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Abstract

In this research, we study properties of copositive barrier. We are able of compute and approximate value,
gradient and hessian of the function accurately. Moreover, we approximate cone of copositive matrices via.
linear matrix inequalities (LMI) or system of inequalities which can be used for approximating copositive

programming.
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PROPERTIES OF UNIVERSAL BARRIER FOR CONE OF
COPOSITIVE MATRICES
T. MOUKTONGLANG*
MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE,
CHIANGMAI UNIVERSITY, CHIANGMAI THAILAND 50200

Abstract. It is shown that using ideas from the theory of Monte Carlo methods, more precisely,
methods based on the theory of Markov chains and random walks, we can approximately evaluate
integral for universal barrier for cone of copositive matrices, its corresponding gradients and Hessians
with a sufficient accuracy in a reasonable computation time.

1. Introduction. Let @ be n by n symmetric matrix. We say that @ is coposi-
tive if 27 Qx > 0 for every x € R% (i.e. = is a vector in R™ such that all its components
are nonnegative). The set of all copositive matrices forms the closed convex cone K,,
in the vector subspace S™ of symmetric n by n matrices. S™ is a Euclidean vector
space with the scalar product

(1.1) < X,Y >=Tr(XY).

The dual cone K (with respect to the scalar product (1.1)) consists of the so-
called completely positive matrices, i.e. matrices of the form

n
(1.2) Zx(i)[x(i)]T,m >0
=1

where z() € RY,1=1,2,---,n+1
The optimization problem of the form:

(1.3) Tr(CX) — min,
(1.4) Tr(AnX) = by,
(1.5) X eK,,

is called a copositive programming problem. Many difficult problems in combinatorial
optimization are either reduced or approximated with a high accuracy by copositive
programming problems.

For example, let us consider the partitions problem on graphs. Let G = (V, E) be
an undirected graph on n vertices associated with adjacency matrix A > 0 so a;; > 0
implies that the edge (ij) € E(G) with weight a;;. Given mq,mga, and mgs where
my + mg + mg = n, find subset S1,5:, and S3 of V(G) with cardinalities m1, mo,
and mg respectively, such that the total weight edges between S; and Sy is minimal.
This problem is NP-complete. In [5], J. Povh and F. Rendl show that this problem
can be equivalently reformulated as a linear programming over the cone of completely

*This author was supported in part by the commission on higher education and thailand
research fund under grant mrg5080192



positive matrices (the dual cone of copositive matrices). The graph partitions appear
in many applications for example in circuit board, microchip design, floor planning
and analysis of bottlenecks in communication networks. Many approaches have been
developed to solve this class of problems. Semidefinite programming turns out to be
a very useful approach to get tractable relaxation for the graph partitioning problem.
See, for more examples of copositive programming [1], [2], [3], [5]. Despite the fact
that (2) - (4) belongs to the class of convex optimization problems, they are very
difficult to solve. Indeed, even the problem of checking that matrix @ € S™ is on K,
is NP-hard (see e.g. [4]).

2. Barrier for Cone of Copositive Matrices. By using ideas from the theory
of interior-point methods to approximate solutions to (1.3) - (1.5) we need to calculate
the values of barrier function and its corresponding gradients and hessians with a
sufficient accuracy in a reasonable computation time.

Indeed one can show that the function,

(2.1) F(Q) =1n / e gy - day,

R

Q@ € K, is the self-concordant barrier on the cone K,,. For the theory of self-concordant
barriers and the corresponding interior-point method see [4]. Knowledge of a self-
concordant barrier, its gradient and Hessian allows one to develop a polynomial small-
step path-following algorithm for solving an optimization problem of the type (1.3) -
(1.5). At first glance, polynomiality of such algorithms contradicts the NP-hardness
of (1.3) - (1.5) state above.

The difficulty of the realization of this program is in obtaining computable version
of (2.1) and its gradient and the Hessian (it also resolve a seeming contradiction
mentioned above).

The following proposition reduces the integral (2.1) to an integral over a standard
simplex in R"

THEOREM 1. Let

Yl =lreR" iz +ap+ -+ x, =12, >0,i=1,2,---,n}

be a standard simplex in R™, T' be the gamma function and d,_1y be the standard
surface measure on "', Then

F(%) dnfly
2y Jgn (yTQy)"/2

Proof Consider the well-known general integral formula

(2.2) /+ e QT . dr, =
Ry

1
f(z)der = — c”fl/ fley)d,_1ydc
R (@) v Jr, sn-1 ()

Take f(z) = e~ @ then f(cz) = e <* 9. Consider

/ c”_l/ f(cy)dn,lydc:/ / f(cy)c”_ldn,lydc
R, nn-1 R, Jun—1

— / / 6_027(y)cn_ldcdn,1y
sn-1 JR,
2



where (y) = y* Q.
Consider the following change of variables:

t
Let t = ¢®*y(y). Then we have ¢ = ;| (—) where we assume strict positivity of
Ty

v(y). Hence ¢" ™' = % and de = — =112,
()™ 24/7(y)

+ —ty(n—1)/2
e—cQW(y)cn—ldc:/ ettty L
o )T NZ 2 /40

1 oo tyn/2—1
= —7 et e T dt
7 |

Therefore, / 124t

Ry

27(3/1
=—-I'(n/2).
Gy )
Hence r(n) p
,zTQId cedp, = —2 n—1Y
/Rxe L1 Tn 2\/5 - (yTQy)n/2

For gradients and hessians for our barrier, we need the following simple calcula-
tions. Let T'(Q) = / eT1(@2™) gy Then F(Q)=InT(Q).

RY
We have F'(Q) - H = F(I‘CgZQ)H
e @tk QU (101008

Since I'(Q) = [zn eTr(Qa™) gz we get
T

I'Q) H= 7/ Tr(HzaT)e (@) gy
RY

and

(2.3) I(Q)(K, H) = / Te(HaaT)Te(KaaT)eTr @) gy
RZ

which leads to the following proposition.

PROPOSITION 1. Following notations introduced from above we have
F'(Q)(H,K) =< Hp(Q)H, K >

Jgn Tr(Hza™) Tr(KxxT)eTr(Q”T)dx
— +
fRi eT’r’(QxxT)dx

Jn Tr(HzaT)e TrQuee") gy Jan Tr(KzaT)e Tr(Qua"™) g,
+ +

[fRi eTT’(Qa::zzT)de
Proof Direct computation. l
From (2.3) we have, I"'(Q)(H, H) = [, Tre 11(Qee"™) (H 22T )2dg and < Hp(2x)h, h >=
+
E;+E

F"(z)(h,h).Let H;j = %, then T(Q)(H,;, Hij) = / e_ITsz?x?dac andVTI'(Q) =

n

T
3



T . . .
— Jgn €77 9%zaT dz. Therefore to approximate corresponding hessians we need to ap-
+

proximate integral in the following types
/ e_””TQ””dx, / e_ITQ’miacjdx and e_ITQ%c?ac?dx.
R R

R%

3. Markov Chains. We use techniques from the theory of Monte Carlo meth-
ods, namely, methods based on the theory of Markov chains and random walks (see
e.g. [4], chapter 7).

Let (2, A, P) be a probability model and X; : (2, A) — (RF, B¥) for i = 0,9, - - -
where B is the Borel class on R*. Then the stochastic process {X;;i =0,1,---} is a
Makov chain if

n n
+ +

P(X, € B|Xo,++,Xn_1) = P(X,, € B|X,_1)

for every n and every B € B*. Another word, the conditional distribution of the state
of the process at the future time n depends only on the present state. Suppose that
X1, Xo, -+ are random variables with density g with respect to Lebesgue measure on
RF statistically independent of X ~ kq. Let

Then it is well-known that {W,;n = 0,1,---} is a Markov Chain with K(z, B) =
J5 9(y — x)dy. This Markov Chain is known as a random walk.

To approximate the integrals mentioned in the previous section, we need to gen-
erate uniform random points. In this paper, we use hit-and-run chains

The hit-and-run algorithm is then

(1) we start the chain by selecting x¢ ~ ko.

(2) the hit: generate a unite-length direction vector d; ~ U(S*~1).

(3) the run: generate A\; € R according to the density proportional p(X;_1 + \;d;)
and let X1 = Xi—l + Aldz

From (2.2),

/ e—xTngdx _ F(%) dnfly
RE 2V Jen-r (y"Qy)"/?

which can be approximate by the following quality:

wy (N . -
/ T Qu g, o L) k=1 wmraumee) ™
R 2\/ﬁ N

where y(k)’s are random points and y(k) = [z (k), -+, 2™ (k), 1 =" ;i (k)]T

The integrals / e_”“'TQ”“':Uixjdm and / e_’”TQ’”x?x?dx can also be approxi-
R7 R7
mated using similar technique.



4. Concluding and Remarks. We approximate the values of barrier function
and its corresponding gradients and hessians with a sufficient accuracy in a reasonable
computation time. For n less than 10 our calculation for hessians is reasonability fast
and more importantly, our hessians is positive definite. However, for a larger n the
calculation are quite slow. Most of the time we obtain positive definite hessians.

Knowledge of a approximation of self-concordant barrier, its gradient and Hessian
allows one to develop a polynomial small-step path-following algorithm for solving an
optimization problem of the type (1.3) - (1.5).

5. Acknowledgements. This research was supported by the Commission on
Higher Education and Thailand Research Fund under grant MRG5080192.
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Abstract

In this paper, we approximate cone of copositive matrices by second
order sum of square. The estimation is done by is using a set of lin-
ear matrix inequalities or a set of linear inequalities which can be used
to approximate copositive programming via semidefinite programming or
linear programming, respectively.

1 Introduction

Let Q be n by n symmetric matrix. We say that @ is copositive if 27Qz > 0
for every x € R} (i.e. x is a vector in R™ such that all its components are
nonnegative). The set of all copositive matrices forms the closed convex cone
C), in the vector subspace S,, of symmetric n by n matrices. S, is a Euclidean
vector space with the scalar product

<X,Y >=tr(XTY). (1.1)

The dual cone C} (with respect to the scalar product (1.1)) consists of the
so-called completely positive matrices, i.e. matrices of the form

Zr(i)[iﬂ(i)]T,m >0 (1.2)
i=1

where z(*) e RY,i=1,2,--- ,n+1.
The optimization problem of the form:

*This author was supported in part by the commission on higher education and thailand
research fund under grant mrg5080192



min tr(CTX)
st. AX =10 (1.3)
Xedl,

is called a copositive programming problem. Many difficult problems in combi-
natorial optimization are either reduced or approximated with a high accuracy
by copositive programming problems.

For example, let us consider the partitions problem on graphs. Let G =
(V, E) be an undirected graph on n vertices associated with adjacency matrix
A > 0 so a;; > 0 implies that the edge (ij) € E(G) with weight a;;. Given
mi,ma, and mgz where my + mg + mg = n, find subset Si, 52, and S3 of V(G)
with cardinalities my, ms, and ms respectively, such that the total weight edges
between S; and S3 is minimal. This problem is NP-complete. In [6], J. Povh
and F. Rendl show that this problem can be equivalently reformulated as a
linear programming over the cone of completely positive matrices (the dual
cone of copositive matrices). The graph partitions appear in many applications
for example in circuit board, microchip design, floor planning and analysis of
bottlenecks in communication networks. Many approaches have been developed
to solve this class of problems. Semidefinite programming turns out to be a very
useful approach to get tractable relaxation for the graph partitioning problem.
See, for more examples of copositive programming [1], [3], [4], [6]. Despite the
fact that (1.3) belongs to the class of convex optimization problems, they are
very difficult to solve. Indeed, even the problem of checking that matrix Q) € S,
is on C), is already NP-hard (see e.g. [5]).

The following are notations of a few important convex cones which we use
in the paper.

e n X n symmetric matrices S, = {X € R"*" X = XT}

e n x n symmetric positive semidefinite matrices S = {X € S,,y’ Xy >
0,Vy € R"}

e n X n symmetric copositive matrices C,, = {X € S,,,y" Xy >0 ,Vy € R}

e n x n symmetric completely positive matrices C = {z = Zle vyl y; €
RU(i=1,2,..k)}

e n X n symmetrical nonnegative matrices N, = {X € S,,X;; > 0(4,j =
1,2,....,n)}

e 1 x n symmetric doubly nonnegative matrices D,, = S} N N,

Given x = [v1 , 22 , 23 , ... , o) where x; € R, then The Hadamard
productx o x is defined as follows x ox = [#? , 23, 2%, ..., 22]T.



Semidefinite programming problem
Consider a class of well know optimization problems known as semidefinite pro-
gramming problem and its dual

(P) min CeX
st. AieX =0, i=1,2,...m
X =0
(D) min by (1.4)
m
s.t. ZylAl +zZ=C
i=1
Z =0

where C' € Sy, A; € Sp,i=1,2,...,m, b= (b1,b2,...,b,)T € R™
and X € S, (y,Z) € R™ x S} is primal and dual feasible solution respectively.
Here X = ()0 refers to X as a symmetric positive semidefinite (positive defi-
nite, respectively)matrices. X > Y means that X —Y 3= 0.

We can rewrite constrain conditions (D) as the form

m m
ZyiAi <C or Z%‘Ai —-C=0
i=1 i=1
In recent years, there are a lot of development in theories for solving the
problems of this type. A lot of practical packages both commercial and free
ware have been developed to handle a large size of the problems very efficiently
such as Mosek, Sedumi etc.

2 Approximation of the Cone of Copositive Ma-
trices

Since any y € R} can be written as y = xox for some x € R", we can represent
the copositivity requirement for an n X n symmetric matrix M as

P(x):= (xox)TM(xo0x) = Z M”:vfx? >0 forall xeR" (2.5)
ij=1
We can represent the polynomial P as a homogeneous polynomial of degree
four, where the coefficients of (z;x;)(zxx;) are nonzero for ¢ # j # k # 1.

P(x) = xT Mx (2.6)

where x = [22,...,22, 2179, 2123, ..., ¥y 17,]T and M is a symmetric matrix of

order n+ %n(n —1). In fact, M is not uniquely determined. The non-uniqueness
follows from the identities:

(wiw;)? = (2:)*(;)?

(wizj) (zizy) = (4)*(228)

(i) (zra) = (o) (z520) = (o) (z528)



Sum of squares decompositions : S.0.S
Polynomial P(x) is called the sum of squares decompositions (S.0.S) if and only
if P(x) =Y., fi(x)? for some polynomial functions f;(x), i =1,...,n

Note For any x € R™ and any multi-index m € NJ' (where No = {0, 1,2, ...})we
define |m| = >, m; and x™ = [[, 2" the corresponding monomial of degree

|m|. And I"(s) = {m € N§ : |m| = s} refers to the set of all possible exponents
of monomials of degree s (there are d = " +j_ 1 )) and 21"(s) = {2m :

m € I"(s)}. Finally, given a set of multi-indices I and a vector x € R™, we
define [x™]mer as the vector with components x™ = fo“ for each m € I.

Lemma 2.1. (Bomze [2]) If P(x) is a homogeneous polynomial of degree 2s in
n variables © = [x1, ..., x,]", which has a representation

Zfz

for some polynomials f;(x)(i =1,. ) then there are polynomials h;(x) which
are homogeneous of degree s for all i such that P(z) = S.¢_, hi(z)? with 1 <

t < I. Further, P has a s.0.s representation as above if and only if there is a
symmetric positive-semidefinite matriz d x d matriz M € Sj such that

P(x) ="Mz
where d = ( n+z -1 ) and &= [mk]kep(s) € R%.

Lemma 2.2. ( Bomze [2]) Let P(x) = Y mern(s) Ap@®™ be a homogeneous

polynomial of degree 2s in n variables ¢ = [x1,...,2,])T and define M € S, and
€ R as in Lemma (2.1). Then P(x) = TMcc if and only if
> M= Ap forall me I(s) o
(4, k) €I (8)]2:j+k=2m
Z Mir=0 forall neI™(2s)\21"(s). (2.8)

(GR)EI™ (9)]?:5+k=n

We define the cone KO := S + N,, = D, the cone dual dual to that of all
doubly nonnegative matrices.

Theorem 2.3. (Parrilo [7]) P(z) = (zox)"M(zo x) allows for a polynomial
s.0.s if and only if M € K | i.e., if and only if M = S+T for matrices S € S,
and T € N,,.

Higher order sufficient conditions can be derived by the polynomial:

PO (x) = P(x)(>_ )" Z M3 (Y af)" (2.9)
k=1 k=1

i,j=1



and we can consider P(")(x) has a sum of squares decomposition (S.0.S) from
Lemma (2.1).

Definition 2.4. (De Klerk and Pasechnik [4]) The convex cone K], consists
of the matrices for which P")(x) in (2.9) allows a polynomial sum of squares
decomposition.

Obviously, these cones are contained in each other: K7 C K!*! for all 7. This
follows from
PUD(x) =3 ag PO (x) = [filx)zal?
k ik

By explicitly calculating the coefficients Ay, (M) of the homogeneous polynomial
P (x) of degree 2(r + 2) and summarizing the above auxiliary results, The
characterization of K is obtained [2].

Theorem 2.5. (Bomze [2]) Let n,r € N , d = < n:—igl > , m(i,j) =

m— e — € for any m € R™ and introduce the multinomial coefficients

c(m) = |m|!/H(mi)! if me N,

(2.10)
e(m) = 0 if me R"\ NJ.
For a symmetric matric M € S, define
Am(M) =" c(m(i, j)) M;;. (2.11)

2%

Then M € K, if and only if there is a symmetric positive-semidefinite d x d
M € Sj such that

Mir = An(M) forall meI™(r+2)
(G, k) E[I™ (r+2))2:5+k=2m

Mjr = 0 for all meI™(2r+4)\2I"(r+2)
(G, k) E[I™ (r+2)]2:5+k=n
(2.12)

Lemma 2.6. (Bomze [2]) Let M be an arbitrary n X n matriz and denote by
diagM ) = [M;;]; € R™ the vector obtained by extracting the diagonal elements
of M. If Ap(M) is defined as in (2.11), then

c(m)

Am(M) = s(s—1)

[m” Mm—mTdiagM] for all mec I"(s), s€ N. (2.13)

For M = E,,, we have, from m” E,,m = (e'm)? = |m|?, thus

Am(E,) = S(CS(T)D [ —s] =c(m) forall meI™(s), seN. (2.14)




Parrilo [7] showed that M € K} if the following system of linear matrix inequal-
ities has a solution.

M—-M®D 8t i=1,..n
MY =0 i=1,..n

MP +2M =0 i#],
M“+M“>+M“ >0 Li<j<k

(2.15)

where M ¢ S, for i = 1,...,n. Then, Bomze and De Klerk have proven the
system of linear matrix inequality is necessary and sufficient [2].

3 Second Order Sum of Squares Decomposition

By directly calculating coefficients A,,,(M) of the homogeneous polynomial
P®)(z), we obtain the characterizations of the cone K (?). Further, we obtain a
necessary and sufficient condition for a matrix M belongs in K (2.

Theorem 3.1. M € K2 if and only if there are n symmetric n X n matrices
MU e 8, fori=1,...,n and j = 1,...,n such that the following system of
linear inequalities has a solution:

M—-M® e St Ji=1,.,n
M > 0 i=1,..n
2017 —|—2M(”) > 0 i#j
M(J]) Jr]\4(21) Jr4]\4(11) > 0 i
2(MIP 4 2M§j )4 2M<7”) + M(”)) > 0 i#j,jtkitk
AMIY + MY+ MPP + M, )+M;”“) +M(”)) > 0 i<j<k<l
(3.16)

where M) € S, fori=1,...,nand j=1,...n

Proof. By(2. 13) for r = 2 ,we have
Z M;;x? x Zmi)z =i'Mi
1,7=1 k=1

where & = [z"]rern € R? and d = < n;1|—3 )

Assume that M € K2. By the Theorem 2.5 and (2.13) there exists a M € S
satisfying (2.12) such that the left-hand side of (2.12) in case n = 2m; are

satisfied as follows
(1) Miiiiii  if n=8e;

(2)  Miijiiij + 2Miiiiij;  if n=6e; + 2¢;
(3)  Miijjigs + 2(Miiii jjj5 + Miijaggs) if n=de; + 4e;
(4)  Miijnsije + 2(Migii jink + Migigijin + Migikijin) + Migjjane  if n = 4de; + 2e; + 2ep,
(5) Mijkl,ijkl + 2(Miijj,kk-ll + Miikk,jjll + Miill,jjkk + Mz’ijk,jkll + Miz’jl,jkkl
+Miikl,jjkl + Mijjk,ikll + Mijjl,ikkl + Mz‘jll,ijkk) Jif no=2e; + 2e; + 2ey, + 2¢



Similarly, the equation (2.13) is equivalent to

(6)  Aui(M) = My

(M) Auij(M) = 2(My + M)

(8)  Auij(M) = M+ Mj; + 4M;;

(9)  Aijr(M) = 2(My +2M;; + 2Myy + Mjy,)

(10) Aijkl(M) = 4(Mij + M;, + My +Mjk +Mjl +Mkl)

Letting S,gij) = Mijgr.iju for all (ijkl) and setting M) = M — S(;j). Now

consider (%) = M—M(”) since S € S+, then M— MU € St fori=1,...,n.
Using the fact that M is positive semidefinite, we have to following inequalities.

i)
(") - S,,
M" = Mii— =
o Miiii iiii
- ~7/74'LZ,74'L'L74 2
Miii. 4410
ij i Si(iij) Sz(?i)
oMy + oM = 2(My - )+ 2(My — =)
= Auiij(M) — Miiijiizj — Misii iig )
= Miiijiii; + 2Miiiiiij; — Miiij,iiig; — Miiiiiigg
Misii45i55, =0 o w
i i ij 5499 o ;i
M+ M)+ aME? = My — P+ My = =L+ A(My; — =)
Miijjiiii - Miijjaiji ~
= Ay (M) - J2J, Ji _ JQJ, 3 ONiisiis

= M jj;; =20
MYV + 2P +2M§7 + M)
Aisji (M) = Misjh ik — 2Mesin,ijin = 2Miisg ijhn — Miijj iin
= 2Mii jjrk + Miijj ek 20

A+ M0+ MPF + MG+ MY+ M)
= A(Myj+ Mg + My + Mg+ My + My) — 2(S57 + 859 + 5§ 1 560 4 5GF 4+ 509
Ayjra (M) + 2(Miina ikt + Mgt jrnt + Miijr i + Mijjang + Migjninn + Mijek.iji)
= Mijkl,ijkl + 2Miijj,kkll + 2Miikk,jjll + 2Miill,jjkk >0
Thus we have satisfied the system of LMI’s (3.16). Conversely, assuming that a

solution to (3.16) is given. Then we have,

Pi(z) = (fof(m ox)' M(z o)

= (fo)Z(z ox)T(M — MUY (zox) + (Zx?)Q(xox)T(M(ij))(xox)



Since M — M) € S for every i, the first sum is a s.0.s. Let now consider the

second sum,
n

(Y 2?)*(@o )" (MD)(z 0 x)

i=1
(W) 2 2222 52
= E My, TR
i,5,k,1

_ ZM(n)IS + Z M('LJ) + 2M(“)) 3
+ Z M(JJ +M H) +4M(z])) ;1
i#]
ik ik ij
+ Y 2miP remiP oM + MGD)ata?ad
i#.0 7k ik 4 , ,
+ Z 4(Mi(fl) + Mi(,zl) + Mi(ljk) + MJW) M(Zk) + M,i;j)):c xka:lz
i<j<k<l
_ Z / u) 4 Z 2M(l]) +2M(”)l’3$])2
i#]
+3 \/M G 4 MO a9 3242)2
l#]
+ \/2 MIP —|—2M(Zk)+2M(”)+M(”))x zjz))?
i#], J#k i#k
+ Yy \/4 YO MY+ MY+ MG+ MGD + MV a )
1<j<k<l
Hence the second sum is also S.0.S. Therefore the proof is completed. O

A similar technique can be used to obtain a similar result for cone C’T(f)
We obtain a system of linear inequality which can be use for approximating

copositive programming via linear programming. (For more properties of C,(LQ),
see e.g. [2].)
Theorem 3.2. M € C2 if and only if there are n symmetric n x n matrices

MU € 8, fori=1,...,n and j = 1,...,n such that the following system of
linear inequalities has a solution:

M—-M® ¢ Nf i=1,.,n
M > 0 i=1,.n
2M(”)+2M(”) > 0 i
M(Jﬁ)+M]zz _|_4M(]J) > 0 i
42(M}j’“)'+2ij>+2MZJ>+M;;f>) > 0 it jtkitk
AMI + MG+ M7 MG MY M) > 00 i<j<k<l
(3.17)

where M) € S, fori=1,...,n and j =1,...n



4

Conclusion

By directly calculating coefficients A,,(M) of the homogeneous polynomial
P®)(z), we obtain the characterizations of the cone K®). We then obtain a
necessary and sufficient condition for a matrix M belongs in K ) which can be
used for approximating copositive programming via semidefinite programming.
Moreov(elg, we extend our approximation via linear programming by using the
cone C’n2 .
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