

บทคัดย่อ

รหัสโครงการ : MRG-5080221

ชื่อโครงการ : การดัดแปลงข้าวเหนียวด้วยด่าง เพื่อใช้ชีวะลดอภาระปลดปล่อยยาในยาเม็ดแบบมาทริกซ์

ชื่อนักวิจัยและสถาบัน : ผู้ช่วยศาสตราจารย์ผุดุงขาวัญ จิตโรกาส (ผู้รับทุน)

คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น

รองศาสตราจารย์นิวัติ วิศวรุ่งโรจน์ (นักวิจัยที่ปรึกษา)

คณะเภสัชศาสตร์ มหาวิทยาลัยพะเยา

อีเมล : padchi@kku.ac.th

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ :

การศึกษานี้มีวัตถุประสงค์เพื่อหาสภาวะที่เหมาะสมสำหรับการดัดแปลงข้าวเหนียวด้วยด่างในสภาวะที่มีแอลกอฮอล์ (MGS) ศึกษาผลของ MGS ต่อกุณสมบัติของยาเม็ดชนิดออกฤทธิ์นานที่เตรียมโดยวิธีการตอกโดยตรง รวมทั้งเปรียบเทียบคุณสมบัติของเม็ดยาที่ใช้ MGS และเม็ดยาที่ใช้สารก่อมาทริกซ์ชนิดซอบน้ำที่มีจำนวนน้อยในห้องทดลอง โดยหาความเข้มข้นของโซเดียมไฮดรอกไซด์และความเข้มข้นของกรดไฮดรอลอเริกที่เหมาะสม ศึกษาผลของตัวทำละลายและความแรงอิสระต่อความหนืดของ MGS รวมทั้งศึกษาผลของแรงที่ใช้ในการตอกขัด อัตราส่วนของตัวยาสำคัญและ MGS ชนิดของสารเพิ่มปริมาณต่อกุณสมบัติของเม็ดยา และใช้ไฮดรอกซีโพลิเมธิลเซลลูโลส เอฟ 4 เอ็ม (HPMC F4M) เป็นพอลิเมอร์ตันแบบ ผลการทดลองพบว่าสภาวะที่เหมาะสมในการเตรียม MGS คือ โซเดียมไฮดรอกไซด์ความเข้มข้น 2.1 มิลลาร์ และกรดไฮดรอลอเริกความเข้มข้น 1.0 มิลลาร์ ซึ่ง MGS ที่เตรียมได้ไม่พบลักษณะเม็ดเป็น และพิสัยการเกิดเจลาตินเขียน มีโครงสร้างผลึก絮 แบบสัมฐาน มีการพองตัวดีและมีความหนืดสูง นอกจากนี้จากการพองตัวและความหนืดของ MGS ขึ้นอยู่กับค่าความแรงอิสระและชนิดของตัวทำละลายอีกด้วย การเพิ่มแรงที่ใช้ในการตอกขัดทำให้ความเข็มของเม็ดยาเพิ่มขึ้น ความกร่อนของเม็ดยาลดลง แต่การปลดปล่อยยาใกล้เคียงกัน การเพิ่มอัตราส่วนของตัวยาสำคัญ และ MGS ทำให้ความเข็มของเม็ดยาลดลง ความกร่อนของเม็ดยาและการปลดปล่อยยาเพิ่มขึ้น สำหรับคุณสมบัติของเม็ดยาที่มีสารเพิ่มปริมาณขึ้นอยู่กับคุณสมบัติของสารเพิ่มปริมาณที่ใช้ เม็ดยาที่ใช้ MGS มีความแข็งและการปลดปล่อยยาน้อยกว่าเม็ดยาที่ใช้ HPMC F4M จึงสรุปได้ว่า MGS จะเป็นสารก่อมาทริกซ์ชนิดซอบน้ำที่สามารถช่วยลดอภาระปลดปล่อยยาจากเม็ดยาที่เตรียมโดยวิธีการตอกโดยตรงอย่างไรก็ตามควรศึกษาการควบคุมการปลดปล่อยยาโดยใช้ตัวยาสำคัญซึ่งมีคุณสมบัติที่แตกต่างกันและศึกษาความคงตัวของเม็ดยาต่อไป

คำหลัก : แบ่งข้าวเหนียว, แบ่งดัดแปลงด้วยด่าง, สารก่อมาทริกซ์ชนิดซอบน้ำ, ยาเม็ดชนิดออกฤทธิ์นาน

Abstract

Project Code : MRG-5080221

Project Title : Modification of glutinous rice starch with alkaline treated for sustaining drug release in matrix tablet

Investigator : Assist. Prof. Padungkwan Chitropas (Researcher)

Faculty of Pharmaceutical Sciences, Khon Kaen University

Assoc. Prof. Nuwat Visavarungroj (Mentor)

School of Pharmaceutical Sciences, University of Phayao

E-mail Address : padchi@kku.ac.th

Project Period : 2 years

Abstract :

The objectives of this study were to determine the optimum condition to modify glutinous rice starch with alkaline treated in hydro-alcoholic solution (MGS) and to study the effect of MGS on properties of sustained release tablet prepared by direct compression method. The properties of the tablets were also compared with properties of tablet using commercial hydrophilic matrix agent. The suitable concentration of sodium hydroxide and concentration of hydrochloric acid were determined. The effects of type of medium and ionic strength on viscosity were studied. The effects of compression force, ratio of drug and MGS and type of filler on tablet properties were also evaluated. Hydroxypropyl methylcellulose F4M (HPMC F4M) was used as the benchmark polymer. The results showed that the suitable condition for preparing MGS was 2.1 M sodium hydroxide and 1.0 M hydrochloric acid. The starch grain and gelatinization endothermic of MGS were not shown. The MGS was amorphous form, high swelling capacity and high viscosity. In additional, swelling capacity and viscosity of MGS were depended on type of medium and ionic strength. Increasing the compression force, the hardness of tablet was increased whereas the friability was decreased. The compression force had no effect on drug release profiles. Increasing the ratio of drug and MGS, the hardness of tablet was decreased whereas friability and drug release were increased. The tablet properties were depended on properties of filler. The hardness and drug release of tablet contained MGS was lower than the tablet contained HPMC F4M. It can be concluded that MGS which acts as hydrophilic matrix can be sustained drug release from the tablet prepared by direct compression method. However, controlled release pattern of different type of active ingredient and stability of the tablet should be determined in the future.

Keywords : glutinous rice starch, alkali-treated starch, hydrophilic matrix, sustained release tablet