Project Title: Effects of genetic distance of parental lines on DNA methylation and transposon expansion in

hybrid rice

Investigator:

Laksana Kantama

Division Biology, Faculty Liberal Arts and Science, Kasetsart University, Kampangsaen

Campus, NakonPathom

E-mail Adress:faaslsk@ku.ac.th, lkantama@yahoo.com

Project Period: 2007-2009

**Abstract** 

In breeding, inter- and intraspecific hybridization is the key process for introgressing exogenous traits into the

germplasm of the recipient crop. Such crosses between the crop and the related or distant may induce

epigenetic changes that can have an impact on both gene expression and phenotype. Previous studies have

indicated such epigenetic alteration in rice but fail to understand if and how genetic distance of parental lines

has an effect on the epigenome. Here we address the question if genetic distances are related to epigenetic

changes as judged from DNA methylation assays. Our extensive study was done on comparisons of 24 rice

cultivars with genetic distances varying from 0.35 to 1.04. Although changes in DNA methylation was most

obvious, they turned out not to be correlated with Nei's index, the measure of overall genetic distances. We

then extended our study on specific methylation patterns in DNA regions containing the miniature inverted

repeat transposable element of rice, Stowaways Os-1, to explore the possibility of reactivation of this

transposon. The reactivation in these transpositions of the Stowaway did appeared and was found in 2.2% of

the hybrids, a value that is not correlated with the overall DNA methylation change of the genome. Our study

clearly demonstrated that interspecific hybridizations can induce both global DNA methylation and reactivation

of the Stowaway transposon. The way how this reactivation takes place seems more a matter of specific

parental combination rather than the consequence of a global methylation change. This study is also the first

description of a Stowaway reactivation in rice, a phenomenon that has been predicted in previous transposon

studies. In future studies we also will analyze as to whether such reactivation that will have an impact on

phenotype of the hybrids involved.

Keyword: Oryza sativa, intraspecific hybridization, DNA methylation, transposon, epigenetics

รหัสโครงการ: MRG5080196

3

ชื่อโครงการ: ผลของความแตกต่างทางพันธุกรรม (Genetic similarity) ของรุ่นพ่อแม่ที่มีผลต่อ DNA methylation และการเพิ่มระดับของ Transposon ในข้างลูกผสม

ชื่อนักวิจัย: น.ส.ลักษณา กันทะมา

คณะศิลปศาสตร์และวิทยาศาสตร์ ม.เกษตรศาสตร์ วิทยาเขตกำแพงแสน นครปฐม

E-mail Address: faaslsk@ku.ac.th, lkantama@yahoo.com

ระยะเวลาโครงการ: 2550-2552

บทคัดย่อ ในการปรับปรุงพันธุ์พืชการผสมข้ามเป็นวิธีที่นำลักษณะที่ต้องการจากพ่อและแม่มาสู่ลูก แต่ การผสมข้ามทำให้เกิดลักษณะนอกเหนือจากการเปลี่ยนแปลงลักษณะทางพันธุกรรมคือการ เปลี่ยนแปลงทางอิพิเจเนติคส์ส์ซึ่งมีผลต่อการลักษณะฟิโนไทป์ จากการศึกษาในอดีตทราบว่าการผสม ข้ามสปีชียส์ทำให้เกิดการเปลี่ยนแปลงทางอิพิเจเนติคส์ส์อย่างมาก แต่ไม่มีการศึกษาหาความสัมพันธ์ ทางพันธุกรรมของพ่อแม่ว่ามีผลต่อการเปลี่ยนแปลงทางอิพิเจเนติคส์หรือไม่ อย่างไร ดังนั้นในการศึกษา นี้เราต้องการทราบว่าระดับความแตกต่างทางพันธุกรรม (genetic distance) ของพ่อและแม่มีผลต่อการ เปลี่ยนแปลงทางอิพิเจเนติคส์หรือไม่ โดยทดสอบในข้าวที่มีความแตกต่างทางพันธุกรรมตั้งแต่ 0.35-1.04 มาทดสอบหาความถี่ของการเปลี่ยนแปลง DNA methylation พบว่า ความแตกต่างทางพันธุกรรม ไม่มีความสัมพันธ์กับการเปลี่ยนแปลงของ DNA methylation นอกจากนี้เราได้ทดสอบการตื่นตัวของ transposon ที่มักเป็นผลจากการเปลี่ยนแปลงทางอิพิเจนเนติคส์ พบว่า การตื่นตัวของทรานโพซอนที่ เลือกศึกษา คือ Stowaway Os-1 ไม่มีความสัมพันธ์กับระดับ DNA methylation ที่เปลี่ยนแปลง จาก การศึกษานี้พบว่าการผสมภายในสปีชียส์ชักนำให้เกิดการเปลี่ยนแปลงทางอิพิเจเนติคส์ได้เช่นเดียวกับ การผสมข้ามสปีชียส์ ปัจจัยที่ชักนำอาจไม่ใช่ความแตกต่างทางลำดับเบสบน DNA แต่อาจเป็นปัจจัยที่ เกิดจากปฏิสัมพันธ์ร่วมของสายพันธุ์พ่อและแม่ และเป็นการพบการตื่นตัวของ Stowaway Os-1 ครั้ง แรกในข้าวซึ่งยังไม่มีรายงานมาก่อนการตื่นตัวนี้เกิดขึ้นในระดับ 28-39% คาดว่าน่าจะส่งผลต่อ ลักษณะฟิโนไทป์ซึ่งจะได้มีการศึกษาต่อไป

คำหลัก: ข้าว, การผสมภายในสปีชียส์, ดีเอ็นเอเมธิเลชัน, ทรานโพซอล, อิพิเจเนติคส์ส์

กิตติกรรมประกาศ