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III. SIMULATION RESULTS AND DISCUSSION 

A. Current Density 

The simulation result of the current density distribution in 
each section at the same time is shown in Fig. 5. The four 
distributions from up to down indicate respectively the current 
density distributions at z = L/16, 3L/16, 5L/16, and 7L/16. For 
L = 20 m, these four distributions clearly show the coupling 
phenomena (see Fig. 5(a)). On the contrary, for L = 20 �m, 
these figures show the perfectly decoupling phenomena (see 
Fig. 5(c)). 

Moreover, these results are more interesting for L = 20 mm 
because the coupling currents in each section are different (see 
Fig. 5(b)). We find that the maximum total current in one of 
the superconducting square bar is at z = L/16, the coupling 
current fills the whole cross-section of the bar. This total 
current decreases respectively at z = 3L/16, 5L/16, and 7L/16. 
By using the formulation in [4] to calculate theoretically the 
value of the critical length (Lc), we find that Lc = 20 mm. This 
is for the typical values as shown in Table 1 (corresponding to 
a circular filament of diameter 7 �m used for the LHC main 
magnets at CERN [7]). 

 

TABLE I. TYPICAL VALUES 

Symbol Quantity Value 

a Square bar half-width 3.5�10-6 m 

Jc Critical current density 2�109 A/m2 

 (NbTi at 5 T)  

� Copper resistivity 3.6�10-10 ��m 

 (OFHC copper at 5 T)  

B�  Rate of change of field 0.1 T/s 

  
The value of the critical length obtained from the analytical 

formulation in [4] (theoretical results) is in harmony with the 
results obtained from the numerical simulations. 

B. Magnetic Field 

Fig. 6 shows at the same time the simulation result of the 
magnetic field distribution at z = 7L/16. We can observe the 
changes of the magnetic field direction inside the square bar. 
Obviously, these figures can illustrate the direction of the 
current in the bar, for instance only one direction for L = 20 m 
(Fig. 6(a)), and two directions for L = 20 �m (Fig. 6(c)) and 20 
mm (Fig. 6(b)). 

C. Magnetization 

The magnetization value is calculated by using the obtained 
value of the current density. And a complete cycle of 
magnetization is obtained by taking the values of the 
magnetization and of the magnetic induction. Fig. 7 compares 
the magnetization cycles of each section for three strand 
lengths. For L = 20 m and 20 �m, all sections give the same 
magnetization cycle. However, the maximum value of the 
magnetization is very important for L = 20 m (perfectly 

coupling case). But for L = 20 mm (Fig. 7(b)), the sizes of the 
magnetization cycle decrease. This is from the section at z = 
L/16 to the section at z = 7L/16, or from near the middle of the 
strand to near the end of the strand. 

The total magnetization of the strand can be obtained by 
calculating the average value of the magnetization of all 
sections at a given length. In Fig. 8, we find the result as in [2] 
that the values of the total magnetization in the case of 
partially coupling are clearly between those in the perfectly 
coupling and perfectly decoupling cases. These simulation 
results of the simple problem in [4] indicate that the 
superconducting filaments in composites of several kilometers 
of length into the superconducting magnet are always fully 
coupled. For this reason, the strand is always twisted with a 
pitch appreciably lower than the critical length [3]. 

 

 
(a)  Perfectly coupling case (L = 20 m) 

 

 
(b)  Partially coupling case (L = 20 mm) 

 

 
(c)  Perfectly decoupling case (L = 20 �m) 

 

Fig. 5.  Current density distributions in the modeled domain in each section.
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              (a)  Perfectly coupling case (L = 20 m)                        (b)  Partially coupling case (L = 20 mm)                    (c)  Perfectly decoupling case (L = 20 �m) 

 

Fig. 6.  Magnetic field distributions in the modeled domain. 
 

   
                (a)  Perfectly coupling case (L = 20 m)                        (b)  Partially coupling case (L = 20 mm)                    (c)  Perfectly decoupling case (L = 20 �m) 

 

Fig. 7.  Comparison of the magnetization cycles of each section for 3 lengths. 
 

 
Fig. 8.  Comparison of the total magnetization cycles of each strand length. 

I. CONCLUSION 

In this paper, we developed a 2D numerical code to study 
the coupling between superconductor strands. The code 
permits to take into account the parameters influencing the 
coupling: not only the length of the filaments but also its 
radius, the critical current density, the rate of change of the 
field or the resistivity of the conductor matrix. The simulation 
results show that the superconducting filaments in composites 
of several kilometers of length into the superconducting 
magnet are always fully coupled. For this reason, the strand is 

always twisted with a pitch lower than the critical length. In 
order to see appear the differences of simulation results; an 
extension of this work is then to divide each strand into more 
sections. 
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PROBLEM PRESENTATION

ABSTRACT

The computation of magnetization of a strand constituted of two superconducting square bars immersed in a uniform magnetic field is studied. The numerical results 
are obtained from the program developed with the FEM. Bean’s critical state model is carried out to characterize the electrical behavior law of superconducting 
materials. The magnetization cycle, the magnetic field and the current density distributions are presented. The influence of strand length on the electromagnetic 
coupling phenomena in the superconducting square bars is also considered. The obtained results are in good agreement with the theoretical results.

CONCLUSION

We developed a 2D numerical code to study the coupling between superconductor strands. The code permits to take into account the parameters influencing the 
coupling: not only the length of the filaments but also its radius, the critical current density, the rate of change of the field or the resistivity of the conductor matrix. 
The simulation results show that the superconducting filaments in composites of several kilometers of length into the superconducting magnet are always fully 
coupled. For this reason, the strand is always twisted with a pitch lower than the critical length.

Magnetization Modeling of Superconducting Magnet
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SIMULATION RESULTS

In order to approach the real problem, it is 
appropriate to model the problem in 3D. However, 
to avoid a very high computing time needed for 
solving the large number of elements required by 
3D modeling, a novel 2D modeling technique is 
proposed. This is to divide the superconducting 
strand into elementary sections and to consider 
what happens in each section. The relations of the 
current inside the superconducting square bar, the 
current crossing the copper matrix and the voltage 
for each section are obtained directly from 
Kirchhoff’s and Ohm’s laws. Finally, we can 
express the relation between the current and the 
electric field in the superconducting square bar.
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7. MATERIAL MODELLING 

Abstract  — This paper deals with two-dimensional modelling 
of a multifilamentary wire composed of two superconducting 
filaments in a conducting matrix. In order to avoid the three-
dimensional problem solving, a novel technique is proposed to 
solve the coupled problem in two-dimensions. For that, it is 
enough to divide the filaments in several sections in the direction 
of the length of the wire. The difference of the currents in the 
superconducting filaments between two successive sections is 
equal to the current which losses in the copper matrix. The 
relation between the currents crossing the matrix and the electric 
fields in the filaments obtained by the analytical method is 
implemented in the finite element program. For a given 
geometry, the critical length of the wire where the filaments are 
coupled can be found. The numerical simulation results present 
the distributions of the current density in the modelled domain. 
The influence of the wire length on the total magnetization is also 
considered. 

I. INTRODUCTION 
A better understanding of the electromagnetic coupling 

phenomena in the superconducting filaments can be done by 
numerical simulation. For that, a finite element program has 
been developed at the LGEP in France for modelling the 
superconducting materials. 

In [1], we proposed new methods for solving the problem 
of partially coupled superconducting filaments in two-
dimensions. In order to approach the three-dimensional 
problem with better behaviour, we propose in this paper a new 
technique by dividing the superconducting filaments into 
several sections and searching the relation between the 
currents crossing the copper matrix and the electric fields in 
the filaments. 

II. PROBLEM ANALYSIS 
In order to solve the problem, it is well to take the problem 

of several partially coupled filaments in [1], but by treating the 
problem with the minimum hypothesis. For that, we have 
considered a multifilamentary wire constituted of two 
superconducting filaments embedded in a copper matrix. The 
current density is supposed parallel to the wire axis in each 
section and invariant along this axis. It only depends on x, y 
and t. The magnetic induction is thus parallel to the x-y plane 
and also depends on x, y and t. 

To avoid the large number of elements required by three-
dimensional modelling, we have then divided the wire into 
elementary sections of � ��  length, where L and n are the wire 
length and the number of sections respectively. In a simple 
case, we have taken � � �. The two-dimensional presentation 
of the currents and voltages of two filaments along a wire 
length L shows in Fig. 1. Because of the symmetry of the 

problem, only the half of length has been studied in order to 
reduce the number of sections. Due to the low conductivity of 
the matrix compared to that of the superconductor, some small 
currents can circulate between the filaments. The difference of 
the currents in the filaments for two successive sections is 
equal to the current circulating in a section of matrix [2]. By 
using Kirchhoff’s current law, we have obtained the relation 
between the currents inside the superconducting filaments (i) 
and the currents crossing the copper matrix (im) for the section 
k as follows:  

�� � 	��
� � �
���������� ��� � ���� � � �� �� � ����
����������������������� ��� � � �� ��������������������������          (1) 

where �
� � ���. 
And by using Ohm’s law, we have obtained the relation 

between the currents and the voltages for the section k as 
follows:  

�
� � 	��� �� ����������� � ��� � ���� � � �� �� � ���� �� ������������� � ��� � � �� �������������������������            (2) 

where �� � ��� and � is representative of the resistance of a 
section of � ��  length, its value could be determined by an 
electrokinetic formulation. It is interesting to note that, the 
resistance of the last section is twice because its length is two 
times smaller. 

 

 
Fig. 1.  2D presentation of two filaments over a wire length L. 

 
The equation of the electric fields (e0) defined in Fig. 1 

could be obtained as in [2]. ��� � �� !"#� ��$ %� � ����&'��( � �)�#��$)% ���� � ��� � ���� � � � ��      (3) 

Equation (3) can be rewritten as follows:  �� � � $%* ��+�+,� ������������������������������� � ��� � ����� � � ��      (4) 

By substituting (2) and (4) in (1), we have obtained the 
relation between the currents and the electric fields. 

�� � - ��
� � )$%. * ��+�+,� ������ � ��� � ���� � � �� �� � ������� $%. * ��+�+,� ���������������� � ��� � � �� ������������������������������(5) 
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7. MATERIAL MODELLING 

Equation (5) can be rewritten in the following matrix form:  / � 0123�                                        (6) 
where / � 0�� �) � ��% )� �24, 3� � 0��� ��) � ���% )� �24 and 012 is a matrix of constant value whose dimension is �� �� � 5�� �� �. For � � �, we have found that:  

012 � 6�7 87 97 �787 87 97 �797 97 97 �77 7 7 7 :                              (7) 

where 7 � �� ��� . 

III. NUMERICAL MODELLING 

The domain of the problem shows in Fig. 2 (in 2D). To 
reduce the computing time, by looking at the symmetries of 
the problem, we have only modelled a quarter of the domain. 
A technique proposed for this modelling is to execute � ��  
computations of finite element in parallel. For that, we have 
just created a mesh and then regenerated a super mesh with � ��  times more elements and � ��  times more nodes. The 
coupling between the calculations of finite element would be 
done via (6). 

 
Fig. 2.  Domain of the problem in 2D with given boundary conditions. 

 
Bean’s critical state model [3], which is replaced by a 

nonlinear function defined in [4], have been selected to 
characterize the electrical behaviour law of superconducting 
materials. As in [1], [5], in this case we have found that the 
matrix systems obtained by using the finite element method 
are as follows:  0;2<=>� � 0?@2�� � 0?@�2��� � A���� ��� � ���� � � � ��     (8) 0?@�24�� � 0?�2��� � <=�������������������� ��� � ���� � � � ��     (9) 
where > is the current density. 0;2 is the matrix of dimension B 5B. 0?@2, 0?@�2 and 0?�2 are the matrices of dimension B 5B, B 5 �� �� � and �� �� � 5 �� �� � respectively (B, � are 
the number of unknowns and the number of sections). A is the 
source vector. 

IV. SIMULATION RESULTS 

The simulation results have been obtained by using a code 
based on the finite element method and Bean’s model. A 
series of numerical simulations has been realized for the 
superconducting filaments immersed in an external magnetic 
induction varying sinusoidally in time. Figure 3 shows the 
results of the current density distributions in the modelled 
domain at C � D ��  where D is the period of the applied 

magnetic induction. The four subfigures from left to right 
indicate respectively the current density distributions at ( � � �8� � E� �8� � F� �8� � G� �8� . In the case that the wire 
length (�) is equal to the critical length (�H), we have obtained 
the results in the case of partially coupled (Fig. 3(a)). We have 
observed that the total current in the middle of the wire is 
equal to IHJK), where K is the radius of the filament and IH is 
the critical current density (E 5 ��L �� M)� ). These results 
show clearly the electromagnetic coupling phenomena in the 
superconducting filaments and are in agreement with those in 
[6]. For � N �H and � O �H, the obtained results show the 
case of perfectly coupled (Fig. 3(b)) and perfectly decoupled 
(Fig. 3(c)) respectively. We could observe that the total 
current in the filament in Fig. 3(b) is the maximum value and 
the same in all sections. But in Fig. 3(c), this total current is 
zero and the same in all sections too. These results are in 
agreement with those shown in [1], [5]. In addition, the total 
magnetization of the wire could be computed by using the 
obtained value of the current density. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 3.  Current density distributions in the modelled domain: (a) partially 
coupled case, (b) perfectly coupled case, and (c) perfectly decoupled case. 
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Numerical Modeling of Superconducting Filaments for Coupled 
Problem 
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This paper deals with two-dimensional modeling of a multifilamentary wire composed of two superconducting filaments in a 
conducting matrix. In order to avoid the three-dimensional problem solving, a novel technique is proposed to solve the coupled 
problem in two-dimensions. For that, it is enough to divide the filaments in several sections in the direction of the length of the wire 
and to impose a relation between the currents crossing the matrix and the electric fields in the different sections of the filaments. The 
numerical simulation results present the distributions of the current density in the modeled domain. The influence of the wire length 
on the total magnetization is also considered. 
 

Index Terms—Electromagnetic coupling, finite element method, modeling, superconducting filaments. 
 

I. INTRODUCTION 

 BETTER understanding of the electromagnetic coupling 
phenomena in the superconducting filaments can be done 

by numerical simulation. For that, a finite element program 
has been developed at the LGEP in France for modeling the 
superconducting materials. 

In [1], we proposed methods for solving the problem of 
partially coupled superconducting filaments in two-
dimensions. In order to approach the three-dimensional 
problem with better behavior, we propose in this paper a new 
technique by dividing the superconducting filaments into 
several sections and introducing the relation between the 
currents crossing the copper matrix and the electric fields in 
the filaments. 

II. PROBLEM ANALYSIS 

In order to solve the problem, it is well to take the problem 
of several partially coupled filaments in [1], but by treating the 
problem with the minimum hypothesis. For that, we consider a 
multifilamentary wire constituted of two superconducting 
filaments embedded in a copper matrix. The current density in 
each section is supposed parallel to the wire axis and invariant 
along this axis. It only depends on x, y and t. The magnetic 
induction is thus parallel to the x-y plane and also depends on 
x, y and t. 

To avoid the large number of elements required by three-
dimensional modeling, we divide the wire into elementary 
sections of L/n length, where L and n are the wire length and 
the number of sections respectively. In a simple case, we take 
n = 8. The two-dimensional presentation of the currents and 
voltages of two filaments along a wire length L is shown in 
Fig. 1. Because of the symmetry of the problem, only the half 
of length is studied in order to reduce the number of sections. 
Due to the low conductivity of the matrix compared to that of 
the superconductor, some small currents can circulate between 
the filaments. The difference of the currents in the filaments 

for two successive sections is equal to the current circulating 
in a section of matrix [2]. By using Kirchhoff’s current law, 
we obtain the relation between the currents inside the 
superconducting filaments (i) and the currents crossing the 
copper matrix (im) for the section k as follows:  
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where im0 = 0 A. 

And by using Ohm’s law, we can obtain the relation 
between the currents and the voltages for the section k as 
follows:  
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where v0 = 0 V and R is representative of the resistance of a 
section of L/n length, its value could be determined by an 
electrokinetic 2D modeling. It is interesting to note that, the 
resistance of the last section is twice because its length is two 
times smaller. 

 
FIG. 1 HERE 

 
The equation of the electric fields (e0) defined in Fig. 1 

could be obtained as in [2]:  
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Equation (3) can be rewritten as follows:  
 

                     2/,,2,1;
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. (4) 

 
By substituting (2) and (4) in (1), we obtain the relation 

between the currents and the electric fields:  

A 
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Equation (5) can be rewritten in the following matrix form:  
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where t

niiiI ][ )2/(21 �
 , t
neeeE ][ )2/(002010 �
  

and [C] is a matrix of constant value whose dimension is 
(n/2)�(n/2). For n = 8, we find that:  
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where c = -L/(8R). 

III. NUMERICAL MODELING 

The domain of the problem shows in Fig. 2 (in 2D). To 
reduce the computing time, by looking at the symmetries of 
the problem, we model only a quarter of the domain. A 
technique proposed for this modeling is to execute n/2 
computations of finite element in parallel. For that, we just 
create a mesh and then regenerate a super mesh with n/2 times 
more elements and n/2 times more nodes. The coupling 
between the calculations of finite element is done via (6). 

 
FIG. 2 HERE 

 
Bean’s critical state model [3], which is replaced by a 

nonlinear function defined in [4], is selected to characterize 
the electrical behavior law of superconducting materials. As in 
[1], [5], in this case we find that the matrix systems obtained 
by using the finite element method are as follows:  

 
    2/,,2,1;][][][ 0 nkFeAeAjM kevkekt �

���  (8) 

    2/,,2,1;][][ 0 nkieAeA ktkvk
t

ev �
�
�  (9) 

 
where j is the current density. [M] is the matrix of dimension 
m�m. [Ae], [Aev] and [Av] are the matrices of dimension m�m, 
m�(n/2) and (n/2)�(n/2) respectively (m, n are the number of 
unknowns and the number of sections). F is the source vector. 

IV. SIMULATION RESULTS 

The simulation results are obtained by using a code based 
on the finite element method and Bean’s model. A series of 
numerical simulations is realized for the superconducting 
filaments immersed in an external magnetic induction varying 
sinusoidally in time. The direction of this applied magnetic 

induction is parallel to the y axis. Figure 3 shows the results of 
the current density distributions in the modeled domain at t = 
T/8 where T is the period of the applied magnetic induction. 
The four subfigures from left to right indicate respectively the 
current density distributions at z = L/16, 3L/16, 5L/16, 7L/16. 
In the case that the wire length (L) is equal to the critical 
length (Lc), we obtain the results in the case of partially 
coupled (Fig. 3(a)). We observe that the total current in the 
middle of the wire is equal to Jc�r2, where r is the radius of the 
filament and Jc is the critical current density (3�109 A/m2). 
These results show clearly the electromagnetic coupling 
phenomena in the superconducting filaments and are in 
agreement with those in [6]. For L >> Lc and L << Lc, the 
obtained results show the cases of perfectly coupled (Fig. 
3(b)) and of perfectly decoupled (Fig. 3(c)) respectively. We 
can observe that the total current in the filament in Fig. 3(b) is 
the maximum value and the same in all sections. But in Fig. 
3(c), this total current is zero and the same in all sections too. 
These results are in agreement with those shown in [1], [5]. 

 
FIG. 3 HERE 

 
In addition, the magnetization of each section can be 

computed by using the obtained value of the current density. 
Taking the values of the magnetization and of the magnetic 
induction, a complete cycle of magnetization can be obtained 
numerically. Figure 4 shows the magnetization cycles of each 
section. These cycles correspond with the current density 
distributions in Fig. 3. In order to explain the results in the 
perfectly coupled (Fig. 4(b)) and perfectly decoupled cases 
(Fig. 4(c)), it is interesting to consider the maximum value of 
the magnetization (at saturation) of a filament calculated 
analytically as follows:  

 
                          � � ��


L S

dsdzjrrM
����

)( 21
 (10) 

 
where S is the cross-sectional area of a superconducting 
filament, 

1r
�  and 

2r
�  are defined in Fig. 5. 

In the perfectly coupled case, when the wire is saturated in 
current, we have:  

 
                           

zczc

S

uIuSJdsj
���

�
�
�  (11) 

 
where 

zu
�  is the unit vector in the direction of the wire axis, 

we have then:  
 

                     � � ���

L S

zc dzdsjruIrM )( 21

�����
. (12) 

 
Due to the symmetry of the problem at saturation, the 

second term is thus zero and the first term is equal to 
ycuIx
�

1
 

where x1 is defined in Fig. 5 (in this case x1 = 2r = 7 �m). The 
total magnetization per unit volume of superconductor of the 
wire at saturation can be computed as follows:  
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ctotaltotal JxSMM 100 /2 �� 

  (13) 

 
where �0 is the magnetic permeability of vacuum and Stotal is 
the total cross-sectional area of the superconductor (in this 
case Stotal = 2�r2). 

 
FIG. 4 HERE 
FIG. 5 HERE 

 
For the perfectly decoupled case, from (10) and the 

symmetry of the problem, we have:  
 

                                   01 
� �
S

dsjr
�� . (14) 

 
So the magnetization of one filament in a set of 

superconducting filaments does not depend on its position in 
the arrangement of the wire:  

 
                               � � �


L S

dsdzjrM
���

2
. (15) 

 
As in [1], the total magnetization per unit volume of 

superconductor of the wire is equal to that of one filament [6]:  
 

                             )3/(4 0 �� rJM ctotal 
 . (16) 

 
In both cases; perfectly coupling and perfectly decoupling, 

the numerical and analytical values are in good agreement, the 
differences between two values are only 0.2 % and 1.2 % for 
perfectly coupled and perfectly decoupled cases respectively. 

Figure 4(a) shows the situation of partially coupling. In this 
case, the total magnetization values at saturation of each 
section in four subfigures reduce from left to right, or from 
near perfectly coupling in the section at the middle of the wire 
approach to near perfectly decoupling in the section at the end 
of the wire. These results are in harmony with those presented 
in [6]. 

For all cases, because of the symmetry of the current 
density distributions at saturation in the direction of the x axis 
(perpendicular to the external magnetic field) shown in Fig. 5, 
the total magnetization per unit volume of superconductor of 
the wire is about zero (see in [7]). 

Finally, the average value of the total magnetization per unit 
volume of superconductor of the wire can be obtained 
numerically as follows:  

 

                        )2//()(
2/

1
, nMM

n

k
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 . (17) 

 
Figure 6 compares three cycles of total magnetization 

obtained by using the numerical method (FEM) for three 
different wire lengths. It shows clearly the deformation of the 
cycle in the case of partially coupling. Its values are less than 
those of perfectly coupled case and more than those of 

perfectly decoupled case. This is to confirm that our results in 
[1] and [2] are correct. 

In order to see appear the effect of the wire length on the 
maximum value of the total magnetization, we realize a new 
series of numerical simulations for several wire lengths. From 
(6) and (7), it shows that a good parameter to characterize the 
effect of coupling for a given geometry and a given frequency 
is: L/R. So to know the value of the critical length of wire 
which leads to a situation of partially coupling, it has to know 
the value of the resistance R. This one can be evaluated by a 
2D electrokinetic code. If the currents in the matrix are 
assumed as in Fig. 7, this value is approximately equal to:  

 
                                    )2/( LnR �
  (18) 

 
where � is the electrical conductivity of the conductive matrix. 

For this given expression of R, it appears that a good 
intrinsic parameter to characterize the effect of coupling is: 
�L2. Figure 8 presents the maximum total magnetization per 
unit volume of superconductor as a function of the value of 
�L2 at a given frequency of the applied magnetic field (fixed 
at 1 Hz). The value of �L2 is varied from 10-2 to 108 m/�. We 
find that the phenomenon of partially coupling appears when 
the value of �L2 is approximately between 102 and 104 m/�. 

In the case that the conductive matrix is OFHC copper (� � 
1010 S/m at 4.2 K) [2] and n = 8, the maximum length of wire 
(Lc) that the superconducting filaments are still perfectly 
decoupled is about 100 �m. 

 
FIG. 6 HERE 
FIG. 7 HERE 
FIG. 8 HERE 

 
If we plot the distribution of the electrical potential along 

the axis of the filament as in Fig. 9, the results show that for 
partially coupled case the variation is linear and prove the 
assumption used in [1]. With this fact, the electric field (e0) is 
constant and the relation between this field and the total 
current which flows in the matrix (im) is:  

 
                               

0)4/()( eRnLim �
 . (19) 

 
So the distribution of the potential in the section at the 

middle of the filament (z = 0) can be calculated by a classical 
2D approach and by imposing this relation between the current 
in the filament and the electric field [1]. The value of the 
critical length using this model is in harmony with that 
calculated previously in this paper. 

 
FIG. 9 HERE 

V. CONCLUSION 

In order to approach to the 3D coupled problem, a novel 
technique is proposed for solving a coupled problem of 
superconducting filaments in 2D. The numerical simulation 
results are obtained by using the finite element code and 
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Bean’s model. These results show clearly the electromagnetic 
coupling phenomena in the superconducting filaments. 
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Fig. 1.  2D presentation of two filaments over a wire length L. 

 
 

 
Fig. 2.  Domain of the problem in 2D with given boundary conditions. 

 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.  Current density distributions in the modeled domain: (a) partially 
coupled case, (b) perfectly coupled case, and (c) perfectly decoupled case. 
 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  Magnetization cycles of each section related to Fig. 3: (a) partially 
coupled case, (b) perfectly coupled case, and (c) perfectly decoupled case. 
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Fig. 5.  Current density distributions at saturation for two cases studied. 

 
 

 
Fig. 6.  Comparison of the cycles of average total magnetization for perfectly 
coupled, partially coupled, and perfectly decoupled cases. 
 
 

 
Fig. 7.  Distribution of the currents in the conductive matrix. 

 

 
Fig. 8.  Maximum total magnetization versus the value of �L2. 

 
 

 
Fig. 9.  Distribution of the potential along the axis of the filament. 
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Numerical Modelling of Superconducting Filaments
for Coupled Problem

Thitipong SATIRAMATEKUL 1 and  Frédéric BOUILLAULT 2
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A better understanding of the electromagnetic coupling phenomena in the superconducting filaments can be done by numerical simulation. For that, a finite element 
program has been developed at the LGEP for modelling the superconducting materials. In order to approach the three-dimensional problem with better behaviour, 
we propose in this work a new technique by dividing the superconducting filaments into several sections and introducing the relation between the currents crossing 
the copper matrix and the electric fields in the filaments.

INTRODUCTION

PROBLEM ANALYSIS NUMERICAL MODELLING

In order to approach to the 3D coupled problem, a 
novel technique is proposed for solving a coupled 
problem of superconducting filaments in 2D. The 
numerical simulation results are obtained by using 
the finite element code and Bean’s model. These 
results show clearly the electromagnetic coupling 
phenomena in the superconducting filaments.

CONCLUSION

SIMULATION RESULTS


