

รายงานวิจัยฉบับสมบูรณ์

โครงการ ฤทธิ์ของสารสกัดจากข้าวและว่านนางคำที่มีสาร antioxidant phenolics ต่อการสร้างเม็ดสีผิวเมลานินของเซลล์ที่ถูกกระตุ้นด้วยรังสีอัลตราไวโอลেต

โดย ดร.พญ. อุ่นวรรณ พานิช (เภสัชสวัสดิ์สกุล) และคณะ

เสร็จโครงการเมื่อ เดือนมีนาคม ปี 2552

รายงานວิจัยฉบับສມບູຮັນ

ໂຄຮງກາຣ ຖົກເລີ່ມຂອງສາຮສັດຈາກຂ່າແລະວ່ານນາງຄຳທີ່ມີສາຮ antioxidant phenolics ຕ່ອກກາຣ
ສ້າງເມືດສີຜິວເມີນນີ້ຂອງເໜລັນຂອງເໜລັນທີ່ຖຸກກະຕຸ້ນດ້ວຍຮັງສີອັລຕຣາໄວໂໂລເຕ

ຄະນະຜູ້ວິຈີຍ

ສັງກັດ

1. ດຣ.ພູ. ອຸໄວຮັນ ພານີ້ (ເກສສວັສດີສຸກຸລ)	ຄະນະແພທຍຄາສຕົວສີເລີ່ມທີ່ມີດີ
2. ກະນູ. ກມລັດຕົ້ນ ກອງຕາພັນ	ຄະນະແພທຍຄາສຕົວສີເລີ່ມທີ່ມີດີ
3. ທັກນີ້ ອ່ອນໂຄກສູງ	ຄະນະແພທຍຄາສຕົວສີເລີ່ມທີ່ມີດີ
4. ຮັດນາ ພດູງຮັກໝົວທີ່	ຄະນະແພທຍຄາສຕົວສີເລີ່ມທີ່ມີດີ
5. ພສ.ດຣ.ນພ. ອົດີສັກຄົງ ວົງທີ່ຈະຈົບ	ຄະນະແພທຍຄາສຕົວສີເລີ່ມທີ່ມີດີ

ສ້າງສັນນີ້ໂດຍສໍານັກງານຄະນະກ່ຽວກົດການການອຸດມສຶກສາ ແລະສໍານັກງານກອງທຸນສ້າງສັນນີ້ການວິຈີຍ

บทคัดย่อ

รังสีอัลตราไวโอเลตเออ (UVA) เป็นสาเหตุสำคัญที่ทำให้มีการสร้างเม็ดสี (melanogenesis) เพิ่มขึ้นโดยกระตุ้นการเกิดภาวะเครียดออกซิเดชัน (oxidative stress) และทำให้เกิดความบกพร่องของกลไกต้านอนุมูลอิสระ (antioxidant defense) ซึ่งการสร้างเม็ดสีที่มากเกินไปอาจมีความสัมพันธ์กับการเกิดมะเร็งผิวหนังชนิดเมลานมา (malignant melanoma) และการเกิดสีผิวเข้มขึ้น (hyperpigmentation) ดังนั้นจึงมีความสำคัญในศึกษากลไกต้านอนุมูลอิสระในการยับยั้ง melanogenesis ซึ่งอาจนำไปสู่การพัฒนาสารต้านการผลิตเมلانิน (antimelanogenic agent) ที่มีประสิทธิภาพ โครงการวิจัยนี้ได้ศึกษาฤทธิ์ของสมุนไพร 2 ชนิด คือข่า (Alpinia galanga) และว่านนาค (Curcuma aromatica) ซึ่งมีฤทธิ์ต้านอนุมูลอิสระและเป็นสมุนไพรที่มีประวัติการใช้ในการรักษาปัญหาเกี่ยวกับผิวหนังและใช้บำรุงผิว ผู้วิจัยจึงทดลองฤทธิ์ต้านการผลิตของสมุนไพรทั้ง 2 ชนิด โดยทดสอบการทำงานและการแสดงออกของ tyrosinase ซึ่งมีหน้าที่ในการผลิตเมلانิน และวัดปริมาณของเมلانินที่ถูกผลิตในเซลล์ human melanoma (G361) ที่ได้รับการฉายแสง UVA นอกจากนั้นยังมีการศึกษาบทบาทต้านอนุมูลอิสระของสมุนไพรในการยับยั้ง melanogenesis โดยทดสอบฤทธิ์ยับยั้งภาวะ oxidative stress ของเซลล์ และฤทธิ์กระตุ้น antioxidant defenses ได้แก่ การทำงานของ catalase (CAT) และ glutathione peroxidase (GPx) และปริมาณ glutathione (GSH) ภายในเซลล์ นอกจากนั้นยังศึกษาสารสำคัญของสมุนไพรโดยใช้เทคนิค thin layer chromatography (TLC)-densitometric analysis

การศึกษานี้พบว่า UVA (8 J/cm^2) กระตุ้นการทำงาน และการแสดงออกระดับ mRNA ของ tyrosinase และ UVA (16 J/cm^2) กระตุ้นการผลิตเมلانินของเซลล์ G361 อย่างไรก็ตามสมุนไพรทั้ง 2 ชนิดสามารถยับยั้ง melanogenesis ตั้งแต่ล่างโดยลดการทำงานและการแสดงออกของ tyrosinase และลดการผลิตเมلانิน โดยไม่ทำให้เกิดพิษต่อเซลล์ นอกจากนั้นสมุนไพรทั้ง 2 ชนิดสามารถยับยั้ง UVA ที่ทำให้เกิด cellular oxidative stress การสูญเสียหน้าที่ของ CAT และ GPx และการลดลงของปริมาณ GSH และการศึกษาโดยใช้ TLC-densitometer พบว่า eugenol และ curcuminoids น่าจะเป็นสารสำคัญในข่าและว่านนาค ตามลำดับ

โครงการวิจัยนี้ได้พบฤทธิ์ต้านการทำงานของ tyrosinase ของข่าและว่านนาค ซึ่งมีความสัมพันธ์กับฤทธิ์ต้านอนุมูลอิสระ และเป็นการศึกษาที่ไม่เคยรายงานมาก่อน โดยฤทธิ์ยับยั้งภาวะ oxidative stress และกระตุ้น antioxidant defense อาจเป็นกลไกการออกฤทธิ์ที่สำคัญของสมุนไพรทั้ง 2 ชนิดในการลดการสร้างเม็ดสีที่เกิดจาก UVA

คำสำคัญ: รังสีอัลตราไวโอเลตเออ การสร้างเม็ดสี กลไกต้านอนุมูลอิสระ สมุนไพร

Abstract

Ultraviolet A (UVA) irradiation is suggested to contribute to melanogenesis through promoting cellular oxidative stress and impairing antioxidant defenses. An overproduction of melanin can be associated with melanoma skin cancer and hyperpigmentation. Therefore, developing effective antimelanogenic agents is of importance. *Alpinia galanga* and *Curcuma aromatica* are traditional medicinal plants widely used for skin problems. Hence, this study investigated the antimelanogenic effects of AG and CA extracts (3.8-30 μ g/ml) by assessing tyrosinase activity, tyrosinase mRNA levels and melanin content in human melanoma cells (G361) exposed to UVA. The roles in protecting against melanogenesis were examined by evaluating their inhibitory effects on UVA-induced cellular oxidative stress and modulation of antioxidant defenses including antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx), and intracellular glutathione (GSH). In addition, possible active compounds accountable for biological activities of the extracts were identified by thin layer chromatography (TLC)-densitometric analysis. Our study demonstrated that UVA (8 J/cm²)-induced both tyrosinase activity and mRNA levels and UVA (16 J/cm²)-mediated melanin production were suppressed by the *A. galanga* or *C. aromatica* extracts at non-cytotoxic concentrations. Both extracts were able to protect against UVA-induced cellular oxidant formation and depletion of CAT and GPx activities and GSH content in a dose-dependent manner. Moreover, TLC-densitometric analysis detected the presence of eugenol and curcuminoids in AG and CA, respectively. This is the first report representing promising findings on *A. galanga* or *C. aromatica* extract-derived antityrosinase properties correlated with their antioxidant potential. Inhibiting cellular oxidative stress and improving antioxidant defenses might be the mechanisms by which the extracts yield the protective effects on UVA-dependent melanogenesis.

KEY WORDS: Ultraviolet A; melanogenesis; antioxidant defenses; medicinal plants

Executive Summary

การสร้างเม็ดสีผิวเมลานิน (melanogenesis) ที่มากผิดปกติ หรือ hypermelanosis ก่อให้เกิด hyperpigmentation ซึ่งเป็นพยาธิสภาพที่สำคัญของการเกิดฝ้า (melasma) ซึ่งเป็นปัญหาทางผิวหนังแบบเรื้อรังที่สำคัญในสตรี นอกจากนั้น melanogenesis ยังเกี่ยวข้องต่อการเกิดมะเร็งผิวหนังชนิด malignant melanoma หากไม่มีการป้องกันหรือให้การรักษาอย่างเหมาะสม

การเกิดสีผิวเข้มขึ้น (skin hyperpigmentation) เป็นปัญหาที่มีผลกระทบต่อทั้งสุขภาพและบุคลิกภาพซึ่งเป็นสาเหตุหนึ่งที่ทำให้คนไทยเป็นจำนวนมากต้องเสียค่าใช้จ่ายสูงในการซื้อผลิตภัณฑ์บำรุงผิวราคางานต่างประเทศ โดยที่ในปัจจุบันยังไม่พบว่ามีผลิตภัณฑ์ใดที่ให้ประสิทธิภาพในการป้องกันและรักษาฝ้าได้อย่างเห็นผลชัดเจน นอกจากนั้นยังพบผลข้างเคียงจากการใช้ผลิตภัณฑ์บางประเภท ดังนั้นจึงมีความสำคัญในการศึกษาและวิจัยเพื่อพัฒนาสารต้านการผลิตเมลานิน (antimelanogenic agent) จากสมุนไพรไทยที่มีศักยภาพโดยผ่านการศึกษาทางวิทยาศาสตร์และมีหลักฐานมาสนับสนุนอย่างเพียงพอก่อนนำมาใช้ในคน และนำไปสู่การพัฒนาผลิตภัณฑ์จากสมุนไพรที่ได้มาตรฐานโดยมีประสิทธิภาพและความปลอดภัยต่อผู้บริโภคในอนาคต นอกจากนั้นทิศทางของการวิจัยในการศึกษานี้เป็นไปในแนวทางเดียวกับนโยบายส่งเสริมการพัฒนาผลิตภัณฑ์ยาจากสมุนไพรไทยซึ่งเป็นทรัพยากรที่มีศักยภาพของประเทศไทยซึ่งควรได้รับการพัฒนาให้เกิดประโยชน์สูงสุด ดังนั้นผู้วิจัยจึงเห็นความสำคัญของ การศึกษาถุที่ข้องสารสกัดจากสมุนไพรไทยต่อการยับยั้งกลไกการเกิด hypermelanosis ในระดับเซลล์ ซึ่งสามารถก่อให้เกิดองค์ความรู้ใหม่และนำไปสู่การวิจัยต่อไปในอนาคต

จากการศึกษาพบว่ารังสี UVA เป็นสาเหตุที่สำคัญของการเกิด melanogenesis หนึ่งในกลไกที่สำคัญคือ UVA กระตุ้นการเกิด oxidative stress ซึ่งเป็นภาวะของการเสียสมดุลระหว่าง reactive oxygen species (ROS) และ antioxidants ของเซลล์ผิวหนัง โดยที่ oxidative stress ส่งผลให้เซลล์สร้างเม็ดสีรวมทั้งเซลล์ melanocytes และ melanoma มีการผลิตเมลานิน (melanin) มากผิดปกติและทำให้เกิด hyperpigmentation และ malignant melanoma ตามมา ดังนั้นการศึกษากลไกการออกฤทธิ์ของสารที่มีฤทธิ์ antioxidant ต่อการยับยั้ง melanogenesis อาจเป็นโอกาสในการพัฒนาสารตั้งกล่าวในการรักษาฝ้า

สมุนไพรที่จะนำมาศึกษารังนี้มี 2 ชนิดคือ ข่า (Alpinia galanga) และว่านนาคคำ (Curcuma aromatica) ซึ่งอยู่ในวงศ์ Zingiberaceae ที่มีประวัติการใช้ทางด้านผิวหนังตั้งแต่อดีต การศึกษาด้วย Thin layer chromatography (TLC) analysis และ Folin-Ciocalteau (FC) assay พบร่วมกัน 2 ชนิด ประกอบด้วยสาร phenolics ที่มีฤทธิ์ต้านอนุมูลอิสระ (antioxidant) ได้แก่ eugenol (เป็นองค์ประกอบใน A. galanga) และ curcuminoid (เป็นองค์ประกอบใน C. aromatica) นอกจากนั้นยังพบว่า UVA สามารถกระตุ้นให้ tyrosinase มีการทำงานและมีการแสดงออกระดับ mRNA เพิ่มขึ้นและทำให้มีการผลิต melanin เพิ่มขึ้นใน human melanoma (G361) cell lines การศึกษานี้พบว่าสารสกัดจาก A. galanga และ C. aromatica สามารถยับยั้ง melanogenesis ที่เกิดจาก UVA โดยสามารถลดการทำงานและการแสดงออกในระดับ mRNA ของ tyrosinase และลดปริมาณ melanin ใน G361 cells ได้

จากการศึกษากลไกต้านอนุมูลอิสระของสารสกัดจาก A. galanga และ C. aromatica ต่อการยับยั้ง melanogenesis ของเซลล์ melanoma G361 ที่ได้รับการฉายแสง UVA พบร่วมกัน 2 ชนิดทั้งสองสามารถเพิ่มปริมาณของ glutathione (GSH) กระตุ้นการทำงานของ antioxidant enzymes ได้แก่ catalase (CAT) และ glutathione peroxidase (GPx) และยับยั้งภาวะ oxidative stress ของเซลล์ได้ ดังนั้นจึงสรุปว่ากลไกการยับยั้ง melanogenesis ของสมุนไพรทั้งสองอาจเกี่ยวข้องกับการลดภาวะ oxidative stress และการเพิ่มประสิทธิภาพของ antioxidant defense ในเซลล์

เนื้อหาวิจัย

1. วัตถุประสงค์ของโครงการ

- 1.1 ศึกษากลไกการออกฤทธิ์ของสารสกัด *A. galanga* และ *C. aromatic*a ต่อการยับยั้ง melanogenesis ในเซลล์ melanoma ที่ถูกกระตุ้นด้วย UVA
- 1.2 ศึกษาชนิดและปริมาณ antioxidant phenolics ซึ่งคาดว่าเป็นสารสำคัญของสารสกัด *A. galanga* และ *C. aromatic*a
- 1.3 ได้รับองค์ความรู้ในการวิจัยและพัฒนาจากสมุนไพรในการป้องกันและยับยั้งความผิดปกติของการผลิตเม็ดสีเมลานินที่เกิดจาก UVA ในระดับเซลล์และโมเลกุล ซึ่งสามารถนำไปสู่การศึกษาในระดับสัตว์ทดลองและในอาสาสมัครต่อไป

ระเบียบวิธีวิจัย

Part 1. การศึกษาชนิดและปริมาณของสาร antioxidant phenolics ในสารสกัด *A. galanga* และ *C. aromatic*a

1.1) Preparation of the extracts of *A. galanga* and *C. aromatic*a

เหง้าแห้งของ *A. galanga* และ *C. aromatic*a ที่ได้รับการตรวจสอบสายพันธุ์โดยผู้ชำนาญการด้านพุกนช ศาสตร์หมักด้วย 95% ethanol เป็นเวลา 72 ชั่วโมง และกรองก่อนนำไปประเทยนก่อนแห้งด้วยเครื่อง rotary evaporator under reduced pressure ที่ 60 °C จากนั้นนำไปประเทยเป็นผงแห้งด้วยเครื่อง lyophilizer และเก็บสารสกัดที่อุณหภูมิ -20 °C ก่อนนำไปทดสอบ

1.2) การศึกษาชนิดของสาร phenolics โดยวิธี thin layer chromatography (TLC) analysis

การศึกษาชนิดของ phenolics ในสารสกัดของ *A. galanga* ด้วย vanillin sulfuric staining ใน solvent system ที่ประกอบด้วย toluene: ethyl acetate: formic acid (24:16:3.2) โดยใช้ eugenol เป็นสารมาตรฐาน

การศึกษาชนิดของ phenolics ในสารสกัดของ *C. aromatic* ด้วย fast blue salt (FBS) staining ใน solvent system ที่ประกอบด้วย chloroform: ethanol: acetic acid (47.5:2.5:0.5) โดยใช้ curcuminoid เป็นสารมาตรฐาน

1.3) การศึกษาปริมาณของสาร phenolics โดยวิธี Folin-Ciocalteau assay

Folin-Ciocalteau (FC) reagent สามารถตรวจวัดปริมาณ phenolics ของสารสกัดจากสมุนไพรเนื่องจากสาร phenolics จะถูก oxidise โดย FC reagent (phosphotungstic acid $H_3PW_{12}O_{40}$ และ phosphomolybdic acid $H_3PMo_{12}O_{40}$) ในสภาวะต่างได้เป็นสารสีน้ำเงินคือ complex molybden-tungstic blue

FC reagent 100 μ l (เตรียมจาก H_2O 1 ml และ 15% Na_2CO_3 500 μ l) นำมาทำปฏิกิริยากับสารทดสอบ 50 μ l นาน 120 นาที ที่อุณหภูมิห้อง และวัดการดูดกลืนแสงที่ 765 nm ปริมาณของสาร phenolic จากสารสกัดคำนวณได้จากกราฟค่า OD (optical density) ที่ได้สาร phenolic ซึ่งใช้ gallic acid เป็นสารมาตรฐาน

Part 2. การศึกษาฤทธิ์ของสารสกัด *A. galanga* และ *C. aromatic*a ต่อการยับยั้ง melanogenesis ที่กระตุ้นด้วย UVA ในเซลล์ human melanoma (G361)

2.1) Cell culture

Human melanoma cells (G361) ซึ่งถูกเลี้ยงโดยวิธีมาตรฐาน (Dulbecco modified Eagle's medium ที่มีส่วนประกอบของ fetal bovine serum/FBS 15%, penicillin G 100 unit/ml, streptomycin 100 μ g/ml) เลี้ยงเซลล์ใน incubator ที่ 37 °C, humidified atmosphere, 5% CO_2 จนเซลล์พร้อม (subconfluent) จึงนำมาทดสอบด้วยสารสกัดสมุนไพรที่ละลายน้ำ 80% ethanol และปลดเชื้อโดยการกรอง ในทุกการทดลองจะมีการ incubate เซลล์ด้วยสารสกัดเป็นเวลา 15 นาที

2.2) Measurement of cell viability โดยใช้ MTT reduction assay เพื่อศึกษา:

- ความสัมพันธ์ระหว่างความเข้มข้นของสารสกัดและการเกิดพิษต่อเซลล์ melanoma (dose-response relationship)

- ผลของ UVA ในช่วงต่างๆ ($0-32 \text{ J/cm}^2$) ต่อการเกิด cytotoxicity และเลือกช่วง UVA ที่เหมาะสมในการศึกษาต่อไป

Incubate cells ที่เลี้ยงใน 96-well plate ด้วยสารสกัด (30 นาทีก่อนได้รับ UVA radiation หรือ 24 ชั่วโมงหากไม่ได้รับการฉายแสง) → ล้าง cells ด้วย PBS $200 \mu\text{l}$ → เติม MTT reagent (final concentration = 0.5 mg/ml) → incubate ที่ 37°C ใน $5\% \text{ CO}_2$ นาน 1 ชั่วโมง → ล้างด้วย PBS $200 \mu\text{l}$, เติม DMSO $200 \mu\text{l}$ และเขย่านาน 15-20 นาที → วัดค่าที่ 550 nm โดย spectrophotometer plate reader

2.3) Tyrosinase activity assay

ล้าง cells ($8 \times 10^4 \text{ cells}$) ที่ incubate กับสารสกัด 15 นาทีก่อนฉายแสง UVA (8 J/cm^2) ด้วย phosphate-buffered saline/PBS (0.05 mol/L, pH 6.8) → ใช้ 1% Triton X-100 ($45 \mu\text{l}$) ลสลาย cells → sonicate cells → เติม 20 mM หรือ 1% L-DOPA ($5 \mu\text{l}$) และทิ้งไว้ 1 ชั่วโมง ที่ 37°C → วัด OD ที่ 475 nm โดยใช้ spectrophotometer และคำนวณค่าโดยเปรียบเทียบกับ standard curve ใช้ purified mushroom tyrosinase (50000 units/mg)

2.4) Melanin content assay

Incubate cells ใน dish 60 mm ($5 \times 10^4 \text{ cells/ml}$) ด้วยสารสกัดนาน 15 นาที ก่อนฉายแสง UVA (16 J/cm^2) → ล้างด้วย PBS → trypsinization ด้วย trypsin 0.05% ใน EDTA 0.53 mM ที่ 37°C นาน 5-7 นาที → นำ cells ไป centrifuge ที่ 1500 rpm นาน 5 นาที → นำ pellet ที่ได้มาลสลายใน 0.1% Triton X-100-PBS และ sonicate → วัดที่ 475 nm โดยใช้ spectrophotometer และคำนวณค่าจาก standard curve ของ synthetic Melanin

2.5) Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for studying tyrosinase mRNA expression

Total RNA สารสกัดโดยชุด illustra RNAspin mini RNA isolation kit (GE Healthcare, UK) และใช้ Improm-II reverse transcriptase (Promega, Medison, USA) สำหรับ polymerase chain reaction ปฏิบัติตามคู่มือ ดังนี้; เติม cDNA $5 \mu\text{l}$ ใน reaction mixture $25 \mu\text{l}$ (Master Mix $12.5 \mu\text{l}$, sense primer และ antisense primer $10 \mu\text{M}$ และ นำ $5.5 \mu\text{l}$ ใช้เครื่อง ABI Prism 7500 Real Time PCR System (Applied Biosystems, USA) และปรับ conditions ดังนี้; amplification cycles 40 ครั้ง, 10 นาที ที่ 95°C , 15 วินาที ที่ 95°C และ 40 วินาที ที่ 72°C → Specific PCR product ถูกทดสอบด้วย FastStart universal SYBR Green Master (ROX)

mRNA sequences ของ primer sets of human tyrosinase และ GAPDH ($5'-3'$ direction) ซึ่งเป็น internal control (housekeeping gene mRNA) ที่ใช้สำหรับ polymerase chain reaction คือ Tyrosinase (product size = 114 bp)

Sense primer: TCT TCT CCT CTT GGC AGATTG TC

Antisense primer: TGT CAT GGT TTC CAG GATTAC G

GAPDH (product size = 124 bp)

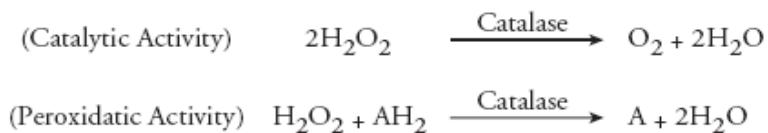
Sense primer: GAAATCCCATCACCATCTTCC

Antisense primer: AAATGAGCCCCAGCCTTCTC

Amplification ของ product วิเคราะห์โดย melt curve analysis โดยคำนวณการแสดงออกของ tyrosinase mRNA จากค่า mean Ct ของ tyrosinase expression เปรียบเทียบกับ mean Ct ของ GAPDH ใน cDNA ของ sample เดียวกัน และนำค่า Ct มาวิเคราะห์ fold change ของ gene expression

2.6) Measurement of intracellular glutathione contents

ล้างเซลล์ด้วย ice-cold PBS และลลายเซลล์โดยใช้ 6.5% (w/v) trichloroacetic acid และ incubate บนน้ำแข็ง 10 นาที ต่อมาเติม TCA 7.5 μl ใน 96-well plates ที่มี buffer (100 mM KH₂PO₄, 10 mM EDTA and 1 mM NaOH) 277.5 μl และเติม o-phthaldehyde (1 mg/ml) 15 μl ทิ้งในที่มีดีเป็นเวลา 25 นาที และวัดปริมาณ fluorescence (Ex 350nm, Em 420 nm)

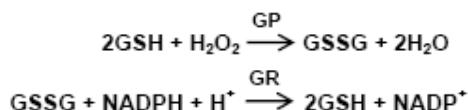

2.7) Measurement of intracellular oxidant formation โดย dichlorofluorescein diacetate (DCFDA) assay

หลังจาก treatment และฉายแสง UVA หยด ดูด phosphate buffer และเติม medium ในเซลล์ที่เลี้ยงใน 24-well plates ถัดมาเติม DCFDA probes และ incubate เป็นเวลา 60 นาที และวัดปริมาณ fluorescence (Ex 485 nm, Em 530 nm) ทุก 5 นาทีเป็นเวลา 20 นาที

2.8) Antioxidant enzyme assay

2.8.1) Catalase

จากวิธีที่ระบุใน protocol ของ Catalase (CAT) assay kit (Cayman, Ann Arbor, MI) โดยใช้ปฏิกิริยา;



Cell lysate/formaldehyde standard/catalase ละลายใน assay buffer \rightarrow เติม H_2O_2 20 μl เพื่อเริ่ม reaction \rightarrow วัดค่าของ formaldehyde ที่ถูกผลิต และมี Purpald เป็น chromogen \rightarrow ที่ 540 nm โดย spectrophotometer และคำนวณค่าจาก standard curve

1 หน่วยของ CAT activity (nmol/min/mg of protein) คำนวณจากการเกิด formaldehyde 1.0 nmol ต่อ protein 1 mg ใน 1 นาที

2.8.2) Glutathione peroxidase

จากวิธีที่ระบุใน protocol ของ Gluthione peroxidase (GPx) assay kit (Trevigen, Gaithersburg, MD) โดยใช้ปฏิกิริยา;

Oxidation ของ NADPH เป็น NADP^+ ทำให้เกิดการลดลงของ OD ที่ A_{340} และอัตราการลดลงจะแปรผันตามการทำงานของ glutathione peroxidase ใน sample

เติม assay buffer ใน สารละลาย reaction mix (glutathione reductase, reconstituted GSH + NADPH) \rightarrow เติม cell lysate/standard glutathione peroxidase ใน 96 well-plate \rightarrow เติม tert-butyl hydroperoxide 20 μl เพื่อเริ่ม reaction \rightarrow วัดค่าที่ 340 nm โดย spectrophotometer และคำนวณค่าจาก standard curve

1 หน่วยของ GPx activity (unit/mg of protein) คำนวณจากการเกิดปฏิกิริยา oxidation จาก NADPH เป็น NADP^+ ปริมาณ 1.0 nmol ต่อ protein 1 mg

ผลการทดลอง

Part 1. การศึกษาชนิดและปริมาณของสาร antioxidant phenolics ในสารสกัด *A. galanga* และ *C. aromaticica*

1.1) การศึกษาชนิดของสาร **phenolics** โดยวิธี **thin layer chromatography (TLC) analysis**

เมื่อพิจารณาจากค่า rR_f (Fig. 1 และ Table 1) พบว่า eugenol อาจจะเป็นสารสำคัญในสารสกัด *A. galanga* และ curcuminoid เป็นสารสำคัญในสารสกัด *C. aromaticica* (band ที่ 2 และ 3 ตรงกับ band M1 และ M2 ของ curcuminoid ตามลำดับ) (Fig. 2 และ Table 2)

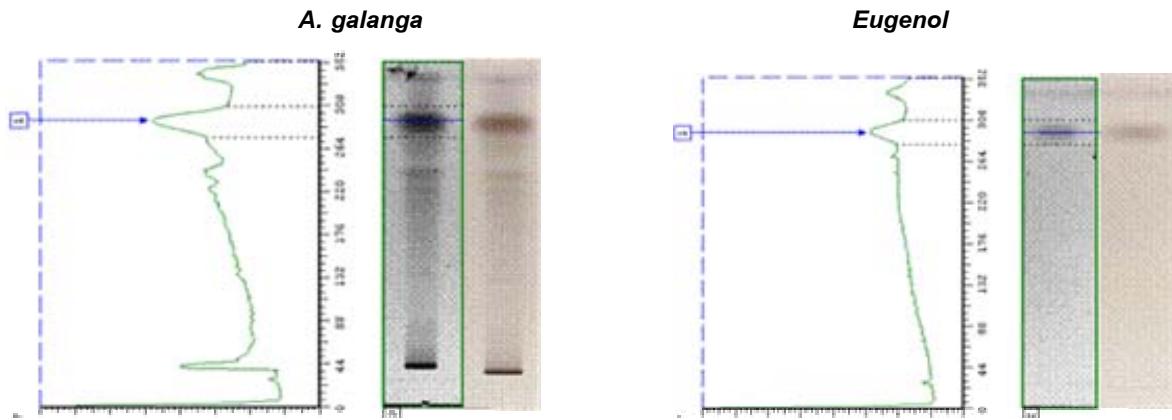


Fig. 1. Sample of densitometer analysis of *A. galanga* extracts and eugenol.

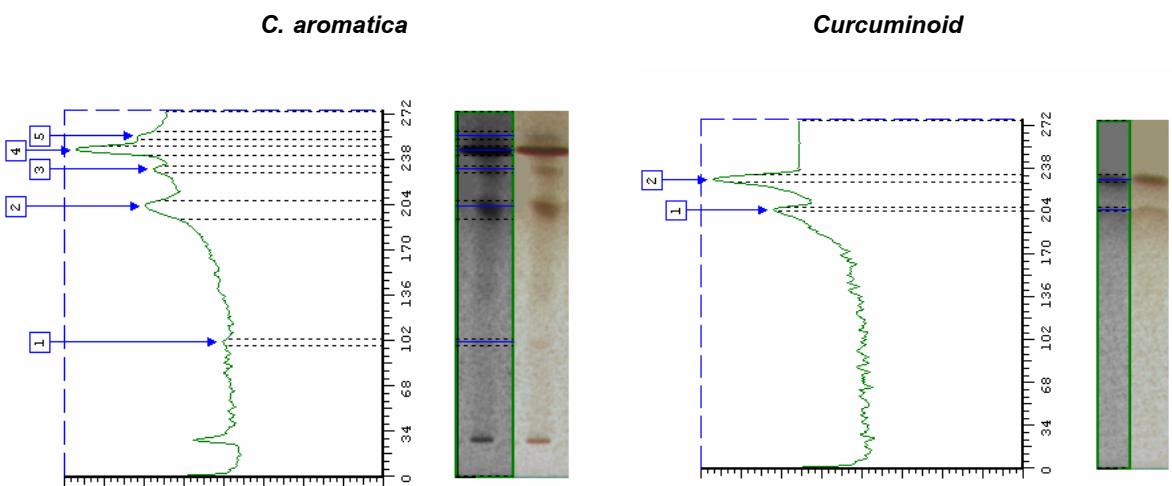
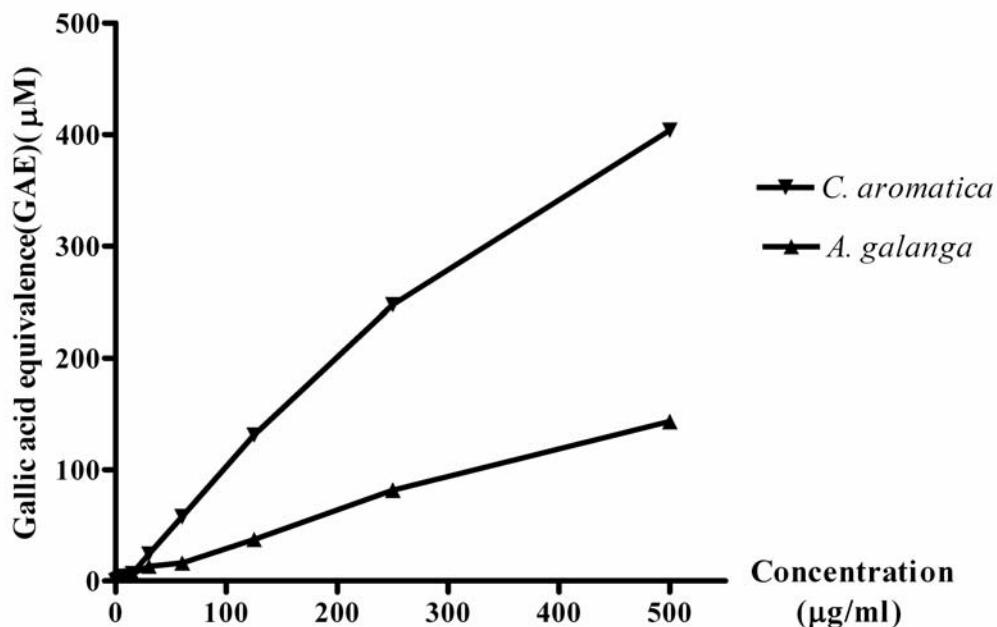


Fig. 2. Sample of densitometer analysis of *C. aromaticica* extracts and curcuminoid.

Table 1 R_f and rRF value of *A. galanga* (3 lots) using eugenol as reference compound.

Band	Rf/rRF	Lot			Mean \pm SD	Accepted range	% CV
		Lot 1	Lot 2	Lot 3			
band 1	Rf	0.82	0.81	0.78	0.80 \pm 0.02	0.64 - 0.96	2.5
	rRF	0.99	1.0	0.94	0.97 \pm 0.03	0.78 - 1.16	3.1


Table 2 R_f and rRF value of *C. aromatica* (3 lots) using curcuminoid as reference compound (shown as M1 and M2).

Band	Rf/rRF	Lot			mean	Accepted range	% CV
		1	2	3			
1. band 1	Rf	0.31	0.27	0.32	0.30 \pm 0.015	0.24 - 0.38	8.82
	rRF (M1)	0.44	0.38	0.43	0.41 \pm 0.017	0.33 - 0.52	7.71
	rRF (M2)	0.38	0.33	0.39	0.37 \pm 0.018	0.30 - 0.46	8.77
2. band 2	Rf	0.72	0.65	0.73	0.70 \pm 0.025	0.56 - 0.88	6.23
	rRF (M1)	1.01	0.92	0.97	0.97 \pm 0.029	0.77 - 1.21	4.66
	rRF (M2)	0.89	0.80	0.89	0.86 \pm 0.029	0.69 - 1.08	6.04
3. band 3	Rf	0.83	0.79	0.82	0.81 \pm 0.012	0.65 - 1.02	2.56
	rRF (M1)	1.17	1.11	1.09	1.13 \pm 0.023	0.90 - 1.41	3.71
	rRF (M2)	1.02	0.98	1.00	1.00 \pm 0.014	0.80 - 1.25	2.00
4. band 4	Rf	0.88	0.87	0.87	0.87 \pm 0.003	0.70 - 1.09	0.66
	rRF (M1)	1.24	1.23	1.16	1.21 \pm 0.024	0.97 - 1.51	3.60
	rRF (M2)	1.09	1.07	1.06	1.07 \pm 0.007	0.86 - 1.34	1.42
5. band 5	R _f	0.93	0.91	0.91	0.92 \pm 0.007	0.73 - 1.15	1.26
	rRF (M1)	1.31	1.28	1.21	1.27 \pm 0.029	1.01 - 1.59	4.05
	rRF (M2)	1.15	1.12	1.11	1.13 \pm 0.011	0.90 - 1.41	1.85

Accepted range = $80 \times (R_f \text{ or } rRF)/100 - 120 \times (R_f \text{ or } rRF)/100$ %CV = SD/mean $\times 100$

1.2) การศึกษาปริมาณของสาร phenolics โดยวิธี Folin-Ciocalteau assay

จากการศึกษาปริมาณของ total phenolics ในสารสกัดของ *A. galanga* and *C. aromaticata* ด้วย FC method โดยใช้ gallic acid เป็นสารมาตรฐาน พบร่วมสารสกัดทั้งสองมีองค์ประกอบของ phenolics และพบร่วมสารสกัดจาก *C. aromaticata* มีปริมาณของ total phenolic มากกว่าสารสกัดจาก *A. galanga* (Fig. 3)

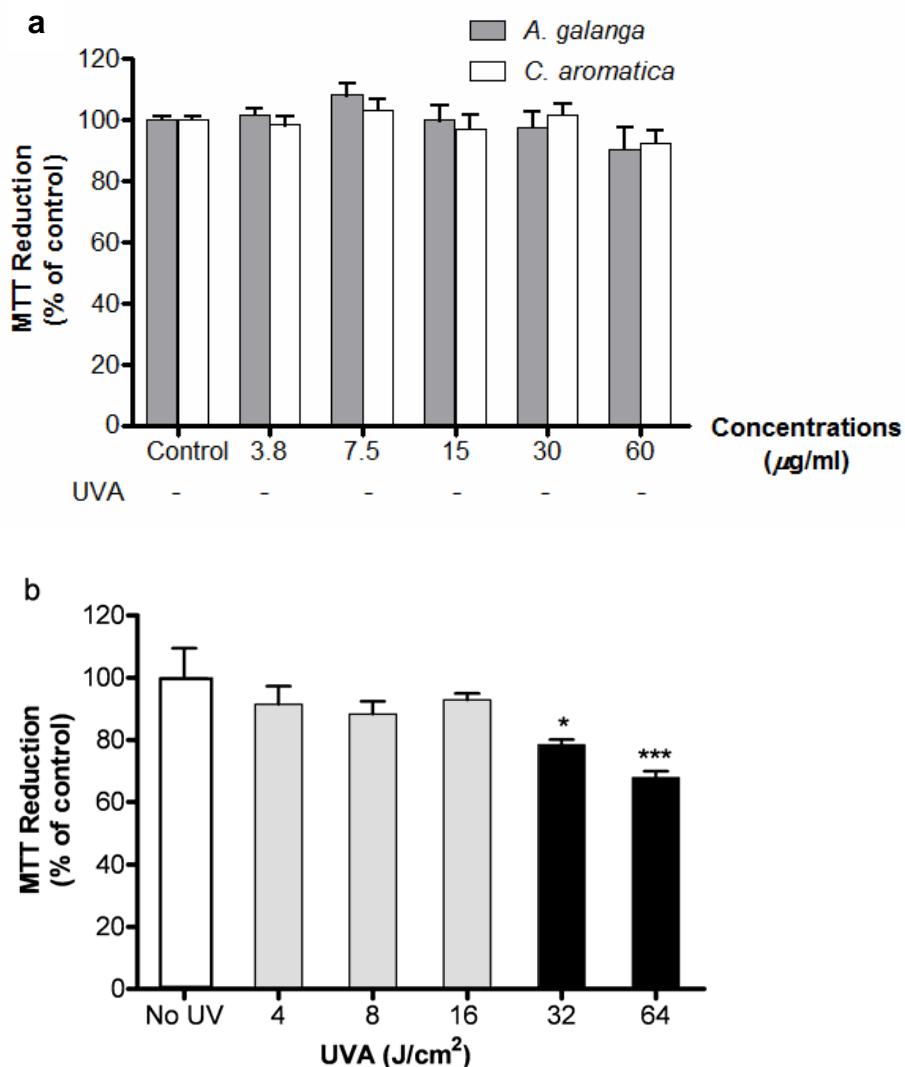


Fig. 3. Determination of total phenolics contents in *A. galanga* and *C. aromaticata* extracts by FC method. Statistical significance was evaluated using student's unpaired t test. Results were measured spectrophotometrically at 760 nm. Results are expressed as Mean \pm SD of 3 experiments and reported at Gallic Acid Equivalent, GAE.

Part 2. การศึกษาฤทธิ์ของสารสกัด *A. galanga* และ *C. aromaticata* ต่อการยับยั้ง melanogenesis ที่กระตุ้นด้วย UVA ในเซลล์ human melanoma (G361)

2.1) Measurement of cell viability โดยใช้ MTT reduction assay

สารสกัด (3.8-60 $\mu\text{g}/\text{ml}$) ไม่มีพิษต่อเซลล์หรือไม่มีผลต่อจำนวนเซลล์ (Fig. 4a) ซึ่งการยับยั้ง melanogenesis ในการศึกษาครั้งนี้น่าจะเกิดจาก antityrosinase effect และไม่ใช่ cytotoxic effect นอกจากนั้นควรเลือก dose ของ UVA ที่ไม่ทำให้เกิด cytotoxicity ในการศึกษาครั้งนี้ ซึ่งไม่ควรมากกว่า 16 J/cm^2 (Fig. 4b)

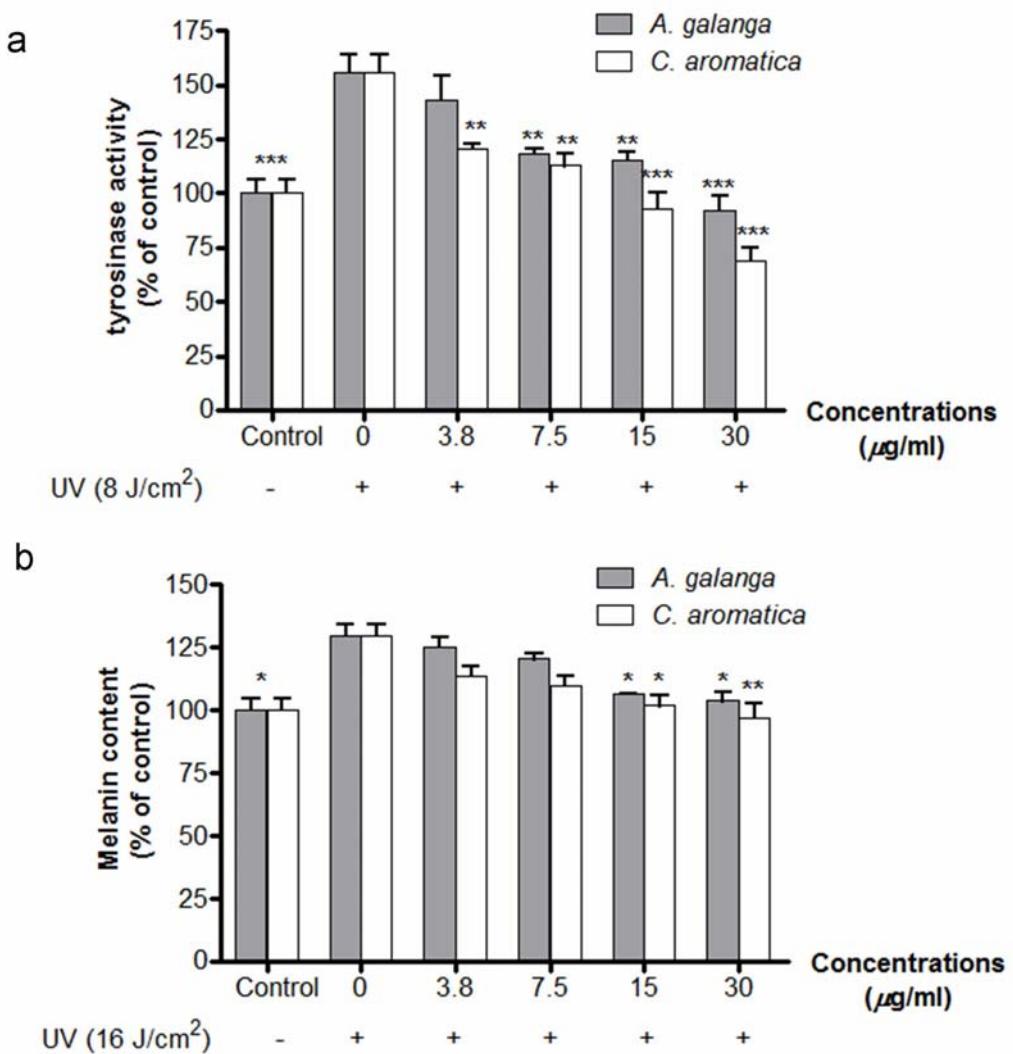
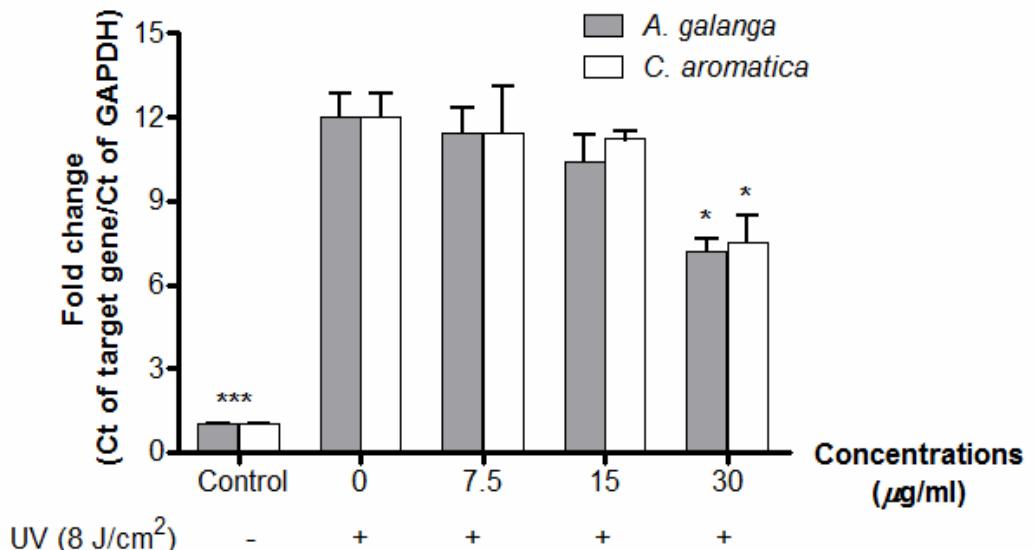


Fig. 4. Cytotoxicity of the rhizome extracts and of UVA irradiation on G361 cells. (a) The cytotoxic effects of AG and CA extracts were evaluated after treatment of cells (3.8-60 $\mu\text{g}/\text{ml}$) with the extracts without UVA irradiation. (b) The dose-dependent effects of UVA irradiation on cell viability were assessed after exposure of cells to UVA (4-64 J/cm^2). Unirradiated or untreated cells were used as control. Cell viability determined by MTT reduction was expressed as a percentage of control (100%) using a microplate reader. Values given are mean \pm SEM. The statistical significance of differences between the control and the UVA-irradiated groups or the plant extracts-treated groups was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$.


2.2 Measurement of melanogenesis โดยวัด activity และ mRNA expression ของ tyrosinase และ melanin contents

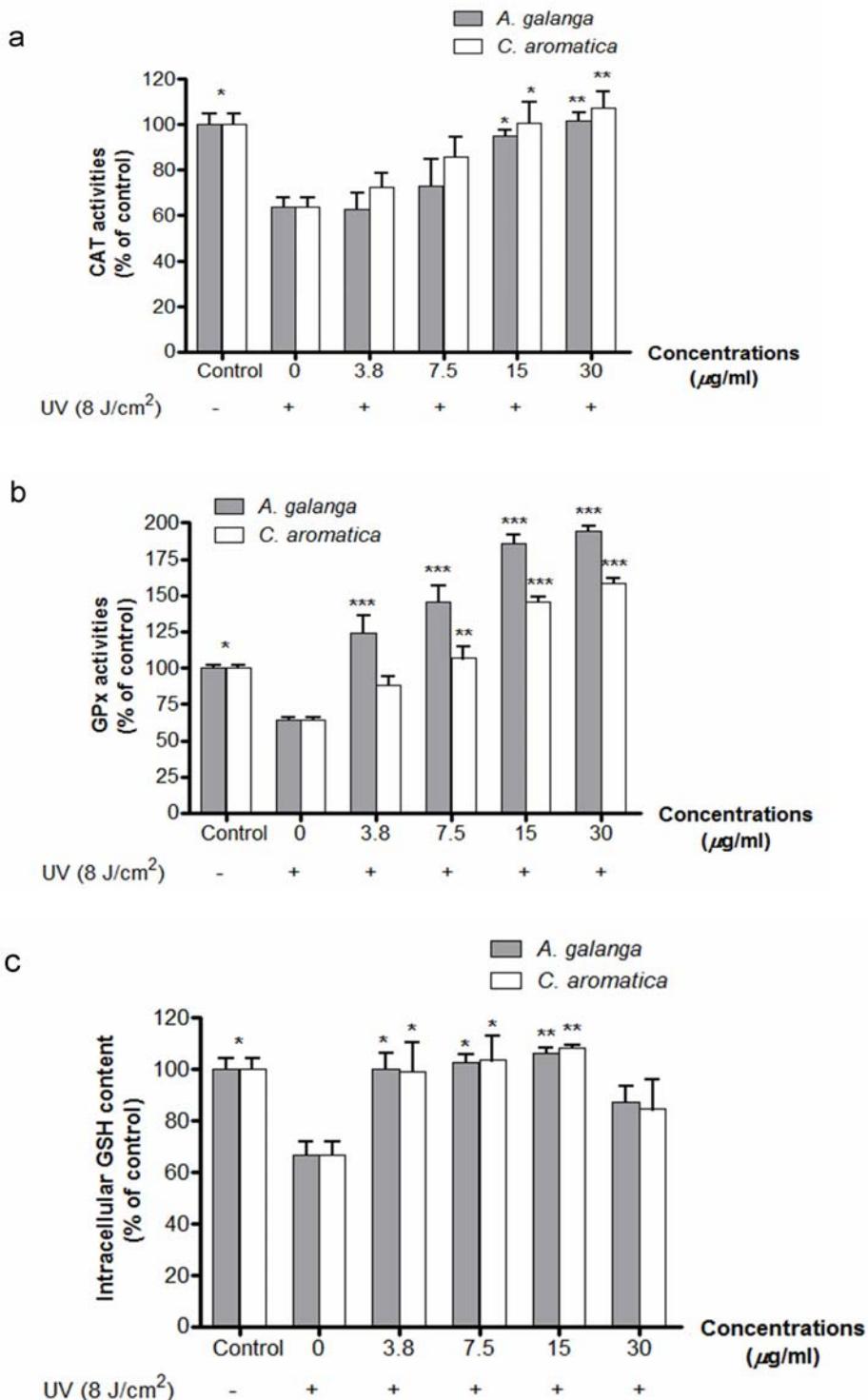
การฉาย UVA ที่ 8 และ 16 J/cm^2 ทำให้เกิดการเพิ่มขึ้นของ tyrosinase activity $55.7 \pm 8.1\%$ และ melanin content $29.63 \pm 4.2\%$ ของ melanoma cell lines ตามลำดับ และ pretreatment ด้วยสารสกัดจาก *A. galanga* ($7.5-30 \mu\text{g/ml}$) และ *C. aromaticica* ($3.8-30 \mu\text{g/ml}$) ก่อนฉายแสงสามารถป้องกันการเพิ่มขึ้นของ tyrosinase activity แบบ dose-response (Fig. 5a) นอกจากนี้ pretreatment ด้วยสารสกัด *A. galanga* หรือ *C. aromaticica* ($15-30 \mu\text{g/ml}$) ก่อนฉายแสงสามารถป้องกันการเพิ่มขึ้นของ melanin contents อย่างมีนัยสำคัญ ($p < 0.05$) (Fig. 5b)

จากการศึกษาการแสดงออกของ mRNA ของ tyrosinase ด้วยวิธี real-time RT-PCR พบว่าการฉายแสง UVA ทำให้มีการแสดงออกของ tyrosinase mRNA เพิ่มขึ้น 12 ± 0.86 เท่า ($p < 0.001$) และพบว่าสารสกัดสมุนไพรทั้ง 2 ชนิดที่ความเข้มข้น ($30 \mu\text{g/ml}$) สามารถลดการแสดงออกของ tyrosinase mRNA ของ G361 cells ที่ถูกกระตุ้นด้วย UVA อย่างมีนัยสำคัญ ($p < 0.05$) (Fig. 6)

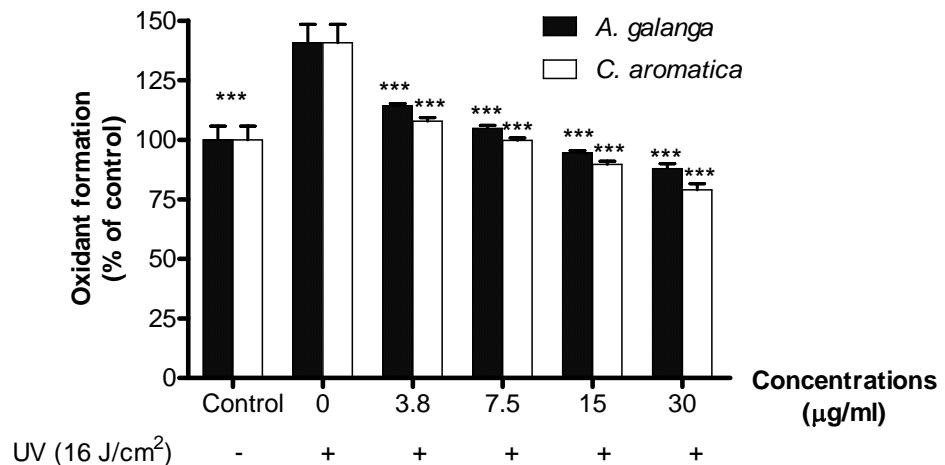
Fig. 5. Inhibitory effects of AG and CA extracts on UVA irradiation-mediated melanogenesis in G361 cells. (a) Tyrosinase activity determined as absorbance of dopachrome formation was measured spectrophotometrically at 475 nm for 1 h at 37 °C. (b) Melanin content was spectrophotometrically determined at 475 nm using synthetic melanin as a standard. The tyrosinase activity and melanin production induced by a single dose of UVA at 8 or 16 J/cm², respectively, related to the protein concentration were expressed as a percentage of control (100%, unirradiated and untreated cells). Values given are mean \pm SEM. The statistical significance of differences between the control and UVA irradiated cells and between UVA irradiated and plant extracts-treated cells was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Fig. 6. Quantitative gene expression of tyrosinase in G361 cells analyzed by real-time PCR with the $2^{-\Delta\Delta Ct}$ method. The data presented as the fold change in gene expression normalized to GAPDH and relative to the control sample. For the control (unirradiated and untreated cells), $\Delta\Delta C_t$ equals zero and 2^0 equals one, so that the fold change in gene expression relative to the control equals one, by definition. For the treated cells, evaluation of $2^{-\Delta\Delta Ct}$ indicates the fold change in gene expression relative to the control. Values given are mean \pm SEM. The statistical significance of differences between the UVA-irradiated and the control groups and the plant extracts-treated groups was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$.

2.3 Measurement of antioxidant enzyme activity and intracellular glutathione (GSH) contents


การฉาย UVA ที่ 8 J/cm^2 ทำให้ catalase ทำงานลดลง $36.24 \pm 5.9\%$ ($p < 0.05$) glutathione peroxidase ทำงานลดลง $35.54 \pm 3.4\%$ ($p < 0.05$) และ GSH มีปริมาณลดลง $33.12 \pm 5.2\%$ ($p < 0.05$) อย่างไรก็ตามสารสกัดสมุนไพรทั้ง 2 ชนิด ($15-30 \mu\text{g/ml}$) สามารถป้องกันการทำงานของ CAT activity (Fig. 7a) สำหรับการศึกษาเรื่องดับการทำงานของ GPx พบว่า *A. galanga* ($3.8-30 \mu\text{g/ml}$) และ *C. aromatica* ($7.5-30 \mu\text{g/ml}$) สามารถเพิ่มการทำงานของ GPx ในเซลล์ที่ได้รับการฉายแสง UVA ได้ (Fig. 7b) นอกจากนั้นสมุนไพรทั้ง 2 ชนิด ($3.8-15 \mu\text{g/ml}$) สามารถป้องกันการลดลงของปริมาณ GSH จาก UVA ได้อย่างมีนัยสำคัญ (Fig. 7c)

2.4 Measurement of intracellular oxidant formation


การฉาย UVA ที่ 16 J/cm^2 ทำให้เกิดการเพิ่มขึ้นของ oxidant formation หากกว่าเซลล์กลุ่มควบคุม (non-UVA-irradiated cells) $40.78 \pm 7.7\%$ และ pretreatment ด้วยสารสกัดจาก *A. galanga* และ *C. aromatica* ($3.8-30 \mu\text{g/ml}$) ก่อนฉายแสงสามารถป้องกันการเพิ่มขึ้นของ oxidant formation แบบ dose-response (Fig. 8)

สรุปผลการทดลอง

สารสกัดจาก *A. galanga* ซึ่งมี eugenol และ *C. aromatica* ซึ่งมี curcuminoid เป็นองค์ประกอบมีฤทธิ์ในการยับยั้ง melanogenesis ที่เกิดจาก UVA โดยสามารถลดการทำงานของ tyrosinase ลดการแสดงออกของ tyrosinase mRNA และลดปริมาณ melanin ผ่านกลไกต้านอนุมูลอิสระโดยกระตุ้นการทำงานของ antioxidant enzymes (CAT และ GPx) ทำให้ glutathione ภายในเซลล์มีปริมาณเพิ่มขึ้น และลดภาวะ oxidative stress ของ melanoma cells

Fig. 7. The effects of AG and CA extracts on antioxidant defense system in G361 cells exposed to UVA (8 J/cm²). (a) The CAT activity detected as formaldehyde produced was determined spectrophotometrically at 540 nm in a plate reader with purpald as the chromogen. (b) The GPx activity was determined indirectly by a coupled reaction with GR and the reaction followed the oxidation of NADPH to NADP⁺, detected as an absorbance decrease at 340 nm (c) Intracellular GSH content was assayed using the fluorescent OPA reacting specifically with GSH and fluorescence was measured at 350 nm excitation and 420 nm emission. The CAT and GPx activities and GSH content related to the protein concentrations were expressed as a percentage of control (100%, unirradiated and untreated cells) using a microplate reader. Values given are mean \pm SEM. The statistical significance of differences between the UVA-irradiated and the control groups and the plant extracts-treated groups was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$.

Fig 8. The effects of AG and CA extracts on intracellular oxidant formation in G361 cells irradiated with UVA (16 J/cm^2). ROS produced in the cells oxidized DCFH-DA to fluorescent DCF, which was measured at 485 nm excitation and 530 nm emission. Intracellular oxidant levels were expressed as a percentage of control (100%, unirradiated and untreated cells) using a microplate reader. Values given are mean \pm SEM. The statistical significance of differences between the UVA-irradiated and the control groups and the plant extracts-treated groups was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$.

Output ที่ได้จากการ

- ผลงานวิจัยได้รับการตีพิมพ์ในวารสารวิชาการระดับนานาชาติ (เอกสารแนบในภาคผนวก)

ชื่อเรื่อง - Modulation of antioxidant defense by *Alpinia galanga* and *Curcuma aromatic*a extracts correlates with their inhibition of UVA-induced melanogenesis

ชื่อวารสาร – Cell Biology and Toxicology

- กิจกรรมอื่นๆ ที่เกี่ยวข้อง ได้แก่

การนำเสนอผลงานในการประชุมระดับนานาชาติ;

Panich U, Onkoksoong T, Kongtaphan K, Jaemsak K, Phadungrakwittaya R, Seubnooch P, Akarasereenont P. The inhibitory effects of *Alpinia galanga* and *Curcuma aromatic*a extract on UVA-induced melanogenesis induced by modulating cellular glutathione. *Prog Biochem Biophys* 2008; 35 (Supplement 1): P319.

Panich U, Jaemsak K, Onkoksoong T, Thaworn A, Akarasereenont P, Wongkajornsilp A. The inhibitory effects of *Alpinia galanga* and *Curcuma aromatic*a extracts containing antioxidant phenolics on cellular melanogenesis induced by ultraviolet radiation: possible involvement of cellular glutathione. *Proceedings of the sixth Princess Chulabhorn International Science Congress, Bangkok, Thailand; 25-29 November 2007.* p. 242.

ກາດພໍາວກ

- ເອກສາດຕົ້ນຈົບບັບ (manuscript)

ກຽດນາດູເອກສາດແນບ

- ເອກສາດຕອບຮັບການຕື່ພິມພົງແລະຄວາມຄິດເຫັນຈາກຜູ້ປະເມີນ (reviewers)

Dear Dr. Uraiwan Panich,

We acknowledge, with thanks, receipt of the revised version of your manuscript, "Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis", submitted to Cell Biology and Toxicology

The manuscript number is CBTO561R2.

You may check the status of your manuscript at any time by accessing the following web site:

<http://cbto.edmgr.com/>

Your username is: siuks

Your password is: 7godlove

We will inform you of the Editor's decision as soon as possible.

With best regards,

Editorial Office

Springer

P.O. Box 990

3300 AZ DORDRECHT

The Netherlands

**Modulation of antioxidant defense by *Alpinia galanga* and *Curcuma aromatica* extracts
correlates with their inhibition of UVA-induced melanogenesis**

Uraiwan Panich^{a,*}, Kamolratana Kongtaphan^a, Tasanee Onkoksoong^a, Kannika Jaemsak^a,
Rattana Phadungrakwittaya^a, Athiwat Thaworn^a, Pravit Akarasereenont^{a,b} and Adisak
Wongkajornsilp^a

^a*Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University,
Bangkok 10700, Thailand*

^b*Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol
University, Bangkok 10700, Thailand*

*Corresponding author. Address: Department of Pharmacology, Faculty of Medicine

Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. Tel.: +66-(0)2-419-7569;

Fax: +66-(0)2-411-5026.

E-mail address: siuks@mahidol.ac.th

Abstract

Ultraviolet A (UVA) irradiation is suggested to contribute to melanogenesis through promoting cellular oxidative stress and impairing antioxidant defenses. An overproduction of melanin can be associated with melanoma skin cancer and hyperpigmentation. Therefore, developing effective antimelanogenic agents is of importance. *Alpinia galanga* (AG) and *Curcuma aromatica* (CA) are traditional medicinal plants widely used for skin problems. Hence, this study investigated the antimelanogenic effects of AG and CA extracts (3.8-30 $\mu\text{g}/\text{ml}$) by assessing tyrosinase activity, tyrosinase mRNA levels and melanin content in human melanoma cells (G361) exposed to UVA. The roles in protecting against melanogenesis were examined by evaluating their inhibitory effects on UVA-induced cellular oxidative stress and modulation of antioxidant defenses including antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx), and intracellular glutathione (GSH). In addition, possible active compounds accountable for biological activities of the extracts were identified by thin layer chromatography (TLC)-densitometric analysis. Our study demonstrated that UVA ($8 \text{ J}/\text{cm}^2$)-induced both tyrosinase activity and mRNA levels and UVA ($16 \text{ J}/\text{cm}^2$)-mediated melanin production were suppressed by the AG or CA extracts at non-cytotoxic concentrations. Both extracts were able to protect against UVA-induced cellular oxidant formation and depletion of CAT and GPx activities and GSH content in a dose-dependent manner. Moreover, TLC-densitometric analysis detected the presence of eugenol and curcuminoids in AG and CA, respectively. This is the first report representing promising findings on AG and CA extract-derived antityrosinase properties correlated with their antioxidant potential. Inhibiting cellular oxidative stress and improving antioxidant defenses might be the mechanisms by which the extracts yield the protective effects on UVA-dependent melanogenesis.

KEY WORDS: Ultraviolet A; melanogenesis; antioxidant defenses; medicinal plants

Introduction

Ultraviolet (UVA) irradiation is a crucial environmental factor in aggravating melanogenesis, contributing to skin disorders including hyperpigmentation, a common cosmetic problem, and melanoma, the most severe type of skin cancer. Although melanogenesis is essential for the prevention of UV-mediated DNA damage, the process of melanin synthesis can be biologically detrimental and melanin excess can be associated with melanoma (Eller et al. 1996; Kvam and Tyrrell 1999; Slominski et al. 2004). Melanin production in melanocytes and/or melanoma cells, a particular target for UV radiation, is responsible for melanogenesis, regulated by tyrosinase, the key and the rate-limiting enzyme for melanin synthesis (Riley 2003). Mechanisms associated with the regulation of melanogenesis have thus been extensively explored in order to understand pigmentation of the skin and develop effective antimelanogenic agents. A number of reports have shown that UVA exerted a strong influence on skin melanogenesis through an oxidative stress pathway involving generation of reactive oxygen species (ROS), in particular hydrogen peroxide (H_2O_2) (Schallreuter et al. 2008). Thus, improving capacity of antioxidant defenses to cope with oxidative insults is proposed to be beneficial in melanogenesis mediated by UVA irradiation. It was demonstrated that promotion of intracellular glutathione (GSH) synthesis inhibited melanogenesis in melanoma cells (Kim et al. 2008).

The use of medicinal plants in the *Zingiberaceae* family for curing various skin ailments and for skin care has been reported (Saikia et al. 2006). *Alpinia galanga* (AG) and *Curcuma aromatica* (CA), Thai medicinal plants in *Zingiberaceae* family, have traditionally been used for medicinal purposes against skin problems and as herbal care, although their biological activities have not yet been clarified. The extracts of several *Alpinia* and *Curcuma* species including AG and CA extracts were demonstrated to possess antioxidant (Morikawa

et al. 2005), anti-inflammatory (Eguchi et al. 2007; Matsuda et al. 2003) and anti-cancer effects (Kang et al. 2006). Terpenoid derivatives (e.g., eugenol), the major constituents of the essential oils, and curcuminoids isolated from the rhizomes of the genus *Alpinia* and *Curcuma*, respectively, were quantified and proposed as their active ingredients responsible for their pharmacological activities against skin disorders (Darshan and Doreswamy 2004; Pisano et al. 2007; Surh 1999). It is postulated that antioxidant properties of the active components including eugenol in several medicinal plants may play an essential role in protecting skin against melanogenesis (Choi et al. 2007; Hasegawa et al. 2008, Kim et al. 2008; Marongiu et al. 2007). However, little is known regarding the mechanisms by which the antioxidant properties inhibit UVA mediated-melanogenesis.

While there is a rising demand for antimelanogenic agents and several promising natural compounds are under intensive development, they remain challenging because there is no entirely satisfactory outcome and many agents cause adverse effects. Hence, elucidating the roles of antioxidant-rich medicinal plants in inhibiting UVA-induced melanogenesis is significant not only for cosmetic benefit but also for melanoma prevention. Hence, this study aims to evaluate the antimelanogenic effects of AG and CA, Thai medicinal plants, on human melanoma cells (G361) exposed to UVA and to identify active constituents, probably accountable for the effects of the extracts studied. The antimelanogenic properties of AG and CA extracts may be attributed to either their antityrosinase effects or to cytotoxic effects mediated by a decrease in the number of the cells. Melanoma cell culture has been previously used as a model to study mechanism of melanogenesis and its inhibition (Choi et al. 2007; Hasegawa et al. 2008; Oka et al. 2000). Cytotoxicity of the rhizome extracts and the UVA on melanoma cells was thus determined by 3-(4,5-dimethylthiazoyl-2-yl) 2,2 diphenyltetrazolium bromide (MTT) reduction and lactic dehydrogenase (LDH) release assays. Inhibitory effects of the rhizome extracts on up-regulation of tyrosinase mRNA by

UVA were also investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Additionally, this study explored the mechanisms involved in the antimelanogenic effects of the rhizome extracts against UVA irradiation-induced: (a) depletion of antioxidant enzyme [catalase (CAT) and glutathione peroxidase (GPx)] activities and intracellular GSH content and (b) oxidative stress with respect to cellular oxidant formation.

Materials and methods

Materials

Human melanoma cell lines (G361) from American Type Culture Collection (ATCC, Rockville, Md, USA) was a kind gift from Assoc. Prof. Tengamnuay, Faculty of Pharmaceutical Sciences, Chulalongkorn University. Dulbecco's modified Eagle medium (DMEM) and all cell culture reagents were purchased from Invitrogen (NY, USA). Chemicals and reagents used were of the highest quality available. Tyrosinase was obtained from Fluka (Germany). All other chemicals were purchased from Sigma-Aldrich (St Louis, MO), unless otherwise indicated. The assays using a microplate reader were done using a spectrofluorometer Synergy TM from Biotek (Vermont, USA). Reagents used with thin layer chromatography (TLC) analysis were from Merck (Darmstadt, Germany). TLC plate imaging to identify the fingerprints of the herbal extracts was performed by TLC combined with video scanning TLC (Camag Video Documentation System connected with Reprostar 3 transilluminator cabinet).

Preparation of AG and CA rhizome extracts

Rhizomes of AG and CA were obtained from Assoc. Prof. Laohapand, Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University. The dried rhizome pieces (200 g) were extracted by maceration with 1 L of 95% ethanol at room temperature for 72 h as previously described (Ahmad and Beg 2001). After being filtered through Whatman filter paper (Whatman, England), the ethanolic filtrates were evaporated under reduced pressure in a rotatory evaporator (Rotavapor R110, BUCHI, Flawil, Switzerland) at 60 °C. The ethanolic extract of each plant was then lyophilized (Lyovac lyofilizer, Cologne, Germany) to dryness and kept at -20 °C until further analysis. In preparing test concentrations, each extract was diluted in 80% ethanol at indicated concentrations.

Cell cultures

G361 melanoma cells were cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and antibiotic solution [1% penicillin (100 units/ml)-streptomycin (100 µg/ml)] and maintained at 37 °C in humidified air containing 5% CO₂ (P_{CO₂} = 40 Torr) (a Forma Scientific CO₂ Water Jacketed Incubator).

Treatment of cells with the rhizome extracts and UVA irradiation

The rhizome extracts of AG and CA dissolved in 80% ethanol were used for cell treatment and the final concentration of ethanol in each treatment was less than 0.1% (v/v). G361 cells were treated with each rhizome extract (3.8, 7.5, 15, 30 µg/ml) for 30 min in culture medium. Then cells were washed and medium replaced with phosphate buffered saline (PBS) to avoid

production with medium-derived toxic photoproducts prior to irradiation of UVA (320-400 nm). The culture plates were placed 20 cm from the lamp and exposed for 5 min 43 s or 11 min 26 s to achieve a single dose of 8 J/cm² or 16 J/cm², respectively. The UVA doses used in our study are equivalent to about 25-min and 50-min exposure to the midday sunlight in a highly sunny area and able to reach melanocytes at the epidermal-dermal junction (Kadekaro et al. 2003). Cells and supernatants were then harvested for the assays following UV irradiation. Non-UVA-irradiated and non-treated cells were used as a control. A UVA dose of 8 J/cm² was applied for evaluation of tyrosinase activity, antioxidant enzyme activities and GSH content. A dose of 16 J/cm² was selected to assess melanin content and cellular oxidant formation, which were not significantly changed in G361 cells irradiated with UVA at a dose of 8 J/cm². The source of UVA was a xenon arc lamp (Dermalight ultrA1; Hoenle, Martinsried, Germany).

Preparation of total cell lysate

Cells were harvested, pelleted by centrifugation, and lysed in ice cold extracted buffer containing 50 mM Tris-HCl, 10 mM ethylene diaminetetraacetic acid (EDTA), 1% (v/v) Triton X-100, phenylmethylsulfonyl fluoride (PMSF) (100 mg/ml) and pepstatin A (1 mg/ml) in DMSO, and leupeptin (1 mg/ml) in H₂O, pH 6.8. The cells were then centrifuged at 12,000 x g for 2 min and the total cell lysate was collected, aliquoted and stored at -80 °C.

Cell viability assay

Cell viability was determined by measuring MTT reduction and LDH release in order to assess cytotoxic effect of the rhizome extracts tested and dose-dependent effect of UVA irradiation.

Measurement of MTT reduction

The reduction of MTT to the purple formazan product, largely by the mitochondrial complex I and II and also involving NADH- and NADPH-dependent energetic processes in the cytosol, was measured to identify metabolically active cells (Lobner 2000). Cells were incubated with medium containing MTT (0.2 mg/ml) at 37 °C for 1 h. Then DMSO was used to solubilize the purple formazan and the optical density was measured at 595 nm by a spectrophotometer.

Measurement of lactic dehydrogenase release

Early membrane damage causing LDH release is commonly used as a marker of cell necrosis (Lobner 2000). LDH released into the cell culture medium was determined using a commercially available kit from Cayman chemical (Ann Arbor, MI, USA).

Cell viability determined by MTT reduction was expressed as a percentage of control (100%, unirradiated and untreated cells) and by LDH release as Units/Liter.

Tyrosinase activity assay

Cellular tyrosinase activity was determined by measuring the rate of L-DOPA oxidation as previously described (Englaro et al. 1999). 90 μ l of each lysate were placed to a 96-well plate

and the enzymatic reaction was started by adding 10 μ l of 20 mM L-DOPA as the substrates at 37 °C. The tyrosinase activity determined as absorbance of dopachrome formation was measured spectrophotometrically at 475 nm every 10 min for 1 h at 37 °C by a microplate reader. The activity was calculated by comparing with standard curves produced by the same methods using known concentrations of tyrosinase activity (2034 U/mg). The data are expressed as a percentage of the tyrosinase activity (unit/mg of protein) of unirradiated and untreated control cells (100%).

Melanin content assay

This assay was previously described to correlate with uptake of ^{14}C -DOPA, an alternative evaluation of melanin synthesis (Carsberg et al. 1994). To evaluate the effects of UVA irradiation on melanin content in G361 cells, a dose of UVA at 16 J/cm² was applied. Total melanin contents were determined by solubilizing cells in 1 M NaOH. 200 μ l of each lysate were placed to a 96-well plate and spectrophotometrically determined at 475 nm. The melanin contents per mg of protein were determined from a standard curve derived using synthetic melanin (0-250 μ g/ml). The results are expressed as a percentage of the melanin contents (μ g/mg of protein) of unirradiated and untreated control cells (100%).

Cell culture treatments for RNA preparation and quantitative real-time reverse transcriptase-polymerase chain reaction

G361 cells were treated with or without AG or CA extracts (7.5, 15 and 30 μ g/ml) for 30 min before UVA irradiation (8 J/cm²). Cells were washed with PBS and incubated with DMEM

with 10% FBS for 4 h at 37 °C. Total RNA was then extracted using the illustra RNAspin mini RNA isolation kit (GE Healthcare, UK). Reverse transcription was performed with 1 μ g of total RNA using the Improm-II reverse transcriptase (Promega, Medison, USA) under the conditions described in the kit manual. Briefly, 25 μ l reaction mixtures contained 5 μ l cDNA template, 12.5 μ l Master Mix, 10 μ M forward primer (1 μ l), 10 μ M reversed primer (1 μ l) and 5.5 μ l water. Real-time PCR was performed in triplicate for each sample on the ABI Prism 7500 Real Time PCR System (Applied Biosystems, USA). The reactions were run with the following amplification conditions: 95 °C for 10 min, 40 cycles of 95 °C for 15 s, 60 °C for 40 s, and 72 °C for 40 s. Detection was obtained using FastStart universal SYBR Green Master (ROX). Primers for PCR were designed based on strict criteria using the Primer Express version 3.0 software (Applied Biosystems, USA). Sequences of PCR primer sets of tyrosinase and GAPDH (in 5'-3' direction) were as follows:

Tyrosinase (product sizes = 114 bp)

Sense primer: TCT TCT CCT CTT GGC AGATTG TC

Antisense primer: TGT CAT GGT TTC CAG GATTAC G

GAPDH (product size = 124 bp)

Sense primer: GAAATCCCATCACCATCTTCC

Antisense primer: AAATGAGCCCCAGCCTTCTC

The melt curve analysis was performed to verify that a single product was amplified. The mRNA level was normalized with reference to the amount of housekeeping gene transcript (GAPDH mRNA). To determine tyrosinase expression, the mean Ct from tyrosinase expression in cDNA from each sample was compared with the mean Ct from GAPDH determinations from the same cDNA samples. Ct values were then used to calculate fold change in gene expression.

Antioxidant enzyme assay

Measurement of catalase activity

CAT activity was assessed by following the kit protocol from Cayman chemical (Ann Arbor, MI). The method is based on the reaction of the enzyme with methanol in an optimal concentration of H₂O₂. The CAT activity detected as formaldehyde produced was determined spectrophotometrically at 540 nm with 4-amino-3-hydrazino-5-mercaptop-1,2,4-triazole (Purpald) as the chromogen. To each well on the 96-well plate, 100 μ l of assay buffer with 30 μ l methanol and 20 μ l standard or either sample or positive control CAT was added. The reaction was initiated by adding 20 μ l of 0.035 M H₂O₂. The formaldehyde concentrations of the samples were obtained from the standard curve. One unit of CAT activity is calculated as the amount of enzyme generating the formation of 1.0 nmol of formaldehyde per min/mg of protein at 25 °C. The data are expressed as a percentage of the CAT activity (mmol/min/ μ g of protein) of the unirradiated and untreated control cells (100%).

Measurement of glutathione peroxidase activity

GPx activity was measured by spectrophotometric assay according to the manufacturer's instruction from Trevigen (Gaithersburg, MD). The activity was determined indirectly by a coupled reaction with glutathione reductase (GR) and the reaction followed the oxidation of NADPH to NADP⁺, detected as an absorbance decrease at 340 nm (Nakamura et al. 2000). 20 μ l of a reaction mixture containing 10 mM NADPH reagent, 100 mM GSH and GR (0.025

unit/ μ l) in 140 μ l assay buffer were added to 20 μ l sample or GPx and mixed thoroughly. After adding 20 μ l of tert-butyl hydroperoxide solution, increases in absorbance at 340 nm were recorded at 0.5 and 1 min intervals for 10-15 min. The GPx activity was calculated from the linear portion of the curve and expressed as a percentage of the GPx activity (units/mg of protein) of the unirradiated and untreated control cells (100%). One unit of GPx activity was defined as the amount of enzyme causing the oxidation of 1 nmol of NADPH to NADP⁺ per min at 25 °C.

Measurement of intracellular glutathione content

Intracellular reduced glutathione (GSH) content was assayed using the fluorescent reagent *o*-phthalaldehyde (OPA) reacting specifically with GSH at pH 8 as previously described (Ketsawatsakul 2007). Cells were pre-treated with the rhizome extracts in a 24-well plate, exposed to UVA (8 J/cm²) and lysed with 6.5% (w/v) trichloroacetic acid (TCA). Then, the TCA extracts were added to 96-well plates together with buffer (100 mM KH₂PO₄, 10 mM EDTA and 1 mM NaOH) and OPA (1 mg/ml in methanol) was added. Fluorescence was measured at 350 nm excitation and 420 nm emission using a spectrofluorometer. The GSH levels were calculated by comparing with standard curves using known concentrations of GSH. The results are expressed as a percentage of the GSH content (nmol/mg of protein) of the unirradiated and untreated control cells (100%).

Determination of protein content

The protein content was measured using the Bio-Rad Protein Assay Kit (Bio-Rad, Germany) with BSA as the standard. Values for each sample are means of triplicate measurements.

Determination of intracellular oxidant formation

The effects of each rhizome extract on intracellular redox status of G361 cells exposed to UVA were measured using 2', 7'-Dichlorofluorescein diacetate (DCFH-DA), a stable and non-fluorescent dye. DCFH-DA was hydrolyzed in the cells to DCFH, further oxidised by oxidants (e.g., H_2O_2) in the cells to fluorescent 2,7-dichlorofluorescein (DCF). Thus the fluorescence reflected the overall oxidative stress and oxidant formation in cells. After treatment of cells with the rhizome extracts in a 24-well plate, cells were exposed to UVA (16 J/cm^2), then washed and incubated with phenol red-free DMEM containing DCFHDA ($5\text{ }\mu\text{M}$) for 1 h. DCF fluorescence was measured for 20 min at 485 nm excitation and 530 nm emission using a spectrofluorometer. The data are expressed as a percentage of intracellular oxidant formation (relative fluorescence units/RFU) of the unirradiated and untreated control cells (100%).

Thin layer chromatography (TLC)-densitometric analysis

TLC-densitometry with UV detection, a simple and sensitive analytical method, has been used for identification and screening of various compounds and for quality control of herbal substances (Poole 1999). Stock solutions containing AG (50 mg/ml) and CA (15 mg/ml) extract and standard markers using eugenol (1 mg/ml) for AG and curcuminoids (0.25 mg/ml) for CA were prepared in 80% ethanol. Each sample ($5\text{ }\mu\text{l}$ for the extract and $8\text{ }\mu\text{l}$ for the

standard marker), was loaded on TLC plate (silica gel 60 F254, Merck) using toluene:ethyl acetate:formic acid 24:16.5:3.2 (v/v/v) and chloroform:ethanol:ethyl acetate 94:5:1 (v/v/v) as solvent system for analysis of AG and CA, respectively. The plate was scanned using CAMAG TLC scanner III at a wavelength of 254 nm and then sprayed with specific vanillin-sulfuric acid and fast blue salt/FBS reagents to detect the presence of terpenoids and phenolics, respectively (Zoecklein et al. 1997). The migration distances of components separated by TLC were determined as R_f (retention or retardation factor) values using a densitometer (Image Master 1D Prime).

Statistical analysis

In all cases the values are given as means \pm standard error of the mean (SEM) calculated from data taken from at least 3 separate experiments performed on separate days using freshly prepared reagents. Where significance testing was performed, an independent *t*-test (Student's; 2 populations) and an analysis of variance (ANOVA) were used. The significance of the control and individual treatment groups in comparison to the UV-treated groups was determined with Dunnett's multiple comparison post-test at 95% confidence intervals. Values of *p* < 0.05 were considered significant.

Results

Cytotoxicity of the rhizome extracts and of UVA irradiation on G361 cells

MTT reduction and LDH release assays indicating mitochondrial function and cell membrane integrity, respectively, were used to assess cytotoxic effects of the rhizome extracts and of

UVA irradiation on G361 cells. Our data show that the rhizome extracts at indicated concentrations (up to 60 $\mu\text{g}/\text{ml}$) did not induce cytotoxicity (Fig. 1a). In addition, whereas UVA irradiation at 32 or 64 J/cm^2 was cytotoxic to G361 cells, the UVA doses (8 and 16 J/cm^2) applied in this study did not substantially affect cells (Fig. 1b).

The effects of AG and CA extracts on UVA irradiation-mediated melanogenesis in G361 cells

Inhibition of tyrosinase activity and melanin synthesis

Induction of tyrosinase activity and melanin content is suggested to be the hallmark of UV-induced melanogenesis (Lin and Fisher 2007). To evaluate the inhibitory effects of AG and CA extracts on tyrosinase activity and melanin synthesis, G361 melanoma cells were treated with different concentrations (3.8-30 $\mu\text{g}/\text{ml}$) of each extract prior to UVA irradiation. The tyrosinase activity of 0.29 ± 0.02 units/ μg of protein and melanin content of 3.4 ± 0.1 $\text{ng}/\mu\text{g}$ of protein were observed in the unirradiated and untreated control cells. A UVA dose of 8 or 16 J/cm^2 resulted in $55.7\pm8.1\%$ ($p <0.001$) and $29.63\pm4.2\%$ ($p <0.05$) increases in tyrosinase activity and melanin content, respectively. Pretreatment of cells with AG or CA extracts inhibited UVA-induced melanogenic response in a concentration-dependent manner. As shown in Fig. 2a, AG (7.5-30 $\mu\text{g}/\text{ml}$) and CA (3.8-30 $\mu\text{g}/\text{ml}$) extracts were capable of inhibiting UVA-mediated induction of tyrosinase activity ($p <0.01$, $p <0.001$). Moreover, melanin contents aggravated by UVA exposure were significantly reduced by pretreatment of cells with AG and CA extracts at concentrations of 15-30 $\mu\text{g}/\text{ml}$ ($p <0.05$, $p <0.01$) (Fig. 2b). Table 1 highlights the differences in concentrations of the extracts required to achieve 30%

inhibition (IC_{30}) of UVA-dependent aggravation of tyrosinase activity in G361 cells. CA extracts were shown to exert greater antityrosinase effects than AG extracts ($p < 0.05$) as higher concentrations of AG extracts were required to achieve 30% inhibition of increased tyrosinase activity.

Inhibition of tyrosinase mRNA expression

The quantitative analysis of gene expression changes in G361 cells was performed to investigate the effects of AG and CA extracts (7.5, 15 and 30 μ g/ml) on UVA-induced melanogenesis at 4 h after irradiation. UVA irradiation was shown to cause an induction of tyrosinase mRNA expression in G361 cells (12 ± 0.86 -fold increase, $p < 0.001$). However, as demonstrated in Fig. 3, down-regulation of tyrosinase expression was observed in the cells pretreated with AG or CA extracts at the concentration of 30 μ g/ml ($p < 0.05$).

The effects of AG and CA extracts on melanogenesis induced by UVA irradiation: modulation of antioxidant enzyme activity and glutathione content

The effect of UVA irradiation in modulating cellular antioxidant defenses including CAT and GPx activities and intracellular GSH content was confirmed in our study. Our data demonstrated that CAT activities of 10.33 ± 0.5 mmol/min/ μ g of protein, GPx activities of 9.8 ± 0.2 units/mg of protein and GSH content of 10.57 ± 0.4 nmol/mg of protein were detected in unirradiated and untreated cells. However, exposure of G361 melanoma cells to UVA radiation (8 J/cm^2) markedly reduced the CAT activities by $36.24 \pm 5.9\%$ ($p < 0.05$), GPx activities by $35.54 \pm 3.4\%$ ($p < 0.05$) and GSH content by $33.12 \pm 5.2\%$ ($p < 0.05$) compared to

non-UVA-irradiated cells (Fig. 4). Nevertheless, UVA-dependent depletion of CAT activities was significantly blocked by pretreatment with AG or CA extracts at the concentrations of 15-30 μ g/ml ($p < 0.05$, $p < 0.01$; Fig. 4a). AG (3.8-30 μ g/ml; $p < 0.001$) or CA (7.5-30 μ g/ml; $p < 0.01$, $p < 0.001$) extracts were also shown to significantly protect cells from depletion of GPx activities induced by UVA (Fig. 4b). Additionally, pretreatment with the extracts of AG (7.5-30 μ g/ml) or CA (15-30 μ g/ml) prior to UVA irradiation not only prevented UVA-induced reduction of GPx activities but also improved its activities compared to non-UVA-irradiated cells (Fig. 4b). Moreover, both extracts (3.8-7.5 μ g/ml; $p < 0.05$ and 15 μ g/ml; $p < 0.01$) were shown to significantly inhibit depletion of intracellular GSH content following UVA irradiation and the GSH levels in the extracts-treated cells remained constant (Fig. 4c). However, pretreatment with high concentrations (30 μ g/ml) of both extracts exerted no significant change in the GSH content compared to UVA-exposed cells without extracts.

The effects of AG and CA extracts on melanogenesis induced by UVA irradiation: inhibition of intracellular oxidant formation

Intracellular oxidant measured in terms of relative fluorescence intensity of DCF was assessed as a marker of UVA-induced oxidative stress. Exposure of G361 melanoma cells to a UVA dose of 16 J/cm² markedly caused a 40.78 \pm 7.7% ($p < 0.001$) induction of intracellular oxidant formation compared to non-UVA-irradiated cells producing intracellular oxidant of 18.92 \pm 1.1 RFU. As shown in Fig. 5, pretreatment of cells with AG or CA extracts (3.8-30 μ g/ml; $p < 0.001$) exhibited a significant dose-dependent reduction of cellular oxidant formation in response to UVA irradiation. The data demonstrated that both extracts possessed antioxidant properties capable of inhibiting UVA irradiation-mediated cellular oxidative

stress. Additionally, as indicated in Table 1, greater concentrations ($12.3\pm0.5\ \mu\text{g/ml}$) of AG extracts than those ($8.8\pm0.5\ \mu\text{g/ml}$) of CA extracts were required to achieve 30% inhibition of oxidant formation aggravated by UVA, indicating that the ability of CA extracts to inhibit cellular oxidative stress was markedly higher than that of AG extracts ($p < 0.01$).

Identification of the presence of eugenol in AG and curcuminoids in CA extracts

TLC-densitometry illustrated the presence of eugenol in AG extracts and curcuminoids [curcumin and its two derivatives, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)] in CA extracts. Since Rf values are the primary parameter for identification of components separated by TLC, they were used to compare with those of reference compounds. Eugenol was detected in AG extracts with Rf = 0.81 (Fig. 6a) and curcuminoids in CA extract with Rf = 0.49, 0.37 and 0.26 (curcumin, DMC and BDMC, respectively) (Fig. 6b).

Discussion

The crucial impact of UVA on melanogenesis or pigment production of the skin is widely explored since pigment excess represents a sign of cell response to stress associated with skin problems including skin hyperpigmentation and melanoma skin cancer. Targeting strategy for prevention of such skin disorders therefore includes development of effective antimelanogenic agents.

Recently, underlying mechanism of melanogenesis involved in oxidative stress has been proposed (Marrot and Meunier 2008) and attempts have thus been made to investigate

the inhibitory effects of natural products-derived antioxidant properties on melanogenesis (Gomez-Cordoves et al. 2001). Among several medicinal plants studied, those of the genera *Alpinia* and *Curcuma* rich in essential oils and curcumin, respectively, have been attractive for dermatology research to explore their use and antioxidant properties, which might be responsible for their pharmacological effects (Choi et al. 2007; Fang et al. 2003). This is the first study to demonstrate the inhibitory effects of AG and CA extracts on UVA-induced melanogenesis in relation to recovery of antioxidant enzyme activities and intracellular redox state, indicated by intracellular GSH levels and oxidant formation, using the G361 melanoma cell culture model.

Evaluation of tyrosinase activity and melanin contents was suggested as a standard model for assessing regulators of melanogenesis (Virador et al. 1999). Our findings suggested that reduction of tyrosinase activity and melanin content in the cells was possibly not due to the cytotoxic effects of the rhizome extracts. Real-time RT-PCR confirmed up-regulation of tyrosinase by UVA and the presence of AG or CA extracts resulted in a decrease in the levels of tyrosinase mRNA. Additionally, it is important to identify active ingredients of the extracts studied in order to explain the biological activities of medicinal plants. Our study using TLC-densitometry was able to detect the presence of eugenol and curcuminoids in AG and CA extracts, respectively. Previous *in vitro* studies indicated that terpenoid derivatives (e.g., eugenol), the major components of the essential oils of the *Zingiberaceae* family including *Alpinia spp.*, showed antityrosinase activity and an ability to inhibit melanin formation (Marongiu et al. 2007). Moreover, the biological effects of curcumin, the principle curcuminoids, present in *Curcuma spp.* and the antioxidant role have also been investigated in a wide range of skin disorders including photocarcinogenesis or melanoma (Baliga and Katiyar 2006). Thus, they could be active components responsible for the antityrosinase effects of the rhizome extracts studied.

UVA irradiation-mediated alterations in antioxidant defense system and redox state is postulated to play a vital role in melanogenesis (Xiao et al. 2007). H₂O₂ was recently demonstrated to up-regulate tyrosinase and an increase in its production was involved during melanin formation in response to UV irradiation (Mastore et al. 2005; Schallreuter et al. 2008). Moreover, such melanogenic response was inhibited by the presence of CAT (Mastore et al. 2005). Down-regulation of GPx activity and GSH levels was also shown to be accountable for tyrosinase aggravation in melanoma cells (Benathan 1997). Hence, an improved capacity of antioxidant defense system to neutralize oxidants (e.g., H₂O₂) could be beneficial for a reduction of melanogenesis.

In order to illustrate the antioxidant mechanisms underlying antimelanogenic effects of the extracts studied, our study confirmed the correlation between oxidative stress and melanogenesis in G361 cells exposed to physiological doses of UVA (8 and 16 J/cm²). The extracts' abilities to potentiate cellular antioxidant defense capacity in accordance with their antimelanogenic effects were observed. GSH is crucial for maintaining intracellular redox balance and is capable of protecting cells against oxidative stress damage, for example, by detoxifying ROS and/or toxic products generated during the process of melanogenesis (Riley 2003). Our study detected the correlation of melanogenic response of G361 cells to UVA irradiation with a rise in intracellular oxidant formation and depletion of cellular GSH concentrations, although the antimelanogenic effects of the extracts were inversely associated with GSH levels. Furthermore, CAT and GPx, as major endogenous antioxidant enzymes involved in the detoxification of H₂O₂ (Masaki et al. 1998), were able to suppress UVA-induced H₂O₂ accumulation in dermal models (Han et al. 2004). We also demonstrated that both extracts studied were able to promote activities of CAT and GPx in the cells irradiated with UVA. Moreover, in agreement with previous studies showing an inverse regulation of tyrosinase and GPx in melanoma cells, our data indicated that dose-dependent reduction of

tyrosinase activity was associated with dose-dependent induction of both CAT and GPx activities (Benathan 1997). Consistent with antityrosinase and antioxidant actions of the extracts, there was a higher antityrosinase effect in CA extracts providing greater abilities than AG extracts to inhibit intracellular oxidant formation as indicated by IC₅₀ values obtained in our study. Nevertheless, further study of the antimelanogenic effects of the rhizome extracts on melanogenesis in melanocytes is needed since the antioxidant defense network and melanin biosynthesis are most likely different in melanoma cells.

In summary, AG and CA extracts exhibited inhibitory effects on UVA-mediated melanogenesis in G361 melanoma cells, probably via modulation of cellular antioxidant defense capacity. The antityrosinase effects of the extracts also appeared to correlate with their antioxidant potential. The biological activities of the AG and CA extracts may be attributed to eugenol and curcuminoids, respectively.

Acknowledgements

Appreciation is expressed to the Thailand Research Fund (TRF) and Siriraj Graduate Thesis Scholarship, Faculty of Medicine Siriraj Hospital, and Faculty of Graduate Studies, Mahidol University for generous research funding and support. We thank Mrs. Srisamorn Sudtim and Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University for valuable technical assistance related to the UV device.

References

Ahmad I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. *J Ethnopharmacol* 2001; 74: 113-123.

Baliga MS, Katiyar SK. Chemoprevention of photocarcinogenesis by selected dietary botanicals. *Photochem Photobiol Sci* 2006; 5: 243-253.

Benathan M. Opposite regulation of tyrosinase and glutathione peroxidase by intracellular thiols in human melanoma cells. *Arch Dermatol Res* 1997; 289: 341-346.

Carsberg CJ, Warenius HM, Friedmann PS. Ultraviolet radiation-induced melanogenesis in human melanocytes. Effects of modulating protein kinase C. *J Cell Sci* 1994; 107: 2591-2597.

Choi SW, Lee SK, Kim EO, Oh JH, Yoon KS, Parris N, Hicks KB, Moreau RA. Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids. *J Agric Food Chem* 2007; 55: 3920-3925.

Darshan S, Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine. *Phytother Res* 2004; 18: 343-357.

Eguchi A, Kaneko Y, Murakami A, Ohigashi H. Zerumbone suppresses phorbol ester-induced expression of multiple scavenger receptor genes in THP-1 human monocytic cells. *Biosci Biotechnol Biochem* 2007; 71: 935-945.

Eller MS, Ostrom K, Gilchrest BA. DNA damage enhances melanogenesis. *Proc Natl Acad Sci USA* 1996; 93: 1087-1092.

Englaro W, Bahadoran P, Bertolotto C, Busca R, Derijard B, Livolsi A, Peyron JF, Ortonne JP, Ballotti R. Tumor necrosis factor alpha-mediated inhibition of melanogenesis is dependent on nuclear factor kappa B activation. *Oncogene* 1999; 18: 1553-1559.

Fang JY, Leu YL, Hwang TL, Cheng HC, Hung CF. Development of sesquiterpenes from *Alpinia oxyphylla* as novel skin permeation enhancers. *Eur J Pharm Sci* 2003; 19: 253-262.

Gomez-Cordoves C, Bartolome B, Vieira W, Virador VM. Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells. *J Agric Food Chem* 2001; 49: 1620-1624.

Han YT, Han ZW, Yu GY, Wang YJ, Cui RY, Wang CB. Inhibitory effect of polypeptide from *Chlamys farreri* on ultraviolet A-induced oxidative damage on human skin fibroblasts in vitro. *Pharmacol Res* 2004; 49: 265-274.

Hasegawa T, Takano F, Takata T, Niiyama M, Ohta T (2008) Bioactive monoterpene glycosides conjugated with gallic acid from the leaves of *Eucalyptus globules*. *Phytochemistry* 69: 747-753.

Kadekaro AL, Kavanagh RJ, Wakamatsu K, Ito S, Pipitone MA, Abdel-Malek ZA. Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round? *Pigment Cell Res* 2003; 16: 434-447.

Kang SC, Lee CM, Choi H, Lee JH, Oh JS, Kwak JH, Zee OP. Evaluation of oriental medicinal herbs for estrogenic and antiproliferative activities. *Phytother Res* 2006; 20: 1017-1019.

Ketsawatsakul U. Modulation by bicarbonate of the protective effects of phenolic antioxidants on peroxynitrite-mediated cell cytotoxicity. *ScienceAsia* 2007; 33: 273-282.

Kim YJ, Kang KS, Yokozawa T. The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. *Food Chem Toxicol* 2008; 46: 2466-2471.

Kvam E, Tyrrell RM. The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells. *J Invest Dermatol* 1999; 113: 209-213.

Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. *Nature* 2007; 445: 843-850.

Lobner D. Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? *J Neurosci Methods* 2000; 96: 147-152.

Marongiu B, Piras A, Porcedda S, Tuveri E, Sanjust E, Meli M, Sollai F, Zucca P, Rescigno A. Supercritical CO₂ extract of *Cinnamomum zeylanicum*: chemical characterization and antityrosinase activity. *J Agric Food Chem* 2007; 55: 10022-10027.

Marrot L, Meunier JR. Skin DNA photodamage and its biological consequences. *J Am Acad Dermatol* 2008; 58: 139-148.

Masaki H, Okano Y, Sakurai H. Differential role of catalase and glutathione peroxidase in cultured human fibroblasts under exposure of H₂O₂ or ultraviolet B light. *Arch Dermatol Res* 1998; 290: 113-118.

Mastore M, Kohler L, Nappi AJ. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. *FEBS J* 2005; 272: 2407-2415.

Matsuda H, Pongpiriyadacha Y, Morikawa T, Ochi M, Yoshikawa M. Gastroprotective effects of phenylpropanoids from the rhizomes of *Alpinia galanga* in rats: structural requirements and mode of action. *Eur J Pharmacol* 2003; 471: 59-67.

Morikawa T, Ando S, Matsuda H, Kataoka S, Muraoka O, Yoshikawa M. Inhibitors of nitric oxide production from the rhizomes of *Alpinia galanga*: structures of new 8-9' linked neolignans and sesquineolignan. *Chem Pharm Bull (Tokyo)* 2005; 53: 625-630.

Nakamura Y, Torikai K, Ohto Y, Murakami A, Tanaka T, Ohigashi H. A simple phenolic antioxidant protocatechuic acid enhances tumor promotion and oxidative stress in female ICR mouse skin: dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase. *Carcinogenesis* 2000; 21: 1899-1907.

Oka M, Nagai H, Ando H, Fukunaga M, Matsumura M, Araki K, Ogawa W, Miki T, Sakaue M, Tsukamoto K, Konishi H, Kikkawa U, Ichihashi M. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells *J Invest Dermatol* 2000; 115: 699-703.

Pisano M, Pagnan G, Loi M, Mura ME, Tilocca MG, Palmieri G, Fabbri D, Dettori MA, Delogu G, Ponzoni M, Rozzo C. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. *Mol Cancer* 2007; 6: 8-19.

Poole CF. Planar chromatography at the turn of the century. *J Chromatogr A* 1999; 856: 399-427.

Riley PA. Melanogenesis and melasma. *Pigment Cell Res* 2003; 16: 548-552.

Saikia AP, Ryakala VK, Sharma P, Goswami P, Bora U. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. *J Ethnopharmacol* 2006; 106: 149-157.

Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis--controversies and new concepts. *Exp Dermatol* 2008; 17: 395-404.

Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. *Physiol Rev* 2004; 84: 1155-1228.

Surh Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. *Mutat Res* 1999; 428: 305-327.

Virador VM, Kobayashi N, Matsunaga J, Hearing VJ. A standardized protocol for assessing regulators of pigmentation. *Anal Biochem* 1999; 270: 207-219.

Xiao L, Matsubayashi K, Miwa N. Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues. *Arch Dermatol Res* 2007; 299: 245-257.

Zoecklein BW, Marcy JE, Williams JM, Jasinski Y. Effect of Native Yeasts and Selected Strains of *Saccharomyces cerevisiae* on Glycosyl Glucose, Potential Volatile Terpenes, and Selected Aglycones of White Riesling (*Vitis vinifera* L.) Wines. *J Food Compost Anal* 1997; 10: 55-65.

Table

Table 1. IC₃₀ values of the AG and CA extracts for the inhibition of UVA-mediated aggravated tyrosinase activity and intracellular oxidant formation in G361 melanoma cells. IC₃₀ values represent the concentration of the rhizome extracts required to achieve 30% inhibition. Data are presented as the mean \pm SEM of triplicate determinations.

Assay	IC ₃₀ (μ g/ml)		<i>p</i> -value
	AG	CA	
Tyrosinase activity	18.5 \pm 1.7	8.9 \pm 1.9	<0.05
Cellular oxidant formation	12.3 \pm 0.5	8.8 \pm 0.5	<0.01

Figure legends

Fig. 1. Cytotoxicity of the rhizome extracts and of UVA irradiation on G361 cells. (a) The cytotoxic effects of AG and CA extracts were evaluated after treatment of cells (3.8-60 μ g/ml) with the extracts without UVA irradiation. (b) The dose-dependent effects of UVA irradiation on cell viability were assessed after exposure of cells to UVA (4-64 J/cm²). Unirradiated or untreated cells were used as control. Cell viability determined by MTT reduction was expressed as a percentage of control (100%) and by LDH release as Units/Liter using a microplate reader. Values given are mean \pm SEM. The statistical significance of differences between the control and the UVA-irradiated groups or the plant extracts-treated groups was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * p \leq 0.05; ** p \leq 0.01; *** p \leq 0.001.

Fig. 2. Inhibitory effects of AG and CA extracts on UVA irradiation-mediated melanogenesis in G361 cells. (a) Tyrosinase activity determined as absorbance of dopachrome formation was measured spectrophotometrically at 475 nm for 1 h at 37 °C. (b) Melanin content was spectrophotometrically determined at 475 nm using synthetic melanin as a standard. The tyrosinase activity and melanin production induced by a single dose of UVA at 8 or 16 J/cm², respectively, related to the protein concentration were expressed as a percentage of control (100%, unirradiated and untreated cells). Values given are mean \pm SEM. The statistical significance of differences between the control and UVA irradiated cells and between UVA irradiated and plant extracts-treated cells was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * p \leq 0.05; ** p \leq 0.01; *** p \leq 0.001.

Fig. 3. Quantitative gene expression of tyrosinase in G361 cells analyzed by real-time PCR with the $2^{-\Delta\Delta C_t}$ method. The data presented as the fold change in gene expression normalized to GAPDH and relative to the control sample. For the control (unirradiated and untreated cells), $\Delta\Delta C_t$ equals zero and 2^0 equals one, so that the fold change in gene expression relative to the control equals one, by definition. For the treated cells, evaluation of $2^{-\Delta\Delta C_t}$ indicates the fold change in gene expression relative to the control. Values given are mean \pm SEM. The statistical significance of differences between the UVA-irradiated and the control groups and the plant extracts-treated groups was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$.

Fig. 4. The effects of AG and CA extracts on antioxidant defense system in G361 cells exposed to UVA (8 J/cm^2). (a) The CAT activity detected as formaldehyde produced was determined spectrophotometrically at 540 nm in a plate reader with purpald as the chromogen. (b) The GPx activity was determined indirectly by a coupled reaction with GR and the reaction followed the oxidation of NADPH to NADP^+ , detected as an absorbance decrease at 340 nm (c) Intracellular GSH content was assayed using the fluorescent OPA reacting specifically with GSH and fluorescence was measured at 350 nm excitation and 420 nm emission. The CAT and GPx activities and GSH content related to the protein concentrations were expressed as a percentage of control (100%, unirradiated and untreated cells) using a microplate reader. Values given are mean \pm SEM. The statistical significance of differences between the UVA-irradiated and the control groups and the plant extracts-treated groups was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$.

Fig 5. The effects of AG and CA extracts on intracellular oxidant formation in G361 cells irradiated with UVA (16 J/cm²). ROS produced in the cells oxidized DCFH-DA to fluorescent DCF, which was measured at 485 nm excitation and 530 nm emission. Intracellular oxidant levels were expressed as a percentage of control (100%, unirradiated and untreated cells) using a microplate reader. Values given are mean±SEM. The statistical significance of differences between the UVA-irradiated and the control groups and the plant extracts-treated groups was evaluated by one-way ANOVA followed by Dunnett's multiple comparison post-test. * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$.

Fig. 6. The separation of *A. galanga* and *C. aromatica* extracts by TLC-densitometric analysis using mobile phase, toluene:ethyl acetate:formic acid 24:16.5:3.2 (v/v/v) and chloroform:ethanol:ethyl acetate 94:5:1 (v/v/v), respectively. (a) Eugenol isolated from AG extract visualized with vanillin-sulfuric spray reagents producing a band at $R_f = 0.81$. (b) Curcuminoids isolated from CA extract visualized with FBS spray reagent producing bands of curcumin (C) and its derivatives, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) at $R_f = 0.49, 0.37$ and 0.26 , respectively.

Fig. 1a

[Click here to download high resolution image](#)

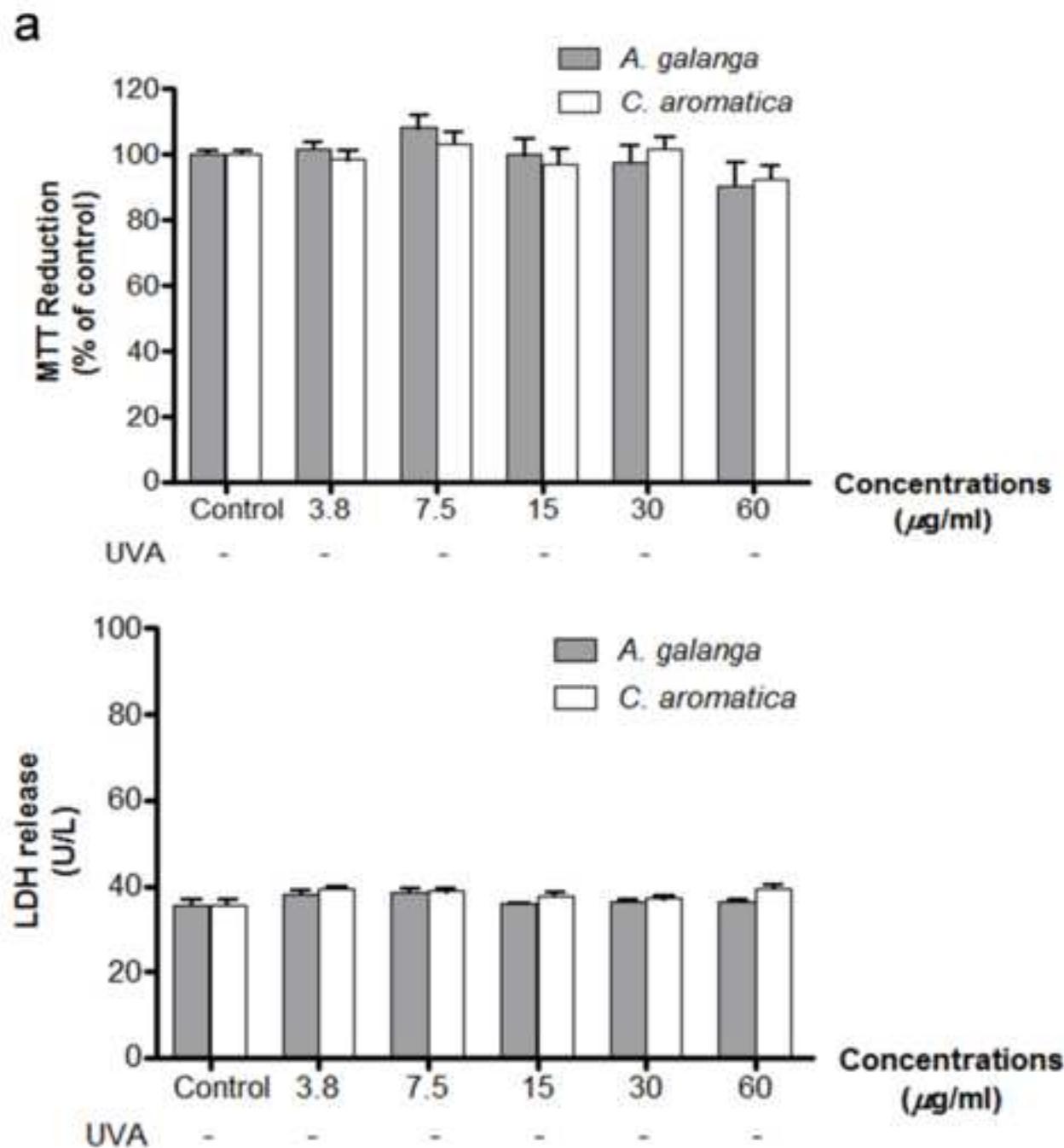


Fig. 1b

[Click here to download high resolution image](#)

b

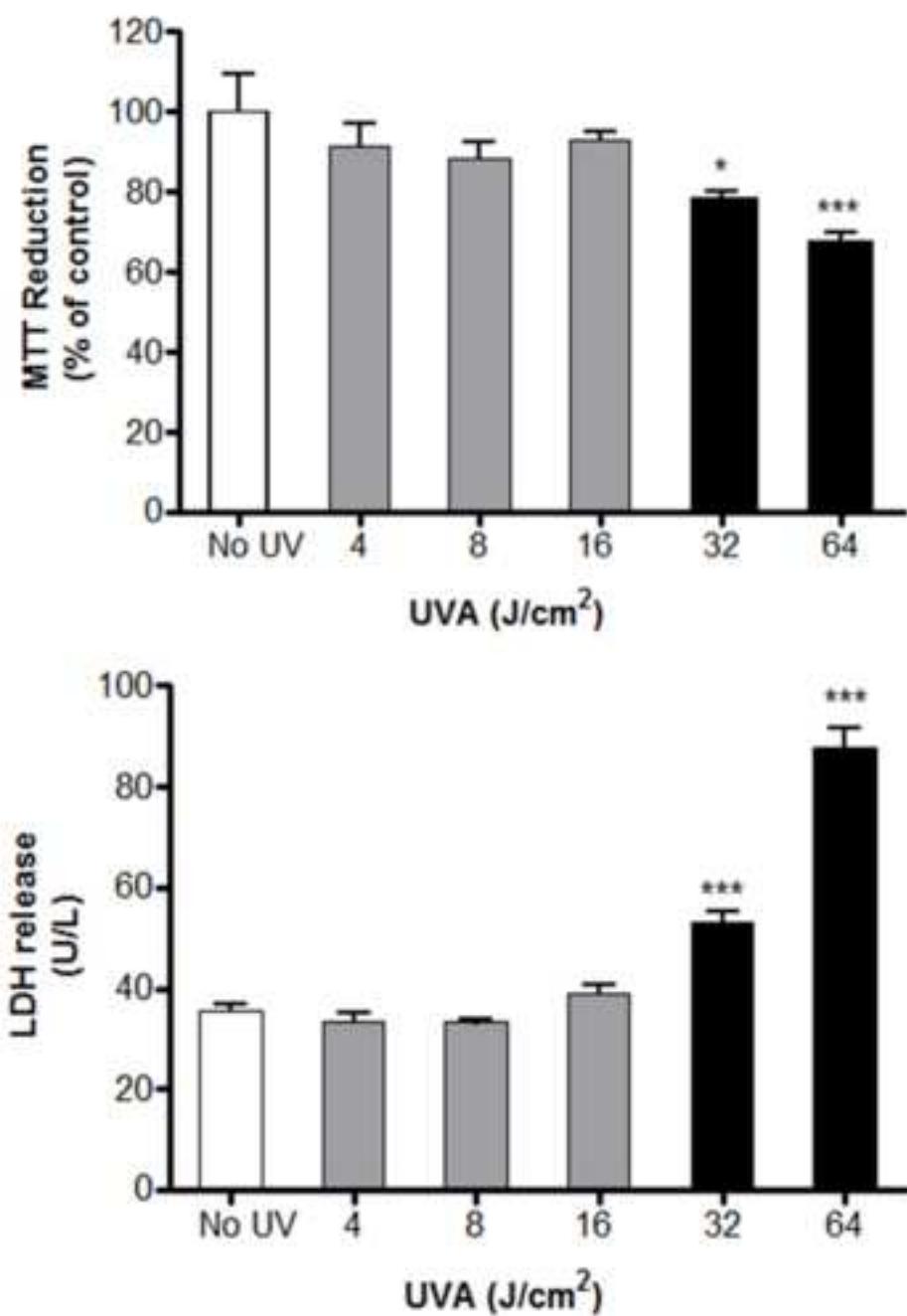


Fig. 2a&2b

[Click here to download high resolution image](#)

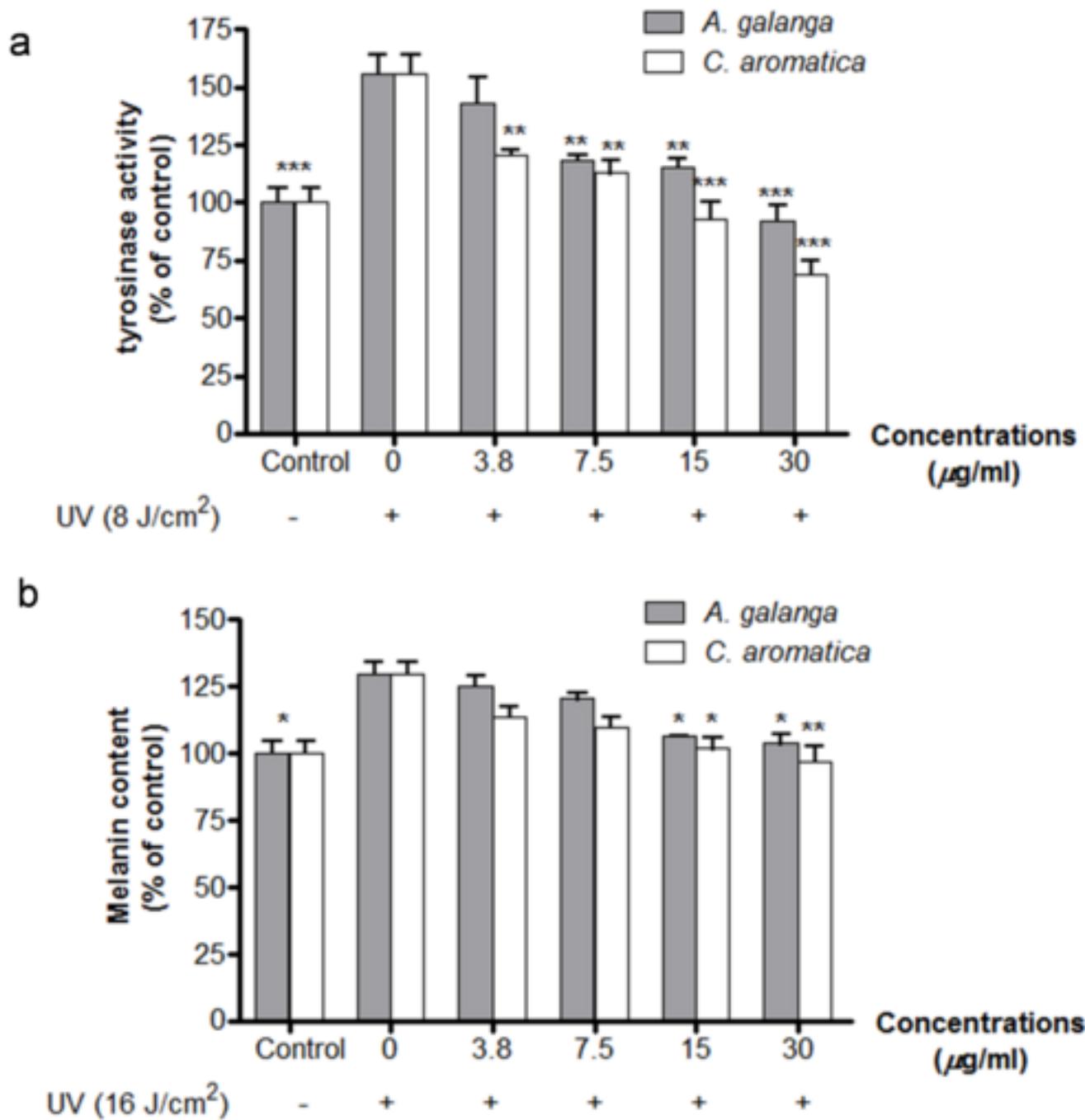


Fig. 3

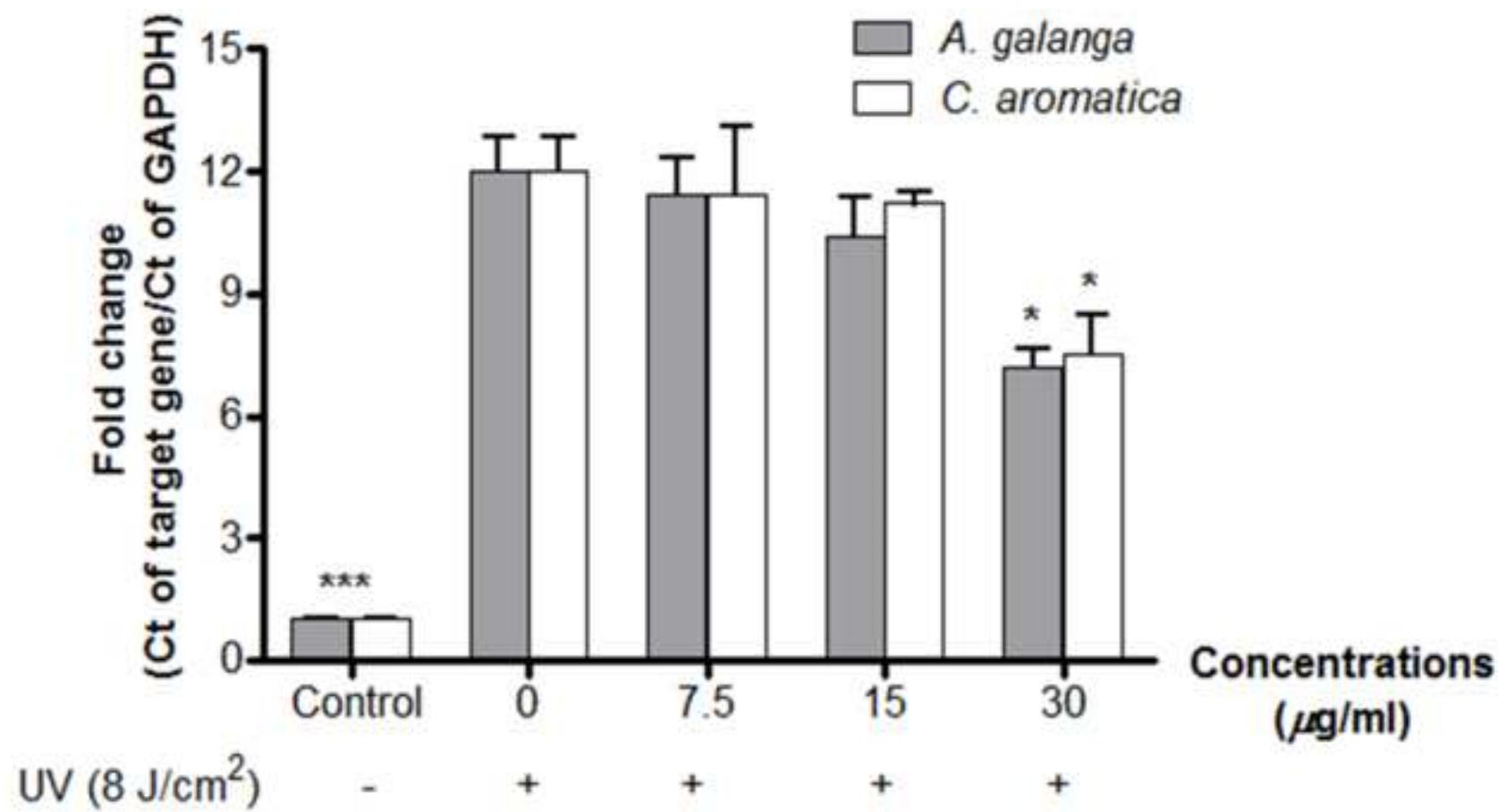

[Click here to download high resolution image](#)

Fig. 4a

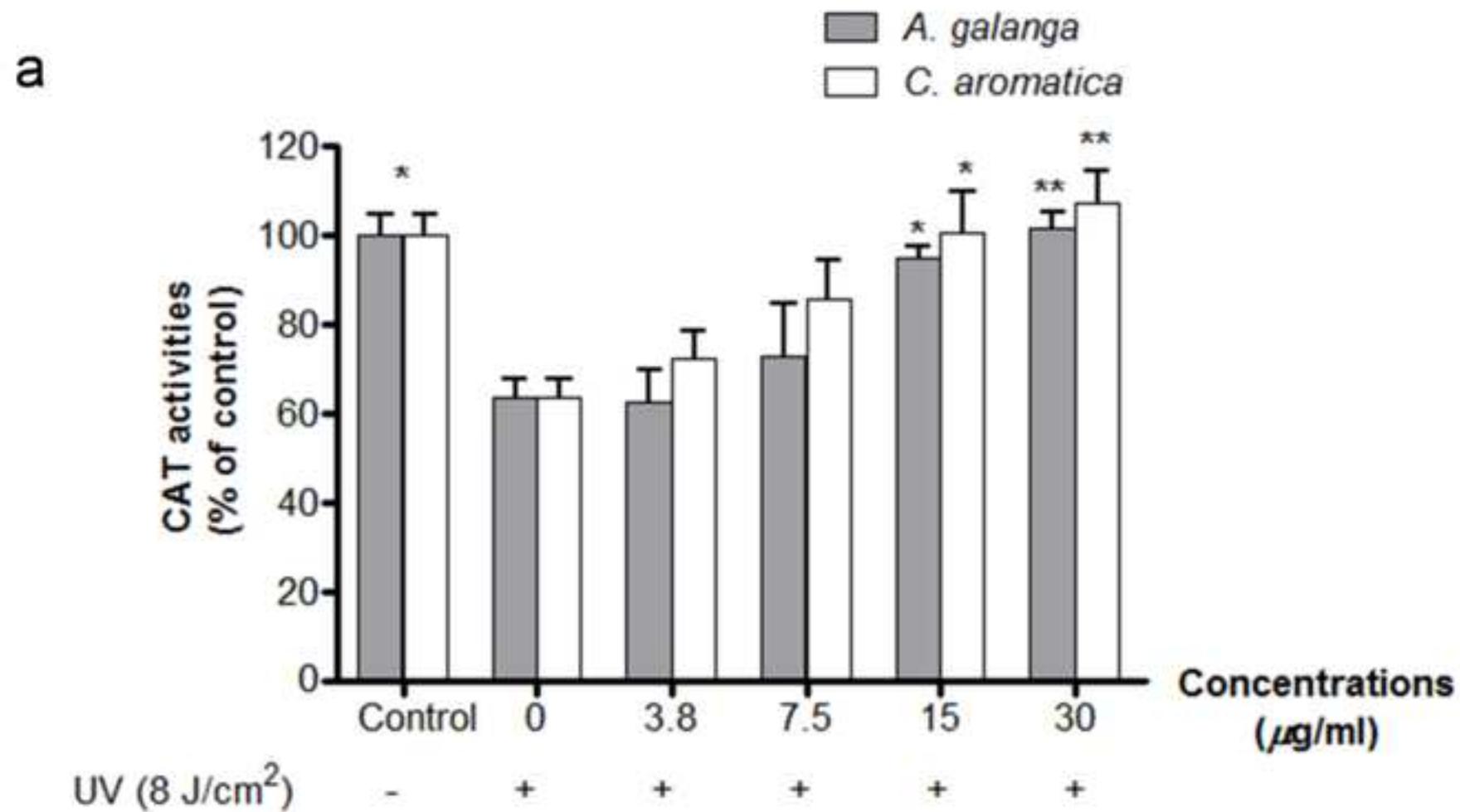

[Click here to download high resolution image](#)

Fig. 4b

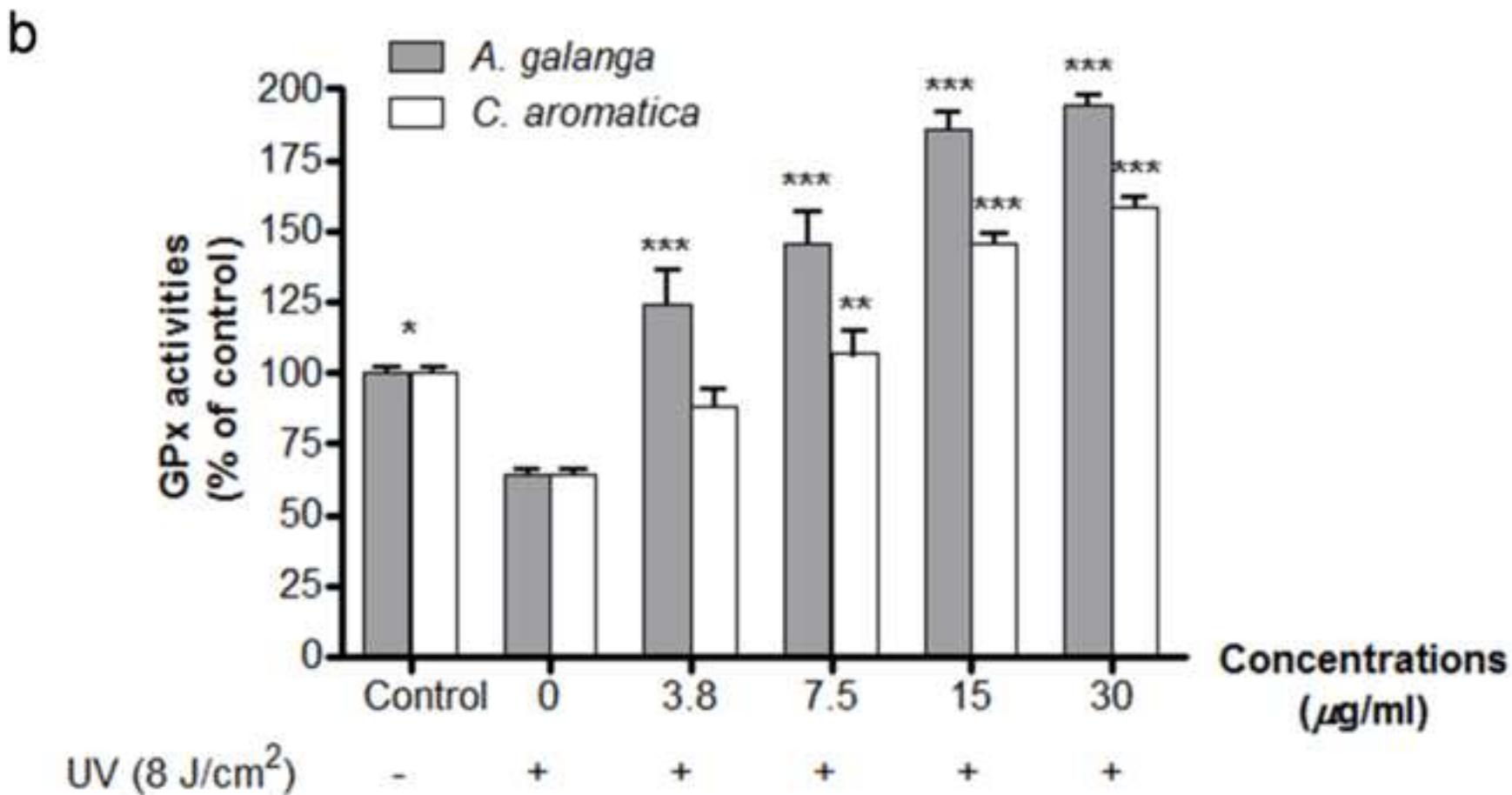

[Click here to download high resolution image](#)

Fig. 4c

[Click here to download high resolution image](#)

C

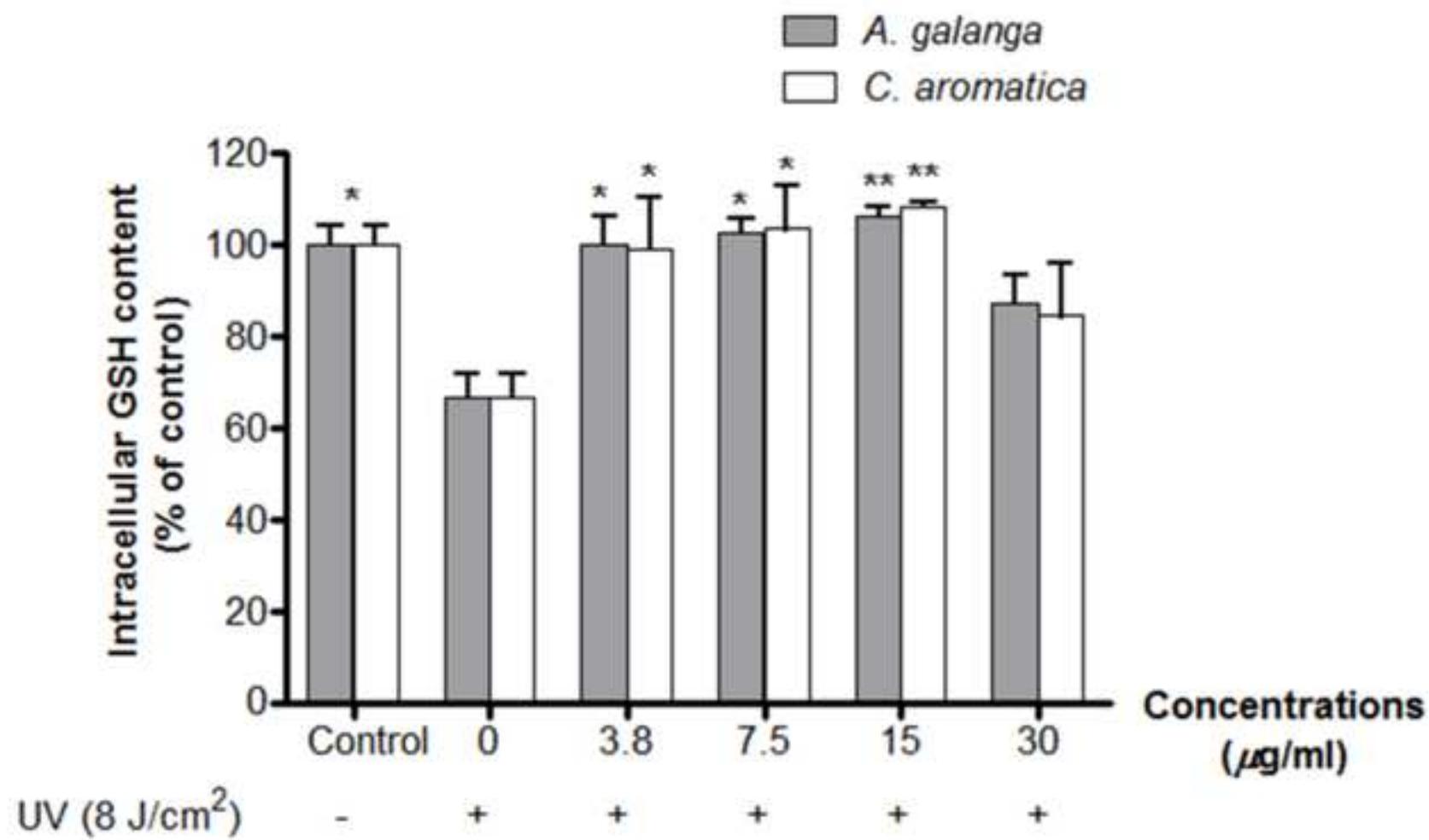


Fig. 5

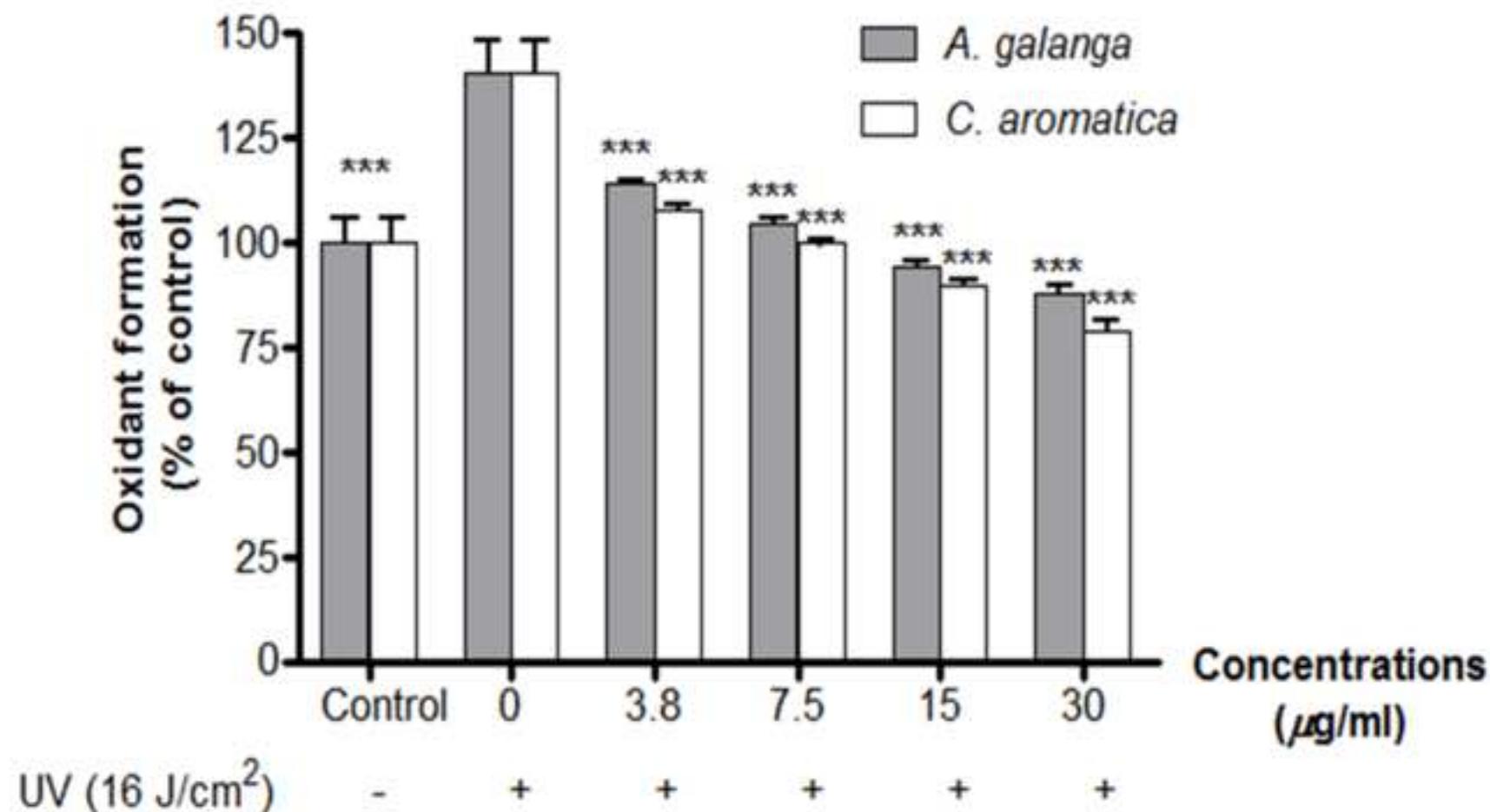

[Click here to download high resolution image](#)

Fig. 6a

[Click here to download high resolution image](#)

a

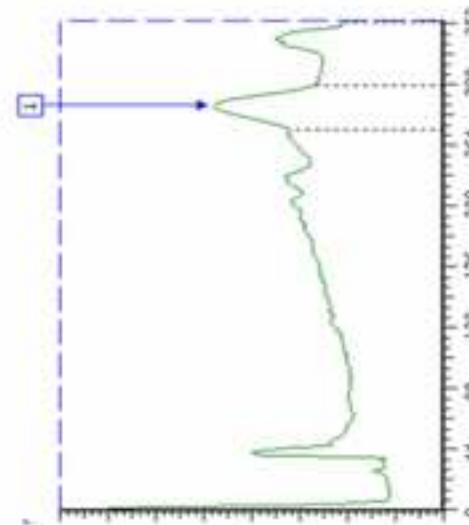
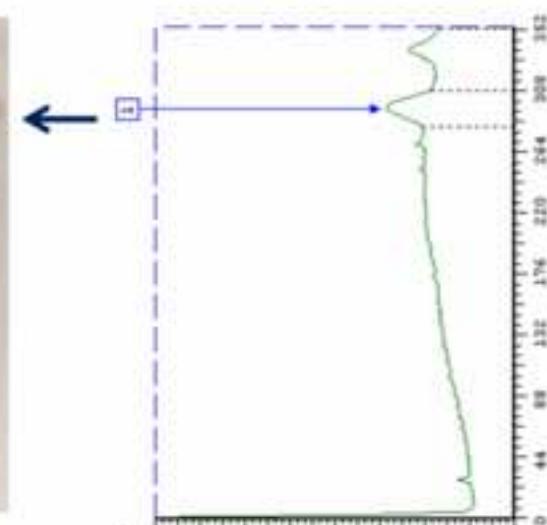
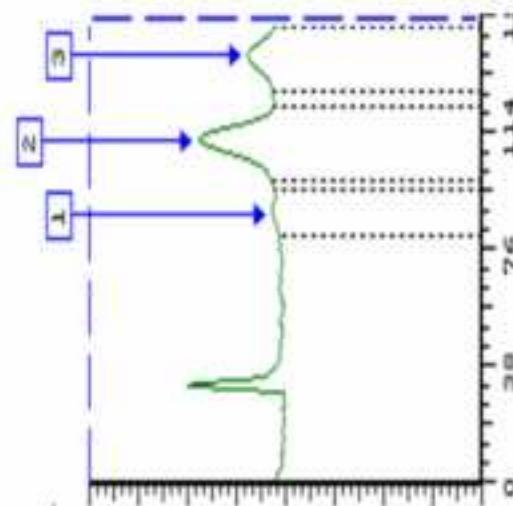
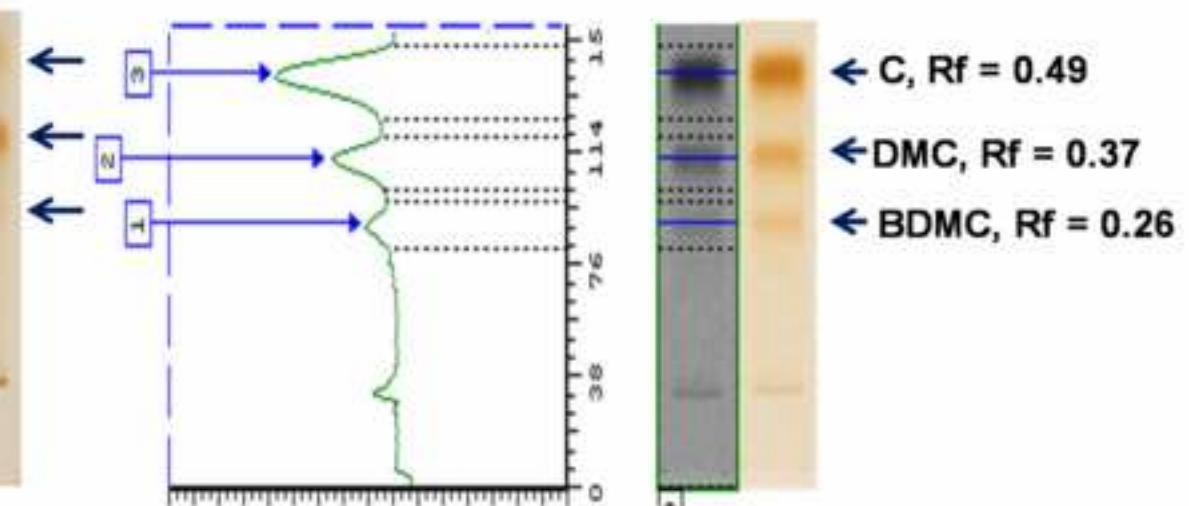




*A. galanga**Eugenol* $\leftarrow R_f = 0.81$

Fig. 6b

[Click here to download high resolution image](#)

b

C. aromatica***Curcuminoids***