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Figure 62 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.80 and the dimensionless eccentricity, �  = 0.30, at various angles �  and power 

law indexes n.
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Figure 63 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.85 and the dimensionless eccentricity, �  = 0.05, at various angles �  and power 

law indexes n.
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Figure 64 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.85 and the dimensionless eccentricity, �  = 0.10, at various angles �  and power 

law indexes n.
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Figure 65 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.85 and the dimensionless eccentricity, �  = 0.15, at various angles �  and power 

law indexes n.
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Figure 66 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.85 and the dimensionless eccentricity, �  = 0.20, at various angles �  and power 

law indexes n.
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Figure 67 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.85 and the dimensionless eccentricity, �  = 0.25, at various angles �  and power 

law indexes n.
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Figure 68 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.85 and the dimensionless eccentricity, �  = 0.30, at various angles �  and power 

law indexes n.
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Figure 69 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.90 and the dimensionless eccentricity, �  = 0.05, at various angles �  and power 

law indexes n.
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Figure 70 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.90 and the dimensionless eccentricity, �  = 0.10, at various angles �  and power 

law indexes n.
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Figure 71 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.90 and the dimensionless eccentricity, �  = 0.15, at various angles �  and power 

law indexes n.
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Figure 72 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.90 and the dimensionless eccentricity, �  = 0.20, at various angles �  and power 

law indexes n.
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Figure 73 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.90 and the dimensionless eccentricity, �  = 0.25, at various angles �  and power 

law indexes n.
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Figure 74 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.90 and the dimensionless eccentricity, �  = 0.30, at various angles �  and power 

law indexes n.
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Figure 75 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.95 and the dimensionless eccentricity, �  = 0.05, at various angles �  and power 

law indexes n.
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Figure 76 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.95 and the dimensionless eccentricity, �  = 0.10, at various angles �  and power 

law indexes n.
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Figure 77 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.95 and the dimensionless eccentricity, �  = 0.15, at various angles �  and power 

law indexes n.
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Figure 78 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.95 and the dimensionless eccentricity, �  = 0.20, at various angles �  and power 

law indexes n.
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Figure 79 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.95 and the dimensionless eccentricity, �  = 0.25, at various angles �  and power 

law indexes n.
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Figure 80 Dimensionless temperature profiles ��  versus the dimensionless gap �  using 

RRatio = 0.95 and the dimensionless eccentricity, �  = 0.30, at various angles �  and power 

law indexes n.
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Figures 57 to 80 show that the dimensionless temperature (�*), in general, increases 

with the angular distance from the smallest gap, �, and the power law exponent, n, but 

decreases with the dimensionless radius ratio, RRatio.  The temperature is risen up at the 

core since heat is accumulated at the inner wall according to the adiabatic heat flux.  

Moreover, the more eccentric the die (the higher the �), the greater the temperature 

difference between the fluid at the smallest gap (� = 0�) and the biggest gap (� = 180�).

This is because of the convective flow in the eccentric die.  In other words, the 

dimensionless temperature is proportional to the velocity in the die. 

The dimensionless temperatures also decrease by two decades [from O(10-4) to O(10-7)]

when the radius ratio (�) increases from 0.80 to 0.95.  When the radius ratio increases, 

the inner and outer radii approach one another, and so the gap is very small all around the 

die.  In this case, the convective effects in the die diminish, which is why the fluid 

temperature decreases as the radius ratio increases. 

4.3Design�Example�

4.3.1 Velocity Profile Determination in Isothermal Walls 

A HDPE plastics pipe is extruded in an eccentric die of the outer cylinder diameter R2 = 

0.1 meters and the gap, d = 0.01 meters with small dimensionless eccentricity of � = 0.2 

to compensate the gravity sag.  The HDPE plastics is considered as a power law polymer 

with the power law index, n = 0.56, and the consistency index, m = 6190 Pa-sn [22, 23].

The polymer has the thermal conductivity, k = 0.045 W/(m-K). The inner and outer wall 

temperatures, T1 and T2, are uniform at 180�C (453.15 K).  The pressure drop per unit 
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length within the extruded die is 5 MPa/m.  Determine the temperature profiles of the 

polymer melt at various angle, �.

Solution: To solve for the dimensional temperature appearing in Eq. (3-8), we need to 

rearrange Eq. (3-20) to get 

0 2 ,b Geo IndT T	 	


From Eqs. (2-34), (3-9), (3-11), and (3-15), at � = 0, for example, 
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Then the peak temperature at � = 0 occurring when � = 0can be calculated by 

letting TGeo,Ind = 1, 

� �� �� �7 8
0 2 , 5.059 10 4.644 10 1 2.349b Geo IndT T K K	 	 

 
 � � 
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1 2.349 453.15 455.499bT T T K K K
 � 
 � 


Other peak temperatures at various angles, �, are constructed in Table 3. 

Table 3 lists the peak temperatures of the HDPE melt flowing in the eccentric die at 

various angles, �. 

� 	0 (K) 	2 Tb � = 0 (K) T� = 0 (K) 

0 5.059 � 107 4.644 � 10-8 2.349 455.499 

30 5.133 � 107 5.358 � 10-8 2.750 455.900 

45 5.219 � 107 6.313 � 10-8 3.295 456.445 

60 5.328 � 107 7.747 � 10-8 4.128 457.278 

90 5.581 � 107 1.225 � 10-7 6.835 459.985 

120 5.820 � 107 1.853 � 10-7 10.785 463.935 

135 5.915 � 107 2.176 � 10-7 12.871 466.021 

150 5.987 � 107 2.452 � 10-7 14.680 467.830 

180 6.047 � 107 2.705 � 10-7 16.355 469.505 
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Next, use the modified dimensionless temperature profiles with power-law index (n) at 

0.56 from Figure 81, i.e. interpolated values of the modified dimensionless temperature 

profiles from Table 2, and then multiply them by the temperature amplitude T� = 0 in

Table 3 to get the temperature rises at various �.  Then, superpose the wall temperature at 

453.15 K (180 ˚C) on the temperature rises to get the temperature profile for each �.  The 

calculated results are listed in Appendix B and shown in Figure 81.
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Figure 81 Temperature profiles of a HDPE power law polymer flow in an eccentric 

cylinders with wall temperature = 453.15 K.
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4.3.2 Flow Rate Suggestion in Adiabatic Inner Wall 

A high density polyethylene (HDPE) plastic pipe is extruded from an eccentric annular 

die of outer radius 2R  = 0.100 m and inner radius 1R  = 0.08 m with small dimensionless 

eccentricity of � = 0.2 to compensate for sag in the post-die cooling chamber.  The HDPE 

melt obeys the power law with n = 0.56, the consistency index, m = 6190 Pa-sn [22, 23] 

and its density, 3/850 mkg
� .  The polymer has thermal conductivity, k = 0.257 W/(m-

K).  The bulk temperature of the fluid flowing into the die 1bT is 190�C (463.15 K).  If the 

inner die wall is uncontrolled and left adiabatic at some period of time, determine an 

appropriate flow rate in kg/hr corresponding to the outer wall temperatures, 2T , for this 

process.

Solution: To solve for the appropriate dimensional flow rate appearing in Eq. (2-48), 

we need to determine from the Nusselt Number at the outer wall from Eq. (3-33).  For 

this, we first solve for; 
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We then can solve for the confocal length, a, in Eq. (2-42); 
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From Figure 6, we then read � � 44.32.0,56.0 "# .  The dimensionless volumetric flow 

rate can be obtained from Eq. (2-46); 

� �
� � � � � � 4

1
2

10358.544.3
10.02

02.0
10.0
09.0

156.02
56.04 


�

� �
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
�



n

p m
m

m
mQ

From Eqs. (2-48), (3-24) and (3-27), we can plot the Nusselt Number at the outer wall 

( 2Nu ) versus the flow rate ( pQ ) at various 2T�  as shown in Figure 82.  The numerical 

values of the Nusselt Number and the flow rate are shown in Table 4.  From Table 4, we 

can see that, to keep the melt at an uniform temperature, if the temperature difference 

CT �22 
�  [corresponding to the outer wall temperatures, 2T , at 188�C (443.15 K)], for 

example, the flow rate beyond 3.142 kg/hr gives the Nusselt Number greater than 1 in 

which the convective heat transfer of the melt is faster than the conduction one.  Then, in 

this case, any processing flow rate beyond 3.142 kg/hr causes heat generation in the 

materials no matter how well the cooling system of the die is.  The appropriate flow rate 

corresponding to the outer wall temperatures, 2T , for this process is shown in Table 2.

Through higher temperature difference 2T�  improves the flow rate Q , but uncertain 

process control may occur.  Thus increasing flow rate Q  at minimum 2T�  are preferred.
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This is why the pipe extrusion engineer normally works at the highest flow rate at the 

lowest controllable 2T�  and leaves the cooling system at the downstream cool down the 

heat.

Figure 82 Nusselt Number at the outer wall 2Nu  versus the flow rate pQ  at various 2T�

of the HDPE melt [ 56.0
n , nsPam �
 6190 , and )/(257.0 KmWk 

 ] flowing in the 

eccentric die with 8.0
RatioR , 2.0
� . The bulk temperature of the upcoming flow 1bT is

190�C (463.15 K).
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Table 4 lists the numerical values of the Nusselt Number at the outer wall 2Nu  and the 
flow rate pQ  at various 2T�  of the HDPE melt flowing in the eccentric die plotted in 
Figure 82.

2Nu� �hrkgQ /
CT �22 
� CT �42 
� CT �62 
� CT �82 
� CT �102 
�

0.063 2.256 10-3 1.128 10-3 7.519 10-4 5.639 10-4 4.511 10-4

0.218 0.016 7.777 10-3 5.185 10-3 3.889 10-3 3.111 10-3

0.450 0.048 0.024 0.016 0.012 9.626 10-3

0.752 0.107 0.054 0.036 0.027 0.021 
1.120 0.200 0.100 0.067 0.050 0.040 
1.551 0.332 0.166 0.111 0.083 0.066 
2.042 0.510 0.255 0.170 0.127 0.102 
2.592 0.740 0.370 0.247 0.185 0.148 
3.199 1.027 0.513 0.342 0.257 0.205 
3.861 1.377 0.689 0.459 0.344 0.275 
4.577 1.796 0.898 0.599 0.449 0.359 
5.347 2.289 1.144 0.763 0.572 0.458 
6.168 2.860 1.430 0.953 0.715 0.572 
7.041 3.516 1.758 1.172 0.879 0.703 
7.964 4.261 2.131 1.420 1.065 0.852 
8.937 5.101 2.550 1.700 1.275 1.020 
9.959 6.039 3.019 2.013 1.510 1.208 
11.029 7.081 3.541 2.360 1.770 1.416 
12.147 8.232 4.116 2.744 2.058 1.646 
13.312 9.497 4.748 3.166 2.374 1.899 
14.524 10.879 5.440 3.626 2.720 2.176 
15.782 12.385 6.192 4.128 3.096 2.477 
17.086 14.017 7.009 4.672 3.504 2.803 
18.435 15.782 7.891 5.261 3.945 3.156 
19.829 17.682 8.841 5.894 4.421 3.536 
21.268 19.724 9.862 6.575 4.931 3.945 
22.751 21.910 10.955 7.303 5.478 4.382 
24.277 24.247 12.123 8.082 6.062 4.849 
25.847 26.736 13.368 8.912 6.684 5.347 
27.460 29.385 14.692 9.795 7.346 5.877 
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Table 5 shows the suggested flow rate sQ  corresponding to the outer wall temperature 2T

at 12 
Nu  from the Table 4. 

� �CT �
2 � �hrkgQs /

188 3.142 

186 4.896 

184 6.355 

182 7.641 

180 8.821 
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Chapter�5Conclusion�

5.1�� Discussion�

For bipolar cylindrical coordinate, the energy equation coupled with the velocity 

profiles of the power law constitutive model is used to determine the temperature profiles 

in the pipe extrusion die.  The dimensionless temperature profiles of a steady, laminar, 

incompressible and fully developed flow of a power law polymer can be found by the 

analytic method with assumptions such that there are no velocities in the � and $

directions, no heat convection terms, and uniform wall temperatures.  The solution 

reveals that the dimensionless temperature distribution is a function of the dimensionless 

radius ratio, RRatio, the dimensionless eccentricity, �, the angular distance from the 

smallest gap, �, the power law exponent, n, and a strong function of, the dimensionless 

gap, �.

For isothermal walls, the temperature profile is flat at the middle of the gap and 

suddenly drops to reach the wall temperature near the wall region.  The temperature rises 

at the gap center due to heat dissipation of the non-Newtonian effects.  This temperature 

rise is higher if the gap, or in other word the angular distance from the smallest gap, �, is 

increased.  This is because the bigger gap allows the polymer to easily flow and thus get 

more temperature dissipation from the molecular frictions.  Moreover, the temperature 

rise also increases with the power law exponent, n, to reach the Newtonian temperature 

profile at n = 1.  Thus, the less the power law exponent, n, the temperature profile shows 

plateau at the gap center, or in other word, it shows non-Newtonian effects when the 
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power law exponent, n, is less.  The modified dimensionless temperature TGeo,Ind is 

independent to the die geometry, so it can easily be used to approximate the temperature 

profiles of the polymer melt in the gap of the eccentric cylinders as illustrated in the 

designed example in section 4.3. 

For adiabatic inner wall, the solution reveals that the dimensionless temperature 

distribution is a function of the dimensionless radius ratio, �, the dimensionless 

eccentricity, �, the angular distance from the smallest gap, �, the power law exponent, n,

and is a strong function of, the dimensionless gap, �.  The temperature rises in the gap 

due to viscous dissipation.  This temperature rise increases if the gap is increased.  This is 

because the radial path length for thermal conduction to the wall is lengthened.  

Moreover, the temperature rise also increases with the power law exponent, n, to reach 

the Newtonian temperature profile at n = 1. 

5.2�� Recommendation��

The unity dimensionless modified Brinkman number (BrMo) is difficult to be 

reached, thus in most case, the convection terms in the left side of the energy equation 

may not be zero.  This leads to an unsolved solution in this field.  In short, an 

undeveloped temperature profile must be studied and experimental data or simulation 

technique of a polymer flow in a long annular pipe is necessary to validate the solution. 
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Appendix�A�

The transformation of $ and � in Figure 3 can be shown below. From the relation, 

�cos12 eRRH 


  (A-1) 

or rewritten in term of the gap d,
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Appendix�B

Table B-1 lists the calculated temperature profiles of a HDPE power law polymer flow in 

an eccentric cylinders with wall temperature = 453.15 K.

� 
TGeo,Ind 

@ n= 0.56
T�=0 T�=30 T�=45 T�=60 T�=90 T�=120 T�=135 T�=150 T�=180

0.00 1.00000 455.50 455.90 456.44 457.28 459.98 463.93 466.02 467.83 469.50

0.05 1.00000 455.50 455.90 456.44 457.28 459.98 463.93 466.02 467.83 469.50

0.10 0.99998 455.50 455.90 456.44 457.28 459.98 463.93 466.02 467.83 469.50

0.15 0.99989 455.50 455.90 456.44 457.28 459.98 463.93 466.02 467.83 469.50

0.20 0.99955 455.50 455.90 456.44 457.28 459.98 463.93 466.02 467.82 469.50

0.25 0.99869 455.50 455.90 456.44 457.27 459.98 463.92 466.00 467.81 469.48

0.30 0.99685 455.49 455.89 456.43 457.26 459.96 463.90 465.98 467.78 469.45

0.35 0.99342 455.48 455.88 456.42 457.25 459.94 463.86 465.94 467.73 469.40

0.40 0.98754 455.47 455.87 456.40 457.23 459.90 463.80 465.86 467.65 469.30

0.45 0.97810 455.45 455.84 456.37 457.19 459.83 463.70 465.74 467.51 469.15

0.50 0.96375 455.41 455.80 456.33 457.13 459.74 463.54 465.55 467.30 468.91

0.55 0.94279 455.36 455.74 456.26 457.04 459.59 463.32 465.29 466.99 468.57

0.60 0.91324 455.30 455.66 456.16 456.92 459.39 463.00 464.90 466.56 468.09

0.65 0.87275 455.20 455.55 456.03 456.75 459.11 462.56 464.38 465.96 467.42

0.70 0.81858 455.07 455.40 455.85 456.53 458.74 461.98 463.69 465.17 466.54

0.75 0.74761 454.91 455.21 455.61 456.24 458.26 461.21 462.77 464.12 465.38

0.80 0.65627 454.69 454.96 455.31 455.86 457.64 460.23 461.60 462.78 463.88

0.85 0.54057 454.42 454.64 454.93 455.38 456.84 458.98 460.11 461.09 461.99

0.90 0.39603 454.08 454.24 454.45 454.78 455.86 457.42 458.25 458.96 459.63

0.95 0.21767 453.66 453.75 453.87 454.05 454.64 455.50 455.95 456.35 456.71

1.00 0.00000 453.15 453.15 453.15 453.15 453.15 453.15 453.15 453.15 453.15
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Appendix�C
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Substitute Eq. (C-2) into Eq. (3-7) to get; 
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One can integrate Eq. (C-3) twice to get; 
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Substitute Eq. (C-6) into Eq. (3-7) to get; 
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One can integrate Eq. (C-7) twice to get; 
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where c1 and c2 are the integration constants.  Finally, Eqs. (C-4) and (C-8) can be 

combined to give Eq. (3-13), while Eqs. (C-3) and (C-7) are combined to give Eq. (3-10). 
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Appendix�D

Kolitawong, C., N. Kananai, A. J. Giacomin, and U. Nontakaew, Viscous dissipation of a 

power law fluid in axial flow between isothermal eccentric cylinders, J. Non-Newtonian 

Fluid Mech., 166 (2011) 133-144. 
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