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Figure 62 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.80 and the dimensionless eccentricity, & = 0.30, at various angles £ and power

law indexes 7.
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Figure 63 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.85 and the dimensionless eccentricity, & = 0.05, at various angles £ and power

law indexes 7.
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Figure 64 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.85 and the dimensionless eccentricity, & = 0.10, at various angles f# and power

law indexes 7.
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Figure 65 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.85 and the dimensionless eccentricity, & = 0.15, at various angles £ and power

law indexes 7.
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Figure 66 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.85 and the dimensionless eccentricity, & = (.20, at various angles £ and power

law indexes 7.
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Figure 67 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.85 and the dimensionless eccentricity, & = (.25, at various angles £ and power

law indexes 7.
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Figure 68 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.85 and the dimensionless eccentricity, & = 0.30, at various angles £ and power

law indexes 7.
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Figure 69 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.90 and the dimensionless eccentricity, & = 0.05, at various angles £ and power

law indexes 7.
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Figure 70 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.90 and the dimensionless eccentricity, & = 0.10, at various angles £ and power

law indexes 7.
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Figure 71 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.90 and the dimensionless eccentricity, & = (.15, at various angles £ and power

law indexes 7.



97

x10° p=0° x10®  p=30° x10°  p=45°

x10°  p=60° x10*  p=90° x10°  p=120°

x10°  p=135° x10°  p=150° x10°  p=180°

Figure 72 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.90 and the dimensionless eccentricity, & = (.20, at various angles £ and power

law indexes 7.
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Figure 73 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.90 and the dimensionless eccentricity, & = (.25, at various angles f# and power

law indexes 7.
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Figure 74 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.90 and the dimensionless eccentricity, & = 0.30, at various angles £ and power

law indexes 7.
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Figure 75 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.95 and the dimensionless eccentricity, & = 0.05, at various angles £ and power

law indexes 7.
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Figure 76 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.95 and the dimensionless eccentricity, & = 0.10, at various angles £ and power

law indexes 7.
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Figure 77 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.95 and the dimensionless eccentricity, & = (.15, at various angles £ and power

law indexes 7.
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Figure 78 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.95 and the dimensionless eccentricity, & = (.20, at various angles £ and power

law indexes 7.
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Figure 79 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.95 and the dimensionless eccentricity, & = (.25, at various angles £ and power

law indexes 7.
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Figure 80 Dimensionless temperature profiles A* versus the dimensionless gap x using

Rratio = 0.95 and the dimensionless eccentricity, & = 0.30, at various angles £ and power

law indexes 7.
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Figures 57 to 80 show that the dimensionless temperature (A"), in general, increases
with the angular distance from the smallest gap, £, and the power law exponent, #, but
decreases with the dimensionless radius ratio, Rraio. The temperature is risen up at the
core since heat is accumulated at the inner wall according to the adiabatic heat flux.
Moreover, the more eccentric the die (the higher the &), the greater the temperature
difference between the fluid at the smallest gap (£ = 0°) and the biggest gap (S = 180°).
This is because of the convective flow in the eccentric die. In other words, the
dimensionless temperature is proportional to the velocity in the die.

The dimensionless temperatures also decrease by two decades [from O(10™) to O(107)]
when the radius ratio () increases from 0.80 to 0.95. When the radius ratio increases,
the inner and outer radii approach one another, and so the gap is very small all around the
die. In this case, the convective effects in the die diminish, which is why the fluid

temperature decreases as the radius ratio increases.

4.3 Design Example

4.3.1 Velocity Profile Determination in Isothermal Walls

A HDPE plastics pipe is extruded in an eccentric die of the outer cylinder diameter R, =
0.1 meters and the gap, d = 0.01 meters with small dimensionless eccentricity of ¢ = 0.2
to compensate the gravity sag. The HDPE plastics is considered as a power law polymer
with the power law index, n = 0.56, and the consistency index, m = 6190 Pa-s" [22, 23].
The polymer has the thermal conductivity, k = 0.045 W/(m-K). The inner and outer wall

temperatures, 77 and 75, are uniform at 180°C (453.15 K). The pressure drop per unit
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length within the extruded die is 5 MPa/m. Determine the temperature profiles of the
polymer melt at various angle, £
Solution: To solve for the dimensional temperature appearing in Eq. (3-8), we need to
rearrange Eq. (3-20) to get
T, = Ao A Ty

From Egs. (2-34), (3-9), (3-11), and (3-15), at = 0, for example,

d(1-ccosB)  (0.01m)1-0.2cos(0))

he = = =4.00x10"m
2 2
Then,
n+l
i z(zj R AP
"k he m d¢
0.56+1
_ (6190Pa-5") [ 2 j‘)“‘l ~(0.m) (5x10° Parm) 036
©0.045W /m—K)\ 4.00x107 m (6190 Pa—s")
2, =5.059x10" K
(n+1 (0.56+1)2
_ n — 0.56
. d(1- & cos j3) ={(0.01;71)(1 0.2005(0))} _8413x10"
2R, 2(0.1m)
-7
A, = 4 _ 841310 = 4.644%10°"

Palen) raselate)

Then the peak temperature at = 0 occurring when x = Ocan be calculated by
letting TGeo,md = 1,

T, =2y 2 Ty g = (5.059x107 K ) (4.644x10™)(1) = 2.349 K

Geo,Ind ~—



T=T,+T =2349K +453.15K =455.499K

Other peak temperatures at various angles, 3, are constructed in Table 3.
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Table 3 lists the peak temperatures of the HDPE melt flowing in the eccentric die at

various angles, A

B Ao (K) A Th =0 (K) Te=0 (K)
0 5.059 x 107 4.644 x 10°® 2.349 455.499
30 5.133 x 10’ 5358 x 107 2.750 455.900
45 5219 x 10’ 6.313 x 10 3.295 456.445
60 5328 x 10’ 7.747 x 10 4.128 457.278
90 5.581 x 10’ 1.225 x 1077 6.835 459.985
120 5.820 x 10’ 1.853 x 107 10.785 463.935
135 5.915 x 10’ 2.176 x 107 12.871 466.021
150 5.987 x 10’ 2.452 % 107 14.680 467.830
180 6.047 x 107 2.705 x 107 16.355 469.505
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Next, use the modified dimensionless temperature profiles with power-law index () at
0.56 from Figure 81, i.e. interpolated values of the modified dimensionless temperature
profiles from Table 2, and then multiply them by the temperature amplitude 7 - ¢ in
Table 3 to get the temperature rises at various x. Then, superpose the wall temperature at

453.15 K (180 °C) on the temperature rises to get the temperature profile for each . The

calculated results are listed in Appendix B and shown in Figure 81.
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Figure 81 Temperature profiles of a HDPE power law polymer flow in an eccentric

cylinders with wall temperature = 453.15 K.
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4.3.2 Flow Rate Suggestion in Adiabatic Inner Wall
A high density polyethylene (HDPE) plastic pipe is extruded from an eccentric annular
die of outer radius R, = 0.100 m and inner radius R, = 0.08 m with small dimensionless
eccentricity of €= 0.2 to compensate for sag in the post-die cooling chamber. The HDPE
melt obeys the power law with z = 0.56, the consistency index, m = 6190 Pa-s" [22, 23]
and its density, p =850 kg/m’. The polymer has thermal conductivity, k = 0.257 W/(m-

K). The bulk temperature of the fluid flowing into the die 7,,is 190°C (463.15 K). If the

inner die wall is uncontrolled and left adiabatic at some period of time, determine an

appropriate flow rate in kg/hr corresponding to the outer wall temperatures, 7, , for this

process.

Solution: To solve for the appropriate dimensional flow rate appearing in Eq. (2-48),
we need to determine from the Nusselt Number at the outer wall from Eq. (3-33). For
this, we first solve for;

R +R, (0.10m)+(0.08 m)
2 2

R, = =0.09 m

d=R, R, =(0.10m)—(0.08 m)=0.02 m
e=g-d=0.2(0.02 m)=0.004 m

We then can solve for the confocal length, a, in Eq. (2-42);

J(0.08 7)* +(0.10 m) —4(0.08 m)*(0.10 m)’
2(0.004 m)

=0.441m

a=

From Eq. (2-40) and (2-41), we can solve for the corresponding circles;

—sinh™| L | = sinh ™ 0.441m\_ 2.408
1
1 0.08 m
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£, =sinh™ Lﬂ = sinh " {%41‘;1 m} =2.189

P m
=& —& =2.408-2.189 =0.219

(n+1)? (0.56+1)

" E_(Z”n‘lj(%J | =_(2(095566)—1j(2?69<)28n;a)] N

w, =-2.105x10"

From Figure 6, we then read €(0.56, 0.2) ~ 3.44 . The dimensionless volumetric flow

rate can be obtained from Eq. (2-46);

. [ 40.56) Y0.09m) 0.02m 2 ) .
Cr = (2(0.56)+ 1}[0.10 mj(z(().l() m)J (3.44)=5.358x10

From Egs. (2-48), (3-24) and (3-27), we can plot the Nusselt Number at the outer wall
(Nu,) versus the flow rate (Q, ) at various AT, as shown in Figure 82. The numerical
values of the Nusselt Number and the flow rate are shown in Table 4. From Table 4, we
can see that, to keep the melt at an uniform temperature, if the temperature difference
AT, = 2°C [corresponding to the outer wall temperatures, 7, , at 188°C (443.15 K)], for
example, the flow rate beyond 3.142 kg/hr gives the Nusselt Number greater than 1 in
which the convective heat transfer of the melt is faster than the conduction one. Then, in
this case, any processing flow rate beyond 3.142 kg/hr causes heat generation in the
materials no matter how well the cooling system of the die is. The appropriate flow rate

corresponding to the outer wall temperatures, 7, , for this process is shown in Table 2.
Through higher temperature difference A7, improves the flow rate O, but uncertain

process control may occur. Thus increasing flow rate QO at minimum A7, are preferred.
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This is why the pipe extrusion engineer normally works at the highest flow rate at the
lowest controllable A7, and leaves the cooling system at the downstream cool down the

heat.

20 25

15
Q, (Kg/hr)

Figure 82 Nusselt Number at the outer wall Nu, versus the flow rate O, at various AT,

of the HDPE melt [n =0.56, m = 6190 Pa-s”", and k =0.257 W /(m— K) ] flowing in the
eccentric die with R, . =0.8, £ =0.2. The bulk temperature of the upcoming flow 7, is

190°C (463.15 K).
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Table 4 lists the numerical values of the Nusselt Number at the outer wall Nu, and the

flow rate O, at various A7, of the HDPE melt flowing in the eccentric die plotted in

Figure 82.
0 (kg/hr) M,

AT,=2°C | AT, =4'C | AT,=6"C | AT,=8C | AT,=10°C
0.063 2.256%107 | 1.128%107 | 7.519%10* | 5.639%10* | 4.511x10™
0.218 0.016 7.777%107 | 5.185%107 | 3.889x10” | 3.111%107
0.450 0.048 0.024 0.016 0.012 9.626%107
0.752 0.107 0.054 0.036 0.027 0.021
1.120 0.200 0.100 0.067 0.050 0.040
1.551 0.332 0.166 0.111 0.083 0.066
2.042 0.510 0.255 0.170 0.127 0.102
2.592 0.740 0.370 0.247 0.185 0.148
3.199 1.027 0.513 0.342 0.257 0.205
3.861 1.377 0.689 0.459 0.344 0.275
4.577 1.796 0.898 0.599 0.449 0.359
5.347 2.289 1.144 0.763 0.572 0.458
6.168 2.860 1.430 0.953 0.715 0.572
7.041 3.516 1.758 1.172 0.879 0.703
7.964 4.261 2.131 1.420 1.065 0.852
8.937 5.101 2.550 1.700 1.275 1.020
9.959 6.039 3.019 2.013 1.510 1.208
11.029 7.081 3.541 2.360 1.770 1.416
12.147 8.232 4.116 2.744 2.058 1.646
13.312 9.497 4.748 3.166 2.374 1.899
14.524 10.879 5.440 3.626 2.720 2.176
15.782 12.385 6.192 4.128 3.096 2.477
17.086 14.017 7.009 4.672 3.504 2.803
18.435 15.782 7.891 5.261 3.945 3.156
19.829 17.682 8.841 5.894 4.421 3.536
21.268 19.724 9.862 6.575 4.931 3.945
22.751 21.910 10.955 7.303 5.478 4.382
24277 24.247 12.123 8.082 6.062 4.849
25.847 26.736 13.368 8.912 6.684 5.347
27.460 29.385 14.692 9.795 7.346 5.877
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Table 5 shows the suggested flow rate Q. corresponding to the outer wall temperature 7,

at Nu, =1 from the Table 4.
r,\°C O, (kg/hr)
188 3.142
186 4.896
184 6.355
182 7.641
180 8.821
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Chapter 5Conclusion

5.1 Discussion

For bipolar cylindrical coordinate, the energy equation coupled with the velocity
profiles of the power law constitutive model is used to determine the temperature profiles
in the pipe extrusion die. The dimensionless temperature profiles of a steady, laminar,
incompressible and fully developed flow of a power law polymer can be found by the
analytic method with assumptions such that there are no velocities in the & and €
directions, no heat convection terms, and uniform wall temperatures. The solution
reveals that the dimensionless temperature distribution is a function of the dimensionless
radius ratio, Rratio, the dimensionless eccentricity, &, the angular distance from the
smallest gap, S, the power law exponent, 7, and a strong function of, the dimensionless
gap, K.

For isothermal walls, the temperature profile is flat at the middle of the gap and
suddenly drops to reach the wall temperature near the wall region. The temperature rises
at the gap center due to heat dissipation of the non-Newtonian effects. This temperature
rise is higher if the gap, or in other word the angular distance from the smallest gap, £, is
increased. This is because the bigger gap allows the polymer to easily flow and thus get
more temperature dissipation from the molecular frictions. Moreover, the temperature
rise also increases with the power law exponent, », to reach the Newtonian temperature
profile at » = 1. Thus, the less the power law exponent, », the temperature profile shows

plateau at the gap center, or in other word, it shows non-Newtonian effects when the
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power law exponent, #, is less. The modified dimensionless temperature 7eo, 14 1S
independent to the die geometry, so it can easily be used to approximate the temperature
profiles of the polymer melt in the gap of the eccentric cylinders as illustrated in the
designed example in section 4.3.

For adiabatic inner wall, the solution reveals that the dimensionless temperature
distribution is a function of the dimensionless radius ratio, ¢, the dimensionless
eccentricity, &, the angular distance from the smallest gap, S, the power law exponent, »,
and is a strong function of, the dimensionless gap, x. The temperature rises in the gap
due to viscous dissipation. This temperature rise increases if the gap is increased. This is
because the radial path length for thermal conduction to the wall is lengthened.
Moreover, the temperature rise also increases with the power law exponent, #, to reach

the Newtonian temperature profile at n = 1.

5.2 Recommendation

The unity dimensionless modified Brinkman number (Bryy,) is difficult to be
reached, thus in most case, the convection terms in the left side of the energy equation
may not be zero. This leads to an unsolved solution in this field. In short, an
undeveloped temperature profile must be studied and experimental data or simulation

technique of a polymer flow in a long annular pipe is necessary to validate the solution.
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The transformation of #and £ in Figure 3 can be shown below. From the relation,

H=R,—-R —ecosf

or rewritten in term of the gap d,

H=d(1-ecosf)

Thus, for small gap,

cos@+¢
cosff=——
1+ &cosd
21
> o
sin 3 = l+¢ ) sin @
1+&cosé
cosg = S08B—¢
l-¢gcosf
2l .
sind = l-¢g” )sinf
1-&cosf
_ 2
1+8cos<9=1—g
1-¢&cos@
21
d@z(l_g )Zdﬂ
1-—¢&cos@
X:1+50050: 1+¢&?
& g(l—gcos )
{_1+ecos¢9 &
- 1
y ¢ Ro(l_gz)g
{_ 1+&cos@
a 1

Ro(l_‘gz)E

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)
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Appendix B

Table B-1 lists the calculated temperature profiles of a HDPE power law polymer flow in

an eccentric cylinders with wall temperature = 453.15 K.

TGeo,]nd
K Tp—o Tpso | Tp=g5s | Tpeo | Tp-90 | Tp-120 | Tp-135 | Tp=150 | Tp-180
@n= 056

0.00 | 1.00000 | 455.50 | 455.90 | 456.44 | 457.28 | 459.98 | 463.93 | 466.02 | 467.83 | 469.50

0.05 | 1.00000 | 455.50 | 455.90 | 456.44 | 457.28 | 459.98 | 463.93 | 466.02 | 467.83 | 469.50

0.10 | 0.99998 | 455.50 | 455.90 | 456.44 | 457.28 | 459.98 | 463.93 | 466.02 | 467.83 | 469.50

0.15 | 0.99989 | 455.50 | 455.90 | 456.44 | 457.28 | 459.98 | 463.93 | 466.02 | 467.83 | 469.50

0.20 | 0.99955 | 455.50 | 455.90 | 456.44 | 457.28 | 459.98 | 463.93 | 466.02 | 467.82 | 469.50

0.25 | 0.99869 | 455.50 | 455.90 | 456.44 | 457.27 | 459.98 | 463.92 | 466.00 | 467.81 | 469.48

0.30 | 0.99685 | 455.49 | 455.89 | 456.43 | 457.26 | 459.96 | 463.90 | 465.98 | 467.78 | 469.45

0.35|0.99342 | 455.48 | 455.88 | 456.42 | 457.25 | 459.94 | 463.86 | 465.94 | 467.73 | 469.40

0.40 | 0.98754 | 455.47 | 455.87 | 456.40 | 457.23 | 459.90 | 463.80 | 465.86 | 467.65 | 469.30

0.45 | 0.97810 | 455.45 | 455.84 | 456.37 | 457.19 | 459.83 | 463.70 | 465.74 | 467.51 | 469.15

0.50 | 0.96375 | 455.41 | 455.80 | 456.33 | 457.13 | 459.74 | 463.54 | 465.55 | 467.30 | 468.91

0.55 | 0.94279 | 455.36 | 455.74 | 456.26 | 457.04 | 459.59 | 463.32 | 465.29 | 466.99 | 468.57

0.60 | 0.91324 | 455.30 | 455.66 | 456.16 | 456.92 | 459.39 | 463.00 | 464.90 | 466.56 | 468.09

0.65 | 0.87275 | 455.20 | 455.55 | 456.03 | 456.75 | 459.11 | 462.56 | 464.38 | 465.96 | 467.42

0.70 | 0.81858 | 455.07 | 455.40 | 455.85 | 456.53 | 458.74 | 461.98 | 463.69 | 465.17 | 466.54

0.75 | 0.74761 | 454.91 | 455.21 | 455.61 | 456.24 | 458.26 | 461.21 | 462.77 | 464.12 | 465.38

0.80 | 0.65627 | 454.69 | 454.96 | 455.31 | 455.86 | 457.64 | 460.23 | 461.60 | 462.78 | 463.88

0.85 | 0.54057 | 454.42 | 454.64 | 454.93 | 455.38 | 456.84 | 458.98 | 460.11 | 461.09 | 461.99

0.90 | 0.39603 | 454.08 | 454.24 | 454.45 | 454.78 | 455.86 | 457.42 | 458.25 | 458.96 | 459.63

0.95 | 0.21767 | 453.66 | 453.75 | 453.87 | 454.05 | 454.64 | 455.50 | 455.95 | 456.35 | 456.71

1.00 | 0.00000 | 453.15 | 453.15 | 453.15 | 453.15 | 453.15 | 453.15 | 453.15 | 453.15 | 453.15
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Appendix C

ov 2

8\/; )
4 , while |K'| =—k. Then, Eq.
K

Mg, .
For —1<x <0, 5 ” is positive. Thus,
K

(2-35) becomes;

vy === [dﬁ_gcosﬂ)} n((—zc)”i—lj (C-1)

n+l 2R,

where its derivative with respect to x is;

vy | d(l-gcos ) . N
P _{ IR, } (= &) (C-2)

Substitute Eq. (C-2) into Eq. (3-7) to get;

G (C-3)

One can integrate Eq. (C-3) twice to get;

T =- 1/11 0 (— K)3+% +oKk+c, (C-4)
[2 + j(3 + ]
n n

where c; and ¢, are the integration constants. On the other hand for 0 > x >1,

ﬁvgp B ov 2

, while |1(| =+x. Then, Eq. (2-35) becomes;
K

negative. Thus,

V= n |:d(1—6‘COS,H):| n((_'_K_)Hi_l) (C-S)

n+l 2R,

where its derivative with respect to « is;
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1

iz {d(l —ccos) )Tn (4 x)n (C-6)

oKk 2R,
Substitute Eq. (C-6) into Eq. (3-7) to get;

o’T” L
e 2, (+ x)" (C-7)

One can integrate Eq. (C-7) twice to get;
1
T" =- “ (+x)" +ex+c, (C-8)
1 1
(2 + j[3 + j
n n

where c; and ¢, are the integration constants. Finally, Eqgs. (C-4) and (C-8) can be

combined to give Eq. (3-13), while Egs. (C-3) and (C-7) are combined to give Eq. (3-10).
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We study the temperature distribution of a power law fluid in a pressure-driven axial flow between
isothermal eccentric cylinders in bipolar cylindrical coordinates. We begin our analysis by writing the
equation of energy in bipolar cylindrical coordinates. We then obtain a dimensionless algebraic analytic
solution for temperature profiles under a steady, laminar, incompressible and fully developed flow [Eq.

(64)]. We find that the dimensionless temperature profile depends upon the radius ratio of the inner to
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outer cylinders, the eccentricity, the angular position, and the power law exponent n. The temperature
is a strong function of the gap between the cylinders. The temperature profiles are flat in the middle of
the gap and then, near the wall, suddenly drop to the wall temperature.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In plastic pipe manufacture, if polymer were extruded from a
concentric annular die, the pipe wall thickness would not be uni-
form, and specifically, thicker at the bottom [1-3]. This is because
of the gravity flow of the molten plastic, inside the pipe, occurring
during its long residence in the cooling chamber. This is why the die
mandrel is normally displaced eccentrically downward, so that the
extrudate entering the cooling chamber is thicker on top (see Fig. 1).

In curved hose manufacture, the hose is suspended freely from
the die [4]. Fig. 2 shows curvature caused by making the die center-
piece eccentric. The extrudate bends away from the thicker side. To
obtain a particular hose shape, the die eccentricity must be specif-
ically programmed.

Many researchers have attacked the eccentric annular die prob-
lems analytically and numerically [5]. For instance, Bird et al. [6-8],
Michaeli [9], and Baird and Collias [10] extensively review con-
centric axial annular flow of Newtonian and power-law fluids.
Fredrickson and Bird [11] solved analytically for the axial flow of
power-law (and Bingham) fluids through concentric annuli. Later,
Guckes [12] studied the same fluids numerically through eccentric
annuli for large gaps.

* Corresponding author. Tel.: +66 B6 780 8126; fax: +66 2 586 0541,
E-muail addresses; ckw@kmutnb.acth, chanyut k@gmail.com (C. Kolitawong ).

0377-0257% - see front matter © 2010 Elsevier BV, All rights reserved.
doi: 10,1016/ jnnfm.2010.11.004

In blow molding, diverging annular dies are commonly used
[13,14]. Parnaby and Worth [15] obtained an analytic solution
for the power-law liquid flow between cones with common
apexes (diverging or converging dies). For cones without com-
mon apexes (axial eccentricity), Parnaby and Worth derived a
numerical approach, whereas Dijksman and Savenije [16] solved
this analytically using toroidal coordinates. The axial flow through
radial eccentricity converging or diverging dies has yet to be
tackled.

Later, Kolitawong and Giacomin [17] mapped the eccentric
cylinder cross-section in Fig. 3 into bipolar cylindrical coordi-
nates in Fig. 4 [6]. They analytically obtain the dimensionless axial
velocity profile between eccentric cylinders for power law lig-
uids.

The temperature rise during plastics pipe and curved hose man-
ufacture may cause plastic degradation. Uneven melt temperatures
may also distort the velocity profile, flowing faster than otherwise
predicted where the fluid is hotter. Here, we are interested in vis-
cous heating of a power-law fluid flowing axially, under a pressure
gradient, through an eccentric annulus. To study the heat transfer
between the eccentric cylinders, the energy equation is first written
in bipolar cylindrical coordinates. The temperature distribution in
the fluid between the eccentric cylinders is then determined ana-
lytically from this energy equation. Here we investigate the heat
convection of the axial flow in the eccentric annular die to help
pipe die designers predict melt temperatures in such dies.
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i 2. Methodology
Die |
1 ) 2.1. Bipolar cylindrical coordinates
7 ! Cooling chamber guide . X R X
| In bipolar cylindrical coordinates, £ and # represent two orthog-
ZI / onal sets of circles. Figs. 3 and 4 show the inner and outer cylinders
at constant £y and £;. The rectangular and the bipolar cylindrical
Macdpsl o I \ Z coordinates are related by [18]
_\'-.._ )

dic centerpicee %
T By T —————— S _ asinh &
%/ &, x_coshg'—cosé (1
B

|7 Z \ asin 8

< Pipe Y= cosh E—cos® (2)
' z=¢ (3)
f

| where 8= [0, 27), £ &(— oo, oo ) and { &[— o, oo ). There are several
v notation conventions for bipolar cylindrical coordinates. Arfken
o [19], for example, prefers (x, £, z), while (£, 8, £) is used in this
Fig. 1. A pipe extrusion die decentered to compensate for downstream sag. work IE] We define the smiefacmrs as,
a
ho = cosh & + cos 8 @)
e a
h = —-——- 5
£~ coshE+cosd )
h; =1 (B6)
Extrudate Since the scale factors in Egs. (4) and (5) match, we denote

= hy= he. In bipolar cylindrical coordinates, & is a curvilinear coor-
dinate at the intersection of two circles that are tangent to the circle
of radius R centered at (0, p), while £ is another curvilinear coordi-
nate at the intersection of two circles that are tangent to the circle
centered at (g, 0). The angle # is measured between the line (0, p)
to (a, 0) and the y-axis. Hence:

Mandrel or
die centerpicce

. a
sinf= ® (7
_P
cos = % (8)
a
tan# = — 9
> (9
Vientd  V.=rd pr+at =R (10)
Fig. 2. The curvature in the emerging hose caused by die eccentricity, The equation of a circle centered at (0, p) with radius R is:
x—0 +(y—p =R ()
v A Then, substitute p and R from Eqs. (7) and (9) into Eq. (11):
x? + (y — acot 6 = a’cosec? f. (12)

After rearranging Eq. (12), one gets:

_ Zay
tanﬁl_xi2 s (13)
B 19} 7 that is:
[ | 6 —tan"' (L) (14)
-~ 1y —a?
I .
(4

x The partial derivative of & with respect to x is,
a9 1 2ay
I E=m(rem (xilﬁ—y?—a?))’ (15)
1 or
ad —4a
»_ —"g‘ 5 (16)
& (a2 +y2—a2) + (2ay)
After rearranging the right side of Eq. (16), one gets:
Fig. 3. Cross-section of an eccentric annulus. By and Rz are the inner and outer a9 a 1 Zax
cylinder radii; and e is its eccentricity. ® = O_y ( (m)) (17)
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Fig. 4. Bipolar cylindrical coordinates showing the shaded die cross-section with the confocal length, a.

Then, to satisfy Eq. (79):

_ 1 2ax
£=tanh (7x1+y2+02) (18)
Rearranging Eq. (18):
(x—acoth E)z +y? = a’cosech’s. (19)
Finally, we solve Egs. (12) and (19) to get:
_ ycotf +a
~ cothE (20)
and
xcothf—a
cot (1)
then
. a(sinhf +isin#)
xty= cosh& + cosé (22)
or one can rewrite Eq. (22) to:
. iE 0
x+iy=atan (§+E) (23)

Egs. (20)-(23) are the transformation relations between rectan-
gular and bipolar cylindrical coordinates.

2.2, Dimensionless velocity profile

Kolitawong and Giacomin [17] developed the following dimen-
sionless axial velocity profile between eccentric cylinders for power

law liguids in bipolar cylindrical coordinates,

" (w) 1+(1/n) (lxll_[un] _ I)

viplic, B)=—33 2R,

1
£< = 24
! (24)
where n is the power law index of the power law viscosity;
d=FRz- Ry, the annular gap; Rz and Ry, the outer and inner radii of
the annulus, respectively. g is the bipolar angular coordinate mea-
sured from the x-axis as shown in Fig. 3, and &, the dimensionless

eccentricity:

e= 5, O<e<1 (25)
They define the dimensionless axial velocity profile such that:
Vep = k' (26)

1/

[~(R;™"" /m)(dP/d)]""

where m is the consistency index of the power law viscosity; 1;,
the dimensional velocity profile of the fluid between the eccentric
cylinders; dP/d¢, the pressure gradient in the axial direction. They
also introduce the dimensionless bipolar coordinate:

§-fo (27)
L-&
where £ represents a set of circles located between inner and outer

circles, respectively at £, and £;. These circles £, and &; correspond
to Ry and R, as:

£, =sinh™! [%] (28)

K=




125

136 C. Kolitaweng et al./ J. Non-Newtontan Flutd Mech. 166 (20011) 123-144
and The heat flux gradient in bipolar cylindrical coordinates is given
by:
& = sinh™! [J%] o
1 il [
and V. =15 {thht]'g] w(hq”‘i‘ B—C{h q;]} (a4)
+
o 5i+6 (30)

where the confocal length, a, is given by:

1
=5\ (& +R2—e?) — 4R2R2 (31)
The power law viscosity is defined such that:
n=mp"! (32)

where n is the power law index and m is the consistency index of
the power law viscosity. The magnitude of the rate of strain tensor
is:

p=,/30 9 (33)
where the rate of strain tensor is [6,7]:

=)+ (ve) (34)
2.3. Small dimensionless eccentricity approximation

For small dimensionless eccentricity, £ < 1, the scale factor sim-
plifies to [17,20]:

a Ryll—zcosf)

h=—= ———— 35
X (- e
where
1+ &cosf 1-¢2
X= £ ~ &(1—scosB) (36)

and Ry is the average radius.
Ry +Ry
2
and g is measured from the x-axis as shown in Fig. 3. The relations
between A and # are shown in Eq. (36) [17,20]. Let,
Je= &y — £zthen, for small eccentricity:

Ro= (37)

oa1/2
==—(1- 39
Rﬂ.( %) (39)
From Eq. (27), one obtains:
o 2
E=c (40)
Finally, combining Egs. (35) and (39):
he = d1—£C0sP) o P) (a1)

2.4. Energy equation

We begin with the energy equation incorporating viscous heat-
ing[7]:

~ DT P
pC,—=—A-g)- T{,,—J A-»)-@:AY)

Dt aT ), (42)

where p is the liquid density; Cp, the specific heat at a constant
pressure; r, the extra stress tensor; and p, the velocity vector. Also
the heat flux for a constant thermal conductivity, k, is given by:

q=—kVT (43)

where g, gy, and g; are the heat flux components in the £, 6, and £
directions. The substantial derivative in Eq. (42) is given by:

DT 4T 1
T 7
where v, vy, and vy are the velocity components in the £, 6, and £
directions. In bipolar cylindrical coordinate, the gradient of a scalar
function can be written in term of the scale factor h = hy = h, defined
in Eqgs. (4) and (5), and thus the gradient of the temperature is:

{L-E%(MH v,_,%{h]")+ u;—{hzT]} (a5)

147 141
VT =3;- +§”h89+'5¢a§

o (46)

where d¢, ,, and &, are unit vectors in the £, 6, and { axes, respec-
tively. Then the Lap]aclan of the temperature is:

5 14 f14ar 13 (181 T
vr:ﬁ@(ha&)Jr (hae)+3_g:l (47)

The viscous dissipation term is the rightmost term in Eq. (42):

. 1 dvg 1 du, e
I: VI =1 (HE) + Tog (HT;) + T ( T

10 19, v L v
Tl thm )t R
the 1 al-'{-
+ T (‘—; + Hﬁ) (48)

Substituting Eqs. (44), (47), and (48) into Eg. (42) yields:
ar

pCp o

14ar T
R ) e
X
R

which is the energy equation written in bipolar cylindrical coordi-
nates. Eq. (49) is the starting point for any heat transfer problem
in bipolar cylindrical coordinates. For an incompressible fluid, the
second term on the right side of the energy equation [Eq. (42)] is
negligible. Then, the energy equation reduces to:

pfp% = kV2IT —(z:Vp) (50)

which can be combined with the equation of motion to solve prob-
lems in bipolar cylindrical coordinates.
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3. Analysis
3.1. Assumption and modeling

For a steady, laminar, incompressible, fully developed flow, we
assume that there is only axial velocity in the £ direction, i.e. v; =
vl &, B), vz = vy = 0,and T(&, #). For this case, Eq. (50) simplifies to:

ol pf1a (1ar 13 141 1 g
=M nelneE) Thw\nmw hE
- (%a—a';f) } (51)

The shear stress can be written in terms of the velocity gradients
such that [17,20]:

1 aug

Tgp =— ’?h E (52)
1 av,

T =15 (53)

where 1) is the power law viscosity defined in Eq. (32); v, the veloc-
ity profile for the flow between the eccentric cylinders. Substitute
Eqs. (52) and (53) into Eq. (51) and rearrange to get,

2 . L o\ 2 Ao\ 2
B§+3T_—m 12 O Y (i (54)
EE k|h 3g aE i
For small dimensionless eccentricity, e<1, ie. v /dd =

0. #°T/ 6% = 0, Eq. (54) becomes:

2 -1 . n+1

FT__m (l) v (55)
ag* k\h dE

Introducing the dimensionless variable from Eq. (27), into Eq.
(55)

Pr_m
wz - k ( he )

Rearranging Eq. (26) for dimensional velocity, v, and substitut-
ing into Eq. (56), one gets,

Eh.r—

™ (56)

2 n-1 n+l gp. 1Yy
2y |[ A T (579
2 k \ hc m d¢ il
Furthermore, we can rearrange Eq. (57) such that,
3 3 n+l1
AU i) (58)
2 e
where the dimensionless temperature profile, T, is
T
T = ™ (59)
where,
(n+1ln
mg 23y~ Ry P '
1\05?(%) |:— m d—; (60)

We differentiate Eq. (24) with respect to « and then substitute
into Eq. (58) to get:

N d (_1 ,B} 1+{1/n) i+l
— ECOS
B&Z_z - [ IR _} iclie| /1 (61)
or
2
% = Ayl (62)

©

Heated section with a
constant sulfaoc tcmpc.raturc \

IJ-'-
|
I
|

O
i

| Heated section with a

3 constant wrlan: temperature

B

L
| I

Fig. 5. illustrates heat transfer of the flow between eccentric cylinders,

where A, is always real and positive and defined such that:

A= [d(l —ecos f)

2Rz (63)

:| (nt1/n

By integrating Eq. (62) twice and assuming that the outer radius
Rz (x=—1), has a constant temperature T, corresponding to T* =
T3, and the inner radius Rz {x -1) has a constant temperature Ty,
corresponding to T* =T}. Then:

T* = —ho (P = 1) + A + 24 (64)
where
Apm M (65)
2T /mE+(/n)
_ T|“— T]s
A= (66)
g =¥ (67)

Eq. (64) is the main result of this paper. Now, let the wall tem-
perature be controlled uniformly over both cylinder walls so that
Ty =Ty, then, the dimensionless temperature profile in Eq. (64) is
simplified to:

T* = -2z (P —1) +1p* (68)
or
At =g (UM 1) At =T T (69)

Dividing Eq. (69) by A2 yields the angular position independent
dimensionless temperature © :
El
e -2

- _ |K|3—[Ir'n) (70)

3.2. Cooling system

In this worl, all heat generated by the viscous energy dissipates
through the inner and outer cylinder walls and then the cooling
systems near the walls carry the energy out. Fig. 5 depicts this.
Suppose that the fluid enters and leaves the die at bulk tempera-
ture Ty, and Ty, respectively. The mandrel surface is controlled at
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S p=30° S p=45°
Lqx0” F 14x10° P
12 1 12
1 1

Fig. 6. Dimensionless temperature profiles A" versus the dimensionless gap x using ¢=0.80 and the dimensionless eccentricity, = 0.10, at various angles & and power law
indexes n.

a constant temperature Ty, while the die barrel is controlled at a and, at the outer wall of the die (called the die barrel):
constant temperature Tz. The heat flow from the fluid to the solid

inner surface of the die (called the die mandrel) by the Newton's Log2m ooar
law of cooling is [7.8]: ha(7D,L)(Tyy — Ta) = A RE hdd di (72)
§=5

Lopdw poar where hy and h; are the heat transfer coefficient corresponding to
hy (D LTy — Tﬂ:] [ (kghdgd{) (71)  the die mandrel and barrel surfaces, respectively. By using Eq. (40)
o Jo E=h and (59), we can easily show that the Nusselt Number corresponding
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x10°  f=00 x10°  f=30¢ x10° f=45°

n=04
n=035

0.6 1.5 1.5
n=07
n=0%8
n=09 1k
n=1.0

L5

Ak x4+ 0w

A*
5‘
A*

Fig.7. Dimensionless temperature profiles A" versus the dimensionless gap « using ¢ = 0.80 and the dimensionless eccentricity, £ =020, at various angles # and power law

indexes n.
to the outer surface of the mandrel is: where, _—
my2y" [ Rptdp]TT
a1z %ET(E) [_ m di (74)
Nuy — Dy 4o (1-€7) ¢
TR T me(Ty — TR Jo For uniform wall temperatures, i.e. T, - T;, we differentiate Eg.
(64) once and let - 1, Eq. (73) becomes:
1 ar 24 (n-1)/2
— 4 1-&
Ao E e 7 - 2Ot 7
( ) =1 melTm — T )Ry
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x107 p=0° gX 107 p=30° gX 107 p=45°
bt n=0.4
e n=0.5
+ n=0.6
v n=07
=
%
<

n=0.8
n=10.9
n=1.0

Fig. 8. Dimensionless temperature profiles A” versus the dimensionless gap « using - 0.90 and the dimensionless eccentricity, £- 0.10, at various angles 8 and power law
indexes n.

in which: Furthermore, we can show that the Nusselt number correspond-
2 ing to the inner surface of the die is:

n d o mrr/m

L4 E_(Zn—l) (E) (76) A [1_52}(n—lla'2
Nup=—2 L  ____Q(n,¢) (78)
and we(Ty — T2)R 2
-

2(n.e)= / (1-¢ Cosmaﬂ'l;n]dﬁ (77) We can easily see that the Nusselt numbers are strongly depen-

0 dent on the dimensionless eccentricity £, the power law index n,
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Fig. 9. Dimensionless temperature profiles A" versus the dimensionless gap « using g =090 and the dimensionless eccentricity, =020, at various angles £ and power law

indexes n,

the angular position 8 and the different temperatures between the
fluid and the wall.

3.3. Results and discussion

Figs. 5-0 plot the dimensionless temperature profiles, A" versus
the dimensionless gap, « [Eq. (69)] for 6 values of n over the range
0.4=n=1 at various angular positions from the smallest gap, §,
with the dimensionless eccentricity ranging over from 0.1 <& <0.2

at the dimensionless radius ratio, ¢ = R /R;. values of 0.8 and
0.9.

Figs. 6-9 show that the dimensionless temperature (A"}, in
general, increases with the dimensionless radius ratio, ¢, the
dimensionless eccentricity, £, the angular distance from the small-
est gap, /3, and the power law exponent, n. In addition, the more
shear thinning the fluid (the lower the n), the blunter the tem-
perature profile. Moreover, the more eccentric the die (the higher
the &), the greater the temperature difference between the fluid
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n=01
n=02
n=03
n=04
n=0.4
n=03
n=10
L | X " 1 | 1 L |
08 -046 -04 0.2 1] nZ 04 0.6 0.8
K

Fig. 10. Dimensionless temperature (€ ) versus the dimensionless gap, «, for vari-
ous power law indexes (n),

at the smallest gap (f-0°) and the biggest gap (f=180"). This is
because of the convective flow in the eccentric die. In other words,
the dimensionless temperature is proportional to the velocity in
the die.

The dimensionless temperatures also decrease by two decades
[from O(10-7) to O(10-7 )] when the radius ratio (¢) increases from
0.80 to 0.90. When the radius ratio increases, the inner and outer
radii approach one another, and so the gap is very small all around
the die. In this case, the convective effects in the die diminish, which
iswhy the fluid temperature decreases as the radius ratio increases.

Fig. 10 plots the dimensionless temperature profiles, &, versus
the dimensionless gap, «, [Eq. (70]] by varying the power-law index
(n) over the range 0.1 =n<1. Fig. 10 shows that the dimension-
less temperature is less than one for all power law indexes. From
this, we can estimate the temperature distributions at any angular

Table 1

Table 2
lists the peak temperatures of the HDPE melt flowing in the eccentric die at various

angles, g.

B ha(K) Az A (°C) Te-0 (°C)
0 5050 x 107 4644 5108 2349 182,340
30 5133107 5358 x 10-% 2750 182,750
45 5219107 6313 x10-% 3205 183,205
60 5328 = 107 7747 <102 4128 184128
a0 5581 x 107 1225 % 10-7 6835 186,835
120 5820 107 1.853 % 10-7 10785 190,785
135 5915107 2,176 :10-7 12871 192,871
150 5987 « 107 2452 %107 14,680 194,680
180 6047 107 2705 % 107 16,355 196,355

distance from the smallest gap. £, if we know the maximum tem-
perature difference. Table 1 provides the numerical values of the
angular position independent dimensionless temperature profiles,
@', versus the dimensionless gap, i, for various power law indexes
(n).How touse Fig. 10 for pipe die design isillustrated in an example
in Section 3.4.

34. Design example

A high density polyethylene (HDPE) plastic pipe is extruded
from an eccentric annular die of outer radius R;-0.100m and
inner radius R, = 0.099 m with small dimensionless eccentricity of
£=0.2 to compensate for sag in the post-die cooling chamber. The
HDPE melt obeys the power law with n-0.56, and the consistency
index, m=6190Pas" [21,22]. The polymer has thermal conductiv-
ity, k=0.045W/(m K). The inner and outer wall temperatures, T;
and T;, are uniform at 180°C (453.15K). The pressure drop per
unit length within the die is 5 MPa/m. Determine the temperature
profiles in the molten plastic at various angular positions, 8.

Solution: To solve for the dimensional temperature appearing
in Eg. (59), we need to rearrange Eq. (70) to get:

A = hgha®@*

provides the numerical values of the angular position independent dimensionless temperature (&* ) as a function of the dimensionless gap, k, for various power law indexes

.

n L4
0.50 045 040 035 0.30 0.25 020 015 0o 0.05 0.00
01 099988 099997 099999 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
02 0.9960% 0.99832 000934 0.99977 0.09993 0.99998 1.00000 1.00000 1.00000 1.00000 1.00000
03 098760 099364 099608 099870 0.0494951 0.99985 0.99996 0.990049 1.00000 1.00000 1.00000
04 097790 098762 099352 099689 009867 0.90951 0.99986 0.9909497 1.00000 1.00000 1.00000
05 096875 098155 098976 090475 0949757 0.99902 0.99968 0.999492 0.99999 1.00000 1.00000
06 096063 097592 098610 099255 099637 0.99845 0.99945 0.99986 0.99998 1.00000 1.00000
07 085356 0.97088 008271 0.99043 0.99517 0.99784 0.99920 0.99978 0.09996 1.00000 1.00000
[ik:} 004744 096541 04974964 008846 0.99401 0.99724 099803 0.99068 0.99504 1.00000 1.00000
0a 004213 096248 097688 098665 0940291 0.99665 0.99866 099954 0.999092 1.00000 1.00000
1.0 093750 095899 0.97440 098499 0949180 0.99609 0.99840 0.99949 0.99990 0.99999 1.00000
n [
1.00 095 0&n 085 0.80 0.75 070 065 0.60 055

01 0.00000 048666 074581 0.87900 0.,84502 097624 099031 099630 0.99869 099958
02 0.00000 0.33658 056853 072751 083223 080984 094235 096814 0.98320 099163
03 0.00000 027737 048600 064274 0.75665 083830 080554 093467 0.96065 097732
04 0.00000 0.24581 043981 050082 0.70691 079449 085938 090645 0.93977 096268
05 0.00000 0.22622 040051 0.55620 067232 0.76270 083103 0883497 092224 0.94067
06 0.00000 021288 038840 053158 0.64702 0.73881 081071 086605 0.90781 093857
07 0.00000 0.20320 037287 051311 062776 0.72030 079303 085150 0.89588 092018
08 0.00000 0.19587 036096 040878 061262 070555 078038 083472 0.88504 092120
0a 0.00000 019012 035154 048734 060043 0.69355 076923 082984 087755 091437
1.0 0.00000 018548 034300 0.47798 0.59040 0.68358 075900 082149 0.87040 0.90840
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Fig. 11. Temperature profiles of a HDPE power law polymer flow in eccentric cylin-
ders with wall temperature of 180-C.

where A-T—T,. From Egs. {41), (60), (63) and (65), at g-0°, for
example,

hc=d(1 - scos 5)/2 =(0.01m){1 — 0.2 cos(0))/2 =4.00 = 1073 m.

Then,

N _ﬂ E 1 _Rzﬂ"'ld_P n+l/n

"= % (hc) m dg

. _ (6190Pa—s) 2 oz
U [0.0485W/mKI \ 20010 °m

[ (0.1 m)* ! (=5 x 105 Pa/m)

*| T [6190Pa 57
Ap=5.059 % 107 K

X (n+12%/n
= [d(l — £C0S ﬂ):|

:| (0.56+1)/0.56

7R,

(0.1 m)(1 — 0.2 cos(0))] 056+ 1/05E ~

_[W] —8.413 2107
o A1 3 8.413 « 1077
2T+ /M3 +(1/n) ~ (2+(1/0.56))(3 +(1/0.56))

=4.644 = 1073

We then calculate the peak temperature at f-0°, occurring
when =0, by letting @ -1,

A = hghy @ =(5.059 x 107 K)(4.644 x 107%)(1)
= 2.349K = 2.349°C

T=A+T,=2349°C+180°C=182.349°C

Other peak temperatures at various angles, 8, are constructed in
Table 2. Next, using the modified dimensionless temperature pro-
files with power-law index n- 0.56 from Fig. 10, i.e. interpolating
values of the modified dimensionless temperature profiles from
Table 1, and then multiply them by the peak temperature T,.q in
Table 2 we get the temperature rises at various . We then, add the
wall temperature at 180°C (453.15K) onto the temperature rises
to get the temperature profile for each 8. Fig. 11 shows that the

0.2 dimensionless eccentricity in this example would cause a 16°C
temperature imbalance around the die.

4. Conclusion

The energy equation in bipolar cylindrical coordinates, coupled
with the velocity profile of the power law viscosity model, is used
to determine the temperature profile in an annular die for plastic
pipe extrusion. The dimensionless temperature profile of a steady,
laminar, incompressible and fully developed flow of a power law
fluid can be found by the analytic method with assumptions such
that there are no velocities in the £ and ¢ directions, no heat con-
vection terms, and uniform wall temperatures. The solution reveals
that the dimensionless temperature distribution is a function of the
dimensionless radius ratio, g, the dimensionless eccentricity, &, the
angular distance from the smallest gap, f, the power law exponent,
n, and is a strong function of, the dimensionless gap, «. The temper-
ature profiles are blunt in the middle of the gap. The temperature
rises in the gap due to viscous dissipation. This temperature rise
increases if the gap is increased. This is because the radial path
length for thermal conduction to the wall is lengthened. Moreover,
the temperature rise also increases with the power law exponent, n,
toreach the Newtonian temperature profile atn = 1. Thus, the lesser
the power law exponent, n, the blunter the temperature profile.

Whereas this paper tackles the die with isothermal walls, there
remains a need for the alternative case of constant heat fluxes at
the walls. The temperature of the die mandrel is often uncontrolled,
leaving it with zero heat flux at steady state. This is always the case
for small die mandrels, where a temperature control unit cannot
be installed.
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Appendix A
If £ and # are real single-valued functions of x and y and their

four partial derivatives are continuous throughout a real domain of
R, the Cauchy-Riemann equations [19,23] are thus:

a0 ak

ik (79)
and

JE_

™ E (80)
and these are both necessary and sufficient conditions for:
flz)=0(x. y) + iE(x. y) (81)

to be analytic in R. Under these conditions, the partial derivatives
of flz) are given by:

=2 i (82)
and

ra=3-ig (83)
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Abstract: Here we study heat distribution of a power law fluid axially flows between eccentric cylinders by mapping the eccentric
cylinder cross-sectional area with bipolar cylindrical coordinates. The bipolar cylindrical coordinates allow us to solve for an
algebraic analytic solution of temperature profiles of a power law fluid flow under a steady, laminar, incompressible, and fully
developed situation. The solution reveals that the temperature distribution is a function of the radius ratio of the inner and outer
cylinders, the eccentricity, the angular distance from the smallest gap, the power law exponent n, and also a strong function of the gap
between the cylinders. The temperature profiles are flat at the middle of the gap and suddenly drop to reach the wall temperature near
the wall region. This hehavior occurs due to heat dissipation of the non-Newtonian effects.

Keywords: Temperature profiles, Plastics flows in eccentric pipe die, Bipolar eylindrical coordinates.

1. INTRODUCTION

In plastic pipe manufacturer, when polymer is extruded from a
concentric annular die, the pipe wall thickness is not uniform,
and specially, thicker at the bottom. This is because of the
gravity flow of the molten plastic, inside the pipe, occurring
during the long residence in the cooling chamber. For this
reason, the die concentric (mandrel) is displaced eccentrically
downward, so that the extrudate entering the chamber is
thicker at the top (see Figure 1). -
o

Mandrel or @ | N

7/ "

|

Cooling chamber guide

Figure 1 A pipe extrusion die decentered to compensate for
downstream sag.

In curved hose manufacture, the hose is suspended freely
from the die. Figure 2 shows curvature caused by making the
dic centerpicce eccentric, The extrudate bends away from the
thicker side. To obtain a particular hose shape, the die
eccentricity must be specifically programmed.

Many researchers have been attacked and reviewed the
eccentric annular die problems analytically and numerically.
For instance, Bird ¢t al. [1, 2], Michaeli [3], and Baird and
Collias [4] extensively review concentric axial annular flow of
Newtonian and power-law fluids. Fredrickson and Bird [5]
solved analytically for the axial flow of power-law (and
Bingham) fluids through concentric annuli, Later, Guckes [6]
studied the same fluids through eccentric annuli numerically
for large paps.

In blow molding, diverging annular dies are commonly

1062

used [7, 8]. Parnaby and Worth obtained an analytic solution
for the power-law liquid flow between cones with common
apices (diverging or converging dies). For cones without
common apices (axial eccentricity), Pamnaby and Worth [9]
derived a numerical approach, whereas Dijksman and Savenije
[10] solved this analytically using toroidal coordinates. The
axial flow through radial eccentricity converging or diverging
dies has yet 1o be tackled.

Extrudate

Vi=rg V=i
Figure 2 The curvature in the emerging hose caused by dic
eccentricity.

Figure 3 Cross section of an eccentric annulus. Ry and R, are
the inner and outer eylinder radii; and ¢ s its eccentricity.
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Figure 4 Bipolar cylindrical coordinates showing the shaded
die cross section with the confocal length, a.

Later, Kolitawong and Giacomin [11] match the eccentric
cylinder cross section in Figure 3 with bipolar cylindrical
coordinates in Figure 4 [1]. They then calculate the
dimensionless axial velocity profile in the eccentric cylinders
for the power law liquids, which is,

sy o

where n is the power law index; d = R; — R, the annular gap.
R; and R, are the outer and inner radii of the annular,
respectively. [Jis the angle nmasnred from the x-axis gs shown
in Figure 3; and g, the di icity defined as;

v, Mr=-

= O<e<l. (2)

2
d

They also introduce the dimensionless variable & as,

_— ¢=% (3)
‘fl 'gn
where,
_&i+& €3]
§o = -

and the constant circles & and & corresponding to the Ry and
R;are;

£ = sinh"[—;-:—] : ©)
1
&= sinh"[ﬂi}] ©

where the confocal length, a, is the distance measured from
the y-axis to the intersection of the @ circles can be calculated
from the R; and R and the annular eccentricity e,

and

|
= VRF + K - -aRR] - ™
€

while the dimensional axial velocity profile v is defined such
that,

1
oy | R AP ®)
v 1""[ m d(:]

where m is the consistency index of the power law viscosity
and dp/d{ is the pressure gradient in the axial direction.

Their solution is valid for the 0.2 dimensionless eccentricities
or less.

Long residential time during plastics pipe and curved hose
manufacturing may cause plastic degradation. Here, we are
interested in heat flux of a power-law fluid axially flow in the
eccentric annular. In other words, heat build up in the
cecentric dies during the productions must be controlled. To
study the heat transfer between the eccentric cylinders, energy
equation is  buill in bipolar cylindrical coordinates.
Temperature distribution between the eccentric cylinders is
determined from the energy equation analytically, Here we
investigate the heat convection of the axial flow between
eccentric die to help pipe manufacturers to understand the heat
behavior in the eccentric die.

2. METHODOLOGY

2.1 Bipolar cylindrical coordinates

In bipolar cylindrical coordinates, & and & represent two
orthogonal sets of circles. Figures 3 and 4 show the inner
and outer cylinders at constant & and &. The relations
between the rectangular coordinates and the bipolar
cylindrical coordinates are given by [12],

e asinh & )
coshé —cos@

= asinf (10)
coshé —cosd?

z=¢ (11

where ¢ e[0,27), £ € (—0,®) and ¢ € (—m, ) - There are
several notation conventions. Arfken [13], for example,
prefers (7, & z), while (&, 6, £) is used in this work [1]. The
scale factors are,

[ - S— (12)
cosh £ + cos#?

e IO . (13)
cosh & + cos#?

h, =
B =1. (14)

Since the scale factors in Egs. (12) and (13) are the same, we
denote h = hs=hg

2.1.1 Functions for complex variables
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If £ and @ are real single-valucd functions of x and y which 4 2ay 27
their four partial derivatives arc continuous throughout a real O=tan xz_”:i__a; @7)
domain of R. Then the Cauchy-Rieman equations, )

90 _3% (15) The partial derivative of ¢ with respect to x is,

dr dy

ﬁ=2[m-t[%] ‘ 28)

and a o xty'—a

oc a8

== (16) then

&

are both necessary and sufficient conditions that
£(@)=00x.y)+i€(xy) an

is analytic in R. Under these conditions, the derivative of fz)
is given by either,

=2 % (18)
f(z)—ar+‘61

and
v oo o8 (19
(2)=2=—i—.
e~

2.1.2 The intersection of two circles

In bipolar cylindrical coordinates, @ is a coordinate at the
intersection of two circles that tangent to the circle of origin (0,
k), while £ is a coordinate at the intersection of two circlegthat
tangent to the circle of origin (4, 0). The angle &is measured
between the line (0, &) to (a, 0) and the y-axis. Then,

sinf=— (20)
RI
cosll = v 2n
I
tan @ =2 22)
k
K +at=RE. 23

The equation of a circle that center at (0, k) with radius Ry is,

(x—0) +(y-k) =&/ (24)
Then, substitute k and R, from Eqs. (20) and (22) into Eq.
(24),

1t +(y—acot@) =a’csc’ 0. (25)

After rearranging Eq. (25), one gets;

2ay i (26)

lan@ =
.r’+y2-a2

that 13,

1064

0. =Amy (29)
& (4y-a’) +Qay)

Afier rearranging the terms at the right side of the Eq. (29),
one gets

00 _ 8 -1 2ax (30)
—=—|tanh | ——FF——
ax By[ [12+y2+02]}
Then, to satisfy the Cauchy-Rieman in Eqg. (15),
2ax
=1 ht . (3])
£ tan [.t’+y’+a2]

Rearrange Eq. (31) to get,
(x—acothé) +y* =a* csch’E, (32)

Finally, we solve Eqgs. (25) and (32) to get

L yeof+a (33)
coth&
and
_xcothé —a (34)
coté
then

.I+}'i'=a(5inh‘§ +isin @) (35)

cosh & + cos @

or one can rewrite Eq. (35)to

2 2

x+ yi=atan(

Eqgs. (33) to (36) are the transformation relations between the
rectangular  coordinates  and  the  bipolar cylindrical
coordinates.

2.2 Small dimensionless eccentricity approximation
For small dimensionless eccentricity, £<< I, the scale factor is
simplified to [14]
= Ryl -&cos ) (37)
- 1
L

where
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2

X = l+gcos® _ 1=-&" (38)
£ ell-£cos ,8)
and Ry is the average radius,
i 2 Fit 8 (39)

! 2

and /7 is measured from the x-axis as shown in the Figure 3.
The relations between Fand @are shown in [11, 14]. Let,

c= ‘)‘l Fa ‘J"! (40}

then, for the small eccentricity,

c=-§(l-—¢::)_; =;Tn(|—:=);_ “n

From Eg. (3), one can get,
oK 2 @2)

& o

Finally, combine Eqs. (37) and (41) to get,

F- d[l—szcusﬂ}_ (43)

2.3 Energy equation

The rate of change of the fluid temperature depends on the
heat conduction, change of the pressure, P, with respect to its
temperature, T, at a constant volume ¥, and viscous heating
of the fluid [2],

o, Lo gr(Z) @) @

where p is the liquid density, ¢ ; the specific heat at a
constant pressure, r; the deviatoric stress tensor, y; the
velocity vector. Also the heat flux for a constant thermal
conductivity, &, is defined as

q=—kVT. (45)

The gradient of the heat flux in the bipolar cylindrical
coordinates is

1)@ g 92 . (6)
Vig=—4{— — =
== {3{ (’“?;)"‘ 20 (g, )+ ac (ﬁ ‘i"c]}

= h
The substantial derivative in the energy equation [Eq. (44)] is

pr or 1] 2 = 9 (er)l- @D
42 {., = (hT) vy = (4T) v, 5 (n T)}

D @

In bipolar cylindrical coordinate, the gradient of a scalar
function can be written in term of the transformation factor
(scale factor) & = hg = hg, defined in Eqs. (12) and (13), and
thus the gradient of the temperature is

187 1ar +5 ar (48)

VI'=8,—+4;
SinoE hae o

where é€' &8, and 5, are unit vectors in the & @, and

axes, respectively. Then, the Laplace equation on  the
temperature is

VT = laflar +la[|af) al_T (49)
hot\noE) noa\nae) ac?
The viscous dissipation term in the right side of Eq. (44) is
Vv'i’g[]a‘r )+r (la%]
£ "\ h BE h 60
- ik v, l g
Ty —'
6;' \h e h 6§
v av, 10, - v, 1 dv.
oL ﬁ 6{ -4 k 20

For incompressible fluid, the second term on the right side of
the energy equation [Eq. (44)] is negligible. Then, the energy
equation becomes,

(50

4 DT
P, —-=kV'T~(g: V) G
3. ANALYSIS
3.1 Assumption and modeling

Here, we study a polymer melt axially flowing in eccentric
annuli shown in Figure 3, and thus map the physical flow with
the bipolar cylindrical coordinates shown in Figure 4. For a
steady, laminar, incompressible, fully developed flow, we
assume that the velocities in & and @ directions are very small
compare to that in ¢ direction, and then, v, =v‘(§_a}.
v, = vy =0. and 7(£,8). Since the dimensionless modified
Brinkman number (Bry,), the heat generation balances with
the molecular heat export, is unity. The energy equation [Eg.
(51)] is simplified to,

"{; aaf[»lx gg}”%a%[% %J} (52)

The shear stress can be written in terms of shear rates which
are related to the velocity gradients such that [11, 14]

_ L (53)
« =g
]av,

— (54)
&=} 20

Substitute Egs. (53) and (54) into Eq. (52) and rearrange to

get,
"o (2) ] 69
oF a0

where the viscosity 77 obeys the power law model;

[Bv

hag

oL, ﬂ’T-_ﬂ
FEa
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n=my" < (56)

where, for a shear flow, the scalar function of the rate of
deformation tensor 1s,

S m (57)

where the rate of deformation tensor is defined as [1, 2],

= (7)+ (9 (5)

For very small dimensionless eccentricity, £ << 1, fe.

73 =0 ﬁ =0 Eq. (55) becomes,
" 80?

a0
or _ _,’"_[l)ﬂ av. " (59)
&t k\m) |eg|

Introducing the dimensionless variable from Eq. (3), and then,

Eq. (59) will be

a7 _ _ﬂ(i v (60)
he ax|

T ok
Substituting Eq. (8) into Eq. (60), one gets,

T E{EJH [_Rdr T v, 46D
ax®  k\he m de ox
Furthermore, we can rearrange Eq. (61) such that,
o1 _ |ov,l™ (62)
ax? ax
where the dimensionless temperature profile, T, is
(63)

T
)

ﬂ(i A

k\he m d

We differentiate Eq. (1) with respect to « and then substitute
into Eq. (62) to get,

T =

vl

1
1" [dl-zgcosp)]™ o o (64)
ot { 2R, *M
or,
a7 K '
(ax’ =<4 (65)

where A; is always real and positive and defined such that,
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4= d(i-géosfg)| » . ©6)
2R,
By integrating Eqg. (65) once, one gets
T’ 4 (67)

Mz'_:r +ey

=

From Egq. (67), the dimensionless temperature profile T is,

T-=————A'-—
[2+-l—I3+-l]
n n

where ¢; and ¢, are the integration constants. Assume that the
outer radius R, (x = -1), has a constant temperature T,
corresponding to T'=T,", and the inner radius R, (x= 1) hasa
constant temperature Ty, corresponding o T' =T, . Then,

b 68
i"\f rHOK+C, o

e (Ca) SR (69
where
B (70)
A=Y
(24-— 3+—]
n n
Jei 2 ;T ] (1)

3.2 Results and discussion

Figures 5 to 8 are plotted the dimensionless lemperature
profiles, T * versus the dimensionless gap, & [Eq. (69)] by
using the power-law index (n) from 0.5, and increasing by 0.1,
to 0.9 , at various angular distance from the smallest gap,
with the dimensionless eccentricity, £ from 0.10 to 0.20 at the
dimensionless radius ratio, Rguie = 0.80 and 0.90.

The figures 5 to 8 show that the dimensionless temperature
("), in general, increases with the dimensionless radius ratio,
Reario, the dimensionless eccentricity, & the angular distance
from the smallest gap, £, and the power law exponent, n. In
addition, the more non-Newtonian of the fluid (less n), the
more flat at the tip of the temperature profile. Morcover, the
more dimensionless cccentricity, £ dimensionless temperature
profiles decrease at the smallest gap (/f=0) and increase at the
biggest gap (J=180). This is because of the convective flow of
the fluid in the eccentric die. In other words, the dimensionless
temperature is proportional to the velocity profile in the dic.
The dimensionless temperatures also decrease from 10E-5 to
10E-7 when the radius ratios (Rpy) increase from 0.80 to
0.90. When the radius ratios increase, the inner radius and
outer radius are almost the same. This means that the gaps in
both upper and lower side are very small. Then, the convective
effects in the die are diminish, which make the dimensionless
temperature decreases when the radius ratio increases.
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4. CONCLUSION

For bipolar cylindrical coordinate, the energy equation
coupled with the velocity profile of the power law constitutive
model is used to determine the temperature profile in the pipe
extrusion die. The dimensionless temperature profile of a
steady, laminar, incompressible and fully developed flow of a
power law polymer can be found by the analytic method with
assumptions such that there are no velocitics in the £ and &
directions, no heat convection terms, and uniform wall
temperatures. The solution reveals that the dimensionless
temperature distribution is a function of the dimensionless
radius ratio, Rgwi the dimensionless eccentricity, & the
angular distance from the smallest gap, f, the power law

exponent, n, and a strong function of, the dimensionless gap, A-

The temperature profiles are flat at the middie of the gap and
suddenly drop to reach the wall temperature near the wall
region. The temperature rises at the gap center due to heat
dissipation of the non-Newtonian effects. This temperature
rise is higher if the gap, or in other words the angular distance
from the smallest gap, /3, is increased. This is because the
bigger gap allows the polymer to easily flow and thus get
more temperature dissipation from the molecular frictions.
Moreover, the temperature rise also increases with the power
law exponent, n, to reach the Newtonian temperature profile at
n = 1. Thus, the less the power law exponent, m, the
temperature profile shows platcau at the gap center, or in other
words, it shows non-Newtonian effects when the power law
cxponent, n, is less.
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