ້າຂໍອຈຳກັດແບບເທົກນ D_1 ແນວດ $1 \times (3L+K)$ ມີຄ່າເປັນ

$$D_1 = \begin{bmatrix} \mathbf{1}_L^T & \mathbf{0}_{2L+K}^T \end{bmatrix}.$$

ເກເຕອງໝາດ c_1 ແນວດ $2L+2K$ ມີຄ່າເປັນ

$$\mathbf{m}_1 = \begin{bmatrix} -\mathbf{y} \\ \mathbf{y} \\ \mathbf{0}_L \\ \mathbf{0}_L \end{bmatrix}.$$

ຈະເຫັນໄດ້ວ່າສມການທີ (28) ອູ້ໃນຮູບຂອງປັບປຸງທີ່ໂປ່ງແກ່ມາເຊີ້ນແບບຜສມຈຳນວນເຕີມ

ຝັກໝັ້ນຄວາມພິດພລາດແບບນອ້ມທີ 2

ໃນກ້າວຂໍ້ອນໃດແທນຄ່ານອຮນທີ່ 1 ດ້ວຍຄ່ານອຮນທີ່ 2 ທຳໄໜ້ປັບປາກລາຍເປັນ

$$P_2 = \begin{cases} \min_{\mathbf{b}, \mathbf{z}} \left[\beta_2^2 \sum_{k=1}^K e_k^2 - \sum_{l=2}^L \log(l-1) r_l + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \\ \text{such that} \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L z_l \geq l r_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l, r_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases}, \quad (29)$$

ສົ່ງສາມາດເຂົ້າມີມາແຕ່ເປັນ

$$P_2 = \begin{cases} \min_{\mathbf{x}_2} \left[\frac{1}{2} \mathbf{x}_2^T H \mathbf{x}_2 + \mathbf{w}_2^T \mathbf{x}_2 \right] \\ \text{such that} \\ A_2 \mathbf{x}_2 \leq \mathbf{m}_2, \\ D_2 \mathbf{x}_2 = 1, \\ \mathbf{x}_2 \geq 0, \mathbf{x}_2 \leq 1 \end{cases}. \quad (30)$$

ໃນທີ່ນີ້ມາແຕ່ເປັນ H ເວກເຕອງ \mathbf{w}_2 ແລະ \mathbf{b}_2 ມີຄ່າເປັນ

$$H = \begin{bmatrix} 2\beta^2 M^T M & O_{L,2L} \\ O_{2L,L} & O_{2L,2L} \end{bmatrix}$$

$$\mathbf{x}_2 = \begin{bmatrix} \mathbf{b} \\ \mathbf{z} \\ \mathbf{r} \end{bmatrix},$$

ແລະ

$$\mathbf{w}_2 = \begin{bmatrix} -2\mathbf{y}^T M \\ \mathbf{c}_1 \\ -\mathbf{g} \end{bmatrix}$$

ລຳດັບ ສ່ວນມາແຕ່ເປັນຂໍ້ອຈາກດີມີຄ່າເປັນ

$$A_2 = \begin{bmatrix} I_L & -I_L & O_{L,L} \\ O_{L,L} & -P_{L,L} & W_L \end{bmatrix}$$

ແລະ

$$D_2 = \begin{bmatrix} \mathbf{1}_L^T & \mathbf{0}_{2L}^T \end{bmatrix}.$$

ส่วนแรกเตอร์ข้อจำกัดคือ

$$\mathbf{m}_2 = [\mathbf{0}_{2L}]$$

ปัญหาการหาค่าเหมาะสมที่สุดในสมการที่ (30) อยู่ในรูปของโปรแกรมกำลังสองแบบผสมจำนวนเต็ม ถึงแม่ว่าจะมีกระบวนการในการหาคำตอบของโปรแกรมกำลังสองแบบผสมจำนวนเต็ม ปัญหานี้ก็ยังเป็นปัญหาที่ยากต่อการแก้หาคำตอบหรือเป็นแบบ NP hard ดังนั้นอัตราการลู่เข้าของกระบวนการที่ใช้หาคำตอบของ (30) อาจจะช้าเกินกว่าที่จะนำมาใช้จริงได้ อย่างไรก็ตามปัญหานี้ใน (28) ก็เป็นปัญหาแบบ hard เช่นกัน แต่โปรแกรมเชิงเส้นแบบผสมจำนวนเต็มได้รับการศึกษามาเป็นอย่างดี ดังนั้นคำตอบของ of (28) สามารถหาได้ไม่ยากนัก

พงกชั้นความผิดพลาดแบบนอร์มที่อนันต์

สำหรับกรณีนี้ปัญหาสามารถเขียนได้เป็น

$$P_{\infty} = \begin{cases} \min_{\mathbf{b}, \mathbf{z}} \left[\beta e_{\infty} - \sum_{l=2}^L \log(l-1)r_l + \sum_{l=1}^L z_l \log\left(\frac{1-p_l}{p_l}\right) \right] \\ \text{such that} \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L z_l \geq l r_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases}, \quad (31)$$

เมื่อ e_{∞} ค่าขนาดมากที่ของวงเตอร์ $\mathbf{y} - \sum_{l=1}^L b_l \mathbf{\mu}_l$ ดังนั้นจะได้ว่า $-e_{\infty} \leq y_k - \sum_{l=1}^L b_l \mu_{lk} \leq e_{\infty}$ สำหรับค่า $k = 1, \dots, K$ ปัญหาการหาค่าเหมาะสมที่สุดใน (31) กล้ายเป็น

$$P_{\infty} = \begin{cases} \min_{d_q, \mathbf{z}, C_2^A} \left[\beta_{\infty} e_q - \sum_{l=2}^L \log(l-1) r_l + \sum_{l=1}^L z_l \log\left(\frac{1-p_l}{p_l}\right) \right] \\ \text{such that} \\ -e_{\infty} \leq \mathbf{y} - M\mathbf{b} \leq e_{\infty} \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L z_l \geq lr_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases}. \quad (32)$$

ສື່ງເງື່ອນໃນຮູບປາມເຕີກຫຼືໄດ້ເປັນ

$$P_{\infty} = \begin{cases} \min_{\mathbf{x}_{\infty}} [\mathbf{w}_{\infty}^T \mathbf{x}_{\infty}] \\ \text{such that} \\ A_{\infty} \mathbf{x}_{\infty} \leq \mathbf{m}_{\infty}, \\ D_{\infty} \mathbf{x}_{\infty} = 1 \\ \mathbf{x}_{\infty} \geq 0 \end{cases}. \quad (33)$$

ແນວ

$$\mathbf{x}_{\infty} = \begin{bmatrix} \mathbf{b} \\ \mathbf{z} \\ \mathbf{r} \\ e_{\infty} \end{bmatrix},$$

ແລະ

$$\mathbf{w}_{\infty} = \begin{bmatrix} \mathbf{0}_L \\ \mathbf{c}_1 \\ -\mathbf{g} \\ \beta \end{bmatrix}.$$

ສ່ວນເມຕີກຫຼືຂໍອຈຳກັດແບບໄໝ່ເທົກນີ້ຄືອ

$$A_{\infty} = \begin{bmatrix} -M & O_{K,L} & O_{K,L} & -\mathbf{1}_K \\ M & O_{K,L} & O_{K,L} & -\mathbf{1}_K \\ I_L & -I_L & O_{L,L} & \mathbf{0}_L \\ O_{L,L} & -P_{L,L} & W_L & \mathbf{0}_L \end{bmatrix},$$

ໃນກຣັນນີ້ເມຕີກຫຼືຂໍອຈຳກັດແບບເທົກນ D_{∞} ພາດ $1 \times (3L + 1)$ ມີຄ່າເປັນ

$$D_{\infty} = \begin{bmatrix} \mathbf{I}_L^T & \mathbf{0}_{2L+1}^T \end{bmatrix}.$$

ຄ່າເວກເຕອງຂໍອຈຳກັດ \mathbf{m}_{∞} ຂາດ $2L+2K$ ມີຄ່າເປັນ

$$\mathbf{m}_{\infty} = \begin{bmatrix} -\mathbf{y} \\ \mathbf{y} \\ \mathbf{0}_{2L} \end{bmatrix}.$$

ສັງເກດໄດ້ວ່າ (33) ມີຈຳນວນຂໍອຈຳກັດທ່າກັນໃນ (28) ແຕ່ຈຳນວນດ້ວຍແປຣມືນໍ້ອຍກວ່າ $K-1$ ຂອງ (28) ຂໍ້ສັງເກດນີ້ທຳໄໝປັບຫາກາຫາຄ່າເໜມະທີ່ສຸດໃນ (33) ນັ້ນຂັບຂໍອນນໍ້ອຍກວ່າໃນ (28) ໂດຍເພາະຍ່າງຍິ່ງໃນກາພຄ່າຍແບບ Hyperspectral

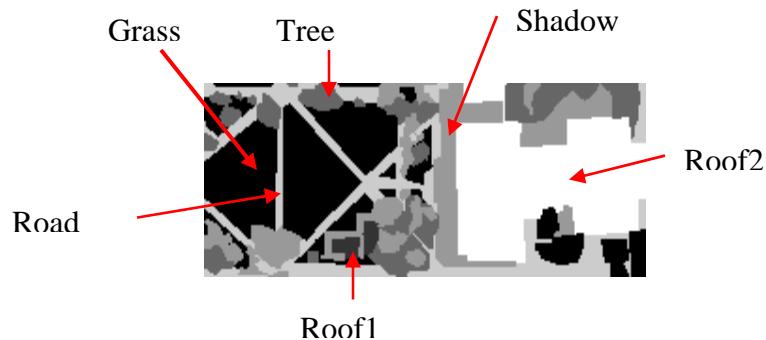
3.4 ກະບວນກາທດລອງ

ໂດຍກາທດລອນນັ້ນຄຸກແປ່ງເປັນສອງກາທດລອງໂດຍກາທດລອງທີ່ 1 ໂຄງກາຈະໃຊ້ກາພທີ່ຄ່າຍເຫັນເຊື່ອ **IKONOS** ທີ່ປະກອບດ້ວຍກາພ Multispectral (ຮູບທີ່ 2(a)) ແລະ ກາພ Panchromatic (PAN)(ໃນຮູບທີ່ 2(b)) ໂດຍມີຄວາມລະເອີຍດ 4 ເມຕຣ ແລະ 1 ເມຕຣ ຕາມລຳດັບ ເພວະກາພ PAN ມີຄວາມລະເອີຍດມາກກວ່າຈຶ່ງຄຸກນຳມາສ້າງແພນທີ່ອ້າງອີງ (reference map) ຜຶ່ງໄດ້ຄຸກແສດງໄວ້ໃນຮູບທີ່ 3 ໂດຍແປ່ງເປັນ 6 ຂົນວັດຖຸປະກອບດ້ວຍ ເງາ (shadow), ຜູ້ໜ້າ (grass), ຕັ້ນໄໝ້ (tree), ດັນ (road), ລັງຄາເຕັນທີ່ (roof1) ແລະ ລັງຄາຕືກ (roof2) ໂດຍເຮັງຈາກສີດຳສຸດໄປສູ່ສີຂາວສຸດ ໂດຍທຸກພິກເໜລໃນແພນທີ່ອ້າງອີງນັ້ນສມມຕີໄທ້ເປັນພິກເໜລທີ່ບົຣຸຖ໌ ຜຶ່ງໝາຍຄວາມວ່າບົຣຸເວັນຈິງທີ່ພິກເໜລນັ້ນອູ້ປະກອບດ້ວຍໜົນວັດຖຸນິດເດືອນເທົ່ານັ້ນ ສ່ວນຮູບທີ່ 4 ແສດງກາພອັຕວາສ່ວນຂອງວັດຖຸແຕ່ລະໜົດໂດຍຄ່າສີດຳແສດງວ່າໄມ້ວັດຖຸນິດນັ້ນອູ້ໃນຊຸດກາພເລີຍ ໃນຂະນະທີ່ສີຂາວແສດງວ່າມີອູ່ມາກ

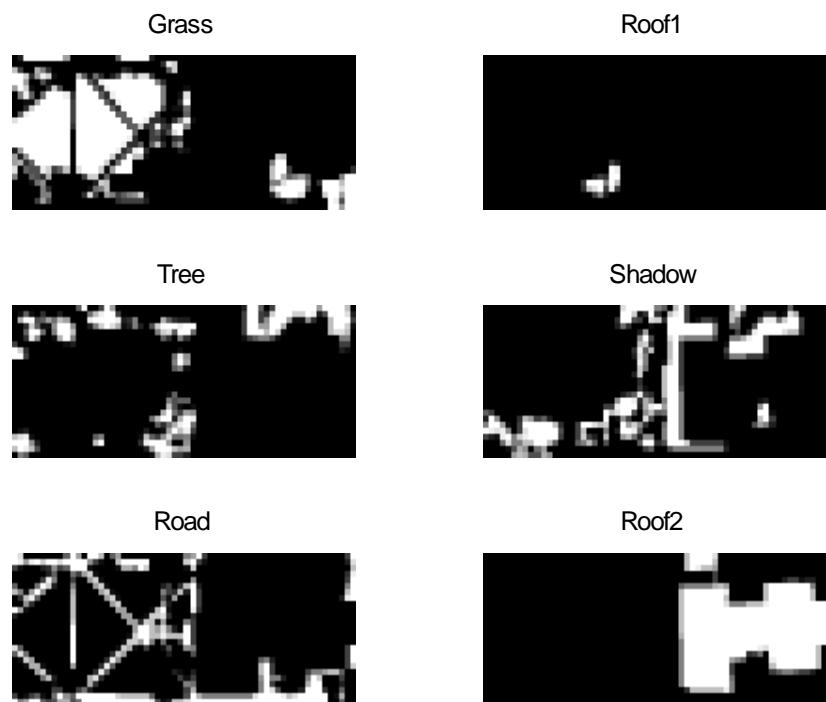
(a)

(b)

ຮູບທີ່ 2 : ກາພ IKONOS ຂອງ ມหาວິທາລະໝາດ Syracuse University ມລວິສູນີວຍອົບປະເທີສະຫະເມົລືກາ ; (a) ກາພ Multispectral ໂດຍໃຊ້ສີເທິຍມ (ຟ້າ: 0.45 - 0.52 μm , ເຂົ້າວ: 0.52 - 0.60 μm , ແດງ: 0.76 - 0.90 μm) ທີ່ຄວາມລະເອີຍດ 4 ເມຕຣ (b) ກາພ PAN ທີ່ຄວາມລະເອີຍດ 1 ເມຕຣ



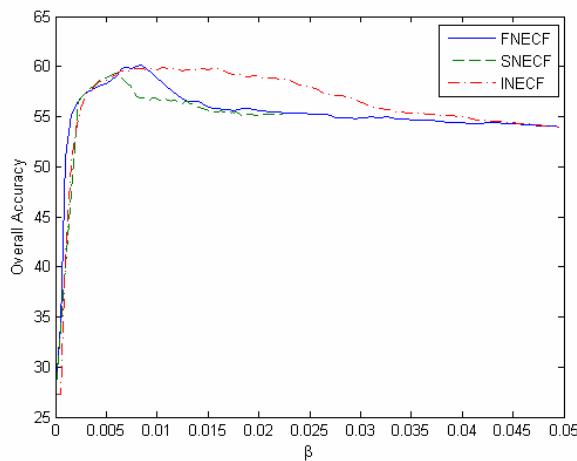
รูปที่ 3: ภาพอ้างอิงที่ ความละเอียด 1 เมตรของมหาวิทยาลัย Syracuse University



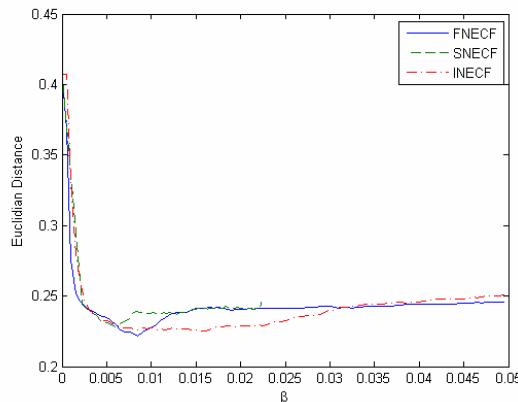
รูปที่ 4 ภาพสัดส่วนของแต่ละวัสดุชนิด

หลังจากนั้นนำเอาวิธีการแบ่งแยกแบบส่วนจุดภาพที่ได้นำเสนอในงานชิ้นนี้โดยใช้ค่าฟังก์ชันความผิดพลาดแบบอร์มที่ 1, 2 และอนันต์มาใช้สำหรับค่า β ต่างๆกัน ในงานนี้ได้ใช้วิธีการวัดประสิทธิภาพอยู่ 2 แบบคือ Euclidian distance [13] และ fuzzy error matrix ซึ่งวัดความเหมือนและต่างของแผนที่ ที่สร้างและค่าจริง [14-15] ค่า Euclidian distance ที่ต่ำงบวกกว่าแผนที่ ที่ผลิตขึ้นมาค่าเหมือนกับค่าจริง สำหรับ fuzzy error

matrix ค่าความถูกต้องโดยรวมเป็น 1 หมายถึงการเหมือนกันโดยสมบูรณ์ระหว่างแผนที่กับค่าจริงในขณะที่ค่าเป็นศูนย์บ่งบอกถึงความไม่เหมือนกันเลย ค่าความถูกต้องของ fuzzy error matrix ให้ค่าขอบจำกัดด้านบนของเปอร์เซ็นต์ความถูกต้องเมื่อแผนที่ถูกสร้างที่ความลับเยื่อดูง (ทุกจุดภาพนั้นบิสุทธิ์) ค่าความถูกต้องของ fuzzy error matrix และ Euclidian distance กับ β ค่าต่างๆแสดงในรูปที่ 5 และ 6 ตามลำดับ ค่า β ที่เหมาะสมที่สุดสำหรับ fuzzy error matrix คือค่า 0.0085 0.0059 และ 0.0105 ในขณะที่ค่าเดียวกันที่สุดสำหรับ Euclidian distance คือค่า 0.0085 0.0059 และ 0.0155 ในกรณีค่าอนันต์ สำหรับกรณีค่าอนอร์มที่ 1 และ 2 วิธีการวัดประสิทธิภาพทั้งสองมีค่า β ที่เหมาะสมเป็นค่าเดียวกัน แต่สำหรับกรณีค่าอนอร์มอนันต์ค่าที่เหมาะสมที่สุดนั้นไม่เท่ากัน นอกจากนี้ยังสังเกตได้ว่าค่าพังก์ชันค่าความผิดพลาดแบบอนอร์มที่ 1 (FNECF) ให้ประสิทธิภาพดีที่สุด คือมากกว่าค่าอนอร์มที่ 2 และ อนันต์ (SNECF และ INECF) นอกจากนี้ยังได้ทำการเทียบประสิทธิภาพกับวิธีแบบของ Settle และ Drake [16] และของ Chang [9]. ในตารางที่ III พบว่าวิธีที่นำเสนอได้ประสิทธิภาพที่ดีกว่าเป็นอย่างมาก



รูปที่ 5 ค่าความถูกต้องของวิธีการที่นำเสนอที่ค่า β ต่างๆกัน.



รูปที่ 6 ค่า Euclidean distance measure ของวิธีการที่นำเสนอที่ค่า β ต่างๆกัน.

ตารางที่ 3 ค่าประสิทธิภาพสูงสุดของวิธีที่นำเสนอ เทียบกับวิธีของ Settle และ Drake [16] และของ Chang [9]

Method	Euclidian Distance	Overall Accuracy
FNECF	0.2218	0.60176
SNECF	0.2285	0.59277
INECF	0.2253	0.59862
LMM	0.2509	0.5238

4. สรุป

วิธีการจำแนกชนิดแบบส่วนจุดภาพโดยอาศัยโมเดลการผสานแบบเชิงเส้นที่นำเสนอข้อมูลเบื้องต้นของอัตราส่วนวัสดุมาใช้ได้ถูกนำมาเสนอในรายงานนี้ ไม่เดลสมมติให้ค่าสเปกตรัมสีที่สังเกตุในแต่ละจุดภาพ เป็นอัตราส่วนผสานของสเปกตรัมสีบิสุทิชของวัสดุแต่ละชนิดที่อยู่ในจุดภาพ อัตราส่วนนี้ได้ถูกอธิบายด้วยการแจกแจงแบบ Dirichlet นอกจากนี้การมีอยู่หรือไม่มีอยู่ของวัสดุยังถูกอธิบายภายใต้ข้อกำหนดของการเป็นอิสระต่อกัน เชิงเส้น จากโมเดลนี้ฟังก์ชันราคาสองชนิดได้ถูกนำเสนอได้แก่ ราคาอัตราส่วนชนิดวัสดุ และราคาค่าความผิดพลาด ต่อจากนั้นปัญหาการหาค่าเหมาะสมที่สุดได้ถูกนำเสนอ และขั้นตอนวิธีในการหาค่าต่อที่เหมาะสมที่สุดก็ได้นำเสนอเช่นกัน จากผลการทดลองที่ได้การนำข้อมูลเบื้องต้นมาพิจารณาด้วยสามารถเพิ่มประสิทธิภาพได้อย่างมาก

อย่างไรก็ตาม ยังมีข้อที่ต้องพิจารณาต่อไปในอนาคต กล่าวคือการหาขั้นตอนวิธีที่มีประสิทธิภาพมากกว่านี้เพื่อลดเวลาในการคำนวณ เพื่อสามารถนำขั้นตอนวิธีนี้ไปใช้ได้อย่างแพร่หลาย

5 เอกสารอ้างอิง

- [1] P.M. Mather, Computer processing of remotely-sensed images: an introduction, Chichester; New York : Wiley, c1999.
- [2] G.M. Foody, “Mapping Land Cover from Remotely Sensed Data with a Softened Feedforward Neural Network,” *Journal of Intelligent and Robotic System*, 29, pp. 433-449, 2000.

- [3] M. Hansen, R. Dubayah, and R. DeFries, "Classification trees: an alternative to traditional land cover classifiers," *International Journal of Remote Sensing*, 17, 1075–1081, 1996
- [4] P. Aplin and P.M. Atkinson, 2001, "Sub-pixel Land Cover Mapping for Per-field Classification," *International Journal of Remote Sensing*, vol. 22, no. 14, pp. 2853-2858, 2001.
- [5] T. Kasetkasem, M.K, Arora, and P.K. Varshney, "Super-resolution land cover mapping using a Markov random field based approach ,," *Remote Sensing of Environment*, Volume 96, Issues 3-4, 30 June 2005, Pages 302-314.
- [6] G.M. Foody and D.P. Cox, "Sub-pixel Land Cover Composition Estimation using a Linear Mixture Model and Fuzzy Membership Functions, *International Journal of Remote Sensing*, 15, pp. 619-631, 1994.
- [7] J.J. Settle and N.A. Drake, "Linear Mixing and the Estimation of Ground Cover Proportions, *International Journal of Remote Sensing*, 14, pp. 1159-1177, 1993.
- [8] M. Brown, H.G. Lewis and S.R. Gunn, "Linear Spectral Mixture Models and Support Vector Machines Remote Sensing," *IEEE Transactions on Geosciences and Remote Sensing*, vol. 38, 2346-2360, 2000
- [9] C-I. Chang and D.C. Heinz, "Constrained Subpixel Target Detection for Remotely Sensed Imagery," *IEEE Transaction on Geoscience and Remote Sensing*, vol. 38, no. 3, pp. 1144-1159, May 2000
- [10] J.R. Connor, "Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution," *journal of the American statistical association* vol. **64** pp. 194-206, 1969.
- [11] H.L. Van Trees, Detection, Estimation, and Modulation Theory, Wiley, New York, 1968.
- [12] P.K. Varshney, *Distributed Detection and Data Fusion*, Springer, New York, 1997.

[13] G.M. Foody, "Approaches for the Production and Evaluation of Fuzzy Land Cover Classifications from Remotely Sensed Data, *International Journal of Remote Sensing*, 17, pp. 1317-1340, 1996.

[14] E. Binahi, P.A. Brivio, P. Ghessi and A. Rampini, "A Fuzzy Set Based Accuracy Assessment of Soft Classification," *Pattern Recognition Letters*, 20, pp. 935-948, 1999.

[15] S.V. Stehman, M.K. Arora, T. Kasetkasem, and P. K. Varshney, "Estimation of Fuzzy Error Matrix Accuracy Measures Under Stratified Random Sampling," *Photogrammetric Engineering and Remote Sensing*, Vol. 73, No. 2, Feb. 2007, Page(s) 165-174.

[16] J. Settle, "On the Effect of Variable Endmember Spectra in the Linear Mixture Model," *IEEE Transactions on Geosciences and Remote Sensing*, vol. 44, no. 2, pp. 389-396, Feb. 2006.

6 ພົມທີ່ໄດ້ຮັບ

ພົມທີ່ໄດ້ຮັບເປັນຄູປ່ອມນີ້ແກ່ມະນະກຳລັງຮອຜກາຣີຈາກ IEEE Transactions on Geoscience and Remote Sensing, ໂດຍຄາດວ່າຈະໄດ້ຮັບຜົກກາຣີຈາກພົມທີ່ໄດ້ຮັບເປັນຄູປ່ອມນີ້ໃນ ພັນວັນ 2552

ແລະມີຄວາມຮ່ວມມືອັກດຳຕ່າງປະເທດໄດ້ແກ່

1. ໄດ້ມີຄວາມຮ່ວມມືອັກດຳຕ່າງປະເທດໄດ້ກັບ Prof. Pramod K. Varshney ຈາກມหาວິທາລັບ Syracuse ມລວັງ New York ປະເທດສຫວຼຸງເມົລືກ
2. ໄດ້ມີຄວາມຮ່ວມມືອັກດຳຕ່າງປະເທດໄດ້ກັບ Asst. Prof. Manoj K. Arora ຈາກ Indian Institute of Technology Roorkee ROORKEE ປະເທດອິນດີຍ

ກາດຜນວກ 1:

Improving Sub-pixel Classification by Incorporating Prior Information in Linear Mixture Models

T. Kasetkasem¹, M.K. Arora², P.K. Varshney³ and V. Areekul⁴

^{1,4}Electrical Engineering Department

Kasetsart University

Bangkok THAILAND 10900

² Department of Civil Engineering

Indian Institute of Technology (IIT) Roorkee

ROORKEE, 247 667, INDIA

³EECS Department

Syracuse University

Syracuse, NY 13244 USA

fengtsk@ku.ac.th¹, manojfce@iitr.ernet.in², Varshney@syr.edu³, and fengvpa@ku.ac.th⁴

Abstract

This paper introduces a new sub-pixel classification algorithm that incorporates prior information from known class proportions in the linear mixture model. The prior information is expressed in terms of the occurrence probabilities and the class proportion distribution of each land cover class in a pixel. The use of different error cost functions that measure the similarity between the model-derived mixed spectra and the observed spectra is also investigated. Under these assumptions, the maximum a posteriori (MAP) methodology is employed for optimization. Finally, optimization problems under the MAP criteria for different error cost functions are formulated and solved. Our numerical results illustrate that the performance of the sub-pixel classification algorithm can be significantly improved by incorporating

prior information from the known class proportions. Further, there are marginal differences in accuracy when using different types of error cost functions.

I. Introduction

The availability of accurate land cover maps is essential for a number of resource management, monitoring and planning programs. These also act as key inputs for a number of agricultural, hydrological, environmental and ecological models. Satellite remote sensing images due to their synoptic view and map like format are a viable source for producing effective land cover classification. The objective of land cover classification is to allocate each pixel of a remote sensing image into only one land cover class (i.e., crisp or per-pixel classification) or to associate the pixel with many land cover classes (i.e., fuzzy or sub-pixel classification). A number of crisp classifiers are in vogue based on approaches such as statistical analysis [1], neural networks [2], decision tree methods [3], geostatistic approach [4] and Markov random field model [5]. The output from a crisp classifier is a classified image depicting spatial distribution of land cover with each pixel belonging to only one land cover class. For most applications, this type of output may be sufficient.

However, in general, and particularly in coarse spatial resolution images such as those obtained from Moderate Resolution Imaging Spectrometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) that provide data at spatial resolutions ranging from 250 m to 1.1 km, a majority of pixels may be mixed (i.e., pixels containing more than one class) at the scale of measurement. Even where the spatial resolution is medium (e.g., 30m Landsat ETM+) or fine (e.g., 4m IKONOS

multi-spectral), the high spatial frequency of some classes such as urban and built-up areas may result in a large number of mixed pixels [6]. The causes for the occurrence of mixed pixels are well known and their presence is a recurring problem while extracting accurate land cover information from remote sensing images. This led to the development of a number of sub-pixel classification methods, namely, linear mixture modeling [6-9], neural networks [10], fuzzy set and possibilistic theories [11], and support vector machines [12]. The output from a sub-pixel classification method is a set of class proportions or membership grades for a pixel. These outputs are represented in the form of fraction images (one image for each land cover class) [6].

The most common model for sub-pixel classification is the linear mixture model (LMM) which assumes that the observed multispectral data at each pixel is a proportional sum of the spectral signatures from all land cover classes. Due to noisy nature of the image acquisition process, the actual proportional sum may not be the same as the observation. Hence, the goal of sub-pixel classification is to estimate the class proportion that yields the minimum distance between the proportional sum of the spectral signatures and the observed spectral value. Different constraints [7-9] are usually imposed on LMMs. For instance, Settle and Drake [7] assume that the proportion must be non-negative and sum to one. A similar model has been proposed by Chang, *et al.* [11] for the sub-pixel target detection problem. The major limitation of the linear mixture model occurs when the number of land cover classes is more than the number of spectral bands. In this case, the solution to the spectral unmixing problem may not be unique. In other words, there are multiple mixing combinations that may yield the same spectrum value. Furthermore, the spectral unmixing based on the existing form of linear mixture model places equal importance to all land cover classes present in the mixed pixels whereas, in the practical circumstances, some

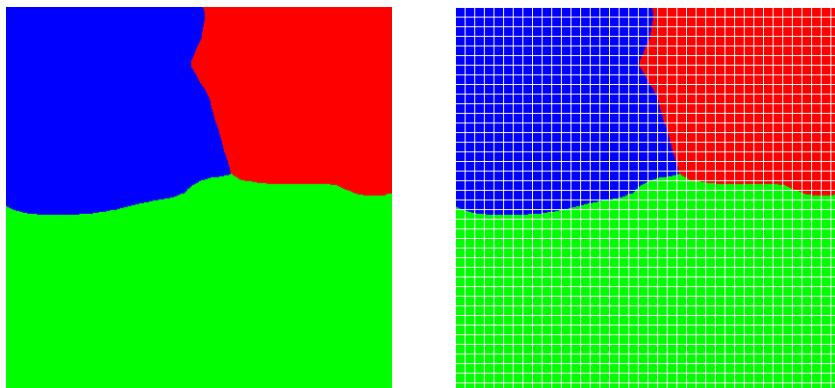
classes may be more likely to exist than others. This likelihood can be taken into account in the linear mixture model by employing prior information from the known class proportions to further refine the estimates of sub-pixel classification from LMMs.

The aim of this paper is to propose a new sub-pixel classification algorithm that incorporates the prior information from known class proportions in the linear mixture model. The prior information is expressed in terms of the occurrence probabilities and the class proportion distribution of each land cover class in a pixel. Here, only the uniform class proportion distribution is considered. Furthermore, we also investigate the use of different error cost functions that measure the similarity between the model-derived mixed spectra and the observed spectra. Under these assumptions, the maximum *a posteriori* (MAP) formulation is employed for optimization where the optimization problems for different error cost functions are developed. Our numerical results illustrate that the performance of the sub-pixel classification algorithm can be significantly improved by incorporating the prior information from the known class proportions. Further, there are marginal differences in accuracy when using different types of error cost functions.

The paper is organized as follows. The next section will define the problem. In Section 3, we will derive the optimum sub-pixel classification method based on the model in Section 2. The optimization problem and its corresponding solution are presented in Section 4. Some numerical examples are provided in Section 5. Finally, concluding remarks are included in Section 6.

II. Problem Statement

Let Y be an observed coarse spatial resolution multispectral image of size $I \times J$ pixels where each pixel occupies a finite region in the actual scene. Next, let X be a fine spatial resolution map of size $P \times Q$ pixels where $P > I$ and $Q > J$. We assume that in the fine spatial resolution image, all pixels are pure, i.e., pixel belongs to only one land cover class. Figure 1 displays an example of pixel occupancy of both an observed multispectral image (synthetic) and fine spatial resolution maps at different pixel sizes of the observed multispectral image. At the fine spatial resolution (Figure 1(b)), 98.12% of pixels are pure whereas, in case of medium (Figure 1(c)) and coarse (Figure 1(d)) spatial resolutions, 85.12% and 75% of pixels are pure respectively. Thus, as the pixel size increases, the number of mixed pixels increases. Let S denote the sets of all sites (i.e., pixels) of the observed multispectral image, which is usually represented in a vector form, as $\mathbf{y}(s_j) \in \mathfrak{R}^K$ for the pixel s_j where \mathfrak{R} denotes the set of real numbers (i.e., intensity values) and K is the number of spectral bands. As stated earlier, each pixel in the fine spatial resolution map is assumed to be pure (i.e., the pixel's configuration $x(t)$ (i.e., attribute) denotes one and only one land cover class). Hence, $x(t) \in \{1, \dots, L\}$ can only take an integer value corresponding to the particular land cover class at a pixel t in the actual scene, where L is the number of land cover classes.



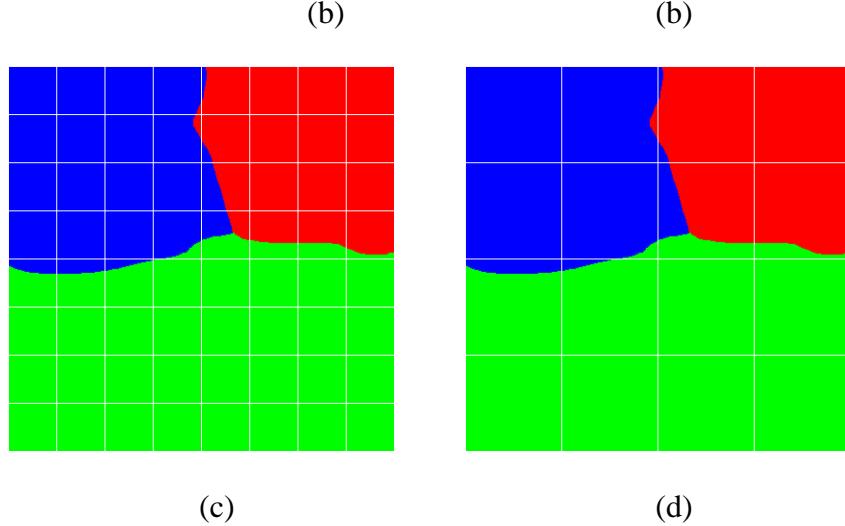


Figure 1: Multispectral Image at different scale sizes; (a) original; (b) at scale of 10; (c) at scale of 50; and (d) at scale of 100

We assume that at coarse spatial resolution, each land cover class has a unique spectral signature (intensity value) and let $\{\mathbf{\mu}_1, \mathbf{\mu}_2, \dots, \mathbf{\mu}_L\} \in \mathfrak{R}^K$ be the spectral signatures of classes 1, 2, ..., L . The mixed spectral response of all the classes in a pixel is given by,

$$\mathbf{r}(s_i) = \sum_{l=1}^L b_l(s_i) \mathbf{\mu}_l \quad (1)$$

where $b_l(s)$ is the class proportion of the land cover class l present in s_i such that

$\sum_{l=1}^L b_l(s_i) = 1$ and $b_l(s_i) \geq 0$. Here, we denote $\mathbf{b}(s_i) = [b_1(s_i) \ \dots \ b_L(s_i)]^T$ as the

class proportion vector where A^T is the transpose of A . Due to the noisy nature of the image acquisition process, the observed vector at each pixel of the multispectral image is a combination of the combined spectral response and noises, i.e.,

$$\mathbf{y}(s_i) = \mathbf{r}(s_i) + \mathbf{n}(s_i) \quad (2)$$

where $\mathbf{n}(s_i) \in \Re^K$ and $\mathbf{y}(s_i) \in \Re^K$ are the noise vector and observed vector at pixel s_i respectively. Here, we assume that the noise vector has the corresponding probability density function $f_N(\mathbf{n})$, given by,

$$f_N(\mathbf{n}) = \exp(-E(\mathbf{n})). \quad (3)$$

In general, the noise term is assumed to be statistically independent between any two or more distinct pixels and takes Gaussian distribution [13].

For simplification, we omit the term (s_i) in all the equations throughout the manuscript. Next, the presence or absence of land cover classes in a pixel is assumed to be statistically independent. This implies that any combination of land cover classes can exist in a pixel. Let N_b be the number of land cover classes present in a pixel. These land cover classes have a non-zero value in the class proportion vector \mathbf{b} . For $N_b = 1$, the pixel is pure. In this case, one of the class proportions is one while the rest are zero. Hence, the conditional probability of the class proportion vector is given by,

$$\Pr[\mathbf{b} = \mathbf{b}_l] = \Pr[\text{a pixel belongs to the } l\text{-th class}] \quad l = 1, 2, \dots, L \quad (4)$$

where \mathbf{b}_l is a vector of length L whose l -th entry has the value of one and other entries have the value of zero. Here, let p_l denote the probability that the l -th class is present in a pixel. Then Equation (4) can be written as,

$$\Pr[\mathbf{b} = \mathbf{b}_l] = \frac{p_l \prod_{m=1, m \neq l}^L (1 - p_m)}{Z} \quad l = 1, 2, \dots, L \quad (5)$$

where Z is the normalizing constant. Equation (5) is valid if the absence or presence of one class does not have any effect on the absence or presence of other classes. We acknowledge that this is a strong assumption since the land cover classes in neighboring regions must be mutually independent according to this assumption.

More complex models in which the interaction between classes is included can be considered. However, the corresponding optimization algorithm may be too complex to be implemented in practice. Furthermore, let z_l be the indicator parameter which takes the value of one or zero based on whether the l -th class is present ($b_l > 0$) or absent ($b_l = 0$) in a pixel, respectively. Thus, $\sum_{l=1}^L z_l = N_b$. Let L_0 and L_1 be indices of z_l such that z_l takes the values of zero and one, respectively. The marginal probability of indicator parameters is given by,

$$\Pr[\mathbf{z}] = \frac{\prod_{l \in L_0} (1 - p_l) \prod_{r \in L_1} p_r}{Z}. \quad (6)$$

where $\mathbf{z} = [z_1 \ z_2 \ \dots \ z_L]^T$ is the indicator vector. For a given indicator vector, we know that the land cover classes whose corresponding indicator parameters are one are present in a pixel. In other words, these classes must have a non-zero class proportion value. Here, we assume that the joint probability density function (PDF) for those non-zero class proportions takes the form of Dirichlet distribution [14], i.e.,

$$f[\mathbf{b}|\mathbf{z}] = \frac{\Gamma\left(\sum_{l \in L_1} \alpha_l\right)}{\prod_{l \in L_1} \Gamma(\alpha_l)} \prod_{l \in L_1} b_l^{\alpha_l - 1} \quad (7)$$

where α_l is the Dirichlet parameter of the l -th class and $\Gamma(x)$ is the gamma function of x . Note that, when $N_b = 2$, the Dirichlet distribution takes the same form as the Beta distribution. A class with a small value of α_l is likely to occupy a small area in a pixel. In contrast, a class with a high value of α_l corresponds to the class proportion close to one. Furthermore, for the special case where $\alpha_l = 1$ (i.e., all classes are likely to be present in a pixel.) for $l = 1, 2, \dots, L$, Equation (7) reduces to,

$$f[\mathbf{b}|\mathbf{z}] = (N_b - 1)! \quad \text{if } z_l = I(b_l) \text{ for } l = 1, 2, \dots, L \quad (8)$$

where $I(b_l) = 1$ if $b_l > 0$ and $I(b_l) = 0$ if $b_l = 0$. For this case, non-zero class proportions are equally likely to take any value between zero and one as long as these sum to one. The PDF in (8) has a higher value for the case of the class mixtures with a large number of non-zero land cover classes than the class mixture with few non-zero classes because the region in the hyperplane where the class proportion is sum to one and non-zero becomes smaller as the dimension of the hyperplane increases. From Eq. (8), the class mixture with higher number of non-zero class proportion is more preferable from our model if all class mixtures are equally likely. This result, allows the uniqueness of the unmixing result when the number of land cover classes is more than the number of spectral bands.

Next, based on the model given in Equations (2) and (3), the conditional probability density function (PDF) of the observed vector at a pixel s_i , given the class proportion vector, can be written as,

$$f(\mathbf{y}|\mathbf{b}) = f_N(\mathbf{y} - M\mathbf{b}) \quad (9)$$

where $M = [\mathbf{\mu}_1 \quad \mathbf{\mu}_2 \quad \dots \quad \mathbf{\mu}_L]$. The joint probability density function of the class proportion vector and the indicator vector, given the observed data, is given by,

$$\begin{aligned} f(\mathbf{b}, \mathbf{z}|\mathbf{y}) &= \frac{f_N(\mathbf{y} - M\mathbf{b})f(\mathbf{b}, \mathbf{z})}{f_Y(\mathbf{y})} \\ &= \frac{f_N(\mathbf{y} - M\mathbf{b})f(\mathbf{b}|\mathbf{z})\Pr(\mathbf{z})}{f_Y(\mathbf{y})} \\ &= \frac{e^{-E(\mathbf{y}-M\mathbf{b})}}{f_Y(\mathbf{y})} \times \frac{\Gamma\left(\sum_{l \in L_1} \alpha_l\right)}{\prod_{l \in L_1} \Gamma(\alpha_l)} \prod_{l \in L_1} b_l^{\alpha_l-1} \frac{\prod_{l \in L_0} (1-p_l) \prod_{r \in L_1} p_r}{Z} \end{aligned} \quad (9.a)$$

for $N_b > 1$, and

$$f(\mathbf{b}, \mathbf{z}|\mathbf{y}) = \frac{e^{-E(\mathbf{y}-M\mathbf{b})}}{f_Y(\mathbf{y})} \frac{\prod_{l \in L_0} (1-p_l) \prod_{r \in L_1} p_r}{Z} \quad (9.b)$$

for $N_b = 1$.

The PDF given in Equation (9.a) is complicated and very difficult to evaluate. Hence, only the case when $\alpha_l = 1$ (uniform class proportion) has been considered in this paper, and, thus, the PDF reduces to,

$$f(\mathbf{b}, \mathbf{z}|\mathbf{y}) = \frac{e^{-E(\mathbf{y}-M\mathbf{b})} (N_b - 1)! \prod_{l \in L_0} (1-p_l) \prod_{r \in L_1} p_r}{f_Y(\mathbf{y}) Z}. \quad (10)$$

Next, we derive the optimum classifier for our problem.

III. The Optimum Classifier

In this paper, we employ the maximum *a posteriori* (MAP) classifier based on the PDF given in Equation (10) since the MAP classifier provides the minimum probability of error among all classifiers [15-16]. The search space of the solution is restricted to the region such that the constraints,

$$z_l = I(b_l), \quad b_l \geq 0, \quad (11)$$

and

$$\sum_{l=1}^L b_l = 1 \quad \text{for } l = 1, 2, \dots, L \quad (12)$$

are satisfied. We denote as B the set of those \mathbf{b} that satisfy the above constraints in Eqs. (11) and (12). Hence, the goal is to select the class proportions and indicator vectors that maximize (10), i.e.,

$$(\mathbf{b}^{opt}, \mathbf{z}^{opt}) = \arg \left\{ \max_{\mathbf{b}, \mathbf{z} \in B} [f(\mathbf{b}, \mathbf{z} | \mathbf{y})] \right\}. \quad (13)$$

The term $f_Y(\mathbf{y})$ in Equation (10) is independent of the choice of (\mathbf{b}, \mathbf{z}) and, hence, it can be ignored. As a result, Equation (13) becomes,

$$\begin{aligned} (\mathbf{b}^{opt}, \mathbf{z}^{opt}) &= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \log[(N_b - 1)!] - \sum_{l \in L_0} \log[1 - p_l] - \sum_{l \in L_1} \log[p_l] \right] \right\} \\ &= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \log[(N_b - 1)!] - \sum_{l=1}^L (1 - z_l) \log[1 - p_l] - \sum_{l=1}^L z_l \log p_l \right] \right\} \\ &= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \log[(N_b - 1)!] + \sum_{l=1}^L z_l \log \left(\frac{1 - p_l}{p_l} \right) + \sum_{l=1}^L \log[1 - p_l] \right] \right\} \end{aligned} \quad (14)$$

The last term in the argument can be ignored since it does not depend on (\mathbf{b}, \mathbf{z}) .

Hence, Equation (14) can be reduced to,

$$\begin{aligned} (\mathbf{b}^{opt}, \mathbf{z}^{opt}) &= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \log[(N_b - 1)!] + \sum_{l=1}^L z_l \log \left(\frac{1 - p_l}{p_l} \right) \right] \right\} \\ &= \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[E(\mathbf{y} - M\mathbf{b}) - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1 - p_l}{p_l} \right) \right] \right\}. \end{aligned} \quad (15)$$

We shall call the term $C_l = \log \left(\frac{1 - p_l}{p_l} \right)$ as the class proportion cost function for

Class l . The term $E(\mathbf{y} - M\mathbf{b})$ in Equation (15) measures the differences between the observed spectral vector, \mathbf{y} , and the model-derived spectral mixture, $M\mathbf{b}$. Hence, we call this term the error cost function. This term provides the information on the closeness of the observed spectral values with derived spectral values. Hence, the most widely used model is multivariate Gaussian. The error cost function, in this case, is given by,

$$E(\mathbf{y} - M\mathbf{b}) = \frac{1}{2} \left[(\mathbf{y} - M\mathbf{b})^T \Sigma^{-1} (\mathbf{y} - M\mathbf{b}) + K \log(2\pi) + \log|\Sigma| \right] \quad (16)$$

where Σ is the covariance matrix of the noise vector. Clearly, the second and the third terms in Equation (16) are independent of the choice of \mathbf{b} . Hence, these can be ignored during optimization. As a result, the error cost function is given by,

$$E(\mathbf{y} - M\mathbf{b}) = \frac{1}{2} (\mathbf{y} - M\mathbf{b})^T \Sigma^{-1} (\mathbf{y} - M\mathbf{b}). \quad (17)$$

Equation (17) is the well-known as Mahalanobis distance [16]. The accuracy of the model given in Equation (17) depends on the estimate of the covariance matrix of the noise vector. To obtain an accurate estimate of the covariance matrix, we need a large number of samples (about 10 times the number of spectral bands, i.e., $10K$) which may be difficult to obtain in practice. As a result, different distance metrics are employed as the error cost function in this paper. The less parametric distance metrics can be defined as,

$$E_p \left(\mathbf{y} - \sum_{l=1}^L b_l \mathbf{\mu}_l \right) = g_p \left(\|\mathbf{y} - M\mathbf{b}\|_p \right) \quad (18)$$

where $\|\cdot\|_p$ denotes the p -norm and g_p is an increasing function. In this paper, we investigate the use of first, second and infinite norms only since, as stated in the next section, the optimization problems derived from these norms can be transformed into standard optimization problems. Hence, these can be solved with existing algorithms.

In the case of the first norm, we define the error cost function as,

$$E_1(\mathbf{y} - M\mathbf{b}) = g_1 \left(\sum_{k=1}^K e_k \right) = \beta \sum_{k=1}^K e_k. \quad (19)$$

where e_k is the absolute difference of $\mathbf{y} - M\mathbf{b}$ for the k -th band and β is the weight factor. Here, $g_1(x) = \beta x$. The optimization problem is given by,

$$(\mathbf{b}^{opt}, \mathbf{z}^{opt}) = \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[\beta \sum_{k=1}^K e_k - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \right\}. \quad (20)$$

The argument inside the parentheses is linear. With some modifications, the optimization problem in Equation (20) can be transformed to a mixed-integer linear program with linear constraints. Linear programs have been well-studied in the literature. As a result, many computationally efficient algorithms to solve the problem have been developed.

When noises in different spectral bands are independent and identically distributed, the noise variance becomes $\Sigma = \sigma^2 I_K$ where I_K is the identity matrix of size $K \times K$. For this case, the error cost function can be written as,

$$E_2(\mathbf{y} - M\mathbf{b}) = g_2 \left(\frac{1}{2\sigma^2} \|\mathbf{y} - M\mathbf{b}\|_2^2 \right) = \beta^2 \sum_{k=1}^K e_k^2. \quad (21)$$

Note that $g_2(x) = x^2$. The optimization of Equation (15) becomes,

$$(\mathbf{b}^{opt}, \mathbf{z}^{opt}) = \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[\beta^2 \sum_{k=1}^K e_k^2 - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \right\}. \quad (22)$$

The above optimization problem has a quadratic form. Hence, in the next section, we modify the optimization problem of Equation (15) into a mixed-integer quadratic program.

In the last case where the infinite norm is used, the error cost function is defined as,

$$E_\infty(\mathbf{y}, \mathbf{b}) = g_\infty \left(\max_{k=1, \dots, K} [e_k] \right) = g_1 \left(\max_{k=1, \dots, K} [e_k] \right) = \beta_\infty \max_{k=1, \dots, K} [e_k]. \quad (23)$$

Let e be defined as the maximum of absolute errors in all spectral bands, i.e., $e = \max_{k=1, \dots, K} [e_k]$. The optimization of Equation (15) is given by,

$$(\mathbf{b}^{opt}, \mathbf{z}^{opt}) = \arg \left\{ \min_{\mathbf{b}, \mathbf{z} \in B} \left[\beta e - \sum_{r=1}^{N_{\mathbf{b}}-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \right\}. \quad (24)$$

Similar to first norm case, the overall cost function is linear. Hence, it can be transformed into a mixed-integer linear programming problem. Next, we discuss the optimization problems in more detail.

IV. Optimization Problems and Solutions

In this section, the optimization problems given in the previous sections are transformed into standard optimization problems, namely mixed-linear and -quadratic programs, since we can apply the existing optimization algorithms to obtain the solution. In this section, we follow the work in [8] by constraining the class proportion values to be non-zero and that sum to one, i.e.,

$$\begin{aligned} \sum_{l=1}^L b_l &= 1 \\ b_l &\geq 0 \quad ;l = 1,2,\dots,L \end{aligned} \quad (25)$$

First, we will start with the first norm case and then follow it up by the second and infinite norm cases for error cost functions, respectively.

IV.A First Norm Cost Function

Employing the first norm as the error function given in Equation (20), the problem becomes,

$$P_1 = \begin{cases} \min_{\mathbf{z}, \mathbf{b}} \left[\beta \sum_{k=1}^K e_k - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \\ \text{such that} \\ b_l \geq 0; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l = I(b_l); l = 1, 2, \dots, L \end{cases} \quad (26)$$

Next, we have that $z_l = I(b_l)$ and $b_l \in [0,1]$. As a result, b_l , is bounded by z_l , i.e.,

$0 \leq b_l \leq z_l$. For the error cost function, the absolute error in band k , e_k , is the bound of

$\left| y_k - \sum_{l=1}^L b_l \mu_{l,k} \right|$. In other words, we have $-e_k \leq y_k - \sum_{l=1}^L b_l \mu_{l,k} \leq e_k$. By combining

these facts into Equation (26), the optimization problem can be written as,

$$P_1 = \begin{cases} \min_{\mathbf{b}} \left[\beta_1 \sum_{k=1}^K e_k - \sum_{r=1}^{N_b-1} \log r + \sum_{l=1}^L z_l \log \left(\frac{1-p_l}{p_l} \right) \right] \\ \text{such that} \\ -e_k \leq y_k - \sum_{l=1}^L b_l \mu_{l,k} \leq e_k, \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l \in \{0,1\}; l = 1, 2, \dots, L \end{cases} \quad (27)$$

Furthermore, let r_l be one if at least l land cover classes are non-zero in a pixel of

interest and be zero otherwise. Hence, we have $\sum_{r=1}^{N_b-1} \log r = \sum_{l=2}^L \log(l-1)r_l$. The

optimization problem in Equation (27) can be written as,

$$P_1 = \begin{cases} \min_{\mathbf{b}} \left[\beta \sum_{k=1}^K e_k - \sum_{l=2}^L \log(l-1)r_l + \sum_{l=1}^L z_l \log\left(\frac{1-p_l}{p_l}\right) \right] \\ \text{such that} \\ -e_k \leq y_k - \sum_{l=1}^L b_l \mu_{l,k} \leq e_k, \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L z_l \geq lr_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases} \quad (28)$$

By letting $\mathbf{e} = [e_1 \ \dots \ e_K]^T$, $\mathbf{r} = [r_1 \ \dots \ r_L]^T$, $\mathbf{g} = [0 \ \log(1) \ \dots \ \log(L-1)]^T$, and

$\mathbf{c}_1 = \left[\log\left(\frac{1-p_1}{p_1}\right) \ \dots \ \log\left(\frac{1-p_L}{p_L}\right) \right]$, the equation can be written in a matrix form

as,

$$P_1 = \begin{cases} \min_{\mathbf{x}_1} [\mathbf{w}_1^T \mathbf{x}_1] \\ \text{such that} \\ A_1 \mathbf{x}_1 \leq \mathbf{m}_1 \\ D_1 \mathbf{x}_1 = 1, \\ \mathbf{x}_1 \geq 0, \mathbf{x}_1 \leq 1 \end{cases} \quad (29)$$

where

$$\mathbf{x}_1 = \begin{bmatrix} \mathbf{b} \\ \mathbf{z} \\ \mathbf{r} \\ \mathbf{e} \end{bmatrix},$$

and

$$\mathbf{w}_1 = \begin{bmatrix} \mathbf{0}_L \\ \mathbf{c}_1 \\ -\mathbf{g} \\ \beta \mathbf{1}_L \end{bmatrix}$$

are vectors of size $3L+K$. The unequal constraints matrix, A_1 , of size $(2L+2K) \times (3L+K)$ is given by,

$$A_1 = \begin{bmatrix} -M & O_{K,L} & O_{K,L} & -I_K \\ M & O_{K,L} & O_{K,L} & -I_K \\ I_L & -I_L & O_{L,L} & O_{L,K} \\ O_{L,L} & -P_{L,L} & W_L & O_{L,K} \end{bmatrix},$$

where $O_{S,T}$ is a zero matrix of size $S \times T$, $P_{S,T}$ is one matrix of size $S \times T$, and W_L is a diagonal matrix whose diagonal entries are 1, 2, ..., L , respectively. ($\text{diag}(W) = [1 \ 2 \ \dots \ L]$). For this case, the equal constraint matrix D_1 of size $1 \times (3L+K)$ is given by,

$$D_1 = \begin{bmatrix} \mathbf{1}_L^T & \mathbf{0}_{2L+K}^T \end{bmatrix}.$$

The bound vector \mathbf{c}_1 of size $2L+2K$ is given by,

$$\mathbf{m}_1 = \begin{bmatrix} -\mathbf{y} \\ \mathbf{y} \\ \mathbf{0}_L \\ \mathbf{0}_L \end{bmatrix}.$$

Obviously, the optimization problem given in Equation (29) is in the form of a mixed-integer linear programming problem.

IV.B Second Norm Error Function

In this subsection, we replace the first norm by the second norm and the optimization problem in Equation (22) can be written as,

$$P_2 = \begin{cases} \min_{\mathbf{b}, \mathbf{z}} \left[\beta_2^2 \sum_{k=1}^K e_k^2 - \sum_{l=2}^L \log(l-1) r_l + \sum_{l=1}^L z_l \log\left(\frac{1-p_l}{p_l}\right) \right] \\ \text{such that} \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L z_l \geq l r_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l, r_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases}, \quad (30)$$

which can be written in a matrix form as,

$$P_2 = \begin{cases} \min_{\mathbf{x}_2} \left[\frac{1}{2} \mathbf{x}_2^T H \mathbf{x}_2 + \mathbf{w}_2^T \mathbf{x}_2 \right] \\ \text{such that} \\ A_2 \mathbf{x}_2 \leq \mathbf{m}_2, \\ D_2 \mathbf{x}_2 = 1, \\ \mathbf{x}_2 \geq 0, \mathbf{x}_2 \leq 1 \end{cases}. \quad (31)$$

Here the matrix H , vectors \mathbf{w}_2 , and \mathbf{b}_2 are given by,

$$H = \begin{bmatrix} 2\beta^2 M^T M & O_{L,2L} \\ O_{2L,L} & O_{2L,2L} \end{bmatrix}$$

$$\mathbf{x}_2 = \begin{bmatrix} \mathbf{b} \\ \mathbf{z} \\ \mathbf{r} \end{bmatrix},$$

and

$$\mathbf{w}_2 = \begin{bmatrix} -2\mathbf{y}^T M \\ \mathbf{c}_1 \\ -\mathbf{g} \end{bmatrix}$$

respectively. The constraint matrices can be written as,

$$A_2 = \begin{bmatrix} I_L & -I_L & O_{L,L} \\ O_{L,L} & -P_{L,L} & W_L \end{bmatrix}$$

and

$$D_2 = \begin{bmatrix} \mathbf{1}_L^T & \mathbf{0}_{2L}^T \end{bmatrix}.$$

Finally, the bound vector, \mathbf{c}_2 is given by,

$$\mathbf{m}_2 = \begin{bmatrix} \mathbf{0}_{2L} \end{bmatrix}.$$

The optimization problem given in Equation (31) is in the form of mixed-integer quadratic programs. Although there are a number of algorithms designed to solve the mixed-integer quadratic programs, the mixed-integer quadratic programs remain a NP hard problem. As a result, the computational time of the problem given in Equation (31) may be slow to be practically implemented. We note here that even though the problem given in Equation (29) is also an NP hard problem, but the mixed-integer linear program has been well-studied. Hence, the solutions of Equation (29) can be obtained efficiently for most practical problems.

IV.C Infinite Norm Error Function

When the infinite norm is used as the measure of the error term, the optimization problem can be written as,

$$P_{\infty} = \begin{cases} \min_{\mathbf{b}, \mathbf{z}, C_2^A} \left[\beta e - \sum_{l=2}^L \log(l-1)r_l + \sum_{l=1}^L z_l \log\left(\frac{1-p_l}{p_l}\right) \right] \\ \text{such that} \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L z_l \geq lr_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases}, \quad (32)$$

Let us assume that e_∞ is the maximum absolute difference of the vector $\mathbf{y} - \sum_{l=1}^L b_l \mathbf{\mu}_l$.

Hence, we have that $-e_\infty \leq y_k - \sum_{l=1}^L b_l \mu_{lk} \leq e_\infty$, for $k = 1, \dots, K$. The optimization problem in Equation (32) becomes,

$$P_\infty = \begin{cases} \min_{d_q, \mathbf{z}, C_2^A} \left[\beta_\infty e_q - \sum_{l=2}^L \log(l-1) r_l + \sum_{l=1}^L z_l \log\left(\frac{1-p_l}{p_l}\right) \right] \\ \text{such that} \\ -e_\infty \leq \mathbf{y} - M\mathbf{b} \leq e_\infty \\ 0 \leq b_l \leq z_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L z_l \geq l r_l; l = 1, 2, \dots, L \\ \sum_{l=1}^L b_l = 1 \\ z_l \in \{0, 1\}; l = 1, 2, \dots, L \end{cases}. \quad (33)$$

The matrix representation of the problem in Equation (33) is given by,

$$P_\infty = \begin{cases} \min_{\mathbf{x}_\infty} [\mathbf{w}_\infty^T \mathbf{x}_\infty] \\ \text{such that} \\ A_\infty \mathbf{x}_\infty \leq \mathbf{m}_\infty, \\ D_\infty \mathbf{x}_\infty = 1 \\ \mathbf{x}_\infty \geq 0 \end{cases}. \quad (34)$$

where

$$\mathbf{x}_\infty = \begin{bmatrix} \mathbf{b} \\ \mathbf{z} \\ \mathbf{r} \\ e_\infty \end{bmatrix},$$

and

$$\mathbf{w}_\infty = \begin{bmatrix} \mathbf{0}_L \\ \mathbf{c}_1 \\ -\mathbf{g} \\ \beta \end{bmatrix}.$$

The constraint matrices are given by,

$$A_{\infty} = \begin{bmatrix} -M & O_{K,L} & O_{K,L} & -\mathbf{1}_K \\ M & O_{K,L} & O_{K,L} & -\mathbf{1}_K \\ I_L & -I_L & O_{L,L} & \mathbf{0}_L \\ O_{L,L} & -P_{L,L} & W_L & \mathbf{0}_L \end{bmatrix},$$

For this case, the equal constraint matrix D_{∞} of size $1 \times (3L+1)$ is given by,

$$D_{\infty} = \begin{bmatrix} \mathbf{1}_L^T & \mathbf{0}_{2L+1}^T \end{bmatrix}.$$

The bound vector \mathbf{c}_1 of size $L+2K+2$ is given by,

$$\mathbf{m}_{\infty} = \begin{bmatrix} -\mathbf{y} \\ \mathbf{y} \\ \mathbf{0}_{2L} \end{bmatrix}.$$

We observe that the optimization problem in Equation (34) has exactly the same number of constraints as in Equation (29) while the number of variables is only $K-1$ less than those in Equation (29). This observation indicates that the optimization problem for the infinite norm error cost function is less complex than those given in the first norm case especially for remote sensing images with a large number of spectral bands such as hyperspectral images.

By solving the optimization problems given in Equations (29), (31) and (34) for all the pixels in \mathbf{Y} , the fraction images for each land cover class are obtained for different models of error cost functions. In the next section, we investigate the performance of the sub-pixel classification approach proposed here for different error cost functions. As expected, different error cost functions result in different accuracy values. However, the best performances for each error cost function are very similar.

V. Numerical Examples and Results

In this section, we consider the specific problem of sub-pixel classification based on the MAP detector given in Equation (15) by using the models proposed in Section 4. We apply our algorithm to two sets of remote sensing data, one at fine spatial resolution and another at medium spatial resolution. For the cases of the first and infinite norm error functions, the optimization problems are in the form of mixed-integer problems. Hence, we apply the GNU Linear Programming library [17] to solve the problem. This library employs Branch-and-cut method [17] to solve the mixed-integer linear program. For the case of the second norm error function, we employ KNITRO 6.0 Library [18] to solve the mixed-integer quadratic program in Equation (24). Here, the branch-and-bound technique has been employed. We acknowledge that there may be a better optimization library to solve both the mixed-integer linear and quadratic programs. However, the goal of this paper is to only demonstrate the feasibility of our approach and illustrate the performance of our models in terms of accuracy and not to focus on computational efficiency aspects.

Experiment 1

A small dataset from multi-spectral (spatial resolution 4 m) and panchromatic (spatial resolution 1 m) data acquired in 2001 from the IKONOS satellite has been used. It consists of (26×60) pixels of 4 bands of the multi-spectral image in blue, green, red and near infrared (NIR) regions and (97×237) pixels of the single band PAN image, and covers a portion of the Syracuse University campus site (Figures 2(a) and (b)). The corresponding reference image generated from a visual interpretation of the PAN image is shown in Figure 3. There are six land cover classes - grass, roof1, roof2, tree, shadow and road. Roof1 represents top cover of a tent whereas roof2 denotes roof of

buildings. Each pixel in this reference image has been assumed pure. Based on this reference image, fraction reference images, depicting the known class proportions for each land cover class at 4 m resolution, have also been generated to allow for accuracy assessment of intermediate sub-pixel classifications (Figures 4 (a) to (f)). Note that black and white shades indicate total absence and presence of classes whereas intermediate gray shades represent proportion of a class within a pixel of the coarse resolution image. These fraction reference images also assisted in identifying pure training pixels for initial sub-pixel classification of the multi-spectral image.



Figure 2: IKONOS images of a portion of the Syracuse University campus; (a) false color (Blue: 0.45 - 0.52 μm , Green: 0.52 - 0.60 μm , Red: 0.76 - 0.90 μm) composite of the multispectral image at 4 m resolution; (b) panchromatic image at 1m resolution

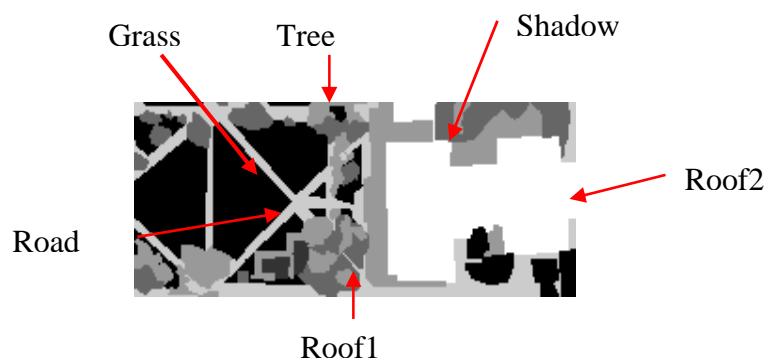


Figure 3: Reference image at 1 m resolution of the Syracuse University campus

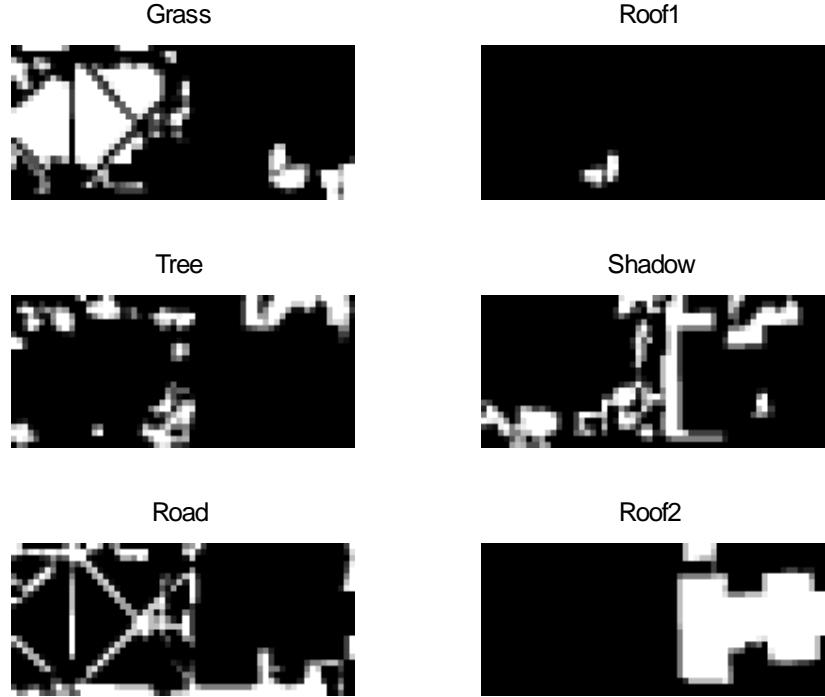


Figure 4: Fraction reference images of six land cover classes at 4 m resolution (a) grass; (b) roof1; (c) tree; (d) shadow; (e) road; and (f) roof2

The procedure begins with the estimation of spectral responses associated with all the classes by selecting 20 training pixels for each class in the coarse resolution image. The training pixels are randomly chosen from the pixels that have at least 60% fraction of the class of interest. The total number of pixels that have at least 60% of each land cover classes are given in Table 1. We observe that, for the Class Roof1, there are only 13 pixels that have at least 60% fraction. Hence, we use only 13 pixels of Class Roof1. As a result, we have a total of 113 training pixels. In this work, we apply the least square estimate of the spectral responses, i.e.,

$$\hat{M} = Y_T B^T (B B^T)^{-1}, \quad (26)$$

where $Y_T = [y_1 \ y_2 \ \dots \ y_{113}]$ is a matrix of size 4×113 whose columns are the observed spectral vectors of each training pixel, $B = [b_1 \ b_2 \ \dots \ b_{113}]$ is a matrix

of size 6×113 whose columns are the class proportion vectors of each training pixel, and \hat{M} is a matrix of size 4×6 whose columns are the estimates of spectral response vectors of each class. Furthermore, we also need to estimate the prior probability of the presence of each land cover class. For Class l , the portion of pixels that have non-zero class proportion values of Class l yields the conditional probability $\theta_l = p_l / Z$. However, since the sum of the probabilities given in Equation (6) must be one, we have $Z = 1 - \prod_{l=1}^L (1 - Z\theta_l)$ and the normalizing constant can be determined by solving the equation,

$$\log(1 - Z) = \sum_{l=1}^L \log(1 - Z\theta_l). \quad (27)$$

By using the reference data shown in Figure 4, the normalizing constant has the value of $Z = 0.61726$. The conditional probability θ_l , prior probability p_l and the class proportion cost function $\log\left(\frac{1 - p_l}{p_l}\right)$ are given in Table 2.

Table 1: Number of pixels that have at least 60% of the fraction of the given classes.

Class	Number of Pixels
Grass	378
Roof1	13
Tree	159
Shadow	225
Road	247
Roof2	353

Table 2: The class proportion probabilities and cost function of IKONOS data

Class	θ_l	p_l	$\log[(1-p_l)/p_l]$
Grass	0.36467	0.2251	1.2362
Roof1	0.01733	0.0107	4.5268
Tree	0.19800	0.1222	1.9716
Shadow	0.27933	0.1724	1.5686
Road	0.28867	0.1782	1.5287
Roof2	0.26533	0.1638	1.6304

Next, we apply the sub-pixel classification model proposed in this paper for the first, second and infinite norm error functions for various values of β . Here, we employ a few performance evaluation techniques to quantify the accuracy of our algorithm. We adopt the Euclidian distance [19], and fuzzy error matrix [20] which measures the agreements and disagreements between the class proportions from reference data and classified image [20-22] as the performance metrics. A lower value of the Euclidian distance indicates that the classification algorithm generates a sub-pixel classification that is closer to the fraction reference image, or, in other words, more accurate is the result. For the fuzzy error matrix, the overall accuracy of one indicates perfect match between fraction reference image and the model derived sub-pixel classification image whereas the value of zero corresponds to total disagreement. The accuracy values for both metrics for various value of β are shown in Figures 5 and 6 for the fuzzy error matrix and the average Euclidean distance, respectively. The optimum values of β for the fuzzy error matrix are 0.0085, 0.0059, and 0.0105 whereas the optimum values for the Euclidean distance are 0.0085, 0.0059, 0.0155 for first, second and infinite norm cases, respectively. For first and second norm cases, both metrics achieve the highest performance at the same value of β . However, this is not the case for the infinite norm error function. We also observe that, for both metrics, the first norm error cost function (FNECF) outperforms the

second and infinite norm error cost (SNECF and INECF) in this example. Furthermore, we compare the performance of our algorithm with the linear mixture model (LMM) algorithm introduced by Settle and Drake [7] and similarly by Chang [9], in which the class proportion vectors are estimated such that the mean square errors of the observed spectral response vector and the mixed spectral response vector is minimum under the constraints that the class proportion are non-negative and sum to one. Table 3 compares the best performance for both the Euclidian distance and fuzzy set error matrix for all error functions and the LMM algorithm. Clearly, all of our approaches outperform the LMM algorithm since our algorithms consider the prior information from the known class proportions in the sub-pixel classification process. The user's and producer's accuracy based on the fuzzy error matrix are also shown in Table 4. Here, the user's accuracies of our approaches are significantly higher than the LMM algorithm for the classes of Roof1, Tree and Roof2 for all error cost functions and slightly degraded for the classes of Grass and Road for some error cost functions. However, the producer's accuracies of Class Roof1 and Tree are significantly lower while the large improvement can be seen for classes Grass, Road and Roof2.

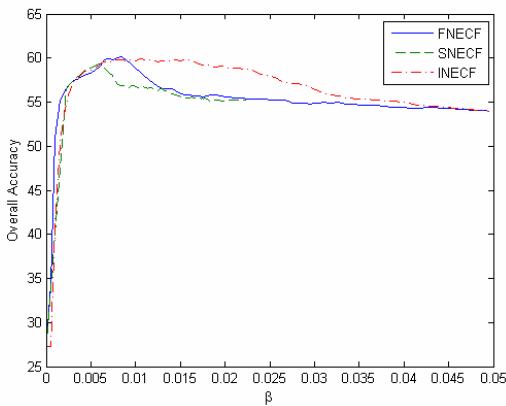


Figure 5: The overall accuracy of the proposed techniques for different values of β in Example 1.

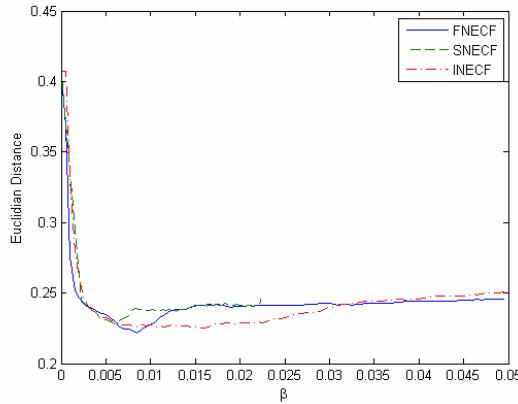


Figure 6: The Euclidean distance measure of the proposed techniques for different value of β in Example 1.

Table 3: The best accuracy measure for different sub-pixel classification techniques

Method	Euclidian Distance	Overall Accuracy
FNECF	0.2218	60.18%
SNECF	0.2285	59.27%
INECF	0.2253	59.86%
LMM	0.2509	52.38%

Table 4: The user's and producer's accuracies for different sub-pixel classification algorithm of Example 1

Class	FNECF		SNECF		INECF		LMM	
	User's	Producer's	User's	Producer's	User's	Producer's	User's	Producer's
Grass	63.65%	82.72%	62.49%	81.89%	60.65%	79.89%	62.87%	69.62%
Roof1	62.93%	77.37%	64.68%	78.75%	88.87%	72.12%	18.65%	85.28%
Tree	44.98%	13.86%	34.90%	12.49%	30.51%	12.76%	28.92%	24.16%
Shadow	45.81%	62.80%	45.69%	60.54%	47.70%	59.26%	42.27%	65.45%
Road	60.28%	65.86%	60.16%	63.23%	60.64%	63.55%	60.47%	34.08%
Roof2	78.03%	50.99%	77.00%	52.48%	80.10%	58.06%	68.40%	49.54%

Experiment 2

In this experiment, we consider a multi-spectral image from Landsat ETM+ at spatial resolution 30 m acquired in 1999. A portion consisting of (221×327) pixels covering a part of Syracuse area has been selected. Only 6 non-thermal bands of

ETM+ image have been considered, since the spatial resolution of thermal band is different than the others. Figure 7 shows the false color composite (FCC) of the area selected. An existing land cover map, collected by Emerge® on July 13rd, 1999, has been used as the reference image for accuracy assessment purposes. This land cover map has been produced from a classification of digital aerial photographs at two-foot spatial resolution at an accuracy of 85%. Further details on this reference image may be found in [22]. The reference image is shown in Figure 8, with five land cover classes – tree, grass, bare soil, water and impervious represented in dark green, light green, brown, blue and yellow colors respectively. Each pixel in this reference image has been assumed pure. Based on the procedure given in Experiment 1, we generated the fraction reference images for each class at 30 m resolution corresponding to the ETM+ image (Figures 9 (a)-(e)). From the knowledge of these fractions, pixels with at least 60% fraction of each individual class were identified in the observed ETM+ image (Table 5). Twenty pixels for each class in Table 5 are randomly selected. As a result, there are the totals of 100 training pixels. Equation (27) is applied to estimate the spectral signature matrix, M . Similar to Example 1, the class proportion cost functions for each individual class are estimated and are given in Table VI. Here, we found that $Z = 0.99863$.

Figure 12: False color composite of Landsat ETM+ image of a portion of the Syracuse area (Blue: Band1, Green: Band3, Red: Band4)

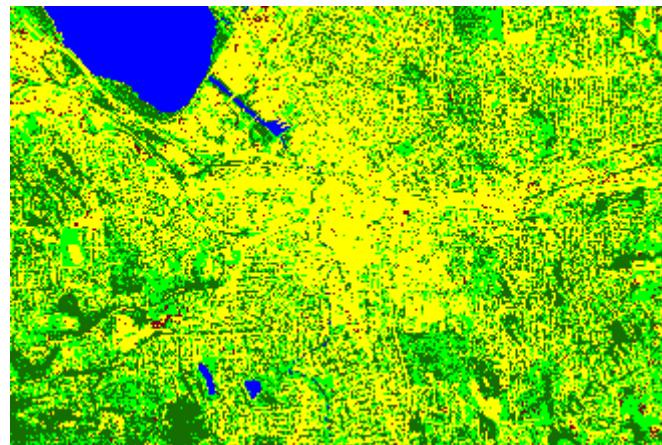


Figure 13: Land cover map at two-foot spatial resolution, used as reference

image

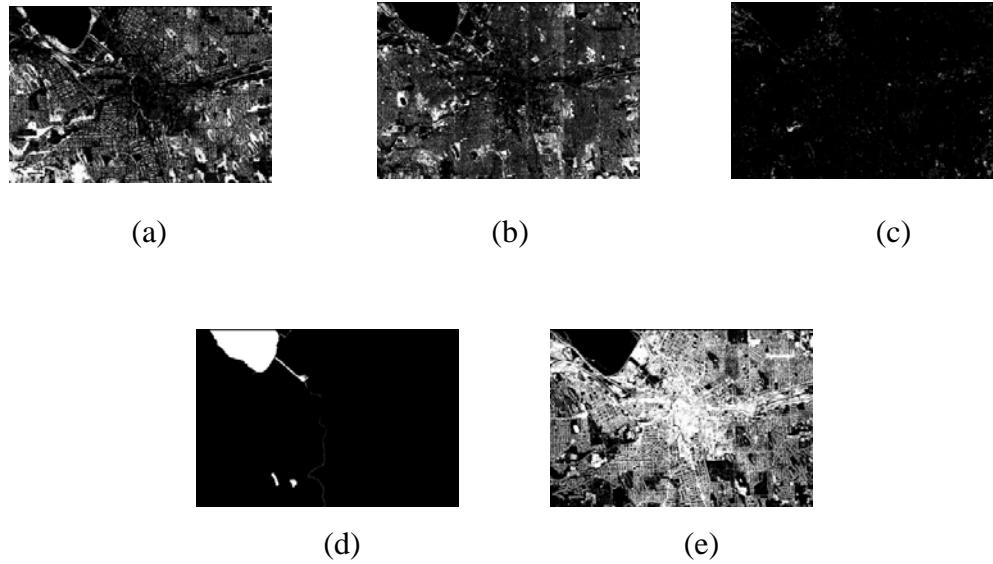


Figure 9: Fraction reference images of five land cover classes at 30 m resolution

(a) tree; (b) grass; (c) bare soil; (d) water; and (e) impervious

Table 5: Number of pixels that have at least 60% of the fraction of the given classes in Example 2.

Class	Number of Pixels
Tree	8779
Grass	5149
Bare soil	98
Water	3173
Impervious	29184

Table 6: The class proportion probabilities and cost function of TM data

Class	θ_l	p_l	$\log[(1-p_l)/p_l]$
Tree	0.8459	0.8471	-1.7120
Grass	0.8915	0.8927	-2.1184
Bare soil	0.3239	0.3243	0.7341
Water	0.0523	0.0523	2.8963
Impervious	0.8760	0.8772	-1.9662

Again, the fraction images for all cases of error function are obtained, and the performance evaluations are shown in Figures 7 and 8, for the fuzzy error matrix and

the Euclidean distance, respectively. For the case of the second norm error function, only 42 values of β are considered due to computation costs involved in solving a mixed-integer quadratic program. Table 7 compares the highest overall accuracies and the minimum Euclidean distance for all error cost functions and the LMM algorithm. Clearly, all of our proposed models outperform the LMM algorithm due to the use of the prior information. In this case, we observe that the performance of the IFNECF outperforms the FNECF, SNECF and LMM algorithms. The differences resulting from the choice of error functions in Examples 1 and 2 suggest that there exists an optimum type of error cost function. Nevertheless, for both Examples 1 and 2, there are relatively small variations in performances for different choices of the error cost functions. The optimum values of β for different error cost functions and performance metrics (Table 8) appear to be the same except for FNECF. The user's and producer's accuracy based on the fuzzy error matrix are also shown in Table 9. Significant improvement can be found in individual accuracies of class Bare soil and classes Tree and Impervious.

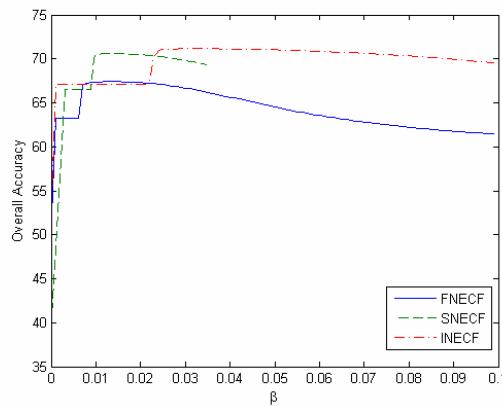


Figure 7: The overall accuracy of the proposed techniques for different values of β in Example 2.

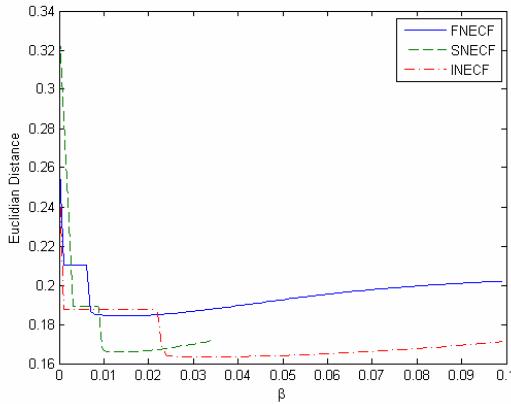


Figure 8: The Euclidean distance measure of the proposed techniques for different value of β in Example 2.

Table 7: The best accuracy measure for different sub-pixel classification techniques for Example 2.

Method	Minimum Distance	Overall Accuracy
FNECF	0.1844	67.40%
SNECF	0.1658	70.61%
INECF	0.1633	71.17%
LMM	0.2067	59.79%

Table 9: The optimum value of β for different performance evaluation techniques and error cost functions for Experiment 2.

Method	Minimum Distance	Overall Accuracy
FNECF	0.0150	0.0120
SNECF	0.0134	0.0134
INECF	0.0340	0.0340

Table 9: The user and producer accuracies for different sub-pixel classification techniques of Experiment 2

Class	FNECF		SNECF		INECF		LMM	
	User's	Producer's	User's	Producer's	User's	Producer's	User's	Producer's
Tree	55.29%	87.65%	64.60%	82.57%	68.70%	75.30%	65.72%	71.90%
Grass	69.97%	34.78%	71.22%	33.69%	66.08%	49.71%	66.51%	51.08%
Bare soil	9.36%	47.91%	9.52%	47.71%	9.05%	47.78%	7.55%	78.98%
Water	93.28%	92.93%	94.57%	92.37%	94.28%	92.53%	33.74%	94.78%
Impervious	86.55%	70.36%	81.31%	80.26%	82.28%	77.98%	88.46%	54.73%

VI. Summary

In this paper, new sub-pixel classification algorithms based on the linear mixture model through incorporation of the prior information from known class proportions have been proposed. The model assumes that the observed spectral data at each pixel is proportional to the sum of spectral signatures present in the pixel. This proportion was assumed to follow the Dirichlet distribution. Furthermore, the presence and absence of each land cover class has been characterized under the statistically independence assumption. Based on these models, two cost functions were introduced, namely the class proportion and error cost functions. Next, the general form of the optimization problem was stated and the optimization algorithms where the error cost functions were defined using the first, second and infinite norms have also been formulated. For the experimental studies, we found that all of our all proposed algorithms significantly outperform the LMM without prior information given in [7] and [9]. Furthermore, the classification accuracies were also similar for different cost functions.

There are still several issues involved in sub-pixel classification that still need to be resolved, particularly in the optimization algorithm. More computational efficient algorithm may be employed to reduce the computational times of the optimization problems given in Equations (29), (31) and (33). The performance of the sub-pixel classification can be further improved with more knowledge of class proportion can be employed. In other words, one may specify unequal values of α_i in Eq. (9.a).

References

- [1] P.M. Mather, Computer processing of remotely-sensed images: an introduction, Chichester; New York : Wiley, c1999.
- [2] G.M. Foody, “Mapping Land Cover from Remotely Sensed Data with a Softened Feedforward Neural Network,” *Journal of Intelligent and Robotic System*, 29, pp. 433-449, 2000.
- [3] M. Hansen, R. Dubayah, and R. DeFries, “Classification trees: an alternative to traditional land cover classifiers,” *International Journal of Remote Sensing*, 17, 1075– 1081, 1996
- [4] P. Aplin and P.M. Atkinson, 2001, “Sub-pixel Land Cover Mapping for Per-field Classification,” *International Journal of Remote Sensing*, vol. 22, no. 14, pp. 2853-2858, 2001.
- [5] T. Kasetkasem, M.K. Arora, and P.K. Varshney, “Super-resolution land cover mapping using a Markov random field based approach ,” *Remote Sensing of Environment*, Volume 96, Issues 3-4, 30 June 2005, Pages 302-314.
- [6] G.M. Foody and D.P. Cox, “Sub-pixel Land Cover Composition Estimation using a Linear Mixture Model and Fuzzy Membership Functions, *International Journal of Remote Sensing*, 15, pp. 619-631, 1994.
- [7] J.J. Settle and N.A. Drake, “Linear Mixing and the Estimation of Ground Cover Proportions, *International Journal of Remote Sensing*, 14, pp. 1159-1177, 1993.
- [8] M. Brown, H.G. Lewis and S.R. Gunn, “Linear Spectral Mixture Models and Support Vector Machines Remote Sensing,” *IEEE Transactions on Geosciences and Remote Sensing*, vol. 38, 2346-2360, 2000

- [9] C-I. Chang and D.C. Heinz, "Constrained Subpixel Target Detection for Remotely Sensed Imagery," *IEEE Transaction on Geoscience and Remote Sensing*, vol. 38, no. 3, pp. 1144-1159, May 2000
- [10] A.J. Tatem, G. Hugh, P.M Atkinson and M.S. Nixon, "Super-resolution Land Cover Pattern Prediction using a Hopfield Neural Network," *Remote Sensing of Environment*, 79, pp. 1-14, 2002.
- [11] J.C Bezdek, R. Ehrlich, and W. Full, "FCM: The Fuzzy c-means Clustering Algorithm," *Computers and Geosciences*, 10, pp. 191-203, 1984.
- [12] J. Verhoeve and R.D. Wulf, "Land Cover Mapping at Sub-pixel Scales using Linear Optimization Techniques," *Remote Sensing of Environment*, 79, pp. 96-104, 2002
- [13] J. Settle, "On the Effect of Variable Endmember Spectra in the Linear Mixture Model," *IEEE Transactions on Geosciences and Remote Sensing*, vol. 44, no. 2, pp. 389-396, Feb. 2006.
- [14] J.R. Connor, "Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution," *journal of the American statistical association* vol. **64** pp. 194-206, 1969.
- [15] H.L. Van Trees, *Detection, Estimation, and Modulation Theory*, Wiley, New York, 1968.
- [16] P.K. Varshney, *Distributed Detection and Data Fusion*, Springer, New York, 1997.
- [17] GNU Linear Programming Kit Reference Manual, October 2008.
- [18] R.A. Waltz, T.D. Plantenga. *KNITRO User's Manual*, <http://www.ziena.com>, March 2009.

- [19] G.M. Foody, “Approaches for the Production and Evaluation of Fuzzy Land Cover Classifications from Remotely Sensed Data, *International Journal of Remote Sensing*, 17, pp. 1317-1340, 1996.
- [20] E. Binahi, P.A. Brivio, P. Ghessi and A. Rampini, “A Fuzzy Set Based Accuracy Assessment of Soft Classification,” *Pattern Recognition Letters*, 20, pp. 935-948, 1999.
- [21] S.V. Stehman, M.K. Arora, T. Kasetkasem, and P. K. Varshney, “Estimation of Fuzzy Error Matrix Accuracy Measures Under Stratified Random Sampling,” *Photogrammetric Engineering and Remote Sensing*, Vol. 73, No. 2, Feb. 2007, Page(s) 165-174.
- [22] S. Myeong, P. Hopkins, R.H. Brock, and D. Nowak “Urban Cover Classification Using Digital, High Resolution Aerial Imagery,” *2001 ASPRS Conference*, St. Louis. MO, April 2001.