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Abstract

Project Code : MRG5080287

Project Title : Applications of Volterra Filters for Nonlinear Ultrasound Imaging
Investigator : Assistant Professor Dr. Pornchai Phukpattaranont

E-mail Address : pornchai.p@psu.ac.th

Project Period : 2 years

Abstract :

Modern ultrasonic imaging modalities employ nonlinear phenomena to enhance
diagnostic capabilities in medical applications. Nonlinear signal separation is a key factor in
this success. Consequently, applications of Volterra filters for nonlinear ultrasound imaging
are studied and results are presented in this report. The properties of Volterra filters that
affect imaging qualities both in terms of contrast and spatial resolution are analyzed and
used to formulate the design approach of Volterra filter for improving the quality of ultrasound
images based on the investigated properties. The important finding is a novel design
approach of a quadratic filter that allows for two degrees of freedom in optimizing time and
frequency resolution independently. That is, axial resolution can be maintained while contrast
resolution is maximized. Thus, it overcomes the trade-off in time frequency resolution
problem appearing in linear bandpass filtering, which has only one degree of freedom in filter
optimization. For example, in order to increase contrast resolution in linear bandpass filtering,
the passband width of filter must be decreased. This unavoidably degrades axial resolution.
Evaluation of the approach is demonstrated using a flow phantom target containing
ultrasound contrast agent and a quality assurance ultrasound phantom consisting of
resolution targets. Results show that the proposed method allows for obtaining the quadratic
image with high contrast resolution and no apparent loss in axial resolution. In addition, a
preliminary study of system identification based on Volterra filters applied in a nonlinear
medical ultrasound system was carried out. The feasibility study shows that the system
identification based on the second-order Volterra filter is capable of separating the second
order nonlinearity embedded under the level of noise signal. This is a significant advantage
of the method over a conventional linear filtering. Applications in practical use that the
advantage of this new proposed method may allow for include medical diagnosis and tissue
characterization.

Keywords : Volterra filter, Nonlinear ultrasound imaging, Medical ultrasound imaging



aj‘ﬂfﬂ‘mn’li (Executive summary)

1. anadranuaziinnzasilyw (Importance and motivation of this research)

Conventional ultrasound techniques provide excellent clinical and diagnostic information about
blood flow in arterial and venous macrovasculature of various systems. However, the sonographic detection
of blood flow in small vessels of the microcirculation is a challenging problem. This is due to the fact that
echoes from blood are much smaller than those from the surrounding tissue. Moreover, it is limited by other
factors such as tissue motion (clutter), attenuation properties of the intervening tissue, and slow or low-
volume flow. As a result, the echoes from blood are masked by those from surrounding tissue.

Recently, a significant improvement in blood flow detection by utilizing specific acoustic properties
of ultrasound contrast agents (UCAs) has been achieved. That is, methods employing microbubbles provide
enhancement in not only blood flow measurement of the backscattered Doppler signals but also gray-scale
visualization of the flowing blood in the tissues of organs like the heart, liver, and kidney. Therefore, many
reports of the improved diagnostic capabilities exploiting UCAs in clinical applications have been published
in the past few years. Examples include improved discrimination between benign and malignant liver tumors
[1], enhanced assessment of myocardial perfusion [2], and many others reported in [3]. This achievement
exploits the nonlinear behavior from interaction between acoustic energy and UCAs to improve spatial and
contrast resolution. Various modern imaging techniques rely on separating and enhancing nonlinear echoes
including second harmonic (SH) and pulse inversion (PI) imaging.

In this proposal, we have investigated the use of a Volterra fillter model for separating the linear
and nonlinear components of the beamformed radio frequency (RF) data in pulse-echo ultrasonic imaging in
order to improve ultrasound image quality. Volterra filters have been extensively utilized as appropriate
mathematical models for a wide variety of nonlinear physical phenomena. In particular, many important
nonlinear effects from physical systems with mild nonlinearities can be estimated by the low-order Volterra
filters (typically, either the 2”d or the Srd order). Examples of numerous physics-related applications of
truncated Volterra filters include elimination of nonlinear distortions in audio loudspeakers [4], equalization of
nonlinear systems [5], and several other areas. The success of Volterra filters as nonlinear models for other

physical systems provides the inspiration for applying them with nonlinear ultrasound problems.

2. 'S'quﬂizaaﬁf (Objective of this research)

Each UCA imaging technique has its own limitation. SH imaging employs relatively narrowband
pulses to improve separation between fundamental and harmonic components. Moreover, the selection of
center frequency and duration of transmit pulse in imaging UCAs is a function of the UCA properties and
transducer bandwidth characteristics. For example, in abdominal imaging, transmitting near the resonance
frequency of the UCA, the loss in transmission efficiency may be compensated for by receive efficiency as

the 2nd harmonic occurs closer to the center frequency of the imaging probe. Multi-pulse techniques such as



Pl imaging have mitigated the need for transmitting narrowband pulses at the expense of reduction of the
imaging frame rate.

To address some or all of limitations stated above, we have investigated the model-based
approach, which employs the Volterra system to separate harmonic components of nonlinear echoes
resulting from a single transmission covering the full (fundamental) bandwidth of the transducer. For
simplicity and without loss of generality, we present post-beamforming nonlinear filter based on the second-
order Volterra filter (SVF) to decompose UCA-backscattered signals into linear and quadratic components in

this proposal. The specific objectives of this research are as follow:
® To analyze the SVF properties that affect imaging qualities both in terms of contrast and
spatial resolution.
® To formulate the SVF design approach for improving contrast and spatial resolution of

contrast-assisted ultrasonic imaging based on the investigated SVF properties.

® To survey other applications of Volterra filter to ultrasound medical problems, e.g. the study
of nonlinear parameter B/A estimation based on the SVF model.
3. suideun599e (Research methodology)
Year 1

To understand SVF properties that affect imaging qualities both in terms of contrast and spatial
resolution, we plan to investigate the SVF both in time and frequency domain. Recently, we have presented
an insight of the quadratic filter for contrast-assisted ultrasonic imaging in the frequency domain [6]. It is
shown that the understanding of quadratic kernel in the frequency domain allows for a new filter design
approach. Also, we are motivated by the success of singular value decomposition (SVD) applying to two-
dimensional FIR digital filters design as described in [7]. Consequently, we will further analyze the optimal
quadratic filter in frequency domain using the SVD. After understanding the quadratic filter in frequency
domain, we can directly design the optimal quadratic filter with no need of forming the system of linear
equations and searching the optimal quadratic filter that provide the maximum contrast-to-tissue ratio. An
obvious advantage of the direct design is the reduction in time and computational complexity. Additionally,
the direct design may provide the optimal quadratic filter with less number of total coefficients. This is very
desirable for real-time implementation of medical ultrasound imaging.

We also plan to investigate the characteristics of quadratic filter in time domain that affect imaging
quality. It is shown in [8] that the quadratic kernel can be designed to be independent between time and
frequency resolution with the constraints of non-zero only in the cross-diagonal. If this property is applicable
in ultrasound nonlinear signal separation, the SVF can be used to overcome the trade-off between contrast
and spatial resolution problem in ultrasound contrast agent imaging. That is, the quadratic filter will
maximize contrast resolution without the sacrifice of spatial resolution. The property of independence
between time and frequency resolution is going to be incorporated in our design approach to create the
quadratic filter optimizing for both contrast and spatial resolution.

Year 2



We plan to evaluate the performance of quadratic filter from our design approach both in terms of
contrast and spatial resolution. For the evaluation of spatial resolution, we will apply the quadratic filter to
ultrasound data acquired from a quality assurance phantom. We also validate the quadratic filter from our
proposed design with ultrasound RF data both in vitro (flow phantom) and in vivo. The quality of quadratic
images will be reported.

Finally, we will survey the applications of the SVF to estimate acoustic nonlinearity parameter B/A.
The acoustic nonlinearity parameter B/A is a measure of nonlinearity of a medium. It is shown to be a
powerful parameter for characterizing tissue. For example, fatty soft tissues, which are more nonlinear than
those without fat, also provide higher B/A values (approximately 10 compared with 7 [9]). In addition, the
structure of biological media is shown to be dependent on ultrasonic nonlinearity parameter B/A [10]. We
have demonstrated in [11] that nonlinearity parameter B/A can be estimated using the normalized input-
output curve calculated from output signals of bandpass filter centered at the 2nd harmonic. However, if we
determine nonlinearity parameter B/A using the normalized input-output curve calculated from output signals
of the quadratic filter, we may obtain more accurate calculation of nonlinearity parameter B/A. This is due to
the fact that the SVF is a model-based approach for detecting nonlinear signals. If we can precisely predict
nonlinearity parameter B/A, we are able to distinguish media with different properties, e.g. not fatty and fatty

soft tissues.
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Chapter 1

Introduction

1.1 Importance and Motivation

Conventional ultrasound techniques provide excellent clinical and diagnostic information
about blood flow in arterial and venous macrovasculature of various systems. However,
the sonographic detection of blood flow in small vessels of the microcirculation is a
challenging problem. This is due to the fact that echoes from blood are much smaller
than those from the surrounding tissue. Moreover, it is limited by other factors such as
tissue motion (clutter), attenuation properties of the intervening tissue, and slow or low-
volume flow. As a result, the echoes from blood are masked by those from surrounding
tissue.

Recently, a significant improvement in blood flow detection by utilizing specific
acoustic properties of ultrasound contrast agents (UCAs) has been achieved. That is,
methods employing microbubbles provide enhancement in not only blood flow measure-
ment of the backscattered Doppler signals but also gray-scale visualization of the flowing
blood in the tissues of organs like the heart, liver, and kidney. Therefore, many reports of
the improved diagnostic capabilities exploiting UCAs in clinical applications have been
published in the past few years. Examples include improved discrimination between
benign and malignant liver tumors [1], enhanced assessment of myocardial perfusion [2],

and many others reported in [3]. This achievement exploits the nonlinear behavior from



2

interaction between acoustic energy and UCAs to improve spatial and contrast resolu-
tion. Various modern imaging techniques rely on separating and enhancing nonlinear
echoes including second harmonic (SH) and pulse inversion (PI) imaging.

In this research, we have investigated the use of a Volterra fillter model for sep-
arating the linear and nonlinear components of the beamformed radio frequency (RF)
data in pulse-echo ultrasonic imaging in order to improve ultrasound image quality.
Volterra filters have been extensively utilized as appropriate mathematical models for
a wide variety of nonlinear physical phenomena. In particular, many important non-
linear effects from physical systems with mild nonlinearities can be estimated by the
low-order Volterra filters (typically, either the second or the third order) [4,5]. Exam-
ples of numerous physics-related applications of truncated Volterra filters include: (1)
elimination of nonlinear distortions in audio loudspeakers [6], (2) algorithm for acoustic
echo cancelation [7], (3) equalization of nonlinear systems [8], and several other areas.
The success of Volterra filters as nonlinear models for other physical systems provides

the inspiration for applying them with nonlinear ultrasound problems.

1.2 Objectives

Each UCA imaging technique has its own limitation. SH imaging employs relatively nar-
rowband pulses to improve separation between fundamental and harmonic components.
Moreover, the selection of center frequency and duration of transmit pulse in imaging
UCAs is a function of the UCA properties and transducer bandwidth characteristics.
For example, in abdominal imaging, transmitting near the resonance frequency of the
UCA, the loss in transmission efficiency may be compensated for by receive efficiency
as the second harmonic occurs closer to the center frequency of the imaging probe.
Multi-pulse techniques such as PI imaging have mitigated the need for transmitting
narrowband pulses at the expense of reduction of the imaging frame rate.

To address some or all of limitations stated above, we have investigated the
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model-based approach, which employs the Volterra system to separate harmonic com-
ponents of nonlinear echoes resulting from a single transmission covering the full (fun-
damental) bandwidth of the transducer. For simplicity and without loss of generality,
we present post-beamforming nonlinear filter based on the second-order Volterra filter
(SVF) to decompose UCA-backscattered signals into linear and quadratic components

in this research. The specific objectives of this research are as follow:

e To analyze the SVF properties that affect imaging qualities both in terms of con-

trast and spatial resolution.

e To formulate the SVF design approach for improving contrast and spatial resolu-
tion of contrast-assisted ultrasonic imaging based on the investigated SVF prop-

erties.

e To survey other applications of Volterra filter to ultrasound medical problems, e.g.

the study of nonlinear parameter B/A estimation based on the SVF model.

1.3 Literature Review

1.3.1 History and Development of Ultrasound Contrast Agent
(UCA)
An ultrasound contrast agent (UCA) is an external substance that is usually introduced
into the vascular system in order to enhance diagnostic and/or therapeutic capabilities
in medical ultrasound, e.g. to improve the discrimination between normal and diseased
tissue. Figure 1.1 shows one example of UCA, namely SonoVueTM (Bracco Research
SA, Geneva, Switzerland) microbubbles, compared to red blood cells. Interest in UCA
research originated from the observation of a cloud of echoes during the intracardiac
injection of indocyanine green dye (a substance for measuring blood flow) by Gramiak
and colleagues in 1968 while they performed M-mode echocardiography [9]. Afterward, it
was discovered that those echoes were caused by microbubbles resulting from cavitation

at the catheter tip [10,11]. Research on finding more appropriate substances to be used



Figure 1.1: SonoVue microbubbles compared to red blood cells.

as contrast agents in ultrasound has been pursued since that time, but most vigorously
in the last 10 years.

Ophir and Parker provided an excellent review of the state-of-the-art in the use
of UCAs in ultrasound as of 1989 [12]. In this article, Ophir and Parker defined five
categories of materials with different physical properties that may have potential to be
used as UCAs. In particular, agents were based on free gas bubbles, encapsulated gas
bubbles, colloidal suspensions, emulsions, and aqueous solutions. Appropriate contrast
agents for ultrasound should be small and stable enough to circulate throughout the
human body during a typical diagnostic examination. However, contrast agents at that
time fell short on both criteria. Specifically, they could not reach the left heart after an
intravenous injection because of the blocking from the capillary circulation in the lungs.
This prevented the use of microbubbles as a contrast material in other organs such as
the liver and kidney.

In order to extend the lifetime of microbubble contrast agents, many methods
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have been investigated and several ways to stabilize microbubbles have been discovered.
Currently, contrast agents that can survive the blood circulation of the lung are available
[13,14]. The review by Frinking in 2000 reported that three transpulmonary UCAs were
approved for clinical use. These are Levovist (Schering AG, Berlin, Germany), Albunex
(Molecular Biosystems Inc., San Diago, USA), and Optison (Mallinckrodt, St. Louis,
USA) [15]. In addition, more than 10 UCA from various manufacturers are under
development and are being investigated for clinical use.

Most of current ultrasound contrast agents are based on encapsulated microbub-
bles. Compositions that allow them to traverse the lung capillary bed are the gaseous
core with high molecular weights and the stabilized encapsulated shell. Gases with large
molecules have low diffusion constants. As a result, their low diffusion rates reduce their
dissolvability in fluids, such as blood and water [16]. On the other hand, the encapsula-
tion with lipid or albumin shell prevents inner gases from the swift process of diffusing

through the surrounding liquid.

1.3.2 Acoustic Properties of Microbubble Contrast Agent

Scattering enhancement

Perfused tissues containing microbubble contrast agent provide higher echogenicity than
that from normal tissues because of differences in acoustic properties of surrounding tis-
sue media relative to those of microbubbles. In addition, this backscatter is possibly
further increased by the oscillatory behaviors of microbubbles under acoustic pulse ex-
citation. Consequently, conventional two-dimensional images of perfused organs can be
produced with greater clarity. Details of physical mechanisms regarding backscatter
enhancement resulting from microbubble contrast agents are given below.

Ultrasound is sensitive to particles with different acoustic properties (e.g., speed
of propagation, density, and absorption) from the surrounding medium. The strength
of backscattered signals from the mixed medium depends on its scattering cross-section

(SCS) [17]. The SCS is defined as the scattered power from an incident plane wave
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divided by the intensity of the incident wave. When the particle size is much smaller
than the wavelength of insonating wavefront, the SCS can be expressed by (based on
the Born approximation): [1§]

SCS = [SWRQ(]{ZR)‘l] { [’Tr + ; [mr} : (1.1)
where k = 27 /) is the wavenumber, A is the wavelength, R is the radius of the particle
< A, Kp is the compressibility of the particle, s, is the compressibility of the medium,
pp is the density of the particle, and p,, is the density of the medium.

It can be seen from the formula in Equation 1.1 that a scattering strength is
proportional to the fourth power of the ultrasound frequency and the sixth power of a
particle radius. As a specific example, we calculate the SCS of a spherical air bubble
with 1-um radius embedded in water under 3-MHz field using the following parameters:
A=5x%x10"*m, k = 1.26 x 10* per m, R = 1 x 107% m, k, = 7.65 x 107% m?/N,
Km = 0.45x107% m?/N, p, = 1.2 kg/m3, and p,,, = 1000 kg/m?. The resulting SCS of the
bubble is 1 x 10~* m2. Note that the wavelength of ultrasound is much greater than the
particle radius. In addition, the difference in compressibility ((k,—km)/fm = 1.74 x 10%)
significantly influences the SCS compared with the negligible term due to difference in
density ((3pp — 3pm)/(2pp + pm) = 3).

For a comparison, the SCS of an iron sphere under the same conditions as the
spherical air bubble case, except its compressibility (k, = 5.5 x 107'? m?/N) and den-
sity (p, = 7800 kg/m?®) values, is determined. The SCS of the iron particle is only
5 x 1072° m?, which is 100 million times less than that from the bubble. This example
demonstrates the substantial increase in SCS resulting from the gas-based particle. Sim-
ilarly, microbubble contrast agents consisting of gaseous cores (e.g. free gas bubbles and
encapsulated gas bubbles) are embedded in the blood pool, thus providing significant
enhancement in backscattered signals.

When bubbles in a liquid are insonated with ultrasound, they also exhibit os-

cillatory motion resulting from their stiffness and inertia. While the stiffness of bubbles
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affects the oscillation of the enclosed gas core like spring, the inertia is caused by the
mass of surrounding liquid. This bubble oscillation is important because it makes bub-
bles act as sound sources resulting in high SCS enhancement at a specific frequency,

referred to as the resonant frequency. The resonance frequency of free gas bubbles can

1 S’YPO
JE—— A 1.2

where f, is the resonance frequency, R is the radius of the bubble, Py is the pressure,

be approximated by [19]:

v is the ratio of specific heat, and p is the density of surrounding medium. The for-
mula shows that the resonance frequency is inversely proportional to the bubble radius.
Calculations of resonance frequencies of free gas bubbles in water using the following
parameters: Py = 1.01 x 10° Pa, v = 1.4, and p = 1000 kg/m?, indicate that the bubbles
with diameter values from 0.6 ym to 6 pum (typical diameters of contrast microbubbles
available currently) provide their resonant frequencies in the frequency range of medical

ultrasound (1-10 MHz).
Multiple Harmonic Generation

In addition to ultrasound frequency, bubble dynamics varies according to amplitudes
of insonating pressure pulse. Characteristics of echoes from interactions between ul-
trasound and microbubbles can be divided into three categories according to levels of
applied acoustic pressures. For the low amplitude pressure excitation, bubbles oscilla-
tion is linearly related to applied pressures, thus producing linear backscattered signals.
As amplitudes of insonating pressure field increase, bubbles oscillate nonlinearly and
produce harmonic echoes, i.e. the fundamental (fy) and its higher multiple frequen-
cies (2fo, 3 fo, -..) [20],[21]. These harmonic frequencies, especially the second harmonic,
are significantly higher than those from the surrounding tissue and can be exploited in
separating contrast echoes from the surrounding tissue medium.

For insonation at even higher pressures, the coating shells of microbubbles are
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Figure 1.2: The responses of UCA bubble to ultrasound as a function of mechanical
index.

disrupted and inner gases are dissolved in blood stream leading to suddenly high scat-
tering and highly nonlinear echoes [22]. However, this irreversible process terminates
the contrast effect because of bubble destruction. The level of bubble destruction is

proportional to the mechanical index (MI), which is defined as [23,24]

MI = 37, (1.3)

where MI denotes the mechanical index, p_ is the peak negative pressure measured
in MPa, and f is the transmit frequency measured in MHz. The higher the MI used
in diagnostic ultrasound system, the higher possibility of bubble destruction. Imaging
with low MI values to avoid bubble rupture is important for some imaging targets
such as low blood flow organs. If bubbles are destroyed in those targets, low rates
of contrast replenishment can interrupt continuous imaging diagnosis. On the other
hand, replenishment curves are useful in forming parametric images reflecting function
of organs. The responses of UCA microbubble to ultrasound as a function of mechanical

index are summarized in Figure 1.2.



1.4 Contrast Agent Imaging

The early forms of UCA imaging relied on fundamental B-mode imaging. The rationale
for this mode of image is based on Equation 1.1, i.e. increased SCS of microbubbles.
This method only exploits enhanced strength of echoes due to high SCS of microbibbles
in tissue media. However, in some imaging targets such as myocardium, the sensitivity of
contrast agent detection is low due to the low microbubble population in perfused tissue.
To enhance the detection sensitivity of microubble contrast agents, a number of imaging
techniques based on other specific acoustic signatures of UCAs such as nonlinear and
transient scattering have been developed. Some of these techniques that are currently
used in pulse-echo medical ultrasound imaging as well as their strengths and weaknesses
are given below.

In fundamental B-mode imaging, also known as standard B-mode imaging,
UCAs increase the echogenicity from perfused tissues [12]. For example, in cardiac
imaging, this results in improved endocardial border detection in left ventricular opaci-
fication, which leads to a better analysis of wall motion abnormalities [25]. Nevertheless,
in the myocardium where the ratio of blood volume to tissue is low (approximately 10%
[26]), the backscatter from the small number of microbubbles in vessels can be domi-
nated by echoes from surrounding tissue. In this case, standard B-mode imaging offers
inferior UCA detectability in the presence of tissue, stated as agent-to-tissue ratio [27].

Imaging techniques based on nonlinear oscillations have been designed for sep-
arating and enhancing nonlinear UCA echoes from a specified region of interest within
the imaging field including second harmonic (SH) B-mode imaging and pulse inversion
(PI) Doppler imaging [28]. SH imaging employs a fundamental frequency transmit pulse
and produces images from the second harmonic component of received echoes by using a
second harmonic bandpass filter (BPF) to remove the fundamental frequency. In order
to increase UCA detection sensitivity in the limited transducer bandwidth condition,

spectral overlap between fundamental and second harmonic parts need to be minimized
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Figure 1.3: An inherent trade-off between contrast and spatial resolution in SH imaging.

by transmitting narrow-band pulses resulting in an inherent tradeoff between contrast
and spatial resolution. The trade-off limitation of SH imaging is concluded and shown
in Figure 1.3.

In PI imaging, a sequence of two inverted acoustic pulses with appropriate delay
is transmitted into tissue. Images are produced by summing the corresponding two
backscattered signals. In the absence of tissue motion, the resulting sum can be shown
to contain only even harmonics of the nonlinear echoes [28]. PI imaging overcomes the
tradeoff between contrast and spatial resolution because it utilizes the entire bandwidth
of the backscattered signals [28]. As a result, superior spatial resolution can be achieved
when compared with SH imaging. Moreover, it has been shown that PI imaging can be
operated in a continuous imaging mode with low MIs [29]. PI imaging is sensitive to
tissue motion because it is a multiple pulse technique; therefore, PI detection is combined
with Doppler detection leading to a new technique called PI Doppler. The PI Doppler
utilizes the advantages from both detection schemes and circumvents the tissue motion
problem [28]. Nevertheless, an inherent multipulse technique of PI imaging results in

the reduction of imaging frame rates. The principle of PI imaging is summarized and
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Figure 1.4: Harmonic separation using PI principle when the imaging target is station-
ary. Top: A linear positive pulse (Thin line) plus a linear negative pulse (Dotted line)
is zeros (Thick line). Bottom: A nonlinear positive pulse (Thin line) plus a nonlinear
negative pulse (Dotted line) is the remaining even harmonic components (Thick line).

shown in Figure 1.4.

In addition, when ultrasound propagates in media, it slightly exhibits higher
harmonic frequencies (2fo, 3fo,...) because the compressional cycle of the sound wave
moves slightly faster than the rarefactional cycle does and the sound wave becomes
distorted. Although nonlinear propagation can be used to improve image quality in
tissue harmonic imaging (THI) [23], it reduces the sensitivity to separate UCA echoes
from tissue echoes not only in SH and PI imaging but also in other imaging techniques

that employ nonlinearity from contrast agents.



Chapter 2

Second Harmonic Imaging

2.1 Introduction

This chapter describes the second harmonic frequency characteristic and second har-
monic image generation from pulse-echo signals of UCA. Based on the differences in
frequency of ultrasound data from two different media, ultrasound signals are classified
into two classes, i.e., UCA and tissue. We show the frequency characteristic of the UCA
signals from an in wvivo target to demonstrate this nonlinear behavior. Then, the dif-
ference in frequency components of the UCA and tissue data is used as a reference to
design a linear bandpass filter (LBF) in order to separate the UCA signals from tissue
echoes. The LBF is designed using the Parks-McClellan algorithm. We find that the
appropriate fractional bandwidth (FB) and stopband attenuation of the LBF are 15% -
25% and 40 - 50 dB, respectively. The imaging quality for medical ultrasound purposes,
by utilizing the information from the frequency contents of contrast-assisted ultrasound
data, has been improved. Results show that the images produced from the output sig-
nals of the optimal LBF are superior to the original B-mode images both in terms of

contrast and spatial resolution.

12
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Figure 2.1: The imaging setup for the guinea pig’s kidney.

2.2 Materials and Methods

2.2.1 Experimental Setup and Data Acquisition

The experiment was conducted in vivo on a guinea pig. Bolus injections of SonoVue?™
(Bracco Research SA, Geneva, Switzerland), a UCA consisting of sulphur hexafluoride
gas bubbles coated by a flexible phospholipidic shell, were administered with a concen-
tration of 0.01 mL/kg. Figure 2.1 shows the imaging setup for the guinea pig’s kidney.
Three-cycle pulses at 1.56 MHz were transmitted with a mechanical of index 0.158 to
scan the kidney of the guinea pig. Radio frequency (RF) data were acquired with 16-bit
resolution at 20-MHz sampling frequency. In addition, all RF data were recorded and
saved for off-line processing by the Technos MPX ultrasound system (ESAOTE S.p.A,
Genoa, Italy) with a convex array probe (CA430E; ESAOTE S.p.A, Genoa, Italy).

2.2.2 Power Spectrum

After data acquisitions, we determined the power spectrum of RF A-lines from the UCA
regions compared with those from the tissue regions. Power spectrum of A-line data was
obtained using the periodogram method with a weighted sequence. The multiplication of

the weighted sequence, i.e. window, in the time domain is convolution in the frequency
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domain, so some resolution gets lost by smearing and spectral leakage. However, the
trend of the signal’s estimated power spectral density (PSD) can be enhanced by the use
of a window function with faster decaying side-lobes. The expression used to calculate

the power spectrum is given by

2

n ..
g v
S(e) =" 21)
2 2wl
=1
where S(e7¥) is a power spectrum, [z ...,x,| is a signal sequence, and [w; ..., w,] is a

weighted sequence. This expression is an estimate of the power spectrum of the signal
sequence [z ..., x,| weighted by the window sequence [w; ..., w,]. A periodogram uses
an n-point FFT to compute the PSD as S(e/*)/F where F is a sampling frequency.
Twenty-one segments of A-lines from the UCA and tissue regions were used to determine
power spectra. Fach segment consisted of 201 samples of data. A Hanning window was
chosen as the weighted signal sequence in this paper. An n-point symmetric Hanning

window can be expressed as

wlk+1=05(1—cos |27 k k=0,...,n—1. (2.2)
n+1

2.2.3 Linear Bandpass Filter (LBF)

In this work, we use the Parks-McClellan algorithm (Parks and McClellan, 1972) to de-
sign a linear bandpass filter (LBF). The designed filters exhibit an equiripple behavior in
their frequency response, and hence are also known as equiripple filters. The parameters
for the LBF design, i.e. fractional bandwidth and stopband attenuation, are chosen to
maximize the difference in the spectra of echo signals from the UCA and tissue regions.
The LBF with optimal parameters should enhance the UCA components but suppress
the tissue signals. Parameters to be considered for the design of the LBF are shown in

Figure 2.2. The fractional bandwidth of the LBF can be obtained by

2
FB =22 100%, (2.3)

e
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Figure 2.2: Two parameters considered in the design of an optimal LBF: Fractional
bandwidth (F'B) and stopband attenuation.

where F'B is a fractional bandwidth, fg is one-half of a defined passband in the filter
specification, and f¢ is a center frequency. In addition, stopband attenuation is defined
in terms of dB below the passband of the filter. Signal outputs from the optimal LBF

are used to make a gray-level image, which provides better quality for medical diagnosis.

2.2.4 Contrast Resolution

We measured the contrast resolution of images using a contrast-to-tissue ratio (CTR),

which is given by

CTR = 10log &, (2.4)
Pr

where Po and Pp are the average power of signals in the UCA and tissue regions,

respectively. The average power is obtained by

P = foj, (2.5)

1 I
=1 ]:]_

1J ¢

(2

where z;; is the signal in the reference region. We use C'T'R as a measurement of the

LBF’s capability in extracting second harmonic components. The appropriate LBF for
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producing a gray-level image with enhanced quality should provide a high CT'R value.

2.3 Results

2.3.1 Frequency Characteristics

The gray image of the guinea pig’s kidney is shown in Figure 2.3(a) with a 50 dB
dynamic range. The reference tissue and UCA regions used for calculation of the power
spectra are on the left and right white boxes, respectively. Each region consists of 21
A-line pulse-echo signals. To investigate more details of the frequency characteristic of
pulse-echo signals, we show the average spectra and standard deviation (SD) of 21 A-
lines from the tissue and UCA regions in Figure 2.3(b) and (c), respectively. We can see
that every A-line signal from the UCA region exhibits the second harmonic frequency.
On the contrary, the A-line signal from the tissue region contains only the fundamental
frequency. Average spectra determined from 21 A-line signals of the tissue and UCA
regions on the left and right boxes of Figure 2.3(a) are shown in Figure 2.3(d) using
dotted and solid lines, respectively. We can see that the harmonic spectrum of the UCA
echoes (solid line) between 2.5 and 4 MHz band are broader than those from tissue
echoes (dotted line). This result obviously shows the fundamental and second harmonic
frequency generation due to the UCAs. On the other hand, the signals from the tissue

regions contain only the transmitted fundamental frequency.

2.3.2 Stopband Attenuation

We can clearly see in Figure 2.3(d) that the UCA components are higher than the tissue
components in the frequency range between 2.5 and 4 MHz. Based on this observation,
the center frequency is selected to be 3.2 MHz for all designs of the LBF in this paper.
In order to investigate the appropriate stopband attenuation, we designed the LBF with
a fixed FB of 12.5%. The gray-level images of the guinea pig’s kidney resulting from
various stopband attenuations with fixed fractional bandwidth at 12.5% are shown in

Figure 2.4. Images after filtering with the LBF produced from the stopband attenuation
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Figure 2.3: (a) B-mode image of the guinea pig’s kidney (b) Average spectra and stan-
dard deviation (SD) of 21 A-line signals from the tissue region. (c¢) Average spectra and
SD of 21 A-line signals from the UCA region. (d) Average spectra of tissue and UCA
signals from the left and right boxes of (a).
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Figure 2.4: Gray-level images of the guinea pig’s kidney from signals after filtering with
the LBF by varying stopband attenuation to be 20, 30, 40, and 50 dB. FB is fixed at
12.5%. The CTR values from the images in (a), (b), (c), and (d) are 2.0, 8.5, 11.8, and
12.7 dB, respectively.

of 20, 30, 40, and 50 dB are shown in Figure 2.4(a), (b), (c), and (d), respectively. It is
shown that images in Figure 2.4(c) and (d) have a comparable contrast resolution and
are better than those from images in Figure 2.4(a) and (b). We can clearly visualize
the kidney shape and large vascular structures inside the kidney. In addition, CTR
values from images in Figure 2.4(a), (b), (c), and (d) are 2.0, 8.5, 11.8, and 12.7 dB,

respectively. These are in agreement with the visualized inspection.
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2.3.3 Fractional Bandwidth

Figure 2.5 shows gray-level images from the LBF with a different fractional bandwidth at
the fixed stopband attenuation of 40 dB. Images after filtering with the LBF produced
from the FB of 10, 15, 25, and 50% are shown in Figure 2.5(a), (b), (c), and (d),
respectively. It can be seen that the LBF with FB from 10% to 25% are appropriate for
enhancing imaging quality in terms of contrast resolution. However, spatial resolution
is improved when the FB of the LBF increases. In other words, the LBF with FB 25%
provides the best image in terms of spatial resolution. The CTR values of images in
Figure 2.5(a), (b), (c), and (d) are 11.2, 11.4, 11.0, and 2.8 dB, respectively. They agree

well with the visualization.

2.4 Discussion

We demonstrated the nonlinear properties from the interaction between the UCA and
transmitted acoustic energy. The second harmonic frequency of pulse-echo signals from
the UCA region is significantly higher than those from the surrounding tissue region.
The imaging quality of medical ultrasound images can be enhanced by employing these
second harmonic components. Gray-level images produced using the LBF with optimal
fractional bandwidth (15 - 25%) and stopband attenuation (40 - 50 dB) are better than
the original B-mode images both in terms of contrast and spatial resolution. We also
explored the effects of filter ripples. It turns out that passband ripples have very slight
effects to the imaging quality. However, the lower passband ripple results in the higher
filter length. This leads to more computational complexity. Consequently, the passband
ripple of approximately 0.5 dB is suggested for contrast-assisted ultrasonic imaging.
Results of ultrasound image improvement produced from linear bandpass filtering are
used as a baseline for comparison with those from the novel proposed nonlinear filtering

based on Volterra model.
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Figure 2.5: Gray-level images of the guinea pig’s kidney from signals after filtering with
the LBF by varying FB to be 10, 15, 25, and 50%. Stopband attenuation is fixed at 40
dB. The CTR values of the images in (a), (b), (c), and (d) are 11.2, 11.4, 11.0, and 2.8
dB, respectively.



Chapter 3

Quadratic Filter Analysis

3.1 Introduction

In this chapter, we present the design approach for quadratic filter (QF) from post-
beamforming Volterra filter. Imaging results demonstrate that quadratic B-mode (QB-
mode) images produced from the output signal of optimum QF provide high contrast
of UCA over surrounding tissue regions. In addition, we describe the second-order
frequency response (SFR), i.e. Ho(e?*1, e/“2), of the quadratic filter and its contribution
to the spectra of quadratic signal output. This tool allows for not only understanding the
contrast enhancement mechanisms of QB-mode images but also opening the opportunity

for novel QF design resulting in images with better quality for medical diagnosis.

3.2 Post-Beamforming Volterra Filter

We have demonstrated the validity of a second order Volterra system as a model for
pulse-echo ultrasonic imaging data from tissue mimicking media in [30]. An input-output
system identification approach was used to estimate the coefficients of the linear and
quadratic components of the SVF in the frequency domain. However, while the system
identification study was necessary to establish the applicability of SVF to ultrasound
pulse-echo data, it is not useful for imaging purposes as it requires access to both the
input and the echo data from distinct scatterers in the tissue-mimicking media. An

appropriate approach for imaging operates on the beamformed RF data to separate the

21
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Figure 3.1: Separation of beamformed RF data into linear and quadratic components
using the SVF.

linear and quadratic components regardless of the input. This signal separation approach
allows us to extract the linear and quadratic signal components from the beamformed

data to form linear and/or quadratic images separately or compounded.

3.2.1 Signal Separation Model

Figure 3.1 shows a simple block diagram of the imaging system based on the SVF.
The SVF operates on the beamformer output to produce the linear and quadratic
components,tr(n)and Gg(n), respectively. Estimates of the total beamformer output

can be obtained from these components simply by adding them
ﬁ(n) = ﬁL(n) + ﬁQ(ﬂ), (31)

where 4(n),ar(n), and dg(n) are the total, linear and quadratic estimations, respec-
tively. The separation of the linear and quadratic components can be achieved once
the coefficients of the kernels,hy (i) (linear) and hg(j, k) (quadratic) are found. In the
following subsection, we describe a minimum-norm least-squares (MNLS) approach for

determining these coefficients.

3.2.2 MNLS Estimation of SVF Coefflicients

Assume the RF echo signal, u(n), is composed of linear and quadratic components, i.e.

u(n) = ug(n)+ug(n). The quadratic component may result from nonlinear propagation
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in tissue and/or nonlinear oscillations of UCA in response to transmit imaging pulse.
The response of a quadratically nonlinear system with memory can be predicted by a

(discrete) second-order Volterra model operating on the m past samples as follows:

an+1) = éomn—@m@)
* 7;;i“”_ﬂﬂn—kﬁd$@, (3.2)

where hp (i) and hg(j, k) are the linear and quadratic filter coefficients, respectively. Note
that while a(n + 1) is nonlinear with respect to the beamformed data, it is linear with
respect to the coefficients of the linear and quadratic kernels of the SVF. Recognizing

this fact, one can rewrite Equation 3.2 in vector form:
a(n+ 1) = u”(n)h, (3.3)

where the data vector, u(n), is defined at sample n as

u(n) = [u(n), u(n — 1), u(n — 2),..., uln —m + 1),

u?(n), u(n)u(n —1),..., u*(n —m + 1)]7,
and the filter coefficient vector, h, can be expressed as

h = [h(0), hp(1), hp(2),..., hy(m — 1),
ho(0,0), ho(0,1),..., hg(m —1,m —1)]7,

where m is the system order and superscript 7 denotes the transpose. The total number
of independent filter coefficients, N, is equal to (m? + 3m)/2 assuming a symmetrical
quadratic kernel (i.e., ho(j, k) = ho(k,j)). Similarly, u(n + 2),a(n + 3),...,a(n + M)

can be represented in the form of Equation 3.3 and expressed in the matrix form
f = Gh, (3.4)
where the vector f and the data matrix G are defined as
f = [uln+1),un+2),...,uln+M)]"

and

G = [un),un+1),...,un+M-1),
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where M is the number of linear equations (observations). The MNLS solution can be

derived using the SVD of G, which is defined as
G=UxV' => ouv/, (3.5)
i=1

where 3 is a M x N diagonal matrix with singular values o0y > 09 > ... > 0, > 0,41 =
.=0, =0 (p =min{M,N}) and r < min{M, N} is the rank of G. The matrices

U (M x M) and V(N x N) are formed from the columns {u;}*£, and {v;}¥ ,, which are

the orthogonal eigenvectors of GGT and GT G, respectively [31]. The MNLS solution

is then given by

" ulf

hynes = Z

i=1 Ji

Vi. (3.6)

3.2.3 Regularization

The SVD of G forms a basis for regularization by appropriate selection of singular
modes that enhance the contrast between UCA and tissue regions in the image. A
solution based on the constrained optimization problem, which is the general form of
the regularization, can be expressed as

T

o’.
hpee = > —————u’ fv,, 3.7
= T o0

where ~; is an appropriately chosen threshold for the ith singular mode and R? is
quadratic ratio resulting from the quadratic kernel obtained from the ith singular mode.
The TSVD regularization, also known as rank reduction regularization [32],

used in our previous work can be derived from Equation 3.7. When ~; is chosen to be

0 : i<k
Vi = _ ; (3.8)
o : k<i<r

where k£ < r is the number of singular modes used to compute the estimate, the kth

order TSVD solution is given by

b oulf
hTSVD<k):Z t V;. (39)

i—1 Oi
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In the context of the linear and quadratic prediction approach, the estimation
error (i.e., the root mean square value of the residual between observable and predicted
data) decreases monotonically with k. A criterion for choosing an appropriate value
of k is needed. In the context of contrast-agent imaging, an obvious criterion is the
contrast-to-tissue ratio (CTR)

P
CTR = 10logy, (;) : (3.10)
T

where P¢ is the average power of signals in a UCA region and P is the average power
of signals in a tissue region. The average power of signals in a given region, P, can be

expressed as:

o 1 I J )
P = 77 (lezl xj) : (3.11)

where x;; is the signal in that region. The CTR provides a measure of performance

reflecting the agent-to-tissue specificity in the context of UCA imaging.

3.2.4 Quadratic Images

Quadratic images are obtained from quadratic components of the second-order Volterra
model. The coefficients of the SVF are derived from the beamformed RF data taken
from a representative region on a standard B-mode image. Details of the algorithm to
produce the quadratic image are as follows.

From the standard B-mode image, a UCA region and a tissue region are defined
for the CTR computation. In general, we try to find regions at the same depth and
with the same beam angle with respect to the axis of the imaging array. Furthermore,
whenever possible, we chose multiple overlapping subregions to obtain multiple CTR
values at different depths. Once the CTR reference regions are defined, a segment of
RF data from an axial line is selected to form a system of linear equations according to
Equation 3.2. This segment can be selected from the tissue or the UCA region as long as
the appropriate regularization of the MNLS solution is sought. For example, when TSVD

is used for regularization, CTRs of quadratic signals calculated from various orders of
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TSVD solutions are collected. With a defined range of system orders, a CTR plane as

a function of truncation parameters and system orders is determined. Filter coefficients
for the quadratic imaging generation are obtained from a truncation parameter and
a system order that give the highest CTR value in the CTR plane. Of course, the
TSVD approach can be used to obtain the coefficients of the quadratic kernel, , for
a predetermined filter order . This may be necessary from the implementation point
of view, when the size of the kernel is to be kept at manageable level. The results
are obtained with low-order filter to emphasize the practicality of the Volterra filter
approach.

The quadratic image is produced by applying the quadratic filter coefficients
to the beamformed RF data throughout the standard B-mode image to estimate the

quadratic component

—_

Gont1) = 33 uln— yuln — kgl k). (3.12)

j=0 k=j

where izQ (7, k) is the estimated quadratic kernel.

3.3 Frequency Responses of Quadratic Filter

As described in last section, the QB-mode image is produced using a quadratic filter, in
which the relation between input xz(n) and output y(n) can be expressed as
N—1 N—1
y(n) = > > ho(kr, ko)z(n — ki)z(n — k), (3.13)
k1=0 k2=0
where hy(+, -) represents the quadratic kernel and N is the system memory. The quadratic
kernel for contrast agent imaging is obtained by forming a system of linear equations
from a segment of beamformed RF data and solving for filter coefficients to minimize
the error from the linear plus quadratic predictor (For complete details of the algorithm,

please see [33]). The QB-mode image is produced by applying the optimal kernel to the

beamformed RF data throughout the B-mode image.
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In this section, we analyze the characteristics of the optimal quadratic filter,
which is capable of enhancing UCA over tissue, in the frequency domain. The input-
output relation of the quadratic filter shown in Equation 3.13 in the frequency domain
is given by
1 r2mp2m

V() = o[ | Hy(er, ) X (") X (7 )duwrdioy (3.14)
0

TJ0

under the assumption

w) +wy = w, (3.15)

where Y (/%) is the discrete-time Fourier transform (DTFT) of y(n), X(e*) is the
DTFT of z(n), and Hy(e?*',e/*?) is the 2D DTFT of hy(-,-). Note that the observed
quadratic signal component at w is the result of the sum of mixing all frequency com-
ponents w; and ws such that w; +wy = w weighted by the quadratic frequency response

at w; +wy = w.

3.4 Results

3.4.1 Image Enhancement

We use the RF data acquired in wvivo to investigate characteristics of the optimal
quadratic filter in the frequency domain (Please see [33] for details of the experimental
setup and quadratic filter derivation). Figure 3.2(a) shows the B-mode image of the kid-
ney after the injection of 0.01 mL/kg UCAs acquired using 3-cycle 1.56-MHz pulse (MI
= 0.158) transmissions. Average spectra of tissue and UCA signals in the left and right
boxes of Figure 3.2(a) are shown in Figure 3.2(b). We can clearly see that harmonic
spectra of UCA echoes (solid) between 2 MHz and 4 MHz frequency band are broader
than those from tissue echoes (dotted line). Figure 3.2(c) shows the optimal quadratic
filter used to produce QB-mode images. The filter is a square matrix with size 57 by
57. The resulting QB-mode image processed with the quadratic filter shown in Figure

3.2(c) is shown in Figure 3.2(d). One can clearly see the improvement of image quality.
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This significant enhancement of QB-mode image can be explained using the relation

described in Equation 3.14.

3.4.2 Frequency Responses

Figure 3.3 shows a filled contour plot of magnitude of frequency responses in the (wy, ws)
plane. The filled contour plot displays isolines calculated from the magnitude of fre-
quency function in the (w;,ws) plane and fills the areas between the isolines using
constant colors. The magnitude frequency responses obtained using RF data in the
tissue (| Xrg(e’)Xrg(e’?)|) and UCA (| Xcr(e?“t) Xor(e742)|) regions are shown in

Figure 3.3(a) and (b), respectively. Figure 3.3(c) shows the ratio of contrast to tissue

[Xcor(e?“1) Xor(e792))]

Xog (1) Xpg (777 Four distinct peaks in the 2D plane of contrast to

magnitude, i.e.
tissue magnitude are observed at frequencies corresponding to second harmonics due
to UCA, i.e. 3 MHz. Figure 3.3(d) shows the magnitude of 2D frequency response of
the optimal quadratic filter (|Ha(e’**,e*2)]). The magnitude of frequency responses
of quadratic components from tissue (|Ha(e’, e/2)|| Xpg(e?1) Xpg(e’2)|) and UCA
(|Ho(e?1, e742)|| X o (e71) X o (e742)|) regions in the (wi,ws) plane are shown in Figure
3.3(e) and (f), respectively. We can clearly see that the quadratic filter appropriately
amplifies the region where UCA is higher than tissue at frequency (3,3) and (-3,-3)
MHz.

Figure 3.4(a) shows a more quantitative insight of the quadratic filter in the
frequency domain. Line graphs that corresponding to magnitude frequency where
fi + fo = 6 MHz in the (w;,ws) plane of the UCA, tissue, and filter are shown us-
ing, thick, dotted, and thin lines, respectively. One can see that the filter has a high
gain where UCA is higher than tissue. Figure 3.4(b) shows average spectra of data
from the QB-mode image in UCA (|Yor(e’*)|) and tissue (|Yrs(e’*)|) regions using
solid and dotted lines, respectively. The intersection points between the dashed ver-
tical line and other two horizontally spectral lines are from the integration along the

diagonal line f; + fo= 6 MHz, i.e. f027r 02” Hy (&7, e7%2) X op (/1) X o (€742 ) dwy dws and
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Figure 3.2: (a) B-mode image of the kidney. (b) Average spectra of RF data. Solid:
| Xcor(e?)], Dotted: |Xrs(e?*)|. (¢) The optimal quadratic filter. (d) QB-mode image.
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Figure 3.3:  Filled contour plots of magnitude frequency responses in the
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overlaid in the (wy,ws) plane.
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|Hy(e7%1, e7%2)| where f; + fo= 6 MHz. (b) Solid: |Yor(e’)|, Dotted: |Yrg(e’)|.

oo Ha(e7r, €7%2) Xpg(e7%1) Xpg (€72 ) dwy dws where fy + fo= 6 MHz,

3.5 Discussion

We analyze frequency-domain characteristics of the quadratic filter that is able to sep-
arate quadratic components from UCA signals. QB-mode images produced using those
quadratic components show significant improvement in both contrast and spatial reso-
lution. The understanding of the quadratic filter in the frequency domain allows for the
improved filter design in term of both filter size and contrast enhancement capability.

Details of the new design and evaluation are presented in the next chapter.



Chapter 4

Quadratic Filter Design and
Evaluation

4.1 Introduction

With the understanding of the quadratic filter (QF) in frequency domain [34], we propose
a novel method to design the QF for separating quadratic components and demonstrate
the preliminary evaluation [35]. The new design approach allows for two degrees of
freedom in optimizing time and frequency resolution independently. That is, axial res-
olution can be maintained while contrast resolution is maximized. Thus, it overcomes
the trade-off in time frequency resolution problem appearing in linear bandpass filtering,
which has only one degree of freedom in filter optimization. For example, in order to in-
crease contrast resolution in linear bandpass filtering, the passband width of filter must
be decreased. This unavoidably degrades axial resolution. In addition, the QF designed
by new proposed method can separate nonlinearity from both UCA and nonlinear prop-
agation. In this chapter, we present the details on optimizing parameter adjustment in
the QF design for achieving contrast and axial resolution simultaneously. Evaluation
of the approach is demonstrated using a flow phantom target containing UCA and a

quality assurance ultrasound phantom consisting of resolution targets.
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4.2 Quadratic Filter Design

The quadratic image is produced using the QF output, in which the relation between

RF input z(n) and QF output y(n) can be expressed as

!
_

Z_ (ny,n9)x(k — ny)x(k — noy), (4.1)

IIM

where h(-, ) represents the quadratic filter and P is the system memory. The quadratic
image is produced by applying the optimum QF kernel to the beamformed RF data
throughout the B-mode image. The input-output relation of the QF shown in Equa-

tion 5.3 in frequency domain is given by
. 1 2w 2w . . .
V() = o / / H (71, e92) X (e71) X (72 oy doos (4.2)
mJo Jo

under the assumption

w1 + we = w, (4.3)

where Y (e/*) is the discrete-time Fourier transform (DTFT) of y(n), X (e/*) is the DTFT
of z(n), and Hy(e?**, e/*2) is the 2D DTFT of hy(-,-). Note that the observed quadratic
signal component at w is the result of the sum of mixing all frequency components w; and
wy such that w; +wy = w weighted by the quadratic frequency response at w; +ws = w.

We design the optimum QF for separating nonlinearity signals in frequency
domain. The linear-phased QF is designed based on the sum of two 2D Gaussian filters
where their centers are placed at the maximal contrast-to-tissue ratio of UCA over
surrounding tissue. In the design, parameters are varied and investigated in order to
achieve the best filter for enhancing imaging quality both in terms of contrast and
axial resolution. In general, the frequency response of the QF from the discrete Fourier

transform (DFT) can be expressed as [36]

' ' Ni—1 Na—1 ) )
H(E0s, 45 = 3 37 By, ma)e ke i, (4.4
n1=0 n2=0

where H (el el@2) is a 2D frequency response of the QF, h(ny,ns) is the coefficients

of the QF, N; and N, are the length of the QF on n; and ns, respectively. Our goal in
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the design is to calculate coefficients of the QF, h(nj, ns), from the frequency response
given by

]{<ejw1k7 ejwzz) — G(Wlk, w2l)ej¢(w1k,wzl)7 (45)

where G(wiy,ws) represents the desired magnitude response based on the 2D Gaussian

filters and ¢ (w1, we;) is the phase response, which can be expressed as [36]

P(Wik, war) = — Wik — ———Way, (4.6)

where wyy = (2nk/My)—7m, k= 0,1, ..., M1 —1 and wy = (2wl /My)—m, 1 = 0,1, ..., My—1.
We use the QF size Ny = Ny = N. As a result, the phase delay of the signal output is
(N —-1)/2.

It has been shown that the passband of optimum QF situates in 2D frequency
plane where the contrast-to-tissue ratio of UCA over surrounding tissue is maximal [34].
Based on this guidance, the magnitude frequency response of the QF can be designed

using the sum of 2D Gaussian filters, which is given by

G1(wig, wa) + Ga(wig, way)

pr— 4.
G @ik, war) max{G; + Gy} ’ (4.7)
where
Gi(wig, wy) =
exp{—[A(wir — wai)?® + Bwir, — wai) (war — wpi) + Clwa — wii)?]}, (4.8)
for ¢ = 1,2 with:
cos sin @
A = 2 2 4.9
oo+ () (19)
B - _31n220 n 5111220 (4.10)
o? o
sin @ cos
C = 2 2, 4.11
Coor (o) (111)

The coeflicient (wgi,wp;) is the center of Gaussian filter, o, and o, are constants that

define the passband width along two frequency directions, and € is the rotation angle.
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After we derive the frequency response H(e/“i* e/“2) from Equation 4.5, we
can obtain the coefficients h(n, ny) using the inverse discrete Fourier transform (IDFT).
When the linear-phased QF based on the 2D Gaussian filters in the frequency domain
is formed, the filter coefficients can be obtained using the IDFT as follows,

1 Mi—1Mp-1

H ejwlk’ ejwzz ejn1w1kjn2wzz’ 4.192
Vin o 2 e (1.12)

=0

h(nl, nQ) =

where M, and M, are the number of point used in IDFT along wy and wq, respectively.
In this paper, we use My = My = M.

Figure 4.1 shows a flowchart of the quadratic imaging generation for the design
approach. First, we set an initial value for the size of the QF, N, and the number of
point used in the DFT and IDFT, M. Next, parameters o, 0,, 0 and two centers of 2D
Gaussian filters are chosen. Then, we form the QF in frequency domain and take IDFT
to obtain filter coefficients. We measure the difference of the desired QF and the QF
from IDFT using normalized mean square error (NMSE), which is given by

LY(G -Gy

NMSE =
5 SN

(4.13)

If the NMSE is higher than the value that we define (¢), we increase the kernel
size N in order to reduce the NMSE until we obtain the defined NMSE. The QF based
on the 2D Gaussian filters with optimum parameters is capable of enhancing UCA
components while suppressing tissue signals. We use signal outputs from the QF to
produce a gray-level image, which has better quality for medical diagnosis.

Figure 4.2 shows an example of 3D magnitude frequency response of the opti-
mum QF in frequency domain resulting from Equation 4.8 and its corresponding kernel
in time domain. In addition, their shapes and characteristics in 2D are shown in Fig-
ure 4.3. An important advantage of our proposed design is that time-frequency resolution
can be determined independently. That is, a narrower passband in major axis (o) gives
higher contrast resolution and a wider passband in minor axis (o,) provides finer axial

resolution. On the other hand, for the optimum QF in the time domain, the time and
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Figure 4.1: A flowchart of the algorithm for QF design.
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Figure 4.2: (a) 3D magnitude frequency response of the QF in frequency domain. (b)

The corresponding QF kernel in time domain.
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Figure 4.3: (a) 2D magnitude frequency response of the QF in frequency domain. (b)

The corresponding QF kernel in time domain.
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Figure 4.4: The imaging setup for the flow phantom.

frequency resolution of the QF rely on the width of the region where filter coefficients
are nonzero in major (time) and minor (lag) orientations, respectively. In other words,
a narrower width in time gives finer axial resolution and a wider width in lag provides
higher contrast resolution. Consequently, the kernel with the best resolution in both

time and frequency must have nonzero elements only along the minor orientation [37].

4.3 Materials and Methods

The objective of the flow phantom experiment is to demonstrate the use of quadratic
imaging with transmit pulses optimized for maximum resolution (as in conventional B-
mode) and examining the resulting CTR enhancement. In this experiment, we used
wideband transmission (one cycle) operating at the transducer center frequency.

The setup shown in Figure 4.4 was used in obtaining images of a flow phantom
(ATS Laboratories Model 524) containing flow channels embedded in rubber-based tis-
sue mimicking material. The flow phantom was connected to a flow system with a roller
pump (Cole-Parmer Instrument Model 77200-60). Subsequently, the diluted contrast
agents was circulated and constantly stirred in beakers using a magnetic plate stirrer

(Corning EW-84303-20). The contrast agent, BR14 (Bracco Research), was used. BR14
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is a new experimental agent that consists of high molecular weight gas bubbles encap-
sulated by a flexible phospholipid shell. While UCA with 1:4000 dilution was circulated
through the 6-mm channel, UCA with 1:10000 dilution was circulated through the 4-mm
channel.

RF data were recorded and saved for off-line processing by the Technos MPX
ultrasound system (ESAOTE) with a convex array probe (ESAOTE CA421) located
perpendicularly to the flow channels. In addition, the probe position was slightly tilted
to avoid strong specular reflections. RF data were acquired with 16-bit resolution at 20-
MHz sampling frequency without time gain control (TGC) compensation. A one-cycle
pulse at 3.13 MHz was transmitted to form standard B-mode images with a mechanical
index (MI) of 0.279. For each flow condition, twenty frames of RF data from standard

B-mode images were collected in 10 s.

4.4 Results

4.4.1 Flow Phantom

The B-mode image in Figure 4.5 (top left) shows that echogenicity of the 6-mm channel
is significantly increased to produce a positive contrast, while the echogenicity of the
4-mm channel is slightly higher than its surroundings. This is in line with the relative
difference in concentration. That is, the strength of echoes from UCA with 1:4000
dilution in the 6-mm flow channel (CTR = 5.5 dB) is higher than those from UCA with
1:10000 dilution in the 4-mm flow channel (CTR = 2.9 dB).

Figure 4.6(a) shows that the average spectra of raw RF data in the 6-mm flow
channel (Solid) are broader than those from tissue regions (Dotted). The most visible
enhancement occurs around 2 MHz. This is probably due to the natural resonance of
the UCA and could be a mix of linear and nonlinear components. Figure 4.6(b) shows

a filled contour plot of the ratio of contrast to tissue magnitude, i.e.,

| Xor(e) Xer(e?)|
| Xrs(eir) Xpg(ese2)|’
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Figure 4.5: Top Left: B-mode image of a flow phantom. Images from the QF1, QF2,
and QF3 are shown at top right, bottom left, and bottom right, respectively.

in the (wy,ws) plane. Two distinct peaks in 2D plane of contrast to tissue magnitude
in major axis are observed at frequencies (-2,2) and (2,-2) MHz. These two pair of
frequencies are used as the centers of two 2D Gaussian functions.

We compare the effects of QF parameters on contrast and axial resolution of
ultrasound image using three settings. Figure 4.7 (right) shows the magnitude of 2D
frequency responses of three QFs under investigation. The centers of Gaussian function
are at frequency (-2, 2) and (2, -2) MHz, where their contrast to tissue magnitude in the
2D frequency response are maximal. Other parameters, i.e., (0, 0y, 0) for the QF1, QF2,
and QF3 are (1.1,0.55, —7/4), (0.55,0.55, —7/4) and (0.55, 1.1, —7/4), respectively. The
QF spreads in major and minor axes are varied for demonstrating their effects on imaging
quality. Figure 4.7 (left) shows the corresponding coefficients of the QFs. The size of

the QF1, QF2, and QF3 in time domain are 37, 47, and 37, respectively. Note that the
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Figure 4.6: (a) Average power spectra from the UCA (solid) and tissue (dotted) regions
in B-mode imaging. (b) Contrast to tissue ratio in 2D magnitude frequency response.

kernel size is in the range of acceptable real time implementation.

The QF images produced using QF1, QF2, and QF3 are shown in Figure 4.5.
The contrast enhancement of QF2 image is comparable to that from the optimum QF1
image due to their similar passband width in major axis (o,). However, there is loss of
axial resolution in the image from QF2, which can be clearly seen using resolution targets
in a quality assurance phantom shown in next section. This is due to the fact that the
QF1 has a wider passband (o,) in minor axis compared to the QF2 resulting in finer
axial resolution. In addition, we can see that the quadratic image from the optimum
QF1 shows significant enhancement of both flow channels compared to corresponding
the B-mode image without the sacrifice of spatial resolution. This visible enhancement
agrees with CTR computed from the high (1:4000 dilution) region in the large flow
channel of QF1, i.e., 23.8 dB. On the other hand, the CTR values of quadratic images
resulting from the QF2 and QF3 from same region of interest in the large flow channel
are 25.2 and 16.1 dB, respectively. Low CTR value in the QF3 is caused by its wide

passband width in major axis.
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4.4.2 Quality Assurance Phantom

Additional study on axial resolution is carried out using the image from an ultrasound
quality assurance phantom. Figure 4.8 (top left) shows the B-mode image of the quality
assurance phantom, which is used as a baseline for comparison. The QF images resulting
from the same QF kernels used to generate QF images of the flow phantom in Figure 4.5
are shown in Figure 4.8. Visual comparisons of specular reflections from point objects
(i.e., resolution targets) between B-mode and QF1 quadratic image shown in Figure 4.8
(top right) indicate no apparent loss of spatial resolution. In addition, visualization of
other objects is observable in the QF1 image, i.e., cystic targets, high contrast targets,
and high density targets.

Figure 4.9 (top) shows axial lines through the center of quality assurance phan-
tom. The thick, thin, and dash lines are from the QF1, QF2, and QF3, respectively. The
resolution targets at the distance from 93 to 99 mm are shown in Figure 4.9 (bottom)
for better visualization. It can be seen that the axial resolution of QF1 image is better
than that from the QF2 and QF3 due to its wide passband in minor axis. Based on this
demonstrating results, we can see that the QF with wide bandwidth in minor axis, i.e.,

cross-diagonal orientation, provides the image with better axial resolution.

4.5 Discussion

We present the novel design of optimum quadratic filter (QF) for separating nonlinearity
in pulse-echo ultrasound signals. In the design, time and frequency resolution can be in-
dependently determined based on the spread of filter passband in minor (cross-diagonal)
and major (diagonal) axes, respectively. While the wider passband in minor axis provide
finer axial resolution, the narrower passband in major axis provide higher contrast reso-
lution. Evaluations of the approach on a flow phantom target and an ultrasound quality
assurance phantom are performed. Results show that the proposed method allows for

obtaining the quadratic image with high contrast resolution with no apparent loss in
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axial resolution. In addition, the proposed design approach can be extended to simul-
taneously separate multiple harmonics for maximizing nonlinearity detection. Results

from ongoing research is going to be reported in the near future.
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Figure 4.7: Left: Coefficients of the QF1, QF2, and QF3 are shown from top to bottom
rows, respectively. Right: The corresponding magnitude of 2D frequency responses of
the QF in left column.
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Figure 4.8: Top left: B-mode image of a quality assurance phantom. The images from
the QF1, QF2, and QF3 are shown at top right, bottom left, and bottom right, respec-
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Chapter 5

Second-Order Volterra System
Identification

5.1 Introduction

The success of Volterra filters as nonlinear models for other physical systems provides
the inspiration for applying them with nonlinear ultrasound problems. The application
of Volterra filters based on its prediction model have been shown in [38]. Imaging
results show the improvement in contrast resolution with no loss of spatial resolution.
This chapter investigates the use of a second-order Volterra filter (SVF) model in the
aspect of system identification for separating the linear and nonlinear components of

the beamformed radio frequency (RF) data in pulse-echo ultrasonic imaging.

5.2 Theory

5.2.1 Nonlinear Pulse-Echo System

In this section, a model to produce RF lines from a nonlinear pulse-echo system (NPS)
is presented. The RF signal resulting from the interaction of the transmitted pulse and

a particle can be expressed as

p O*v(t)
) = 3 o

s (1, t) * fse(r,t) * h(r, 1), (5.1)

where * denotes a convolution, v is the electromechanical conversion, p is the density,

and c is the sound speed in the medium. h; and h, represent spatial impulse responses in
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Figure 5.1: A diagram showing the generation of an RF line from the NPS.

transmission and in reception modes that relate to the transducer geometry, respectively.
Both h; and h, are computed using the Field II program [39], which is capable of
generating linear pressure fields from a wide variety of ultrasound transducers. f,.
is the temporal impulse response of the particle. In a viewpoint of practical medical
ultrasonic diagnosis of human body, the RF signal resulting from Equation 5.1 may
simulate human tissues with different nonlinearity parameter B/A, such as fatty and
liver tissues, by utilizing the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [40].
A nonlinear mathematical model for the particle is appropriately chosen to
match with the medium. For example, if the particle is a microbubble contrast agent,
the modified Herring equation [41] is able to predict echoes from radial oscillations of a
single encapsulated bubble. An RF line is obtained by a weighted addition of RF signals
from all particles in the region of interest. A diagram showing the generation of an RF

line is shown in Figure 5.1.
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5.2.2 Volterra Filter

While a Taylor series is used to model a nonlinear system without memory, a nonlinear
system with memory can be described using its extension form, a Volterra series. The
relationship between the output and input of a discrete Volterra series, also referred to
as a Volterra filter or a polynomial filter, can be written in the form [42]
o oo o0 p
y(n) :hO‘f‘Z Z Z hp(kl,...,kp)Hx(n—kq), (5.2)
p=lki=—co  kp=—c0 g=1
where y(n) is the output, x(n) is the input, and hy(ni, ...,n,) represents the pth-order
Volterra kernel. Generally, the Volterra kernel can be complex values. In this paper,
however, only the kernel consisting of real values is considered. In addition, both input
and output are real. The value of hg is also assumed to be zero.
For simplicity and without loss of generality, this paper examines properties and
interpretations of the Volterra filter using its truncated version of order 2, i.e. a second-
order Volterra filter (SVF). In practice, a output of the SVF from a causal system with

a finite memory can be expressed as:

y(n) = z:j I (k) (n — ky) + 2:; 2:; ho(kr, ka)a(n — kD)a(n —ks),  (5.3)

where hi(n) and ha(ng,ng) represent the first- and the second-order Volterra kernels,
respectively.

Two important properties resulting from the structure of the SVF are as follows:
First, the SVF output depends linearly on elements of Volterra kernels. This property
plays an important role in analyzing quadratic filters, deriving adaptive algorithms, etc.
One of the most interesting advantage is that it allows a straightforward extension of
adaptive algorithms for linear filters to those for Volterra filters. Second, the SVF output
is the sum of multidimensional convolutions of the products of input with Volterra
kernels. It can be clearly seen from Equation 5.3 that while the linear component
(the first term on the right hand side) is determined from the convolution of z(n)

with hy(n), the quadratic component (the second term on the right hand side) can be
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interpreted as a two-dimensional convolution of z(n;)z(ng) with hy(nq,ny). In fact, the
first-order Volterra kernel is also known as a linear impulse response as in a linear time-
invariant discrete-time system. Therefore, by analogy with the linear impulse response,
the second-order Volterra kernel can be considered as a second-order impulse response.
This property allows for the analysis and design of Volterra filters in the frequency
domain.

The discrete-time Fourier transform (DTFT) of the SVF system obtained by

applying the Fourier transform both sides of Equation 5.3 is given by

A , A 1 2m . . : A
Y(e) = Hi(e™)X(e"™) + o / Hy(e’", /@) X () X (/7D )dwy,  (5.4)
™ J0o

where X (-) and Y (-) denote the Fourier transform of the input and output, and H;()
and Hy(-,-) represent the linear and quadratic transfer functions, respectively. The
linear term (the first term on the right hand side) implies that components of the
input frequency are either amplified or suppressed by the corresponding gain from the
linear frequency response. In the quadratic term (the second term on the right hand
side), however, the multiplication of inputs in time domain [z(n;)z(n2)] results in the
convolution in frequency domain (condition w; + wy = w). Accordingly, all components
at the input frequency w; and wsy that satisfy the condition w; + wy = w=constant

contribute to the output frequency w.

5.2.3 Identification of the SVF Model

In order to estimate the NPS using the SVF, system identification is needed as shown
by the diagram in Figure 5.2. The identification problem is to find the first- and second-
order Volterra kernels when input and output are known. This section presents the
identification approach based on a digital method of modeling quadratically nonlinear
systems with general random input [43]. A unique feature of this identification technique
is that it does not require a zero-mean Gaussian random input like other methods.

Consequently, this allows for a class of pseudorandom binary sequences (e.g., Barker
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codes or maximum length sequences) that are readily available in many ultrasound and
RADAR imaging systems.
The frequency response of the SVF system shown in Equation (5.4) can be

represented in the discrete domain as

Y(fi)=Hi(f)X(fe)+ > Halfi, )X () X(f;), (5.5)

ij=—(M—1)
i+j=h

where Y(f;) and X(f;) are the Discrete Fourier transforms (DFTs) determined from
a finite number (2M) of observations of the output and input sequences, respectively.
In addition, the unknown variables H;(fx) and Hs(fi, f;) are sampled from the linear
and quadratic frequency responses at a discrete set of frequencies (f, = n/(2M), n =
-M+1, ..., =1, 0, 1, ..., M). In order to simplify the notation, Y (fx) will be
represented by Y (k), X (fx) by X (k), etc.

For real-valued data, the output frequency response has the following symmetric
property: Y(k) = Y*(—k). Consequently, the expansion of Y (k) in Equation 5.5 can
be sufficiently considered for only nonnegative frequency components (k > 0). By

recognizing these facts, Equation 5.5 can be rewritten as

Y (k) = Hy(k)X (k)
+ Hy(k — M, M)X (k — M)X(M) + - - + Hy(0, k)X (0)X (k)
+ Hy(Lk — D)X()X(k—1) 4 -+ Hy(k — 1,1)X (k — 1)X(1)

+ Ha(k, 0)X (k)X (0) + - - + Ho(M, k — M)X(M)X (k — M). (5.6)

Without loss of generality, the quadratic kernel is assumed to be diagonally sym-
metric, i.e. ho(ny,ng) = ho(ng,ny). As a result, the quadratic frequency response satis-
fies the following symmetric properties: Hs(i,7) = Hs(j,4) and Hy(—i,—7) = H;(i, j),
where * denotes the complex conjugate. In other words, the quadratic transfer function
is symmetric along a cross-diagonal direction and complex conjugate symmetric along
a diagonal direction. This symmetry allows frequency components in the dashed zone

of Figure 5.3 to specify Hy(i,j) everywhere. The combination of terms in Equation 5.6
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using the symmetric property Hs(i,j) = Hs(j,7) leads to a new compact form, which

can be expressed as

Using vector form, Equation 5.7 can be written as follows:

Y (k) = x"h,
where the superscript 1" represents transpose,

72

k—1

)_|_...

LIS A 2H2(M,]€—M)] ,for k odd

(5.8)

(%
{Hl(k:% H2(§7§)7 2H2(§+17§_1)7 T 2H2(M7k_M)} ,fOI‘ keven7

(5.9)
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v { (X (k), X(EX(E5Y), -, X(M)X (k — M) for k odd
[X(k), X)X (%), X(E+1)X(5—1), -+, X(M, k= M)|,for k even.
(5.10)

To solve for the h, both sides of Equation 5.8 are multiplied from the left by x*

and then an expected value is taken. The resulting equation can be expressed as
E[x"Y (k)] = E [x"x"| h, (5.11)

where E[-] is the expectation operator. Equation (5.11) is a system of linear equations,

—1
which can be solved uniquely if {E [X*XTH exists. The vector h is given by

h={E[xx']} " ExY(H). (5.12)

To obtain the values of the frequency response, Equation 5.12 is solved repeat-
edly for k =0,..., M. For the quadratic frequency response, the unknown variables are
solved along the diagonal line f;+ f; = fi in the dashed zone of the two-dimensional (2D)
frequency plane shown in Figure 5.3. In addition, the values outside the dashed zone in
the 2D frequency plane are obtained using the symmetric property of Ha(fi, f;). After
the linear and quadratic frequency responses are determined, inverse discrete Fourier

transforms (IDFTs) are applied to obtain the linear and quadratic kernels.

5.2.4 Regularization

When Equation 5.12 was solved for the case of binary pseudorandom input sequences,
the original algorithm calls for a full set of M /2 independent input sequences to insure
a stable inverse. However, the use of regularized solution to Equation 5.12 using the
pseudoinverse with a minimum set of training sequences have been tested. Robust
estimates of the SVF' coeflicients were obtained using a small set of training sequences.
This is important for a variety of imaging scenarios. For instance, high frame rate
imaging where tens of training sequences cannot be afforded to send. Another example is

imaging microbubble contrast agents where the time-invariance of the system holds for a



95

few milliseconds requiring system identification to be complete using a few transmissions.
Details of regularization are as follows.

Equation 5.12 can be expressed in the matrix form
h =G 'f, (5.13)
where the vector f and the matrix G are defined as
f = ExY(k)]

and
G = F {X*XT}.
The solution of linear system of equations can be derived using the singular

value decomposition (SVD) of G, which is defined as
G=UxV' => ouv/, (5.14)
i=1

where X is a M/2 x M/2 diagonal matrix with singular values oy > 09 > -+ > 0, >

Opp1 = - =0, =0 (p = M/2 and r < M/2 is the rank of G. The matrices
U (M/2x M/2) and V(M /2 x M/2) are formed from the columns {uz}f\i/f and {Vi}i]\i/f,
which are the orthogonal eigenvectors of GG and GT G, respectively. The solution is

then given by
" ulf

h=3 v, (5.15)

i—1 i

The SVD of G forms a basis for regularization by appropriate selection of sin-
gular modes. A solution based on the constrained optimization problem, which is the

general form of the regularization, can be expressed as

T

0'4
hpee = Y —————u’ fv;, 5.16
Reg ;03_'_%]%12“1 v ( )

where ~; is an appropriately chosen threshold for the ith singular mode and R? is

quadratic ratio resulting from the quadratic kernel obtained from the ith singular mode.
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The TSVD regularization, also known as rank reduction regularization [32],

used in our previous work can be derived from Equation 5.16. When ~; is chosen to be

0 , <k
oo , k<i<r

where k£ < r is the number of singular modes used to compute the estimate, the kth

order TSVD solution is given by

Foul'f
hrsyp(k) =) ——v;. (5.18)

i=1 i

5.3 Materials and Methods

In this section, the details used to identify and validate the SVF system identification

algorithm are presented.

5.3.1 Details of the NPS

The NPS to be identified in Figure 5.2 consists of a linear array transducer and a
synthetic phantom. The 192-element linear array is used to scan the phantom with 64
active elements and a Hanning apodization in transmit and receive. Physical descriptions
of each element of the linear array are as follows: the element height is 5 mm, the width
is one wavelength, and the distance between elements is 0.05 mm. In simulation, each
physical element is divided into 1 by 10 mathematical element to increase accuracy. A
single focus at 70 mm is used in both transmission and reception. The impulse response
of the transducer is a Gaussian-modulated sinusoidal pulse with center frequency 3 MHz
and fractional bandwidth 60.

The synthetic phantom is composed of scattering particles located at uniform
random positions in a 20 x 3 x 1 mm?® volume and Gaussian distributed scattering
strengths are assigned to those particles. This phantom totally contains 166 scatterers
and is centered at the focus of the transducer. An emitted field at each scattering

location is passed through the temporal impulse response f,.. In this paper the f,. is
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simulated by the SVF to generate nonlinearity. The linear kernel of the SVF is simulated

using a 2-MHz Gaussian-modulated sinusoidal pulse with 85 % bandwidth. The pulse
is truncated where the envelope falls 25 dB below the peak. The quadratic kernel is
calculated from an outer product of the linear kernel and scaled by a constant used for

controlling a nonlinearity level of the system.

5.3.2 Identification Step

In order to determine coefficients of linear and quadratic kernels, a system of linear
equations (Equation 5.7) is formed using average of frequency responses resulting from
64 pseudorandom binary sequences and their corresponding outputs from the NPS.
While each pseudorandom binary sequence is composed of 150 data points, each pulse-
echo line from the NPS consists of 256 data points. Gaussian white noise is added
to pulse-echo data to achieve the signal-to-noise ratio (SNR) of 50 and 10 dB. The
identification results at SNR of 50 dB represent the case when noise level is lower than
quadratic nonlinearity level. On the other hand, the identification results at SNR of 10

dB are the case when noise level is higher the quadratic nonlinearity level.

5.3.3 Validation Step

After the linear and quadratic kernels are determined, the same input is sent to both the
NPS and correspondingly identified SVF system. Subsequently, outputs from those two
systems are compared for validating identification results. Figure 5.4 shows a three-cycle

sinusoidal pulse at 2 MHz with a Hanning weighting used in validation.

5.4 Results

5.4.1 Identification Results

In order to determine coefficients of linear and quadratic kernels, a system of linear
equations (Equation 5.11) is formed using average of frequency responses resulting from

64 pseudorandom binary sequences and their corresponding outputs from the NPS.
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Figure 5.4: Top: A three-cycle of two-MHz sinusoidal pulse used as an input in both the
NPS and SVF for validation. Bottom: The corresponding spectrum of time waveform.



29

g1 -

2

Y 1

S

< -1t 1
0 2 4 6 8 10

Distance (mm)

o 2_ T T T T ]

©

2

5 0 > 1

S

< _2_ 1 1 1 1 7
0 2 4 6 8 10

Distance (mm)

o 2_ T T T T ]

©

2

2 0 1

S

< -2¢ ! ! ! ! ]
0 2 4 6 8 10

Distance (mm)

Figure 5.5: Top: Example of a pseudorandom binary sequence used as an input for
the SVF identification. Middle: Corresponding time waveform from the NPS output
at 50-dB SNR. Bottom: Corresponding time waveform from the NPS output at 10-dB
SNR.



60

0.2

T
—
1

0.1r i

Amplitude
o

0 20 40 60 80 100

)
B
0]
©
2
'c
(@)
©
=
_100 1 1 1 1
0 2 4 6 8 10
Frequency (MHz)

Figure 5.6: Top: Identified linear kernel in time domain. Bottom: Identified linear
kernel in frequency domain.

Figure 5.5 (top) shows an example of a pseudorandom binary sequence consisting of 150
data points. The corresponding time waveforms from the NPS outputs at 50 and 10 dB
are shown in middle and bottom panels, respectively.

Figure 5.6 shows the identified linear kernel in time domain in the top panel. Its
corresponding magnitude frequency response is shown the bottom panel. It can be seen
that the maximum of passband centered around 3 MHz, which agree with frequency
characteristics of the transducer. Figure 5.7 shows the identified quadratic kernel in
time domain in the left panel. Its corresponding 2D magnitude frequency response is
shown the right panel. The maximum of passband centered around (2,2) and (-2,-2)

MHz, whose summation corresponds to the second harmonics, i.e., 4 and -4 MHz.
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Figure 5.7: Left: Identified quadratic kernel in time domain. Right: Identified quadratic
kernel in frequency domain.

5.4.2 Validation Results

Figure 5.8 shows a simulated RF line from the NPS at the SNR of 50 dB using the dotted
line. The pulse duration is approximately 2.8 mm, which is longer than the transmit
pulse. This is due to the fact that echoes result from multiple scatterers located within
1-mm thickness target. In addition, the corresponding spectra of time waveforms in the
top panel are displayed in the bottom panel. The second harmonics is clearly observed
at 4 MHz. Linear (y;) and quadratic (yg) components from the SVF are shown using
thin and thick lines, respectively. It can be seen that the linear kernel appropriately
predicts the linear output in the fundamental energy band (around 2 MHz). On the
other hand, the quadratic kernel captures energy primarily in the second harmonic
and low frequency bands corresponding to second order nonlinearity covering the whole
transducer bandwidth. This is the advantage of SVF approach over other static models
such as linear bandpass filters whose the sensitivity to nonlinear separations is fixed to
some specific frequencies, e.g. the second harmonic.

Figure 5.9 shows the identification results at the SNR of 10 dB. It can be seen
that all signal components are in agreement with those from the SNR of 50 dB. It
is interesting to notice that the SVF is able to extract the second order nonlinearity

although its magnitude is comparable to the noise level. This is due to the fact that the
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Figure 5.8: Validation results at the SNR of 50 dB. Top: Linear (thin) and quadratic
(thick) components resulting from the decomposition using the SVF model compared

with the NPS output (dotted). Bottom: The corresponding spectra of time waveforms
in the top panel.
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Figure 5.9: Validation results at the SNR of 10 dB. Top: Linear (thin) and quadratic
(thick) components resulting from the decomposition using the SVF model compared

with the NPS output (dotted). Bottom: The corresponding spectra of time waveforms
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Figure 5.10: Comparisons of quadratic outputs from: (Dotted) 64 input-output se-
quences identification, (Solid in top panel) 16 input-output sequences identification
without TSVD regularization, and (Solid in bottom panel) 16 input-output sequences
identification with TSVD regularization.

system identification based on the SVF has an inherent property of robust resistance to
the additive white Gaussian noise.

Figure 5.10 (top) shows comparison of quadratic output from 64 input-output
sequences identification (dotted) with that from 16 input-output sequences identification
without TSVD regularization (solid). Significant error can be seen. However, based on
the TSVD regularization, the reduction in error of quadratic output from 16 input-
output sequences is clearly shown in the bottom panel of Figure 5.10 with the solid

line. This result indicates the feasibility of regularization in decreasing input-output
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sequences used for system identification.

5.5 Discussion

This chapter presents the utilization of system identification based on the second-order
Volterra (SVF) to separate nonlinear components of nonlinear echo signals. The algo-
rithm for the identification of the SVF filter coefficients is validated using simulations
from a nonlinear pulse-echo system. The identified linear and quadratic kernels are
used to decompose the RF line from the nonlinear pulse-echo system into linear and
quadratic components. Illustrative examples demonstrate that while the linear kernel
appropriately captures the linear component in the fundamental frequency band, the
quadratic kernel is capable of modeling quadratic components ranging from low to high
frequency.

In addition, the feasibility study shows that the system identification based
on the SVF is capable of separating the second order nonlinearity embedded under
the level of noise signal. This is a significant advantage of the proposed method over a
conventional linear filtering. Applications in practical use that the advantage of this new
proposed method may allow for include medical diagnosis and tissue characterization. In
the former, the proposed signal separation model can replace a linear bandpass filtering
in tissue harmonic imaging (THI)[44] to obtain better images for medical diagnosis. In
the latter, the acoustic nonlinearity parameter B/A [45], i.e. a measure of nonlinearity of
a medium, can be obtained more efficiently using separated second harmonic in biological
tissues from the proposed model. However, with this identification approach, the size of
the identified Volterra kernel is dependent on the propagating distance, i.e. the phantom
thickness. From a practical point of view, the Volterra kernel of the whole RF line should
be determined using its small segment in order to reduce computational complexity. This

issue is an ongoing investigation. Results will be reported in the future.



Chapter 6

Conclusions and Recommendations
for Future Work

6.1 Conclusions

Two applications of Volterra filters for nonlinear ultrasound imaging are presented in
this report. These include quadratic filter design and Volterra filter system identifica-
tion. In the former, the properties of Volterra filters that affect imaging qualities both
in terms of contrast and spatial resolution are analyzed. Based on the understanding in
investigated properties, a novel design approach of Volterra filter for improving the qual-
ity of ultrasound images is formulated. The important finding is that the novel design
approach of a quadratic filter allows for two degrees of freedom in optimizing time and
frequency resolution independently. That is, axial resolution can be maintained while
contrast resolution is maximized. Thus, it overcomes the trade-off in time frequency
resolution problem appearing in linear bandpass filtering, which has only one degree of
freedom in filter optimization. For example, in order to increase contrast resolution in
linear bandpass filtering, the passband width of filter must be decreased. This unavoid-
ably degrades axial resolution. Evaluation of the approach is demonstrated using a flow
phantom target containing ultrasound contrast agent and a quality assurance ultrasound
phantom consisting of resolution targets. Results show that the proposed method allows
for obtaining the quadratic image with high contrast resolution and no apparent loss in

axial resolution.

66



67

In the latter, a preliminary study of system identification based on Volterra
filters applied in a nonlinear medical ultrasound system was carried out. System iden-
tification based on the second-order Volterra (SVF) is employed to separate nonlinear
components of nonlinear echo signals. The algorithm for the identification of the SVF
filter coefficients is validated using simulations from a nonlinear pulse-echo system. The
identified linear and quadratic kernels are used to decompose the RF line from the non-
linear pulse-echo system into linear and quadratic components. The feasibility study
shows that the system identification based on the SVF is capable of separating the sec-
ond order nonlinearity embedded under the level of noise signal. This is a significant
advantage of the proposed method over a conventional linear filtering. Two applications
in practical use that the advantage of this new proposed method may provide include
medical diagnosis and tissue characterization. For medical application, the proposed sig-
nal separation model may replace a linear bandpass filtering in tissue harmonic imaging
to obtain better images for medical diagnosis. For tissue characterization, the acoustic
nonlinearity parameter B/A, i.e. a measure of nonlinearity of a medium, may be ob-
tained more efficiently using separated second harmonic in biological tissues from the

proposed model.

6.2 Recommendations for Future Study

Several possible directions recommended for future study are proposed as follows:

Further Study on Quadratic Filter

The evaluation of quadratic filter design in this work was performed using only a flow
phantom target containing ultrasound contrast agent and a quality assurance ultrasound
phantom consisting of resolution targets. More evaluations should be explored. These
include ultrasound data from in vivo targets, . In addition, the proposed design ap-
proach can be extended to simultaneously separate multiple harmonics for maximizing

nonlinearity detection. Computational complexity reduction in quadratic filtering needs
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to be further studied to make real-time implementation in modern ultrasound scanners

possible.

Further Study on Volterra Filter System Identification

Based on identification approach proposed in the research, the size of the identified
Volterra kernel is dependent on the propagating distance, i.e. the target thickness.
From a practical point of view, the Volterra kernel of the whole RF line should be
determined using its small segment in order to reduce computational complexity. Con-
sequently, more practical identification approach need to be developed. Subsequently,
the developed approach will be applied on medical ultrasound applications, e.g. ultra-

sound imaging enhancement and nonlinearity parameter B/A estimation.

Adaptive Volterra Filters

Adaptive forms of SVF filters are suitable for estimating local quadratic components
instead of the global filtering approach. This will allow for the optimization of signal
separations based on the local level of nonlinearity. Adaptive implementations of the
SVF have been extensively studied in literature. Examples include the following: (1)
General overviews and basic ideas of adaptive Volterra filter implementations [46]; and
(2) The adaptive algorithm based on fast recursive least squares approach applicable to
the second-order drift phenomena [47]. They can serve as a starting point in applying

adaptive SVF filters to nonlinear imaging problems.

Higher-Order Volterra Filters

Signal components resulting from the higher-order Volterra filters (e.g., cubic) may be
more sensitive to UCA nonlinearity than tissue nonlinear response. This is due to
the observation that, under normal imaging conditions, tissue nonlinearity is at most
quadratic. The identification of higher-order Volterra kernels based on the prediction

model of Volterra filter can be easily implemented by extending the post-beamforming

SVEF algorithm.
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