

รายงานวิจัยฉบับสมบูรณ์

โครงการ ความขัดแย้งในการสืบพันธุ์ในระหว่างการสร้างนาพญา
มุกเนินของพึ่งมิ้ม *Apis florea*

โดย ดร. ปิยมาศ นานอก และคณะ

มีนาคม 2553

รายงานວິຈัยຈັບສມນູຮົມ

ໂຄຮກຄາຣ ຄວາມບັດແຍ້ງໃນກາຣສືບພັນຫຼືໃນຮະຫວ່າງກາຣສ້າງນາງພູາ ນຸກເນີນຂອງພຶ່ງມື່ມ *Apis florea*

ຄະຜູວິຈຍ

ดร. ປິມາສ ນານອກ

ສັກດ

ກາຄວິຈາເຊີວິທຍາ ຄະວິທຍາຄາສົກ

ສາສຕຣາຈາຣຍ ດຣ. ສີຣິວັດນ ວົງໝໍສົງ

ມາວິທຍາລ້ຽມມາສາຮາຄາມ

ສຳນັກວິຈາເຊີວິທຍາຄາສົກ

ມາວິທຍາລ້ຽມແມ່ພ້າຫລວງ

ສນັບສນູນໂຄຍດຳນັກງານຄະດີກາຣມກາຣອຸຄມທີກາຍາ ແລະ ດຳນັກງານກອງຖຸນສນັບສນູນກາຣວິຈຍ
(ຄວາມເຫັນໃນຮາຍງານນີ້ເປັນຂອງຜູວິຈຍ ສກອ. ແລະ ສກວ. ໄນຈໍາເປັນຕົ້ນເຫັນດ້ວຍເສມອໄປ)

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับการสนับสนุนจากทุนพัฒนาศักยภาพในการทำวิจัยของอาจารย์รุ่นใหม่ของสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) และสำนักงานกองทุนสนับสนุนการวิจัย (สกω.) ผู้วิจัยขอขอบคุณ ศาสตราจารย์ ดร. สิริวัฒน์ วงศ์ศิริ สำนักวิชาชีวทัศนศิลป์ มหาวิทยาลัยแม่ฟ้าหลวง อาจารย์ที่ปรึกษางานวิจัย (mentor) ที่ให้คำแนะนำที่เป็นประโยชน์ และความช่วยเหลือในด้านต่างๆ ทำให้งานวิจัยนี้สำเร็จลุล่วงไปด้วยดี Professor Dr. Ben Oldroyd, University of Sydney ประเทศออสเตรเลีย ที่ให้คำแนะนำในด้านการวางแผนการวิจัย และช่วยเหลือในการอ่านต้นฉบับบทความวิจัย ผู้ช่วยศาสตราจารย์ ดร. สุรีรัตน์ เดี่ยววารณิชย์ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ที่ให้คำแนะนำที่เป็นประโยชน์ต่อการดำเนินการวิจัย คุณกิตติศักดิ์ แซ่เรือง เจ้าของกิตติศักดิ์ฟาร์ม อ. ดำเนินสะดวก จ. ราชบุรี ที่ได้อธิบายสถานที่สำหรับเดียงพื้นและทำการศึกษาในภาคสนามตลอดการทำวิจัย ผู้วิจัยขอขอบคุณ คุณชุดติมา สงวนวัฒนาณนท์ สำหรับความช่วยเหลือในการเก็บตัวอย่าง และคุณอวิรุทธิ์ โสภาคดาวลัย ที่ช่วยให้กำลังใจและแรงสนับสนุนทุกอย่างตลอดการทำวิจัย

บทคัดย่อ

รหัสโครงการ: MRG5080275

ชื่อโครงการ: ความขัดแย้งในการสืบพันธุ์ในระหว่างการสร้างนางพญาลูกเมินของผึ้งมีมีน *Apis florea*

ชื่อนักวิจัย: ดร. ปิยมาศ นานอก มหาวิทยาลัยแม่ฟ้าหลวง

ศาสตราจารย์ ดร. สิริวัฒน์ วงศ์ศิริ มหาวิทยาลัยแม่ฟ้าหลวง

Email: pnanork@yahoo.com, piyamas.n@msu.ac.th

ระยะเวลาโครงการ: 2 ปี (2 กรกฎาคม 2550 ถึง 1 กรกฎาคม 2552)

โดยปกตินางพญาของผึ้งมีมี (*Apis florea*) จะผสมพันธุ์กับผึ้งตัวผู้ประมาณ 13 ตัว หรือมากกว่านั้น ซึ่งจากพฤติกรรมดังกล่าวทำให้เกย์ในรังประคบонไปด้วยผึ้งงานต่างพ่อกัน และผลจากการที่ผึ้งในรังมีพันธุกรรมที่แตกต่างกันนี้จึงมีแนวโน้มที่จะเกิดความขัดแย้งในการสืบพันธุ์ (reproductive conflict) ระหว่างผึ้งงานที่เกิดจากต่างพ่อกัน และในบางกรณี potential conflict อาจจะสามารถเปลี่ยนไปเป็น actual conflict ได้ ผึ้งงานตัวเต็มวัยสามารถเพิ่ม inclusive fitness โดยการคัดเลือกตัวอ่อนผึ้งงานที่เกิดจากพ่อเดียวกัน (full-sister) และเลี้ยงดูให้เป็นนางพญาในขณะที่มีการสร้างนางพญาลูกเมิน โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาความขัดแย้งในการสืบพันธุ์ในระหว่างการสร้างนางพญาลูกเมินของผึ้งมีมี โดยได้ตรวจสอบครอบครัวย่อย (subfamily) ของนางพญาลูกเมินจากผึ้งมีมี 2 รัง ด้วย Microsatellite DNA จำนวน 5 ตำแหน่ง ได้แก่ A8, A88, A107, Ap249 และ B124 จากการตรวจสอบครอบครัวย่อย พบว่ารังที่ 1 มี 15 ครอบครัวย่อย และรังที่ 2 มี 22 ครอบครัวย่อย และจากการวิเคราะห์ข้อมูลทางสถิติแสดงให้เห็นว่าในรังที่ 1 ไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างสัดส่วนของนางพญา ($n=22$) และผึ้งงาน ($n=63$) ในแต่ละครอบครัวย่อย ($P = 0.479$) ในขณะที่รังที่ 2 พบความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างสัดส่วนของนางพญา ($n=20$) และผึ้งงาน ($n=69$) ในแต่ละครอบครัวย่อย ($P = 0.031$) แสดงให้เห็นว่ามีการเลือกตัวอ่อนผึ้งในบางครอบครัวย่อยให้เจริญขึ้นเป็นนางพญาลูกเมิน

คำสำคัญ: ผึ้งมีมี / nepotism/ การสร้างนางพญาลูกเมิน/ DNA microsatellites

Abstract

Project Code: MRG5080275

Project Title: Reproductive conflict during emergency queen rearing in *Apis florea*

Investigator: Dr. Piyamas Nanork Mahasarakham University

Prof. Dr. Siriwat Wongsiri Mae Fah Luang University

E-mail Address: pnanork@yahoo.com, piyamas.n@msu.ac.th

Project period: 2 years (July 2, 2007 – July 1, 2009)

A dwarf red honey bee (*Apis florea*) queen typically mates with 13 or more drones. This means that colonies comprise multiple patrilines of supersisters. As a consequence of the non-clonal nature of colonies, there is the potential for reproductive conflict between workers of different patrilines and, under certain circumstances, it is expected that this could translate into actual conflict. Adult workers can increase their inclusive fitness by selectively rearing their full-sisters as queens during emergency queen rearing. The objective of this study is to investigate reproductive conflict during emergency queen rearing in *A. florea*. We investigated subfamily of emergency queens in two colonies of *Apis florea* using five microsatellite loci including A8, A88, A107, Ap249 and B124. Fifteen and twenty two subfamilies were found in colony 1 and 2, respectively. In colony 1 there was no significant difference between the proportions of queens and workers in each subfamily ($P = 0.479$). In contrast, the relative frequency of subfamilies in colony 2 differed significantly between queens and workers ($P = 0.031$). Suggesting that larvae were selected for rearing as queens non-randomly.

Keywords: *Apis florea*/ nepotism/ emergency queen rearing/ DNA microsatellites

Executive summary

ผึ้ง (honey bee) สกุลเอปีส (Genus *Apis*) ที่พบในประเทศไทยปัจจุบันมีรายงานทั้งหมด 5 ชนิด คือ ผึ้งหาง (Apis dorsata) ผึ้งโพรง (A. cerana) ผึ้งมีมี (A. florea) ผึ้งม้าน (A. andreniformis) และผึ้งพันธุ์ (A. mellifera) โดยผึ้ง 4 ชนิดแรกเป็นผึ้งพื้นเมือง (native species) ของประเทศไทย ในขณะที่ผึ้งพันธุ์เป็นผึ้งที่ถูกนำเข้ามาจากต่างประเทศเพื่อใช้ในอุตสาหกรรมการเลี้ยงผึ้งเนื่องจากเลี้ยงง่าย หาอาหารเก่ง และไม่ดุ (Koeniger and Koeniger, 2000; Oldroyd and Wongsiri, 2006)

ผึ้งทั้ง 5 ชนิดเป็นแมลงสังคมแท้ (eusocial insect) ที่มีวิวัฒนาการในการอยู่ร่วมกันมานานกว่า 30 ล้านปีมาแล้ว โดยไม่มีผึ้งตัวใดตัวหนึ่งสามารถดำรงชีวิตอย่างโดดเดี่ยวได้เป็นระยะเวลานาน ทำให้ผึ้งต้องมีการอยู่ร่วมกันเป็นสังคมบริบูรณ์เมื่อตนกรอบครัวซึ่งประกอบไปด้วยผึ้ง 3 วรรณะคือ ผึ้งนางพญา (queen) ผึ้งงาน (worker) ซึ่งเป็นเพศเมีย และผึ้งตัวผู้ (drone) โดยผึ้งนางพญาเป็นวรรณะที่มีบทบาทหน้าที่สำคัญที่สุดภายใต้รังคือ มีหน้าที่ในการวางไข่เพื่อผลิตสมาชิกรุ่นต่อๆ ไปของรัง รวมทั้งควบคุมกิจกรรมต่างๆ ของสมาชิกภายในรังโดยการปล่อยสารเคมีที่เรียกว่า queen pheromone ออกมายื่อสารและควบคุมการทำงานของสมาชิกตัวอื่นๆ ภายในรัง โดยปกติจะพบผึ้งนางพญาเพียง 1 ตัวต่อรังเท่านั้นและจะมีอายุประมาณ 1-2 ปี สำหรับผึ้งงานมีหน้าที่ในการดูแลตัวอ่อนอาหาร ทำความสะอาดและซ่อมแซมรัง รวมทั้งการป้องกันรัง ส่วนผึ้งตัวผู้มีหน้าที่ในการผสมพันธุ์เท่านั้น หลังจากนั้นตัวผู้ส่วนใหญ่จะตาย โดยส่วนใหญ่ผึ้งตัวผู้จะเกิดมาเฉพาะในฤดูผสมพันธุ์หรือช่วงเวลาที่มีอาหารเพียงพอเท่านั้น (Winston, 1987; Seeley, 1985)

ในสภาพธรรมชาติ รังผึ้งบางรังเกิดการสูญเสียนางพญาโดยนั้งเฉี่ยน นางพญาตายหรือหายไปในระหว่างการบินออกไปผสมพันธุ์ นางพญาแก่ตาย หรืออาจจจะคลงไปตายในระหว่างการเดินสำรวจและวางแผนไปทำให้รังผึ้งนั้นอยู่ในสภาพขาดแคลนอาหาร ประชากรผึ้งงานภายในรังจะเริ่มลดน้อยลงเนื่องจากไม่มีนางพญาที่ทำหน้าที่ในการวางไข่เพื่อผลิตผึ้งงานอีกต่อไป และการทำงานของผึ้งงานเหล่านั้น ทำให้สังคมของรังผึ้งนั้นล่มสลายและประชากรผึ้งภายในรังตายไปในที่สุด ดังนั้นหากกรังผึ้งขาดแคลนอาหารแล้วจึงต้องมีการสร้างนางพญาฉุกเฉิน (emergency queen) ขึ้นมาทดแทนอย่างรวดเร็วเพื่อให้สังคมผึ้งภายในรังอยู่ในสภาพปกติ โดยผึ้งงานภายในรังจะคัดเลือกตัวอ่อนผึ้งเพศเมียที่มีอายุน้อย แล้วให้อาหารที่เป็นนมผึ้ง (royal jelly) แก่ตัวอ่อนเหล่านั้นจนกระทั่งปีดหลอดร่วง ซึ่งจะส่งผลให้ตัวอ่อนดังกล่าวเจริญเติบโตขึ้นมาเป็นผึ้งนางพญาได้ โดยการสร้างนางพญาฉุกเฉินแต่ละครั้งนั้นจะมีการสร้างจำนวนหลายตัวพร้อมกัน แต่จะมีเพียง 1 ตัวเท่านั้นที่จะกลายเป็นตัวเต็มวัยก่อนแล้วกลายเป็นผึ้งนางพญาของรังตัวต่อไป แต่เนื่องจากจำนวนผึ้งตัวอ่อนเพศเมียมีจำนวนหลายร้อยตัว แต่บังเอิญทราบปัจจัยที่แน่ชัดว่าผึ้งงานมีกลไกอย่างไรในการคัดเลือกตัวอ่อนเพื่อสร้างนางพญาฉุกเฉิน

ผึ้งนางพญามีการผสมพันธุ์กับผึ้งตัวผู้จำนวนหลายตัวกลางอากาศ (Estoup et al., 1994; Oldroyd et al., 1998; Palmer et al., 2001; Rinderer et al., 1998; Nanork et al., 2006; Palmer and Oldroyd, 2001; Oldroyd, et al., 1997) เมื่อได้จำนวน sperm ที่เก็บไว้ในถุงเก็บ sperm เพียงพอสำหรับการปฏิสนธิกับไข่ต่อตัวเดียว ชีวิตของนางพญาแล้ว นางพญาจะบินกลับรังแล้วเริ่มวางไข่ ซึ่งไข่ที่ได้รับการปฏิสนธิจะเจริญเป็นเพศเมียในขณะที่ไข่ที่ไม่ได้รับการปฏิสนธิจะเจริญไปเป็นเพศผู้ ดังนั้นผึ้งเพศเมียทั้งหมดในรังจึงเกิดจากพ่อหลายตัว โดยผึ้งที่เกิดจากพ่อเดียวกันเรียกว่าเป็นครอบครัวย่อย (subfamily) เดียวกัน จากเหตุการณ์ดังกล่าวจึงทำให้ความสัมพันธ์ (relatedness) ของผึ้งภายในรังไม่เท่ากัน โดยผึ้งงานที่เกิดมาจากพ่อเดียวกันจะมีความสัมพันธ์ใกล้ชิดกันมากกว่า

ผึ้งงานที่เกิดมาจากคนละพ่อ ซึ่งอาจเป็นกลไกอย่างหนึ่งในการกัดเลือกตัวอ่อนผึ้งที่จะเจริญไปเป็นนางพญาต่อไป เมื่อไม่มีนางพญาตัวเก่าอยู่ภายในรัง โดยผึ้งงานจะเลือกตัวอ่อนที่มีความสัมพันธ์ใกล้ชิดกับตันเองมากที่สุดให้เป็น นางพญาตัวต่อไปเพื่อที่จะได้ถ่ายทอดพันธุกรรมของตนเองสู่รุ่นต่อไปด้วย (Barron et al., 2001; Osborne and Oldroyd, 1999; Ratnieks, 1988; Ratnieks and Reeve, 1992)

ผึ้งมีมี (*A. florea*) เป็นผึ้งที่พบได้ทั่วไปในประเทศไทย และคนไทยก็รู้จักและคุ้นเคยกับผึ้งมีมีเป็นอย่างดี เนื่องจากได้มีการตีผึ้งมีมีเพื่อนำมาใช้ประโยชน์ และประชาชนบางกลุ่มมีรายได้หลักจากการขายผึ้งมีมี โดยคาดว่าใน แต่ละปีมีการตีรังผึ้งมีมีมาหลายจำนวนหลายพันถึงหมื่นรัง ซึ่งเป็นรังผึ้งที่ได้มาจากธรรมชาติทั้งหมด และเนื่องจาก ความรู้พื้นฐานด้านชีววิทยาของผึ้งมีมียังมีการศึกษาไม่มากนัก จึงยังไม่สามารถเลือกผึ้งมีมีได้ ซึ่งถ้าหากมีการทำการทดลอง ผึ้งมีมีในธรรมชาติจำนวนมากอย่างนี้ อาจทำให้ประชากรของผึ้งมีมีลดจำนวนลงอย่างรวดเร็ว ดังนั้นการศึกษานี้ซึ่ง เป็นการศึกษาปัจจัยในการเลือกตัวอ่อนผึ้งเพื่อสร้างนางพญา จึงเป็นการศึกษาชีววิทยาของผึ้งมีมีอีกอย่างหนึ่งที่จะ สามารถนำไปเป็นข้อมูลในการวิจัยเพื่อใช้ประโยชน์และการอนุรักษ์ผึ้งมีมีต่อไปได้

การเก็บตัวอย่างผึ้งมีมีได้ริ่มค่าเนินการตั้งแต่เดือนมีนาคม 2551-เดือนเมษายน 2552 ผึ้งมีมีที่ใช้ใน การศึกษาวิจักรังนี้ทั้งหมดจำนวน 17 รัง ซึ่งส่วนใหญ่ผึ้งจะหนีรังก่อนที่จะเสร็จสิ้นการทดลอง จึงทำให้ได้ จำนวนตัวอ่อนผึ้งนางพญาถูกเก็บในแต่ละรังไม่เพียงพอต่อการวิเคราะห์ครอบครัวย่อย และการวิเคราะห์ข้อมูล ทางสถิติ มีผึ้งมีมีเพียง 2 รัง ที่มีตัวอย่างนางพญาถูกเก็บได้จำนวนเพียงพอต่อการวิเคราะห์ หลังจากที่ได้ตัวอย่างผึ้ง งานและผึ้งนางพญาถูกเก็บเพียงพอแล้วได้ดำเนินการวิเคราะห์ครอบครัวย่อย ในผึ้งแต่ละรังด้วย microsatellite DNA จำนวน 5 loci ได้แก่ A8, A88, A107, Ap249 และ B124

จากการวิเคราะห์ครอบครัวย่อยของผึ้งงานและผึ้งนางพญาถูกเก็บพบว่ารังที่ 1 มีทั้งหมด 15 ครอบครัวย่อย จากการวิเคราะห์ผึ้งงาน 63 ตัว และนางพญาถูกเก็บจำนวน 22 ตัว และรังที่ 2 พน 22 ครอบครัวย่อย จากการ วิเคราะห์ผึ้งงานจำนวน 69 ตัว และนางพญาถูกเก็บจำนวน 20 ตัว และเมื่อวิเคราะห์ข้อมูลทางสถิติพบว่าในรังที่ 1 ไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างสัดส่วนของนางพญา ($n=22$) และผึ้งงาน ($n=63$) ในแต่ละ ครอบครัวย่อย ($P = 0.479$) ในขณะที่รังที่ 2 พนความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างสัดส่วนของนางพญา ($n=20$) และผึ้งงาน ($n=69$) ในแต่ละครอบครัวย่อย ($P = 0.031$) แสดงให้เห็นว่ามีการเลือกตัวอ่อนผึ้งในบาง subfamily ให้เจริญขึ้นเป็นนางพญาถูกเก็บหรือเกิดความขัดแย้งที่แท้จริง (actual conflict) ขึ้นในระหว่างที่มีการ สร้างนางพญาถูกเก็บในผึ้งมีมี

ผลการศึกษาความขัดแย้งในการสืบพันธุ์ระหว่างการสร้างนางพญาถูกเก็บของผึ้งมีมี (*A. florea*) ในครั้งนี้มี ความสอดคล้องกับการศึกษาการสร้างนางพญาถูกเก็บที่ผ่านมาในผึ้งพันธุ์ (*A. mellifera*) (Châline et al., 2003; Osborne and Oldroyd, 1999; Trilley and Oldroyd, 1997) โดยแสดงให้เห็นว่าเมื่อรังอยู่ในสภาพขาดน้ำพญา ผึ้งงานในรังมีการเลือกตัวอ่อนที่จะเจริญเป็นนางพญาอย่างเฉพาะเจาะจง ซึ่งตัวอ่อนผึ้งงานในบางครอบครัวย่อยจะ ถูกคัดเลือกและเลือกให้เจริญเดิบ โดยเป็นนางพญาถูกเก็บ ซึ่งจากข้อมูลที่ได้สามารถอธิบายการเกิดพฤติกรรมนี้ได้ 2 ประการคือ

- ผึ้งงานจากบางครอบครัวย่อย (ซึ่งไม่จำเป็นว่าต้องมีจำนวนสมาชิกมากที่สุดในรัง) สามารถแสดง พฤติกรรมที่มีอิทธิพลต่อการเลือกนางพญาถูกเก็บ โดยเลือกเลี้ยงตัวอ่อนผึ้งงานที่เกิดจากพ่อเดียวกัน
- ตัวอ่อนผึ้งงานในบางครอบครัวย่อยมีกลไกพิเศษที่สามารถดึงดูดให้ผึ้งงานตัวเดียวมีวัยเข้ามาสนใจและ เลี้ยงให้เป็นนางพญาถูกเก็บ

สารบัญ

หน้า

กิตติกรรมประกาศ

ก

บทคัดย่อ

ข

Executive summary

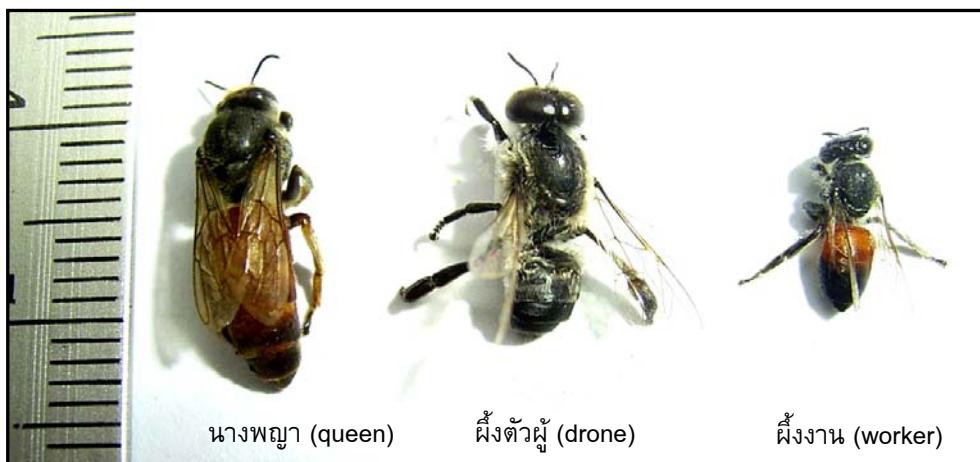
จ

1. บทนำ	1
2. วิธีการศึกษา	4
2.1 การเก็บตัวอย่าง	4
2.2 การตรวจสอบครอบครัวย่อย (subfamily) ของผึ้งงาน และตัวอ่อนของนางพญาฉุกเฉิน โดยใช้ microsatellite DNA	8
2.3 การวิเคราะห์ข้อมูล	10
3. ผลการศึกษา	11
3.1 ตัวอย่างผึ้งมีมีน	11
3.2 การตรวจสอบครอบครัวย่อย (subfamily)	12
3.3 การวิเคราะห์ข้อมูล	18
4. อภิปรายและสรุปผลการศึกษา	19
 เอกสารอ้างอิง	21
Output จากโครงการวิจัย	24
ภาคผนวก	26

สารบัญตาราง

ตารางที่	หน้า
1. รายละเอียด primer และสภาวะที่ใช้ทำ PCR	9
2. รายละเอียดการเก็บตัวอย่างพื้นที่มีมี	11
3. รายละเอียดข้อมูลของพื้นที่มีมีรังที่ 1	13
4. รายละเอียดข้อมูลของพื้นที่มีมีรังที่ 2	15

สารบัญภาพ


ภาพที่	หน้า
1. พื้นเมือง (<i>A. florea</i>) วรรณะต่าง ๆ	1
2. การตัดรังผึ้งเมือง	5
3. รังผึ้งเมืองที่ตัดจากธรรมชาติ	5
4. การนำผึ้งเมืองกล่องเพื่อการเคลื่อนย้าย	5
5. การแbewanผึ้งเมืองในพื้นที่ทำการทดลอง	5
6. ถุงตาข่ายที่ใช้เก็บผึ้งนางพญา	7
7. การแbewanถุงตาข่ายไว้ที่รังผึ้งเมือง	7
8. รังที่อยู่ในสภาพขาดน้ำทางพญา	7
9. หลอดน้ำทางพญาฉุกเฉิน	7
10. การตรวจสอบรังผึ้งเมือง	7
11. ตัวอ่อนนางพญาในระยะต่างๆ	7
12. จำนวน subfamily และสัดส่วนระหว่างผึ้งงานและผึ้งนางพญา ที่พบในแต่ละ subfamily ในผึ้งเมืองรังที่ 1	17
13. จำนวน subfamily และสัดส่วนระหว่างผึ้งงานและผึ้งนางพญา ที่พบในแต่ละ subfamily ในผึ้งเมืองรังที่ 2	17

1. บทนำ

1.1 บทนำ

ผึ้ง (honey bee) เป็นแมลงสังคมแท้ (eusocial insect) ที่จัดอยู่ในสกุล (Genus) *Apis* ปัจจุบันมีรายงาน 9 ชนิด ในประเทศไทยมีรายงานว่าพบ 5 ชนิด คือ ผึ้งหลวง (*Apis dorsata*) ผึ้งโพรง *A. cerana* ผึ้งมีมีม (*A. florea*) ผึ้งม้าน (*A. andreniformis*) และผึ้งพันธุ์ (*A. mellifera*) โดยผึ้ง 4 ชนิดแรกเป็นผึ้งพื้นเมือง (native species) ของประเทศไทย ส่วนผึ้งพันธุ์ (*A. mellifera*) นั้นเป็นผึ้งที่นำเข้ามาจากการค้าต่างประเทศเพื่อใช้ในการเลี้ยงเพื่อการค้า (Koeniger and Koeniger, 2000; Oldroyd and Wongsiri, 2006)

ผึ้งเป็นแมลงสังคมที่มีวิวัฒนาการในการอยู่ร่วมกันมานานกว่า 30 ล้านปี โดยไม่มีผึ้งตัวใดตัวหนึ่งสามารถดำรงชีวิตอย่างโดดเดี่ยวได้เป็นระยะเวลา漫漫 ทำให้ผึ้งต้องมีการอยู่ร่วมกันเป็นสังคมเบรียบเสมือนครอบครัวซึ่งประกอบไปด้วยผึ้ง 3 วรรณะคือ ผึ้งนางพญา (queen) ผึ้งงาน (worker) และผึ้งตัวผู้ (drone) (ภาพที่ 1) ผึ้งนางพญาและผึ้งงาน เป็นผึ้งเพศเมีย เจริญมาจากการไข่ที่ได้รับการปฏิสนธิ มีจำนวนโครโมโซมเป็น diploid ($2n=32$) ส่วนผึ้งตัวผู้เจริญมาจากการไข่ที่ไม่ได้รับการปฏิสนธิ มีจำนวนโครโมโซมเป็น haploid ($n=16$) (Winston, 1987; Seeley, 1985)

ภาพที่ 1 ผึ้งมีม (*A. florea*) วรรณะต่าง ๆ

ผึ้งนางพญา (queen) มีบทบาทหน้าที่สำคัญที่สุดภายในรังคือ มีหน้าที่ในการวางไข่เพื่อผลิตสมาชิกรุ่นต่อๆ ไปของรัง รวมทั้งควบคุมกิจกรรมต่างๆ ของสมาชิกภายในรังโดยการปล่อยสารเคมีที่เรียกว่า queen pheromone ออกมาน้ำที่สารกับสมาชิกในรังตัวอื่นๆ ให้ทำหน้าที่ของตัวเอง โดยปกติจะพบผึ้งนางพญาเพียง 1 ตัวต่อรังเท่านั้นและจะมีอายุประมาณ 1-2 ปี

ผึ้งงาน (worker) ทำหน้าที่ในการดูแลตัวอ่อน หาอาหาร ทำความสะอาดและซ่อมแซมรัง รวมทั้งการป้องกันรัง

ผึ้งตัวผู้ (drone) มีหน้าที่ในการผสมพันธุ์เท่านั้นหลังจากนั้นตัวผู้ส่วนใหญ่จะตาย โดยส่วนใหญ่ผึ้งตัวผู้จะเกิดมาเฉพาะในฤดูผสมพันธุ์หรือช่วงเวลาที่มีอาหารเพียงพอเท่านั้น ตัวผู้จะมีขนาดลำตัวอ้วนและสั้นกว่าผึ้งนางพญาและผึ้งงาน มีตาโต ลิ้นสั้น หาอาหารเองไม่ได้ และไม่มีเหล็กใน

นางพญาของผึ้งในสกุล *Apis* นี้ มีการผสมพันธุ์กับตัวผู้หลายตัว (polyandry) โดยจำนวนตัวผู้ที่เข้ามาผสมพันธุ์จะแตกต่างกันไปแล้วแต่ชนิดของผึ้งคือ นางพญาผึ้งพันธุ์ (*A. mellifera*) ผสมพันธุ์กับผึ้งตัวผู้จำนวน 7-20 ตัว (Estoup et al., 1994) นางพญาผึ้งโพรง (*A. cerana*) ผสมพันธุ์กับผึ้งตัวผู้จำนวน 14-27 ตัว (Oldroyd et al., 1998) นางพญาของผึ้ง *A. nigrocincta* ผสมพันธุ์กับตัวผู้จำนวน 42-69 ตัว (Palmer et al., 2001) นางพญาของผึ้ง *A. koschevnikovi* ผสมพันธุ์กับตัวผู้จำนวน 16-26 ตัว (Rinderer et al., 1998) นางพญาของผึ้งมีมี (*A. florea*) ผสมพันธุ์กับตัวผู้จำนวน 13-24 ตัว (Nanork et al., 2006; Palmer and Oldroyd, 2001) และนางพญาของผึ้งม่าน (*A. andreniformis*) ผสมพันธุ์กับตัวผู้จำนวน 10-20 ตัว (Oldroyd, et al., 1997)

ข้อดีของการที่ผึ้งนางพญาผสมพันธุ์กับผึ้งตัวผู้หลายตัว คือทำให้เกิดความแปรผันทางพันธุกรรมของผึ้งภายในรังผึ้ง (Boomsma and Ratniekes, 1996; Oldroyd et al., 1998; Palmer and Oldroyd, 2000) ซึ่งจะทำให้ผึ้งสามารถปรับตัวได้เมื่อสภาพแวดล้อมเปลี่ยนแปลงไป รวมทั้งเพิ่มความต้านทานต่อโรคและปรสิต ได้ดี นอกจากนี้การที่ผึ้งนางพญาผสมพันธุ์กับผึ้งตัวผู้หลายตัวยังช่วยลดความเสี่ยงที่จะเกิดการผสมพันธุ์กับตัวผู้ที่เป็นหมันอีกด้วย (Frank et al., 2000; Oldroyd et al., 1992; Palmer and Oldroyd, 2000; Schmid-Hempel, 1995; Sherman et al., 1988)

เนื่องจากผึ้งนางพญาผสมพันธุ์กับผึ้งตัวผู้หลายตัว ดังนั้นจึงทำให้ผึ้งงานซึ่งเป็นลูกเพศเมียในรังเกิดมาจากการตัวผู้หลายตัว ส่งผลให้ความสัมพันธ์ทางพันธุกรรมของผึ้งภายในรังแตกต่างกันไป (Barron et al., 2001; Osborne and Oldroyd, 1999; Ratnieks, 1988; Ratnieks and Reeve, 1992) คือผึ้งงานซึ่งเป็นผึ้งเพศเมีย ที่เกิดจากพ่อเดียวกันหรือเกิดใน subfamily เดียวกัน เรียกว่า full-sister หรือ super-sister จะมีความสัมพันธ์ (relatedness) ใกล้ชิดกันมากกว่าลูกสาวที่เกิดจากต่างพ่อคันหรือต่าง subfamily กัน ซึ่งเรียกว่า half-sister ดังนั้นผึ้งงานจึงควรที่จะเลือกเลี้ยงผึ้งเพศเมียที่เกิดจากพ่อเดียวกันมากกว่าผึ้งที่เกิดจากต่างพ่อ (Osborne and Oldroyd, 1999)

จากหลักการตั้งกล่าว ให้มีการศึกษาเกี่ยวกับความสามารถในการพัฒนารังไข่ของผึ้งงานต่าง subfamily กันเมื่อรังอยู่ในสภาพขาดงานพญา เนื่องจากในสภาพรังปกติที่มีนางพญาอยู่นั้น นางพญาจะทำหน้าที่วางไข่แต่เพียงผู้เดียว แต่เมื่อนางพญาหายไปจากรังและไม่สามารถสร้างนางพญาทดแทนได้ ผึ้งงานจะเริ่มพัฒนารังไข่และเริ่มวางไข่ ซึ่งไข่ของผึ้งงานจะเจริญไปเป็นตัวผู้เนื่องจากเป็นไข่ที่ไม่ได้รับการปฏิสนธิจากการศึกษาการแข่งขันระหว่างผึ้งงานของผึ้งพันธุ์ (*A. mellifera*) ที่เกิดจากต่างพ่อคัน (ต่าง subfamily) พบว่าผึ้งงานจากบาง subfamily มีความสามารถในการพัฒนารังไข่ได้เร็วกว่าและวางไข่ได้มากกว่าผึ้งงานจาก subfamily อื่น (Martin et al., 2004; Page and Robinson, 1994; Robinson et al., 1990)

Nanork et al. (2006) ได้ศึกษาการศึกษาการแข่งขันระหว่างผึ้งงานของผึ้งมีมี (*A. florea*) ในสภาพที่รังขาดงานพญาพบว่าหลังจากนางพญาหายไป 4 สัปดาห์ ผึ้งงานบาง subfamily มีความสามารถในการพัฒนารังไข่ได้ดีกว่าผึ้งงานจาก subfamily อื่น

เนื่องจากผึ้งนางพญาเป็นธรรมชาติที่สำคัญที่สุดภายในรังผึ้ง หากรังผึ้งขาดงานพญาแล้วจะไม่สามารถดำรงเผ่าพันธุ์ของตนเองได้ เพราะจะไม่มีการวางไข่ที่จะเจริญไปเป็นผึ้งงานอีกต่อไป และการทำงานของผึ้งงานภายในรังจะเกิดการสับสนวุ่นวายเนื่องจากไม่มีนางพญาอยู่ปล่อยสารเคมีเพื่อควบคุมการทำงานของผึ้งงานเหล่านั้น ทำให้รังผึ้งนั้นล่มสลายและประชากรผึ้งภายในรังตายไปในที่สุด ซึ่งสาเหตุของ การสูญเสียของนางพญาเกิดได้หลายประการเช่น นางพญาตายหรือหายไปในระหว่างการบินออกไปผสมพันธุ์ นางพญาแก่ตาย หรืออาจจะตกลงไปตายในระหว่างการเดินสำรวจ เป็นต้น ดังนั้นหากรังผึ้งขาดงานพญาแล้วจึงต้องมีการสร้างนางพญาขึ้นมาทดแทนอย่างรวดเร็วเพื่อให้สังคมผึ้งภายในรังอยู่ในสภาพปกติ โดยการ

สร้างนางพญาในเหตุการณ์นี้เรียกว่าการสร้างนางพญาฉุกเฉิน (emergency queen) ผึ้งงานภายในรังจะเลือกตัวอ่อนผึ้งเพศเมียที่มีอายุน้อย แล้วให้อาหารที่เป็นนมผึ้ง (royal jelly) แก่ตัวอ่อนเหล่านั้นจนกระทั่งปิดหลอดตรง ซึ่งจะส่งผลให้ตัวอ่อนดังกล่าวเจริญเติบโตขึ้นมาเป็นผึ้งนางพญาได้ โดยในการสร้างนางพญาใหม่ แต่ละครั้งจะสร้างจำนวนหลายตัวพร้อมๆ กัน ตัวที่เป็นตัวเต็มวัยก่อนจะมีโอกาสเป็นผึ้งนางพญาตัวต่อไปมากที่สุด เนื่องจากเมื่อผึ้งนางพญาอ่อนจากหลอดตรงแล้วมันจะเดินทัวร์รังเพื่อสำรวจว่ามีหลอดดูดนางพญาอื่นอีกหรือไม่ ถ้ามีอีกมันจะทำลายหันที ทั้งนี้เนื่องจากจำนวนผึ้งตัวอ่อนเพศเมียมีจำนวนหลายร้อยถึงพันตัว แต่ยังไม่ทราบแน่ชัดว่าผึ้งงานมีหลักการหรือปัจจัยอย่างไรในการคัดเลือกตัวอ่อนเพื่อสร้างนางพญาฉุกเฉิน

จากการศึกษาในผึ้งพันธุ์ (*A. mellifera*) (Châline et al., 2003; Osborne and Oldroyd, 1999; Tiley and Oldroyd, 1997) พบว่าหลังจากที่ได้นำนางพญาผึ้งพันธุ์ออกไปจากรัง แล้วมีการสร้างนางพญาฉุกเฉินขึ้นนั้น สัดส่วนของตัวอ่อนจากบาง subfamily ได้รับการเลี้ยงดูให้เจริญเป็นนางพญามากกว่าตัวอ่อนของ subfamily อื่น

แต่การศึกษาการสร้างนางพญาฉุกเฉินในผึ้งโพรง (*A. cerana*) ไม่พบความแตกต่างระหว่าง subfamily ของตัวอ่อนที่ถูกเลี้ยงให้เป็นนางพญาฉุกเฉิน (Koyama et al., 2009)

จากการศึกษาที่ผ่านมาจึงเป็นที่น่าสนใจว่าผึ้งมีหลักการหรือกลไกอย่างไร ในการเลือกตัวอ่อนที่จะเจริญไปเป็นนางพญา โดยสัตว์ทดลองที่ใช้คือผึ้งมีมีนั่นเป็นผึ้งพื้นเมืองของประเทศไทย พบรหินได้ทั่วไปและหาได้ง่าย โดยในการจำแนก subfamily ของผึ้งมีมีจะตรวจสอบโดยใช้ microsatellite DNA ซึ่งใช้กันอย่างแพร่หลายในการทำวิจัยผึ้ง (Halling et al., 2001; Oldroyd et al., 1996; 1998; Palmer and Oldroyd, 2001; Wattanachaiyengcharoen et al., 2003).

ผึ้งเป็นสัตว์เศรษฐกิจที่ทำรายได้ให้กับผู้เลี้ยงเป็นอย่างมาก มีผลิตภัณฑ์มากมายที่เป็นสินค้าเศรษฐกิจ เช่น น้ำผึ้ง นมผึ้ง (royal jelly) เกสรผึ้ง (pollen) เป็นต้น นอกจากนี้ผึ้งยังช่วยในการผสมเกสรดอกไม้ทำให้เกษตรกรได้รับผลผลิตทางการเกษตรมากขึ้นด้วย

ผึ้งมีมี (*A. florea*) เป็นผึ้งที่พบได้ทั่วไปในประเทศไทย และคนไทยรู้จักและคุ้นเคยกับผึ้งมีมีเป็นอย่างดีเนื่องจากได้มีการตีผึ้งมีมีเพื่อกินน้ำผึ้ง และประชาชนบางกลุ่มมีรายได้จากการขายผึ้งมีมี โดยคาดว่าในแต่ละปีมีการตีรังผึ้งมีมีขายจำนวนหลายพันถึงหมื่นรัง ซึ่งเป็นรังผึ้งที่ได้มาจากธรรมชาติทั้งหมด

เนื่องจากความรู้ที่น้อยนักด้านชีววิทยาของผึ้งมีมียังมีการศึกษาไม่มากนัก จึงยังไม่สามารถเลี้ยงผึ้งมีมีได้ ซึ่งถ้าหากมีการทำลายผึ้งมีมีในธรรมชาติจำนวนมากอย่างนี้ อาจทำให้ประชากรของผึ้งมีมีลดจำนวนลงอย่างรวดเร็ว ดังนั้นการศึกษานี้ซึ่งเป็นการศึกษาปัจจัยในการเลือกตัวอ่อนผึ้งเพื่อสร้างนางพญา จึงเป็นการศึกษาชีววิทยาของผึ้งมีมีอีกอย่างหนึ่งที่จะสามารถนำไปเป็นข้อมูลในการวิจัยเพื่อใช้ประโยชน์และการอนุรักษ์ผึ้งมีมีต่อไปได้

1.2 วัตถุประสงค์

1. ตรวจสอบปัจจัยในการเลือกสร้างนางพญาฉุกเฉินของผึ้งมีมี เมื่อนางพญาตัวเก่าหายไป
2. เพย์แพร์ผลงานวิจัยที่ได้เพื่อให้เป็นที่อ้างอิงในเชิงวิชาการทั้งในและต่างประเทศ
3. เป็นข้อมูลในการวิจัยต่อเนื่องเกี่ยวกับชีววิทยาของผึ้งในด้านอื่นๆ เพื่อการใช้ประโยชน์ในการเลี้ยงและการอนุรักษ์ผึ้งมีมีต่อไป

2. วิธีการศึกษา

2.1 การเก็บตัวอย่าง

สถานที่เลี้ยงผึ้ง

เนื่องจากผึ้งมีมเป็นผึ้งธรรมชาติ มีลักษณะนิสัยหนึ่งง่ายหากสภาพอากาศไม่เหมาะสม และแหล่งอาหารไม่เพียงพอ ดังนั้นจึงได้นำผึ้งไปเลี้ยงไว้ในสวนมะพร้าว ที่ อ. ดำเนินสะดวก จ. ราชบุรี ซึ่งมะพร้าวเป็นแหล่งอาหารให้ผึ้งได้ตลอดปี โดยจะช่วยลดอัตราการหนีรังและทำให้สามารถเก็บตัวอย่างผึ้งเป็นระยะเวลาيانานได้

รังของผึ้งมีมที่นำมาเลี้ยงเพื่อการศึกษาวิจัยนั้นถูกตัดหั้งรังมาจาก อ. เมือง จ. สมุทรสงคราม โดยขั้นตอนในการตัดและเคลื่อนย้ายรังผึ้งมีมดังนี้ (ภาพที่ 2-5)

1. ใช้ค้อนรุ่มรังผึ้งเพียงเล็กน้อยแล้วใช้น้ำเปล่าพ่นไปที่ตัวผึ้งในรังเพื่อให้ปักของผึ้งเปียก และลดความก้าวრ้าวของผึ้ง โดยข้อควรระวังในขั้นตอนนี้คือต้องไม่รุบวันรังผึ้งนานหรือมากจนเกินไป เนื่องจากจะทำให้ผึ้งหนีรังง่ายหลังจากที่เคลื่อนย้ายไปเลี้ยงแล้ว

2. ใช้กรรไกรตัดกิ่งตัดกิ่งไม้ที่ผึ้งทำรังอยู่ทั้งสองด้านอย่างระมัดระวัง โดยให้เว้นระยะห่างจากตัวรังอย่างน้อยด้านละ 15 ซ.ม. เพื่อให้สามารถจับรังผึ้งขณะที่เคลื่อนย้ายและผูกเชือกไว้กับสถานที่เลี้ยงผึ้งใหม่ได้ง่าย

3. นำรังผึ้งที่ตัดได้มาใส่ในกล่องไม้สำหรับเคลื่อนย้ายผึ้ง ยึดรังผึ้งกับกล่องไม้ให้แน่นเพื่อป้องกันการกระแทกกระเทือนของรังผึ้งในขณะที่เคลื่อนย้าย ในขั้นตอนนี้อาจจะต้องใช้ระบบอกรีดน้ำพรมน้ำให้แห้งผึ้งด้วยหากผึ้งเริ่มมีการแตกรัง จากนั้นใช้ผ้าขาวบางคลุมกล่องผึ้งให้มิดชิดและใช้เชือกฟางมัดปากกล่องให้เรียบร้อยและมั่นใจว่าผึ้งไม่สามารถเล็ดลอดออกจากกล่องได้

4. เคลื่อนย้ายผึ้งไปยังบริเวณที่เตรียมไว้สำหรับเลี้ยงผึ้งเพื่อทำการวิจัย โดยในระหว่างที่เคลื่อนย้ายต้องระวังไม่ให้อุณหภูมิภายนอกรังผึ้งสูงจนเกินไปโดยการพรมน้ำเปล่าเป็นระยะ เพื่อป้องกันการหนีรังเมื่อนำมาไปแขวนไว้ที่เลี้ยงผึ้งที่ใหม่แล้ว

5. เมื่อเคลื่อนย้ายผึ้งไปบริเวณที่เตรียมไว้สำหรับเลี้ยงผึ้งแล้ว ดำเนินการแขวนรังผึ้งไว้บนกิ่งไม้ที่มีร่มเงาสามารถปักป้ายรังผึ้งจากแสงแดด ลม และฝนได้ แต่ต้องมีระยะห่างกันไม่น้อยกว่า 10 เมตร

6. ก่อนเริ่มทำการทดลองควรปล่อยให้ผึ้งมีการปรับตัวประมาณ 1 สัปดาห์ โดยระหว่างนั้นต้องมีการให้อาหารที่เป็นน้ำเชื้อมแก่ผึ้ง และต้องระวังเรื่องศัตรูของผึ้งโดยเฉพาะมด ซึ่งเป็นสาเหตุหลักที่ทำให้ผึ้งหนีรังอย่างรวดเร็ว หากพบว่ามีมดมาบุกกวนรังผึ้ง สามารถป้องกันได้โดยใช้ปิโตรเลียมเบลล์หรือสารบีท่าบริเวณรอบๆ กิ่งไม้ทั้งสองด้านของรังผึ้ง โดยควรทาให้ทั่งจากรังอย่างน้อย 10 ซ.ม.

ภาพที่ 2 การตัดรังผึ้งมีมิ้ม

ภาพที่ 3 รังผึ้งมีมิ้มที่ตัดจากธรรมชาติ

ภาพที่ 4 การนำผึ้งมีมิ้มลงกล่องเพื่อการเคลื่อนย้าย

ภาพที่ 5 การแขวนผึ้งมีมิ้มในพื้นที่ทำการทดลอง

วิธีการเก็บตัวอย่างผึ้ง

ผึ้งงาน

1. มีการเก็บตัวอย่างผึ้งงานอย่างน้อยรังละ 100 ตัว เพื่อใช้ในการตรวจสอบพันธุกรรมและเพื่อให้ทราบจำนวน subfamily ภายในรัง
2. การเก็บตัวอย่างผึ้งงานนั้นใช้วิธีเก็บตัวอย่างแบบสุ่มโดยเก็บผึ้งงานทั่วทั้งในวันเริ่มต้นการทดลอง เพื่อจากป้องกันผึ้งงานแปลงปลอมจากรังอื่น ซึ่งถ้าหากเก็บผึ้งงานหลังจากที่มีการนำหางพญาออกจากรัง เพื่อกระตุ้นการสร้างนางพญาฉุกเฉินแล้ว อาจมีผึ้งงานจากรังอื่นแปลงปลอมเข้ามาได้
3. เก็บตัวอย่างผึ้งงานไว้ในแอลกอฮอล์ความเข้มข้น 95% และเก็บไว้ที่อุณหภูมิ -20°C เพื่อใช้ในการสกัดดีเอ็นเอและวิเคราะห์ subfamily ต่อไป

ตัวอ่อนนางพญาฉุกเฉิน

1. หลังจากที่เก็บตัวอย่างผึ้งงานแล้ว ซักนำให้มีการสร้างนางพญาฉุกเฉินด้วยการนำหางพญาออกจากรัง โดยต้องระมัดระวังไม่ให้นางพญาได้รับบาดเจ็บหรือตาย เนื่องจากต้องมีการนำหางพญากลับมาใส่คืนที่รังอีก เนื่องจากการสร้างนางพญาฉุกเฉินแต่ละครั้งนั้นได้จำนวนตัวอ่อนนางพญาไม่เพียงพอต่อการวิเคราะห์ผลทางสถิติ

2. นำหางพญาที่ได้ใส่ไว้ในกลักนางพญา โดยในที่นี้ได้ดัดแปลงจากกลักนางพญามาตรฐานให้เป็นถุงตาข่ายขนาด 5×10 ซม. ภายในถุงบรรจุน้ำตาลก้อน 1 ก้อน เพื่อให้เป็นอาหารของนางพญา พร้อมทั้งใส่ผึ้งงานเข้าไปในถุงตาข่ายประมาณ 8-10 ตัว เพื่อให้ช่วยป้อนอาหารให้แก่นางพญา หลังจากนั้นมัดปากถุงตาข่ายให้แน่นด้วยเส้นด้ายขนาดเล็ก (ภาพที่ 6)

3. นำถุงตาข่ายที่มีหางพญา ผึ้งงาน และอาหาร จากข้อ 2 ไปฝากไว้ที่รังผึ้งมีมรังอื่นเพื่อให้นางพญาดังกล่าวสามารถมีชีวิตรอดอยู่ในสภาพรังที่ปกติ (ภาพที่ 7)

4. ทิ้งรังผึ้งมีมรังในข้อ 1 ให้อยู่ในสภาพขาดน้ำทางพญา (ภาพที่ 8) โดยต้องหมั่นตรวจสอบและให้อาหารอยู่เสมอ หลังจากเวลาผ่านไปประมาณ 1 สัปดาห์ จะเห็นหลอดนางพญาฉุกเฉินถูกสร้างขึ้นจำนวนมาก (ภาพที่ 9)

5. เก็บตัวอ่อนนางพญาฉุกเฉินโดยใช้มีดตัดหลอดนางพญาออกที่ละหลอด (ภาพที่ 10, 11) แล้วนำตัวอ่อนภายในหลอดนางพญาใส่ในหลอด microcentrifuge tube ขนาด 1.5 ml ที่ภายในมีแอลกอฮอล์ความเข้มข้น 95% บรรจุอยู่ โดยแยกหลอดละตัว

6. เก็บหลอด microcentrifuge tube ที่บรรจุตัวอ่อนนางพญาฉุกเฉินไว้ที่อุณหภูมิ -20°C เพื่อใช้ในการสกัดดีเอ็นเอและวิเคราะห์ subfamily ต่อไป

7. นำผึ้งนางพญาที่ฝากไว้ในรังอื่นจากข้อ 3 มาใส่ในรังเก่าของมันดังเดิม เพื่อให้นางพญาได้วางไข่ อีกครั้ง เนื่องจากตัวอ่อนผึ้งนางพญาฉุกเฉินที่เก็บได้แต่ละรังอาจไม่เพียงพอต่อการวิเคราะห์ subfamily และการวิเคราะห์ผลทางสถิติ โดยก่อนที่จะปล่อยนางพญากลับรังเดิมต้องแขวนถุงตาข่ายไว้ที่รังเดิมก่อนประมาณ 30 นาที เพื่อให้ผึ้งงานได้รับรู้กลิ่นของนางพญาตันเอง และจะได้ไม่ทำร้ายนางพญา เมื่อผึ้งงานคุ้นกลิ่นนางพญาแล้วจึงเปิดถุงตาข่ายเพื่อปล่อยนางพญาออก

8. ทิ้งรังดังกล่าวไว้ประมาณ 1 สัปดาห์ เพื่อให้นางพญาได้วางไข่และมีตัวอ่อนผึ้งเพียงพอต่อการผลิตนางพญาฉุกเฉิน จึงเริ่มต้นทำการทดลองใหม่อีกครั้งตามข้อ 2 เป็นต้นไป

ภาพที่ 6 ถุงตาก่ายที่ใช้เก็บผึ้งนางพญา

ภาพที่ 7 การแขวนถุงตาก่ายไว้ที่รังผึ้งมีมีม

ภาพที่ 8 รังที่อยู่ในสภาพขาดน้ำของพญา

ภาพที่ 9 หลอดนางพญาฉุกเฉิน

ภาพที่ 10 การตรวจสอบรังผึ้งมีมีม

ภาพที่ 11 ตัวอ่อนนางพญาในระยะต่างๆ

2.2 การตรวจสอบครอบครัวย่อย (subfamily) ของผึ้งงานและตัวอ่อนของนางพญาฉุกเฉิน โดยใช้ microsatellite DNA

การสกัดดีเอ็นเอ (Nanork et al., 2006; Oldroyd et al., 1997; Walsh et al., 1991)

ผึ้งงาน

ดีเอ็นเอจากผึ้งงานถูกสกัดจากขาหลังของผึ้งตัวเต็มวัย

1. ใช้กรรไกรตัดขาหลังออกใส่ในหลอด microcentrifuge tube ขนาด 1.5 ml จากนั้นตัดขาผึ้งให้ละเอียด
2. เติมสารละลาย Chelex® 100 (5% w/v in TE_{0.1}) ที่ร้อนจัดลงไปหลอดละ 500 ml
3. ต้มหลอดตัวอย่างเป็นเวลา 15 นาที โดยต้องเจรูเล็ก ๆ ที่ฝ่าหลอด microcentrifuge tube ก่อน เพื่อป้องกันฝ่าหลอดเปิดออกตอนต้ม
4. นำหลอดตัวอย่างมาปั่นเหวี่ยงที่ 1,200 rpm เป็นเวลา 15 นาที แล้วปีเปตเอาส่วน supernatant ไปใส่หลอดใหม่
5. เจือจางสารละลายดีเอ็นเอด้วยน้ำกลั่นในอัตราส่วน 1:2

ตัวอ่อนผึ้งนางพญา

1. ใช้กรรไกรตัดตัวอ่อนของผึ้งนางพญาให้มีขนาดเท่าหัวไม้ขีดใส่ในหลอด microcentrifuge tube ขนาด 1.5 ml จากนั้นบดให้ละเอียด
2. เติมสารละลาย Chelex® 100 (5% w/v in TE_{0.1}) ที่ร้อนจัดลงไปหลอดละ 200 ml
3. ต้มหลอดตัวอย่างเป็นเวลา 15 นาที โดยต้องเจรูเล็ก ๆ ที่ฝ่าหลอด microcentrifuge tube ก่อน เพื่อป้องกันฝ่าหลอดเปิดออกตอนต้ม
4. นำหลอดตัวอย่างมาปั่นเหวี่ยงที่ 1,200 rpm เป็นเวลา 15 นาที แล้วปีเปตเอาส่วน supernatant ไปใส่หลอดใหม่
5. เจือจางสารละลายดีเอ็นเอด้วยน้ำกลั่นในอัตราส่วน 1:1

การเพิ่มปริมาณดีเอ็นเอในตัวแม่ microsatellite DNA

ตัวแม่ microsatellite DNA ที่มีการเพิ่มปริมาณด้วยวิธี PCR มี 5 loci ได้แก่ B124, A8, A88, A107 และ Ap249 โดย primer และสภาวะที่ใช้ทำ PCR แสดงไว้ในตารางที่ 1

ตารางที่ 1 รายละเอียด primer และสภาวะที่ใช้ทำ PCR

Locus	Primer sequences	MgCl ₂ conc. (mM)	Annealing temp. (°C)	Number of cycle	References
A8	5'CGAAGGTAAGGTAAATGGAAC 5'GGCGGTTAAAGTTCTGG	1.5	55	35	Estoup <i>et al.</i> , 1994
A88	5'CGAATTAACCGATTGTCG 5'GATCGCAATTATTGAAGGAG	1.5	55	35	Estoup <i>et al.</i> , 1994
A107	5'CCGTGGGAGGTTATTGTCG 5'GGTTCGTAACGGATGACACC	1.5	55	35	Estoup <i>et al.</i> , 1994
Ap249	5'CGCGCGACGACGAAATGT 5'CAGTCCTTGATTCGCGCTACC	1.5	57 55 52 49	9 9 9 15	Solignac <i>et al.</i> , 2003
B124	5'GCAACAGGTCGGGTTAGAG 5'CAGGATAGGGTAGGTAAGCAG	1.5	55	35	Estoup <i>et al.</i> , 1994

2.3 การวิเคราะห์ข้อมูล

1. วิเคราะห์ effective paternity (Nielsen *et al.*, 2003)
2. วิเคราะห์ relatedness within brood (Pamilo, 1993)
3. วิเคราะห์ความน่าจะเป็นที่บาง patriline ไม่ถูกตรวจสอบเนื่องจากผึ้งตัวผู้มี allele เดียวกัน (Higgs *et al.*, 2009)
4. วิเคราะห์สัดส่วนของผึ้งงานและผึ้งนางพญาในแต่ละ subfamily จากตัวอย่างทั้งหมดด้วย Fisher's Exact test ด้วยโปรแกรม "Monte Carlo RxC 2.2" (W. Engels, University of Wisconsin)

3. ผลการศึกษา

3.1 ตัวอย่างผึ้งมีม

การเก็บตัวอย่างผึ้งมีม ได้รับดำเนินการตั้งแต่เดือนมีนาคม 2551-เดือนเมษายน 2552 ผึ้งมีมที่ใช้ในการศึกษาวิจัยครั้งนี้ทั้งหมดจำนวน 17 รัง ซึ่งส่วนใหญ่ผึ้งจะหนีรังก่อนที่จะเสร็จสิ้นการทดลอง จึงทำให้ได้จำนวนตัวอ่อนผึ้งนางพญาฉุกเฉินในแต่ละรังไม่เพียงพอต่อการวิเคราะห์ subfamily และการวิเคราะห์ข้อมูลทางสถิติ มีผึ้งมีมเพียง 3 รัง ที่สามารถเก็บตัวอย่างนางพญาฉุกเฉินได้จำนวนเพียงพอต่อการวิเคราะห์ ดังตารางที่ 2

ตารางที่ 2 รายละเอียดการเก็บตัวอย่างผึ้งมีม

รัง	วัน/เดือนปีที่เก็บตัวอย่าง	การทดลอง	จำนวนตัวอ่อนนางพญาฉุกเฉิน
A. florea R1	31/05/09 07/06/09 14/06/09 22/06/09 28/06/09	- นำนางพญาออกจากรังและเก็บตัวอย่างผึ้งงาน - เก็บตัวอย่างนางพญาฉุกเฉินและนำนางพญาเก่ากลับมาไว้ที่รัง - เก็บตัวอย่างนางพญาฉุกเฉินที่พบร่วมและนำนางพญาตัวเก่าออกเพื่อกระตุนให้สร้างนางพญาฉุกเฉินเพิ่มเติม - เก็บตัวอย่างนางพญาฉุกเฉินและนำนางพญาเก่ากลับมาไว้ที่รัง - ผึ้งหนีรัง	12 10 24 รวม 46
A. florea R2	31/05/09 07/06/09 22/06/09 28/06/09 05/07/09	- นำนางพญาออกจากรังและเก็บตัวอย่างผึ้งงาน - เก็บตัวอย่างนางพญาฉุกเฉินและนำนางพญาเก่ากลับมาไว้ที่รัง - นำนางพญาออกจากรังเพื่อกระตุนให้สร้างนางพญาฉุกเฉินเพิ่มเติม - เก็บตัวอย่างนางพญาฉุกเฉิน - ผึ้งหนีรัง	21 รวม 33
A. florea B	16/04/09	- เก็บตัวอย่างผึ้งงานและตัวอ่อนนางพญา - ผึ้งหนีรังในวันเดียวกัน	28 รวม 28

3.2 การตรวจสอบครอบครัวย่อย (subfamily)

มีการตรวจสอบครอบครัวย่อยของผึ้งงานและผึ้งนางพญา จำนวน 2 รัง คือรัง *A. florea* R1 (รังที่ 1) และ *A. florea* R2 (รังที่ 2) เนื่องจากหลังการสกัด DNA และเพิ่มปริมาณ DNA แล้ว รังที่ 3 (*A. florea* B) มีจำนวนตัวอ่อนผึ้งงานพญาฉุกเฉินที่สามารถวิเคราะห์ subfamily ได้ไม่เพียงพอต่อการวิเคราะห์ข้อมูลทางสถิติ จึงเลือกเฉพาะรังที่ 1 และ 2 เท่านั้น โดยจากการวิเคราะห์โดยใช้ microsatellite DNA จำนวน 5 loci พบว่า

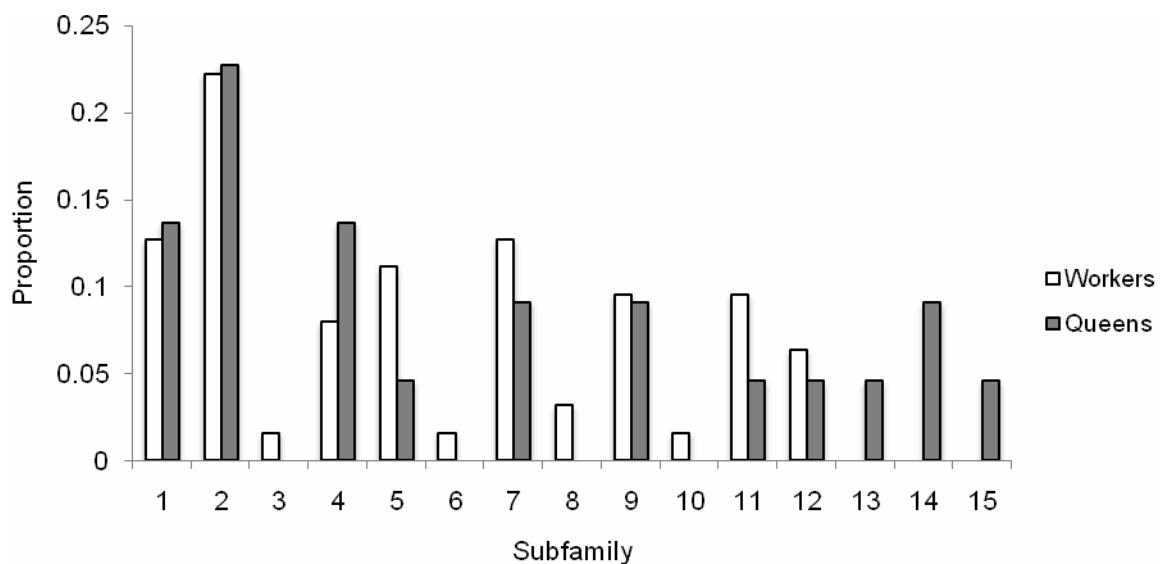
รังที่ 1 พบรอบครัวย่อย จำนวน 15 ครอบครัวย่อย จากการวิเคราะห์ผึ้งงานจำนวน 63 ตัว และนางพญาจำนวน 22 ตัว (ตารางที่ 3, ภาพที่ 12)

รังที่ 2 พบรอบครัวย่อย จำนวน 22 ครอบครัวย่อย จากการวิเคราะห์ผึ้งงานจำนวน 69 ตัว และนางพญาจำนวน 20 ตัว (ตารางที่ 4, ภาพที่ 13)

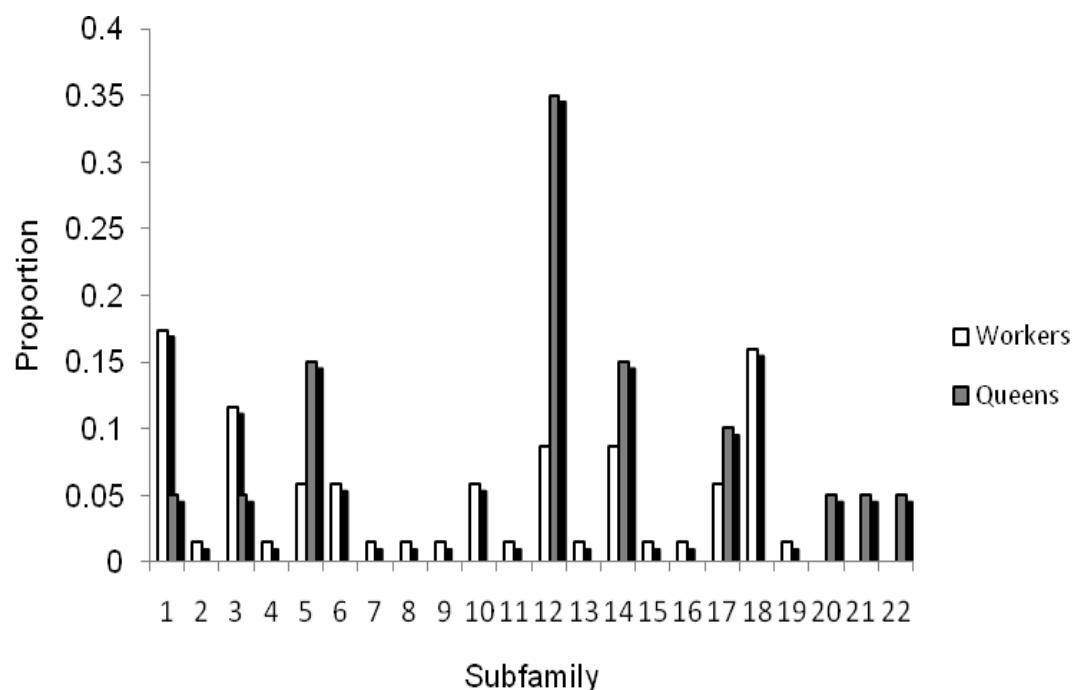
ตารางที่ 3 รายละเอียดข้อมูลของผึ้งมีรังที่ 1

Loci	Ap249	A88	A8	A107	B124	Subfamily number	No. of workers	Proportion	No. of queens	Proportion
In workers	194	136	166	109	188	1	8	0.1269841	3	0.1363636
	194	140	166	105	191	2	14	0.2222222	5	0.2272727
	203	140	166	111	191	3	1	0.015873	0	0
	203	140	166	111	188	4	5	0.0793651	3	0.1363636
	204	140	166	111	191	5	7	0.1111111	1	0.0454545
	207	143	166	109	192	6	1	0.015873	0	0
	210	143	166	111	192	7	8	0.1269841	2	0.0909091
	210	143	166	113	191	8	2	0.031746	0	0
	211	140	166	105	191	9	6	0.0952381	2	0.0909091
	211	143	166	113	191	10	1	0.015873	0	0
	213	143	166	105	192	11	6	0.0952381	1	0.0454545
	213	143	166	109	192	12	4	0.0634921	1	0.0454545
						Total no. workers	63			

ตารางที่ 3 (ต่อ)


Loci	Ap249	A88	A8	A107	B124	Subfamily number	No. of workers	Proportion	No. of queens	Proportion
Only in queens	206	109	166	191	140	13	0	0	1	0.0454545
	210	105	166	191	140	14	0	0	2	0.0909091
	211	98	166	191	140	15	0	0	1	0.0454545
						Total no. queens			22	

ตารางที่ 4 รายละเอียดข้อมูลของผึ้งมีรังที่ 2


Loci	Ap249	A88	A8	A107	B124	Subfamily number	No. of workers	Proportion	No. of queens	Proportion
In workers	187	140	168	105	192	1	12	0.173913	1	0.05
	194	140	166	105	192	2	1	0.0144928	0	0
	194	140	164	113	191	3	8	0.115942	1	0.05
	199	140	164	105	191	4	1	0.0144928	0	0
	199	140	164	113	191	5	4	0.057971	3	0.15
	199	140	168	105	191	6	4	0.057971	0	0
	199	140	168	105	192	7	1	0.0144928	0	0
	199	143	166	109	?	8	1	0.0144928	0	0
	199	143	168	109	192	9	1	0.0144928	0	0
	200	140	168	105	191	10	4	0.057971	0	0
	203	140	164	113	191	11	1	0.0144928	0	0
	203	140	170	109	191	12	6	0.0869565	7	0.35
	203	143	?	109	?	13	1	0.0144928	0	0

ตารางที่ 4 (ต่อ)

Loci	Ap249	A88	A8	A107	B124	Subfamily number	No. of workers	Proportion	No. of queens	Proportion
In workers	204	140	170	109	191	14	6	0.0869565	3	0.15
	204	143	166	113	188	15	1	0.0144928	0	0
	205	140	?	111	192	16	1	0.0144928	0	0
	209	140	166	111	191	17	4	0.057971	2	0.1
	211	140	166	105	192	18	11	0.1594203	0	0
	216	140	?	111	192	19	1	0.0144928	0	0
Only in queens										
	194	140	166	105	191	20	0	0	1	0.05
	199	140	166	105	191	21	0	0	1	0.05
	199	140	168	98	?	22	0	0	1	0.05
						Total no workers	69			
						Total no queens			20	

ภาพที่ 12 จำนวน subfamily และสัดส่วนระหว่างผึ้งงานและผึ้งนางพญาที่พบในแต่ละ subfamily ในผึ้งมีม รังที่ 1

ภาพที่ 13 จำนวน subfamily และสัดส่วนระหว่างผึ้งงานและผึ้งนางพญาที่พบในแต่ละ subfamily ในผึ้งมีม รังที่ 2

3.3 การวิเคราะห์ข้อมูล

จากการวิเคราะห์ข้อมูลพบว่าค่า Effective paternity ในรังที่ 1 = 9.18 และ รังที่ 2 = 11.80 ส่วนค่า Relatedness within the brood ในรังที่ 1 = 0.30 และ รังที่ 2 = 0.29

ค่าความนำจะเป็นที่บาง subfamily ไม่ถูกตรวจสอบเนื่องจากผึ้งตัวผู้มี allele เดียวกันในห้อง 2 รังต่ำมากคือ รังที่ 1 = 0.003 และ รังที่ 2 = 0.0008 แสดงว่าการวิเคราะห์ subfamily มีความผิดพลาดต่ำ

ในรังที่ 1 ไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างสัดส่วนของนางพญา (n=22) และผึ้งงาน (n=63) ในแต่ละ subfamily ($P = 0.479$) ในขณะที่รังที่ 2 พบความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างสัดส่วนของนางพญา (n=20) และผึ้งงาน (n=69) ในแต่ละ subfamily ($P = 0.031$) แสดงให้เห็นว่ามีการเลือกตัวอ่อนผึ้งในบาง subfamily ให้เจริญขึ้นเป็นนางพญาฉุกเฉินหรือเกิด actual conflict ขึ้นในระหว่างที่มีการสร้างนางพญาฉุกเฉินในผึ้งมีมิ้น

4. อภิรายและสรุปผลการศึกษา

การศึกษาความขัดแย้งในการสืบพันธุ์ระหว่างการสร้างนางพญาฉุกเฉินของผึ้งมีมี (A. florea) ในครั้งนี้มีความสอดคล้องกับการศึกษาการสร้างนางพญาฉุกเฉินที่ผ่านมาในผึ้งพันธุ์ (A. mellifera) ซึ่งศึกษาโดย Trilley and Oldroyd, 1997, Osborne and Oldroyd, 1999 และ Châline et al., 2003 โดยแสดงให้เห็นว่า เมื่อรังอยู่ในสภาพขาดน้ำทางพญา ผึ้งงานในรังมีการเลือกตัวอ่อนที่จะเจริญเป็นนางพญาอย่างเฉพาะเจาะจง ซึ่งตัวอ่อนผึ้งงานในบาง subfamily จะถูกเลือกและเลี้ยงดูให้เจริญเติบโตเป็นนางพญาฉุกเฉิน ทั้งนี้มีสมมุติฐาน 3 ประการที่จะสามารถอธิบายเหตุผลว่า เพราะเหตุใดตัวอ่อนผึ้งงานจากบาง subfamily เท่านั้นที่ถูกเลือกให้เป็นนางพญาฉุกเฉิน ได้แก่

1. Subfamily ที่มีสมาชิกมากที่สุดจะมีอิทธิพลในการเลือกนางพญามากกว่าผึ้งใน subfamily อื่น เนื่องจากมันจะเลือกเลี้ยงตัวอ่อนผึ้งงานที่เกิดจากพ่อเดียวกัน
2. ผึ้งงานจากบาง subfamily ซึ่งไม่จำเป็นว่าต้องมีจำนวนสมาชิกมากที่สุดในรัง สามารถแสดงพฤติกรรมที่มีอิทธิพลต่อการเลือกนางพญาฉุกเฉิน โดยเลือกเลี้ยงตัวอ่อนผึ้งงานที่เกิดจากพ่อเดียวกัน
3. ตัวอ่อนผึ้งงานในบาง subfamily มีกลไกพิเศษที่สามารถดึงดูดให้ผึ้งงานตัวเต็มวัยเข้ามาสนใจ และเลี้ยงให้เป็นนางพญาฉุกเฉิน

แต่สมมุติฐานข้อใดที่น่าจะเป็นคำตอบที่เป็นไปได้มากที่สุด

ข้อมูลที่ได้จากการศึกษาวิจัยครั้งนี้ไม่ได้สนับสนุนสมมุติฐานข้อที่ 1 เนื่องจากในรังที่ 2 นั้น subfamily ที่พบในนางพญาฉุกเฉินมากที่สุดไม่ใช่ subfamily ที่มีผึ้งงานตัวเต็มวัยมากที่สุด (ภาพที่ 13) แต่ข้อมูลจากการวิจัยครั้งนี้ได้สนับสนุนสมมุติฐานในข้อ 2 และ 3 โดยเฉพาะใน subfamily ที่ 12 ในรังที่ 2 นั้น แสดงให้เห็นว่าตัวอ่อนผึ้งงานจาก subfamily นี้ สามารถดึงดูดให้ผึ้งงานตัวเต็มวัยเข้ามาป้อนอาหารและเลี้ยงดูให้เจริญเป็นนางพญาฉุกเฉินได้มากกว่าตัวอ่อนผึ้งงานจาก subfamily อื่นๆ ซึ่งกลไกนี้เป็นที่รู้จักกันดีในมดกัดใบ (leaf cutting ants, *Acromyrmex echinatior*) (Hughes and Boomsma, 2008)

ในธรรมชาติการสร้างนางพญาฉุกเฉินของผึ้งประกอบไปด้วย 2 ระยะคือ ระยะที่ 1 การเลี้ยงดูทางพญา (queen rearing) โดยผึ้งงานจะสร้างนางพญาฉุกเฉินจำนวนมากขึ้นมาภายในรัง (Winston, 1987) และระยะที่ 2 การกำจัดนางพญา (queen elimination) คือ virgin queen ที่เกิดขึ้นมาจะถูกกำจัดให้หลุดลงไปเหลือนางพญาเพียงตัวเดียวเท่านั้นที่จะครองรังต่อไป (Tarpy and Fletcher, 1998) ซึ่งทั้ง 2 ระยะนี้ พฤติกรรมของผึ้งงานที่แสดงออกในการคัดเลือกนางพญาตัวใหม่จะมีผลต่อ fitness 2 ระดับ คือ fitness ของตัวเอง (individual fitness) และ fitness ของรัง (colony fitness) โดยถ้าหากผึ้งงานแสดงพฤติกรรม nepotism คือการเลือกเลี้ยงพี่-น้องที่มีพันธุกรรมใกล้ชิดกันให้เป็นนางพญาตัวใหม่แสดงว่า potential conflict ได้เปลี่ยนไปเป็น actual conflict ซึ่งเป็นการเพิ่ม fitness ให้แก่ตัวเอง (individual fitness) เนื่องจากเป็นการถ่ายทอดพันธุกรรมของตนเองสู่รุ่นต่อไปได้ แต่ถ้าหากผึ้งงานเลือกเลี้ยงนางพญาฉุกเฉินที่มีความสามารถในการสืบพันธุ์สูงโดยไม่เกี่ยวข้องกับความสามารถสัมพันธ์ทางพันธุกรรมแล้วจะเป็นประโยชน์โดยรวมต่อรังเนื่องจากเป็นการเพิ่ม fitness ของรัง (colony fitness) ในกรณีนี้แสดงว่าไม่เกิด actual conflict ขึ้น (Tarpy et al., 2004) ซึ่งอาจเป็นไปได้ว่าข้อจำกัดของข้อมูลที่ผึ้งงานได้รับนั้นทำให้เกิดความผิดพลาดสูงในการวินิจฉัยความเป็นพี่-น้องของผึ้ง จึงทำให้หลุดการเกิดพฤติกรรม nepotism (Ratnieks and Reeve, 1991) หรืออีกทางหนึ่งคือการเกิด nepotism อาจทำให้ fitness ของรังลดลง (Ratnieks and Reeve, 1991; 1992) ซึ่งในกรณีนี้

การคัดเลือกในระดับรัง (colony) เพื่อประโยชน์ในการทำงานร่วมกันและประสิทธิภาพของรังจะมีอิทธิพล
เห็นของการคัดเลือกเพื่อประโยชน์ส่วนตัวของผึ้งแต่ละตัว (Tarpay et al., 2004)

โดยสรุปแม้ว่าการเปลี่ยนแปลงจาก potential conflict ให้เป็น actual conflict ยังไม่ชัดเจนนักในการสร้างนางพญาของผึ้งชนิดอื่น แต่จากการศึกษาในครั้งนี้เป็นข้อมูลแสดงให้เห็นว่า actual reproductive conflict ได้เกิดขึ้นในระหว่างการสร้างนางพญาฉุกเฉินในสัดส่วนที่มากกว่า subfamily อื่น แต่ทั้งนี้อาจมีกลไกอย่างอื่นที่เกี่ยวข้องในการสร้างนางพญาของผึ้ง ซึ่งยังต้องมีการศึกษาเพิ่มเติมเพื่อหาข้อด้อยและข้อจำกัดของกลไกเหล่านี้ต่อไป

ເອກສາຣອ້າງອີງ

Boomsma J.J., F.L.W. Ratnieks (1996) Paternity in eusocial Hymenoptera. *Phil. Trans. R. Soc. Lond. B.* 351, 947-975.

Barron A.B., B.P. Oldroyd, F.L.W. Ratnieks (2001) Worker reproduction in honey-bees (*Apis*) and the anarchistic syndrome: a review. *Behav. Ecol. Sociobiol.* 50, 199-208.

Châline N., G. Arnold, et al. (2003) Patriline differences in emergency queen rearing in the honey bee *Apis mellifera*. *Ins. Soc.* 50, 234-236.

Estoup A., M. Solignac, et al. (1994) Precise assessment of the number of patrilines and of genetic relatedness in honey bee colonies. *Proc. R. Soc. Lond. B* 258, 1-7.

Halling L., B.P. Oldroyd, et al. (2001). Worker policing in the bee *Apis florea*. *Behav. Ecol. Sociobiol.* 49, 509-513.

Higgs J.S., W. Wattanachaiyingcharoen, et al. (2009) A scientific note on a genetically-determined colour morph of the dwarf honey bee, *Apis andreniformis* (Smith, 1858). *Apidologie* 40, 513-514.

Hughes W.O.H., J.J. Boomsma (2008) Genetic royal cheats in leaf-cutting ant societies. *Proc. Nat. Acad. Sci. USA* 105, 5150-5153.

Koeniger N., G. Koeniger (2000). Reproductive isolation among species of the genus *Apis*. *Apidologie* 31, 313-339.

Koyama S., T. Takagi, et al. (2009) Absence of reproductive conflict during queen rearing in *Apis cerana*. *Ins. Soc.* 56, 171-175.

Martin C., B.P. Oldroyd, M. Beekman (2004) Differential reproductive success among subfamilies in queenless honey bee colonies (*Apis mellifera* L.) *Behav. Ecol. Sociobiol.* 56, 42-49.

Nanork P., S. Wongsiri, B.P. Oldroyd (2006) The reproductive dilemmas of queenless red dwarf honey bee (*Apis florea*) workers. *Behav. Ecol. Sociobiol.* 61, 91-97.

Nielsen R., D.R. Tarpy, et al. (2003) Estimating effective paternity number and the effective number of alleles in a population. *Mol. Ecol.* 12, 3157-3164.

Oldroyd B.P., M.J. Clifton, et al. (1998). Evolution of mating behavior in the genus *Apis* and an estimate of mating frequency in *A. cerana* (Hymenoptera: Apidae). *Ann. Entomol. Soc. Am.* 91, 700-709.

Oldroyd B.P., M.J. Clifton, et al. (1997) Polyandry in the genus *Apis*, particularly *Apis andreniformis*. *Behav. Ecol. Sociobiol.* 40, 17-26.

Oldroyd B.P., T.E. Rinderer, et al. (1992). Effects of intracolonial genetic diversity on honey bee (Hymenoptera: Apidae) colony performance. *Ann. Entomol. Soc. Am.* 85, 335-343.

Oldroyd B.P., A.J. Smolenski, et al. (1996) Levels of polyandry and intracolonial genetic relationships in *Apis dorsata* (Hymenoptera: Apidae). *Ann. Ent. Soc. Am.* 89, 276-283.

Oldroyd B.P., S. Wongsiri (2006) Asian Honey Bees. Biology, Conservation and Human Interactions, Harvard University Press, Cambridge, Ma.

Osborne K.E., B.P. Oldroyd (1999) Possible causes of reproductive dominance during emergency queen rearing by honeybees. *Anim. Behav.* 58, 267-272.

Page R.E., G.E. Robinson, 1994. Reproductive competition in queenless honey bee colonies (*Apis mellifera* L.). *Behav. Ecol. Sociobiol.* 35, 99-107.

Palmer K.A., B.P. Oldroyd (2000). Evolution of multiple mating in the genus *Apis*. *Apidologie*. 31, 235-248.

Palmer K.A., B.P. Oldroyd (2001) Mating frequency in *Apis florea* revisited (Hymenoptera: Apidae). *Insects Sociaux* 48, 40-43.

Pamilo P. (1993) Polyandry and allele frequency differences between the sexes in the ant *Formica aquilonia*. *Heredity* 70, 472-480.

Ratnieks F.L.W. (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. *Am. Nat.* 132, 217-236.

Ratnieks F.L.W., H.K. Reeve (1991) The evolution of queen-rearing nepotism in social Hymenoptera: effects of discrimination costs on swarming species. *J. Evol. Biol.* 4, 93-115.

Ratnieks F.L.W., H.K. Reeve (1992) Conflict in single-queen Hymenopteran societies: the structure of conflict, and processes that reduce conflict in advanced eusocial species. *J. Theor. Biol.* 158, 33-65.

Rinderer T.E., J.A. Stelzer, et al. (1998). Levels of polyandry and intracolonial genetic relationships in *Apis koschevnikovi*. *J. Apic. Res.* 37, 281-287.

Robinson G.E., R.E. Page, M.K. Fondrk (1990) Intracolonial behavioral variation in worker oviposition, oophagy, and larval care in queenless honey bee colonies. *Behav. Ecol. Sociobiol.* 26, 315-323.

Schmid-Hempel P. (1995) Parasites and social insects. *Apidologie* 26, 255-271.

Seeley T.D. (1985) Honeybee ecology, Princeton University Press, Princeton.

Sherman P.W., T.D. Seeley H.K. Reeve (1988). Parasites, pathogens and polyandry in social hymenoptera. *Am. Nat.* 131, 602-610.

Solignac M., D. Vautrin, et al. (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (*Apis mellifera* L.) genome. *Mol. Ecol. Notes* 3, 307-311.

Tarpy D.R., D.J.C. Fletcher (1998) Effects of relatedness on queen competition within honey bee colonies. *Anim. Behav.* 55, 537-543.

Tarpy D.R., D.C. Gilley, et al. (2004) Levels of selection in a social insect: a review of conflict and cooperation during honey bee (*Apis mellifera*) queen replacement. *Behav. Ecol. Sociobiol.* 55, 213-233.

Tilley C.A., B.P. Oldroyd (1997) Unequal representation of subfamilies among queen and worker brood of queenless honey bee (*Apis mellifera*) colonies. *Anim. Behav.* 54, 1483-1490.

Walsh P.S., D.A. Metzger, et al. (1991) Chelex (R)100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. *Biotechniques* 10, 507.

Wattanachaiyingcharoen W., B.P. Oldroyd, et al. (2003). A scientific note on the mating frequency of *Apis dorsata*. *Apidologie*. 34: 85-86.

Winston M.L. (1987) *The Biology of the Honey Bee*. Harvard University Press, Cambridge, Mass.

Output จากโครงการวิจัย

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

ผลจากการดำเนินงานวิจัยเรื่อง ความขัดแย้งในการสืบพันธุ์ในระหว่างการสร้างนางพญาฉุกเฉิน ของผึ้งมีม *Apis florea* สามารถตีพิมพ์ผลงานวิจัยในวารสารวิชาการนานาชาติ จำนวน 4 เรื่อง ได้แก่

1. **Nanork, P.**, Low, P. A., Proft, K. M., Lim, J., Deowanish, S., Wongsiri, S. and Oldroyd, B. P. 2010. Actual reproductive conflict during emergency queen rearing in *Apis florea*. *Apidologie*. doi: 10.1051/apido/2010052.
2. Chapman, N.C., **Nanork, P.**, Gloag, R.S., Wattanachaiyingcharoen, W., Beekman, M., and Oldroyd, B.P. 2009. Queenless colonies of the Asian red dwarf honey bee (*Apis florea*) are infiltrated by workers from other queenless colonies. *Behavioral Ecology*. doi:10.1093/beheco/arp065.
3. Chapman, N.C., **Nanork, P.**, Reddy, M.S., Bhat, N.S., Beekman, M and Oldroyd, B.P. 2008. Nestmate recognition by guards of the Asian hive bee *Apis cerana*. *Insectes Sociaux*. doi: 10.1007/s00040-008-1016-3
4. Oldroyd, B.P. and **Nanork, P.** 2009. Conservation of Asian honey bees. *Apidologie*. 40(3): 296-312.

2. การนำผลงานวิจัยไปใช้ประโยชน์

ผลจากการดำเนินงานในโครงการนี้สามารถนำไปใช้ประโยชน์ในเชิงวิชาการ ได้แก่ การพัฒนาการเรียนการสอน โดยนำองค์ความรู้จากการวิจัยไปใช้ในการเรียนการสอนวิชา Apiculture

3. การนำเสนอผลงานในที่ประชุมวิชาการ

ผลงานวิจัยจากการได้นำเสนอในที่ประชุมวิชาการ 1 เรื่อง ได้แก่

1. Nanork, P., Deowanish, S. and Wongsiri, S. 2008. Genetic differences among subfamily of emergency queen rearing in the red dwarf honey bee, *Apis florea*. การประชุมวิชาการมหาสารคามวิจัย ครั้งที่ 4 วันที่ 4-5 กันยายน 2551 โรงแรมตากสินา จังหวัดมหาสารคาม

ភាគធម្មាក

Reprints ผลงานวิจัยที่ตีพิมพ์เผยแพร่ในวารสารวิชาการนานาชาติ 4 เรื่อง ได้แก่

1. **Nanork, P.**, Low, P. A., Proft, K. M., Lim, J., Deowanish, S., Wongsiri, S. and Oldroyd, B. P. 2010. Actual reproductive conflict during emergency queen rearing in *Apis florea*. *Apidologie*. doi: 10.1051/apido/2010052.
2. Chapman, N.C., **Nanork, P.**, Gloag, R.S., Wattanachaiyingcharoen, W., Beekman, M., and Oldroyd, B.P. 2009. Queenless colonies of the Asian red dwarf honey bee (*Apis florea*) are infiltrated by workers from other queenless colonies. *Behavioral Ecology*. doi:10.1093/beheco/arp065.
3. Chapman, N.C., **Nanork, P.**, Reddy, M.S., Bhat, N.S., Beekman, M and Oldroyd, B.P. 2008. Nestmate recognition by guards of the Asian hive bee *Apis cerana*. *Insectes Sociaux*. doi: 10.1007/s00040-008-1016-3
4. Oldroyd, B.P. and **Nanork, P.** 2009. Conservation of Asian honey bees. *Apidologie*. 40(3): 296-312.

บทความวิจัยสำหรับการเผยแพร่

ผึ้งมีม (Apis florea) กับความขัดแย้งที่เกิดขึ้นภายในรัง ระหว่างการสร้างงานพญาฉุกเฉิน

ผึ้งมีม (Apis florea) เป็นผึ้งที่สร้างรังแบบรังเดี่ยว มักจะทำรังบนกิ่งไม้ที่มีร่มเงาปิดบัง (ภาพที่ 1) พบได้ทั่วไปในประเทศไทย คนไทยรู้จักและคุ้นเคยกับผึ้งมีมเป็นอย่างดีเนื่องจากได้มีการตีผึ้งมีมเพื่อนำมาใช้ประโยชน์หลายอย่าง และประชาชนบางกลุ่มมีรายได้หลักจากการขายผึ้งมีม ตลาดขายน้ำผึ้งพบได้ทั่วทุกภาคของประเทศไทย เช่น ตลาดนัดสวนจตุจักร ตลาดพื้นเมือง หรือตามริมถนนหลวงในภาคเหนือและภาคตะวันออกเฉียงเหนือ โดยคาดว่าในปีหนึ่ง ๆ มีการตัดผึ้งมีมจากธรรมชาติมากขึ้นจนหลายพันถึงหมื่นรัง ซึ่งถ้าหากมีการล่าผึ้งมีมจำนวนมากเช่นนี้ทุกปีอาจส่งผลทำให้ประชากรผึ้งมีมลดลงอย่างรวดเร็วได้

ภาพที่ 1 รังของผึ้งมีม (A. florea)

ชีววิทยาโดยทั่วไปของผึ้งมีมคล้ายคลึงกับผึ้งชนิดอื่นในสกุลเอปีส (genus Apis) โดยเป็นแมลงสังคมแท้ (eusocial insect) ที่มีวิวัฒนาการในการอยู่ร่วมกันมานานกว่า 30 ล้านปีแล้ว โดยไม่มีผึ้งตัวใดตัวหนึ่งสามารถดำรงชีวิตอย่างโดดเดี่ยวได้เป็นระยะเวลานาน ทำให้ผึ้งต้องมีการอยู่ร่วมกันเป็นสังคม เปรียบเสมือนครอบครัวซึ่งประกอบไปด้วยผึ้ง 3 วรรณะคือ ผึ้งนางพญา (queen) ผึ้งงาน (worker) ซึ่งเป็นเพศเมีย และผึ้งตัวผู้ (drone) โดยผึ้งนางพญาเป็นวรณะที่มีบทบาทหน้าที่สำคัญที่สุดภายในรังคือ มีหน้าที่ในการวางไข่เพื่อผลิตสมาชิกรุ่นต่อๆ ไปของรัง รวมทั้งควบคุมกิจกรรมต่างๆ ของสมาชิกภายในรังโดยการปล่อยสารเคมีที่เรียกว่า queen pheromone ออกมารสสื่อสารและควบคุมการทำงานของสมาชิกตัวอื่นๆ ภายในรัง โดยปกติจะพบผึ้งงานพญาเพียง 1 ตัวต่อรังเท่านั้นและจะมีอายุประมาณ 1-2 ปี สำหรับผึ้งงานมีหน้าที่ในการดูแลตัวอ่อน หาอาหาร ทำความสะอาดและซ้อมแซมรัง รวมทั้งการป้องกันรัง ส่วนผึ้งตัวผู้มีหน้าที่ในการผสมพันธุ์เท่านั้นหลังจากนั้นตัวผู้ส่วนใหญ่จะตาย โดยส่วนใหญ่ผึ้งตัวผู้จะเกิดมาเฉพาะในฤดูผสมพันธุ์หรือช่วงเวลาที่มีอาหารเพียงพอเท่านั้น

ในสภาพธรรมชาติ รังผึ้งบางรังเกิดการสูญเสียของพญาโดยบังเอิญ เช่น นางพญาตายหรือหายไปในระหว่างการบินออกไปผสมพันธุ์ นางพญาแก่ตาย หรืออาจจะตกลงไปตายในระหว่างการเดินสำรวจและวางไข่ ทำให้รังผึ้งนั้นอยู่ในสภาพขาดงานของพญา ประชากรผึ้งงานภายใต้การดูแลของผึ้งงานหน้าที่ทำการวางไข่เพื่อผลิตผึ้งงานอีกต่อไป และการทำงานของผึ้งงานภายใต้การดูแลของผึ้งงานเหล่านั้น ทำให้สังคม

ของรังผึ้งนั้นล่ำສ Haley และประชารผึ้งภายในรังตายไปในที่สุด ดังนั้นหากรังผึ้งขาดทางพญาแล้วจึงต้องมีการสร้างนางพญาฉุกเฉิน (emergency queen) (ภาพที่ 2) ขึ้นมาทดแทนอย่างรวดเร็วเพื่อให้สังคมผึ้งภายในรังอยู่ในสภาพปกติ โดยผึ้งงานภายในรังจะคัดเลือกตัวอ่อนผึ้งเพศเมียที่มีอายุน้อย แล้วให้อาหารที่เป็นนมผึ้ง (royal jelly) แก่ตัวอ่อนเหล่านั้นจนกระทั่งปิดหลอดร่วง ซึ่งจะส่งผลให้ตัวอ่อนดังกล่าวเจริญเติบโตขึ้นมาเป็นผึ้งนางพญาได้ โดยการสร้างนางพญาลูกเฉินแต่ละครั้งนั้นมีการสร้างจำนวนหลายตัวพร้อมกัน แต่จะมีเพียง 1 ตัวเท่านั้นที่จะกลายเป็นตัวเต็มวัยก่อนแล้วกลายเป็นผึ้งนางพญาของรังตัวต่อไป แต่เนื่องจากมีผึ้งตัวอ่อนเพศเมียมีจำนวนหลายร้อยถึงพันตัวอยู่ภายในรัง แล้วผึ้งงานตัวเต็มวัยรู้ได้อย่างไรว่าควรคัดเลือกตัวอ่อนตัวใดให้เป็นนางพญาตัวต่อไป

ภาพที่ 2 หลอดนางพญาฉุกเฉินของผึ้งมีม

เนื่องจากผึ้งนางพญา มีการผสมพันธุ์กับผึ้งตัวผู้จำนวนหลายตัวกลางอากาศ เมื่อได้จำนวน sperm ที่เก็บไว้ในถุงเก็บ sperm เพียงพอสำหรับการปฏิสนธิกับไปต่อลดชีวิตของนางพญาแล้ว นางพญาจะบินกลับรังแล้วเริ่มวางไข่ ซึ่งไข่ที่ได้รับการปฏิสนธิจะเจริญเป็นเพศเมียในขณะที่ไข่ที่ไม่ได้รับการปฏิสนธิจะเจริญไปเป็นเพศผู้ ดังนั้นผึ้งเพศเมียทั้งหมดในรังจึงเกิดจากพ่อหลายตัว โดยผึ้งที่เกิดจากพ่อเดียวกันเรียกว่าเป็นครอบครัวย่อย (subfamily) เดียวกัน จากเหตุการณ์ดังกล่าวจึงทำให้ความสัมพันธ์ (relatedness) ของผึ้งภายในรังไม่เท่ากัน โดยผึ้งงานที่เกิดมาจากพ่อเดียวกันจะมีความสัมพันธ์ใกล้ชิดกันมากกว่าผึ้งงานที่เกิดมาจากคนละพ่อ ซึ่งอาจเป็นกลไกอย่างหนึ่งในการคัดเลือกตัวอ่อนผึ้งที่จะเจริญไปเป็นนางพญาต่อไปเมื่อไม่มีนางพญาตัวเก่าอยู่ภายในรัง โดยผึ้งงานจะเลือกตัวอ่อนที่มีความสัมพันธ์ใกล้ชิดกับตนเองมากที่สุดให้เป็นนางพญาตัวต่อไปเพื่อที่จะได้ถ่ายทอดพันธุกรรมของตนเองสู่รุ่นต่อไปด้วย

การศึกษาเกี่ยวกับการสร้างนางพญาฉุกเฉินที่ผ่านมาส่วนใหญ่เป็นการศึกษาในผึ้งพันธุ์ (*A. mellifera*) ซึ่งเป็นผึ้งที่นิยมเลี้ยงเพื่อการค้า แต่สำหรับการศึกษาครั้งนี้ได้ดำเนินการศึกษาเกี่ยวกับการสร้างนางพญาฉุกเฉินในผึ้งมีมซึ่งเป็นผึ้งพื้นเมืองของประเทศไทย เพื่อให้ได้ข้อมูลทางด้านชีววิทยาของผึ้งมีมเพิ่มเติมซึ่งจะเอื้อต่อการเพาะเลี้ยงและการอนุรักษ์ผึ้งมีมต่อไป

จากการศึกษาพบว่าในระหว่างการสร้างนางพญาฉุกเฉินของผึ้งมีมนั้นมีความขัดแย้งในการสืบพันธุ์ (actual reproductive conflict) ภายในรังเกิดขึ้น โดยแสดงให้เห็นว่าเมื่อรังอยู่ในสภาพขาดทางพญา ผึ้งงานในรังมีการเลือกตัวอ่อนที่จะเจริญเป็นนางพญาอย่างเฉพาะเจาะจง โดยตัวอ่อนผึ้งงานในบางครอบครัวย่อย

เท่านั้นที่จะถูกเลือกและเลี้ยงดูให้เจริญเติบโตเป็นนางพญาฉุกเฉิน ซึ่งจากข้อมูลที่ได้จากการวิจัยนี้สามารถอธิบายการเกิดพฤติกรรมนี้ได้ 2 ประการคือ

1. ผึ้งงานในบางครอบครัวย่อย (ซึ่งไม่จำเป็นว่าต้องมีจำนวนสมาชิกมากที่สุดในรัง) สามารถแสดงพฤติกรรมที่มีอิทธิพลต่อการเลือกนางพญาฉุกเฉิน โดยจะเลือกเลี้ยงตัวอ่อนผึ้งงานที่เกิดจากฟองเดียวกัน

2. ตัวอ่อนผึ้งงานในบางครอบครัวย่อย มีกลไกพิเศษที่สามารถดึงดูดให้ผึ้งงานตัวเต็มวัยเข้ามาสนใจและเลี้ยงให้เป็นนางพญาฉุกเฉิน

อย่างไรก็ตามการศึกษานี้เป็นเพียงกลไกหนึ่งของการคัดเลือกการสร้างนางพญาฉุกเฉินในผึ้งเท่านั้น ซึ่งข้อจำกัดอีกอย่างหนึ่งในการสร้างนางพญาผึ้งนั้นยังคงเป็นที่น่าสนใจในการศึกษาต่อไป

Actual reproductive conflict during emergency queen rearing in *Apis florea**[†]

Piyamas NANORK¹, Petah A. LOW², Kirstin M. PROFT², Julianne LIM²,
Sureerat DEOWANISH³, Siriwat WONGSIRI⁴, Benjamin P. OLDRYD²

¹ Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand

² Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia

³ Center of Excellence in Entomology: Bee Biology, Biodiversity of Insects and Mites, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

⁴ School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

Received 9 December 2009 – Revised 5 April 2010 – Accepted 12 April 2010

Abstract – Unequal relatedness among workers in polyandrous honey bee colonies provides the potential for reproductive conflict during emergency queen rearing. Adult workers can increase their inclusive fitness by selectively rearing their full-sisters as queens. We investigated the paternity of emergency queens in two colonies of *Apis florea* using five microsatellite loci. In colony 1 there was no significant difference between the proportions of queens and workers in each patriline ($P = 0.48$). In contrast, the relative frequency of patrilines in colony 2 differed significantly between queens and workers ($P = 0.03$). More than a quarter of the queens reared in this colony were of a single patriline, suggesting that larvae were selected for rearing as queens non-randomly.

Apis florea / nepotism / emergency queen rearing / DNA microsatellites

1. INTRODUCTION

A dwarf red honey bee (*Apis florea*) queen typically mates with 13 or more drones (Palmer and Oldroyd, 2001). This means that colonies comprise multiple patrilines of supersisters (Seeley, 1985; Oldroyd and Wongsiri, 2006). As a consequence of the non-clonal nature of colonies, there is the potential for reproductive conflict between workers of different patrilines and, under certain circumstances, it is expected that this could translate into actual conflict (Visscher, 1993; Beekman and Ratnieks, 2003). For example, during emergency queen rearing workers could potentially increase their inclusive fitness by nepo-

tistically raising supersister queens (Hamilton, 1964; Ratnieks et al., 2006).

There is mixed evidence for the presence or absence of actual conflict during queen rearing in *Apis* species as evidenced by some patrilines being over-represented in queen brood. An early study based on allozymes that strongly suggested nepotism in queen rearing (Page et al., 1989), was later criticised on statistical grounds (Oldroyd et al., 1990). More recently three microsatellite studies showed small but statistically significant biases in patriline frequency in queen brood versus worker brood in *A. mellifera* (Tilley and Oldroyd, 1997; Osborne and Oldroyd, 1999; Châline et al., 2003). However studies of the behaviour of nurse workers on queen cells failed to show that workers direct care towards supersisters (Châline et al., 2005; Koyama et al., 2007).

Corresponding author: Ben Oldroyd,
boldroyd@bio.usyd.edu.au

* Manuscript editor: Klaus Hartfelder

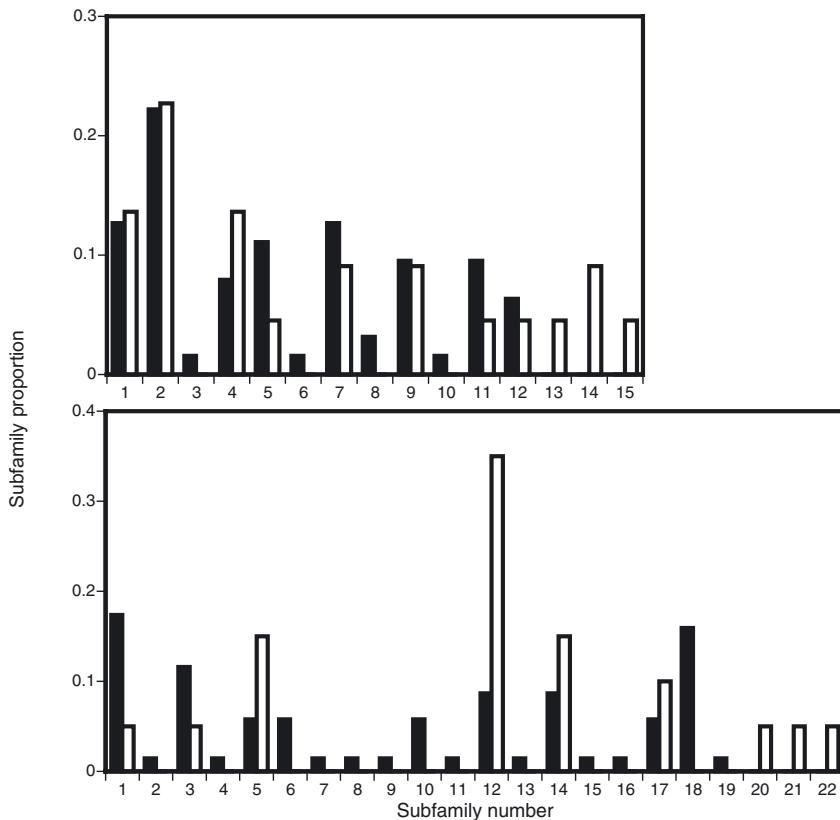
The only study of nepotism in *A. cerana* failed to find significant differences in patriline frequencies between queen and worker brood (Koyama et al., 2009). Here we investigate the possibility of actual reproductive conflict during emergency queen rearing in *A. florea*, one of the two most basal species of the genus.

2. MATERIALS AND METHODS

2.1. Sample collection

In June 2008 two wild *A. florea* colonies were translocated (Oldroyd et al., 2008) to a coconut plantation in Ratchaburi Province, Thailand where they were attached to low tree branches 10 m apart. Loss of adult bees from the colonies during transfer was minimal. After the colonies had settled down for a week a random sample of workers was taken from each colony by scraping workers from the comb into an open vial of alcohol. The queens were then searched for and transferred into cages. The queens were maintained in cages with attendant workers from their own colonies. Queen removal triggered an emergency queen rearing response, where workers select a portion of the available worker brood to rear as queens (Châline et al., 2003). The colonies were kept queenless until they produced sealed queen cells. We then removed queen larvae and pupae and stored them at -20°C for DNA analysis. We then reintroduced the queens to their respective colonies where they again laid eggs. We successfully repeated the procedure twice for colony 1 and once for colony 2. Both colonies absconded before the next sample could be taken.

2.2. Genetic and statistical analysis


DNA was extracted using Chelex® 100 resin (Walsh et al., 1991; Oldroyd et al., 1997). Five microsatellite markers B124, A8, A88, A107 (Estoup et al., 1993, 1994) and Ap24 (Solignac et al., 2003) were amplified using standard PCR methods to determine patrilines of the queens and workers (Estoup et al., 1994; Oldroyd et al., 1996; Palmer and Oldroyd, 2001). The proportion of workers and queen pupae belonging to each patriline in the pooled samples were compared with a resampling version of Fisher's Exact test using the program 'Monte Carlo Rx C 2.2' (W. Engels, University of Wisconsin).

3. RESULTS

We found 15 patrilines amongst the sample of workers and queens from colony 1 and 22 in colony 2. The effective paternity of colony 1, calculated using the correction for sample size proposed by Nielsen et al. (2003), was 9.18, and relatedness within the brood (Pamilo, 1993) was 0.30. Colony 2 had an effective paternity of 11.80 and relatedness of 0.29. The probability of not detecting a patriline due to two drones having the same alleles at all loci tested was very low (0.003 for colony 1, and 0.0008 for colony 2), when calculated using the very conservative assumptions that the only alleles present were those detected in our samples, and that all alleles had equal frequencies (Higgs et al., 2009). In colony 1 there was no significant difference between the proportions of queens ($n = 22$) and workers ($n = 63$) in each patriline ($P = 0.479$). In contrast, the relative frequency of patrilines in colony 2 differed significantly between queens ($n = 20$) and workers ($n = 69$); ($P = 0.031$). More than a quarter of the queens reared in this colony were of a single patriline (Fig. 1), suggesting that larvae of this patriline were selected non-randomly to be raised as queens.

4. DISCUSSION

As with some previous studies in *A. mellifera* (Tilley and Oldroyd, 1997; Osborne and Oldroyd, 1999; Châline et al., 2003), the selection of *A. florea* larvae for rearing as queen cells is not always random with respect to patriline. Three mechanisms have been suggested to explain why certain patrilines can be over-represented in emergency queen cells (Page et al., 1989; Tilley and Oldroyd, 1997): (1) the most numerous worker patriline dominates the process of queen rearing and preferentially rears supersisters; (2) certain patrilines produce workers that are behaviourally, although not necessarily numerically, dominant during queen rearing and preferentially rear their supersisters; or (3) larvae from certain patrilines are particularly attractive to the worker bees for rearing as queens. Which hypothesis is the more likely?

Figure 1. Relative proportions of patrilines amongst workers (□ white bars) and queen pupae (■ grey bars) in two colonies of *Apis florea* undertaking emergency queen rearing. (a) = Colony 1, $n = 63$ workers, 22 queens; (b) = Colony 2, $n = 69$ workers, 20 queens. Patriline frequencies differed significantly between queen pupae and workers in colony 2 ($P = 0.031$) but not in colony 1 ($P = 0.479$).

Our data do not support the first hypothesis, which requires that the most commonly reared queens be from the most common worker patriline; in colony 2, the most commonly reared patriline amongst the queen pupae was not the most numerous among the workers (Fig. 1b). The second and third hypotheses are both supported by our data. In particular, the strong over-representation of patriline 12 in the queens of colony 2 suggests that this patriline was highly attractive to nurse workers for rearing as queens. Such reproductive cheating is known from the leaf cutting ant *Acromyrmex echinatior* (Hughes and Boomsma, 2008). However, Osborne and Oldroyd (1999) failed to find evidence for cheating genotypes in *A. mellifera*, since sig-

nificant differences in the relative frequencies of patrilines between queen and worker brood were only found in colonies in which brood and workers were related. Châline et al. (2005) were unable to establish a link between the paternity of workers performing queen cell care and the paternity of the queens within the queen cells, also in *A. mellifera*. Thus the mechanisms that give rise to patriline differences between queen and worker brood remain obscure in *A. mellifera* and by corollary in *A. florea*.

The mixed evidence for nepotism during emergency queen rearing that is reported here and elsewhere suggests that in many cases potential conflict does not translate into actual conflict. A variety of mechanisms may select

against actual conflict in the form of nepotistic behaviour and may explain why, despite expectations arising from kin selection theory, an allele conferring nepotistic behaviour does not rapidly spread to fixation (Ratnieks and Reeve, 1991; Osborne and Oldroyd, 1999). It is possible that informational constraints, leading to high error rates in workers distinguishing between full and half-sisters, reduce the selective pressure for nepotism (Ratnieks and Reeve, 1991). Alternatively, nepotism could have high costs to colony fitness, through the loss of pre-existing queen larvae or reduced efficiency of nepotistic workers (Ratnieks and Reeve, 1991, 1992). In this case, selection at the colony level for cooperation and efficiency is likely to predominate over individual-level selection for self interest (Tarpay et al., 2004). Our study suggests that in *A. florea*, as in other *Apis* species, actual reproductive conflict may occur during emergency queen rearing, but further work is required to clarify the costs and constraints responsible for regulating its occurrence.

ACKNOWLEDGEMENTS

This work was supported by the Thailand Research Fund and the Commission on Higher Education (grant number: MRG5080275), the Office of the National Research Council of Thailand and the Australian Research Council. We thank Madeleine Beekman for her helpful comments on the draft.

Existence d'un conflit pour la reproduction durant l'élevage des reines de remplacement chez *Apis florea*.

Apis florea / népotisme / élevage / reine de remplacement / microsatellites ADN

Zusammenfassung – Der Fortpflanzungskonflikt bei der Aufzucht von Ersatzköniginnen bei *Apis florea*. Ungleichgewichte im Verwandtschaftsgrad von Arbeiterinnen innerhalb eines Volkes bedingt durch Mehrfachpaarung der Königin stellen ein Potential für Fortpflanzungskonflikte bei der Aufzucht von Ersatzköniginnen dar, da Arbeiterinnen durch die Bevorzugung von Vollschwestern bei der Königinnenaufzucht ihre inklusive Fitness erhöhen kön-

nen. Anhand von fünf Mikrosatellitenloci untersuchten wir die Vaterschaft von Ersatzköniginnen bei zwei Völkern der roten Zwergbiene *Apis florea*. Bei Volk 1 konnten wir keinen signifikanten im Verhältnis von Königinnen zu Arbeiterinnen in Bezug auf die Patrilinien erkennen ($P = 0,479$). Im Gegensatz hierzu waren bei Volk 2 die Unterschiede in den relativen Frequenzen der Patrilinien der Königinnen zu Arbeiterinnen statistisch signifikant ($P = 0,031$). Mehr als ein Viertel der in diesem Volk aufgezogenen Königinnen entstammten einer einzigen Patrilinie (Abb. 1), was auf eine nicht zufallsverteilte Auswahl von Larven für die Ersatzköniginnenaufzucht hinweist. Die effektive Vaterschaft bei Volk 1 lag bei 9,18 und das Verwandtschaftsverhältnis mit der Brut bei 0,30. Bei Volk 2 hingegen betrug die effektive Vaterschaft 11,80 und die Verwandtschaft 0,29.

Apis florea / Nepotismus / Ersatzköniginnenaufzucht / DNA Mikrosatelliten

REFERENCES

Beekman M., Ratnieks F.L.W. (2003) Power over reproduction in the social Hymenoptera, *Philos. Trans. R. Soc. Lond. B* 358, 1741–1753.

Châline N., Arnold G., Papin C., Ratnieks F.L.W. (2003) Patriline differences in emergency queen rearing in the honey bee *Apis mellifera*, *Insectes Soc.* 50, 234–236.

Châline N., Martin S.J., Ratnieks F.L.W. (2005) Absence of nepotism towards imprisoned young queens during swarming of the honey bee, *Behav. Ecol.* 16, 403–409.

Estoup A., Solignac M., Cornuet J.-M. (1994) Precise assessment of the number of patrilines and of genetic relatedness in honey bee colonies, *Proc. R. Soc. Lond. B* 258, 1–7.

Estoup A., Solignac M., Harry M., Cornuet J.-M. (1993) Characterization of (GT) n and (CT) n microsatellites in two insect species: *Apis mellifera* and *Bombylius terrestris*, *Nucleic Acids Res.* 21, 1427–1431.

Hamilton W.D. (1964) The genetical evolution of social behaviour. I & II, *J. Theor. Biol.* 7, 1–52.

Higgs J.S., Wattanachaiyingcharoen W., Oldroyd B.P. (2009) A scientific note on a genetically-determined colour morph of the dwarf honey bee, *Apis andreniformis* (Smith, 1858), *Apidologie* 40, 513–514.

Hughes W.O.H., Boomsma J.J. (2008) Genetic royal cheats in leaf-cutting ant societies, *Proc. Nat. Acad. Sci. USA* 105, 5150–5153.

Koyama S., Harano K.-i., Hiroto T., Satoh T., Obara Y. (2007) Rearing of candidate queens by honeybee, *Apis mellifera*, workers (Hymenoptera:

Apidae) is independent of genetic relatedness, *Appl. Entomol. Zool.* 42, 541–547.

Koyama S., Takagi T., Martin S.J., Yoshida T., Takahashi J. (2009) Absence of reproductive conflict during queen rearing in *Apis cerana*, *Insectes Soc.* 56, 171–175.

Nielsen R., Tarpy D.R., Reeve H.K. (2003) Estimating effective paternity number and the effective number of alleles in a population, *Mol. Ecol.* 12, 3157–3164.

Oldroyd B.P., Clifton M.J., Wongsiri S., Rinderer T.E., Sylvester H.A., Crozier R.H. (1997) Polyandry in the genus *Apis*, particularly *Apis andreniformis*, *Behav. Ecol. Sociobiol.* 40, 17–26.

Oldroyd B.P., Gloag R.S., Even N., Wattanachaiyingcharoen W., Beekman M. (2008) Nest site selection in the open-nesting honeybee *Apis florea*, *Behav. Ecol. Sociobiol.* 62, 1643–1653.

Oldroyd B.P., Rinderer T.E., Buco S.M. (1990) Nepotism in the honey bee, *Nature* 346, 707–708.

Oldroyd B.P., Smolenski A.J., Cornuet J.-M., Wongsiri S., Estoup A., Rinderer T.E., Crozier R.H. (1996) Levels of polyandry and intracolonial genetic relationships in *Apis dorsata* (Hymenoptera: Apidae), *Ann. Entomol. Soc. Am.* 89, 276–283.

Oldroyd B.P., Wongsiri S. (2006) Asian Honey Bees. Biology, Conservation and Human Interactions, Harvard University Press, Cambridge, Ma.

Osborne K.E., Oldroyd B.P. (1999) Possible causes of reproductive dominance during emergency queen rearing by honeybees, *Anim. Behav.* 58, 267–272.

Page R.E., Robinson G.E., Fondrk M.K. (1989) Genetic specialists, kin recognition and nepotism in honey-bee colonies, *Nature* 338, 576–579.

Palmer K.A., Oldroyd B.P. (2001) Mating frequency in *Apis florea* revisited (Hymenoptera: Apidae), *Insectes Soc.* 48, 40–43.

Pamilo P. (1993) Polyandry and allele frequency differences between the sexes in the ant *Formica aquilonia*, *Heredity* 70, 472–480.

Ratnieks F.L.W., Foster K.R., Wenseleers T. (2006) Conflict resolution in insect societies, *Annu. Rev. Entomol.* 51, 581–608.

Ratnieks F.L.W., Reeve H.K. (1991) The evolution of queen-rearing nepotism in social Hymenoptera: effects of discrimination costs on swarming species, *J. Evol. Biol.* 4, 93–115.

Ratnieks F.L.W., Reeve H.K. (1992) Conflict in single-queen Hymenopteran societies: the structure of conflict, and processes that reduce conflict in advanced eusocial species, *J. Theor. Biol.* 158, 33–65.

Seeley T.D. (1985) Honeybee ecology, Princeton University Press, Princeton.

Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E., Estoup A., Garnery L., Haberl M., Cornuet J.-M. (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (*Apis mellifera* L.) genome, *Mol. Ecol. Notes* 3, 307–311.

Tarpy D.R., Gilley D.C., Seeley T.D. (2004) Levels of selection in a social insect: a review of conflict and cooperation during honey bee (*Apis mellifera*) queen replacement, *Behav. Ecol. Sociobiol.* 55, 213–253.

Tilley C.A., Oldroyd B.P. (1997) Unequal representation of subfamilies among queen and worker brood of queenless honey bee (*Apis mellifera*) colonies, *Anim. Behav.* 54, 1483–1490.

Visscher P.K. (1993) A theoretical analysis of individual interests and intracolony conflict during swarming of honey bee colonies, *J. Theor. Biol.* 165, 191–212.

Walsh P.S., Metzger D.A., Higuchi R. (1991) Chelex (R)100 as a medium for simple extraction of DNA for PCR-based typing from forensic material, *Biotechniques* 10, 507.

Queenless colonies of the Asian red dwarf honey bee (*Apis florea*) are infiltrated by workers from other queenless colonies

Nadine C. Chapman,^a Piyamas Nanork,^b Rosalyn S. Gloag,^a Wandee Wattanachaiyingcharoen,^c Madeleine Beekman,^a and Benjamin P. Oldroyd^a

^aBehaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, New South Wales 2006, Australia, ^bDepartment of Biology, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand, and ^cDepartment of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

In all honey bee species studied thus far, 2–4% of the workers were not born in the sampled colony. These unrelated (nonnatal) workers are thought to arise via orientation errors while returning from foraging trips. Interestingly, in colonies of the red dwarf honey bee, *Apis florea*, the proportion of nonnatal workers increases significantly when the colonies become queenless, and these workers are more likely to have active ovaries and lay eggs than natal workers. As a result, queenless colonies are heavily parasitized with the eggs of nonnatal workers, but the origin of the parasitizing workers is currently unknown. Here we show that workers from queenless *A. florea* colonies are far more likely to leave their colony and join another colony compared with workers from queenright colonies. Choice experiments showed that these drifted workers are much more likely to join a queenless colony than a colony with a queen. Perhaps surprisingly, not many workers from queenright colonies joined queenless colonies despite the opportunity for direct reproduction in queenless colonies. We suggest that the inclusive fitness benefits of remaining in the natal colony in the presence of the queen exceed the benefits of direct reproduction in an unrelated queenless colony. *Key words:* *Apis florea*, drift, queenless, worker reproductive parasitism. [Behav Ecol 20:817–820 (2009)]

As in most social Hymenoptera, workers of the honey bees (*Apis* spp.) can produce unfertilized male-destined eggs via parthenogenesis. Yet, in colonies with a queen, the vast majority of workers do not activate their ovaries and are effectively sterile (Visscher 1989, 1996; Ratnieks 1993; Halling et al. 2001; Oldroyd et al. 2001; Paar et al. 2002; Wattanachaiyingcharoen et al. 2002; Nanork et al. 2005). An exception is the Asian honey bee *A. cerana*, where up to 5% of workers have active ovaries (Oldroyd et al. 2001; Nanork et al. 2007). Any eggs that are laid by workers are eaten (policed) by other workers. This is presumably because of the higher average relatedness of workers to offspring produced by the queen, relative to worker-produced offspring (Ratnieks and Visscher 1989; Ratnieks 1993; Visscher 1996; Ratnieks et al. 2006; Wenseleers and Ratnieks 2006). Hence, intracolony parasitism by “anarchistic” workers (where workers successfully produce males in the presence of a queen) is extremely rare (Oldroyd et al. 1994; Montague and Oldroyd 1998; Barron et al. 2001; Châline et al. 2002). In contrast, recent studies on some Asian species of *Apis* and the bumblebee *Bombus terrestris* have revealed instances of intercolony parasitism or worker reproductive parasitism (WRP; Birmingham et al. 2004; Lopez-Vaamonde et al. 2004; Nanork et al. 2005, 2007). WRP is also common in a single population of thelytokous *A. mellifera* in South Africa (Neumann et al. 2003; Baudry et al. 2004; Hartel et al. 2006; Jordan et al. 2007). These studies have led to the realization that WRP is a potentially important reproductive option for eusocial Hymenopteran workers that should not be

ignored (Lopez-Vaamonde et al. 2004; Nanork et al. 2005, 2006, 2007; Hartel et al. 2006; Beekman and Oldroyd 2008).

In the annual colonies of the bumblebee *B. terrestris*, WRP occurs late in the season, after the queen has commenced the production of new queens, and natal workers have begun to join their queen in egg laying (Lopez-Vaamonde et al. 2004). In honey bees, worker reproduction occurs almost exclusively in queenless colonies (Page and Erickson 1988; Miller and Ratnieks 2001). When a honey bee colony becomes queenless and is unable to raise a new queen (hopelessly queenless, Châline et al. 2004), the normally sterile workers activate their ovaries, cease policing worker-laid eggs, and raise a last batch of drones before the colony ultimately perishes (Page and Erickson 1988; Robinson et al. 1990; Halling et al. 2001; Miller and Ratnieks 2001; Oldroyd et al. 2001; Martin et al. 2004; Nanork et al. 2006). Hence, in both queenless honey bee colonies and bumblebee colonies at the end of the season, the host colony undergoes a transition from being intolerant of worker reproduction to being tolerant of it. The cessation of worker policing renders a colony vulnerable to WRP by unrelated workers (nonnatal) that are present in their colony (Lopez-Vaamonde et al. 2004; Nanork et al. 2005, 2006, 2007; Beekman and Oldroyd 2008). Unrelated workers have been found in the colonies of every species of *Apis* studied (Pfeiffer and Crailsheim 1998; Paar et al. 2002; Nanork et al. 2005, 2007) and are thought to have joined the colony due to orientation errors while foraging.

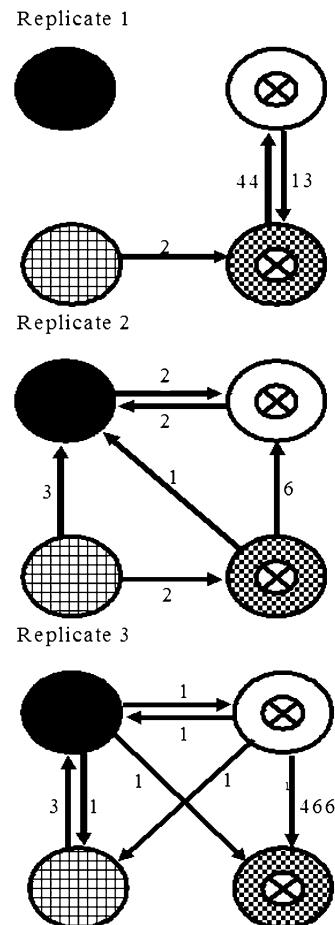
Colonies of the red dwarf honey bee, *A. florea*, build a single exposed comb constructed around a small tree branch (Wongsiri et al. 1996; Oldroyd and Wongsiri 2006). In queenright colonies, nonnatal workers are present at low frequency (average 2.0%; Nanork et al. 2005). However, after queen loss, the proportion of nonnatal workers more than doubles to

Address correspondence to N.C. Chapman. E-mail: nadine.chapman@bio.usyd.edu.au.

Received 20 October 2008; revised 24 February 2009; accepted 1 April 2009.

© The Author 2009. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org

4.5% (Nanork et al. 2005). The nonnatal workers have higher rates of ovary activation and significantly higher reproductive success relative to natal workers (Nanork et al. 2005, 2006). This suggests that parasitic workers may actively seek out queenless colonies in which to lay their eggs (Nanork et al. 2006), rather than arising from orientation errors. As *A. florea* is a migratory species and is frequently attacked by both vertebrate and invertebrate predators (Oldroyd and Wongsiri 2006), it is thought that colonies are much more likely to become queenless than *A. mellifera*.


The key to understanding WRP in queenless *A. florea* colonies is to determine the origin of the parasites. We devised an experiment in which we tracked the rates of drift between queenless and queenright colonies to determine if queenless colonies have greater drift than queenright ones and whether drifted bees originate from queenright colonies or from queenless colonies.

METHODS

Replicates 1 and 2 were conducted at Naresuan University, Phitsanulok, Thailand, in April (replicate 1) and May (replicate 2) 2007. Replicate 3 was conducted at the Research and Innovation Centre of Tropical Honeybees, Mahasarakham University, Mahasarakham, Thailand, in June 2007. For each replicate, we collected 4 wild *A. florea* colonies and tied them each to a different tree in a square with sides approximately 7 m in length. *A. florea* nest in aggregations, and this distance is common in nature (Wattanachaiyingcharoen et al. 2008). There was some variation in the size of the square due to the difficulty of finding trees that were the exact required distance apart. Each colony was provided with a shade cover, and we applied axle grease to the branches of the trees to minimize attack by ants. All the colonies were fed with honey poured directly on to the top of the comb each day in an attempt to entice the colonies not to abscond. As bigger colonies have a bigger area for honey storage at the top of the comb, the colonies were fed roughly in proportion to their population.

Our experimental design was such that each colony had both a queenright and a queenless colony equidistant from it (Figure 1), although there was another colony, of the opposite queenstate (queenless or queenright), slightly more distant on the diagonal. Using this design, twice as many workers would be expected to drift to a colony of the opposite queenstate due to them having twice as many options for that state; however, all colonies have the choice of at least one colony of each queenstate. This design was employed due to the notorious difficulty of working with *A. florea* colonies, which frequently abscond on translocation and disturbance (Seeley et al. 1982; Nanork et al. 2005, 2006; Oldroyd and Wongsiri 2006), as it allowed us to garner the most data from the least number of colonies. The distance between the colonies, the conspicuous differences between the shapes and orientation of the colonies, and the trees and shelters meant that drifting of workers between colonies was most unlikely to have arisen via orientation errors.

On day 1 of the experiments, the day following colony relocation, we marked random workers with paint on their thorax (Posca Paint Pens, Mitsubishi Pencil, Japan), using a different color for each colony. There was variation in the size of the colonies, and so colonies were assigned at random to positions in the square. Regardless of the total number of workers in each colony, all colonies within a replicate had an equal number of marked workers (1500 from each colony in replicate 1 and 2000 from each colony in replicates 2 and 3). We removed the queen from 2 colonies and confirmed her presence in the other 2 colonies (see Figure 1 for layout of colonies) and removed any

Figure 1
Layout of experimental colonies showing the number of workers that drifted between colonies. Circles with a cross in the center are queenless.

workers carrying the wrong color on day 2. Observations began on day 3. Each colony was examined carefully for the presence of nonnatal workers by gently disturbing the curtain of bees once in the afternoon of each day. We collected all drifted workers (those with a color different from that of the colony in which they were sampled). Each colony was searched for as long as was necessary to be confident that all drifted workers had been collected (usually at least 15 min). Observations continued until a colony absconded, which occurred after observations on day 7 in replicate 1 (a queenless colony) and day 5 in replicate 2 (a queenright colony). Replicate 3 had to be terminated on day 9, which was prior to any colony absconding, due to our departure from Thailand. All queen cells were removed as soon as they were constructed.

We performed χ^2 tests to test the null hypothesis that drifted bees are equally likely to come from queenless and queenright colonies and also that they are equally likely to join queenless and queenright colonies. Therefore, the total number of workers that leave queenless colonies and the total number of workers that leave queenright colonies are expected to be equal. Similarly, the number of workers joining queenless colonies should be equal to the number of workers joining queenright colonies.

We wished to determine if drifted workers were more likely to have active ovaries than workers that stay in their natal colony. We dissected the ovaries of the workers according to Oldroyd et al. (2001). Ovaries with eggs of 50% or greater of a

full size egg were classified as “active.” When there were no eggs present or eggs of less than 50% full size, they were classified as “inactive.”

RESULTS

Drifted workers were significantly more likely to join queenless colonies than queenright colonies in 2 of 3 replicates (replicate 1: $\chi_1^2 = 59.00, P < 0.001$; replicate 2: $\chi_1^2 = 1.00, P = 0.317$; replicate 3: $\chi_1^2 = 450.30, P < 0.001$; and pooled: $\chi_1^2 = 502.05, P < 0.001$). There was significant heterogeneity between the replicates ($\chi_2^2 = 502.05, P < 0.001$); this is probably because the result was not significant in replicate 2. Drifted workers were also more likely to originate from queenless rather than from queenright colonies in the same 2 replicates (replicate 1: $\chi_1^2 = 51.27, P < 0.001$; replicate 2: $\chi_1^2 = 0.62, P = 0.250$; replicate 3: $\chi_1^2 = 450.30, P < 0.001$; and pooled: $\chi_1^2 = 490.64, P < 0.001$). There was significant heterogeneity between the replicates ($\chi_2^2 = 490.64, P < 0.001$); again this is likely due to the nonsignificant result in replicate 2. Power was low in replicate 2 due to the short duration of the experiment and the small number of drifted workers. Drift of workers was for the most part unidirectional from one queenless colony into another queenless colony (Figure 1).

We were unable to dissect the ovaries of a proportion of drifted workers in replicates 1 (48/59) and 2 (8/16) due to thawing of samples during transport. None of the remaining drifted workers had active ovaries. The total number of workers which drifted between colonies differed dramatically between replicates and days (Table 1).

DISCUSSION

Our study shows that there are very high rates of drift between queenless colonies of *A. florea* after translocation, but drift into and from queenright colonies is minimal after translocation. Drift between queenless colonies seems to be actively directional because it continues for several days after translocation and hardly occurs in queenright colonies. This evidence is especially strong when one notes that with our experimental design workers drifting from each queenless colony had the choice of 2 queenright and one queenless colony to move to. Thus, if drift were random with respect to queenstate, we would expect that the total number of drifted queenless workers found in the 2 queenright colonies would have been greater than that in the single queenless colony. In fact, we found the opposite.

Why do many queenless *A. florea* workers abandon their colony only to join another unrelated queenless colony? A worker in a hopelessly queenless colony has 3 alternative reproductive strategies (Nanork et al. 2006). First, she can remain in her natal colony and raise her own offspring and those of her sisters. Second, a queenless worker can abandon

her own colony and find another queenless colony to parasitize with her eggs. Third, she could join a queenright colony. At first sight remaining in the natal colony seems the best option, but the high rates of WRP in queenless colonies (Nanork et al. 2005) means that a worker that remains in her own queenless colony may have reduced reproductive success because some of the colony's resources are utilized to produce offspring of nonnatal parasites (Nanork et al. 2006). Furthermore, disturbed queenless *A. florea* colonies almost always abscond before successfully raising mature drones (Nanork et al. 2005, 2006; Oldroyd and Wongsiri 2006). This may be a ploy by the colony to reduce the risks of WRP, but the success of this strategy has not yet been investigated, and it involves abandoning offspring. A queenless worker that moves into a queenright colony faces a reproductive dead end as any eggs that she lays will be policed by the other workers and she will invest in the rearing of offspring to which she is unrelated. Thus, for some workers, joining another queenless colony, and becoming a parasite rather than the parasitized may be a better option. Thus, transfer between queenless colonies may be favored by selection. Often the cells of queenless colonies are filled with many eggs (Oldroyd and Wongsiri 2006), while only one pupa will emerge from each cell. Where reproductive resources are limited (in this case by the number of cells), dispersal is expected to occur (Hamilton and May 1977; Taylor 1988). A worker which leaves the colony increases the reproductive success of those she leaves behind, as it frees up limited resources. As the worker is related to those that remain in the home colony, she thus retains her inclusive fitness benefits, while possibly improving her own direct reproductive fitness. Her former nest mates also gain fitness from any offspring that she produces elsewhere. The reproductive fitness of queenless colonies that abscond is unknown; however, whether or not the queenless colony absconds, the flow of a proportion of workers into other queenless colonies in the area may be an effective bet-hedging strategy. The more chances of individual reproduction, the greater the fitness of the entire queenless colony.

Very few queenless workers joined queenright colonies. We are unable to say whether this is because they are rejected by queenright colonies or because they preferentially join queenless colonies. There is evidence that workers with active ovaries are more likely to be the subject of aggression than workers without active ovaries (Sakagami 1954; van der Blom 1991; Visscher and Dukas 1995; Dampney et al. 2002), and no drifted workers with active ovaries were found in this experiment. We note that it is an adaptive strategy to join queenless colonies where worker-laid eggs will be raised and avoid queenright colonies where their eggs will be policed (Halling et al. 2001).

Interestingly, very few workers from queenright colonies joined queenless colonies, despite the direct reproductive opportunities such a move would provide. However, a worker in a queenright colony may gain greater inclusive fitness by raising her queen's offspring compared with the direct fitness she would gain by attempting to join a queenless colony and raise a few drones. Obviously, the best reproductive strategy for an individual worker in a queenright colony is to gain both inclusive fitness by raising her queen's offspring and direct fitness by parasitizing queenless colonies with her eggs. At the individual level, every worker would prefer this strategy, but there may be constraints on a worker's ability to do so. For example, a worker that is reproductively active in another colony might be rejected when she returns to her own colony. Certainly, the lack of workers with active ovaries in queenright *A. florea* colonies (Halling et al. 2001) indicates that workers using this reproductive strategy are rare or absent. A further option would be for queenright colonies to allocate a low proportion of

Table 1
Number of drifted workers between *Apis florea* colonies

Day	Replicate 1	Replicate 2	Replicate 3
3	16	9	404
4	16	4	53
5	13	3	9
6	10		4
7	4		2
8			1
9			1
Total	59	16	474

workers to activate their ovaries and seek out queenless colonies to join and parasitize with their eggs. At low levels, the colony would remain assured of its inclusive fitness benefits, while maximizing the small chance of some workers gaining personal reproduction. However, our data showing that queenright workers stay at home indicate that this strategy has not evolved.

Nanork et al. (2005) found that nonnatal workers had higher ovary activation rates than natal workers. Here no drifted workers were found to have active ovaries, and so it seems that this ovary activation occurs after nonnatal workers join their adopted colony.

FUNDING

Endeavour Australia Research Fellowship (to N.C.C.); Baillieu Research Scholarship Grant-in-aid (to N.C.C.); Commission on Higher Education (to P.N.); Thailand Research Fund (to P.N. and W.W.); and Australian Research Council (to B.P.O. and M.B.).

The authors wish to thank Sorasak Nak-eam, Touchkanin Jongjittivimol, and Atsalek Ruttanawannee for their assistance in collecting the colonies and members of the Behaviour and Genetics of Social Insects Laboratory, University of Sydney, for their helpful suggestions on experimental design and the anonymous reviewers for their comments that improved the manuscript. The experiment presented in this paper complied with the current laws of Australia and Thailand.

REFERENCES

Barron AB, Oldroyd BP, Ratnieks FLW. 2001. Worker reproduction in honey-bees (*Apis*) and the anarchic syndrome: a review. *Behav Ecol Sociobiol.* 50:199–208.

Baudry E, Kryger P, Allsopp M, Koeniger N, Vautrin D, Mougel F, Cornuet J-M, Solignac M. 2004. Whole-genome scan in thelytokous-laying workers of the cape honeybee (*Apis mellifera capensis*): central fusion, reduced recombination rates and centromere mapping using half-tetrad analysis. *Genetics.* 167:243–252.

Beckman M, Oldroyd BP. 2008. When workers disunite: intraspecific parasitism in eusocial bees. *Annu Rev Entomol.* 53:19–37.

Birmingham AL, Hoover SER, Winston ML, Ydenberg RC. 2004. Drifting bumble bee (Hymenoptera: Apidae) workers in commercial greenhouses may be social parasites. *Can J Zool.* 82:1843–1853.

Châline N, Martin SJ, Ratnieks FLW. 2004. Worker policing persists in a hopelessly queenless honey bee colony (*Apis mellifera*). *Insectes Soc.* 51:113–116.

Châline N, Ratnieks FLW, Burke T. 2002. Anarchy in the UK: detailed genetic analysis of worker reproduction in a naturally occurring British anarchistic honeybee, *Apis mellifera*, colony using DNA microsatellites. *Mol Ecol.* 11:1795–1803.

Dampney JR, Barron AB, Oldroyd BP. 2002. Policing of adult honey bees with activated ovaries is error prone. *Insectes Soc.* 49:270–274.

Halling LA, Oldroyd BP, Wattanachaiyingcharoen W, Barron AB, Nanork P, Wongsiri S. 2001. Worker policing in the bee *Apis florea*. *Behav Ecol Sociobiol.* 49:509–513.

Hamilton WD, May RM. 1977. Dispersal in stable habitats. *Nature.* 269:578–581.

Hartel S, Neumann P, Kryger P, von der Heide C, Moltzer G-J, Crewe RM, van Praagh JP, Moritz RFA. 2006. Infestation levels of *Apis mellifera scutellata* swarms by socially parasitic Cape honeybee workers (*Apis mellifera capensis*). *Apidologie.* 37:462–470.

Hartel S, Neumann P, Raasen FS, Moritz RFA, Hepburn HR. 2006. Social parasitism by Cape honeybee workers in colonies of their own subspecies (*Apis mellifera capensis* Esch.). *Insectes Soc.* 53:183–193.

Jordan LA, Allsopp MH, Oldroyd BP, Wossler TC, Beckman M. 2007. Cheating honeybee workers produce royal offspring. *Proc R Soc Lond B Biol Sci.* 38:436–437.

Lopez-Vaamonde C, Koning JW, Brown RM, Jordan WC, Bourke AFG. 2004. Social parasitism by male-producing reproductive workers in a eusocial insect. *Nature.* 430:557–560.

Martin CG, Oldroyd BP, Beekman M. 2004. Differential reproductive success among subfamilies in queenless honeybee (*Apis mellifera* L.) colonies. *Behav Ecol Sociobiol.* 56:42–49.

Miller DG, Ratnieks FLW. 2001. The timing of worker reproduction and breakdown of policing behaviour in queenless honey bee (*Apis mellifera* L.) societies. *Insectes Soc.* 48:178–184.

Montague CE, Oldroyd BP. 1998. The evolution of worker sterility in honey bees: an investigation into a behavioral mutant causing a failure of worker policing. *Evolution.* 52:1408–1415.

Nanork P, Chapman NC, Wongsiri S, Lim J, Gloag R, Oldroyd BP. 2007. Social parasitism by workers in queenless and queenright *Apis cerana* colonies. *Mol Ecol.* 16:1107–1114.

Nanork P, Paar J, Chapman NC, Wongsiri S, Oldroyd BP. 2005. Asian honeybees parasitize the future dead. *Nature.* 437:829.

Nanork P, Wongsiri S, Oldroyd BP. 2006. The reproductive dilemmas of queenless red dwarf honeybee (*Apis florea*) workers. *Behav Ecol Sociobiol.* 61:91–97.

Neumann P, Radloff SE, Pirk CWW, Hepburn R. 2003. The behaviour of drifted Cape honeybee workers (*Apis mellifera capensis*): predisposition for social parasitism? *Apidologie.* 34:585–590.

Oldroyd BP, Halling LA, Good G, Wattanachaiyingcharoen W, Barron AB, Nanork P, Wongsiri S, Ratnieks FLW. 2001. Worker policing and worker reproduction in *Apis cerana*. *Behav Ecol Sociobiol.* 50: 371–377.

Oldroyd BP, Smolenski AJ, Cornuet J-M, Crozier RH. 1994. Anarchy in the beehive. *Nature.* 371:749.

Oldroyd BP, Wongsiri S. 2006. Asian honey bees: biology, conservation and human interactions. Cambridge (MA): Harvard University Press.

Paar J, Oldroyd BP, Huettlinger E, Kastberger G. 2002. Drifting of workers in nest aggregations of the giant honeybee *Apis dorsata*. *Apidologie.* 33:553–561.

Page RE, Erickson EH. 1988. Reproduction by worker honey bees (*Apis mellifera* L.). *Behav Ecol Sociobiol.* 23:117–126.

Pfeiffer KJ, Crailsheim K. 1998. Drifting of honeybees. *Insectes Soc.* 45:151–167.

Ratnieks FLW. 1993. Egg-laying, egg-removal, and ovary development by workers in queenright honey bee colonies. *Behav Ecol Sociobiol.* 32:191–198.

Ratnieks FLW, Foster KR, Wenseleers T. 2006. Conflict resolution in insect societies. *Annu Rev Entomol.* 51:581–608.

Ratnieks FLW, Visscher PK. 1989. Worker policing in honey-bees. *Nature.* 342:796–797.

Robinson GE, Page RE, Fondrk MK. 1990. Intracolonial behavioral variation in worker oviposition, oophagy, and larval care in queenless honey bee colonies. *Behav Ecol Sociobiol.* 26:315–323.

Sakagami SM. 1954. Occurrence of an aggressive behaviour in queenless hives, with considerations on the social organisation of honeybee. *Insectes Soc.* 1:331–343.

Seeley TD, Seeley RH, Akratanakul P. 1982. Colony defense strategies of the honeybees in Thailand. *Ecol Monogr.* 52:43–63.

Taylor PD. 1988. An inclusive fitness model for dispersal of offspring. *J Theor Biol.* 130:363–378.

van der Blom J. 1991. Social regulation of egg-laying by queenless honeybee workers (*Apis mellifera* L.). *Behav Ecol Sociobiol.* 29: 341–346.

Visscher PK. 1989. A quantitative study of worker reproduction in honey bee colonies. *Behav Ecol Sociobiol.* 25:247–254.

Visscher PK. 1996. Reproductive conflict in honey bees: a stalemate of worker egg-laying and policing. *Behav Ecol Sociobiol.* 39:237–244.

Visscher PK, Dukas R. 1995. Honey bees recognize development of nestmates' ovaries. *Anim Behav.* 49:542–544.

Wattanachaiyingcharoen W, Oldroyd BP, Good G, Halling L, Ratnieks FLW, Wongsiri S. 2002. Lack of worker reproduction in the giant honey bee *Apis dorsata* Fabricius. *Insectes Soc.* 49:80–85.

Wattanachaiyingcharoen W, Wongsiri S, Oldroyd BP. 2008. Aggregations of unrelated *Apis florea* colonies. *Apidologie.* 39:531–536.

Wenseleers T, Ratnieks FLW. 2006. Comparative analysis of worker reproduction and policing in eusocial hymenoptera supports relatedness theory. *Am Nat.* 168:163–192.

Wongsiri S, Lekprayoon C, Thapa R, Thirakupt K, Rinderer TE, Sylvester HA, Oldroyd B, Booncham U. 1996. Comparative biology of *Apis andreniformis* and *Apis florea* in Thailand. *Bee World.* 77:23–35.

Research article

Nestmate recognition by guards of the Asian hive bee *Apis cerana*

N.C. Chapman¹, P. Nanork², M.S. Reddy³, N.S. Bhat⁴, M. Beekman¹ and B.P. Oldroyd¹

¹ Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia,
e-mail: nadine.chapman@bio.usyd.edu.au

² Department of Biology, Mahasarakham University, Mahasarakham 44150, Thailand

³ Center for Apiculture Studies, Department of Zoology, Bangalore University, Bangalore 560065, India

⁴ Department of Apiculture, University of Agricultural Sciences, Bangalore 560065, India

Received 25 February 2008; revised 21 May 2008; accepted 25 June 2008.

Abstract. When a honey bee colony becomes queenless and broodless its only reproductive option is for some of its workers to produce sons before the colony perishes. However, for this to be possible the policing of worker-laid eggs must be curtailed and this provides the opportunity for queenless colonies to be reproductively parasitized by workers from other nests. Such reproductive parasitism is known to occur in *Apis florea* and *A. cerana*. Microsatellite analyses of worker samples have demonstrated that the proportion of non-natal workers present in an *A. cerana* colony declines after a colony is made queenless. This observation suggests that queenless *A. cerana* colonies may be more vigilant in repelling potentially parasitic non-natal workers than queenright colonies. We compared rates of nestmate and non-nestmate acceptance in both queenright and queenless *A. cerana* colonies using standard assays and showed that there is no statistical difference between the proportion of non-nestmate workers that are rejected in queenless and queenright colonies. We also show that, contrary to earlier reports, *A. cerana* guards are able to discriminate nestmate workers from non-nestmates, and that they reject significantly more non-nestmate workers than nestmate workers.

Keywords: *Apis cerana*, guard, worker reproductive parasitism, kin recognition.

Introduction

Worker reproductive parasitism (WRP) occurs when an insect worker leaves her colony, joins another, and lays eggs there. The importance of WRP as a reproductive option for insect workers is becoming increasingly recognized, as is the necessity of colony-level defense strategies against such parasitism (Neumann et al., 2001; Birmingham et al., 2004; Lopez-Vaamonde et al., 2004; Nanork et al., 2005; 2006; 2007; Hartel et al., 2006a; 2006b; Beekman and Oldroyd, 2008). Much of this research has centered on the honey bee (*Apis* spp.). *Apis* colonies have two primary defense mechanisms against WRP. First, non-nestmate workers are often rejected from the nest entrance in a process known as 'guarding' (Moore et al., 1987; Winston, 1987). Second, worker-laid eggs in queenright colonies ('nestmates' and 'non-nestmates') are recognized as such and are destroyed by the resident workers in a process known as worker policing (Ratnieks and Visscher, 1989; Ratnieks and Wenseleers, 2005; 2008). However, when an *Apis* colony becomes queenless and has failed to raise a replacement queen (i.e. it is hopelessly queenless) the workers must activate their ovaries and cease worker policing in order to successfully raise drone (male) offspring (Miller and Ratnieks, 2001). The cessation of worker policing leaves the queenless colony vulnerable to WRP (Nanork et al., 2005; 2007).

In the red dwarf honey bee, *A. florea*, workers are more likely to join queenless colonies than queenright ones and these non-nestmate workers are more likely to come from other queenless colonies than queenright ones (unpubl. obs. NCC). This suggests that parasitic workers adaptively target queenless colonies, where they have the opportunity for personal reproduction, rather than queenright colonies

where there is minimal chance of successful reproduction due to the effective policing of worker-laid eggs. Non-natal workers in queenless colonies of *A. florea* (Nanork et al., 2005) and the Asian hive bee *A. cerana* (Nanork et al., 2007) have disproportionately higher reproductive success than natal workers.

Non-natal workers have been found in colonies of all *Apis* species that have been investigated (Pfeiffer and Crailsheim, 1998; Paar et al., 2002; Nanork et al., 2005, 2007). Under favourable foraging conditions, i.e. an abundance of nectar-or-pollen-producing flowers, guards of *A. mellifera* colonies are highly permissive, and will allow up to 100% of non-nestmate workers to enter their nest (Downs and Ratnieks, 2000). However, with respect to WRP these non-nestmate workers pose little threat to their host colony, because effective worker policing removes any eggs that they may lay. For example, although 1–5% of *A. cerana* workers have active ovaries in queenright colonies (Oldroyd et al., 2001; Nanork et al., 2007), no males are sons of workers, due to the effective policing of worker-laid eggs (Oldroyd et al., 2001) so the presence of laying workers, non-natal or natal incurs no or minimal costs to the host colony.

When foraging conditions are poor, *A. mellifera* colonies defend themselves against intra-specific robbery by increasing the number and vigilance of guards so that the proportion of non-nestmates that are allowed to enter the colony decreases relative to periods when floral resources are abundant (Ribbands, 1954; Downs and Ratnieks, 2000). Downs and Ratnieks (2000) tested acceptance of nestmates and non-nestmates over a 30 day period; at the beginning 80% of nestmates were accepted, while only 25% of non-nestmates were accepted. As the experiment continued floral resources improved, and by the end of the experiment nearly 100% of test bees were accepted regardless of their origin. Hence, guards adjust their rejection threshold appropriately depending on the likelihood that non-nestmates will attempt to rob the colony (Downs and Ratnieks, 2000).

The proportion of non-natal workers present in colonies of *A. cerana* declines significantly from 4.3% when queenright to 1.8% when queenless (Nanork et al., 2007). In contrast, the proportion of non-natal workers present in queenless *A. florea* colonies increases significantly from 2% when queenright to 4.5% when queenless. Furthermore, *A. florea* shows much higher rates of WRP than does *A. cerana* (Nanork et al., 2005, 2007). It has been proposed that nest architecture may be responsible for this difference, with the cavity-nesting *A. cerana* able to guard the entrance and deter reproductive parasites from entering the colony, whereas open-nesting *A. florea* is less able to defend its nest from conspecifics (Nanork et al., 2007).

In *A. mellifera* guard workers stand at the entrance to their nest and inspect workers entering the colony (Butler and Free, 1952; Herman and Blum, 1981; Moore et al., 1987). The guards use odor cues (e.g. Breed, 1998; Downs and Ratnieks, 1999) to recognize nestmates and non-

nestmates, and guards are often reported to harass and remove non-nestmates.

Very little is known about guarding behaviour in *A. cerana*. Breed et al. (2007) swapped the locations of pairs of *A. cerana* colonies, and reported that there was little sign of aggression when non-nestmate foragers entered each translocated nest. Furthermore, bioassays in which two non-nestmates were paired in an arena revealed that aggression rarely occurred between non-kin pairs of *A. cerana* (Breed et al., 2007). Breed et al. (2007) concluded that nestmate recognition is poorly developed in *A. cerana*, possibly due to the rarity of intra-specific robbery in this species.

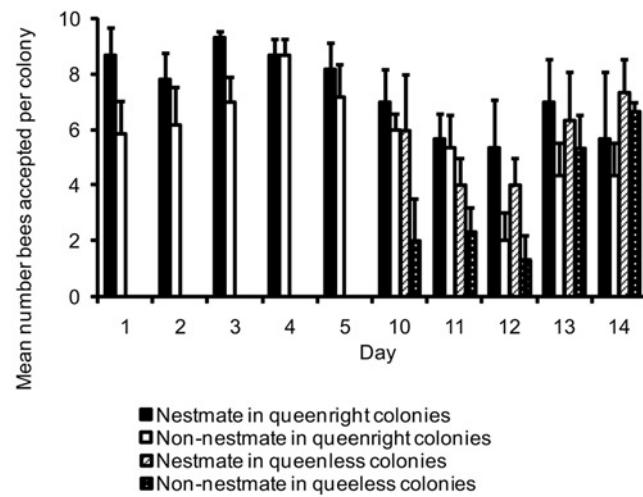
Here we explore the possibility that *A. cerana* uses guarding as a defence against WRP by preventing non-nestmates from entering colonies once they have lost their queen. We determined whether *A. cerana* is able to discriminate between nestmates and non-nestmates using an experimental set-up previously used in *A. mellifera* (Downs and Ratnieks, 1999). We compared the vigilance of guards of queenless and queenright colonies, as measured by the proportion of nestmate and non-nestmate workers admitted to the colony. If queenless colonies reject more test workers then the decrease in proportion of non-natal workers in queenless colonies observed by Nanork et al. (2007) is probably caused by the increased vigilance of the queenless guards. If rejection rates remain unchanged, the decrease in non-natal workers is more likely to be due to their removal from the colony after queenlessness or reduced rates of worker drifting into queenless colonies.

Methods

We utilized 6 *A. cerana* colonies of the black 'Hill' morph of *A. cerana* (Oldroyd et al., 2006), located at the Raman Research Institute, Bangalore, India in November 2007. There was ample pollen and nectar for forage available from plantations of *Eucalyptus camaldulensis*. Due to the honey flow, we provided the colonies with one frame of foundation comb on November 6, 2007 and more as needed. As environmental cues transferred via wax comb are involved in nest-mate recognition (Breed et al., 1988, 1995; Beekman et al., 2002a; D'Ettorre et al., 2006) we avoided using drawn combs. All colonies were housed in standard *A. cerana* hive boxes and were each headed by a naturally mated queen. We applied grease to the stands of each colony, and sat the stands in water to minimize attacks by ants.

We conducted blind tests of guarding behaviour beginning on November 11, 2007 using a procedure adapted from Downs and Ratnieks (1999). We collected approximately thirty workers from the outer comb of a colony using a pooter, disturbing the colony as little as possible. The standard protocol for evaluating guarding behavior (Downs and Ratnieks, 1999) utilizes returning foragers, but we did not follow this method as some colonies were observed to forage for pollen much more than others, and would have resulted in the test not being blind. Nurse bees are usually found on the inner combs where the brood is raised, while foragers tend to be found on the outer combs (Seeley, 1985; Winston, 1987). Thus, by sampling bees from the outer comb we increased the chances of sampling foragers. We transferred the aspirated workers into a sealable plastic bag along with a small folded piece of paper to identify the origin of the sample. We also collected workers from an unrelated (non-nestmate) colony into an identical plastic bag using the same method. We cooled the bees in an ice box so

that they could walk but not fly. We then tested the acceptance of the nestmate and non-nestmate workers by the focal colony. Using forceps we placed a worker on the entrance board of the colony and observed the reaction of the guards. If the test worker was bitten, had its legs, antennae or wings pulled, or was mauled or removed from the colony then this was recorded as rejection. Acceptance required that the test worker be inspected by at least one guard and not be subjected to the above rejection behaviour. We observed each test worker for the duration of any interaction (approximately 5 minutes) before removing it from the entrance board. We then offered the colony a worker from the other bag, continuing to alternate between bags until a total of ten workers from each bag (nestmate or non-nestmate) had been tested. No test worker was used more than once and the observer was unaware of the contents of each bag (nestmate or non-nestmate) until all observations were completed. This protocol was then repeated in each of the other 5 colonies. After observations on day 5 we dequeened half the colonies selected at random and confirmed the presence of the queen in the remaining colonies. We removed queen cells from the queenless colonies on days 9 and 10 and disturbed the queenright colonies to a similar extent. Observations resumed on day 10, when the queenless colonies no longer had larvae and continued until day 14 using the same procedure as above. Each colony acted as both a donor and receiver each day and was randomly paired with a colony each day, thus controlling for the possibility that there was an effect of queenstate of donor bees on the likelihood of acceptance.


In *A. cerana* laying workers become active within 3 days of dequeening, and worker-laid eggs are observed within 4 days of dequeening indicating that at least some worker-laid eggs are acceptable after 4 days and therefore that worker policing is curtailed (Oldroyd et al., 2001; Nanork et al., 2007). Hence our queenless colonies were vulnerable to WRP during the assays. We did not examine colonies for the presence of laying workers during the experiment as we wished to cause as little disturbance as possible; however after observations were completed on the last day of the experiment we observed worker-laid eggs in all queenless colonies.

Statistics

Prior to analysis we transformed the data with an $\text{asin}\sqrt{X}$ transformation (Fowler et al., 1998). We analysed the proportion of accepted workers using a repeated measures ANOVA with day as the within-subject variable, and worker origin (nestmate or non-nestmate) as the main effect. During the period where half the colonies were queenless we analysed the proportion of non-nestmate workers accepted with day as the within-subject variable, and queenstate (queenright or queenless) as the main effect. Mauchly's test was performed to test that the assumption of sphericity (equality of the variances of the differences between levels of the repeated measures factors) was not violated.

Results

The assumption of sphericity was violated when all days were considered (Mauchly's test: $W < 0.001$, $\chi^2_{44} = 73.49$, $P = 0.011$) and therefore we report the F statistics calculated with the Greenhouse-Geisser correction to degrees of freedom. Non-nestmate workers were rejected significantly more than nestmate workers when all days were considered (days 1–5 and 10–14; Table 1; Fig. 1), when only days 1–5 were considered ($P = 0.027$) and was marginally significant on days 10–14 ($P = 0.051$). Only days 1 ($P = 0.043$) and 12 ($P = 0.022$) were significant individually. There was a significant effect of day, showing that environmental conditions influence the rate of bee

Figure 1. Mean and standard error of the untransformed number of nestmate and non-nestmate bees accepted into queenright and queenless colonies. Half of the colonies were dequeened after observations on day 5. Over all days of the experiment, nestmates were accepted significantly more often than non-nestmates ($P = 0.005$). Queenstate does not affect the proportion of test bees accepted into colonies ($P = 0.134$).

acceptance (Table 1). There was no significant interaction between day and origin (nestmate or non-nestmate), showing that the proportion of non-nestmate workers accepted relative to nestmate workers accepted did not change (Table 1).

Sphericity was not violated when considering days 10–14, when half of the colonies were queenless, (Mauchly's test: $W = 0.168$, $\chi^2_9 = 13.24$, $P = 0.162$) and therefore we report the F statistics with sphericity assumed. There was no statistical difference between the proportion of non-nestmate workers rejected in queenless and queenright colonies (Table 2) and there was no significant effect of day. On day 14 significantly more test bees (nestmate and non-nestmate) were accepted into queenless colonies than into queenright colonies (Table 2; $P = 0.007$). Queenstate did not affect the number of test bees

Table 1. Repeated measures ANOVA of the $\text{asin}\sqrt{X}$ transformation of the proportion of bees accepted for all days (1–5, 10–14) of the experiment. Worker origin (nestmate or non-nestmate) is the main effect. Day is the within-subject variable.

Source	d.f.	M.S.	F	P	Power
Between-subjects effects					
Origin	1	5662.76	13.08	0.005	0.90
Error	10	433.10			
Within-subjects effects					
Day	3.71	5017.87	7.07	<0.001	0.99
Day x Origin	3.71	510.30	0.72	0.575	0.20
Error (day)	37.09	710.05			

accepted on any other day, however the interaction between day and queenstate (queenright or queenless) was significant (Table 2). The interaction between day, state and origin was not significant and was therefore removed from the model.

Table 2. Repeated measures ANOVA of the $\text{asin}\sqrt{X}$ transformation of the proportion of bees accepted for days 10–14 of the experiment, when half of the colonies were queenless. Queenstate (queenright or queenless) and origin (nestmate or non-nestmate) are the main effects. Day is the within-subject variable.

Source	d.f.	M.S.	F	P	Power
Between-subjects effects					
State	1	207.02	2.71	0.134	0.31
Origin	1	385.09	5.05	0.051	0.52
Error	9	76.30			
Within-subjects effects					
Day	4	61.89	1.51	0.219	0.42
Day x State	4	133.27	3.26	0.022	0.78
Day x Origin	4	38.21	0.93	0.456	0.27
Error (day)	36	40.94			

Discussion

Our results show that *A. cerana* guards reject non-nestmates significantly more often than they do nestmates. This shows that *A. cerana* guards have the ability to discriminate nestmates from non-nestmates and that they use this ability to prevent non-nestmates from entering their colony in a manner similar to *A. mellifera* (Butler and Free, 1952; Hermann and Blum, 1981; Moore et al., 1987; Downs and Ratnieks, 2000). Breed et al. (2007) and Sasagawa et al. (2002) reported that aggressive interactions between non-nestmates are uncommon when *A. cerana* workers from different colonies are paired in an arena. In light of our results, we suggest that this bioassay is inappropriate for detecting nestmate recognition in *A. cerana*. Downs and Ratnieks (2000) noted that *A. mellifera* guards treated in this manner stopped behaving like guards. Perhaps *A. cerana* workers react strongly to confinement and therefore do not react to the presence of the other bee.

During times of abundant floral resources, guards of *A. mellifera* accepted up to 100% of the nestmates and non-nestmates offered to them (Downs and Ratnieks, 2000). Our experiment was conducted during a time of floral abundance and hence the proportion of bees accepted was high. The difference between the proportion of nestmates and non-nestmates accepted, while being significant when pooled for all days, was significant on only two days out of ten and the difference in terms of the number of bees was small. It is likely that the guarding behaviour would have been less permissive during our experiment had not the environmental conditions been so favourable.

Nanork et al. (2007) showed that after *A. cerana* colonies were dequeened, the mean proportion of non-natal workers declined from 4.3% to 1.8%. We hypothesized that this decline might be associated with heightened guarding activity, which reduces the number of non-natal workers in a colony. However, we show here that there is no statistical difference in aggression toward non-nestmates by queenright and queenless colonies when the data from all days were pooled. In fact, contrary to our expectation, queenless colonies were found to accept significantly more non-nestmate workers than queenright colonies on day 14, suggesting that if anything there may be a trend for queenless colonies to become more permissive of non-natal workers than queenright colonies.

A similar counter-intuitive decrease in the aggression of guards in queenless colonies has been found in *A. mellifera*, where queenless colonies were found to sting a target significantly less than queenright colonies (Delaplane and Harbo, 1987). Furthermore, in South Africa where colonies of *A. m. scutellata* are frequently parasitized by workers from *A. m. capensis* (Beekman et al., 2002b, 2008) queenless colonies do not show an increase in guarding (Beekman et al., 2002b). This is despite the fact that queenless *A. m. scutellata* colonies are more likely to be targeted by *A. m. capensis* workers than queenright colonies (Neumann et al., 2001).

We conclude that the observed decline in the proportion of non-natal workers observed in *A. cerana* colonies after they are dequeened (Nanork et al., 2007) is apparently not caused by increased vigilance by guards at the nest entrance. Thus we suggest that nestmate recognition has no role as a response to WRP in the honey bee and evolved solely to prevent intra-specific robbing.

Acknowledgements

We are extremely grateful to the Raman Research Institute for allowing us to keep our bee colonies on the premises and to Bangalore University for providing all the facilities based on an MOU with Sydney University to undertake this work. Funding was provided by an Endeavour Australia Research Fellowship (NCC), University Post-graduate Award (NCC), the Australia India Council (BPO), the Australian Research Council (BPO), the Thailand Research Fund (PN) and the Commission on Higher Education (PN). The experiments described within this paper were performed in accordance with the laws of the countries in which they were carried out.

References

- Beekman M., Allsopp M.H., Wossler T.C. and Oldroyd B.P. 2008. Factors affecting the dynamics of the honeybee (*Apis mellifera*) hybrid zone of South Africa. *Heredity* **100**: 13–18
- Beekman M., Calis J.N.M., Oldroyd B. and Ratnieks F.L.W. 2002a. When do honey bee guards reject their former nestmates after swarming? *Insect. Soc.* **49**: 56–61
- Beekman M. and Oldroyd B.P. 2008. When workers disunite: Intra-specific parasitism in eusocial bees. *Annu. Rev. Entomol.* **53**: 19–37

Beekman M., Wossler T.C., Martin S.J. and Ratnieks F.L.W. 2002b. Parasitic Cape honey bee workers (*Apis mellifera capensis*) are not given differential treatment by African guards (*A. m. scutellata*). *Insect. Soc.* **49**: 216–220

Birmingham A.L., Hoover S.E.R., Winston M.L. and Ydenberg R.C. 2004. Drifting bumble bee (Hymenoptera: Apidae) workers in commercial greenhouses may be social parasites. *Can. J. Zool.* **82**: 1843–1853

Breed M.D. 1998. Recognition pheromones of the honey bee. *Bioscience* **48**: 463–470

Breed M.D., Deng X.-B. and Buchwald R. 2007. Comparative nestmate recognition in Asian honey bees, *Apis florea*, *Apis andreniformis*, *Apis dorsata* and *Apis cerana*. *Apidologie* **38**: 411–418

Breed M.D., Garry M.F., Pearce A.N., Bjostad L.E., Hibbard B.E. and Page J.R.E. 1995. The role of wax comb in honey bee nestmate recognition: genetic effects on comb discrimination, acquisition of comb cues by bees, and passage of cues among individuals. *Anim. Behav.* **50**: 489–496

Breed M.D., Stiller T.M. and Moor M.J. 1988. The ontogeny of kin discrimination dues in the honey bee, *Apis mellifera*. *Behav. Genet.* **18**: 439–448

Butler C.G. and Free J.B. 1952. The behaviour of worker honey bees at the hive entrance. *Behaviour* **4**: 262–292

D'Ettorre P., Wenseleers T., Dawson J., Hutchinson S., Boswell T. and Ratnieks F.L.W. 2006. Wax combs mediate nestmate recognition by guard honeybees. *Anim. Behav.* **71**: 773–779

Delaplane K.S. and Harbo J.R. 1987. Effect of queenlessness on worker survival, honey gain and defence behaviour in honeybees. *J. Api. Res.* **26**: 37–42

Downs S.G. and Ratnieks F.L.W. 1999. Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage. *Anim. Behav.* **58**: 643–648

Downs S.G. and Ratnieks F.L.W. 2000. Adaptive shifts in honey bee (*Apis mellifera* L.) guarding behavior support predictions of the acceptance threshold model. *Behav. Ecol.* **11**: 326–333

Fowler J., Cohen L. and Jarvis P. 1998. *Practical Statistics for Field Biology*. John Wiley and Sons, New York. 87 pp

Hartel S., Neumann P., Kryger P., von der Heide C., Moltzer G.-J., Crewe R.M., van Praagh J.P. and Moritz R.F.A. 2006a. Infestation levels of *Apis mellifera scutellata* swarms by socially parasitic Cape honeybee workers (*Apis mellifera capensis*). *Apidologie* **37**: 462–470

Hartel S., Neumann P., Raasen F.S., Moritz R.F.A. and Hepburn H.R. 2006b. Social parasitism by Cape honeybee workers in colonies of their own subspecies (*Apis mellifera capensis* Esch.). *Insect. Soc.* **53**: 183–193

Lopez-Vaamonde C., Koning J.W., Brown R.M., Jordan W.C. and Bourke A.F.G. 2004. Social parasitism by male-producing reproductive workers in a eusocial insect. *Nature* **430**: 557–560

Miller D.G. and Ratnieks F.L.W. 2001. The timing of worker reproduction and breakdown of policing behaviour in queenless honey bee (*Apis mellifera* L.) societies. *Insect. Soc.* **48**: 178–184

Moore A.J., Breed M.D. and Moor M.J. 1987. The guard honey bee: ontogeny and behavioural variability of workers performing a specialized task. *Anim. Behav.* **35**: 1159–1167

Nanork P., Chapman N.C., Wongsiri S., Lim J., Gloag R. and Oldroyd B.P. 2007. Social parasitism by workers in queenless and queenright *Apis cerana* colonies. *Mol. Ecol.* **16**: 1107–1114

Nanork P., Paar J., Chapman N.C., Wongsiri S. and Oldroyd B.P. 2005. Asian honeybees parasitize the future dead. *Nature* **437**: 829

Nanork P., Wongsiri S. and Oldroyd B.P. 2006. The reproductive dilemmas of queenless red dwarf honeybee (*Apis florea*) workers. *Behav. Ecol. Sociobiol.* **61**: 91–97

Neumann P., Radloff S.E., Moritz R.F.A., Hepburn R. and Reece S.L. 2001. Social parasitism by honeybee workers (*Apis mellifera capensis* Escholtz): host finding and resistance of hybrid host colonies. *Behav. Ecol. Sociobiol.* **12**: 419–428

Oldroyd B.P., Halling L.A., Good G., Wattanachaiyingcharoen W., Barron A.B., Nanork P., Wongsiri S. and Ratnieks F.L.W. 2001. Worker policing and worker reproduction in *Apis cerana*. *Behav. Ecol. Sociobiol.* **50**: 371–377

Oldroyd B.P., Reddy M.S., Chapman N.C., Thompson G.J. and Beekman M. 2006. Evidence for reproductive isolation between two colour morphs of cavity nesting honey bees (*Apis*) in south India. *Insect. Soc.* **53**: 428–434

Paar J., Oldroyd B.P., Huettinger E. and Kastberger G. 2002. Drifting of workers in nest aggregations of the giant honeybee *Apis dorsata*. *Apidologie* **33**: 553–561

Pfeiffer K.J. and Crailsheim K. 1998. Drifting of honeybees. *Insect. Soc.* **45**: 151–167

Ratnieks F.L.W. and Visscher P.K. 1989. Worker policing in honeybees. *Nature* **342**: 796–797

Ratnieks F.L.W. and Wenseleers T. 2005. Policing insect societies. *Science* **307**: 54–56

Ratnieks F.L.W. and Wenseleers T. 2008. Altruism in insect societies and beyond: voluntary or enforced? *Trends Ecol. Evol.* **23**: 45–52

Ribbands C.R. 1954. The defense of the honeybee community. *Proc. R. Soc. Lond. B* **142**: 514–524

Sasagawa H., Kadowski T., Matsuyama S., Hirai Y. and Peng C.Y.S. 2002. Semiochemically mediated recognition in honey bee societies. *Proc. 14th Congr. IUSSI*, p 15

Seeley T.D. 1985. *Honeybee Ecology: A Study of Adaptation in Social Life*. Princeton University Press, New Jersey. 202 pp

Winston M.L. 1987. *The Biology of the Honey Bee*. Harvard University Press, London. 281 pp

Conservation of Asian honey bees*

Benjamin P. OLDROYD¹, Piyamas NANORK²

¹ Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney,
NSW 2006, Australia

² Department of Biology, Mahasarakham University, Mahasarakham, Thailand

Received 26 June 2008 – Revised 14 October 2008 – Accepted 29 October 2008

Abstract – East Asia is home to at least 9 indigenous species of honey bee. These bees are extremely valuable because they are key pollinators of about 1/3 of crop species, provide significant income to some of the world's poorest people, and are prey items for some endemic vertebrates. Furthermore, Southeast Asian Dipterocarp forests appear to be adapted to pollination by honey bees. Thus long-term decline in honey bee populations may lead to significant changes in the pollinator ecology of these forests, exacerbating the more direct effects of deforestation and wood harvesting on forest health. Although complete extinction of any honey bee species is seen as unlikely, local extinction is likely to occur across extensive areas. The most significant threats to local honey bee populations are deforestation and excessive hunting pressure. Conservation of East Asian honey bees requires immediate action to determine what rate of colony harvesting by honey hunters is sustainable. This requires information on the demography of hunted populations, particularly the intrinsic growth rates and the rates of harvest.

Apis / Conservation / Honey hunting / demography / sustainable harvest / pollination / dipterocarp forests

1. INTRODUCTION

In the 100 years between 1880 and 1980 the South and Southeast Asian nations of India, Bangladesh, Sri Lanka, Myanmar, Thailand, Laos, Cambodia, Vietnam, Malaysia, Singapore, Brunei, Indonesia and the Philippines, grew in human population by 262%, the area of cultivated land by 86%, the area bearing grass and shrub vegetation by 20%, while total forest cover decreased by 29% (Flint, 1994). Deforestation has continued unabated during the last 25 years (Sodhi et al., 2004). The region has developed an extremely high human population density, and in some countries such as Pakistan, Nepal and Bangladesh, rapid population growth continues today (Anon, 2004). Increasing hu-

man population size, especially when coupled with increased affluence and per capita consumption inevitably causes increased pressures on natural ecosystems. (Nonetheless a better-educated and wealthier population may have greater capacity and desire to do something about conservation than a desperately poor one). Of particular concern for honey bee conservation is broad scale conversion of primary forest to short-cycle forestry, rubber and oil palm plantation, agriculture, and urban areas (Kevan and Viana, 2003; Sodhi et al., 2004). All these activities involve removal of mature trees suitable for nesting, and often involve reduction in food resources and the use of pesticides. In some cases, direct interactions with humans can result in nest destruction (Underwood, 1992). Increasing population and affluence coupled with a desire for natural products harvested from the wild can also increase economic incentive for hunting and gathering within the remaining forests

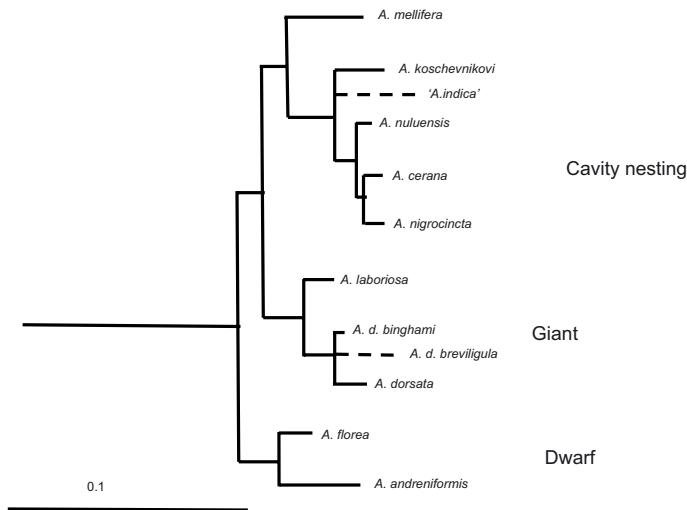
Corresponding author: B.P. Oldroyd,
boldroyd@bio.usyd.edu.au

* Manuscript editor: Mark Brown

(Nath et al., 1994; Chen et al., 1998; Wilkie and Carpenter, 1999; Nath and Sharma, 2007).

Despite the foregoing, indigenous honey bees remain common throughout much of their original range. The red dwarf honey bee *Apis florea* is actually expanding its range into the Middle East (Mossagegh, 1993) and the Eastern hive bee *A. cerana* into New Guinea (Anderson, 1994). In Hong Kong, one of the most urbanized and altered landscapes on the planet, *A. cerana* remains common, and is an important pollinator of remnant vegetation (Corlett, 2001). Nonetheless there are obvious signs of threatening processes at work (see below) on some species in some areas, and we suspect that these processes either have or soon will drive local extinctions. Perhaps this has already occurred in the dwarf bees on the island of Hong Kong where they are apparently absent (Corlett, 2001). The red honey bee *A. koschevnikovi* is now extremely rare on peninsular Malaysia and the south of Thailand (Otis, 1996). Whether complete extinction of a particular species is likely or possible is not clear, but the threat is real and potential consequences of such an extinction are significant.

In this review we aim to document the ecological, economic and social values of Asian honey bees and identify the main threats to them. We follow with a brief introduction to sustainable yield theory. Much of this material was reviewed in the monograph *Asian honey bees: Biology, conservation and human interactions* (Oldroyd and Wongsiri, 2006), but we re-present it here for completeness and to expand and update it. We then identify the critical data and studies of life history traits that are required to understand the demography of a honey bee population (Seeley, 1978; Oldroyd et al., 1997). Remarkably little is known about the reproductive behaviour of Asian species, and this lack renders our understanding of Asian honey bee demography little more than educated guesses (Oldroyd and Wongsiri, 2006). We then discuss what steps can and should be taken to help conserve honey bees. Many of these, such as a reduction in deforestation, are common to broader conservation goals, but some, such as less destructive hunting techniques, are unique to honey bees. Finally we discuss the opportu-


nity of exploiting new molecular-based means of rapidly assessing population size (Moritz et al., 2007a, b), even in the most impenetrable forest. This technique promises to provide a sound basis for the understanding demography of wild honey bee populations everywhere, but will be particularly useful for Asian honey bees in remote jungles.

2. DIVERSITY IN *APIS*: WHAT HAVE WE GOT TO CONSERVE?

Planning for species conservation requires (among other things) an understanding of the phylogenetic relationships among the species of concern (Vane Wright et al., 1991; Crozier, 1992; May, 1994; Humphries et al., 1995). This is because we should like to preserve biodiversity in its broadest sense. Thus a species that is phylogenetically distant from all others is generally reckoned to be of higher conservation value than a subspecies (Crozier, 1992). For example, we should be more concerned about the loss of highly novel species like the tuatara (*Sphenodon* spp.) than by the loss of morphological variant of an otherwise widespread taxon.

The taxonomy of the honey bees has been given considerable attention and we now understand the broad evolutionary history of the genus well (Raffiudin and Crozier, 2007) (Fig. 1). Broadly, there are three groupings, which have sometimes been regarded as subgenera (Maa, 1953). These are the dwarf bees, which build a single comb surrounding a twig or small branch, the medium-sized cavity nesting bees which build a series of parallel combs, usually within a defendable cavity, and the giant bees which build a single comb suspended beneath a rock overhang or tree branch. Each group has two or more species, with the cavity-nesting bees being the most speciose (Otis, 1996; Oldroyd and Wongsiri, 2006).

The species and subspecies joined by solid lines in Figure 1 are strongly supported as being taxonomically distinct based on sequence divergence of nuclear and mitochondrial genes (Raffiudin and Crozier, 2007; De La Rúa et al., 2009). In addition, there are probably other species of honey bee that are not yet described.

Figure 1. Phylogeny of the honey bees (after Raffiudin and Crozier, 2007). Dotted lines indicate unconfirmed species.

Two likely candidates are indicated by dashed lines on the phylogeny of Figure 1: the yellow 'plains' cavity nesting honey bee of south India (Oldroyd et al., 2006), and the giant honey bee of the Philippines *A. d. breviligula* (Maa, 1953). The latter has not been analysed genetically, but is almost certainly a distinct species from *A. dorsata* based on its dark coloration (personal observations of BPO), absence of nest aggregations (Morse and Laigo, 1969), and geographical isolation.

We suggest that all the species of Figure 1 are deserving of conservation effort, and encourage investigations exploring the broader diversity of honey bees.

3. VALUE OF HONEY BEES

Although we would argue that honey bees have intrinsic value, it is often useful in the conservation context to be armed with the tangible benefits of a species so that they may be given higher priority for conservation policy and perhaps funding (Chardonnet et al., 2002).

3.1. Pollination services

Although most of the heavily traded agricultural commodities derive from plants that are self pollinated, wind pollinated or propagated vegetatively, up to a third of the food

we eat is derived from plants which are either dependent on or benefit from insect pollination, especially by honey bees (e.g. Williams, 1996; Richards, 2001; Klein et al., 2007). The value of crops pollinated by the western honey bee *A. mellifera* is staggeringly large (eg Scott-Dupree et al., 1995; Morse and Calderone, 2000; Gordon and Davis, 2003), but unfortunately, no estimates are available for the value of honey bee pollination for Asian counties or for Asia in aggregate.

Natural ecosystems are also heavily dependent on animals for pollination (Bawa, 1990; Corlett, 2004). There is increasing concern that anthropogenic disruption of plant-pollinator mutualisms will lead to a wave of plant extinctions (Bond, 1994; Buchmann and Nabhan, 1996; Biesmeijer et al., 2006). Because of their dance language and large foraging range, honey bee colonies can rapidly identify and exploit ephemeral floral resources over a wide area (Koeniger et al., 1982; Dyer, 1985; Punchihewa et al., 1985; Dyer and Seeley, 1991; Dornhaus and Chittka, 1999; Sen Sarma et al., 2004; Dornhaus et al., 2006; Beekman and Lew, 2007; Beekman et al., 2008), often resulting in inter-specific competition for food (Koeniger and Vorwohl, 1979; Oldroyd et al., 1992; Rinderer et al., 1996; Köppler et al., 2007). Perhaps for this reason, the non-*Apis* bee fauna of Asia is depauperate relative to tropical forests in Australia

and America (Michener, 1979; Corlett, 2004; Batley and Hogendoorn, 2009). The forest communities of tropical Asia evolved with two or more honey bee species present, and may therefore be particularly vulnerable to a reduction in the density of honey bees (Corlett, 2004).

The low land forests of Asia are dominated by the family Dipterocarpaceae – a family of some 17 genera notable for its two-winged wind-dispersed fruit, and often-massive trees that emerge above the surrounding rainforest canopy (Ashton, 1988). The pollination ecology of this region is characterised by infrequent (2–10 years) general flowering (GF) events in which most trees of most tree species flower simultaneously at more or less random times of year (Appanah, 1985; Ashton et al., 1988). Two major hypotheses have been proposed for the evolution of GF in this region (Maycock et al., 2005). First, GF may lead to a 'mast' fruiting event in which fruit are so abundant that frugivores are satiated and recruitment of seedlings is high (Janzen, 1971; Janzen, 1974). Second, GF may act to attract migratory pollinators such as honey bees to the area, thereby enhancing pollination success and outcrossing (Sakai, 2002). Regardless of which hypothesis is more likely to be correct, the spatial separation of conspecifics and the intense competition amongst individual plants for the attention of pollinators during a GF strongly suggest that many Dipterocarp tree species of the South-east Asian lowland forests are adapted for pollination by migratory honey bees which can rapidly increase in population size by both reproductive and migratory swarming (Itioka et al., 2001). No other pollinators have both these capacities. Within the period of a MF event, pollinating vertebrates such as bats and birds can only increase population densities by migration. Because most bat species have fixed roosts, and because many birds are territorial, migration is unlikely to significantly increase population densities of these pollinators during MF. Stingless bees and solitary bees that are non-migratory can only increase population densities via reproduction.

Another reason why the Dipterocarp forests may be especially reliant on honey bee pollina-

tion is the need for long distance movement of pollen between spatially separated conspecific trees that are often self-incompatible or dioecious (Bawa, 1990). Even when trees are self-fertile, restriction of gene flow among trees potentially results in inbreeding depression and a reduction in vigor (Slatkin, 1985). Transfer of pollen over long distances requires an animal vector that has species fidelity while foraging, a large foraging range, and visits multiple trees, either as individual foragers, or via transfer of pollen among foragers in the nest. Honey bees have all these characteristics (deGrandi-Hoffman and Martin, 1995). Microsatellite studies of paternity in various Asian tree species show strong outcrossing rates, and average mating distances greater than 500 m (Konuma et al., 2000; Kenta et al., 2004), far further than is seen in the neotropical species *Pithecellobium elegans* (Crane, 1991).

It is difficult to imagine that mating distances of this magnitude are achieved by anything other than *Apis*. Furthermore, forest fragmentation for forestry and agriculture may raise the importance of *Apis* pollinators still further, as trees become ever more isolated, and alternative pollinators are adversely affected (Nanson and Hamrick, 1997; Ghazoul, 2005; Kremen et al., 2007)

3.2. Honey bees as prey

Asian honey bees are prey for a variety of insect, mammalian and bird predators (Oldroyd and Wongsiri, 2006). Several bird species are specialist predators of honey bees including the Orange-rumped honey guide (*Indicator xanthonotus*), the Malaysian honey guide (*I. archipelagicus*) and the Oriental (*Pernis ptilorhyncus*) and Barred (*P. celebensis*) honey buzzards. Still others, particularly the bee-eaters (*Merops* spp.) and drongos (*Dicrurus*), are opportunistic hunters of Asian honey bees. These species would either be imperilled or driven to extinction if Asian honey bees were themselves made extinct.

3.3. Social and religious values

Many Asian people revere honey bees, and are concerned for their welfare. The arrival of an *A. dorsata* swarm in garden of a temple or house is often regarded as a good omen. Honey bees play an important role in two of the main religions of Asia. In the Hindu religion honey represents the ‘blendedness of everything’ and is often mixed with clarified butter, sugar, milk and curd to produce one blended mixture, which is shared amongst participants in ceremonies.

Although not as central, honey bees feature in a variety of religious stories from Buddhism as well. Stories about bees are used to teach people the value of working hard, flying low (being modest), being clean, clever in collecting and being united as a family.

Buddhists believe in life after death and that a deceased person will be reborn. To be a happier and healthier person in the next life, a person must perform good deeds. Giving alms to monks is one of the most expressive ways that an individual can perform a good deed, so many Buddhists like to provide alms to their local monks every day. Monks are permitted only two meals per day: breakfast and lunch. But the Buddha allowed monks to consume 5 things: clarified butter, dense butter, vegetable oil, sugar cane juice and honey as ‘tonics’ at any time of day. Thus these items are welcomed offerings and are regarded as being particularly meritorious.

At the beginning of the rainy season, Buddhists observe the *Vassutanayikadivasa*, a time during which the monks are confined to their temples. Traditionally the monks were presented with beeswax candles during *Vassutanayikadivasa* so that they could continue study into the night. (These days people tend to give a light bulb instead!) The end of *Vassutanayikadivasa* is celebrated by the *Pavarana* festival, which in Thailand includes the honey ceremony or *Tak bat nam peung*. In northeastern Thailand, *Pavarana* parades often include massive and elaborately decorated beeswax candles, and villages often have competitions for the biggest and best candles.

The central place of bees, honey and beeswax in both Buddhism and Hinduism, imbues honey bees with a special place in the minds of many Asian people. We hope that these beliefs will help to give urgency to conservation efforts.

4. MAIN THREATS

4.1. Deforestation

Sodhi et al. (2004) outline the depressing reality of deforestation in Southeast Asia. This region has the highest rate of tropical deforestation in the world, and is predicted to lose three quarters of its original forest and 42% of its biodiversity in the next hundred years.

The impacts of deforestation on honey bees are poorly understood. Liow et al. (2001) used honey baits to trap bees along transects in disturbed and relatively undisturbed sites in Singapore and Johor in peninsular Malaysia. The proportion of Apidae (stingless bees and honey bees) was very low in oil palm plantations and very high in undisturbed sites. This strongly suggests that oil-palm plantations do not favour honey bees. This is understandable: the palms do not produce nectar, which is only available from ground flora, and suitable nesting sites are rare within the plantations. No hollows are available for cavity nesting bees, and the dense leaves of the palm fronds render them unsuitable for nest building by *A. dorsata*. Presumably dwarf bees can nest in the palm fronds.

4.2. Hunting

Asian people have been hunting honey bees for more than 40000 years (Crane, 1999) and bee hunting is still widely practiced throughout the region. To take an *A. florea* or *A. andreniformis* colony, the hunter merely shakes the bees off, snips the branch holding the colony, and carries the comb home. We assume that provided there is plenty of food available, the colony recovers from the theft of its comb more often than not. Hunting *A. dorsata* and *A. laboriosa* is much more brutal, and

often involves burning the bees with a smoldering torch of tightly-bound brush (e.g. Valli and Summers, 1988; Lahjie and Seibert, 1990; Nath et al., 1994; Crane, 1999; Tsing, 2003). Some harvested colonies may be able to regroup, especially if the hunt occurs in daylight. Often, however, the hunt is conducted in darkness. The hunter bangs his torch on the branch supporting the colony to create a shower of sparks. The bemused bees follow the sparks to the forest floor (Tsing, 2003; Oldroyd and Wongsiri, 2006) where they crawl about, often with singed wings. Many queens must be lost during these harvests, and their colonies perish along with them. Night hunting is preferred by many hunters because it reduces the number of stings received. This method of hunting kills many if not most colonies. For example, BPO witnessed a harvested tree in the Nigris Hills of Tamil Nadu, India, in which over 100 colonies were killed by hunters in a single night. Of late we have even heard of 'hunters' using insecticides to kill bees prior to harvesting honey.

The level of hunting pressure is most likely increasing in many areas. Even the poorest people (who are more likely to engage in hunting than land owners) have increasing access to motorized transport so that they can access nests over a broad area. Conversion from a barter/subsistence economy to a cash-based economy increases the incentive to produce a high value, easily-transported product like honey (Nath et al., 1994; Tsing, 2003; Nath and Sharma, 2007). Increasing affluence in the cities and rural towns may increase the demand for wild honey which is perceived some as being more natural, pesticide free, healing and delicious than honey produced from domestic colonies. Finally, decreasing areas of forested land increases the hunting pressure on the remaining forested pockets (Nath et al., 1994).

4.3. Loss of nest sites

Cavity nesting bees require cavities for nesting. *A. cerana* is able to nest in man-made structures, or in the hollows of coconut palms (*Cocos nucifera*), and we think it likely

that cavities are rarely a limiting resource. Nonetheless Inoue et al. (1990) found that when *A. cerana* nests in the small cavities of coconut palms, their growth is limited, and this may hinder their ability to produce reproductive swarms of viable size.

Of greater concern is the removal of nesting trees of the giant honey bee, *A. dorsata*. *A. dorsata* colonies are highly philopatric, often migrating over large distances, but returning to the same nesting site every year (Butani, 1950; Koeniger and Koeniger, 1980; Underwood, 1990; Dyer and Seeley, 1994; Kahona et al., 1999; Neumann et al., 2000; Paar et al., 2000; Sheikh and Chetry, 2000; Thapa et al., 2000; Itioka et al., 2001; Paar et al., 2004). Moreover, *A. dorsata* tend to nest in large aggregations, sometimes with more than 100 colonies on a single tree (Oldroyd et al., 2000; Paar et al., 2004).

We do not understand why particular trees are used year after year as nest sites (Oldroyd et al., 2000; Oldroyd and Wongsiri, 2006), but it may be assumed that these trees are of considerable importance to the welfare of a population (Paar et al., 2004). Anecdotal discussions with students at the Indian Institute of Science in Bangalore suggested that when a major bee tree is felled to make way for a building or other structure, the colonies attempt to build their nests on the structure. Depending on the structure, this may cause undesirable interactions with humans, and the killing of the colonies.

4.4. Parasites and pathogens

Honey bee colonies can be affected by a variety of fungal, viral and bacterial infections, and can be infested by various insect and mite parasites (Morse and Nowogrodzki, 1990; Bailey and Ball, 1991; Oldroyd and Wongsiri, 2006). Wild populations are not normally threatened by the parasites and pathogens with which they co-evolved, and most wild colonies we have encountered are pictures of robust health. However adverse effects of pests and diseases may arise when wild populations are stressed by environmental degradation. For example, Allen et al. (1990) found a Nepalese

population of *A. laboriosa* that was severely infected with European foulbrood (*Mellisoccus pluton*), which they attributed to environmental stress brought on by deforestation.

Of potentially greater significance than environmental stress is the anthropogenic movement of honey bee populations between countries which potentially exposes wild populations to novel parasites and pathogens to which they have no resistance. *A. mellifera* has been introduced into most Asian countries at one time or other, almost certainly exposing wild Asian *Apis* to novel pathogens. Thus the European Foulbrood observed by Allen et al. (1990) may well have had its origins in the *A. mellifera* colonies introduced into Kathmandu by well meaning but incompetent aid agencies.

Since the 1980s many populations of *A. cerana* have been severely infected by so-called Thai Sac Brood virus, which kills early pupal stages and is often lethal to colonies (Abrol and Bhat, 1990; Verma et al., 1990; Nath et al., 1994; Chinh, 1998; Abrol, 2000). The origins of this pathogen are unknown, but potentially it arose from the anthropogenic movement of temperate strains of *A. cerana* into tropical areas, or from introduction of *A. mellifera*. European foul brood is also known from *A. cerana* (Bailey, 1974).

A Conopid fly *Physocephala parralleliventris* Kröber (Diptera: Conopidae) parasitizes *A. cerana*, *A. koschevnikovi* and *A. dorsata* in Borneo (Tingek et al., 2004). It grasps flying bees in flight and deposits a tiny larva on the integument. The larva penetrates the bee's cuticle, consuming the bee from the inside. We suspect that this fly or a close relative is also present in Thailand, because we have seen fly larvae in the abdomens of *A. florea* workers. Spread of this fly to populations which have not previously been exposed to it could potentially be devastating.

An emerging threat to Asian *Apis* is the small hive beetle *Aethina tumida*. Originally from sub-Saharan Africa (Dietemann et al., 2009), this pest has recently spread to Australia, the United States of America and Egypt (Mostafa and Williams, 2002; Neumann and Elzen, 2004; Ellis and Hepburn, 2006) where it causes significant damage, especially in warm, wet climates. The pest normally

lives saprophytically on falling debris from a honey bee colony. Mostly the bees confine the adult beetles to unreachable crevices (Ellis and Hepburn, 2006). Occasionally, however, the beetles are able to overwhelm the host colony's defences. The floor of the hive becomes a seething mass of beetle larvae, which apparently attracts more adult beetles. Within a day or so the larvae invade the brood comb at which point the colony will either abscond or be killed.

It is worryingly likely that *A. tumida* could become successful parasites of some or all of the Asian cavity-nesting species. When *A. tumida* was introduced to colonies of *Bombus impatiens* it was able to complete its life cycle (Stanghellini et al., 2000), suggesting that the species could potentially swap hosts to the Asian honey bee species which are far more closely related to the original host than *Bombus*. Optimistically, the adult beetles may fail to recognize the Asian species as suitable hosts, or the Asian species with their long history of association with parasitic mites will be adept at locating and killing *A. tumida*. Hopefully this optimism is warranted because exposure is likely: package bees were shipped from Australia to several Asian countries for a short period after the arrival of the beetles in 2000, and at least some of these shipments were likely infested with *A. tumida*.

4.5. Climate change and forest fire

The Intergovernmental Panel on Climate Change Fourth Assessment Report (2007) suggests that due to a 70% increase in greenhouse gas emissions over the 100 years from 1906, the average temperature of the Earth has risen 0.74 °C, and that this has decreased precipitation in parts of south east Asia. With expected increases in greenhouse gas emissions over the next two decades, global temperatures will most likely increase by a further 0.4 °C. In Southeast Asia, peak years for wildfire coincide with severe ENSO-induced droughts (Duncan et al., 2003), which are anticipated to occur more frequently with global warming. Drought combined with extreme wild fire events, and human impacts including

deliberate fire setting associated with slash and burn agriculture (Brown, 1998; Nath and Sharma, 2007) are altering the structure of plant communities across the Asian region (Taylor et al., 1999).

The impacts of these changes on honey bee populations is not easy to assess (Murray et al., 2009). In some ways, oligoleptic, migratory species such as the Asian honey bees will be better able to adapt to environmental change and changes in ecotones than most other insects. However there is anecdotal evidence that some species (notably *A. andreniformis* (Wongsiri et al., 1997) and *A. koschevnikovi* (Otis, 1996)) are obligate forest dwellers whose range will become more restricted with the retreat of the rainforest. On the other hand both these species inhabit disturbed areas including cities and towns in Borneo (personal observations of BPO) and so the exact cause of the decline of *A. koschevnikovi* in Malaysia and the rarity of *A. andreniformis* in most of Thailand is unclear. Perhaps competition from *A. florea* is important.

4.6. Pesticides

Exposure to most insecticides kills individual foragers, and can kill whole colonies (Desneux et al., 2007). Some commercial fruit crops, particularly longan (*Dimocarpus longan*), litchie (*Litchi chinensis*) and citrus are major honey producers which are highly attractive to honey bees (Crane et al., 1984). Other orchard trees like mangosteen, *Garcinia mangostana* and rambutan, *Nephthelium lappaceum*, make ideal nesting sites for dwarf bees (Oldroyd and Wongsiri, 2006). These orchards are regularly sprayed with insecticides, which kills all colonies nesting in the tree canopy (personal observations). Spraying during flowering may also affect colonies nesting outside the crop but foraging in the crop. Some tree crops such as oil palm, *Elaeis* spp., are regularly sprayed, and this may contribute to the observed paucity of bees within oil palm plantations.

Regulation of pesticide use is lax in some Asian countries, and this can increase the pos-

sibility of bee exposure to pesticides, for example by contamination of streams.

4.7. Street lighting

When open nesting species like *A. dorsata* and *A. andreniformis* nest near sources of light, foragers are attracted to the lights at night (personal observations). Many bees are killed in this way. This may be of limited consequence for colony survival, but cannot be helpful to an already-stressed nest. We do not know if *A. dorsata* queens on mating flights are attracted to lights, but if so, queens may also be lost in this way.

4.8. Competition with introduced *A. mellifera*

Concerns have sometimes been raised about the possibility that introduced *A. mellifera* may out compete and displace indigenous honey bees in Asia (see for example Verma, 1991). We think this unlikely. Feral populations of *A. mellifera* are unknown in Asia, and in our view are unlikely to be formed. First, in tropical regions with small variation in day length, European honey bees have difficulty regulating their rates of brood production and so they rarely reach swarming strength (Rinderer, 1988). Second, wherever *A. dorsata* is endemic, its parasitic mite *Tropilaelaps clareae* is also present, and likely to infest any feral *A. mellifera* colonies and kill them. Even where *T. clareae* is absent, feral colonies are likely to be killed by *Varroa destructor*. Host shifts between *Varroa destructor* to *A. mellifera* are rare (Anderson and Trueman, 2000; Solignac et al., 2005), and so indigenous *Varroa* are usually unlikely to infest *A. mellifera* colonies transplanted in to Asia. However, most *A. mellifera* populations world wide, including transplanted Asian ones are already infested with *V. destructor*. Thus, establishment of a feral population from a domesticated one already infested with *Varroa* seems unlikely (Anderson, 1994; Anderson and Sukarsih, 1996; Oldroyd and Wongsiri, 2006).

Despite the foregoing it is clear that *A. mellifera* beekeeping has replaced *A. cerana*

beekeeping in large parts of India, Japan, Pakistan, China, and Thailand, reducing population sizes of *A. cerana* in these regions. There is some evidence that very high densities of *A. mellifera* drones could interfere with *A. cerana* matings (Ruttner and Maul, 1983) though in Japan at least the times of mating flights do not overlap (Yoshida et al., 1994).

4.9. Anthropogenic movement

Only 10000 years ago much of the Indonesian archipelago, the Andaman Islands, Taiwan and Hong Kong were connected to mainland Asia (Heaney, 1991). Rising sea levels caused by the current phase of global warming created thousands of islands, some large, some small, and in doing so the once contiguous populations of honey bees were separated into isolated populations (Smith et al., 2000; Smith, 2002; Oldroyd and Wongsiri, 2006). This isolation has contributed to the rich diversity of honey bee ecotypes we see today, particularly in *A. cerana* and its related species (Hepburn et al., 2001; Radloff et al., 2005).

Anthropogenic movement of honey bees between regions potentially erodes biodiversity by homogenizing the gene pool. For example, the ‘mainland Asia’ mitotype of *A. cerana* is ubiquitous across Asia, often alongside a regional mitotype (Smith and Hagen, 1996; Smith et al., 2000). This suggests that humans have moved preferred strains of *A. cerana* among the some of the islands of the South China Sea. Not only do such movements potentially reduce biodiversity, they can also spread pests, pathogens and diseases.

4.10. Tourism

While tourism is sometimes regarded a positive force for conservation (Wynberg, 2002), more often than not it is negative (Noss et al., 1996; Pickering and Hill, 2007), especially when it involves hunting (Anon, 1991). A Google search of ‘Honey hunting tour’ reveals dozens of companies offering guided tours of honey hunting sites including operations in Nepal (more than 50 web sites), Thailand (1),

Bangladesh (1), Tibet (1) and Bhutan (2), and we are aware of similar enterprises in Malaysia which do not yet have a web presence. These practices are very likely to increase the number of colonies killed, and to foster hunting at inappropriate times of year when colonies are stressed and unlikely to recover.

5. WHAT SHOULD BE DONE TO CONSERVE ASIAN HONEY BEES?

It is undeniable that forest clearing contributes to honey bee decline, and the cause of honey bees can only add to the chorus of plants and animals that are similarly afflicted. Clearing of old growth forest on this planet should simply be stopped. Nonetheless conservation strategies must be rooted in pragmatism as well as good science, so we should also focus on those issues where something can realistically achieved in the shorter term, and that that will also be useful.

5.1. Quarantine

No doubt local people will continue to move *A. cerana* nests among neighbouring islands, and there is little that can be done about this. Most of the ports and airports of Asia give priority to the free flow of goods and people in the belief that the economic benefits of doing so outweigh the potential costs to agriculture and the environment. There are some exceptions. Malaysia, for example, does not allow importation of *A. mellifera* into Borneo. South Korea and Japan have banned imports of queens and packages from countries where *A. tumida* is now endemic. We applaud these measures.

5.2. Hunting

The impact of hunting on species viability depends on population size and growth rate, the proportion of colonies which survive a typical harvest, the proportion of colonies which are harvested, rates of migration from adjacent regions, the length of life of colonies, their

reproductive rate and so on (e.g. Caughley and Sinclair, 1994). Almost no information is available on any of these parameters, so assessing the impact of hunting on the viability of honey bee populations is difficult. Based on the assumptions of indefinite survival of established colonies, production of 2.5 swarms per year and 100 colonies per square kilometer, Oldroyd and Wongsiri (2006) suggested hunting of *A. florea* is unlikely to threaten populations because the level of harvesting is likely to be far less than the potential for population growth (i.e. a potential growth rate of 250 colonies per square kilometer). However densities of *A. dorsata* are likely to be much lower than this, perhaps 10 colonies per square kilometer, allowing a maximum harvest of much less than 25 colonies, which may often be exceeded. If so, and assuming that the harvest rate remains unchanged, the population will be driven to extinction. Hunters in Tamil Nadu report that *A. dorsata* is becoming more rare (Nath et al., 1994), and we assume that hunting in excess of the sustainable yield is the primary cause of this decline.

We urgently need to know the key demographic parameters for hunted honey bee populations. The critical parameters are:

H Harvest rate. The proportion of colonies that are harvested.

N Population size. The total population size.

r Growth rate, the change in the number of colonies per season if the population were unharvested.

S Survival rate. The proportion of colonies that survive harvest to reproduce.

With these parameters in hand one can calculate the intrinsic growth rate of a population relative to its current size. The goal is to maintain *H* much less than *r*.

These parameters cannot be readily determined directly, but they can be inferred. The growth rate can be estimated by determining the number of surviving daughter colonies a typical established colony produces. For the giant bees we need someone to study a nesting site for a complete reproductive season, counting the number of established colonies at the beginning of the season, the number of migrants that join the nesting

site, the number of daughter colonies, and the survival of all of these. For the dwarf bees, which do not form dense aggregations as the giant bees do (Rinderer et al., 2002; Wattanachaiyingcharoen et al., 2008), such a study may not be feasible. However the number of daughter colonies can be estimated by determining the average number of reproductive swarms that are cast by typical colonies in a typical season, and estimating a failure rate from a sample of swarms.

Estimates of *S* can potentially be determined experimentally. For example, *A. florea* nests could be harvested in the traditional way: shaking the bees off and harvesting the comb. The adult bees and queen should then form a cluster, which could be monitored for its survival. Various extensions of this simple idea could include establishing study plots that are regularly surveyed and the location of all colonies noted. Colonies could be harvested in some plots and not in others, and the re-colonization rate determined (Oldroyd et al., 1997). If worker samples were taken from all colonies for genetic analysis it may be possible to build a picture of what happens to harvested nests.

Estimating *N* by survey and physical counting of colonies (Oldroyd et al., 1997) is likely to severely underestimate the total number of colonies present (Hepburn and Radloff, 1998) so new genetic methods (Baudry et al., 1998; Moritz et al., 2007a, b) of estimating the number of colonies present in a population are preferred (Zayed, 2009). The innovation in this method is to genotype males at a series of tightly linked microsatellite loci. Males can be sampled directly from a population by using a drone trap fitted with a sex attractant, or the genotypes of the fathering males of workers can be inferred from a sample of workers from a single colony. The use of tightly linked loci means that it is much easier to distinguish brother drones from unrelated drones – two unrelated drones are less likely to share a haplotype of linked loci by chance than a multilocus diplotype. Software is available to estimate the number of colonies represented in a sample of drones (Wang, 2004). All that remains then is to estimate the area from which the drones may have been drawn in order to find

a good estimate of the density of colonies in a region. The efficacy of the method was demonstrated by showing that the estimated relative density of colonies in South Africa was much higher than in Europe (Moritz et al., 2007b). It should be noted that we doubt that this genetic method provides an accurate picture of the absolute number of colonies in a region, but it should provide a good estimate of the relative density between two regions.

5.3. Encouraging harvesting of wild colonies in a more sustainable manner

Harvest of *A. dorsata* and *A. laboriosa* is often a destructive process, but this need not be so. Bee hunters are often conservationists as well as being hunters, and are receptive to ideas that may help conserve bees. They are often strong advocates for forest protection (Nuksanong, 2000).

In Vietnam, Cambodia, Kalamantan and some other parts of Indonesia, efforts are being made to encourage harvesting of honey from *A. dorsata* nests in a non-destructive manner (Crane et al., 1993; Tan et al., 1997; Purwanto et al., 2000; Tan and Ha, 2002; Waring and Jump, 2004). This involves using bee smokers and protective clothing to shield hunters from stings so that harvesting can be done in daylight, rather than burning or smoking the bees at night. Second, bee hunters can construct 'rafters' in the forest to attract migrating *A. dorsata* swarms. Rafters are stout boards about 2 m long that are suspended at a 45° angle in a forest clearing (Tan et al., 1997; Tan and Ha, 2002). It is much easier to take honey from a colony nesting on a rafter 1 m from the ground than from a wild colony nesting in a 20 m tall *Koompasia* tree.

We applaud efforts to encourage more sustainable honey harvesting, but note that in many areas hunters have insufficient funds to purchase smokers and bee veils, relying almost exclusively on materials gathered from the forest to construct their simple hunting equipment.

5.4. Should we encourage keeping native honey bees?

Clearly if thousands of beekeepers each kept hundreds of colonies of a native honey bee like *A. cerana*, then the bee would be unlikely to go extinct. Should we therefore encourage keeping native *A. cerana* rather than European *A. mellifera*? The answer is 'it depends'. First the benefits to beekeepers. There is no doubt that *A. cerana* is resistant to parasites and pathogens likely to be encountered, whereas throughout Asia, *A. mellifera* must be regularly treated to manage mite infestations. Furthermore, *A. cerana* can live happily in rough boxes or tree trunks with little or no need for expensive equipment (Oldroyd and Wongsiri, 2006). On the other hand, there is no argument that in side by side trials *A. mellifera* will always provide more honey, and provide a higher return on investment than can *A. cerana* (even if start up costs are higher) (Magsaysay et al., 2004). So if the capital is available, it is not really justifiable to encourage a less profitable form of agriculture. Poor beekeepers should not be expected to bear the burden of conservation, which is the responsibility of us all.

One important reason to encourage *A. cerana* beekeeping over *A. mellifera* beekeeping is that *A. mellifera* seems more vulnerable to predation by bee-eating birds than are the indigenous honey bees. Thus some *A. mellifera* beekeepers in East Asia take steps to reduce bird predation by placing nets over apiaries. As many birds become entangled in the nets, there can be many bird deaths.

In Thailand, much of the honey available in local markets is wild honey harvested from open-nesting species, and this seems to be preferred to bottled honey which is often of poor quality. Perhaps the best thing to do, then, is to encourage sustainable and hygienic harvesting of wild honey from dwarf bees, rather than encouraging a transition to *A. mellifera* or *A. cerana* beekeeping.

6. CONCLUSIONS

Our review has shown that some Asian honey bee species are severely threatened by

a combination of alteration to habitat, over-hunting, and potentially climate change. Of particular concern are species like *A. andreniformis* and *A. koschevnikovi*, which are apparently confined to heavily forested areas, at least in mainland South East Asia. *Apis laboriosa*, denizen of mountainous regions, may be threatened by over-hunting, land clearing for cropping, and exotic disease.

We emphasise the urgent need for research into the demography of wild honey bee populations. We recommend a moratorium on destructive harvesting of giant bee nests wherever this can be legally enforced.

ACKNOWLEDGEMENTS

The authors are supported by the Australian Research Council and the Thailand Research Fund respectively. We thank Nadine Chapman, Gudrun Koeniger and Madeleine Beekman for comments on the manuscript.

La conservation des abeilles asiatiques.

Apis / protection / démographie / récolte soutenable / pollinisation / forêt à diptérocarpe / récolte miel sauvage / chasseur de miel

Zusammenfassung – Der Schutz asiatischer Honigbienen. Asien ist eine Region mit hoher Bevölkerungswachstumsrate und zunehmendem Einkommen, in Verbindung mit hohen Entwaldungsräten. Besondere Beachtung für den Schutz der Honigbienen muss dabei auf grossangelegte Umwandlungen von Primärwald in kurzyklische Waldwirtschaft, in Landwirtschaft und in städtische Gebiete gelegt werden. Nichstdesotrotz sind Honigbienen in ihren ursprünglichen Verbreitungsgebieten nach wie vor mehr oder weniger häufig anzutreffen. Allerdings gibt es inzwischen Anzeichen für lokale Rückgänge, insbesondere von *A. koschevnikovi* auf der malayischen Halbinsel und von *A. andreniformis* in den landwirtschaftlich genutzten Gebieten Thailands. Auch die Riesenhonigbienen *A. dorsata* und *A. laboriosa* scheinen in Grossstädten der Region unter Druck zu geraten. Diese lokalen Auslöschen und der generelle Rückgang in der Dichte an Honigbienennestern wird vermutlich Konsequenzen haben, sowohl für die Natur als auch für die Menschen in der Region.

An erster Stelle zu nennen wäre, dass ein Drittel unserer Nahrung pflanzlichen Ursprungs ist und dass diese Pflanzen von der Bestäubung insbesondere durch Honigbienen entweder abhängig sind oder davon profitieren. Auch in natürlichen Ökosystemen besteht ein starker Bedarf nach Bestäubern. Aufgrund ihrer Tanzsprache und ihres weiten Sammelradius können Honigbienenvölker kurzfristig verfügbare Trachtquellen schnell erkennen und ausbeuten. Solch schwankende und unvorhersehbare Blühereignisse sind in den Pflanzengemeinschaften der tropischen asiatischen Wälder die Regel. Wir gehen davon aus, dass diese Fortpflanzungsstrategien in der Gegenwart von zwei oder mehr Arten wandernder Honigbienen evoluierten könnten, da diese in der Lage sind ihre lokalen Populationsgrößen schnell zu steigern und somit genügend Bestäuber verfügbar sind. Der Verlust an Honigbienen kann deshalb die bestäubungsabhängige Ökologie der südostasiatischen Wälder stark beeinflussen. An zweiter Stelle steht die Tatsache, dass die asiatischen Honigbienen vielen Insekten, Säugern und Vögeln als Beute dienen. Verschiedene Vogelarten sind sogar auf Honigbienen spezialisiert, wie zum Beispiel der Gelbbürzelhoniganzeiger (*Indicator xanthonotus*), der Malaienhoniganzeiger (*I. archipelagicus*), sowie der Schopfwespenbussard (*Pernis ptilorhynchus*) und der Celebeswespenbussard (*P. celebensis*). Diese Arten wären entweder bedroht oder würden ganz aussterben, wenn die asiatischen Honigbienen aussterben würden. An dritter Stelle steht, dass Honigbienen bei vielen asiatischen Völkern hohes Ansehen geniessen und dass sie um ihr Wohlbehalten bemüht sind. Honigbienen spielen auch in der Religion in den asiatischen Hauptregionen eine wichtige Rolle. Die hauptsächlichen Ursachen für die Bedrohung der Populationen der Honigbienen stellen die Rodungen, die exzessive Honigjagd, die Ausbreitung von Parasiten und Pathogenen, der imkerliche Transport von Völkern zwischen den Inseln, mögliche Klimaveränderungen und der Verlust an Nistgelegenheiten dar. Letzteres betrifft vor allem die von *A. dorsata* bevorzugten grossen Bäume. Anstrengungen zum Schutz der Honigbienen sollten die Honigjagd im Auge haben, für die nachhaltige Nutzungskriterien erarbeitet werden sollten. Hierzu müssen dringend Daten erhoben werden zur Abschätzung des Umfangs der ausgebauten Völker und deren Überlebensraten. Gleichzeitig müssen Honigerntemethoden entwickelt und propägiert werden, die die Völker nicht vernichten. Wir empfehlen auch ein Moratorium gegen die destruktive Honigernte bei Riesenhonigbienen, dort wo dies rechtlich möglich und durchsetzbar ist, bis wir Daten zur nachhaltig möglichen Honigernte in den betreffenden Gebieten haben.

Apis / Schutz / Honigjagd / Demographie / nachhaltige Ernte / Bestäubung / Dipterocarpen-Wälder

REFERENCES

Abrol D.P. (2000) Beekeeping with *Apis cerana* in Jammu and Kashmir: present status and future prospects, *Bee World* 81, 149–152.

Abrol D.P., Bhat A.A. (1990) Studies on 'Thai sac brood virus' affecting indigenous honeybee *Apis cerana indica* Fab. colonies – Prospects and future strategies – I, *J. Anim. Morphol. Physiol.* 37, 101–108.

Allen M.F., Ball B.V., Underwood B.A. (1990) An isolate of *Melissococcus pluton* from *Apis laboriosa*, *J. Invertebr. Pathol.* 55, 439–440.

Anderson D.L. (1994) Non-reproduction of *Varroa jacobsoni* in *Apis mellifera* colonies in Papua New Guinea and Indonesia, *Apidologie* 25, 412–421.

Anderson D.L., Sukarsih (1996) Changed *Varroa jacobsoni* reproduction in *Apis mellifera* colonies in Java, *Apidologie* 27, 461–466.

Anderson D.L., Trueman J.W.H. (2000) *Varroa jacobsoni* (Acari: Varroidae) is more than one species, *Exp. Appl. Acarol.* 24, 165–189.

Anon (1991) Does game cropping serve conservation – a reexamination of the African data, *Can. J. Zool.-Rev. Can. Zool.* 69, 2283–2290.

Anon (2004) World Population Prospects. The 2004 revision, in: The Department of Economic and Social Affairs of the United Nations, New York.

Appanah S. (1985) General flowering in the climax rain forests of South-East Asia, *J. Trop. Ecol.* 1, 225–240.

Ashton P.S. (1988) Dipterocarp biology as a window to the understanding of tropical forest structure, *Annu. Rev. Ecol. Syst.* 19, 347–370.

Ashton P.S., Givnish T.J., Appanah S. (1988) Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics, *Am. Nat.* 132, 44–66.

Bailey L. (1974) An unusual type of *Streptococcus pluton* from the Eastern hive bee, *J. Invertebr. Pathol.* 23, 246–247.

Bailey L., Ball B.V. (1991) Honey bee pathology, 2nd ed., Academic Press, London, 124 p.

Baudry E., Solignac M., Garnery L., Gries M., Cornuet J.-M., Koeniger N. (1998) Relatedness among honeybees (*Apis mellifera*) of a drone congregation, *Proc. R. Soc. Lond. B* 265, 2009–2014.

Batley M., Hogendoorn K. (2009) Diversity and conservation status of native Australian bees, *Apidologie* 40, 347–354.

Bawa K.S. (1990) Plant-pollinator interactions in tropical rain forests, *Annu. Rev. Ecol. Syst.* 21, 399–422.

Beekman M., Lew J.B. (2007) Foraging in honey bees – when does it pay to dance? *Behav. Ecol.* 19, 255–261.

Beekman M., Gloag R.S., Even N., Wattanachaiyingcharoen W., Oldroyd B.P. (2008) Dance precision of *Apis florea* – clues to the evolution of the honey bee dance language? *Behav. Ecol. Sociobiol.* 62, 1259–1265.

Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemüller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, *Science* 313, 351–354.

Bond W.J. (1994) Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction, *Philos. Trans. R. Soc. Lond. B* 344, 83–93.

Brown N. (1998) Out of control: fires and forestry in Indonesia, *Trends Ecol. Evol.* 13, 41.

Buchmann S.L., Nabhan G.P. (1996) The forgotten pollinators, Island Press, Washington DC, p. 292.

Butani D.K. (1950) An *Apis dorsata* colony in New Delhi, *Indian Bee J.* 12, 115.

Caughley G., Sinclair A.R.E. (1994) Wildlife ecology and management, Blackwell Science, Cambridge, p. 334.

Chardonnet P., des Clers B., Fischer J., Gerhold R., Jori F., Lamarque F. (2002) The value of wildlife, Rev. Sci. Tech. Office International des Epizooties 21, 15–51.

Chen P.P., Wongsiri S., Jamyanya T., Rinderer T.E., Vongsamanode S., Matsuka M., Sylvester H.A., Oldroyd B.P. (1998) Honey bees and other edible insects used as human food in Thailand, *Am. Entomol.* 44, 24–29.

Chinh P.H. (1998) Thai sac brood virus disease control in Vietnam, in: Matsuka M., Verma L.R., Wongsiri S., Shrestha K.K., Partap U. (Eds.), *Asian Bees and Beekeeping. Proc. 4th Asian Apic. Association Int. Conf. Science Publishers, Enfield, New Hampshire, Kathmandu, Nepal*, pp. 57–59.

Corlett R.T. (2001) Pollination in a degraded tropical landscape: a Hong Kong case study, *J. Trop. Ecol.* 17, 155–161.

Corlett R.T. (2004) Flower visitors and pollination in the Oriental (Indomalayan) Region, *Biol. Rev.* 79, 497–532.

Crane E. (1991) *Apis* species of tropical Asia as pollinators, and some rearing methods for them, *Acta Hortic.* 288, 29–48.

Crane E. (1999) The world history of beekeeping and honey hunting, Routledge, New York, p. 720.

Crane E., Walker P., Day R. (1984) Directory of important world honey sources, International Bee Research Association, London, p. 384.

Crane E., van Luyen V., Mulder V., Ta. T.C. (1993) Traditional management system for *Apis dorsata* in submerged forests in southern Vietnam and central Kalimantan, *Bee World* 74, 27–40.

Crozier R.H. (1992) Genetic diversity and the agony of choice, *Biol. Conserv.* 61, 11–15.

deGrandi-Hoffman G., Martin J.H. (1995) Does a honey bee (*Apis mellifera*) colony's foraging population on male-fertile sunflowers (*Helianthus annuus*) affect the amount of pollen on nestmates foraging on male steriles? *J. Apic. Res.* 34, 109–114.

De La Rúa P., Jaffé R., Dall'Olio R., Munoz I., Serrano J. (2009) Biodiversity, conservation and current threats to European honeybees, *Apidologie* 40, 263–284.

Desneux N., Decourtye A., Delpuech J.M. (2007) The sublethal effects of pesticides on beneficial arthropods, *Annu. Rev. Entomol.* 52, 81–106.

Dietemann V., Pirk C.W.W., Crewe R. (2009) Is there a need for conservation of honeybees in Africa, *Apidologie* 40, 285–295.

Dornhaus A., Chittka L. (1999) Evolutionary origins of bee dances, *Nature* 401, 38.

Dornhaus A., Klugl F., Oechslein C., Puppe F., Chittka L. (2006) Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model, *Behav. Ecol.* 17, 336–344.

Duncan B.N., Martin R.V., Staudt A.C., Yevich R., Logan J.A. (2003) Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, *J. Geophys. Res.* 108, 4040.

Dyer F.C. (1985) Mechanisms of dance orientation in the Asian honey bee *Apis florea*, *J. Comp. Physiol. A* 157, 183–198.

Dyer F.C., Seeley T.D. (1991) Dance dialects and foraging range in three Asian honey bee species, *Behav. Ecol. Sociobiol.* 28, 227–233.

Dyer F.C., Seeley T.D. (1994) Colony migration in the tropical honey bee *Apis dorsata* F. (Hymenoptera: Apidae), *Insectes Soc.* 41, 129–140.

Ellis J.D., Hepburn H.R. (2006) An ecological digest of the small hive beetle (*Aethina tumida*), a symbiont in honey bee colonies (*Apis mellifera*), *Insectes Soc.* 53, 8–19.

Flint E.P. (1994) Changes in land-use in South and Southeast-Asia from 1880 to 1980 – a data-base prepared as part of a coordinated research-program on carbon fluxes in the tropics, *Chemosphere* 29, 1015–1062.

Ghazoul J. (2005) Pollen and seed dispersal among dispersed plants, *Biol. Rev.* 80, 413–443.

Gordon J., Davis L. (2003) Valuing honeybee pollination. Rural Industries Research and Development Corporation, Canberra, p. 36.

Heaney L.R. (1991) A synopsis of climatic and vegetational change in Southeast Asia, *Climatic Change* 19, 53–61.

Hepburn H.R., Radloff S. (1998) Honeybees of Africa. Springer-Verlag, Berlin, 370 p.

Hepburn H.R., Smith D.R., Radloff S.E., Otis G.W. (2001) Infraspecific categories of *Apis cerana*: morphometric, allozymal and mtDNA diversity, *Apidologie* 32, 3–23.

Humphries C.J., Williams P.H., Vane Wright R.I. (1995) Measuring biodiversity value for conservation, *Annu. Rev. Ecol. Syst.* 26, 93–111.

Inoue T., Adri, Salmah S. (1990) Nest site selection and reproductive ecology of the Asian honey bee, *Apis cerana indica*, in central Sumatra, in: Sakagami S.F., Ohgushi R.-i., Roubik D.W. (Eds.), *Natural history of social wasps and bees in equatorial Sumatra*, Hokkaido University Press, Sapporo, Japan, pp. 219–232.

IPCC (2007) Intergovernmental Panel on Climate Change, Fourth assessment report, in: World Meteorological Organization, Geneva.

Itioka T., Inoue T., Kaliang H., Kato M., Nagamitsu T., Momose K., Sakai S., Yumoto T., Mohamad S.U., Hamid A.A., Yamane S. (2001) Six-year population fluctuation of the giant honey bee *Apis dorsata* (Hymenoptera: Apidae) in a tropical lowland dipterocarp forest in Sarawak, *Ann. Entomol. Soc. Am.* 94, 545–549.

Janzen D. (1974) Tropical backwater rivers, animals, and mast fruiting by the Dipterocarpaceae, *Biotropica* 6, 69–103.

Janzen D.H. (1971) Seed predation by animals, *Annu. Rev. Ecol. Syst.* 2, 465–496.

Kahona S., Nakamura K., Amir M. (1999) Seasonal migration and colony behavior of the tropical honeybee *Apis dorsata* F. (Hymenoptera: Apidae), *Treubia* 31, 283–297.

Kenta T., Isagi Y., Nakagawa M., Yamashita M., Nakashizuka T. (2004) Variation in pollen dispersal between years with different pollination conditions in a tropical emergent tree, *Mol. Ecol.* 13, 3575–3584.

Kevan P.G., Viana B.F. (2003) The global decline of pollination services, *Biodiversity* 4, 3–8.

Klein A.M., Vaissiere B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. (2007) Importance of pollinators in changing landscapes for world crops, *Proc. R. Soc. B-Biol. Sci.* 274, 303–313.

Koeniger N., Vorwohl G. (1979) Competition for food among four sympatric species of Apini in Sri Lanka: *Apis dorsata*, *Apis cerana*, *Apis florea* and *Trigona iridipennis*, *J. Apic. Res.* 18, 95–109.

Koeniger N., Koeniger G. (1980) Observations and experiments on migration and dance communication of *Apis dorsata* in Sri Lanka, *J. Apic. Res.* 19, 21–34.

Koeniger N., Koeniger G., Punchihewa R.K.W., Fabritius M., Fabritius M. (1982) Observations and experiments on dance communication in *Apis florea* in Sri Lanka, *J. Apic. Res.* 21, 45–52.

Konuma A., Tsumura Y., Lee C.T., Lee S.L., Okuda T. (2000) Estimation of gene flow in the tropical-rainforest tree *Neobalanocarpus heimii* (Dipterocarpaceae) inferred from paternity analysis, *Mol. Ecol.* 9, 1843–1852.

Koppler K., Vorwohl G., Koeniger N. (2007) Comparison of pollen spectra collected by four different subspecies of honey bee *Apis mellifera*, *Apidologie* 38, 341–353.

Kremen C., Williams N.M., Aizen M.A., Gemmill-Herren B., LeBuhn G., Minckley R., Packer L., Potts S.G., Roulston T., Steffan-Dewenter I., Vazquez D.P., Winfree R., Adams L., Crone E.E., Greenleaf S.S., Keitt T.H., Klein A.M., Regetz J., Ricketts T.H. (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change, *Ecol. Lett.* 10, 299–314.

Lahjie A.M., Seibert B. (1990) Honey gathering by people in the interior of East Kalimantan, *Bee World* 71, 153–157.

Liow L.H., Sodhi N.S., Elmquist T. (2001) Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia, *J. Appl. Ecol.* 38, 180–192.

Maa T. (1953) An inquiry into the systematics of the tribus *Apidini* or honeybees (Hym.), *Treubia* 21, 525–640.

Magsaysay J.F., Lucero R.M., Manila-Fajardo A.C., Tapay N.E. (2004) Economics of raising honey bees in the Philippines, in: Camaya E.N., Cervancia C.R. (Eds.), Bees for new Asia, Proc. 7th Asian Apic. Association Conference, University of the Philippines: Los Baños, pp. 305–310.

May R.M. (1994) Conceptual aspects of the quantification of the extent of biological diversity, *Philos. Trans. R. Soc. Lond. B* 345, 13–20.

Maycock C.R., Thewlis R.N., Ghazoul J., Nilus R., Burslem D. (2005) Reproduction of dipterocarps during low intensity masting events in a Bornean rain forest, *J. Veget. Sci.* 16, 635–646.

Michener C.D. (1979) Biogeography of the bees, *Ann. Missouri Bot. Gard.* 66, 277–347.

Moritz R.F.A., Dietemann V., Crewe R. (2007a) Determining colony densities in wild honeybee populations (*Apis mellifera*) with linked microsatellite DNA markers, *J. Insect Conserv.* 11, 391–397.

Moritz R.F.A., Kraus F.B., Kryger P., Crewe R.M. (2007b) The size of wild honeybee populations (*Apis mellifera*) and its implications for the conservation of honeybees, *J. Insect Conserv.* 11, 391–397.

Morse R.A., Laigo F.M. (1969) *Apis dorsata* in the Philippines, Philippines Association of Entomologists, Laguna, p. 96.

Morse R.A., Nowogrodzki R. (1990) Honey bee pests, predators and diseases, Cornell University Press, Ithaca, p. 474.

Morse R.A., Calderone N.W. (2000) The value of honey bees as pollinators of U.S. crops in 2000, *Glean. Bee Cult. Suppl.*, 1–15.

Mossagegh M.S. (1993) New geographical distribution line of *Apis florea* in Iran, in: Conner L.J., Rinderer T., Sylvester H.A., Wongsiri S. (Eds.), Asian Apiculture. Wicwas Press, Cheshire, pp. 64–66.

Mostafa A.M., Williams R.N. (2002) New record of the small hive beetle in Egypt and notes on its distribution and control, *Bee World* 83, 99–108.

Murray T.E., Kuhlmann M., Potts S.G. (2009) Conservation ecology of bees: populations, species and communities, *Apidologie* 40, 211–236.

Nanson J.D., Hamrick J.L. (1997) Reproductive and genetic consequences of forest fragmentation: Two case studies of neotropical canopy trees, *J. Hered.* 88, 265–276.

Nath S., Sharma K. (2007) Honey trails in the Blue Mountains: Ecology, people and livelihood in the Nilgiri Biosphere Reserve, India. Keystone Foundation, Kotagiri.

Nath S., Roy P., Leo R., John M. (1994) Honeyhunters and beekeepers of Tamil Nadu. A survey document. Keystone, Pondicherry, p. 86.

Neumann P., Elzen P.J. (2004) The biology of the small hive beetle (*Aethina tumida*, Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species, *Apidologie* 35, 229–247.

Neumann P., Koeniger N., Koeniger G., Tingek S., Kryger P., Moritz R.F.A. (2000) Home-site fidelity of migratory honeybees, *Nature* 406, 474–475.

Noss R.F., Quigley H.B., Hornocker M.G., Merrill T., Paquet P.C. (1996) Conservation biology and carnivore conservation in the Rocky Mountains, *Conserv. Biol.* 10, 949–963.

Nualsanong K. (2000) Traditional knowledge and natural resources management [in Thai], Taksinkadee 5, 130–138.

Oldroyd B.P., Wongsiri S. (2006) Asian Honey Bees. Biology, Conservation and Human Interactions, Harvard University Press, Cambridge, Ma., p. 340.

Oldroyd B.P., Rinderer T.E., Wongsiri S. (1992) Pollen resource partitioning by *Apis dorsata*, *A. cerana*, *A. andreniformis* and *A. florea* in Thailand, *J. Apic. Res.* 31, 3–7.

Oldroyd B.P., Thexton E.G., Lawler S.H., Crozier R.H. (1997) Population demography of Australian feral bees (*Apis mellifera*), *Oecologia* 111, 381–387.

Oldroyd B.P., Osborne J.E., Mardan M. (2000) Colony relatedness in aggregations of *Apis dorsata* Fabricius (Hymenoptera, Apidae), *Insectes Soc.* 47, 94–95.

Oldroyd B.P., Reddy M.S., Chapman N.C., Thompson G.J., Beekman M. (2006) Evidence for reproductive isolation between two colour morphs of cavity

nesting honey bees (*Apis*) in south India, *Insectes Soc.* 53, 428–434.

Otis G.W. (1996) Distributions of recently recognized species of honey bees (Hymenoptera: Apidae; *Apis*) in Asia, *J. Kans. Entomol. Soc.* 69, 311–333.

Paar J., Oldroyd B.P., Kastberger G. (2000) Giant honey bees return to their nest sites, *Nature* 406, 475.

Paar J., Oldroyd B.P., Huettinger E., Kastberger G. (2004) Genetic structure of an *Apis dorsata* population: the significance of migration and colony aggregation, *J. Hered.* 95, 119–126.

Pickering C.M., Hill W. (2007) Impacts of recreation and tourism on plant biodiversity and vegetation in protected areas in Australia, *J. Environ. Manage.* 85, 791–800.

Punchihewa R.K.W., Koeniger N., Kevan P.G., Gadawski R.M. (1985) Observations on the dance communication and natural foraging ranges of *Apis cerana*, *Apis dorsata*, and *Apis florea* in Sri Lanka, *J. Apic. Res.* 24, 168–175.

Purwanto, Didik B., Hadisoesilo S., Kasno, Koeniger N., Lunderstädt J. (2000) Sunggau system: A sustainable method of honey production from Indonesia with the giant honey bee *Apis dorsata*, in: Wongsiri S. (Ed.), *Proc. 7th Int. Conf. on tropical bees: Management and diversity*, International Bee Research Association: Cardiff, Chiang Mai, Thailand, pp. 201–206.

Radloff S.E., Hepburn H.R., Hepburn C., Fuchs S., Otis G.W., Sein M.M., Aung H.L., Pham H.T., Tam D.Q., Nuru A.M., Ken T. (2005) Multivariate morphometric analysis of *Apis cerana* of southern mainland Asia, *Apidologie* 36, 127–139.

Raffiuddin R., Crozier R.H. (2007) Phylogenetic analysis of honey bee behavioral evolution, *Mol. Phylogenet. Evol.* 43, 543–552.

Richards A.J. (2001) Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? *Ann. Bot.* 88, 165–172.

Rinderer T.E. (1988) Evolutionary aspects of the Africanization of honey-bee populations in the Americas, in: Needham G., Page R.E. Jr., Delfinado-Baker M., Bowman C.E. (Eds.), *Africanized honey bees and bee mites*, Ellis Horwood, Chichester, pp. 1–12.

Rinderer T.E., Marx B.D., Gries M., Tingek S. (1996) A scientific note on stratified foraging by Sabahan bees on the yellow flame tree (*Peltophorum pterocarpum*), *Apidologie* 27, 423–425.

Rinderer T.E., Oldroyd B.P., de Guzman L.I., Wattanachaiyingcharoen W., Wongsiri S. (2002) Spatial distribution of the dwarf honey bees in an agroecosystem in southeastern Thailand, *Apidologie* 33, 539–543.

Ruttner F., Maul V. (1983) Experimental analysis of the interspecific isolation of *Apis mellifera* L and *Apis cerana* Fabr., *Apidologie* 14, 309–327.

Sakai S. (2002) General flowering in lowland mixed diterocarp forests of South-east Asia, *Biol. J. Linn. Soc.* 75, 233–247.

Scott-Dupree C., Winston M.L., Hergert G., Jay S.C., Nelson D.L., Gates J., Termeer B., Otis G.W. (1995) A guide for managing bees for crop pollination, in: Canadian Association of Professional Apiculturists [online] <http://www.capabees.com> (accessed on 30 January 2009).

Seeley T.D. (1978) Life history strategy of the honey bee, *Apis mellifera*, *Oecologia* 32, 109–118.

Sen Sarma M., Esch H., Tautz J. (2004) A comparison of the dance language in *Apis mellifera carnica* and *Apis florea* reveals striking similarities, *J. Comp. Physiol. A* 190, 49–53.

Sheikh M.S., Chetry G. (2000) Distribution of honey bees in Assam, *Environ. Ecol.* 18, 236–234.

Slatkin M. (1985) Gene flow in natural populations, *Annu. Rev. Ecol. Syst.* 16, 393–430.

Smith D.R. (2002) Biogeography of *Apis cerana*: southeast Asia and the Indo-Pakistan subcontinent, in: XIV Int. Congr. IUSSI, Hokkaido University, Sapporo, Japan, p. 233.

Smith D.R., Hagen R.H. (1996) The biogeography of *Apis cerana* as revealed by mitochondrial DNA sequence data, *J. Kans. Entomol. Soc.* 69, 294–310.

Smith D.R., Villafuerte L., Otis G., Palmer M.R. (2000) Biogeography of *Apis cerana* F. and *A. nigrofasciata* Smith: insights from mtDNA studies, *Apidologie* 31, 265–279.

Sodhi N.S., Koh L.P., Brook B.W., Ng P.K.L. (2004) Southeast Asian biodiversity: an impending disaster, *Trends Ecol. Evol.* 19, 654–660.

Solignac M., Cornuet J.M., Vautrin D., Le Conte Y., Anderson D., Evans J., Cros-Arteil S., Navajas M. (2005) The invasive Korea and Japan types of *Varroa destructor*, ectoparasitic mites of the Western honeybee (*Apis mellifera*), are two partly isolated clones, *Proc. R. Soc. B-Biol. Sci.* 272, 411–419.

Stanghellini M.S., Ambrose J.T., Hopkins D.I. (2000) Bumble bee colonies as potential alternative hosts for the small hive beetle (*Aethina tumida* Murray), *Am. Bee J.* 140, 71–75.

Tan N.Q., Ha D.H. (2002) Socio-economic factors in traditional rafter beekeeping with *Apis dorsata* in Vietnam, *Bee World* 83, 165–170.

Tan N.Q., Chinh P.H., Thai P.H., Mulder V. (1997) Rafter beekeeping with *Apis dorsata*: some factors affecting occupation of rafters by bees, *J. Apic. Res.* 36, 49–54.

Taylor D., Saksena P., Sanderson P.G., Kucera K. (1999) Environmental change and rain forests on the Sunda shelf of Southeast Asia: drought, fire and the biological cooling of biodiversity hotspots, *Biodiv. Conserv.* 8, 1159–1177.

Thapa R., Wongsiri S., Oldroyd B.P., Prawan S. (2000) Migration of *Apis dorsata* in northern Thailand, in: Matsuka M., Verma L.R., Wongsiri S., Shrestha K.K., Partap U. (Eds.), *Asian Bees and Beekeeping*, Proc. 4th Asian Apic. Association Int. Conf., Science Publishers, Enfield, New Hampshire, Kathmandu, pp. 39–43.

Tingek S., Koeniger G., Koeniger N., Gries M. (2004) *Physocephala paralliventris* Kröber (Conopidae), a parasitic fly of three *Apis* species in northern Borneo, in: Bees for new Asia, Proc. 7h Asian Apic. Association Conf., Los Baños, Philippines, pp. 364–365.

Tsing A.L. (2003) *Cultivating the wild: Honey-hunting and forest management in Southeast Kalimantan*, in: Zerner C. (Ed.), *Culture and the question of rights. Forests, coasts and seas in Southeast Asia*. Duke University Press, Durham, pp. 24–55.

Underwood B.A. (1990) Seasonal nesting cycle and migration patterns of the Himalayan honey bee *Apis laboriosa*, *Natl. Geogr. Res.* 6, 276–290.

Underwood B.A. (1992) Impact of human activities on the Himalayan honeybee, *Apis laboriosa*, in: Verma L.R. (Ed.), *Honey bees in mountain agriculture*, Westview Press, Boulder, pp. 51–58.

Valli E., Summers D. (1988) *Honey hunters of Nepal*. Harry N. Abrams, Inc., New York, p. 104.

Vane Wright R.I., Humphries C.J., Williams P.H. (1991) What to protect – Systematics and the agony of choice, *Biol. Conserv.* 55, 235–254.

Verma L.R. (1991) *Beekeeping in integrated mountain development*, Aspect publications, Edinburgh, p. 367.

Verma L.R., Rana B.S., Verma S. (1990) Observations on *Apis cerana* colonies surviving from Thai sacbrood virus infestation, *Apidologie* 21, 169–174.

Wang J. (2004) Sibship reconstruction from genetic data with typing errors, *Genetics* 166, 1963–1979.

Waring C., Jump D.R. (2004) Rafter beekeeping in Cambodia with *Apis dorsata*, *Bee World* 84, 14–18.

Wattanachaiyingcharoen W., Wongsiri S., Oldroyd B.P. (2008) Aggregations of unrelated *Apis florea* colonies, *Apidologie* 39, 531–536.

Wilkie D.S., Carpenter J.F. (1999) Bushmeat hunting in the Congo Basin: an assessment of impacts and options for mitigation, *Biodiv. Conserv.* 8, 927–955.

Williams I.H. (1996) Aspects of bee diversity and crop pollination in the European Union, in: Matheson A., Buchman S.L., O'Tool C., Westridge P., Williams I.H. (Eds.), *The conservation of bees*, Academic Press, London.

Wongsiri S., Lekprayoon C., Thapa R., Thirakupt K., Rinderer T.E., Sylvester H.A., Oldroyd B.P., Boocham U. (1997) Comparative biology of *Apis andreniformis* and *Apis florea* in Thailand, *Bee World* 78, 23–35.

Wynberg R. (2002) A decade of biodiversity conservation and use in South Africa: tracking progress from the Rio Earth Summit to the Johannesburg World Summit on Sustainable Development, *S. Afr. J. Sci.* 98, 233–243.

Yoshida T., Saito J., Kajigaya N. (1994) The mating flight times of native *Apis cerana japonica* Radoszkowski and introduced *Apis mellifera* L in sympatric conditions, *Apidologie* 25, 353–360.

Zayed A. (2009) Bee genetics and conservation, *Apidologie* 40, 237–262.