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This research was the preparation of two types of catalyst, which were Pt-Co-Cr,
Pt-Co-Fe on carbon supports both treated by H,O, and untreated, and non-platinum metal
catalysts. In the first section, Pt-Co-Cr/C and Pt-Co-Fe/C were prepared by three methods,
which were microwave, sodiumborohydride, and reflux. The results indicated that particles
size of metals prepared by using treated carbon was smaller and more dispersed than
particles size of metals prepared by using untreated carbon due to the present of carboxylic
group on treated carbon surface. The amount of metals was determined and platinum
appeared the highest followed by cobalt chromium and iron. Cobalt chromium and iron
were examined to exist in oxide forms. The electrochemical testing of catalysts sample

shown Pt-CoO-Cr304 on treated carbon to have higher activity than commercial catalyst



and highest activity among prepared catalysts and two electron pathways was observed as
well. In the second section, non-platinum catalysts, which are FeTPP/C and CoTPP/C were
prepared. Oxides form of both iron and cobalt were observed after heat treatment in
nitrogen atmosphere. The catalysts that heat treated at 600 and 750°C for FeTPP/C and
CoTPP/C were observed to have highest electrochemical performance among prepared

catalysts.
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350 CoTPP/vul 350
550 CoTPP/vul 550
750 CoTPP/vul 750




4. Namsvmaaauaz%minﬁwam‘iﬂﬂaaa

A a o 1 aaa o
4.1 aann 1 N13LAILNALIILU)NI81 Pt-Co-Cr/C NU Pt-Co-Fe/C
4.1.1 wan1sdSuanwEla1suan
v a & 9 & & & ot A ¢ A
msdsurnninasuauals lalasiauiasoan larais Vlmmwmmwmg@ﬂi:mmwa
\uwyAariEu ndw carboxylic, hyfroxyl Uz lactone NifIvadA TUEY [ | tNaidunsbudu
6 ni o o % ni 1 o o o a 6 d' 1 6 U
ansueud ldrunstdaussfidunahdagnin lamalienziidemng Weidudae
wafla IR kanInaaadldaiuaadlugyl 1 wansnasaswoianiveud laldvinnmadiudy
¥ A i, \ - -1 -1
WuR9zdIngWndILnIg 2351 cm (-C=C-), 2015 cm (-C=C=C-) uaz 1591 cm  (-C=C-)
A
f

' { o a a & ° ' % -1
muﬂﬁuauﬁmmiﬂﬁuﬂ;amuuﬁﬂﬂﬂﬁﬂg Funrisnlannuae 2362 cm (-C=C-), 2038

0

-1 -1 { A & | { >
cm  (-C=C=C-) Lz 1512 cm™ (-C=C-) uaslANNNNIBNAD 1693 cm (-C-0-) NRaANFDI
a 1 6 an d' o s a 6 2 6 6 o v Aa ' £
Aunansuendan Warnadiudysinaivendislalasauiefeanladvnldifany Wetu
mi‘uaﬂs‘fiﬁﬂ‘ﬁLfluﬂs:’gaumaﬂﬂﬂamlﬁﬂmsﬁ@Lmzvl,@i”dm PN NI lain130329
RNIWEINIMEAINVBIANTUaWN L rwnsTNTakazE1wNN5NTe dr8maia TEM a9
uwaaslugy 2 wudhansuzvasaymaad i lisanInusnanuwane19ld wanpanad

o o 6 2 6 6 §$ ' L o v Aa o a 6 1

mythiaasuaueglalawdasaanlodnu bilavilmfiansvinansanmwiivasasuauue

' A = A
atnala Sadunad

104
(B)
103
Ll
g |9 i
8o S g E =
102 83 a € &
" & 3 s

101 2 g :
g 5
@
=
E. v (A)
&
= b 2
# o0 g it " g

g &

98

97

%

95

4000 3500 3000 2500 2000 1500 1000 500

Wavenumbers (cm-1)

g1 1 usas IR sudaasuvasniveud lldUTudssnuiia (A) uastudysnuiia (8)



g1 2 ugaanweie TEM sasaniuaui lailddiudysnuiia (A) uazdiudysduia (8)

4.1.2 Han5IATERAIENARA XRD 2890213917381 Pt-Co-Cric N Pt-Co-
Felc

dadwanisljisoldgnihldanaiienzidnaiia XRD Wi meiinad
\AnTusnseaadg HANINARBILAAIAIIL 3 §11TL Pt-Co-Cr /C faspusedtlulasion

uaATIa e lmasuualylalas

180
160
140
PHCo-Cr Ot _MNa
120 ’\*
100 FHCo-Cr O Ma
a0
B0 PHCo-Cr_Ct_Mi

40
20 C |

intensity

Pt-Co-Cr O Mi

rt| Cr|=*
I:I T T T T T T T |I T T T T 1
Pt

10 15 20 25 30 35 40 45 &0 A5 RO BS 7O
2-theta

31 3 ua@3 XRD patterns 189 Pt-Co-Cr uu11893uA1sUan Ll C =ansuaunlilausudye

WA Ct =A1SuaunUIulaiuiy Mi = Microwave uaz Na = Na(BH,)



NMIUATIZR XRD patterns wudnminasasnduniiinvadlanslavaad
Tavzlandoy uas Iammﬁngﬂﬁ’aﬁaﬂﬁ'ﬂmaaLLwaﬁﬁuﬁ']W’mmmmuaﬂvl,éffjflﬁiammﬁﬂ
A . o . A . oA — a a & Ay oa . A & o
auaglumdiatonialal udlaSouifisufSunanasiunldfinwuinanToaud oy
A a ad A9 oa - ° o ) A A A A &
AnRdnunldRnunnInantasilveadninasiUsunmuadlanes NtmeunRIaIn U
annaniuaud ldldUTudgeRuiia swiuansdiating Pt-Co-Fe/C Mia3oulawitlulasian
HAN1IATIIAMRGIBINAla XRD anuaadluzyl 4

10

120 4

100 —

Ft-Zo-Fe_Ct

intensity

L=

Ft-Zo-Fe_ O

z0

2-theta

31 4 ugA3 XRD patterns 183778819 Pt-Co-Fe/C TasualapiTlulasian

4.1.3 HAN5IATZRAILINARA SEM 2896213917381 Pt-Co-Cric 11y Pt-Co-
Felc

ﬂﬂi@]‘s"aiﬁLﬂi’]:ﬁﬁ’]ULﬂﬂﬁﬂﬁ@EﬂfﬁdﬁﬂHm: PIABUNMALLLTIN UAZQNINTZANY
dvadaymalanzuudisasiuaivan Fyawuilfidusyanuuessuaasuanines
5Lﬁﬂmau‘fiuanmwmmﬂ@hwaaﬁmﬁﬁmaa:mamhaﬁ'uﬁwﬁﬁLmﬂ@m I@Um@;ﬁma
pzaauduaasaanududswiodia mumqﬁﬁmaamaugaLtamaaﬂmtﬂuﬁa’jfmﬁamn
%amﬂﬁamﬂsﬁumumaamamaamqlumiéﬁasm eIt ear LRl R L LA e il
anuaadlugl 5 §wineaetng Pt-Co-CriC maspudeatlulasnnusslmasvuelslalas
gmsunsanTuansasuilimunnstiaussan Suaufiinun e dusasgiduanain
31 SEM 2896nati13 Pt-Co-Fe masulagitlulasnnuazlmdsuuslslales smsy
A3uausaasu Lk unsiia uanmmfuﬂ'ﬂﬁﬁmsmaﬁLmﬁ:ﬁ’ﬁﬁmaam@m:ﬂ%mm
"uadm@lﬁﬂi’mglumiﬁ’mr;'l’m@T’Jilmﬂﬁﬂ EDS (energy dispersive spectroscopy) fidariu
NAB4 SEM NAN1INARBIUAAIIHAITI 2 WAZANTH 3 UAAINAMITIATIZRIGAIBINAila

SEM 1gUNUNAaMIILATITHRAEmNALA AAS



Bt-CoCr_Comi® ™ PPt:Co-Cr_C_Na

EMRScs CHMU 1S5kU *3, 080 Skm EMRSc, CMU

-

By R 4
Pt-Co-Cr_Ct_mi gyo'-cr_c:t_ﬂa

SiSkU xS, ebe

31] 5 L§AIAWENE SEM 189678819 Pt-Co-Cr/C uaz Pt-Co-Fe/C Lila C =anfuawilalle

s ﬁ/ a { et A’ a . .
Usutlgsuia Ct =m§uauﬁﬂiuﬂ§awum Mi = Microwave W&z Na = Na(BH,)

NanIInaaaInL lavizunaniny lavzlavuead lanclasiloy wazlanzinan at UM
5 6 a % t:i v v 1 d' v o 6 v ad
Jaasumsuan laovUsunamsesarnnuladasninNdasms wazmIsaaziensan b lasiaw
Q 1 aaAana 1 J a { 1 0.
2890213917381 Pt-Co-Cr liwulanzlavaad Gvonaieanlulasanlunisnasasindends
a " Y I U { a J g; I
(2.20 MHz) uazlunnmsnanssnumasandiauagdisdsanaduldldilansniieduniwiu
¢ A = A a P @ v & A ' @
Tavzoan b 1HoLUSouiuUUSINlaReAIWULHAITAITUNT 2 TRAWLIUSUI I Lans LN
iﬂd%ﬂﬁ1ﬁﬂ§uﬂ§dﬁ%ﬁiLLﬁ’Jﬁﬂ%Nﬂmlﬂﬂﬂ’h WaihaIcatd Wiz iaiuinaiia AAS
waNYSunwuradlans i I ugunUNaYad EDS Maada1319 3 WUIAIA e aanw
Indfssnuiiatdunisasiagauinwu lancuualrsesTuaTuan



@1319 2 ugasdSunalansinuluaaisd §isen P-Co-CriC uaz Pt-Co-Fe/C laginafia

EDS

Methods (%wt) C @] Pt Co Cr Fe
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4.1.6 HANIILATIZHALINATRA CV 28901391381 Pt-Co-Cr/C N Pt-Co-
Fe/C

asslPAsenundadmslnihdininefia cv "Lﬁwaé’agﬂﬁ 18 UAZA1T 5 Dawu
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assUisennasenzdt lanamalwihannniiassdjizen 20 % uwsfitulunmansdn
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uwazNidNgafadasadjiten PtCoO-Cr,0, FAMzAIBITNTIAdlanzduNa(BH,) L%
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drssTuan e lduiudsinuin udnKaNINaasIgINLIUG AT Reand
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Oxidation
Ep(mV) Ip(A)
492 1.102x10"*
481 9.970x10°
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481 1.285x10"
460 1.395x10"
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Tuaaufl 2 nsuseswanInasasazdsznavlushy wamInaseay  UV-Visible
spectroscopy NMR XRD TEM CV L8z XAS

421 HANIIILATIZRALINATKA UV-Visible spectroscopy

8136028819 tetraphenylporphyrin (TPP), Fe-tetraphenylporphyrin (FeTPP), and Co-
tetraphenylporphyrin (CoTPP) Qﬂ%Lmﬁ:ﬁﬁwmﬂﬁﬂ UV-Vis spectroscopy @9LLEad UV-Vis
absorption spectra of TPP, FeTPP, and CoTPP in dimethylsulfoxide (DMSO) lug‘ﬂ 19 lag
TPP udad Soret band i 416 nm UAz Q band 71 514 nm &% FeTPP uaad Soret band
392 nm uaz Q band 7 529 nm &§1W5U CoTPP wa@d Soret band Indifinariuas TPP ud
A9 7 416 nm waz Q band @ 540 nm [1] Msifiaduwes Fe 7 Co 14 metal-TPP
complexes JNafaN5IAOUTDY Q band spectrum 15 nm &W3U FeTPP uaz 36 nm &3l
CoTPP 13suiisuny TPP spectrum.

100 —

— e 3119 usey  UV-
- - -FeTPP
b | L CoTPP Visible spectrum a4
g TPP, FeTPP, uaz
£ CoTPP
F
<

20

T T 1
300 400 500 600 700
Wavelenght (nm.)

422 uan1ILATIERALINAKA Nuclear Magnetic Resonance Spectroscopy
817 tetraphenylporphyrin - Al ldgniezdasinaiia  NMR  spectroscopy Han13

aLﬂiﬁzﬁLLa@NﬁGEﬂ 20 LAz ILUANALRAIAINITIY 6

5120 umay 'H-NMR
spectra U

tetraphenylporphyrin




M13719 6 LRAINIILNITUUANEVDY 1H—NMR spectrum VaJ Tetraphenylporphyrin

O (ppm) (CDCI 3) Proton type
-2.90 s, 2H of Hy
7.75 d, 8H of H,
8.25 d, 8H of Hy
8.86 s, 12H of H,

AUNE89 'H-NMR Tas9s319989 tetraphenylporphyrin aailuasgy 21

51 21 uaaalasaai192a4 tetraphenylporphyrin figoAARBIRLANTI 1

WNRVB3 UV-Vis spectrum AU Nuclear Magnetic Resonance aﬁuméu‘[mdﬁﬁwao
tetraphenylporphyrin (TPP), Fe-tetraphenylporphyrin (FeTPP), itaz Co-tetraphenylporphyrin
(CoTPP) ‘YlLLﬁ(ﬂd(ﬂ(li‘L] 22

SRR

a)
gﬂ 22 uaadlasaainives a) tetraphenylporphyrin (TPP), b) Fe-tetraphenylporphyrin
(FeTPP), uaz c) Co-tetraphenylporphyrin (CoTPP)



423 HaN1IILATIZNALINATKA Powder X-ray Diffraction (XRD)
Powder X-ray Diffraction Wa3tasiinafiinduludaodnsfiadonle U 23 usasuuuMI
LﬁymLU%%'@%LSﬂﬁ%aaéﬁLs’aﬂﬁﬁ%m FeTPP #ilirumItn (FeTPP/C and FeTPPAVuI)
gaansaInulasIai1suad Fe,0, (104) uaz (110) 71 20 = 33.28° waz 35.74°, mud1ey aw
JCPDS mangiay 02-0915 fanatfinsnanduaaumsining agnslsfiany FeTPP firiuwms
wafu (FeTPP/C 400, FeTPP/C 600, FeTPP/C 800, FeTPP/Vul 400, FeTPP/Vul 600, and
FeTPP/Vul 800) u§esfinuas Fe,0, o1aifailuaniumannsinfisendiananainms

UwdaurTarinanaanannian linue &% CoTPP Vl,;kig}ﬂmeLﬁaamﬂ"l,;iwuﬁﬂmaﬂﬂuaaﬁ

500
400 4 FeTPP/Vul 800
A A
| FeTPP/Vul 600
A A A A
300 FeTPP/Vul 400
| FeTPP/Vul
WVMWWW
200 - FeTPP/C 800
A a

FeTPP/C 600
A A

Intensity

100 FeTPP/C 400

FeTPP/C

0 T T T T
10 20

T T T
D30 ZtFth 50 60 70
egree eta

gree ( ) B Fe,0,
A Fe,0,

31/ 23 ugq4 X-ray diffraction patterns wa3A18t14 FeTPP catalysts NINEIBANTLLAZ balLEN

424 HANTIATIZNALINARA Transmission Electron Microscopy (TEM)

dunljitegnianidiainaiie TEM Lﬁaggﬂiflﬁﬂwm: YU NIINTLAYGD
V830U uszlasainasmIianaedle nw TEM 289 FeTPP/C uuasuanu N115 7
W7 600 °C (FeTPP/C 600) u&ad FesN fiiududae SAD pattern (3U 24 a-b) ug pattern
yasnanaan ke liUsing iasnninafiafidumsiiansfuduaumrinys dm TEM
299 FeTPP UnAN3Ua% Vulcan XC-72 Aitunfl 600 °C (FeTPP/Vul 600) Uaa9 Fe,0, L&
3U 24c ffiuuaay SAD pattern (31l 24d) uaz XRD patterns (31 23)

31 25a UEAINIW TEM 284 CoTPP uuaniuan N115 kN 750°C (CoTPPIC 750)
W&z CoTPP UNANSUaw Vulcan XC-72 At 350°C (CoTPP/Vul 350) wsade931 25¢ 31
25b uEA9 SAD pattern 189 CoTPP uuaniuaw N115 finfi 750°C (CoTPP/C 750) uae
Wawa9 Co,0, Uae SAD pattern 289 CoTPP UnAN3U8™ Vulcan XC-72 findl 350°C
(CoTPP/Vul 350) ﬁmamlugﬂ 25d LRAIATLBWNRLAZ CosC



' 100 nm.
a)

31 24 UFAINIWTEM 589 a) FeTPP Unansuaw N115 7wl 600°C, b) SAD w89 FeTPP
U N115 fiwndi 600°C, c) FeTPP unA1suaw Vulcan XC-72 fitwnfi 600°C, and d) SAD

a9 FeTPP UnAN3Ua Vulcan XC-72 Mt 600°C



coo2

Co,C (20 1)

50 nm.

31 25 ugAINMWENY TEM 289 CoTPP U a) A1SUawu N115 uaz b) A13Uan Vulcan XC-72
kT 750°C uaz SAD wo9 FeTPP U c) m1suaw N115 uas d) e§uan Vulcan XC-72
W7 350°C

NANTINAAAIINNINAKA XRD Waz SAD patterns 3nntnaia TEM mmma@ﬂ"[eﬁ”é’q
A9 7



A1319 7 uFINAFTUVRIINALA XRD Uaz SAD anninaiia TEM saddlislfizeniiasoy

ot

Heat
Carbon treatment XRD SAD
Catalysts Abbrev.
supporter temperature results patterns
(c)
- FeTPP/C Fe,0, -
400 FeTPP/C 400 Fes;0, -
N115
600 FeTPP/C 600 Fe;O, Fe;sN
800 FeTPP/C 800 Fe;O, -
FeTPP
- FeTPP/N\ul F6203 -
400 FeTPP/Vul 400 | Fe;0, -
Vulcan XC-72
600 FeTPP/Vul 600 | Fe;0, Fe;O,
800 FeTPP/Vul 800 | Fe;0, -
- FeTPP/C - -
350 CoTPP/C 350 - -
N115
550 CoTPP/C 550 - -
750 CoTPP/C 750 - Co50,
CoTPP
- CoTPP/C - -
350 CoTPP/Vul 350 | - CosC
Vulcan XC-72
550 CoTPP/Vul 550 | - -
750 CoTPP/NVul 750 | - -

4.2.5 namsaszins i aizasaansedjizen

Cyclic voltammetry (CV) ﬁaLﬂﬂﬁﬂﬁgﬂl"ﬁlﬁagﬂsz%w%mwmaqﬁaLi‘dﬂﬁﬁ%m AT
Uﬁﬁ%mnﬂﬁagﬂmaauﬁasamauamﬁu Tagdi anodic potential (Epa) W&z anodic current
(Ipa) aa@ﬂﬁadﬁuﬁﬂﬂWWWLLazﬂiZLLaﬁ reducing species gﬂaan%vlwﬂu oxidation reaction
152nauny cathodic potential (Epc) Waz cathodic current (Ipc) #aAARBINLANE LWHLAZ
nzuE reducing species Qﬂ%a’sﬁﬂu reduction reaction ﬂi:%ﬂ%ﬂﬂwmadﬁuLidﬂﬁﬁ%ﬂ’]gﬂ
Wisueulasnsle cathodic current (Ipc) 144 reduction reaction “Um:ﬁ oxidation reaction u

1% anodic current é’aua@ﬂugﬂ 26



Ipc

0,6 (Cathodic current)
0,4

0,2

I (mA)

0,04

0,2

_014_.
Ipa
(Anodic current)

1
1 1

1
-0,6 )
1

08 : : : :
-400 0 Epcioo Epa oo 1200
(Cathodic potential) (mv)(A"°d'° potential)

gﬂ 26 LL8eJ Cyclic voltammogram Auaad Ipc, Ipa, Epc, Wae Epa

AURNIZAINARALTEY cyclic voltammetry species AiananIngniddninaandlad

14 oxidation-reduction reaction u&adlaaddl [2];

Oy(g) + 4H +4e —> 2H,0 E°=+1.23V 1
0,(g) + 2H + 26— H,0,(aq) E® = +0.70 V 2
SO,” (aq) + 4H" + 26" —> 2H,0(l) + SO,(aq) E°=+0.17 V 3
HSO, (ag) + 3H +2e —> 2H,0(l) + SO,(aq) E° = +0.16 V 4
2H'(aq) + 26— Hy(g) E° = +0.00 V 5

Ujfseunafiuszdnd Wi ianduanasgu (E°) gnimnedifinuny Epa uaz Epc 7
[ A . o aaa ' o A aaa A & (%
laanmafia cyclic voltammogram wa4aat391fiseudazartivausasl fAsenmdnlyle Tu
. ' aa { & { . A & A
cyclic voltammogram LL@]‘}Jgﬂimﬁwa’]im’ﬂuﬁﬁﬁa oxygen reduction ANaTWN 200-400mV
@11 Ag/AgCl 3M KCl

426  HANTENULHBIINNITLHT
aussljisemnaigninluusssimeauizaninaunamngilieng g \WWadn®

NANITNULRBIIINMIENGRFNTANIINIEM WA Iz RNTAINUBIALIIU [ ReN

O ANs9jnse1 FeTPP/C
auUnNANIKNE 9 pnuaaslugl 27a
St

Cyclic voltammogram 183 FeTPP/C N115 f
nigu AnvesljisenIanduiianain

LEAIANAULANGNIVDY cathodic potential Lﬁaqnm



Epc éinlunen Epe §9 laanauwnfigaennil 400°C, 600°C, and 800°C uaaafinfl 186, 335,

484, and 398 mV AUAIAU NIV IALAANITNa1879289 TPP wazinaa Ny-Fe U19gIwd
1 A aa . v aaa a &/ 1 a

mmimaﬂgmm oxygen reduction 6 ﬂgﬂiﬂ’]“ﬂﬂd FeTPP laz Ns-Fe LNAYBHNIBNITLNG

adsorption LLa¢ reduction AILFAIlUINAT [3];

O+ o-
Adsorption:  TPP(N,)-Fe' + O, — TPP(N,)-Fe_ -0, 6
6+ 6- + +
TPP(N,)-Fe -0, + H — (TPP(N,)-Fe"-O,H) 7
Reduction: (TPP(N4)-Fe”|—02H)+ +H +2¢ — TPP(N4)—Fe" + H,0, 8

AnUfitensandiaturad FeTPP/C Ngniinsinndnde Ugad anodic potential
(Epa) Minlauny uazfaljissndounausaininda H,0, U738 oxidation-reduction gn

URAIGIRNNIT [3];

Reduction: (TPP(N4)-Fe”|-OZH)+ +H +2¢ — TPP(N4)-Fe" + H,0, 9
Oxidation:  TPP(N,)}-Fe' + H,0, — TPP(N,)-Fe'-O, + 2H + 2¢ 10

Huidanain FeTPP/C fmnfi 400°C uaas3anTuwingasdumis da 335 mv
against SHE 7iflén Ipc = 6.29 x 10 A uazf 628 mv fifie Ipc = 1.93 x 10° A UjATen7
Juldldde

1) (TPP(N,)-Fe"-O,H) + H' + 26" — TPP(N,)-Fe' + H,0, 113]
2)  Oy(g)+2H +2e — H,0,(aq) 1212

ﬂszaﬂ%mwgaqmluﬁ’;amm@u FeTPP/C @a FeTPP/C 600°C Lilosanmstindn
2899y FesN auiduiudInn W TEM uaz SAD pattern 6’%\1Lﬂmmaaﬁ’]ﬁuﬁéﬁ%%‘uﬂﬁﬁ%m
DONTLAUIANTY 891U [4-6] mmmﬁqmﬂgﬁﬁmmmu Yil#iAa metal-macrocyclic f
fi nitrogen containing complexes ld uadLNLAK 800°C UszEnTawvasaalisljisenas
aaadLasdanuEdsTIInin

a o

Cyclic voltammograms 2183 FeTPP/C Vulcan XC-72 Lm"?'llqm%ﬁmnd“] LLamﬁ\‘lEﬂ
27 amenuanssfiselungy FeTPP/C UfjfiSen oxidation-reduction snansnafunslu
auM13 6-10 AfiUFASEN adsorption reduction Wwaz oxidation euEGY FAFIUFATLALA
UszAmBnmangafie FeTPPVUI 600°C.

fussUAsnilvssaminmangadmiunga FeTPP/C and FeTPP/VUl fanistin

71 600°C uaasfisgmunnifNnaNzaNDaIILIIUfATEN
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1 () V8 Ag/AGOI MK V() VS AglAgCI 3 KCH
a) b)

31l 27 ugA9 Cyclic voltammograms a3 a) FeTPP/C N115 filundl 400, 600, uaz 800 °C

W&z b) FeTPP/C Vulcan XC-72 LNt 400, 600, and 800 °C

O ANIIUHATY1 CoTPP
Cyclic voltammogram w83 CoTPP/C ﬁLmﬁqm%Qﬁmd G]LLamﬁagﬂ 28a ‘ﬁLLa@N anodic LlLag
cathodic potential hilaufn uaesnufinTzus ﬁwaaﬂgﬁ’%mﬁé’n%’mﬁﬂﬁuﬁ 364-497 mV
against SHE W@a@n cathodic current WANENY Lﬁaaﬁnﬂmnmﬁqmﬁﬁﬁﬁ'mﬂ@m Wz
Anvasuljismneendiaduunylidnnguieiningi 636-686 mv against SHE & anodic
current fighun nalnmaialu voltammogram fa1lfji3e1 adsorption W&z reduction e

A Aa . . A Aaaa o o Aaaa A a & & v &
‘Yl‘ﬂg']ﬂim oxidation ﬂaﬂﬂﬂsﬂ’]ﬂauﬂau ﬂgﬂiﬁn'ﬂa’]?ﬂLﬂ(ﬂmuﬂ\'j%N(ﬂLLaﬂﬂvL@@\ﬁu [71;

Adsorption:  TPP(N,)-Co' + O, — TPP(N,)-Co-O, 13
Reduction:  TPP(N,)-Co'-O, + 2H" + 26 — TPP(N,)-Co’ + H,0, 3.16
Oxidation:  TPP(N,)}-Co' + H,0, — TPP(N,)-Co'-O, + 2H" + 2¢" 14

nszualuinuad anodic waz cathodic Lmﬂ@haﬁ’uﬁuﬁuqmwgﬁmnm amMANALHN
gaq@ﬁﬂﬁﬁﬁnﬁﬁmmag&q@ﬁasl lungues CoTPP/C Fafifa CoTPP/C 750°C awiiiilu
LI [4-6] UIzRNTNIN0IAL3IUL N8 1%IU metal-macrocyclic h nitrogen containing
complexes &§1IU CoTPP/C qmﬂﬂﬁ‘ﬁlmmmwaa 750°C

Cyclic voltammograms 284 CoTPP/C Vulcan XC-72 ﬁqmﬂgﬁ@hdﬂ Ll,amﬁdgﬂ 28b
fusasumiliufiuandrs 289 anodic-cathodic potential WANIZUF IINNGNUBI CoTPP/C
CoTPP /C Vulcan XC-72 #laidhumsiwn (CoTPPAVuI) lﬁﬂizﬁﬂ%mwaﬁq@ Fagu130
a%maJ"I,@TﬁnnmiLmﬁqamgﬁgdmaﬁﬁmﬂ‘[maa%’ﬁwadm%uau uwazluvhaneny N,-Co fi
Wuidnmidud  dlddszininmwaesaassljitonsess qmmﬁﬁmm:auéw%’ums
nznudfiauas N,oCo @aft 350°C & WU CoTPP/C Vulcan XC-72 asndlsfenumis
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a) b)

Eﬂ 28 L83 Cyclic voltammograms 184 a) CoTPP/C N115 ﬁLNTﬁIqm%ﬂM 350, 550, and

U

o

750 °C uaz b) CoTPP/C Vulcan XC-72 fienflgoang)i 350, 550 ,uaz 750 °C

427 wansgmniiasnndsassu
é’qiaﬁuaﬁuauﬁawa@iaﬁaLiaﬂﬁﬁ%mmmﬁmﬁ'uﬁ'uqmﬂqﬁﬁlﬂumnm M3k

i awevasgwgs fuiifn  wazlanomiawdmasnuasmivew  fwrathsannda

UszAnnwuasdasafATen ansuan N115 findalutszinelng uaz ansuan vulcan XC-

72 MuidudresiuminsdinaaludimaglugnianfansanTouioy

O @nsvufn3a1 FeTPP/C

Gf’hLiaﬂﬁﬁ%mmﬁﬂizaﬂ%mwgdgﬂﬁﬁﬁ%’ﬂ FeTPP/C N115 uag Vulcan XC-72 gn
NN NTNAVBIAITBISUANTUEU Cyclic voltammograms maaﬁutiaﬂg’jﬁ%mﬁa@j URAINI
31 29 AusadszinEniniigies FeTPP/C 600°C ¥nndn FeTPPNVUI 600°C Saugasin
qmﬁgﬁﬁLmﬁNa@iaiﬂiam"}waaﬁaiaﬁu Sosanalwnsiinduues N-Fe lua13uan Vulcan
ftauninluansuan N115 ﬂsﬂﬂgmmﬁaﬁfuagui@mm%’%’maa Antonucci et al. [8] fisng
Ny qmvﬁgﬁmnmgaﬁﬂﬁlﬁmﬁmmaa oxygenated species UWANTUBUITBITUYIN A
AufwoInsUonans LwiwamaaqmﬁgﬁﬁmmLmnehaﬁ'w,ﬁa%ﬁmaam%uaul,mﬂ@m oK

a =< oA A o o ¢
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Abstract

Complex of cobalt and tetraphenylprophyrin (TPP) supported on two types of
carbon was prepared in this research for use as cathode catalyst in PEM fuel cell. Co-
complex was synthesized by refluxing cobalt solution with TPP in nitrogen gas
atmosphere, followed by precipitation process by hydrochloric solution. Co-complex
supporting on carbon black N115 and carbon vulcanXC-72R was performed by
refluxing complex solution with carbon in nitrogen gas atmosphere. The received
product was heat treated in argon gas atmosphere at various temperatures. Co-complex
on carbon N115 heated at 750°C and Co-complex on carbon Vulcan XC-72R heated at

350°C shown highest catalytic activities among the prepared catalysts.
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1. Introduction

Nowadays, because of the innovation of many types of vehicles, the greater of
the development the higher energy consumption. Therefore, there are many researches
have been developed and found out how to solve the energy shortage problem.
Renewable energy technologies range from solar power, wind power, hydroelectricity,
energy from biomass and biofuels, and alternative energy. Alternative energy including
many high development technologies that provide the high efficiency with low
consumption of fuel sources is introduced to solve this problem. Alternative energy
refers to energy sources which are not based on the burning of fossil fuels or the
splitting of atoms. The interest in this field of study comes from the undesirable effects
of pollution both from burning fossil fuels and from nuclear waste. Fortunately there are
many kinds of energy which have less damaging impacts on our environment for
example solar cells, wind turbine, geothermal heat, hydroelectricity, and the attractive
one is the energy from the electrochemical reaction, fuel cell. Since the efficiency of the
cell depends on many aspects. The catalysts at both electrodes play an important role to
activate the hydrogen oxidation at anode and oxygen reduction at cathode.  The
precious metal such as platinum is preferred to use as catalyst on both electrodes [1]. By
supporting nanoparticle of Pt on the high surface area carbon supporter contributed to
the high surface area of catalysts and reducing Pt metal used. However, at cathode will
need 10 times more amount of catalysts to activate the oxygen reduction reaction than
anode [2]. Therefore, Pt alloy and non-precious metal based catalyst was introduced to
fix this problem [3-6]. A series of metalloporphyrin complexes have been investigated
for a non-precious metal based catalysts for an oxygen reduction reaction at cathode [7-

11]. Metalloporphyrin complexes exhibited comparable activity and also higher
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tolerance to contamination in comparison with Pt-based electrocatalysts. The
metalloporphyrin based catalysts can only reduce oxygen to water via two electron
oxygen reduction pathway and also produce hydrogen peroxide that its resulting
hydrogen peroxide could poison the catalysts and caused the degradation in catalysts
activity and reduction in the lifetime of cathode. In these processes, heat treatment was a

way to improve four electron catalysts activity and catalyst stability [12-15].

This research was aimed to prepare metalloporphyrin based catalysts by Co
metal coordinated with porphyrin ligand and supported on two carbon supporter: carbon
black N115 and carbon Vulcan XC-72R. Heat treatment at various temperatures under
Ar gas atmosphere was applied. The catalysts sample was physically characterized by

TEM and XAS techniques and chemically tested by CV analysis.

2. Experiment

o  Synthesis of tetraphenylporphyrin [16]
To obtain tetraphenylporphyrin (TPP), freshly distilled pyrrole (assay 97.0%,
Fluka ) 1.61 g was mixed with benzaldehyde (assay 98%, Aldrich) 2.55 g and dissolved
in 100 ml propionic acid (assay 99%, Fluka). Then, the solution was stirred
mechanically in 250 ml round bottle flask and refluxed in nitrogen atmosphere for 18
hours. After that, the solution was filtered and washed with methanol (assay 100.0%,
J.T. Baker) and water until the purple product was obtained. Finally, TPP was kept

dried in the dessicator.

o Preparation of Co-tetraphenylporphyrin
Co-Tetraphenylporphyrin (CoTPP) was prepared by dissolving 0.2 mmol of

tetraphenylporphyrin in 15 ml of dimethylformamide (DMF, assay 99.8%, Carlo Erba)
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and added 2 mmol of CoCl, (assay 98-102%, AJAX). Then it was stirred until the
solution was homogeneous. After that, it was refluxed in nitrogen atmosphere for 3
hours. Then the solution was left to cool down to room temperature. The product was
precipitated out by adding 15 ml of 0.1 M HCI (assay 98%, Lab Scan). Then, it was
centrifuged and washed with 0.1 M HCI. The CoTPP product was deep blue color. The

product was kept dried in dessicator.

o Preparation of 2% Co-tetraphenylporphyrin supported on carbon
supporter.

2% Co-tetraphenylporphyrin supported on carbon (CoTPP/C) was obtained by
dissolved 0.1 g CoTPP in 60 ml DMF. Then carbon 0.4 g (carbon N115, (Thai carbon
black public CO., LTD.) or carbon Vulcan XC-72R, Japan) was added in the solution
and stirred mechanically. The mixture was refluxed in nitrogen atmosphere for 18 hours
then the mixture was left to cool down to room temperature. The product was recovered
by centrifuged and washed with methanol then the product was kept drying in
dessicator. Finally, it was heat treated at 350, 550, and 750 °C in argon gas atmosphere.
The final catalysts for CoTPP supported on carbon were; CoTPP supported on carbon
N115 without heat treatment (CoTPP/C), CoTPP supported on carbon N115 with heat
treatment at 350°C (CoTPP/C 350), CoTPP supported on carbon N115 with heat
treatment at 550°C (CoTPP/C 550), CoTPP supported on carbon N115 with heat
treatment at 750°C (CoTPP/C 750), CoTPP supported on carbon Vulcan XC-72 without
heat treatment (CoTPP/Vul), CoTPP supported on carbon Vulcan XC-72 with heat
treatment at 350°C (CoTPP/Vul 350), CoTPP supported on carbon Vulcan XC-72 with
heat treatment at 550°C (CoTPP/Vul 550), and CoTPP supported on carbon Vulcan XC-

72 with heat treatment at 750°C (CoTPP/Vul 750). Tetraphenylporphyrin (TPP) was
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characterized by UV-Vis spectroscopy (Lambeta 25) to identify the conjugate double
bond of the compound. 'H Nuclear Magnetic Resonance spectroscopy (‘H NMR,
Bruker DRX400 and 500 MHz) was used to identify the structure of TPP.  Co-
tetraphenylporphyrin (CoTPP) was characterized by UV-Vis spectroscopy by
determining the maximum wavelength. The dispersion of particles on carbon supporter
and their sizes were checked using Transmission Electron Microscope (TEM, JEOL
JEM-2010). The local structure of CoTPP/C catalysts was examined by X-ray
Absorption Spectroscope (XAS, beamline, BL-8, at the Synchrotron Light Research
Institute). All of the prepared catalysts were electrochemically characterized by cyclic
voltammetry technique (BAS CV-50W Voltammetic analyzer) which performed in
single cell with three different electrodes. A 5 mm dimension glassy carbon disk
electrode was used as the working electrode. Pt wire was used as the counter electrode.
A standard Ag/AgCl 3M KCl electrode was used as reference electrode. The prepared
catalyst was applied to the surface of glassy carbon disk electrode in form of a constant
drop of ink. The ink was prepared by mixing 10 mg of catalyst with 100 mg of Nafion
solution and 0.5 ml of deionized water. Then, the mixture was ultrasonically blended for
15 minutes to obtain ink catalyst. Fifty microlitres of ink catalysts was dropped on the
surface of glassy carbon disk electrode by micropipette and then dried in oven at 60 "C
for 30 minutes. The 1 M H,SO, purged with O, was used as electrolyte and the cyclic
voltammogram was recorded by scanning the potential from 1.20 V to -0.20 V versus

Ag/AgCl at a scan rate of 50 mV s™'. The tenth cycle of each catalyst was recorded.
3. Results and discussion

The synthesized tetraphenylporphyrin (TPP) and Co-tetraphenylporphyrin

(CoTPP) were characterized by UV-Vis spectroscopy. UV-Vis absorption spectra of
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TPP and CoTPP in dimethylsulfoxide (DMSO) are shown in Figure 1. The synthesized
TPP displayed an intense Soret band at 416 nm and a Q band at 514 nm. The absorption
spectra of prepared CoTPP presented a similar Soret band to TPP but broader at 416 nm
and a Q band at 540 nm.[16] The presence of Co in metal-TPP complexes affected the
shifts in Q band spectrum 36 nm for CoTPP according to TPP spectrum. The
synthesized tetraphenylporphyrin were structurally identified by NMR spectroscopy
technique. The spectrum is shown in Figure 2 and the interpretation is in Table 1.
According to "H-NMR results, the structure of prepared tetraphenylporphyrin should be
the identified as shown in Figure 3. UV-Vis spectrum and Nuclear Magnetic Resonance
results confirmed that the synthesized product was Co-tetraphenylporphyrin (CoTPP)
which was presented in structural formula according to Figure 4. However, there was no
evidence of any catalyst particle supported on carbon from sample CoTPP supported on
carbon N115 with heat treatment at 750°C (CoTPP/C 750) as shown in Figure 5a and
CoTPP supported on carbon Vulcan XC-72 with heat treatment at 350°C (CoTPP/Vul
350) as shown in Figure 5b. However, SAD pattern of CoTPP supported on carbon
N115 with heat treatment at 750°C (CoTPP/C 750) as shown in Figure 5¢ indicated the
pattern of Co304 structure and SAD pattern of CoTPP supported on carbon Vulcan XC-
72 with heat treatment at 350°C (CoTPP/Vul 350) as shown in Figure 5d indicated the

pattern of carbon graphite and the presence of CosC in catalysts

The XAS analysis was performed to confirm the local structure of the catalysts
product. It was indicated in the spectrum in Figure 6 that CoTPP/C was well agreement
with the Co304 standard spectrum. Therefore, oxidation state of Co in the sample was

+2.67 in the form of Co304 phase.
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Cyclic voltammogram of CoTPP/C with various heat treatment temperatures as
shown in Figure 7a presented the similar in anodic and cathodic potential but difference
in current. The reduction reaction peak was around 364-497 mV against SHE with
difference in cathodic current due to the heat treatment temperature and there was
almost absence of oxidation reaction peak but presented around 636-686 mV against
SHE with very low anodic current. The reduction mechanism took place in
voltammogram was adsorption and reduction reaction while oxidation reaction was
reverse reaction of reduction reaction. All of the relevant reactions were shown in the

following equations [17];

Adsorption:  TPP(N,)-Co" + O; — TPP(N,)-Co-O,

Reduction: TPP(N4)-Co"-0, + 2H" + 2¢” — TPP(N,)-Co" + H,0,
Oxidation: TPP(N,)-Co" + H,0; — TPP(N4)-Co"-0, + 2H" + 2¢”

The current in anodic and cathodic peaks were varied depended on the heat
treatment temperature. The higher heat treatment temperature, the greater peak current
and the highest electrochemical activity of CoTPP/C series was CoTPP/C with heat
treatment at 750°C. According to many researchers [18-19] that reported the
improvement of electrochemical activity of metal-macrocyclic with nitrogen containing
complexes based catalysts. In this case, for CoTPP/C the appropriate heat treatment

temperature could be 750°C as presented in cyclic voltammograms.

Cyclic voltammograms of CoTPP supported on carbon Vulcan XC-72 with
different heat treatment temperature as shown in Figure 7b displayed the different

tendency of anodic-cathodic potential and current to those were in CoTPP/C series. The
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almost inverse in tendency of results in cyclic voltammograms excepted CoTPP
supported on carbon Vulcan XC-72 without heat treatment (CoTPP/Vul) was that the
higher in heat treatment temperature; the lower of peak current. This tendency could be
explained with an assumption that heat treatment at high temperature might affect to the
formation of carbon Vulcan XC-72 supporter. The change in structural formation of
carbon supporter affected to the dispersion of N4-Co active sites that caused the lower in
electrochemical activity. The optimum temperature that provided the high surface area
carbon supporter and well dispersion of N4-Co active sites was the heat treatment at
350°C for CoTPP supported on carbon Vulcan XC-72. However, the structural change
of carbon N115 and carbon XC-72 after heat treatment has never been studied yet.
Therefore, this assumption has to be clarified further. According to the effect of heat
treatment to the change in structural formation of different types of carbon supporter,
the highest activity of CoTPP based catalysts was not the same heat treatment
temperature. In this case, the compared results of electrochemical activity were
separated into two cases. First, the CoTPP based catalysts at the same heat treatment
temperature was investigated. Cyclic voltammograms of CoTPP supported on carbon
N115 and Vulcan XC-72 with heat treatment at 750°C as shown in Figure 8a presented
the significant different peak current that CoTPP/C 750 was higher than CoTPP/Vul
750°C. This was because of the effect of heat treatment to the change in structural
formation of carbon supporter as discussed above. Second, the highest activity of each
catalysts were compared as shown in Figure 8b which presented the cyclic
voltammograms of CoTPP/C 750 and CoTPP/Vul 350 and the higher activity was

CoTPP/C 750.

4. Conclusions
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The results could be summarized that the electrochemical activity of prepared
catalysts was depending on heat treatment temperature, type of carbon supporters, and
type of catalysts. The suitable heat treatment temperature that for CoTPP based catalysts
was 750°C. However, suitable heat treatment temperature for CoTPP supported on
carbon Vulcan XC-72 was 350°C because higher heat treatment temperature might
change the structure of carbon Vulcan XC-72 which could reduce the area for
deposition of CoTPP particles. Difference in carbon supporter and type of catalysts also
affected the activity of catalysts; metal-TPP based catalysts had more activity in oxygen

reduction than metal oxide based catalyst.
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Caption of Figures
Fig. 1 UV-Visible spectrum of TPP, FeTPP, and CoTPP
Fig. 2 'H-NMR spectra of tetraphenylporphyrin
Fig 3 The structure of tetraphenylporphyrin which corresponds to Table 1
Fig 4 Structural formula of Co-tetraphenylporphyrin (CoTPP)

Fig 5 TEM images of CoTPP supported on a) carbon N115 and b) carbon Vulcan
XC-72 with heat treatment at 750°C and SAD of CoTPP supported on c¢)

carbon N115 and d) carbon Vulcan XC-72 with heat treatment at 350°C

Fig 6 XAS spectrum of CoTPP supported on carbon N115 with heat treatment

temperature at 750 °C
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Fig 7 Cyclic voltammograms of a) CoTPP supported on carbon N115 with heat
treatment temperature at 350, 550, and 750 °C and b) CoTPP supported on

carbon Vulcan XC-72 with heat treatment temperature at 350, 550, and 750 °C

Fig 8 Cyclic voltammogram of a) compared CoTPP supported on carbon N115 and
Vulcan XC-72 with heat treatment at 750°C and b) compared CoTPP
supported on carbon N115 with heat treatment at 750°C and Vulcan XC-72

with heat treatment at 350°C

Table 3.1 Chemical shifts and proton types obtained from 'H-NMR spectrum of

Tetraphenylporphyrin
8 (ppm) (CDCl 3) Proton type
-2.90 s, 2H of Hy
7.75 d, 8H of H,
8.25 d, 8H of Hy,
8.86 s, 12H of H,
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Abstract

This work was the preparation of Pt-Co-Cr on both chemically treated carbon Vulcan
Xc-72R and untreated carbon, by applying microwave radiation in ethylene glycol
media. The EDS analysis shown 4.9% of Pt, 1.2% of Cr, and 0% of Co in sample
prepared by untreated carbon. For sample prepared from treated carbon, 5.6% Pt and
2.2%Cr without Co were detected. Chromium was appeared as Cr;O4in both samples
confirmed by XAS spectrum. The TEM results indicated the measured particles size
with an average of 2.22+0.41nm and average of 1.93+0.34nm for untreated carbon and
treated carbon samples, respectively. Catalytic activity of treated carbon catalyst was
higher than untreated carbon catalyst and standard platinum catalyst confirmed by CV

spectrum.

Keywords: PEMFC, catalyst; microwave; platinum; cobalt; chromium
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1. Introduction

Renewable energies have come into our attention since the awareness of the future
petroleum shortage and more importantly, a global warming situation. Polymer
exchange membrane fuel cells (PEMFC) are technology developed as a source of
continuous clean energy to replace the usage of fossil oil and to safe the world from
toxic gases. The power is endlessly generated as long as hydrogen and oxygen gases are
supplied in to the electrochemical cell. Among the important components of fuel cell,
catalyst is one of the key factors determining the cell performance. It has long been
known that platinum metal is the most effective catalyst for PEMFC with its low
chemical adsorption energy for hydrogen and oxygen dissociation [1-5]. However,
platinum metal is expensive and over potential was observed in the cell because of
braking double bond of oxygen gas is more difficult than braking single bond of
hydrogen gas. Moreover, the oxygen reduction reaction (ORR) was reported to be two
electrons mechanism, which produce hydrogen peroxide as an intermediate [6].
Highly oxidizing power reagent, hydrogen peroxide, can damage electrode and finally
causing cell failure. A coordination compound between Fe and N-chelating ligands was
reported to catalyze the ORR four electrons path way [7-8]. Especially, the complex
composing of Fe and propyrin macrocyclic molecule is effectively for oxygen
dissociation reaction, function similarly to the hemoglobin structure in human body. A
group shown the key point was Fe need to bond with N, any molecule with N donor
atom. However, the challenging is that the Fe-N should stay after heat treatment for the
active catalysts. One approach to overcome the ORR was replacing some Pt with other
metals such as Cu, Ni, Co, Cr, and Pd, by alloying with Pt as binary and ternary

compounds with different ratio of metals. Platinum alloys are 1.5-2 times more active



Manuscript No:

than Pt in term of current per mass of Pt [9]. It was reported that the ORR was improved
with Pt-Co-Cr [10] and Pt-V-Fe [11] compounds. Moreover, the usage of Pt is decrease
which, favor the low cost catalyst. Pure Pt catalysts were observed to loss in active area
with time due to Pt particles agglomeration. However, the most important of using Pt
alloys was that four electrons ORR path way was obtained by these types of catalyst

[12]. Therefore, Ternary compound, Pt-M-M is attractive for cathode reaction.

The preparation of Pt ternary compounds can be done by several methods.
Ultrasonic assisted in aqueous and organic media were commonly used, followed by
heat treatment in H, and N, atmosphere [13]. Small particles with high performance
catalyst were obtained from this method. Reducing by formic acid was as well used [14].
In this research, microwave radiation was applied as a homogeneous heating source to
initiate the reduction reaction to occur in ethylene glycol solvent. Ternary compound,

Pt-Co-Cr supported on carbon Vulcan XC-72R was prepared.

2. Experiment

A 20% by weight of Pt-Co-Cr, with 2:1:1 mole ratio, supports on carbon was
synthesized by firstly cleaning carbon Vulcan XC-72R with 2M H,SO4 (J.T. Baker
96.3%) at 60°C for 2 hours follows by cleaning with 2M KOH (BDH 85.0%) at 60°C
for 2 hours. After washing out the alkaline solution, cleaned carbon was treated in 8N
H>0, (NCG 50%) for 48 hours at room temperature. Then it was filtered, washed with
deionized water, and dried in an oven. Secondly, treated carbon was add into ethylene
glycol and pH was adjusted to be 9 by sodium hydroxide (Na(BHs) MERCK 96%).
Then, it was sonicated for 15 minutes. After that, stoichiometric amount of

H,PtCl.xH,O  (Sigma, purum 38%), Co(NO;);.6H,O (AJAX 98%), and
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Cr(NO3)3;.9H,0 (MERCK 98%) were added. Finally, the mixture was put in microwave
oven (2.45Hz, sharp R-26PS) at 800W for 1 minute, stop 3 minutes, for 3 times. The
received powder then was filtered and dried in oven for overnight. The prepared catalyst
was further physically characterized by X-ray diffraction (XRD, Siemen Dsoo/Dso1, Cu
Ko usey Ni filter, 26 = 10-80°, step:0.02°, step time: 1s) , Scanning Electron
Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) (JEOL JSM-
5910LV), and Transmission Electron Microscopy (TEM) (JEOL JEM-2010) techniques.
Electrochemically analyzed by XAS (beamline, BL-8, at the Synchrotron Light
Research Institute) and AAS (AA-680PR-5 Shimadzu) were carried out afterward.
Chemically tested by cyclic voltammetry technique (BAS CV-50W Voltammetic
analyzer) was performed the last step. In comparison, the same procedure for catalyst

preparation was applied on the untreated carbon Vulcan XC-72R.

3. Results and discussion

Powder XRD patterns of the Pt-Co-Cr supported on both treated and untreated carbon
were shown in Figure 1. Platinum metal phase according to JCPDS file no. 4-802 was
observed in both patterns along with peaks of carbon. Cobalt and Chromium however
were not clearly observed as it may appear under the broad peak of platinum. The
broadening peak is the indication of small Pt particles size effect. There were no
obvious differences between catalysts prepared from treated and untreated carbon
observed by XRD analysis. However, it was found that peak area, which corresponds to
amount of metals, of treated carbon catalyst was larger than those from untreated carbon.
To confirm the existence of Co and Cr metals, SEM-EDS and AAS analyses were
performed as shown in Figure 2a-b for SEM back scattered images and Table 1 for the

EDS and AAS data. It was observed that particle dispersion of catalyst prepared from
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treated carbon was better than those from untreated carbon as large bright areas were
observed in the untreated carbon catalyst indicating particle agglomeration. The EDS
and AAS data confirmed the occurrence of Cr metal but no or trace amount of Co metal
was observed. The reason for no Co metal formation can be explained as the possibility
of insufficient microwave energy for the reduction of Co ion into Co metal to occur [15].
It also confirmed the higher amount of metals in the treated carbon catalyst than those
untreated carbon catalyst in accordance with XRD peak area measurement. Atomic
absorption spectroscopy was also gave similar results to the EDS data as indicated in
Table 1. For TEM analysis, Figure 3a shows TEM image of untreated carbon catalyst
presenting particles agglomeration and these particles correspond to carbon and
platinum phases confirmed by SAD ring pattern in Figure 3b. It was noticed that spot
pattern of platinum corresponds to large particles size which in accordance with SEM
result. The histogram in Figure 4 indicated the measured particles size from TEM
images to have an average of 2.224+0.41nm. For treated carbon catalyst, TEM image is
shown in Figure 5a showing relative highly particle dispersion and smaller particles size
than those from untreated carbon catalyst. The SAD ring pattern in Figure 5b confirmed
the obtained phase was carbon with diffuse scattering of platinum ring. Correspond to a
small particle size affecting the broadening in XRD pattern, particles size of this
material was measuring from TEM image to have average of 1.93+0.34nm (histogram
in Figure 6). The XAS analysis was carried out to identify the local structure of catalyst
active site. With the limitation of synchrotron light in Thailand, only Co and Cr local
structure were determined. The XAS spectrum of Co and Cr in both catalysts was plot
in comparison with standard spectrum of cobalt oxide, cobalt metal, chromium oxide
and chromium metal, separately for each kind of metals as presented in Figure 7 and 8,

respectively. There was no signal from cobalt metal in both catalysts (Figure 6), in
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agreement with EDS and AAS analyses. However the spectrum of chromium in both
samples matches the standard spectrum of Cr,O; with Cr oxidation state of 3. This
observation indicates the existence of oxide phase in the samples. The existence of
oxide phase might be explained as because chromium ion (+3) is the most stable
oxidation state and chromium has negative standard reduction potential (trend to occur
as oxidation reaction more than reduction reaction), high possibility to occur as oxide.
The oxide formation was difficult to be detected by XRD technique as a consequence of
peak overlapping. Therefore, XAS is a powerful tool for local structure determination.
Finally, the prepared catalysts were tested by CV technique. The CV spectrum of both
samples compared with Pt/C standard catalyst from Fuel Cell Scientific. It was observed
that the catalytic activity of the treated carbon sample was relatively higher than
untreated carbon sample and standard catalyst. Hydrogen peroxide treatment has
introduced oxygenated groups such as carboxylic, hydroxyl, and lactone in the carbon
surface [15]. These functional groups was claimed to fill carbon micropore and block
metal to be deposited in [16]. High distribution of metal catalyst was therefore obtained
without inactive metal in the micropore sites. Catalytic performance of treated carbon
Pt-Cr,Os3 catalyst was therefore better than those from untreated carbon Pt-Cr,Os

catalyst.

4. Conclusions

The PEMFC catalysts, Pt-Cr/C can be prepared by microwave radiation assisted method
with the occurrence of Cr as Cr,O3 phase. However, Cobalt was unable to be reduced by
this technique into Co metal. The catalytic activity of the treated carbon catalyst was
proved be relatively higher than those from the untreated carbon catalyst due to the

disappeared of micropore structure in the H,O, treated carbon.
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Caption of Figures

Fig. 1 Powder XRD patterns from a) treated carbon Pt-Co-Cr catalyst sample and b)

untreated carbon Pt-Co-Cr catalyst sample.

Fig. 2 Black scattered SEM images from a) untreated carbon Pt-Co-Cr catalyst sample

and b) treated carbon Pt-Co-Cr catalyst sample.

Fig. 3 a) TEM image of untreated carbon Pt-Co-Cr catalyst sample and b)

corresponding SAD ring pattern.

Fig. 4 Size distribution histogram of untreated carbon Pt-Co-Cr catalyst sample.

Fig. 5 TEM image of treated carbon Pt-Co-Cr catalyst sample and b) corresponding

SAD ring pattern.

Fig. 6  Size distribution histogram of treated carbon Pt-Co-Cr catalyst sample.

Fig. 7 Cobalt XAS spectrum of (A) untreated carbon Pt-Co-Cr catalyst sample and (B)
treated carbon Pt-Co-Cr catalyst sample compared with the standard spectrum of Co,03,

Co0, and Co foil.

Fig. 8 Chromium XAS spectrum of (A) untreated carbon Pt-Co-Cr catalyst sample
and (B) treated carbon Pt-Co-Cr catalyst sample compared with the standard spectrum

of Cr,03, and Cr foil.

Fig. 9 Cyclic voltammetry spectrum of untreated carbon Pt-Co-Cr catalyst sample and
treated carbon Pt-Co-Cr catalyst sample compared with the standard spectrum of

platinum catalyst from Fuel Cells Scientific.
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Table 1. The EDS and AAS results indicating cobalt, chromium, and platinum content

in the untreated and treated carbon Pt-Co-Cr catalyst samples.

Types of carbon Co Cr Pt
EDS AAS EDS AAS EDS
Untreated carbon 0.04 0.00 1.26 1.20 4.90

Treated carbon 0.00 0.00 2.22 1.45 5.63
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Preparation of Non-Noble Metal Based Catalysts Supported on
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Abstract

Since non-noble metal-based catalysts have more activity and selectivity in
Jour electron oxygen reduction than platinum-based catalysts for PEMFC
cathodes, the development of non-noble metal-based catalysts has been of interest.
Iron-based non-noble metal catalysts were prepared by supporting various oxides
and tetraphenylporphyrin complexes of iron on carbon supports by a chemical
process followed by heat treatment at various temperatures. Depending on these
procedures, Fe;04 and Fe-tetraphenylporphyrin catalysts supported on carbon
were obtained. X-ray diffraction patterns of both Fe;04 and Fe-
tetraphenylporphyrin based catalysts indicated the crystallographic structure of
Fe;04 however, selected area diffraction patterns obtained from the TEM
technique showed the Fe;N phase in Fe-tetraphenylporphyrin catalysts supported
on carbon. Moreover, TEM images of Fe;0,4 based catalysts showed a smaller
particle size and more uniform distribution than Fe-tetraphenylporphyrin-based

catalysts. Among the catalysts prepared, Fe-tetraphenylporphyrin catalyst



supported on carbon with a heat treatment at 600°C showed the highest
electrochemical activity in an oxygen reduction reaction.

Key words: non-noble metal based catalysts, PEMFC, cathode
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Introduction

There is now considerable interest in proton exchange membrane fuel cells
(PEMFC) as energy producing devices. PEMFCs have unproved a great deal in both
performance and applications [1-2]. For application in the field as energy sources for
vehicles, stationary electric sources, or even portable devices, and micro fuel cells [3],
PEMFCs have advantages over other energy sources due to their high efficiency, high
energy density, operation at low temperature, and zero or low emission. However, in
the commercialization of fuel cells, a reduction of fuel cell production cost is very
important. Due to the high cost of materials, the platinum-based catalyst was one of
the major contributors to the high costs of PEMFCs. In particular, in cathodes, the
amount of Pt-based catalyst at the cathode for an activate oxygen reduction reaction is
ten times more than at the anode. Moreover, a platinum-based catalyst has many
drawbacks beside its high cost. Firstly, a platinum based catalyst in the cathode
catalyst oxygen reduction is not a complete four-electron oxygen reduction. The
oxygen reduction reaction is a complex process [4] as shown in Fig. 1. There are two

pathways for the oxygen reduction reaction. A direct four electron oxygen reduction



(ky) produces H,O, while a two-electron oxygen reduction (k;) produces H,O, as an
intermediate which reduces the performance of the fuel cell and poisons the catalyst
itself [5-8]. Therefore, it is necessary to find an effective catalyst that can promote the
direct four-electron reduction of oxygen to give H,O, in order to improve the
efficiency of a PEM fuel cell. Secondly, platinum catalysts are very sensitive to
contaminants in the feeding system. The impurities in the feed stream such as CO,
NOx, and SOx can easily poison platinum catalysts, resulting in performance and
stability degradation [9-10]. Therefore, some solutions for catalyst cost reduction and
improvements in cathode catalysis activity were developed.

The exploration of non-noble catalysts has made breakthroughs in the areas of
materials and technology in order to replace the high cost platinum catalyst. There
have been many researches attempting to prepare and characterize the non-noble
based catalysts. Most of them used first row transition metals in N-containing
macrocyclic complexes such as Co-tetramethoxyphynyl porphyrin (CoTMPP) [11],
Fe-phthalocyanine (FePC) [12], and Co-tetraazaanulene (CoTAA) [13]. Some
researchers have used a combination of oxides or compounds of the first row
transition metals and N-containing macrocyclic compounds such as Co3;04 +
tetramethoxyphynyl porphyrin and CoCOs + tetramethoxyphynyl porphyrin [14].

According to the electrocatalytic activity of the metalloporphyrin series, most
of them can reduce oxygen to water in the oxygen reduction reaction by a two
electron pathway and the byproduct of this reaction is hydrogen peroxide that can
corrode the catalyst. Based on the electrochemical characterization by the cyclic
voltammetry technique [11] and from the literature [15], the reaction mechanism of
the oxygen reduction reaction catalyzed by CoTMPP can be as follows:

In acidic solution



TMPP-Co" + O, <> TMPP-Coll -0, (1)

TMPP-Co" -0, + 2H" + 2¢~ <> TMPP-Co" + H,0, ()

However, many researches have reported that a heat treatment was an efficient way to
improve the four-electron catalyst activity and catalyst stability [16-18].

There are several preparation techniques for the heat treatment of
metalloporphyrin catalyst. Faubert et al. have reported that the preparation of
CoTPP/C and FeTPP/C can be done by refluxing FeTPP with a carbon support in
anhydrous pyridine and heat treating under an argon atmosphere at temperatures
ranging from 100-1100°C. The results showed that the best performing catalysts were
obtained after pyrolysis of the precursor molecules between 500 and 700°C. With this
range of temperatures, the catalytic site is either the N-metal moiety or a fragment of
the starting molecule containing the metal bound to nitrogen. The later one is not
stable when used as a catalyst in a fuel cell. On the other hand, the most active and
more stable catalysts are obtained by pyrolyzing CoTPP/C or FeTPP/C at 900°C or
above. At these temperatures, molecular fragments comprising the metal bound to
nitrogen were not detected anymore. Most of the Co and Fe were found as metal
clusters surrounded by a graphitic envelope [19]. Mocchi and Trasatti [20] introduced
the mechanical mixing of CoCO3 with TMPP before heat treatment instead of using
the refluxing technique [21]. The results showed that using CoCO; and TMPP instead
of the CoTMPP precursor in the carbon-containing mixture exhibited an increase in
activity.

The aim of this study is to prepare various non-noble metal-based catalysts for
the cathodes of PEMFCs using oxide or N-containing macrocyclic complexes of the
first row transition metals such as iron (Fe). The catalysts prepared were expected to

have a similar electrocatalytic activity to platinum-based catalyst and can replace it in



the cathodes of PEMFCs to solve the commercialized problem. In order to obtain
these catalysts, a chemical method was used to obtain the catalysts supported on high
surface area carbon. Then, heat treatment at various temperatures was introduced to
obtain the higher active and more stable catalysts. The physical properties of the
catalysts were characterized. Powder X-ray diffraction (XRD) was used for the
determination of polycrystalline compounds and lattice structures. Transmission
electron microscopy (TEM) was used for the determination of the particle size and the
dispersion of the catalysts. Moreover, cyclic voltammetry was used for the
determination of the electrocatalytic activity of the catalysts prepared compared with

platinum-based catalyst.

Experiments
e (Catalysts preparation
o Preparation of carbon support
In order to obtain cleane carbon black N115, carbon black N115 (Thai carbon
black public CO., LTD.) was pre-washed with 1 M H,SO4 (Lab Scan, 98% purity) for
24 hours to dematerialize the carbon impurities and washed in distilled water to
remove sulfuric acid and other impurities.
o Preparation of Fe;0,4 supported on carbon support
The Fe;04 supported on carbon catalysts were prepared by dispersing 0.4 g
cleaned carbon in 50 ml deionized water. Then 0.2531 g of Fe(NO3);.9H,0 (RPE, 98-
101% purity) and 1.5 g of glycine (Ultrapure Bioreagent, 101.2% purity) were added
to the solution and stirred vigorously until a homogeneous solution was obtained. 1.0
ml of 25% NHj; solution (BDH, 25%v/v) was dropped into the solution gradually.

After that, the solution was put into a microwave oven (SHARP Model: R-26 PS



800W) for 50 s and the resulting mixture was left to cool down to room temperature

gradually. The product particles were collected by centrifugation which were then
washed with methanol and dried in an oven at 80°C for 24 hours. The product was

pyrolyzed at 400, 600, and 800°C in an argon atmosphere for 1 hour. The final
catalysts were Fe;O, supported on carbon N115 with a heat treatment at 400°C
(Fe;04/C 400), Fe;04 supported on carbon N115 with a heat treatment at 600°C
(Fe304/C 600), and Fe;04 supported on carbon N115 with a heat treatment at 800°C
(Fe304/C 800)
o Preparation of Fe-tetraphenylporphyrin supported on carbon
catalysts

Synthesis of tetraphenylporphyrin [22]

To obtain tetraphenylporphyrin (TPP), 1.61 g of freshly distilled pyrrole
(Fluka, 97% purity) was mixed with 2.55 g of benzaldehyde (Aldrich, 98% purity)
and dissolved in 100 ml propionic acid (Fluka, 99% purity). Then, the solution was
stirred mechanically in a 250 ml round bottom flask and refluxed in a nitrogen
atmosphere for 18 hours. After that, the solution was filtered and washed with
methanol and water until a purple product was obtained. Finally, the TPP was kept
dried in the dessicator.

Preparation of Fe-tetraphenylporphyrin

Fe-tetraphenylporphyrin (FeTPP) was prepared by dissolving 0.2 mmol of
tetraphenylporphyrin in 15 ml of dimethylformamide (DMF, Carlo Erba, 99.8%
purity) to which was added 2 mmol of FeCl,.4H,O (GPR, 99% purity). Then it was
stirred until the solution was homogeneous. After that, it was refluxed in a nitrogen
atmosphere for 3 hours. Then the solution was left to cool down to room temperature.

The product was precipitated out by adding 15 ml of 0.1 M HCI. Then, it was



centrifuged and washed with 0.1 M HCI (Merck, 37%v/v). The FeTPP product was a
red color and kept dried in a dessicator.

Preparation of 2% Fe-tetraphenylporphyrin supported on carbon

2% Fe-tetraphenylporphyrin supported on carbon (FeTPP/C) was obtained by
dissolving 0.1 g FeTPP in 60 ml DMF. Then 0.4 g carbon was added to the solution
and stirred mechanically. The mixture was refluxed in a nitrogen atmosphere for 18
hours and then the mixture was left to cool down to room temperature. The product
was recovered by centrifuging and washed with methanol, then the product was kept
dry in dessicator. Finally, the FeTPP/C products were pyrolyzed at 400, 600, and 800
‘C. The final catalysts for FeTPP supported on carbon were; FeTPP supported on
carbon N115 without a heat treatment (FeTPP/C), FeTPP supported on carbon N115
with heat treatment at 400°C (FeTPP/C 400), FeTPP supported on carbon N115 with a
heat treatment at 600°C (FeTPP/C 600), FeTPP supported on carbon N115 with a heat

treatment at 800°C (FeTPP/C 800).

e Physical characterization of catalysts

The phases and elemental composition of the prepared catalysts were
determined by powder X-ray diffraction (XRD, Bruker D8 Advance, Cu Ka line (1.54
A) Ni filter, 20 = 10-70°). The dispersion of particles on the carbon support and their
sizes were checked using a transmission electron microscope (TEM, JEOL JEM-

2010).

¢ Electrochemical characterization of catalysts
All of the prepared catalysts were electrochemically characterized by the

cyclic voltammetry (CV) technique which was performed in a single cell with three



different electrodes. A 5 mm dimension glassy carbon disk electrode was used as the
working electrode (CH Instruments, Inc.), Pt wire was used as the counter electrode,
and a standard Ag/AgCl 3M KCI electrode was used as the reference electrode. The
prepared catalyst was applied to the surface of the glassy carbon disk electrode in the
form of a constant drop of ink. The ink was prepared by mixing 10 mg of catalyst
with 100 mg of Nafion solution and 0.5 ml of deionized water. Then, the mixture was
ultrasonically blended for 15 minutes to obtain the ink catalyst. Fifty microlitres of
ink catalysts was dropped on the surface of the glassy carbon disk electrode by a
micropipette and dried in an oven at 60 ‘C for 30 minutes. 1 M H,SO, purged with O,
was used as the electrolyte and the cyclic voltammogram was recorded by scanning
the potential from 1.20 V to -0.20 V versus Ag/AgCl at a scan rate of 50 mV s'. The

tenth cycle of each catalyst was recorded.

Results and Discussions

e Physical characterization of catalysts

o Powder X-ray Diffraction (XRD) Results

Powder X-ray Diffraction was first introduced to analyze the prepared
catalysts in order to identify the elemental composition and their structural type. X-
ray diffraction patterns of iron oxide based catalysts are shown in Fig. 2a which
indicates a typical crystallographic structure of Fe;O4 (220) at 20 = 30.064°, (311) at
20 =35.452°, (400) at 20 = 43.038°, (511) at 20 = 57.168°, and (440) at 26 = 62.728°
according to JCPDS number 01-1111. It was observed that the prepared catalysts
without heat treatment, Fe;04/C gave no evidence of the Fe;Oy structure. The sharper
peak at the higher heat treatment temperature as shown in the XRD pattern of Fe;04/C

800 shows a crystalline Fe;O4 structure, because heat treatment at the high



temperature provided sufficient energy that the iron and oxygen ions can slowly
arrange themselves to form the crystalline structure on the topmost layer.

Diffraction patterns of FeTPP based catalysts are shown in Fig. 2b. The FeTPP
based catalysts without heat treatment (FeTPP/C) presented the crystallographic
structure of the FeyOs (104) and (110) at 20 = 33.28° and 35.74°, respectively,
according to JCPDS number 02-0915. The heat treated FeTPP based catalysts
(FeTPP/C 600, and FeTPP/C 800) displayed the peaks of Fe;O4 phase according to
JCPDS number 01-1111. However, the pattern from FeTPP supported on carbon
N115 with a heat treatment at 400°C (FeTPP/C 400) corresponded to the Fe;O4
structure with JCPDS number 02-1053. The typical structure of Fe,O; presented in the
FeTPP-based catalysts without heat treatment could have occurred between the
preparation processes when the reaction was refluxed, and the presence of the Fe;O4
structure in the heat treated FeTPP might be due to the reduction of the oxidation state
of Fe when heat treated in an Ar atmosphere.

o Transmission Electron Microscopy (TEM) Results

The prepared catalysts were characterized by TEM in order to determine the
morphology, particle size, distribution, and crystallographic and composition obtained
from diffraction patterns of catalysts.

TEM images of Fe;O4 supported on carbon N115 with a heat treatment at
600°C (Fe;04/C 600) as shown in Fig. 3a gave the particle size and distribution of
catalyst particles on carbon supporters. Fe;O4 supports on carbon N115 with a heat
treatment at 600°C (Fe;04/C 600) showed a small particle size and a uniform
distribution; while FeTPP supported on carbon N115 with a heat treatment at 600°C
(FeTPP/C 600) did not give an observable the distribution of catalysts particle. The

agglomerated particles of FeTPP are shown in Fig. 3b. The selected area diffraction



(SAD) patterns of Fe;O4 based catalysts displayed the crystallographic structure of
Fe;04 (Fig. 3a) which corresponded to their XRD patterns (Fig. 2a). However, the
SAD pattern of FeTPP/C 600 indicated the crystallographic structure of Fe;N (Fig.
3b) which did not correspond to the XRD pattern showing the crystallographic
structure of Fe;O4 (Fig. 2b). Since XRD is a technique that analyses the composition
of matter by detection at a large scale, while TEM with the selected area diffraction
technique uses electron beam to analyze the matter at a specific point; therefore, it is
possible that the diffraction pattern of some crystallographic structures by the SAD
technique may not be present in the pattern obtained from the XRD technique.

e Electrochemical characterization of catalysts

All of the catalysts were tested by CV under the same conditions. The results
were compared and discussed in terms of the effects of heat treatment, and types of
non-noble catalysts by using the results from the physical characterization to support
the results from electrochemical characterization. The reaction that was emphasized
was the oxygen reduction reaction which took place around 200-400mV against
Ag/AgCl 3M KCI. The results and discussions of the effects of the parametersare
presented below.

o Effects of heat treatment

All of the catalysts were pyrolyzed in an argon atmosphere at different
temperatures in order to study the effects of heat treatment on the physical properties
that affected the electrochemical activity of catalyst. The optimum heat treatment
temperature of each catalyst is reported and discussed in the following sections.

Fe;0y based catalysts

Cyclic voltammograms of Fe;O4 supported on carbon N115 -catalysts

(Fe304/C) with different heat treatment temperatures are shown in Fig. 4. This figure

10



presents a reduction reaction peak around 0 mV against Ag/AgCl 3M KCI and 200
mV against SHE. An oxidation reaction peak was around 97-169 mV against
Ag/AgCl 3M KCl and 297-369 mV against SHE. The various cathodic and anodic
currents of the redox peak depended on the heat treatment temperature. The reaction
which took place in the oxidation-reduction reaction could be considered to be the
following equation [23]:
Reduction:  2H'(aq) +2¢” — Ha(g) 3)
Oxidation: H,(g) — 2H'(aq) + 2¢~ (4)

The results from cyclic voltammograms of Fe;O4 based catalysts showed that
the heat treatment temperature played an important role on the electrochemical
activity of catalysts. Fe;O,4 based catalysts with a heat treatment at 600°C displayed
the highest electrochemical activity in the hydrogen oxidation reaction. However,
there was no presence of the oxygen reduction reaction in the cyclic voltammograms,
which means Fe;O4 based catalysts did not catalyze the desired reaction.

FeTPP based catalysts

Cyclic voltammograms of FeTPP supported on carbon N115 at different heat
treatment temperatures are shown in Figure 5. This shows the difference in cathodic
potential. It is suggested that heat provided to the FeTPP complexes destroyed the
structure of the TPP ring and left partial Ny-Fe moieties which can catalyze the
oxygen reduction reaction. The reduction reaction of FeTPP and N4-Fe moieties was

taken via an adsorption and reduction scheme as shown in the following equations

[24]:
Adsorption:  TPP(Ny)-Fe" + O, — TPP(N4)-Fe*"-0,> (5)

TPP(N,)-Fe*" -0, + H" — (TPP(N,)-Fe"-0,H)" (6)
Reduction:  (TPP(Ny)-Fe™-O,H)" + H" + 2¢” — TPP(N,)-Fe" + H,0, (7)

11



The oxidation reaction peak of FeTPP/C at different heat treatment
temperatures presented a similar anodic potential (Epa) which was the reverse
reaction of H,O, production, the oxidation-reduction reaction are shown in the
following equations [24]:

Reduction:  (TPP(Ny)-Fe-O,H)" + H" + 2¢” — TPP(N,)-Fe" + H,0, (8)
Oxidation: ~ TPP(N4)-Fe" + H,0, — TPP(N,)-Fe"-0, + 2H™ + 2¢° 9)

The highest electrochemical activity among the FeTPP/C series was FeTPP/C
with a heat treatment at 600°C, because of the presence of Fe;N according to the TEM
image and SAD pattern (Fig. 3b) which gave the evidence that nitrogen bonded with a
metal provided an active site for the oxygen reduction reaction. Thus, the presence of
FesN provided information that there are nitrogen and iron atoms which can form
some active sites for the oxygen reduction reaction. Some researchers [16-18] have
reported that heat treatment at an appropriate temperature can improve the
electrochemical activity of a metal-macrocyclic with nitrogen-containing complexes
based catalysts. However, a heat treatment temperature higher than 800°C lowered the
electrochemical activity but raised the stability of catalysts.

o Effects of types of catalysts

Two types of catalysts have been investigated in term of their electrochemical
activity. Metal oxide based catalyst including Fe;O4 based catalysts and metal-TPP
based catalysts including FeTPP based catalysts were examined. Cyclic
voltammograms of Fe;04/C 600°C catalysts and FeTPP/C 600°C catalysts which gave
the highest activity of each type of catalyst are shown in Fig. 6. This figure contrasts
the reaction that took place in each cyclic voltammogram. The Fe;04/C 600°C
displayed a major oxidation reaction peak and a reduction reaction peak which

corresponded to equations 3 and 4. The FeTPP/C 600°C catalysts presented an oxygen

12



reduction peak via adsorption and the reduction reaction and a minor peak of
oxidation that was the reverse reaction of reduction reaction which are presented in
equations 5-9. The electrochemical characterization results of Fe;O4 based catalysts
and FeTPP based catalysts can be summarized in that FeTPP based catalysts can
catalyze the oxygen reduction reaction via an adsorption and reduction mechanism.
FeTPP supported on carbon N115 with a heat treatment at 600°C provided the
highest activity with Epc = 484 mV, Ipc = 6.67 x 10* A, Epa = 684 mV, and Ipa =

1.06 x 10™* A against SHE.

Conclusions

The results can be summarized that Fe;O4 and FeTPP based catalysts can be
prepared by a chemical method and a heat treatment process. The electrochemical
activity of the prepared catalysts depends on the heat treatment temperature and type
of catalyst. A suitable heat treatment temperature for Fe;Os and FeTPP based
catalysts was 600°C. Metal-TPP based catalysts had more activity in oxygen reduction
than metal oxide based catalysts. Moreover, FeTPP supported on carbon N115 with a
heat treatment temperature at 600°C (FeTPP/C 600) showed the highest

electrochemical activity among all of the catalysts prepared.
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Figure Caption

Fig. 1: Oxygen reduction reaction scheme [8§]

Fig. 2: XRD patterns of a) Fe;O4 supported on carbon N115 with different heat
treatment temperatures and b) FeTPP supported on carbon N115 with different heat
treatment temperatures

Fig. 3: TEM images and SAD patterns of a) Fe;O4 supported on carbon N115 with
heat treatment at 600°C and b) FeTPP supported on carbon N115 with heat treatment
at 600°C

Fig. 4: Cyclic voltammograms of Fe;O4 supported on carbon N115 with different heat
treatment temperatures.

Fig. 5: Cyclic voltammograms of FeTPP supported on carbon N115 with different
heat treatment temperatures.

Fig. 6: Cyclic voltammograms of Fe;Os supported on carbon N115 and FeTPP

supported on carbon N115 with heat treatment at 600°C
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Fig. 5:
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