

รายงานวิจัยฉบับสมบูรณ์

โครงการ การเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเฟร์โรอิเล็กทริก

โดย

ดร. วรรณวิลัย ไชยสาร

รายงานวิจัยฉบับสมบูรณ์

โครงการ การเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเฟร์โรอิเล็กทริก

ดร. วรรณวิลัย ไชยสาร มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

งานวิจัยนี้สำเร็จได้ด้วยดีเนื่องจากการสนับสนุนทุนวิจัยจากสำนักงานกองทุนสนับสนุนการ วิจัย (สกว.) และสำนักงานคณะกรรมการอุดมศึกษา (สกอ.) ขอขอบคุณภาควิชาฟิสิกส์และวัสดุ ศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่อำนวยความสะดวกในการใช้เครื่องมือและ สถานที่ ขอขอบคุณ ศาสตราจารย์เกียรติคุณ ดร.ทวี ตันฆศิริ ห้องปฏิบัติการอิเล็กโทรเซรามิก ภาควิชาฟิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ผศ.ดร. นราธิป วิทยากร หน่วยวิจัยวัสดุศาสตร์ ภาควิชาเคมี คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง และคุณรังสรรค์ เมืองเหลือ หน่วยวิจัยอิเล็กทรอนิกส์ คณะวิศวกรรมศาสตร์ สถาบัน เทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ที่สนับสนุนเครื่องมือวิเคราะห์ต่างๆ ผู้วิจัย ขอขอบคุณรองศาสตราจารย์ ดร. สุพล อนันตา และผู้ช่วยศาสตราจารย์ ดร. รัตติกร ยิ้มนิรัญ เป็น อย่างยิ่งที่รับเป็นที่ปรึกษาโครงงานวิจัยนี้และให้คำแนะนำที่ดีตลอดมา ขอบคุณนักศึกษา น้องๆใน ห้องปฏิบัติการ และเจ้าหน้าที่ปฏิบัติการทุกท่านที่ช่วยให้งานวิจัยนี้สร็จอย่างสมบูรณ์ สุดท้าย ขอขอบคุณคุณพ่อ คุณแม่ สามี และลูกน้อยที่กำลังอยู่ในครรภ์ที่เป็นกำลังใจให้งานวิจัยนี้สำเร็จลุล่วง ไปได้ด้วยดี

ดร. วรรณวิลัย ใชยสาร หัวหน้าโครงการ

สารบัญ

		หน้า			
กิด	ทติกรรมประกาศ	ก			
บา	ทคัดย่อภาษาไทย	1			
บทคัดย่อภาษาอังกฤษ (Absratct)					
1.	สรุปโครงการ (Executive Summary)	3			
2.	วัตถุประสงค์ของโครงการ	7			
3.	วิธีการทดลอง	8			
	3.1 ระเบียบวิธีวิจัย	8			
	3.2 สารเคมีและอุปกรณ์ที่ใช้	11			
	3.3 กระบวนการเตรียมผงและเซรามิกแบเรียมไทเทเนต (BT)	12			
	3.4 กระบวนการเตรียมผงและเซรามิกเลดเซอร์โคเนตไทเทเนต (PZT)	15			
	3.5 การตรวจสอบเฟสด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD)	15			
	3.6 การตรวจสอบสมบัติทางกายภาพของเซรามิก	17			
	3.7 การตรวจสอบโครงสร้างจุลภาคของเซรามิก	17			
	3.8 การตรวจสอบสมบัติไดอิเล็กทริก	18			
	3.9 การตรวจสอบสมบัติฮีสเทอรีซีส	19			
4.	ผลการทดลอง	20			
	4.1 ผลการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกแบเรียมไทเทเนต	20			
	4.2 ผลการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเลดเซอร์โคเนตไทเทเนต	24			
	4.3 ผลการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเลดเซอร์โคเนตไทเทเนต-	27			
	แบเรียมไทเทเนต				
5.	สรุปและวิจารณ์ผลการทดลอง	31			
6.	ข้อเสนอแนะสำหรับงานวิจัยในอนาคต	32			
7.	เอกสารอ้างอิง	33			

	หน้า
8. ภาคผนวก	34
8.1 ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ	34
8.2 การนำผลงานวิจัยไปใช้ประโยชน์	35
8.3 ผลงานอื่นๆ	36

สารบัญรูปภาพ

		หน้า
รูปที่ 3	.1 แสดงแผนภาพการเผาซินเตอร์แบบสองขั้นตอน (two-stage sintering)	9
รูปที่ 3	.2 เครื่องบดย่อยผสมสารแบบ Ball-milling	13
รูปที่ 3	3 เตาไฟฟ้าสำหรับเผาสาร	13
รูปที่ 3	. 4 แผนผังแสดงขั้นตอนการเตรียมผง BT	14
รูปที่ 3	.5 การจัดเรียงเม็ดอัด BT ในระหว่างการเผาซินเตอร์	14
รูปที่ 3	. 6 เครื่อง X-ray diffractometer รุ่น JDX-8030	16
รูปที่ 3.	7 หลักการตรวจสอบเฟสด้วยเทคนิค XRD และตัวอย่างรูปแบบการเลี้ยวเบนของ	16
	รังสีเอ็กซ์	
รูปที่ 3	. 8 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) รุ่น JSM 840A	17
รูปที่ 3	. 9 เครื่อง LCR meter รุ่น HP 4276 A	18
	.10 แสดงลักษณะของ P-E hysteresis loop	19
รูปที่ 4	.1 แสดงแผนภาพการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ของเซรามิก BT ที่ผ่านการ	20
	ซินเตอร์แบบธรรมดาและแบบสองขั้นตอน	
รูปที่ 4	2 กราฟแสดงความสัมพันธ์ระหว่าง (ก) ความหนาแน่นสัมพัทธ์ และ (ข) ขนาด	21
	เกรนกับอุณหภูมิซินเตอร์ของเซรามิก BT ที่ผ่านการซินเตอร์แบบธรรมดา	
_	และแบบสองขั้นตอน	
รูปที่ 4	3 แสดงลักษณะโครงสร้างจุลภาคของเซรามิก BT ที่ผ่านการซินเตอร์ (ก) แบบ	22
	ธรรมดาและ (ข) แบบสองขั้นตอน	
รูปที่ 4	4 กราฟแสดงค่าคงที่ทางไดอิเล็กทริก (dielectric constant) และค่าการสูญเสีย	23
	ทางไดอิเล็กทริก (dielectric loss) ที่ความถี่ 10 kHz ของเซรามิก BT ที่ผ่าน	
	การซินเตอร์แบบธรรมดาและแบบสองขั้นตอน	
_	.5 แสดงแผนภาพการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ของผง PZT	25
รูปที่ 4	6 กราฟแสดงความสัมพันธ์ระหว่าง (ก) ความหนาแน่นสัมพัทธ์ และ (ข) น้ำหนัก	
	ที่สูญเสียกับอุณหภูมิซินเตอร์ของเซรามิก PZT ที่ผ่านการซินเตอร์แบบธรรมดา	1
	และแบบสองขั้นตอน	
รูปที่ 4	.7 แสดงลักษณะโครงสร้างจุลภาคของเซรามิก PZT ที่ผ่านการซินเตอร์ (ก) แบบ	27
	ธรรมดาและ (ข) แบบสองขั้นตอน	
รูปที่ 4	.8 แสดงแผนภาพการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ของเซรามิก 0.8PZT-0.2BT	28
	ที่ผ่านการซินเตอร์แบบธรรมดาและแบบสองขั้นตอน	

หน้า 29

รูปที่ 4.9 แสดงลักษณะโครงสร้างจุลภาคของเซรามิก 0.8PZT-0.2BT ที่ผ่านการ
ซินเตอร์ (ก) แบบธรรมดาที่อุณหภูมิ 1300 องศาเซลเซียส และ (ข) แบบ
สองขั้นตอนที่อุณหภูมิ 1000/1200 องศาเซลเซียส

บทคัดย่อ

รหัสโครงการ :

MRG5080306

ชื่อโครงการ :

การเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเฟร์โรอิเล็กทริก

ชื่อนักวิจัย :

ดร. วรรณวิลัย (ไชยสาร) วิทยากร

ภาควิชาฟิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์

มหาวิทยาลัยเชียงใหม่ อำเภอเมือง จังหวัดเชียงใหม่

E-mail Address:

wanwilai_chaisan@yahoo.com

ระยะเวลาโครงการ: 2 ปี (2 กรกฎาคม 2550 – 1 กรกฎาคม 2552)

บทคัดย่อ :

ในงานวิจัยนี้ได้ทำการศึกษาศักยภาพของเทคนิคการเผาซินเตอร์แบบสองขั้นตอนซึ่งเป็น เทคนิคการเตรียมเซรามิกเฟร์โรอิเล็กทริกที่มีค่าใช้จ่ายน้อยและทำได้ง่าย เพื่อให้ได้รับเซรามิกที่มี ความหนาแน่นสูง เกิดเฟสที่มีความบริสุทธิ์สูง และมีเกรนขนาดเล็ก โดยได้ทำการเลือกเตรียมเซรา มิกเฟร์โรอิเล็กทริกที่มีองค์ประกอบที่หลากหลายพร้อมทั้งศึกษาผลของเงื่อนไขในการเผาซินเตอร์ที่ เหมาะสมที่มีต่อเฟสที่เกิดขึ้น ความหนาแน่น ลักษณะโครงสร้างจุลภาค และสมบัติทางไฟฟ้าของ เซรามิกนั้นๆ ด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) วิธีอาร์คีมีดีส กล้องจุลทรรศน์ และชุดวัดใดอิเล็กทริกและฮีสเทอรีซีส ตามลำดับ ซึ่งจาก อิเล็กตรอนแบบส่องกราด (SEM) ผลการวิจัยพบว่าภายใต้เงื่อนไขการเผาซินเตอร์แบบสองขั้นตอนที่เหมาะสมสำหรับเซรามิกเฟร์โรอิ เล็กทริกแต่ละชนิด สามารถเตรียมเซรามิกดังกล่าวที่มีความหนาแน่นสูง เกิดเฟสเดี่ยวแบบเพอ รอฟสไกด์ประกอบด้วยเกรนขนาดเล็กซึ่งส่งผลให้สามารถแสดงสมบัติทางไฟฟ้าที่ดีออกมาได้สำเร็จ

คำหลัก : การเผาซินเตอร์; โครงสร้างจุลภาค; สมบัติทางไฟฟ้า; เซรามิกเฟร์โรอิเล็กทริก

Abstract

Project Code: MRG5080306

Project Title: Two-Stage Sintering of Ferroelectric Ceramics

Investigator: Dr. Wanwilai (Chaisan) Vittayakorn

Department of Physics and Materials Science, Faculty of Science

Chiang Mai University Maung Chiangmai

E-mail Address : wanwilai_chaisan@yahoo.com

Project Period: 2 years (2 July 2007 – 1 July 2009)

Abstract:

The potential of a two-stage sintering technique as a low-cost and simple ceramic fabrication to obtain highly dense and pure ferroelectric ceramics with small grain size was demonstrated in this study. Effects of designed sintering conditions on phase formation, densification, microstructure, and electrical properties of the various ferroelectric ceramics were examined via X-ray diffraction (XRD), Archimedes method, scanning electron microscopy (SEM), dielectric and hysteresis measurements, respectively. It has been found that, under suitable two-stage sintering conditions, the dense perovskite ferroelectric ceramics with fine grain can be successfully achieved with good electrical properties.

Keywords: sintering; microstructure; electrical property; ferroelectric ceramic.

1. สรุปโครงการ (Executive Summary)

การเผาซินเตอร์ (sintering) หรือ การเผาผนึก หรือ การอบผนึก หมายถึง กระบวนทาง ความร้อน (การเผา) ที่ใช้สำหรับทำให้กลุ่มอนุภาคผงที่ผ่านการอัดขึ้นรูปมาแล้วเกิดการแน่นตัวจน กลายสภาพเป็นเซรามิกที่มีความแข็งแกร่งและคงรูปอยู่ได้ ซึ่งโดยทั่วไปกระบวนการที่เกิดขึ้นใน ขณะที่มีการให้ความร้อนแก่ชิ้นงานนั้น มักจะถูกควบคุมโดยสมบัติเฉพาะของเนื้องาน บรรยากาศใน การเผา ความเค้นที่เกิดขึ้น อุณหภูมิที่ใช้ในการเผา ระยะเวลาในการเผา รวมถึงอัตราขึ้น/ลงของ อุณหภูมิที่ใช้ด้วย นอกจากนี้ยังมีลักษณะเฉพาะที่สำคัญของชิ้นงานที่มีอิทธิพลต่อกระบวนการเผา ซินเตอร์ ก็คือ องค์ประกอบและความหนาแน่นของอนุภาคผงที่ผ่านการขึ้นรูปมา ซึ่งการเลือกใช้เนื้อ งานที่มีความหนาแน่นสูงจะช่วยให้ได้ผลิตภัณฑ์ที่มีความหนาแน่นสูงและมีความแข็งแรงเชิงกลสูง ตามไปด้วย นอกจากลักษณะเฉพาะดังที่กล่าวไปแล้วก็ยังรวมไปถึงปริมาณ ขนาด รูปร่าง และการ แจกแจงของรูพรุนและของอนุภาคผงในเนื้องาน แนวการจัดวางตัวและการผสมเข้ากันของแต่ละ องค์ประกอบอีกด้วย

สำหรับการศึกษากระบวนการเผาชินเตอร์นั้นจัดได้ว่ามีบทบาทสำคัญอย่างมากต่อการ พัฒนาความรู้ความเข้าใจในกระบวนการประดิษฐ์เซรามิกในยุคปัจจุบัน ดังตัวอย่างเช่น การศึกษา เซรามิกอะลูมินาที่เจือด้วยแมกนีเซียมแล้วทำการเผาชินเตอร์จนมีความแน่นตัวอย่างสมบูรณ์ โดย ไม่ต้องอาศัยการใช้ปฏิกิริยาจากเฟสที่เป็นของเหลวหรือการใช้ความดันเข้ามาช่วยแต่อย่างใด ซึ่ง วัสดุชนิดนี้ได้ถูกนำไปใช้เป็นหลอดไฟฟ้าแบบไอโซเดียม (sodium-vapor lamps) เพื่อให้แสงสว่าง ตามท้องถนนในเวลากลางคืนมานานแล้วเนื่องจากเซรามิก ชนิดนี้มีทั้งความโปร่งใสและความ ด้านทานต่อการกัดกร่อนที่อุณหภูมิสูงได้ดี นอกจากนี้ยังมีเซรามิกอีกกลุ่มหนึ่งที่มีความสำคัญอย่าง มากต่อการพัฒนาวิทยาศาตร์และเทคโนโลยีในยุคปัจจุบันอย่างมาก คือ เซรามิกเฟร์โรอิเล็กทริก (ferroelectric ceramic) เนื่องจากเป็นเซรามิกที่สามารถแสดงสมบัติทางไฟฟ้าที่สำคัญ ๆ ได้ดี ซึ่ง เซรามิกเฟร์โรอิเล็กทริกนี้มักนำไปประยุกต์ใช้งานในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ ไม่ว่าจะเป็นตัว เก็บประจุ แอกทัวเอเตอร์ เซนเซอร์ ทรานสดิวเซอร์ รวมทั้งอุปกรณ์ทางการแพทย์ เช่น หัว ตรวจอัลทราชาวด์ด้วย

สารเฟร์โรอิเล็กทริกนั้นก็มีอยู่มากมายหลายชนิดไม่ว่าจะเป็นกลุ่มที่มีตะกั่วเป็นองค์ประกอบ หลัก (lead-based) เช่น Pb(Zr_{1-x}Ti_x)O₃ PbTiO₃ Pb(Mg_{1/3}Nb_{2/3})O₃ และ Pb(La_{0.09}Zr_{0.65}Ti_{0.35})O₃ หรือกลุ่มที่ไม่มีตะกั่วเป็นองค์ประกอบหลัก (non-lead based) เช่น BaTiO₃ และ (Bi_{0.5}Ni_{0.5})TiO₃ ซึ่ง ดังที่กล่าวไปแล้วข้างต้นว่าสารกลุ่มนี้นั้นมักถูกนำไปประยุกต์ใช้งานในอุปกรณ์อิเล็กทรอนิกส์อย่าง กว้างขวางและการประยุกต์ใช้งานเหล่านี้นั้นล้วนแล้วแต่ต้องการสารที่สามารถแสดงสมบัติทางไฟฟ้า ที่ยอดเยี่ยมทั้งสิ้น และดังที่กล่าวไปแล้วข้างต้นอีกเช่นกันว่า การที่จะได้เซรามิกที่มีคุณภาพดี มี ประสิทธิภาพสูง สามารถแสดงสมบัติออกมาได้อย่างเต็มที่นั้นตัวแปรในระหว่างกระบวนการเตรียม ก็เป็นสิ่งสำคัญ ซึ่ง "การเผาซินเตอร์" ก็เป็นตัวแปรหนึ่งที่มีความสำคัญอย่างยิ่งต่อคุณภาพของ

เซรามิกที่ได้ซึ่งก็จะส่งผลต่อประสิทธิภาพของอุปกรณ์อิเล็กทรอนิกส์ต่อไป ดังนั้น จึงเป็นโอกาสดีที่ จะทำการศึกษาผลของเงื่อนไขในการเผาซินเตอร์ที่มีต่อเฟสที่เกิดขึ้น สมบัติทางกายภาพ และสมบัติ ทางไฟฟ้าของเซรามิกเฟร์โรอิเล็กทริกอย่างเป็นระบบดังเช่นตัวอย่างงานวิจัยของนักวิจัยต่างชาติที่ ผ่านมา

การศึกษาวิจัยเกี่ยวกับการเผาซินเตอร์ของเซรามิกเฟร์โรอิเล็กทริกนั้นมีการศึกษากันอย่าง แพร่หลายมาเป็นเวลานานแล้ว ทั้งนี้ยังมีความพยายามคิดค้นเทคนิคใหม่ ๆในการเผาซินเตอร์ รวมทั้งพัฒนาเทคนิคเดิมๆ ให้มีประสิทธิภาพมากยิ่งขึ้น ไม่ว่าจะเป็นการเผาซินเตอร์ด้วยเลเซอร์ (laser sintering) การเผาซินเตอร์ด้วยรังสีไมโครเวฟ (microwave sintering) หรือ การเผาซินเตอร์ ด้วยสปาร์คพลาสมา (spark plasma sintering) ซึ่งเทคนิคการเผาซินเตอร์เหล่านี้สามารถเตรียม เซรามิกที่มีความหนาแน่นสูง ใช้เวลาในการเตรียมน้อย มีการสูญเสียองค์ประกอบในระหว่าง กระบวนการเตรียมต่ำ ทำให้เกิดเซรามิกที่มีองค์ประกอบแน่นอนและมีความบริสุทธิ์สูง แต่อย่างไรก็ ตามเทคนิคเหล่านี้ก็มีค่าใช้จ่ายที่สูงมาก ทั้งยังมีวิธีการที่ซับซ้อนและอาจก่อให้เกิดอันตรายแก่ผู้วิจัย ได้เนื่องจากล้วนเกี่ยวข้องกับรังสีที่มีพลังงานสูงทั้งนั้น จึงทำให้มีงานวิจัยอยู่จำนวนหนึ่งที่ยังคง ์ ศึกษาการเผาซินเตอร์แบบธรรมดา (normal sintering) หรือแบบดั้งเดิม (conventional sintering) ้ซึ่งถึงแม้จะใช้เวลาในการเตรียมมากกว่าเทคนิคที่กล่าวมาข้างต้น แต่ก็มีค่าใช้จ่ายที่ต่ำกว่า สามารถ ทำได้ง่ายและมีความปลอดภัยสูงเนื่องจากมีเพียงการให้ความร้อนจากเตาเผาที่ปิดสนิทเท่านั้น ไม่ได้มีรังสีใดๆ เข้ามาเกี่ยวข้อง อย่างไรก็ตาม ข้อเสียของการเผาซินเตอร์แบบธรรมดา คือ เซรา มิกที่ได้มีความหนาแน่นค่อนข้างต่ำและเกิดรูพรุนมากภายในเนื้อสาร และเนื่องจากเป็นการเผาที่ อุณหภูมิสูงเป็นเวลานานส่งผลให้องค์ประกอบบางตัวที่มีจุดหลอมเหลวต่ำระเหยออกไปได้ใน ระหว่างกระบวนการเตรียม ทำให้สัดส่วนองค์ประกอบของเซรามิกที่ได้เกิดการเบี่ยงเบนไปจาก ความเป็นจริง ดังนั้น จึงได้มีความพยายามที่จะพัฒนาเทคนิคการเผาซินเตอร์แบบธรรมดานี้ด้วยวิธี ต่างๆ ให้มีประสิทธิภาพสูงขึ้น สามารถแก้ไขปัญหาเหล่านี้ได้ เพื่อให้ได้เซรามิกที่มีคุณภาพสูง สามารถแสดงสมบัติต่างๆ ออกมาได้อย่างเต็มที่โดยเฉพาะสมบัติทางไฟฟ้าซึ่งขึ้นอยู่กับความ หนาแน่นและขนาดเกรนของเซรามิกเป็นอย่างมาก

สำหรับการเผาซินเตอร์เซรามิกเฟร์โรอิเล็กทริกนั้น เนื่องจากสารเฟร์โรอิเล็กทริกมีหลาย ประเภทตามองค์ประกอบที่แตกต่างกันไปจึงทำให้วิธีการเผาซินเตอร์และเงื่อนไขที่ใช้ในการเผาซิน เตอร์ที่เหมาะสมแตกต่างกันไปด้วย อย่างเช่น สารเฟร์โรอิเล็กทริกกลุ่มที่ไม่มีตะกั่วเป็นองค์ประกอบ หลัก (non-lead based) ซึ่งตัวที่มีความสำคัญมากที่สุดในกลุ่มนี้ ได้แก่ แบเรียมไทเทเนต (BaTiO3 หรือ BT) โดยในงานวิจัยที่ผ่านมาพบว่าสมบัติไดอิเล็กทริกของ BT นั้น ขึ้นกับค่าความหนาแน่นและ ขนาดเกรนของเซรามิกเป็นอย่างมาก ซึ่งหากความหนาแน่นทางทฤษฎีของเซรามิก BT ที่เตรียมได้ น้อยกว่า 60% จะส่งผลให้ไม่มีการตอบสนองทางไดอิเล็กทริกเท่าที่ควร จึงทำให้ค่าไดอิเล็กทริกที่ได้ ต่ำกว่าที่ควรจะเป็นมาก แต่หากเซรามิก BT มีความหนาแน่นมากกว่า 60% ขึ้นไปค่าคงที่ทางไดอิเล็กทริกที่อุณหภูมิห้องจะเพิ่มขึ้นตามค่าความหนาแน่นที่เพิ่มขึ้น ทั้งนี้ขนาดเกรนก็จะมีผลต่อ ค่าคงที่ทางไดอิเล็กทริกของเซรามิก BT ในช่วงความหนาแน่นนี้ด้วย สำหรับผลของขนาดเกรนต่อ

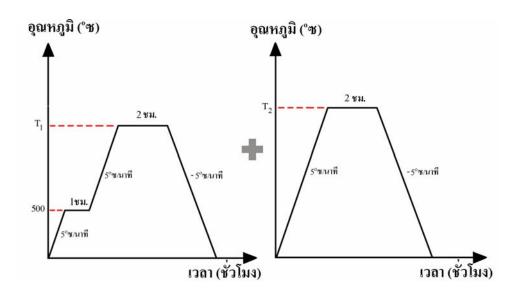
ค่าคงที่ทางไดอิเล็กทริกของเซรามิก BT นั้นมีการวิจัยกันมาเป็นเวลานานแล้วแต่ก็ยังไม่มีข้อสรุป อย่างชัดเจน ทราบเพียงแต่ว่าขนาดเกรนจะมีผลอย่างมากเมื่อเกรนมีขนาด ≥ 1 μm ขึ้นไปโดย ค่าคงที่ทางไดอิเล็กทริกจะเพิ่มขึ้นเมื่อเกรนมีขนาดเล็กลง และที่ขนาดเกรน ~1 μm ค่าคงที่ทางไดอิเล็กทริกจะเพิ่มขึ้นเมื่อเกรนมีขนาดเล็กลง และที่ขนาดเกรน ~1 μm ค่าคงที่ทางไดอิเล็กทริกจะไม่สามารถคาดเดาได้อย่างชัดเจนว่าเป็นไปในทิศทางใด ซึ่งใน ปัจจุบันนี้ก็มีนักวิจัยจำนวนมากที่ศึกษาหาคำอธิบายเกี่ยวกับผลของขนาดเกรนต่อค่าทางไดอิเล็กทริกของเซรามิก BT ในช่วงขนาดเกรนนี้ อย่างไรก็ตาม พบว่าโดยทั่วไปเซรามิก BT มักมีเกรนที่โต ผิดปกติ (abnormal grain growth) เกิดขึ้นเสมอและมีขนาดสูงสุดถึง 50 μm ซึ่งสาเหตุของการโต ผิดปกติของเกรนของ BT นั้นเกิดมาจากสัดส่วนองค์ประกอบเปลี่ยนแปลงไปในระหว่างกระบวนการ เตรียม ซึ่งหากเราสามารถควบคุมการโตของเกรนของเซรามิก BT นี้ได้ก็น่าจะเป็นผลดีต่อสมบัติ ใดอิเล็กทริกที่เกิดขึ้น จากที่กล่าวมาทั้งหมดจะเห็นได้ว่าความหนาแน่นและขนาดเกรนมีผลต่อ สมบัติไดอิเล็กทริกของเซรามิก BT อย่างมาก ซึ่งทั้งค่าสองค่านี้ก็เป็นผลโดยตรงจากการเผาชิน เตอร์ทั้งสิ้น ดังนั้นการพัฒนาปรับปรุงเทคนิควิธีในการเผาชินเตอร์ให้เหมาะสมกับเซรามิก BT นี้ก็ควรจะให้ได้เซรามิกที่มีความหนาแน่นสูงที่สุดและเกรนมีขนาดเล็ก

สำหรับสารเฟร์โรอิเล็กทริกกลุ่มที่มีตะกั่วเป็นองค์ประกอบหลัก (lead-based) นั้นตัวที่สำคัญ ที่สุดตัวหนึ่งก็คือ เลดเซอร์โคเนตไทเทเนต หรือ PZT ซึ่งปัญหาใหญ่ ๆ ที่พบในเซรามิกชนิดนี้ คือ มักเกิดการระเหยออกของ PbO ในระหว่างกระบวนการเผาซินเตอร์ ส่งผลให้สัดส่วนองค์ประกอบ เปลี่ยนแปลงไปซึ่งก็จะส่งผลต่อเนื่องมาถึงสมบัติต่าง ๆ ที่ได้รับไม่ว่าจะเป็นความหนาแน่นของเซรามิกหรือสมบัติไดอิเล็กทริกของเซรามิก PZT ให้มีค่าต่ำลงไปด้วย โดยการแก้ปัญหาที่ดีที่สุด ก็คือ การพยายามลดอุณหภูมิซินเตอร์ให้ต่ำลงเพื่อลดการระเหยออกของ PbO นั่นเอง ซึ่งในปัจจุบันก็มี นักวิจัยจำนวนหนึ่งที่พยายามแก้ไขปัญหานี้ โดยการลดอุณหภูมิซินเตอร์ลงสามารถทำได้หลายวิธี อาทิเช่น การเติมสารเจือพวก Bi หรือ Nb ลงไปในเซรามิก PZT แต่ก็ไม่ได้ช่วยลดอุณหภูมิซินเตอร์ลงมากเท่าที่ควร นอกจากนี้ยังทำให้ไม่ได้รับเซรามิก PZT ที่บริสุทธิ์อย่างแท้จริงด้วย หรืออีกวิธี หนึ่ง คือ การเตรียมผงละเอียดด้วยวิธีทางเคมีแล้วตามด้วยการเผาซินเตอร์แบบกดร้อน (hotpressing sintering) ซึ่งนอกจากจะเป็นวิธีที่ซับซ้อนแล้วยังมีค่าใช้จ่ายสูงอีกด้วย ดังนั้น วิธีการ ปรับปรุงการเผาซินเตอร์ที่เหมาะสมสำหรับเซรามิก PZT นั้นนอกจากจะช่วยลดอุณหภูมิซินเตอร์ลง แล้วก็ควรจะสามารถควบคุมสัดส่วนองค์ประกอบของ PZT ให้คงที่เพื่อให้ได้เซรามิกที่มีความ บริสุทธิ์และความหนาแน่นสูงส่งผลที่ดีต่อสมบัติทางไฟฟ้าที่จะได้รับต่อไป นอกจากนี้ควรจะเป็น เทคนิคที่ทำได้ง่าย ไม่ยุ่งยากซับซ้อน และมีค่าใช้จ่ายน้อยด้วย

จากความต้องการดังกล่าวของการเผาซินเตอร์เซรามิกเฟร์โรอิเล็กทริกทั้งสองประเภท (BT และ PZT) พบว่า "การเผาซินเตอร์แบบสองขั้นตอน" (two-stage sintering) นั้นเหมาะสมมากที่ จะนำไปประยุกต์ใช้ในการเตรียมเซรามิกทั้งสองประเภท เนื่องจากเทคนิคนี้สามารถช่วยลดอุณหภูมิ สำหรับการเผาซินเตอร์ลงไปได้ประมาณ 50-100 °ซ และสามารถควบคุมบรรยากาศในการเผาไม่ให้ เกิดการระเหยออกของ PbO ได้ นอกจากนี้ยังช่วยลดขนาดของเกรนของเซรามิกลงโดยไปยังยั้ง

กลไกการโตของเกรนระหว่างกระบวนการเผาซินเตอร์อีกด้วย และที่สำคัญ สามารถทำได้ง่าย ไม่ ยุ่งยากซับซ้อน มีค่าใช้จ่ายน้อย ตรงกับความต้องการที่จะประหยัดงบประมาณในเศรษฐกิจยุค ปัจจุบันสอดคล้องกับนโยบายการวิจัยตามหลักเศรษฐกิจพอเพียง ดังนั้น งานวิจัยนี้จึงมีเป้าหมายที่ จะทำการศึกษากระบวนการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเฟร์โรอิเล็กทริกสองระบบ คือ สาร BT และ PZT พร้อมทั้งศึกษาอิทธิพลของตัวแปรต่างๆ ในระหว่างกระบวนการเผาซินเตอร์ ไม่ ว่าจะเป็นอุณหภูมิที่ใช้ในการเผา หรือเวลาที่ใช้ในการเผาแช่ ที่มีต่อเฟสที่เกิดขึ้น สมบัติทาง กายภาพและสมบัติใดอิเล็กทริกของเซรามิกเหล่านี้ด้วย ในขณะเดียวกันก็จะทำการศึกษาการเผา ซินเตอร์แบบธรรมดา (normal sintering) ของเซรามิก BT และ PZT ไปด้วยเพื่อเป็นการ เปรียบเทียบผลการทดลองที่ได้ นอกจากนี้แล้ว จากการทบทวนเอกสารทางวิชาการที่ผ่านมา พบว่า งานวิจัยที่ศึกษาเกี่ยวกับเทคนิคการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเฟร์โรอิเล็กทริก นั้นยังมีอยู่น้อย และไม่ครอบคลุมถึงสารเฟร์โรอิเล็กทริกที่หลากหลาย อีกทั้งยังไม่ผู้ใดเสนอ คำอธิบายที่ชัดเจนเกี่ยวกับกลไกภายในเนื้อเซรามิกที่ส่งผลต่อความหนาแน่นที่เพิ่มขึ้นและขนาด เกรนที่ลดลงในระหว่างกระบวนการเผาซินเตอร์แบบสองขั้นตอน ผลงานวิจัยนี้จึงเป็นทั้งการ ส่งเสริมองค์ความรู้พื้นฐานที่มีอยู่และการสร้างองค์ความรู้ใหม่ ๆ ที่เกี่ยวกับกระบวนการเผาซินเตอร์ เซรามิกเฟร์โรอิเล็กทริก BT และ PZT นอกจากนี้ยังช่วยชี้แนะแนวทางในการวิจัยและพัฒนาใหม่ ๆ ในอนาคตอีกด้วย

2. วัตถุประสงค์ของโครงการ


- 1. เพื่อศึกษาเปรียบเทียบเทคนิคการเผาซินเตอร์แบบสองขั้นตอนสำหรับการผลิตเซรามิกเฟร์โรอิ เล็กทริกที่มีองค์ประกอบแตกต่างกันสองระบบ คือ แบเรียมไทเทเนต (BT) และเลตเซอร์โคเนต ไทเทเนต (PZT)
- 2. เพื่อศึกษาอิทธิพลของกระบวนการเผาซินเตอร์แบบสองขั้นตอนที่มีต่อพฤติกรรมการเกิดเฟส ความหนาแน่น โครงสร้างจุลภาค และสมบัติทางไฟฟ้าของเซรามิกเฟร์โรอิเล็กทริกทั้งสองระบบ พร้อมทั้งเปรียบเทียบกับกรณีที่ใช้กระบวนการเผาซินเตอร์แบบธรรมดา
- 3. เพื่อตีพิมพ์เผยแพร่ผลการวิจัยลงในวารสารวิชาการระดับนานาชาติ รวมทั้งการนำเสนอในที่ ประชุมวิชาการทั้งในและต่างประเทศ

3. วิธีการทดลอง

3.1 ระเบียบวิธีวิจัย

โครงงานวิจัยนี้ประกอบด้วยระเบียบวิธีวิจัย 2 ส่วนหลัก ซึ่งแบ่งตามประเภทของสารเฟร์โรอิ เล็กทริกที่เลือกใช้ โดยในส่วนแรกจะเป็นการศึกษาการเผาซินเตอร์แบบสองขั้นตอนของเซรามิก BaTiO₃ (BT) และส่วนที่สองจะเป็นการศึกษาการเผาซินเตอร์แบบสองขั้นตอนของเซรามิก Pb(Zr_{0.52}Ti_{0.48})O₃ (PZT) โดยมีรายละเอียดทั้งหมดพอสังเขป ดังนี้

- 1. ศึกษาคันคว้าและรวบรวมข้อมูลจากเอกสารทางวิชาการที่เกี่ยวข้อง
- 2. จัดซื้อวัสดุอุปกรณ์
- 3. สังเคราะห์ผงของสาร BT ด้วยเทคนิคมิกส์ออกไซด์ พร้อมกับทำการหาเงื่อนไขที่เหมาะสม ในการเผาแคลไซน์เพื่อให้ได้ผงที่มีคุณภาพสูงที่สุด
- 4. ทำการตรวจสอบเฟสที่เกิดขึ้นและลักษณะสัณฐานวิทยาของผง BT ที่เตรียมได้ด้วยเทคนิค การเลี้ยวเบนของรังสีเอ็กซ์ (XRD) และกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM)
- 5. นำผง BT ที่ได้มาขึ้นรูปเป็นแผ่นกลม (disc) มีเส้นผ่านศูนย์กลางประมาณ 15 มิลลิเมตร และมีความหนาประมาณ 1 มิลลิเมตร ด้วยเครื่องอัดแบบแกนเดี่ยว (uniaxial die press)
- 6. นำเม็ดอัด BT มาเผาซินเตอร์แบบธรรมดาเพื่อใช้เป็นเซรามิกชุดควบคุม พร้อมทั้งศึกษา อิทธิพลของตัวแปรหลักในกระบวนการเผาซินเตอร์ที่มีต่อพฤติกรรมการเกิดเฟส ลักษณะ ทางกายภาพ โครงสร้างจุลภาค และสมบัติไดอิเล็กทริกของเซรามิก BT
- 7. นำเม็ดอัด BT มาเผาซินเตอร์แบบสองขั้นตอน (ดังแสดงในรูปที่ 3.1) โดยออกแบบให้ อุณหภูมิแรกเป็น T₁ และอุณหภูมิหลังเป็น T₂ แล้วทำการเปลี่ยนแปลงช่วงอุณหภูมิ T₁ และ T₂ ที่ใช้เผา จากนั้นทำการศึกษาอิทธิพลของอุณหภูมิเหล่านี้ที่มีต่อพฤติกรรมการเกิดเฟส ลักษณะทางกายภาพ โครงสร้างจุลภาค และสมบัติไดอิเล็กทริกของเซรามิก BT นี้
- 8. นำเม็ดเซรามิก BT ทั้งหมดมาตรวจสอบเฟสที่เกิดขึ้น โครงสร้างจุลภาค และสมบัติไดอิ เล็กทริก ด้วยเทคนิค XRD SEM และ LCR meter
- 9. เปรียบเทียบวิเคราะห์ผลการทดลองที่ได้จากการเตรียมเซรามิก BT ด้วยเทคนิคการเผาซิน เตอร์แบบสองขั้นตอนกับเซรามิกชุดควบคุม และนำเสนอกลไกสำหรับใช้อธิบายลักษณะ เฉพาะที่เกิดขึ้น พร้อมทั้งวิเคราะห์ถึงความเป็นไปได้และขีดจำกัดของการใช้เทคนิคการเผา ซินเตอร์แบบสองขั้นตอนในการเตรียมเซรามิก BT

รูปที่ 3.1 แสดงแผนภาพการเผาซินเตอร์แบบสองขั้นตอน (two-stage sintering)

- 10. สังเคราะห์ผงของสาร PZT ด้วยเทคนิคมิกส์ออกไซด์ พร้อมกับทำการหาเงื่อนไขที่เหมาะสม ในการเผาแคลไซน์เพื่อให้ได้ผงที่มีคุณภาพสูงที่สุด
- 11. ทำการตรวจสอบเฟสที่เกิดขึ้นและลักษณะสัณฐานวิทยาของผง PZT ที่เตรียมได้ด้วยเทคนิค XRD และ SEM
- 12. นำผง PZT ที่ได้มาขึ้นรูปด้วยเครื่องอัดแบบแกนเดี่ยว ซึ่งเม็ดอัดที่ได้จะเป็นแผ่นกลม (disc) มีเส้นผ่านศูนย์กลางประมาณ 15 มิลลิเมตร และมีความหนาประมาณ 1 มิลลิเมตร
- 13. นำเม็ดอัด PZT มาเผาซินเตอร์แบบธรรมดาเพื่อใช้เป็นเซรามิกชุดควบคุม พร้อมทั้งศึกษา อิทธิพลของตัวแปรหลักในกระบวนการเผาซินเตอร์ที่มีต่อพฤติกรรมการเกิดเฟส ลักษณะ ทางกายภาพ โครงสร้างจุลภาค และสมบัติไดอิเล็กทริกของเซรามิก PZT
- 14. นำเม็ดอัด PZT มาเผาซินเตอร์แบบสองขั้นตอน โดยออกแบบให้อุณหภูมิแรกเป็น T_1 และ อุณหภูมิหลังเป็น T_2 แล้วทำการเปลี่ยนแปลงช่วงอุณหภูมิ T_1 และ T_2 ที่ใช้เผา จากนั้น ทำการศึกษาอิทธิพลของอุณหภูมิเหล่านี้ที่มีต่อพฤติกรรมการเกิดเฟส ลักษณะทางกายภาพ โครงสร้างจุลภาค และสมบัติไดอิเล็กทริกของเซรามิก PZT นี้
- 15. นำเม็ดเซรามิก PZT ทั้งหมดมาตรวจสอบเฟสที่เกิดขึ้น โครงสร้างจุลภาค และสมบัติได อิเล็ก ทริก ด้วยเทคนิค XRD SEM และ LCR meter
- 16. เปรียบเทียบวิเคราะห์ผลการทดลองที่ได้จากการเตรียมเซรามิก PZT ด้วยเทคนิคการเผา ซินเตอร์แบบสองขั้นตอนกับเซรามิกชุดควบคุม และนำเสนอกลไกสำหรับใช้อธิบายลักษณะ เฉพาะที่เกิดขึ้น พร้อมทั้งวิเคราะห์ถึงความเป็นไปได้และขีดจำกัดของการใช้เทคนิคการเผา ซินเตอร์แบบสองขั้นตอนในการเตรียมเซรามิก PZT

- 17. อภิปรายผลการทดลองที่ได้จากการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเฟร์โรอิเล็ก ทริกที่มีองค์ประกอบแตกต่างกันทั้งสองกลุ่ม (BT และ PZT) พร้อมทั้งสรุปผลการวิจัยและ ข้อเสนอแนะในรูปแบบการเขียนรายงานและเตรียมผลงานเพื่อการตีพิมพ์
- 18. นำความรู้ที่ได้จากงานวิจัยเผยแพร่ให้เอกชนที่สนใจและเสนอผลงานแก่นักวิชาการทั้งใน และต่างประเทศ พร้อมกับนำผลการวิจัยที่ได้ไปตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

ตารางแผนงานวิจัย

แผนดำเนินงาน	ปีที่ 1 (เดือน)						ปีที่ 2 (เดือน)						
	1-2	3-4	5-6	7-8	9-10	11-12	1-2	3-4	5-6	7-8	9-10	11-12	
1. ศึกษาและค้นคว้ารวบรวมข้อมูล													
2. จัดซื้อวัสดุอุปกรณ์													
3. สังเคราะห์ผง BT พร้อมทั้งหา													
เงื่อนไขที่เหมาะสมในการเตรียมผง													
вт													
4. ขึ้นรูปเม็ด BT และเผาซินเตอร์แบบ													
ธรรมดาเพื่อเป็นชุดควบคุม													
5. นำเม็ด BT มาเผาซินเตอร์แบบสอง													
ขั้นตอนภายใต้เงื่อนไขต่างๆ กัน													
6. ตรวจสอบเฟสที่เกิดขึ้น โครงสร้าง													
จุลภาค และสมบัติใดอิเล็กทริกของ													
เซรามิก BT ทั้งหมด													
7. เปรียบเทียบวิเคราะห์ผลการทดลอง													
ที่ได้จากการเตรียมเซรามิก BT ด้วย													
เทคนิคการเผาซินเตอร์แบบสอง													
ขั้นตอนกับเซรามิกชุดควบคุม 8. เรียบเรียงผลงานเพื่อการตีพิมพ์													
8. เรียบเรียงผลงานเพื่อการตีพิมพ์													
เกี่ยวกับการเผาซินเตอร์แบบสอง						'							
ขั้นตอนของเซรามิก BT													
9. สังเคราะห์ผง PZT พร้อมทั้งหา													
เงื่อนไขที่เหมาะสมในการเตรียมผง													
PZT													
10. ขึ้นรูปเม็ด PZT และเผาซินเตอร์													
แบบธรรมดาเพื่อเป็นชุดควบคุม													
11. นำเม็ด PZT มาเผาซินเตอร์แบบ													
สองขั้นตอนภายใต้เงื่อนไขต่างๆ กัน													

แผนดำเนินงาน	ปีที่ 1 (เดือน)						ปีที่ 2 (เดือน)						
	1-2	3-4	5-6	7-8	9-10	11-12	1-2	3-4	5-6	7-8	9-10	11-12	
12. ตรวจสอบเฟสที่เกิดขึ้น โครงสร้าง													
จุลภาค และสมบัติใดอิเล็กทริกของ													
เซรามิก PZT ทั้งหมด													
13. เปรียบเทียบวิเคราะห์ผลการ													
ทดลองที่ได้จากการเตรียมเซรามิก													
PZT ด้วยเทคนิคการเผาซินเตอร์													
แบบสองขั้นตอนกับเซรามิกชุด													
ควบคุม													
14. เรียบเรียงผลงานเพื่อการตีพิมพ์													
เกี่ยวกับการเผาซินเตอร์แบบสอง													
ขั้นตอนของเซรามิก PZT													
15. วิเคราะห์เปรียบเทียบผลการ													
ทดลองที่ได้จากการเผาซินเตอร์แบบ													
สองขั้นตอนของเซรามิก BT และ													
PZT													
16. อภิปรายผลการศึกษาและสรุป													
ผลการวิจัยและพัฒนาตลอดจน													
ข้อเสนอแนะเพื่อเขียนรายงานและ													
เตรียมผลงานเพื่อการตีพิมพ์													
เพิ่มเติม													

3.2 สารเคมีและอุปกรณ์ที่ใช้

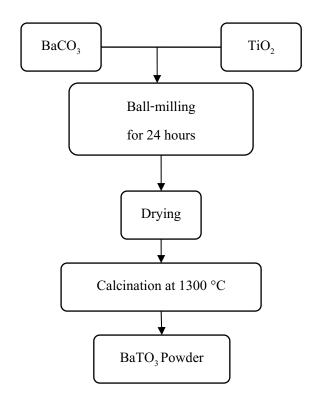
- 1) แบเรียมคาร์บอเนต (BaCO₃) ความบริสุทธิ์ร้อยละ 99.0 ผลิตโดยบริษัท Fluka ประเทศ สวิตเซอร์แลนด์
- 2) ไทเทเนียมออกไซด์ (TiO₂) ความบริสุทธิ์ร้อยละ 99.0 ผลิตโดยบริษัท Fluka ประเทศ สวิตเซอร์แลนด์
- 3) เซอร์โคเนียมออกไซด์ (ZrO₂) ความบริสุทธิ์ร้อยละ 99.0 ผลิตโดยบริษัท Fluka ประเทศ สวิตเซอร์แลนด์
- 4) เลดออกไซด์ (PbO) ความบริสุทธิ์ร้อยละ 99.0 ผลิตโดยบริษัท Fluka ประเทศ สวิตเซอร์แลนด์
- 5) อลูมินาออกไซด์ (Al $_2$ O $_3$) ความบริสุทธิ์ร้อยละ 99.0 ผลิตโดยบริษัท Fluka ประเทศ สวิตเซอร์แลนด์
- 6) เอทิลแอลกอฮอล์ (Ethyl alcohol) ความบริสุทธิ์ร้อยละ 99.5 ผลิตโดยบริษัท Merck ประเทศเยอรมัน
- 7) โพลีไวนิลแอลกอฮอล์ (PVA) ผลิตโดยบริษัท Fluka ประเทศสวิตเซอร์แลนด์

- 8) น้ำกลั่น
- 9) เครื่องชั่งดิจิตอลความละเอียด 0.0001 กรัม ผลิตโดยบริษัท AND รุ่น HM-300
- 10) กระป๋องพลาสติกพร้อมฝาปิด
- 11) ลูกบด YTZ (Yttrium Stabilized Zirconia Grinding Media)
- 12) เครื่องบดย่อยผสมสารแบบ Ball-milling
- 13) ปีกเกอร์ขนาด 250 500 และ 1000 มิลลิลิตร
- 14) กระดาษฟอยล์ (foil)
- 15) เตาแผ่นให้ความร้อน (hot plate)
- 16) ครกบดสาร (agate)
- 17) ช้อนตักสาร
- 18) เทปกาวพลาสติก
- 19) ตู้อบสารอุณหภูมิประมาณ 200 °ซ ผลิตโดยบริษัท Griffin Grundy
- 20) เตาไฟฟ้าสำหรับเผาสาร ผลิตโดยบริษัท Lenton Furnances รุ่น 4279
- 21) ถัวยอลูมินา (alumina crucible)
- 22) แม่พิมพ์โลหะสำหรับอัดขึ้นรูปขนาดเส้นผ่านศูนย์กลาง 15 มิลลิเมตร
- 23) เครื่องอัดระบบไฮโดรลิก
- 24) กระดาษทรายเบอร์ 400 600 800 1000 และ 1200
- 25) ผงขัดอลูมินาขนาดอนุภาค 1 ไมโครเมตร
- 26) จานหมุนสำหรับขัดสาร ผลิตโดยบริษัท Buehler รุ่น ECOMET 3
- 27) เครื่องตรวจสอบการเลี้ยวเบนของรังสีเอ็กซ์ (X-ray diffractometer) รุ่น JDX-8030 ผลิตโดย บริษัท JOEL ประเทศญี่ปุ่น
- 28) กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (scanning electron microscope) ผลิตโดย บริษัท JOEL รุ่น JSM 840A ประเทศญี่ปุ่น
- 29) ชุดเครื่องมือวัดสมบัติใดอิเล็กทริก (LCR meter)
- 30) ชุดเครื่องมือวัดสมบัติฮีสเทอรีซีส (Hysteresis measurement setup)

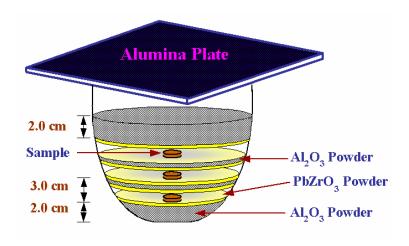
3.3 กระบวนการเตรียมผงและเซรามิกแบเรียมไทเทเนต (BT)

ทำการเตรียมผงแบเรียมไทเทเนตสูตร $BaTiO_3$ ด้วยวิธีมิคส์ออกไซด์ เริ่มจากการชั่งสารตั้ง ต้นซึ่ง ก็คือ $BaCO_3$ และ TiO_2 ตามสัดส่วนที่เหมาะสมโดยอาศัยสมการเคมีที่ 3.1 ดังนี้

$$BaCO_3 + TiO_2 \rightarrow BaTiO_3 + CO_2$$
 (3.1)


จากนั้นนำมาใส่ในกระป๋องพลาสติกที่บรรจุลูกบด YTZ แล้วเติมเอทานอลลงไปด้วยเพื่อเป็นตัวช่วย ในการหล่อลื่นปิดฝาให้สนิทแล้วนำไปทำการบดย่อยผสมสารด้วยเครื่อง ball-milling (รูป 3.2) เป็น เวลานาน 24 ชั่วโมง แล้วจึงนำไปอบให้แห้ง จากนั้นนำผงผสมที่ได้นี้ใส่ในถ้วยอลูมินาปิดฝาให้สนิท แล้วนำไปเผาแคลไซน์ด้วยเตาไฟฟ้า (รูป 3.3) ที่อุณหภูมิ 1300 °ซ เป็นเวลานาน 2 ชั่วโมงด้วย อัตราการขึ้น/ลงอุณหภูมิ 10 °ซ/นาที แล้วจึงนำสารที่ได้ไปตรวจสอบหาลักษณะเฉพาะต่อไป ซึ่ง ขั้นตอนการเตรียมผง BT ได้เสนอไว้ในรูปที่ 3.4

ร**ูปที่ 3.2** เครื่องบดย่อยผสมสารแบบ Ball-milling



รูปที่ 3.3 เตาไฟฟ้าสำหรับเผาสาร

รูปที่ 3.4 แผนผังแสดงขั้นตอนการเตรียมผง BT

จากนั้นนำผง BT ที่เตรียมได้มาบดให้ละเอียด และนำมาอัดขึ้นรูปด้วยเครื่องอัดแบบแกน เดี่ยวให้ได้เม็ดกลมที่มีเส้นผ่านศูนย์กลาง 15 มิลลิเมตร และมีความหนา 1 มิลลิเมตร แล้วนำไปเผา ซินเตอร์ทั้งแบบธรรมดาและแบบสองขั้นตอนเพื่อให้เกิดเป็นเซรามิกที่เกาะตัวกันแข็ง สำหรับ ตรวจสอบสมบัติต่างๆ ต่อไป

ร**ูปที่ 3.5** การจัดเรียงเม็ดอัด BT ในระหว่างการเผาซินเตอร์

3.4 กระบวนการเตรียมผงและเซรามิกเลดเซอร์โคเนตไทเทเนต (PZT)

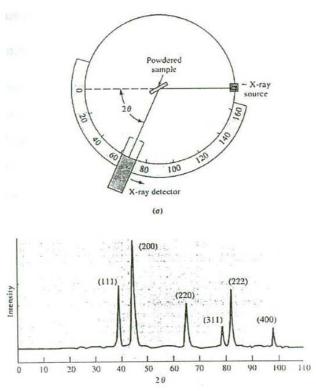
ทำการเตรียมผงเลดเซอร์โคเนตไทเทเนต (PZT) ด้วยวิธีแบบดัดแปลงซึ่งเป็นวิธีการเตรียม แบบสองขั้นตอน (two-stage mixed oxide method) โดยเริ่มจากการเตรียมผงเลดเซอร์โคเนต (PZ) ที่มี PbO และ ZrO₂ เป็นสารตั้งต้น โดยอาศัยสมการเคมีที่ 3.2 ดังนี้

$$PbO + ZrO_2 \rightarrow PbZrO_3 \tag{3.2}$$

จากนั้นนำมาใส่ในกระป๋องพลาสติกที่บรรจุลูกบด YTZ แล้วเติมเอทานอลลงไปด้วยเพื่อเป็นตัวช่วย ในการหล่อลื่นปิดฝาให้สนิทแล้วนำไปทำการบดย่อยผสมสารด้วยเครื่อง Ball-milling (รูป 3.2) เป็น เวลานาน 24 ชั่วโมง แล้วจึงนำไปอบให้แห้ง จากนั้นนำผงผสมที่ได้นี้ใส่ในถ้วยอลูมินาปิดฝาให้สนิท แล้วนำไปเผาแคลไซน์ด้วยเตาไฟฟ้า (รูป 3.3) ที่อุณหภูมิ 800 °ซ เป็นเวลานาน 2 ชั่วโมงด้วยอัตรา การขึ้น/ลงอุณหภูมิ 10 °ซ/นาที จากนั้น นำผง PZ ที่เตรียมได้มาผสมกับ TiO₂ และ PbO เพื่อทำ การเตรียมเป็นสาร PZT สูตร Pb(Zr_{0.52}Ti_{0.48})O₃ ต่อไปโดยอาศัยสมการเคมีที่ 3.3 ดังนี้

$$0.52PbZrO_3 + 0.48TiO_2 + 0.48PbO \rightarrow Pb(Zr_{0.52}Ti_{0.48})O_3$$
 (3.3)

สำหรับขั้นตอนการเตรียมผง PZT นั้นก็อาศัยวิธีการเช่นเดียวกันกับการเตรียมผง PZ ดังที่ได้กล่าว มาแล้วข้างต้น จากนั้นจึงนำผงผสมที่ได้ไปเผาแคลไซน์ที่อุณหภูมิ 900 °ซ เป็นเวลานาน 2 ชั่วโมง ด้วยอัตราการขึ้น/ลงอุณหภูมิ 10 °ซ/นาที แล้วจึงนำไปตรวจสอบลักษณะเฉพาะต่อไป ซึ่งเมื่อได้ผล บริสุทธิ์ของ PZT แล้วก็นำมาบดให้ละเอียด อัดขึ้นรูปด้วยเครื่องอัดแบบแกนเดี่ยวให้ได้เม็ดกลมที่มี เส้นผ่านศูนย์กลาง 15 มิลลิเมตร และมีความหนา 1 มิลลิเมตร แล้วนำไปเผาซินเตอร์ทั้งแบบ ธรรมดาและแบบสองขั้นตอนเพื่อให้เกิดเป็นเซรามิกที่เกาะตัวกันแข็งสำหรับตรวจสอบสมบัติต่างๆ ต่อไป


3.5 การตรวจสอบเฟสด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (XRD)

ในงานวิจัยนี้ได้ใช้เทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ (X-ray diffraction technique) ในการ ตรวจสอบหาชนิดและปริมาณของเฟสที่เกิดขึ้นโดยอาศัยหลักการตกกระทบของรังสีเอ็กซ์ลงบนผิว วัสดุแล้วเกิดการกระเจิง (scattering) และเลี้ยวเบนโดยมีมุมในการเลี้ยวเบนแตกต่างกันไปขึ้นอยู่กับ โครงสร้างผลึกและระนาบ (hkl) ที่รังสีตกกระทบภายในวัสดุ โดยที่รูปแบบของการเลี้ยวเบนของรังสี เอ็กซ์ของวัสดุแต่ละชนิดนั้นก็จะมีความเฉพาะเจาะจงสำหรับวัสดุนั้นๆ ดังนั้นเมื่อนำเครื่องมือ สำหรับตรวจวัด (detector) มารองรับรังสีเอ็กซ์ที่กระเจิงออกมาจากวัสดุในตำแหน่งต่างๆ ก็จะ สามารถตรวจสอบได้ว่าวัสดุนั้นเป็นวัสดุหรือสารชนิดใด โดยพิจารณาจากข้อมูลของความสัมพันธ์ ระหว่างค่ามุมของแบรกก์ (Bragg's angle) และความเข้มของพีครังสีเอ็กซ์ของรูปแบบการเลี้ยวเบน ที่ปรากฏ ซึ่งสารแต่ละชนิดจะมีรูปแบบของการเลี้ยวเบนที่เป็นลักษณะเฉพาะแตกต่างกันไปจึง

สามารถนำรูปแบบของการเลี้ยวเบนของรังสีเอ็กซ์ที่ตรวจสอบได้มาเปรียบเทียบกับข้อมูลของสาร ชนิดต่างๆ ที่มีอยู่ในฐานข้อมูลมาตรฐาน (JCPDS files) เพื่อตรวจสอบชนิดของเฟสที่เกิดขึ้นได้ โดยเริ่มจากการนำผงและชิ้นงานเซรามิกที่เตรียมได้มาแพคใส่ใน holder จากนั้นนำไปวางที่บริเวณ ช่องสำหรับวางชิ้นงานในเครื่อง X-ray diffractometer (รูป 3.6) แล้วจึงเดินเครื่องโดยใช้เป้า ทองแดง (CuK $_{\infty}$) ที่ให้รังสีเอ็กซ์ค่าความยาวคลื่นประมาณ 1.54 Å ออกมาด้วย step ประมาณ 5 องศาต่อนาที จากค่ามุม 2 θ ที่ 20 องศา ไปจนถึงที่ค่ามุม 2 θ ที่ 60 องศา

รูปที่ 3.6 เครื่อง X-ray diffractometer รุ่น JDX-8030

ร**ูปที่ 3.7** หลักการตรวจสอบเฟสด้วยเทคนิค XRD และตัวอย่างรูปแบบการเลี้ยวเบนของรังสีเอ็กซ์

3.6 การตรวจสอบสมบัติทางกายภาพของเซรามิก

ทำการหาค่าความหนาแน่นของชิ้นงานเซรามิกเฟร์โรอิเล็กทริกที่เตรียมได้ โดยอาศัยหลัก แทนที่น้ำของอาร์คีมีดีส (Archimedes) เริ่มจากนำเซรามิกที่ต้องการทราบค่ามาต้มในน้ำกลั่นเป็น เวลานาน 2 ชั่วโมง ทิ้งไว้ให้เย็นในอากาศ จากนั้นจึงนำมาชั่งในน้ำ (W_3) ชั่งขณะเปียก (W_2) และ นำไปอบในเตาอบให้แห้งเพื่อนำมาชั่งขณะแห้ง (W_4) แล้วจึงนำค่าที่ได้มาคำนวณหาความหนาแน่น ตามสมการ 3.4 ดังนี้

$$\rho_C = \left(\frac{W_1}{W_2 - W_3}\right) \times \rho_{H_2O} \tag{3.4}$$

เมื่อ ho_C และ ho_{H_2O} คือ ความหนาแน่นของเซรามิกและของน้ำที่อุณหภูมิขณะทำการทดลอง ho_M และ ho_M คือ น้ำหนักของเซรามิกที่ชั่งในอากาศขณะแห้ง ขณะเปียก และในน้ำ ตามลำดับ

3.7 การตรวจสอบโครงสร้างจุลภาคของเซรามิก

นำชิ้นงานเซรามิกเฟร์โรอิเล็กทริกมาทำการตรวจสอบลักษณะของโครงสร้างจุลภาคด้วย การใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ดังแสดงในรูป 3.8 เพื่อศึกษาลักษณะ โครงสร้างจุลภาคของเซรามิกที่เตรียมได้ โดยเริ่มจากนำชิ้นงานมาทำความสะอาดผิวด้วยเครื่อง อัลทราโซนิกส์เป็นเวลานาน 15-30 นาที เพื่อกำจัดสิ่งสกปรกออกไปจากผิวหน้าชิ้นงานจากนั้น นำไปทำการอบให้แห้ง แล้วจึงหักชิ้นงานออกเป็นชิ้นเล็กๆ นำแต่ละชิ้นไปติดบนแท่นทองเหลือง (stub) ด้วยเทปกาวสองหน้าแบบบางโดยจัดให้ผิวหน้า (surface) และรอยแตก (fracture) วางตัวอยู่ ในแนวที่เหมาะสมต่อการสำรวจด้วยเทคนิค SEM แล้วทำการเคลือบผิวของชิ้นงานด้วยทองคำโดย ใช้เทคนิค sputtering เป็นเวลานาน 4 นาที จากนั้นจึงนำไปทำการตรวจสอบด้วยกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด เพื่อศึกษาลักษณะโครงสร้างจุลภาคของชิ้นงานต่อไป

ร**ูปที่ 3.8** กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) รุ่น JSM 840A

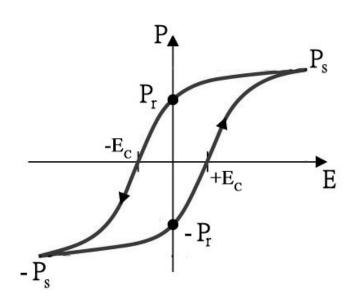
3.8 การตรวจสอบสมบัติไดอิเล็กทริก

เมื่อเซรามิกเฟร์โรอิเล็กทริกผ่านการเผาซินเตอร์เรียบร้อยแล้ว ก่อนที่จะนำมาวัดค่าทาง ไฟฟ้าจะต้องขัดผิวหน้าให้เรียบ มีความหนาที่สม่ำเสมอและต้องทำขั้ว (electrode) ให้แก่เม็ดเซรา มิกเสียก่อนด้วยการทากาวเงิน (silver paste) แล้วเผาที่อุณหภูมิ 700 °ซ เป็นเวลานาน 12 นาที่ จากนั้นจึงนำไปวัดค่าทางไฟฟ้าต่อไป ซึ่งในการตรวจสอบสมบัติไดอิเล็กทริกจะเป็นการวัดค่าสภา พยอมสัมพัทธ์ (ε ,) และค่าการสูญเสียใดอิเล็กทริก ($tan\delta$) โดยทำการเปลี่ยนแปลงค่าความถี่ในช่วง 100 Hz – 10 kHz ตามลำดับ ซึ่งค่าสภาพยอมสัมพันธ์ของสารตัวอย่างนั้น สามารถหาได้จากการ วัดค่าความจุไฟฟ้า (capacitance : C) โดยใช้เครื่อง LCR meter รุ่น HP 4276 A ดังรูป 3.9 แล้วจึง นำค่าความจุไฟฟ้าที่อ่านได้มาคำนวณหาค่าสภาพะยอมสัมพัทธ์ (ε ,) จากความสัมพันธ์ในสมการที่ 3.5

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$
 (3.5)

เมื่อ C คือ ค่าความจุไฟฟ้า (capacitance)

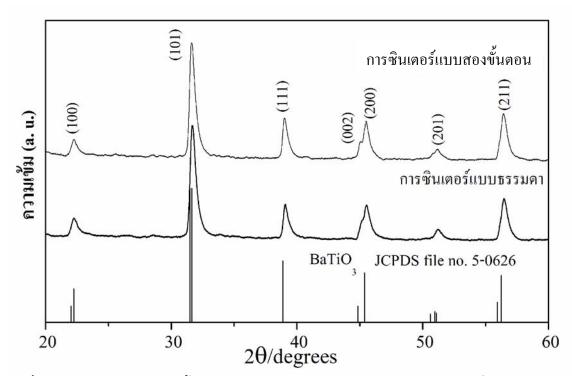
- \mathcal{E}_{o} คือ ค่าสภาพยอมของไดอิเล็กทริกที่สุญญากาศ มีค่าเท่ากับ 8.85 x $10^{-12}~\text{C}^2/\text{N.m}^2$
- $arepsilon_r$ คือ สภาพยอมสัมพัทธ์ของใดอิเล็กทริกหรือค่าคงที่ใดอิเล็กทริก
- A คือ พื้นที่หน้าตัดของชิ้นงาน
- d คือ ความหนาของชิ้นงาน



ร**ูปที่ 3.9** เครื่อง LCR meter รุ่น HP 4276 A

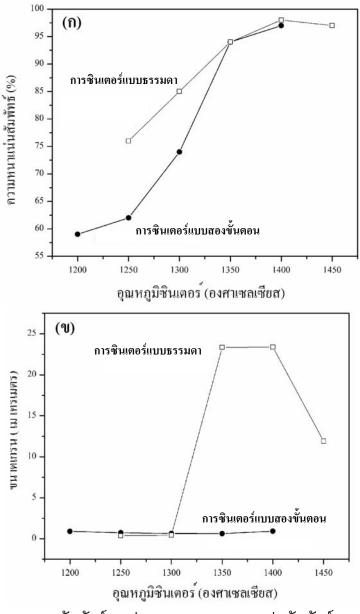
3.9 การตรวจสอบสมบัติฮีสเทอรีซีส

ทำการเตรียมชิ้นงานเซรามิกเฟร์โรอิเล็กทริกสำหรับการทดสอบทางไฟฟ้าเช่นเดียวกับวัด สมบัติไดอิเล็กทริก ซึ่งสมบัติฮีสเทอรีซีส (hysteresis properties) ที่ต้องการวัดในการทดลองนี้จะ เป็นชุดเครื่องมือที่ประยุกต์มาจากวงจร Sawyer-Tower ที่ต่อพ่วงกับเครื่องขยายสัญญาณที่มีความ ต่างศักย์สูง (voltage ac amplifier: Trek, model 610D) และเครื่องกำเนิดไฟฟ้าความถี่ 100 Hz (Goodwill, model GAG-809) และในขณะที่ทำการทดลองชิ้นงานจะถูกวางอยู่ใน silicone oil เพื่อ ป้องกันการช้อตของกระแส (arcing) จากนั้นจะใช้คอมพิวเตอร์ที่ต่อกับชุดเครื่องมือมาเป็นตัว ประมวลผล ซึ่งลักษณะของ P-E hysteresis loop โดยทั่วไปจะมีลักษณะดังแสดงในรูปที่ 3.10 โดย

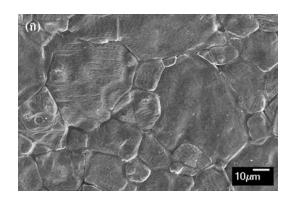

 P_s คือ จุดสูงสุดของค่าโพลาไรเซชั่น P_r คือ ค่าโพลาไรเซชั่นที่จุดตัดแกน y (E = 0) และ E_c คือ ค่าสนามไฟฟ้าที่จุดตัดแกน x (P = 0)

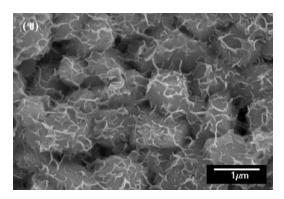
รูปที่ 3.10 แสดงลักษณะของ P-E hysteresis loop

4.1 ผลการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกแบเรียมไทเทเนต


ผลการตรวจสอบเฟสที่เกิดขึ้นของเซรามิก BT ที่ผ่านการเผาแบบธรรมดาและแบบสองขั้นตอนแสดงด้วยแผนภาพ XRD ดังรูป 4.1 จากรูปจะเห็นว่าเซรามิก BT ที่ผ่านการเผาทั้งสองกรณี เป็นเฟสบริสุทธิ์ มีโครงสร้างแบบเพอรอฟสไกด์ และไม่มีเฟสของสารที่ไม่ต้องการเกิดขึ้น ไม่ว่าจะ เป็น ${\rm Ba_2TiO_4}$, ${\rm BaTi_2O_5}$ หรือ ${\rm BaTi_3O_7}$ [1-3] ที่มักจะพบในระหว่างกระบวนการเตรียม BT และเมื่อ พิจารณากราฟ XRD พบว่าตำแหน่งของพีคที่เกิดขึ้นนั้นสอดคล้องกับเฟส ${\rm BaTiO_3}$ ในฐานข้อมูล JCPDS file no. 5-0626 ซึ่งมีโครงสร้างผลึกอยู่ในระบบเตตระโกนอล มีสมมาตรแบบ ${\it P4/mm}$ (no. 99) และมีค่า cell parameters a=399.4 pm และ c=403.8 pm [4]

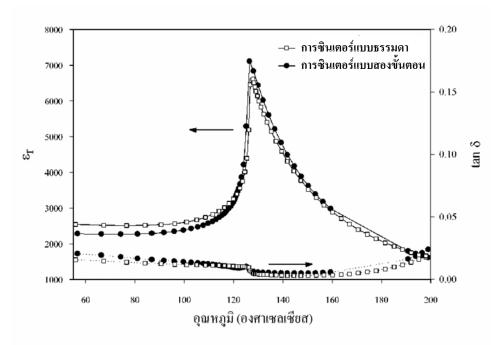
ร**ูปที่ 4.1** แสดงแผนภาพการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ของเซรามิก BT ที่ผ่านการซินเตอร์ แบบธรรมดาและแบบสองขั้นตอน


รูป 4.2 แสดงความสัมพันธ์ระหว่างความหนาแน่นสัมพัทธ์และขนาดเกรนเฉลี่ยกับอุณหภูมิ ซินเตอร์ของเซรามิก BT ที่ผ่านการซินเตอร์แบบธรรมดาและแบบสองขั้นตอน โดยที่การซินเตอร์ แบบสองขั้นตอนนั้นให้อุณหภูมิแรกคงที่ที่ 1100 องศาเซลเซียส เป็นเวลานาน 2 ชั่วโมง ส่วน อุณหภูมิที่สองนั้นอยู่ในช่วง 1200-1400 องศาเซลเซียส ซึ่งพบว่าค่าความหนาแน่นสัมพัทธ์ของเซรา มิกที่ซินเตอร์แบบสองขั้นตอนเพิ่มขึ้นจาก 60% ไปเป็น 97% อย่างรวดเร็วเมื่ออุณหภูมิซินเตอร์


เพิ่มขึ้น ในขณะที่ความหนาแน่นสัมพัทธ์ของเซรามิกที่ชินเตอร์แบบธรรมดาก็ค่อยๆ เพิ่มขึ้นจาก 77% ไปเป็น 98% เช่นกันดังแสดงในรูป 4.2(ก) สำหรับผลของอุณหภูมิชินเตอร์ต่อขนาดเกรนเฉลี่ย นั้นแสดงไว้ในรูป 4.2(ข) จากรูปจะเห็นว่าเซรามิกที่ชินเตอร์แบบธรรมดานั้นจะมีลักษณะของการ เติบโตของเกรนผิดปกติ (abnormal grain growth) ที่อุณหภูมิซินเตอร์ประมาณ 1350-1400 องศา เซลเซียส ซึ่งขนาดเกรนเฉลี่ยอยู่ที่ประมาณ 22 ไมโครเมตร โดยลักษณะการเติบโตผิดปกติของ เกรนแบบนี้สามารถพบได้ในเซรามิก BT ทั่วไป สำหรับขนาดเกรนเฉลี่ยของเซรามิก BT ที่ผ่านการ ชินเตอร์แบบสองขั้นตอนนั้นขนาดเกรนไม่ได้เปลี่ยนแปลงมากนักอยู่ในช่วง 0.6-0.9 ไมโครเมตรและ ไม่มีลักษณะของการเติบโตผิดปกติของเกรนเกิดขึ้นเลย จากผลการทดลองนี้อาจกล่าวได้ว่าการซิน เตอร์แบบสองขั้นตอนสามารถประดิษฐ์เซรามิก BT ที่มีเกรนขนาดเล็กได้

รูปที่ 4.2 กราฟแสดงความสัมพันธ์ระหว่าง (ก) ความหนาแน่นสัมพัทธ์ และ (ข) ขนาดเกรนกับ อุณหภูมิซินเตอร์ของเซรามิก BT ที่ผ่านการซินเตอร์แบบธรรมดาและแบบสองขั้นตอน

จากนั้นทำการเลือกเม็ดเซรามิกที่ผ่านการซินเตอร์แล้วให้ค่าความหนาแน่นสูงที่สุดซึ่งก็คือ เซรามิกที่ซินเตอร์ที่อุณหภูมิ 1400 องศาเซลเซียส สำหรับการซินเตอร์ทั้งสองแบบมาตรวจสอบ ลักษณะโครงสร้างจุลภาคด้วยเทคนิค SEM ซึ่งลักษณะโครงสร้างจุลภาคของเซรามิกที่ผ่านการซิน เตอร์แบบธรรมดาและแบบสองขั้นตอนได้แสดงไว้ในรูป 4.3(ก) และ 4.3(ข) ตามลำดับ จากรูปจะ เห็นว่าเซรามิกที่ผ่านกระบวนการซินเตอร์ที่แตกต่างกันก็จะมีลักษณะโครงสร้างจุลภาคที่แตกต่าง กันอย่างชัดเจน เซรามิกที่ซินเตอร์แบบธรรมดามีลักษณะของเกรนที่เติบโตผิดปกติ (abnormal grain growth) เกิดขึ้นโดยที่เกรนมีขนาดใหญ่ที่สุดถึง ~50 ไมโครเมตร ซึ่งเป็นผลมาจากการจัดเรียง ตัวใหม่ของผลึก (recrystallization) และการแกว่งของสัดส่วนองค์ประกอบ (stoichiometric compositions) ในระหว่างกระบวนการซินเตอร์ [5, 6] สำหรับเซรามิกที่ซินเตอร์แบบสองขั้นตอนนั้น ประกอบด้วยเกรนที่มีขนาดเล็กและมีรูพรุนกระจายตัวอยู่ตามผิวหน้าของเซรามิกอย่างสม่ำเสมอ มี ขนาดเกรนเฉลี่ยอยู่ที่ 0.92 ไมโครเมตร นอกจากนี้ยังพบว่ามีโครงสร้างจุลภาคที่มีลักษณะคล้ายเส้น (whisker-like shape) วางตัวอยู่ทั่วบริเวณผิวหน้าของเกรนของเซรามิก BT โดยเส้นวิสเกอร์ ดังกล่าวนี้มีความยาวประมาณ 300-500 นาโนเมตร และหนาประมาณ 10 นาโนเมตร ซึ่งกลไกการ เติบโตของโครงสร้างจุลภาคของเซรามิก BT แบบนี้ยังไม่สามารถอธิบายได้อย่างชัดเจน แต่อย่างไร ก็ตาม ก็มีรายงานในเอกสารทางวิชาการที่กล่าวว่าลักษณะโครงสร้างจุลภาคที่หลากหลายของเซรา นั้นขึ้นอยู่กับอัตราการเติบโตของเกรนในระนาบที่แตกต่างกันเป็นสำคัญ [7] นอกจากนี้ กระบวนการซินเตอร์และสิ่งแวดล้อมในระหว่างการเติบโตของเกรนก็เป็นตัวแปรสำคัญอย่างยิ่งต่อ การก่อตัวของโครงสร้างจุลภาคเช่นกัน [8]



รูปที่ 4.3 แสดงลักษณะโครงสร้างจุลภาคของเซรามิก BT ที่ผ่านการซินเตอร์ (ก) แบบธรรมดาและ (ข) แบบสองขั้นตอน

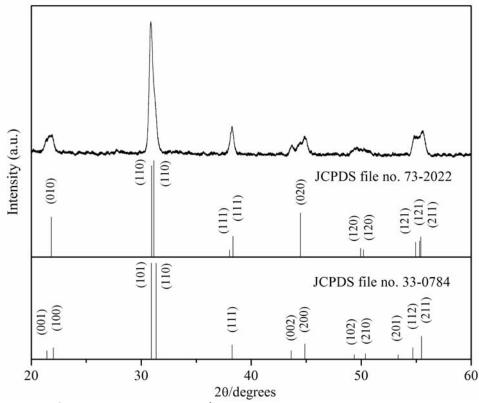
สำหรับการเกิดเซรามิกที่มีเกรนขนาดเล็กเมื่อผ่านการเผาซินเตอร์แบบสองขั้นตอนนั้น สามารถอธิบายได้โดยอาศัยความเป็นไปได้ที่จะเกิดการแน่นตัวโดยไม่มีการเติบโตของเกรนเกิดขึ้น ซึ่งเชื่อว่าเป็นผลมาจากการเคลื่อนที่ของขอบเกรนน้อยลงในขณะเดียวกันก็มีการควบคุมการแพร่ ระหว่างขอบเกรนให้ทำงานคงที่ ซึ่งค่าพลังงานจลน์และแรงขับเคลื่อนในระหว่างการเติบโตของเกรน ในการซินเตอร์ระยะที่สองได้ถูกวิเคราะห์และพิสูจน์โดย Chen และ Wang ในงานวิจัยเรื่องการซิน เตอร์แบบสองขั้นตอนที่มีการรายงานมาก่อนหน้านี้ [9] ซึ่งจากงานวิจัยของคนกลุ่มนี้ได้กล่าวไว้ว่า การเติบโตของเกรนที่น้อยลงจะเกิดในระยะสุดท้ายของกระบวนการซินเตอร์ ซึ่งเป็นผลมาจากความ แตกต่างของพลังงานจลน์ในการแพร่ระหว่างขอบเกรนและการเคลื่อนที่ของขอบเกรนเป็นสำคัญ

สมบัติใดอิเล็กทริกของเซรามิก BT นั้นแท้จริงแล้วจะขึ้นอยู่กับขนาดเกรนเป็นสำคัญ [10-12] ดังเช่นที่กล่าวไปแล้วข้างตัน โดยที่เมื่อเกรนมีขนาดเล็กกว่า 1 ไมโครเมตร จะมีค่าคงที่ทางไดอิเล็กทริกที่อุณหภูมิห้องสูงกว่าปกติ ส่วนที่อุณหภูมิคูรี กราฟจะลักษณะกว้างและแบนดังเช่นที่พบใน เซรามิก BT ทั่วไป [13] ดังนั้นอาจกล่าวได้ว่าการควบคุมขนาดเกรนของเซรามิกระหว่างกระบวน การซินเตอร์นั้นเป็นสิ่งที่สำคัญมาก สำหรับค่าคงที่ทางไดอิเล็กทริกของเซรามิก BT ในงานวิจัยนี้ได้ แสดงไว้ในรูป 5 ซึ่งจากรูปจะเห็นว่าลักษณะกราฟไดอิเล็กทริกของเซรามิกที่ผ่านการซินเตอร์แบบ สองขั้นตอนให้ค่าคงที่ทางไดอิเล็กตริกสูงกว่าเซรามิกแบบธรรมดาเล็กน้อย ณ อุณหภูมิคูรี ในขณะที่ อุณหภูมิคูรีมีค่าใกล้เคียงกัน ยิ่งไปกว่านั้นยังพบว่าลักษณะของกราฟค่าคงที่ทางไดอิเล็กตริกเป็น ลักษณะพีคแหลมฐานแคบซึ่งแสดงถึงการเปลี่ยนเฟสระยะที่หนึ่ง (First-order transition) ซึ่ง แตกต่างจากกราฟค่าคงที่ทางไดอิเล็กตริกที่ได้จากเซรามิก BT ที่มีเกรนขนาดเล็กทั่วไป

ร**ูปที่ 4.4** กราฟแสดงค่าคงที่ทางไดอิเล็กทริก (dielectric constant) และค่าการสูญเสียทางไดอิเล็ก ทริก (dielectric loss) ที่ความถี่ 10 kHz ของเซรามิก BT ที่ผ่านการซินเตอร์แบบธรรมดาและแบบ สองขั้นตอน

อย่างไรก็ตามการที่ค่าคงที่ทางไดอิเล็กทริกของเซรามิก BT ที่ผ่านการเผาซินเตอร์ที่ แตกต่างกันให้ค่าไม่แตกต่างกันอย่างชัดเจนแม้ว่าขนาดเกรนจะแตกต่างกันมากคาดว่าเกิดจาก อุณหภูมิที่ใช้ในการซินเตอร์แบบสองขั้นตอนในงานวิจัยนี้อาจไม่มากพอที่จะก่อให้เกิดแรงขับ เคลื่อนที่ทำให้เกิดการแน่นตัวได้อย่างสมบูรณ์ นอกจากนี้โครงสร้างจุลภาคของเซรามิก (รูป 4.3(ข)) ยังมีความพรุนสูง ซึ่งรูพรุนเหล่านี้อาจเป็นสาเหตุหลักที่ทำให้ค่าคงที่ทางไดอิเล็กทริกสำหรับเซรามิก

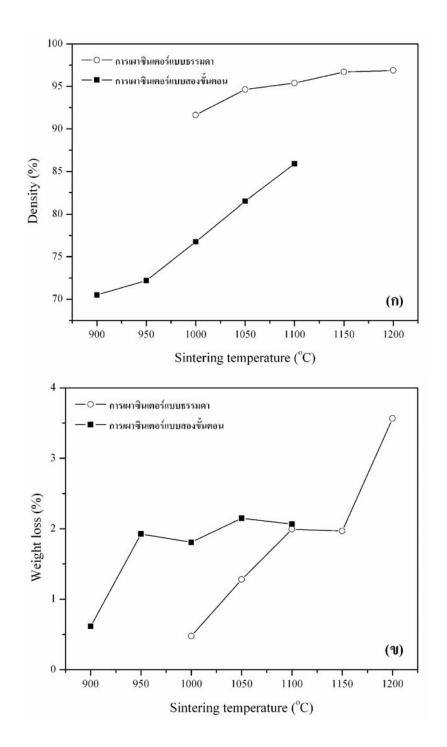
ที่มีเกรนขนาดเล็กต่ำกว่าที่ควรจะเป็น อย่างไรก็ตาม การเพิ่มอุณหภูมิในการเผาของการซินเตอร์ แบบสองขั้นตอนให้สูงขึ้นนั้นเป็นไปได้ยากสำหรับงานวิจัยนี้ เนื่องจากมีข้อจำกัดของเครื่องมือที่ใช้ แต่กระนั้น เมื่อพิจารณาสมบัติไดอิเล็กทริกของเซรามิกที่ผ่านการซินเตอร์ทั้งสองแบบโดยละเอียด พบว่าค่าคงที่ทางไดอิเล็กทริกที่อุณหภูมิห้องมีค่าประมาณ 2000 ซึ่งพบว่ามีค่ามากกว่าค่าไดอิเล็ก ทริกที่พบในงานวิจัยอื่นๆ ที่เคยรายงานมา [10, 14]

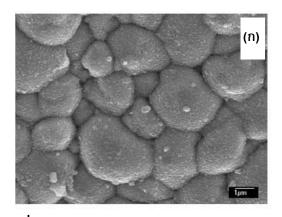

4.2 ผลการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเลดเซอร์โคเนตไทเทเนต

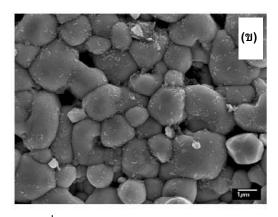
หลังจากที่ทำการเตรียมผง PZT ด้วยปฏิกิริยาสถานะของแข็งระหว่างสารตั้งต้น PbO ZrO₂ และ TiO₂ พร้อมกับทำการเผาแคลไซน์ที่อุณหภูมิ 900 องศาเซลเซียส เป็นเวลานาน 2 ชั่วโมงแล้ว นั้นก็นำมาทำการตรวจสอบเฟสที่เกิดขึ้นด้วยเทคนิค XRD ซึ่งผลที่ได้แสดงไว้ในรูปที่ 4.5 ซึ่งจาก กราฟ XRD พบว่า PZT ที่เกิดขึ้นประกอบด้วยเฟสสองเฟสวางตัวอยู่ร่วมกัน ซึ่งเมื่อนำไปเทียบกับ แฟ้มข้อมูลมาตรฐาน JCPDS พบว่าสอดคล้องกับข้อมูลในฐานข้อมูล JCPDS file no. 73-2022 ซึ่ง มีโครงสร้างผลึกอยู่ในระบบรอมโบฮีดรอลและมีสูตรเคมีเป็น Pb(Zr_{0.58}Ti_{0.42})O₃ และฐานข้อมูล JCPDS file no. 33-0784 ซึ่งมีโครงสร้างผลึกอยู่ในระบบเตตระโกนอลและมีสูตรเคมีเป็น Pb(Zr_{0.52}Ti_{0.48})O₃ ตามลำดับ ซึ่งเป็นที่ทราบกันดีอยู่แล้วว่าที่สัดส่วนองค์ประกอบของสาร PZT บริเวณนี้นั้นเป็นบริเวณของรอยต่อเฟส (MPB) ทำให้เกิดการแกว่งของโครงสร้างที่สามารถเกิดขึ้น ได้ง่ายไม่ว่าจะเป็นแบบเตตระโกนอลหรือรอมโบฮีดรอลของสาร PZT นอกจากนี้จากกราฟ XRD ก็ พบว่าไม่ปรากฏเฟสของไพโรคลอร์หรือเฟสแปลกปลอมใด ๆ เกิดขึ้นเลย จากนั้นนำผง PZT ที่ได้ไป ทำการขึ้นรูปเป็นเซรามิกต่อไปพร้อมกับทำการเผาซินเตอร์ทั้งแบบธรรมดาและแบบสองขั้นตอน ภายใต้เงื่อนไขที่หลากหลายเพื่อหาลักษณะเฉพาะต่อไป

กราฟความสัมพันธ์ระหว่างความหนาแน่นสัมพัทธ์และน้ำหนักที่สูญเสียของเซรามิก PZT ที่ ผ่านการเผาชินเตอร์ที่เงื่อนไขต่าง ๆ ได้แสดงไว้ในรูปที่ 4.6(ก) และ 4.6(ข) โดยความหนาแน่นทาง ทฤษฎีของเซรามิก PZT นั้นมีค่า

□ = 8.006 g/cm³ ซึ่งเมื่อพิจารณากราฟความสัมพันธ์ระหว่าง ความหนาแน่นสัมพัทธ์กับอุณหภูมิชินเตอร์ของเซรามิก PZT เปรียบเทียบกันระหว่างการเผาชิน เตอร์แบบธรรมดาและแบบสองขั้นตอน (รูป 4.6(ก)) จะเห็นได้ว่าในกระบวนการเผาชินเตอร์แบบ สองขั้นตอนนั้นได้ทำการกำหนดอุณหภูมิการเผาขั้นที่หนึ่งให้คงที่ไว้ที่ 800 องศาเซลเซียสเป็น เวลานาน 2 ชั่วโมงด้วยอัตราการขึ้น/ลงของอุณหภูมิเป็น 5 องศาเซลเซียสต่อนาที จากนั้นจึงทำการ เปลี่ยนแปลงอุณหภูมิการเผาขั้นที่สองให้อยู่ในช่วง 900 − 1100 องศาเซลเซียส ซึ่งพบว่าค่าความ หนาแน่นสัมพัทธ์ของกระบวนการเผาชินเตอร์แบบนี้จะมีค่าเพิ่มขึ้นอย่างเห็นได้ชัดเจนเมื่ออุณหภูมิ ซินเตอร์เพิ่มขึ้น และเมื่อให้อุณหภูมิขั้นที่สองสูงราว 1100 องศาเซลเซียสก์พบว่าสามารถเตรียม เซรามิก PZT ที่มีความหนาแน่นสูงสุด (~86%) ได้สำเร็จ ในขณะที่การเผาชินเตอร์แบบธรรมดานั้น ต้องให้อุณหภูมิสูงขึ้นไปอีกถึง 1200 องศาเซลเซียสจึงจะเกิดเซรามิก PZT ที่มีความหนาแน่นสูงสุด (97%) ซึ่งก็ทำให้เกิดการสูญเสียของน้ำหนักมากเช่นกัน (รูป 4.6(ข)) อย่างไรก็ตาม แม้ว่าความ หนาแน่นสูงสุดของการเผาชินเตอร์แบบสองขั้นตอนของเซรามิก PZT นั้นจะมีค่าต่ำกว่าที่ได้จากการ

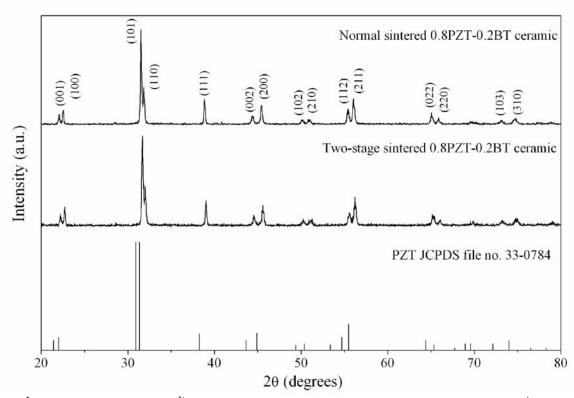

เผาซินเตอร์แบบธรรมดาก็ตาม แต่ก็พบว่าอัตราการสูญเสียน้ำหนักภายหลังการเผานั้นมีค่าลดลง อย่างเห็นได้ชัดซึ่งก็จัดได้ว่าเป็นสัญญาณที่ดีในการวางแผนการทำวิจัยต่อไป


ร**ูปที่ 4.5** แสดงแผนภาพการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ของผง PZT


จากนั้นนำเซรามิก PZT ที่ผ่านกระบวนการเผาซินเตอร์ทั้งสองแบบที่ให้ค่าความหนาแน่น สูงสุดมาตรวจสอบลักษณะโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) ซึ่งผลที่ได้แสดงไว้ในรูปที่ 4.7 ซึ่งจากรูปจะสามารถสังเกตได้อย่างชัดเจนว่าลักษณะโครงสร้าง จุลภาคของเซรามิก PZT ที่ผ่านการเผาซินเตอร์แบบสองขั้นตอน (รูป 4.7(ก)) แตกต่างจากเซรามิก PZT ที่ผ่านการเผาซินเตอร์แบบธรรมดา (รูป 4.7(ข)) พอสมควร โดยเซรามิก PZT ที่ผ่านการเผาซินเตอร์แบบธรรมดา (รูป 4.7(ข)) พอสมควร โดยเซรามิก PZT ที่ผ่านการเผาซินเตอร์แบบธรรมดานั้นจะมีลักษณะเกรนที่แน่นตัวกว่าและมีขนาดเกรนเฉลี่ยอยู่ในช่วง 3 - 5 ใมโครเมตร ในขณะที่เซรามิก PZT ที่ผ่านการเผาซินเตอร์แบบสองขั้นตอนนั้นแม้ว่าจะประกอบไป ด้วยรูพรุนจำนวนหนึ่งแต่ก็มีขนาดเกรนเฉลี่ยที่เล็กกว่ามากโดยมีขนาดเกรนเฉลี่ยเท่ากับ 1.46 ใมโครเมตร ซึ่งก็มีงานวิจัยจำนวนหนึ่งที่เชื่อว่าเกรนขนาดเล็กจะสามารถแสดงสมบัติทางไฟฟ้าที่ ดีกว่าออกมาได้ ซึ่งสาเหตุของการได้รับเซรามิก PZT ที่มีความหนาแน่นสูงและมีเกรนขนาดเล็กภายหลังจากการเผาซินเตอร์แบบสองขั้นตอนนั้นเชื่อว่าเป็นผลมาจากการให้อุณหภูมิต่ำเป็น ระยะเวลาสั้นถึงสองครั้งส่งผลให้กลไกการเติบโตของเกรนในระหว่างกระบวนการทางความร้อนช้า ลง อีกทั้งยังสามารถอธิบายได้ด้วยแนวคิดของ Chen และ Wang [9] ดังเช่นที่เกิดขึ้นกับเซรามิก BT ในหัวข้อข้างตัน โดยนักวิจัยกลุ่มนี้ได้ให้คำอธิบายโดยอาศัยความเป็นไปได้ของการเกิดการแน่นตัว

โดยไม่มีการเติบโตของเกรนเกิดขึ้น ซึ่งเชื่อว่าเป็นผลมาจากการเคลื่อนที่ของขอบเกรนน้อยลงใน ขณะเดียวกันก็มีการควบคุมการแพร่ระหว่างขอบเกรนให้ทำงานคงที่ และการเติบโตของเกรนที่ น้อยลงจะเกิดในระยะสุดท้ายของกระบวนการซินเตอร์ ซึ่งเป็นผลมาจากความแตกต่างของพลังงาน จลน์ในการแพร่ระหว่างขอบเกรนและการเคลื่อนที่ของขอบเกรนเป็นสำคัญ

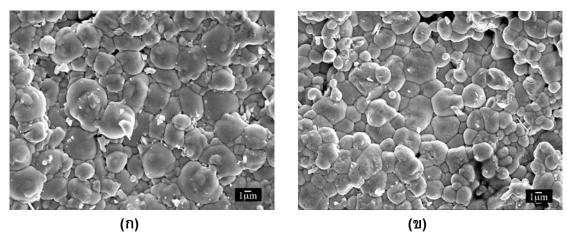
ร**ูปที่ 4.6** กราฟแสดงความสัมพันธ์ระหว่าง (ก) ความหนาแน่นสัมพัทธ์ และ (ข) น้ำหนักที่สูญเสีย กับอุณหภูมิซินเตอร์ของเซรามิก PZT ที่ผ่านการซินเตอร์แบบธรรมดาและแบบสองขั้นตอน


รูปที่ 4.7 แสดงลักษณะโครงสร้างจุลภาคของเซรามิก PZT ที่ผ่านการซินเตอร์ (ก) แบบธรรมดาและ (ข) แบบสองขั้นตอน

4.3 ผลการเผาซินเตอร์แบบสองขั้นตอนของเซรามิกเลดเซอร์โคเนตไทเทเนต-แบเรียมไทเท เนต

จากการศึกษาผลของกระบวนการซินเตอร์แบบสองขั้นตอนที่มีต่อลักษณะเฉพาะของเซรา มิกแบเรียมไทเทเนต (BT) และเซรามิกเลดเซอร์โคเนตไทเทเนต (PZT) ซึ่งมีองค์ประกอบทางเคมีที่ แตกต่างกันอย่างสิ้นเชิงซึ่งจากผลการวิจัยดังที่กล่าวไปแล้วในหัวข้อข้างต้นพบว่ามีผลการวิจัย บางส่วนที่แสดงผลสอดคล้องกัน อาทิเช่น ลักษณะเฟสที่เกิดขึ้นและโครงสร้างจุลภาค และมีบางส่วน ที่ให้ผลแตกต่างกันโดยเฉพาะค่าความหนาแน่นและน้ำหนักที่สูญเสียซึ่งจะเห็นว่าเป็นผลโดยตรง จากองค์ประกอบทางเคมีที่แตกต่างกันนั่นเอง ดังนั้น ผู้วิจัยจึงได้มีแนวคิดที่จะนำสารทั้งสองตัวนี้มา ผสมกันให้เกิดเป็นองค์ประกอบเดียวจากนั้นจะทำการศึกษาผลของกระบวนการซินเตอร์แบบสอง ขั้นตอนที่มีต่อลักษณะเฉพาะของเซรามิกดังกล่าวนี้ต่อไป

โดยในงานวิจัยในส่วนนี้ได้เลือกทำการเตรียมเชรามิกในระบบเลดเซอร์โคเนตไทเทเนตแบเรียมไทเทเนตที่มีสัดส่วนองค์ประกอบเป็น 0.8PZT-0.2BT จากนั้นจึงนำไปเตรียมเป็นเชรามิก ด้วยเทคนิคการเผาซินเตอร์แบบธรรมดาและแบบสองขั้นตอน ซึ่งเมื่อทำการตรวจสอบเฟสที่เกิดขึ้น ด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (XRD) ของเซรามิก 0.8PZT-0.2BT ที่ผ่านการเผาซินเตอร์ ทั้งสองแบบเปรียบเทียบกันแล้วผลที่ได้แสดงไว้ในรูปที่ 4.8 ซึ่งจากกราฟ XRD จะเห็นว่าแบบ แผนการเลี้ยวเบนของรังสีเอ็กซ์ของเซรามิกที่ผ่านการเผาซินเตอร์ทั้งสองแบบนั้นไม่มีความแตกต่าง กันเลย ให้พีคที่เป็นเฟสเดี่ยวของเซรามิก 0.8PZT-0.2BT และมีโครงสร้างแบบเพอรอฟสไกด์ เหมือนกันทั้งสองกระบวนการ ซึ่งจากข้อมูลพื้นฐานนี้สามารถบอกได้ว่าเซรามิก 0.8PZT-0.2BT ดังกล่าวมีโครงสร้างผลึกเป็นแบบเตตระโกนอล มีลักษณะแบบแผนการเลี้ยวเบนใกล้เคียงกับสาร PZT และ BT โดยแบบแผนเลื่อน (shift) จากแบบแผนของ BT เข้าหาแบบแผนของ PZT ที่ สอดคล้องกับฐานข้อมูลมาตรฐาน JCPDS file no. 33-0784 และเมื่อทำการคำนวณค่าคงที่ทางผลึก (lattice parameters) จากพีค XRD ด้วยวิธี nonlinear least-square พบว่าเซรามิก 0.8PZT-0.2BT ที่ผ่านการเผาซินเตอร์แบบธรรมดานั้นมีค่า a = 0.4013 นาโนเมตร และค่า c = 0.4071 นาโนเมตร


ในขณะที่เซรามิก 0.8PZT-0.2BT ที่ผ่านการเผาซินเตอร์แบบสองขั้นตอนนั้นมีค่า a = 0.3994 นา โนเมตร และค่า c = 0.4056 นาโนเมตร

ร**ูปที่ 4.8** แสดงแผนภาพการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ของเซรามิก 0.8PZT-0.2BT ที่ผ่านการ ชินเตอร์แบบธรรมดาและแบบสองขั้นตอน

จากนั้นนำเซรามิก 0.8PZT-0.2BT ที่ผ่านการซินเตอร์ทั้งแบบธรรมดาและแบบสองขั้นตอน แล้วให้ค่าความหนาแน่นสูงสุดมาตรวจสอบลักษณะโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์แบบส่อง กราด (SEM) ซึ่งผลที่ได้แสดงไว้ในรูปที่ 4.9 โดยจากรูปแสดงให้เห็นว่าเซรามิก 0.8PZT-0.2BT ที่ผ่านการซินเตอร์ทั้งสองแบบนั้นแสดงลักษณะโครงสร้างจุลภาคที่มีความแน่นตัวดี มีลักษณะเกรนที่ เป็นเนื้อเดียวกัน (homogeneous) ซึ่งเซรามิกที่ผ่านการเผาซินเตอร์แบบธรรมดานั้นมีขนาดเกรนที่ค่อนข้างหลากหลายอยู่ในช่วง 0.5 – 10 ไมโครเมตร ส่วนเซรามิกที่ผ่านการเผาซินเตอร์แบบสองขั้นตอนนั้นจะแตกต่างออกไปโดยมีเกรนที่เล็กกว่าและมีขนาดเกรนเฉลี่ยราว 2.0 ไมโครเมตร สำหรับขั้นตอนการเผาซินเตอร์แบบสองขั้นตอนนั้นได้ทำการกำหนดอุณหภูมิขั้นที่หนึ่งไว้ที่ 1000 องศาเซลเซียส ใช้เวลาเผาแช่นาน 2 ชั่วโมง ด้วยอัตราการขึ้น/ลงอุณหภูมิ 10 องศาเซลเซียส/นาที จากนั้นทำการเปลี่ยนแปลงอุณหภูมิขั้นที่สองให้อยู่ในช่วง 1000 – 1200 องศาเซลเซียส ซึ่งเมื่อทำการตรวจสอบลักษณะทางกายภาพและค่าความหนาแน่นสัมพัทธ์ของเซรามิก 0.8PZT-0.2BT ที่ผ่านการเผาซินเตอร์ที่เงื่อนไขต่าง ๆ แล้วพบว่าความหนาแน่นสัมพัทธ์ของเซรามิกที่ผ่านการเผาซิน เตอร์แบบสองขั้นตอนจะมีค่าเพิ่มขึ้นอย่างชัดเจนจาก 69% เป็น 82% เมื่ออุณหภูมิเพิ่มขึ้นในขณะที่ขนาดเกรนไม่เปลี่ยนแปลงมากนักและคงตัวอยู่ในช่วง 1-5 ไมโครเมตร สำหรับในส่วนของเซรามิกที่ขนาดเกรนไม่เปลี่ยนแปลงมากนักและคงตัวอยู่ในช่วง 1-5 ไมโครเมตร สำหรับในส่วนของเซรามิกที่

ผ่านการเผาซินเตอร์แบบธรรมดานั้นแม้ว่าจะมีค่าความหนาแน่นสัมพัทธ์สูงที่สุดถึง 99% แต่ก็มี เกรนที่มีขนาดใหญ่มากถึง 10 ไมโครเมตร ซึ่งจากผลการวิจัยนี้ก็เป็นการยืนยันอีกครั้งหนึ่งว่า เทคนิคการเผาซินเตอร์แบบสองขั้นตอนนั้นสามารถช่วยลดขนาดเกรนของเซรามิกเฟร์โรอิเล็กทริก ได้ อย่างไรก็ตามแม้ว่าขนาดเกรนของเซรามิก 0.8PZT-0.2BT ที่ผ่านการเผาซินเตอร์แบบสอง ขั้นตอนจะเล็กลงมากแต่ค่าความหนาแน่นสัมพัทธ์ของน้อยลงเช่นกันซึ่งนั่นก็เป็นผลมาจากการมี องค์ประกอบของ PbO ซึ่งเกิดการสูญเสียไปในระหว่างกระบวนการให้ความร้อนถึงสองครั้งนั่นเอง อย่างไรก็ตาม จากผลการทดลองก็สามารถกล่าวได้ว่าหากมีการออกแบบอุณหภูมิในการเผาและ กระบวนการให้ความร้อนที่ดีก็สามารถได้รับเซรามิกที่มีความหนาแน่นสูงได้

รูปที่ 4.9 แสดงลักษณะโครงสร้างจุลภาคของเซรามิก 0.8PZT-0.2BT ที่ผ่านการซินเตอร์ (ก) แบบ ธรรมดาที่อุณหภูมิ 1300 องศาเซลเซียส และ (ข) แบบสองขั้นตอนที่อุณหภูมิ 1000/1200 องศา เซลเซียส

อย่างไรก็ตาม แม้ว่าคำอธิบายเกี่ยวกับกลไกที่เกิดขึ้นเกี่ยวกับการเปลี่ยนแปลงของลักษณะ โครงสร้างจุลภาคของเซรามิก 0.8PZT-0.2BT ในระหว่างการเผาซินเตอร์แบบธรรมดาเทียบกับการ เผาซินเตอร์แบบสองขั้นตอนนั้นยังไม่มีคำอธิบายที่แน่ชัด แต่สิ่งที่สามารถบอกได้ในตอนนี้ก็คือการ นำสารระหว่าง BT กับ PZT มาผสมกันนั้นแสดงลักษณะโครงสร้างจุลภาคที่หลากหลายเนื่องจาก สารทั้งสองตัวนี้มีพฤติกรรมการเติบโตของเกรนในแต่ละระนาบที่แตกต่างกันโดยธรรมชาติอยู่แล้วจึง ส่งผลให้มีลักษณะโครงสร้างจุลภาคที่หลากหลายออกไปนั่นเอง [7] อย่างไรก็ตาม การก่อเกิดเฟส และเกรนของเซรามิกเฟร์โรอิเล็กทริกในระหว่างกระบวนการให้ความร้อนนั้นก็สามารถควบคุมได้ ภายใต้เงื่อนไขของกระบวนการซินเตอร์และสิ่งแวดล้อมในระหว่างการโตของเกรนเป็นสำคัญ [8] นอกจากนี้ สิ่งที่เห็นได้ชัดเจนที่สุดของการศึกษาผลของกระบวนการซินเตอร์แบบสองขั้นตอนที่มีต่อ ลักษณะเฉพาะของเซรามิก 0.8PZT-0.2BT นั้นก็คือเกรนมีขนาดเล็กลงอย่างเห็นได้ชัดซึ่งก็สามารถ อธิบายได้เช่นเดียวกับกรณีของเซรามิก BT และ PZT นั่นก็คือเป็นผลมาจากการให้อุณหภูมิต่ำเป็น ระยะเวลาสั้นถึงสองครั้งส่งผลให้กลไกการเติบโตของเกรนในระหว่างกระบวนการตางความร้อนช้า ลง นอกจากนี้ยังสามารถอธิบายได้โดยอาศัยความเป็นไปได้ของการเกิดการแน่นตัวโดยไม่มีการ

เติบโตของเกรนเกิดขึ้นดังแนวคิดของ Chen และ Wang [9] ซึ่งเชื่อว่าเป็นผลมาจากการเคลื่อนที่ ของขอบเกรนน้อยลงในขณะเดียวกันก็มีการควบคุมการแพร่ระหว่างขอบเกรนให้ทำงานคงที่ และ การเติบโตของเกรนที่น้อยลงจะเกิดในระยะสุดท้ายของกระบวนการซินเตอร์ ซึ่งเป็นผลมาจากความ แตกต่างของพลังงานจลน์ในการแพร่ระหว่างขอบเกรนและการเคลื่อนที่ของขอบเกรนเป็นสำคัญ

5. สรุปและวิจารณ์ผลการทดลอง

จากการศึกษาอิทธิพลของกระบวนการเผาซินเตอร์แบบสองขั้นตอนที่มีต่อพฤติกรรมการ เกิดเฟส ความหนาแน่น โครงสร้างจุลภาค และสมบัติทางไฟฟ้าของเซรามิกเฟร์โรอิเล็กทริกที่มี องค์ประกอบแตกต่างกัน คือ แบเรียมไทเทเนต (BT) เลดเซอร์โคเนตไทเทเนต (PZT) และระบบ เลดเซอร์โคเนตไทเทเนต-แบเรียมไทเทเนต (0.8PZT-0.2BT) พร้อมทั้งเปรียบเทียบกับกรณีที่ใช้ กระบวนการเผาซินเตอร์แบบธรรมดานั้น พบว่าสามารถสรุปผลการวิจัยได้ว่าการซินเตอร์แบบสอง ขั้นตอนเป็นอีกทางเลือกหนึ่งนอกเหนือจากการซินเตอร์แบบธรรมดา เนื่องจากเป็นเทคนิคที่ง่าย ประหยัดเวลา สิ้นเปลืองค่าใช้จ่ายน้อย เหมาะสำหรับพัฒนาใช้ในอุตสาหกรรม โดยสามารถสรุปผล จากการทดลองกับเซรามิกเฟร์โรอิเล็กทริกที่มีองค์ประกอบแตกต่างกันได้ ดังนี้

- 5.1 สามารถเตรียมเซรามิกแบเรียมไทเทเนต (BT) ที่มีความหนาแน่นสูง (97%) ด้วย เทคนิคการเผาซินเตอร์แบบสองขั้นตอน โดยให้ค่าคงที่ทางไดอิเล็กทริกสูงกว่าการซิน เตอร์แบบธรรมดาเล็กน้อย ณ อุณหภูมิคูรี และไม่พบการเปลี่ยนแปลงของอุณหภูมิคูรี ของเซรามิกดังกล่าวด้วย นอกจากนั้นแล้วยังพบว่าเทคนิคดังกล่าวสามารถเตรียมเซรา มิก BT ให้มีเกรนที่สม่ำเสมอขนาดน้อยกว่า 1 ไมโครเมตร ซึ่งเป็นการยากที่จะพบใน เซรามิกที่ผ่านการซินเตอร์แบบธรรมดา
- 5.2 สามารถเตรียมเซรามิกเลดเซอร์โคเนตไทเทเนต (PZT) ที่มีความหนาแน่นสูง (86%) มี เกรนขนาดเล็ก (ขนาดเกรนเฉลี่ย 1.46 ไมโครเมตร) และมีการสูญเสียของน้ำหนักใน ระหว่างการเผาต่ำด้วยเทคนิคการเผาซินเตอร์แบบสองขั้นตอนได้สำเร็จ
- 5.3 สามารถเตรียมเซรามิกในระบบเลดเซอร์โคเนตไทเทเนต-แบเรียมไทเทเนต (0.8PZT- 0.2BT) ที่มีความแน่นตัวดีและมีเกรนขนาดเล็กได้สำเร็จด้วยเทคนิคการเผาซินเตอร์ แบบสองขั้นตอน

6. ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

- 6.1 ควรทำการศึกษาผลของการเผาซินเตอร์แบบสองขั้นตอนที่มีต่อเซรามิกเฟร์โรอิเล็กทริกในระบบ อื่นๆ ที่มีองค์ประกอบที่หลากหลายและซับซ้อนมากขึ้น เช่น PMN, PT, PMN-PT
- 6.2 ควรทำการเปลี่ยนแปลงตัวแปรในระหว่างกระบวนการเผาซินเตอร์ให้หลากหลายมากยิ่งขึ้น เพื่อให้ได้ผลการทดลองที่ละเอียดมากยิ่งขึ้น เช่น เวลาที่ใช้ในการเผาแช่ และอัตราขึ้น/ลงขอ งอณหภูมิในการเผา บรรยากาศในการเผาซินเตอร์
- 6.3 ควรศึกษาผลของการเผาซินเตอร์แบบสองขั้นตอนที่มีต่อสมบัติอื่นๆ เพิ่มเติม เช่น สมบัติเชิงกล สมบัติเชิงแสง สมบัติเพียโซอิเล็กทริก
- 6.4 ควรมีการศึกษาแบบจำลองเชิงเทอร์โมไดนามิกส์เพิ่มเติมมากยิ่งขึ้น เพื่อให้สามารถเข้าใจกลไก ที่เกิดขึ้นภายในระหว่างกระบวนการซินเตอร์เพิ่มขึ้น

7. เอกสารอ้างอิง

- [1] W. Maison, R. Kleeberg, R. Heimann, S. Phanichphant, J. Eur. Ceram. Soc. 23 (2003) 127-132.
- [2] J. K. Lee, K. S. Hong, J. W. Jang, J. Am. Ceram. Soc. 84 (2001) 2001-2006.
- [3] V. Berbenni, A. Marini, G. Bruni, Thermochimica acta 374 (2001) 151-158.
- [4] JCPDS-ICDD card no. 5-0626. International Centre for Diffraction Data, in: Newtown, PA, 2002.
- [5] B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971, p. 317.
- [6] S. H. Hur, J. K. Lee, K. W. Park, K. S. Hong, S. J. Park, Mater. Lett. 35 (1998) 78-84.
- [7] M. H. Lin, J. F. Chou, H. Y. Lu, J. Eur. Ceram. Soc. 20 (2000) 517-526.
- [8] R. M. German, Sintering Theory and Practice Wiley, New York, 1996, p. 550.
- [9] I. W. Chen, X. H. Wang, Nature 404 (2000) 168-171.
- [10] H. T. Kim, Y. H. Han, Ceram. Int. 30 (2004) 1719-1723.
- [11] G. Arlt, D. Hennings, G. d. With, J. Appl. Phys. 58 (1985) 1619-1625.
- [12] K. Kinoshita, A. Yamaji, J. Appl. Phys. 47 (1976) 371-373.
- [13] J. S. Choi, H. G. Kim, J. Mater. Sci. 27 (1992) 1285-1290.
- [14] W. Chaisan, R. Yimnirun, S. Ananta, D. P. Cann, Mater. Lett. 59 (2005) 3732-3737.

8. ภาคผนวก

8.1 ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ 13 เรื่อง ได้แก่

- (1) **W. Chaisan**, R. Yimnirun, S. Ananta, "Two-Stage Sintering of Barium Titanate and Resulting Characteristics" *Ferroelectrics*, **346**, 84-92 (2007). (Impact factor 0.517)
- (2) W. Chaisan, R. Yimnirun and S. Ananta, "Changes in Ferroelectric Properties of Barium Titanate Ceramic with Compressive Stress", *Physica Scripta*, T129, 205-208 (2007).
- (3) W. Chaisan, O. Khamman, R. Yimnirun, S. Ananta, "A Two-stage Solid-state Reaction to Lead Zirconate Titanate Powder" Ferroelectrics, 356, 242-246 (2007). (impact factor 0.517)
- (4) R. Wongmaneerung, **W. Chaisan**, O. Khamman, R. Yimnirun and S. Ananta, "Potential of Vibro-milling Technique for Preparation of Electroceramic Nanopowders", *Ceramics International*, **34 (4)**, 813-817 (2008). (impact factor 1.040)
- (5) O. Khamman, R. Wongmaneerung, W. Chaisan, R. Yimnirun and S. Ananta, "Preparation of Perovskite Nanopowders by Vibro-milling Technique", *Journal of Alloys and Compounds*, 456, 492-497 (2008).
- (6) N. Vittayakorn, N. Chaiyo, R. Muanghlua, A. Ruangphanit and W.C. Vittayakorn, "Effect of Annealing on the Structure and Dielectric Properties in PZT-PCoN Ceramics", Advanced Materials Research, 55-57, 49-52 (2008).
- (7) **W. C. Vittayakorn**, "Microstuctural Study and Properties of 0.8PZT-0.2BT Ceramics using a Two-stage Sintering Procedure", *Advanced Materials Research*, **55-57**, 93-96 (2008).
- (8) W. Banlue, R. Muanghlua, **W.C. Vittayakorn** and N. Vittayakorn, "Synthesis, Crystal Structures, Phase Transition Characterization and Thermal Properties of the (1– x)PbZrO₃-xPb(Co_{1/3}Nb_{2/3})O₃ Solid Solution System", *Advanced Materials Research*, **55-57**, 121-124 (2008).
- (9) R. Muanghlua, S. Niemchareon, W.C. Vittayakorn and N. Vittayakorn, "Effects of Zr/Ti Ratio on the Structure and Ferroelectric Properties in PZT-PZN-PMN Ceramics Near the Morphotropic Phase Boundary", Advanced Materials Research, 55-57, 125-128 (2008).
- (10)N. Chaiyo, R. Muanghlua, A. Ruangphanit, **W.C. Vittayakorn** and N. Vittayakorn, "Synthesis, Phase Formation and Characterization of Co₄Nb₂O₉ Powders

Synthesized by Solid-State Reaction", *Advanced Materials Research*, **55-57**, 873-876 (2008).

- (11) W. Chaisan, R. Yimnirun, and S. Ananta, "Preparation and Characterization of Ceramic Nanocomposites in the PZT-BT System", *Ceramics International*, **35**, 121-124 (2009). (impact factor 1.040)
- (12)**W. Chaisan**, R. Yimnirun, and S. Ananta, "Effect of Vibro-milling Time on Phase Formation and Particle Size of Barium Titanate Nanopowders", *Ceramics International*, **35**, 173-176 (2009). (impact factor 1.040)
- (13) W.C. Vittayakorn, R. Yimnirun and S. Ananta, "Composition, Structure and Properties of PZT-BT Ceramics Prepared by Two-stage Sintering", *Key Engineering Materials* (2009), in press.

8.2 การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์

โครงการวิจัยนี้ได้สร้างองค์ความรู้ใหม่เรื่องกระบวนการเตรียมเซรามิกเฟร์โรอิเล็กทริกให้มีความหนาแน่นสูง มีเกรนขนาดเล็กและให้สมบัติทางไฟฟ้าที่ดีด้วยวิธีการเผาซินเตอร์ แบบง่ายๆ เสียค่าใช้จ่ายน้อยทั้งยังช่วยลดอุณหภูมิซินเตอร์ลงจากเดิมได้อีกด้วย นอกจากนี้ ยังเป็นเทคโนโลยีในการเตรียมเซรามิกในระบบ BT และ PZT ให้มีความบริสุทธ์สูง มีความ หนาแน่นดี และให้สมบัติทางไฟฟ้าที่ดี โดยที่มีค่าใช้จ่ายในการะบวนการเตรียมสารต่ำ ซึ่ง เหมาะสำหรับนำไปเป็นวัตถุดิบสำหรับอุตสาหกรรมชิ้นส่วนอิเล็กทรอนิกส์ เพื่อลดต้นทุน การผลิตและลดการนำเข้าจากต่างประเทศ

- เชิงนโยบาย

ผลงานที่ได้จากโครงการวิจัยนี้ได้ ใช้เป็นตัวกำหนดทิศทางงานวิจัยที่จะทำต่อยอด ในอนาคต และใช้เป็นส่วนช่วยในการกำหนดหัวข้อวิจัยในมุมมองอื่น ๆสำหรับนักศึกษา และ ผู้ร่วมวิจัยในสาขาอื่น ๆ ซึ่งเป็นประโยชน์ในการเชื่อมโยงองค์ความรู้ให้เกิดหลากหลายมาก ขึ้น

- เชิงสาธารณะ

โครงการวิจัยนี้ได้เกิดเครือข่ายงานวิจัยกับหลากหลายภาคส่วนด้วยกันทั้งในองค์กร ภายในมหาวิทยาลัยและองค์กรนอกมหาวิทยาลัย อาทิเช่น ศก. ดร.ทวี ตันฆศิริ รศ.ดร. สุ พล อนันตา และ ผศ.ดร. รัตติกร ยิ้มนิรัญ จากภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ คุณรังสรรค์ เมืองเหลือ จากศูนย์วิจัยอิเล็กทรอนิกส์ คณะ วิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ผศ.ดร. นราธิป วิทยากร จากภาควิชาเคมี คณะวิทยาศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง นอกจากนี้ผู้วิจัยได้มีความร่วมกับนักวิจัยต่างประเทศหลายท่าน อาทิเช่น Prof.

Dr. David P. Cann ณ มหาวิทยาลัยโอเรกอน ประเทศสหรัฐอเมริกา และ Prof. Dr. Xiaoli Tan ณ มหาวิทยาลัยไอโอวา ประเทศสหรัฐอเมริกา

- เชิงวิชาการ

ผลงานวิจัยที่เกิดขึ้นบางส่วนนำไปประยุกต์ใช้สอนในกระบวนวิชาสมบัติของวัสดุ 2 (Property of Materials II) ซึ่งเป็นกระบวนวิชาระดับปริญญาตรีของนักศึกษาสาขาวิชาเอก วัสดุศาสตร์ นอกจากนี้ ประสบการณ์ที่ได้จากงานวิจัยยังสามารถนำไปประยุกต์อบรม นักศึกษาปริญญาโท-เอก เจ้าหน้าที่ และผู้ช่วยวิจัยให้มีทักษะและความชำนาญมากยิ่งขึ้น ก่อให้เกิดองค์ความรู้ในองค์กร ผลงานวิจัยส่วนใหญ่สามารถตีพิมพ์ในวารสารระดับ นานาชาติ รวมไปถึงการเสนอผลงานวิจัยในงานประชุมวิชาการที่เกี่ยวข้องทั้งในระดับชาติ และนานาชาติ อีกทั้งยังเกิดนักวิจัยรุ่นใหม่ขึ้น

8.3 ผลงานอื่น ๆ

8.3.1 ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ 5 เรื่อง ได้แก่

- (1) **W. Chaisan** and N. Vittayakorn, "Two-state Sintering of PZT Ceramic", *Journal of Electron Microscopy Society of Thailand*, **21(1)**, 261-270 (2007).
- (2) **W. Chaisan** and N. Vittayakorn, "Effect of the Annealing Time on the Microstructure of (Ti_{0.5}Sn_{0.5})O₃ Ceramics", *Journal of Electron Microscopy Society of Thailand*, **21(1)**, 256-260 (2007).
- (3) S. Somjaroen, W. Chaisan and N. Vittayakorn, "Synthesis of Perovskite Ceramics PZT-PCoN Via High-temperature Solid State Reaction and Their Dielectric Properties", Journal of Electron Microscopy Society of Thailand, 21(1), 346-350 (2007).
- (4) S. Wirunchit, W. Koonalintip, **W. Chaisan** and N. Vittayakorn, "Characterisation of PbZrO₃-Pb(Ni_{1/3}Nb_{2/3})O₃ Ceramics by DTA-TG, SEM, XRD and Dielectric Permittivity Tests" *Journal of Electron Microscopy Society of Thailand*, **21(1)**, 351-355 (2007).
- (5) **W. Chaisan**, "Effect of Sintering Temperature on the Hysteresis Properties of Barium Titanate Ceramic" *NU Science Journal*, **4 (2)**, 132-139 (2008).

8.3.2 ผลงานวิจัยที่นำเสนอในที่ประชุมวิชาการในประเทศ 7 เรื่อง ได้แก่

(1) **W. Chaisan** and N. Vittayakorn, "Two-state Sintering of PZT Ceramic", *The 24*th Annual Conference of the Microscopy Society of Thailand, Bangkok, Thailand. February, 2007.

- (2) **W. Chaisan** and N. Vittayakorn, "Effect of the Annealing Time on the Microstructure of (Ti_{0.5}Sn_{0.5})O₃ Ceramics", *The 24th Annual Conference of the Microscopy Society of Thailand*, Bangkok, Thailand. February, 2007.
- (3) S. Somjaroen, **W. Chaisan** and N. Vittayakorn, "Synthesis of Perovskite Ceramics PZT-PCoN Via High-temperature Solid State Reaction and Their Dielectric Properties", *The 24th Annual Conference of the Microscopy Society of Thailand*, Bangkok, Thailand. February, 2007.
- (4) S. Wirunchit, W. Koonalintip, **W. Chaisan** and N. Vittayakorn, "Characterisation of PbZrO₃-Pb(Ni_{1/3}Nb_{2/3})O₃ Ceramics by DTA-TG, SEM, XRD and Dielectric Permittivity Tests" *The 24th Annual Conference of the Microscopy Society of Thailand*, Bangkok, Thailand. February, 2007.
- (5) **W. Chaisan**, "Microstructure Evolution of (1-x)PZT-xBT Ceramics", *The 25th Annual Conference of the Microscopy Society of Thailand*, Pisanulok, Thailand. January, 2008.
- (6) **W.C. Vittayakorn**, R. Yimnirun and S. Ananta, "Two-stage Sintering of Ferroelectric Ceramics", *The 34th Congress on Science and Technology of Thailand*, Bangkok, Thailand. October, 2008.
- (7) P. Kanta and W.C. Vittayakorn, "Preparation and Electrical Properties of Ferroelectric Ceramic in the Bismuth Sodium Titanate – Barium Titanate System", The 34th Congress on Science and Technology of Thailand, Bangkok, Thailand. October, 2008.

8.3.3 ผลงานวิจัยที่นำเสนอในที่ประชุมวิชาการต่างประเทศ 9 เรื่อง ได้แก่

- (1) **W. Chaisan**, R. Yimnirun and S. Ananta, "Changes in Ferroelectric Properties of Barium Titanate Ceramic with Compressive Stress", *The 2nd International Symposium on Functional Materials*, Hangzhou, China. May, 2007.
- (2) W.C. Vittayakorn, "Microstuctural Study and Properties of 0.8PZT-0.2BT Ceramics using a Two-stage Sintering Procedure", *Smartmat08 & IWOFM-2*, Chiang Mai, Thailand. April, 2008.
- (3) N. Vittayakorn, N. Chaiyo, R. Muanghlua, A. Ruangphanit and **W.C. Vittayakorn**, "Effect of Annealing on the Structure and Dielectric Properties in PZT-PCoN Ceramics", *The 6th Asian Meeting on Ferroelectrics (AMF-6)*, Taipei, Taiwan. August, 2008.

- (4) **W. C. Vittayakorn**, "Microstuctural Study and Properties of 0.8PZT-0.2BT Ceramics Using a Two-stage Sintering Procedure", *The 6th Asian Meeting on Ferroelectrics* (AMF-6), Taipei, Taiwan. August, 2008.
- (5) M. Sutapun, R. Muanghlua, C-C. Huang, D.P. Cann, W.C. Vittayakorn and N. Vittayakorn, "Influence of Fabrication Processing on Perovskite Phase Formation of KNN-BZT", The 6th Asian Meeting on Ferroelectrics (AMF-6), Taipei, Taiwan. August, 2008.
- (6) W. Banlue, R. Muanghlua, **W.C. Vittayakorn** and N. Vittayakorn, "Synthesis, Crystal Structures, Phase Transition Characterization and Thermal Properties of the (1– x)PbZrO₃-xPb(Co_{1/3}Nb_{2/3})O₃ Solid Solution System", *The 6th Asian Meeting on Ferroelectrics (AMF-6)*, Taipei, Taiwan. August, 2008.
- (7) R. Muanghlua, S. Niemchareon, W.C. Vittayakorn and N. Vittayakorn, "Effects of Zr/Ti Ratio on the Structure and Ferroelectric Properties in PZT-PZN-PMN Ceramics Near the Morphotropic Phase Boundary", The 6th Asian Meeting on Ferroelectrics (AMF-6), Taipei, Taiwan. August, 2008.
- (8) N. Chaiyo, R. Muanghlua, A. Ruangphanit, W.C. Vittayakorn and N. Vittayakorn, "Synthesis, Phase Formation and Characterization of Co₄Nb₂O₉ Powders Synthesized by Solid-State Reaction", *The 6th Asian Meeting on Ferroelectrics (AMF-6)*, Taipei, Taiwan. August, 2008.
- (9) **W.C. Vittayakorn**, R. Yimnirun and S. Ananta, "Composition, Structure and Properties of PZT-BT Ceramics Prepared by Two-stage Sintering", *The* 6th Asian Meeting on Electroceramics (AMEC-6), Tsukuba, Japan. October, 2008.

DOI: 10.1080/00150190601180380

Two-Stage Sintering of Barium Titanate Ceramic and Resulting Characteristics

W. CHAISAN,* R. YIMNIRUN, AND S. ANANTA

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

The potential of a two-stage sintering technique as a low-cost and simple ceramic fabrication to obtain highly dense and pure barium titanate ceramics with small grain size was demonstrated in this study. Effects of designed sintering conditions on phase formation, densification, microstructure, and electrical properties of the BaTiO3 ceramics were examined via X-ray diffraction (XRD), Archimedes method, scanning electron microscopy (SEM), dielectric and hysteresis measurements, respectively. It has been found that, under suitable two-stage sintering conditions, the dense perovskite BT ceramics with fine grain can be successfully achieved with good electrical properties.

Keywords Barium titanate; sintering; microstructure; dielectric properties; ferroelectric properties

1. Introduction

Barium titanate (BaTiO₃ or BT), which exhibits a perovskite structure and a Curie temperature \sim 120°C, is a classical ferroelectric material that has been extensively exploited both for academic and for technological utilizations over the past decades [1, 2]. Owing to its high dielectric constant, large mechanical-quality factor, large pyroelectric coefficient, nontoxic handling and low cost of manufacturing, compared to several lead-based perovskite ferroelectrics, ceramics based on BT have been strong candidates for several electronic applications, including ultrasonic transducers, multilayer capacitors, pyroelectric detectors, semiconductors with positive temperature coefficient of resistance (PTCR) and electro-optic devices [3–7]. Because of these important technological applications, there has been a great deal of interest in the preparation process of pure BT ceramic as well as in the electrical properties of BT-based ceramics [8, 9].

Electrical properties of BaTiO₃ depend strongly on microstructure as well as chemical compositions [1, 6]. It was reported earlier that the high value of dielectric constant can be revealed if polycrystalline BT of fine grain size ($<1~\mu m$) is achieved [10, 11]. Thus, a fine grain is essential to achieve optimum dielectric properties. The microstructure of BT can be controlled by two approaches. Utilizing additives to prohibit the grain growth is one approach. Some additives such as Dy, Nb and Ca have been reported to be effective grain growth inhibitors [12–14]. Another approach uses novel processing technique to modify the microstructure. Numerous studies on the sintering of barium titanate have been reported

in the literature [11, 15, 16]. Recently, a two-stage sintering method has been proposed by Chen and Wang to achieve the densification of ceramic bodies without significant grain growth [17]. Moreover, Kim and Han [11] found that intermediate dense and fine grain size BT ceramic was achieved from the two-stage sintering technique and showed much greater dielectric constant than that of the normal sintering technique. Since the two-stage sintering process is a low-cost technique and simple ceramic fabrication to obtain highly dense ceramics with pure phase, therefore, in this work a two-stage sintering method has been adopted to produce the fine grain BT ceramic. The influence of two-stage sintering on densification, microstructure, dielectric and ferroelectric properties of the ceramics is investigated with comparison to the normal sintering scheme.

2. Experimental Procedure

BaTiO₃ powders used in this study were prepared by a simple mixed oxide synthetic route. Commercially available powders of BaCO₃ and TiO₂ (anatase form), (Fluka, >99% purity) were used as starting materials. The mixing process was carried out by ball-milling a mixture of raw materials for 24 h with corundum media in isopropyl alcohol (IPA). After wet-milling, the slurry was dried at 120°C for 2 h and calcined in a closed alumina crucible, with the optimum calcination condition determined by the XRD method (1300°C for 2 h with heating/cooling rates of 5°C/min) [18]. Ceramic fabrication was achieved by adding 1 wt% polyvinyl alcohol (PVA) binder, prior to pressing as pellets (15 mm in diameter and 1.0 to 1.3 mm thick) in a pseudo-uniaxial die press at 100 MPa. Each pellet was placed in an alumina crucible together with atmosphere powders of identical chemical composition. In the so-called two-stage sintering process, the first sintering temperature (T_1) was assigned for 1100°C and variation of the second sintering temperature (T₂) between 1200°C and 1400°C was carried out (Fig. 1). For comparison, normal sintering process was also carried out at the firing temperature between 1250 and 1450°C for 2 h with constant heating/cooling rates of 5°C/min. The two sintering schemes also included the binder burn out process at 500°C for 1 h.

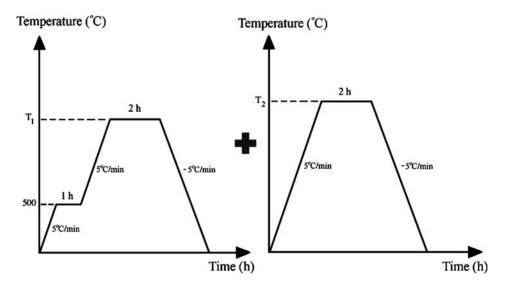


Figure 1. A two-stage method sintering profile.

Densities of the final sintered products were determined by using the Archimedes principle. Microstructural development was characterized using a JEOL JSM-840A scanning electron microscopy (SEM). Mean grain sizes of the sintered ceramics were subsequently estimated by employing the linear intercept method [19]. In order to evaluate the electrical properties, dense ceramics were polished to form flat, parallel faces (14 mm in diameter and 0.8 mm thick). Silver electrodes were then fired on both sides of the samples at 750°C for 12 min. The dielectric properties were measured at frequency of 10 kHz using a HIOKI 3532-50 LCR meter, on cooling through the transition range (200 to 25°C) with a rate of 3°C/min. For ferroelectric hysteresis characteristics, the polarization (P) was measured as a function of electric field (E), using a modified Sawyer-Tower circuit [20].

3. Results and Discussion

The XRD patterns of two stage sintered BT ceramic compared with normal sintered ceramic were illustrated in Fig. 2. The results indicated that the single phase of perovskite BaTiO₃ (yield of 100% within the limitations of the XRD technique) was found in both samples with no evidence of the second phase of Ba₂TiO₄, BaTi₂O₅ and BaTi₃O₇ compositions [16, 21, 22]. The strongest reflections in the majority of XRD trace indicate the formation of the perovskite phase of barium titanate (BaTiO₃) which could be matched with JCPDS file no. 5-0626, in agreement with other works [18, 23]. To a first approximation, this phase has a tetragonal perovskite structure in space group P4/mm (no. 99) with cell parameters a = 399.4 pm and c = 403.8 pm [24]. Moreover, the XRD profiles around diffraction angles

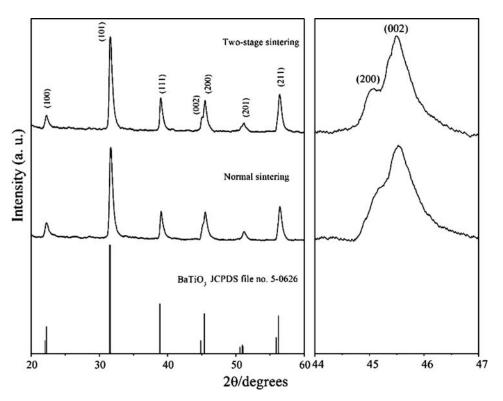
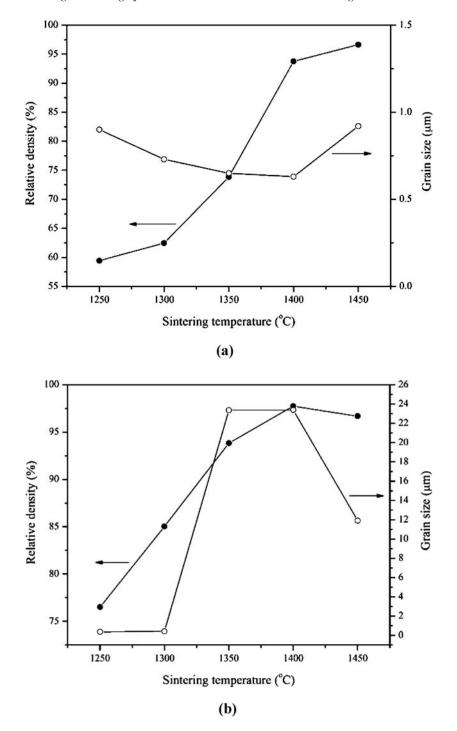
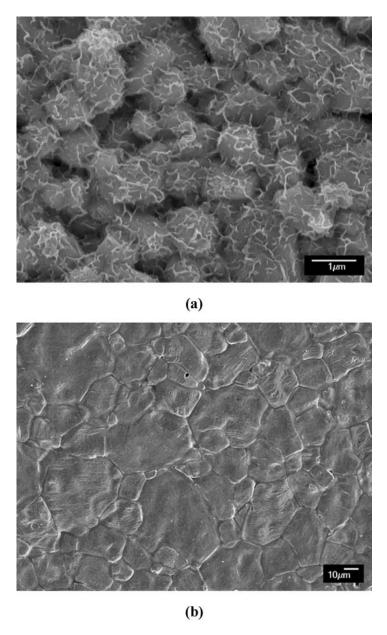
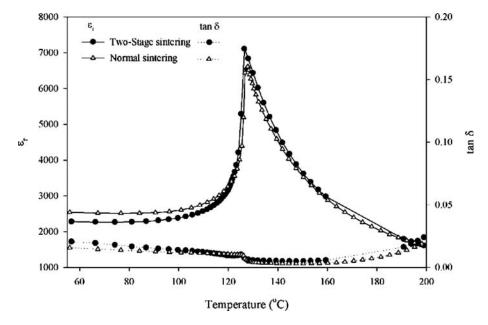



Figure 2. XRD patterns for BT ceramics.


Figure 3. The relative density of sintered BT ceramics and grain size as a function of sintering temperatures: (a) two-stage sintering, with the first sintering temperature (T_1) at 1100° C and (b) normal sintering.

 $2\theta \sim 44\text{--}47^\circ$ were also shown in Fig. 2. The expected positions of tetragonal (002) and (200) peaks are also indicated. The XRD data of two-stage sintered BT ceramic show a larger splitting of the tetragonal (002)/(200) peaks, as compared to the normal sintering peaks. The lattice parameters estimated from the peak position are a = 398.3 pm and c = 401.6 pm (c/a = 1.008), which are close to those reported previously [24].

Figure 3 shows the sintered density and average grain size of BaTiO₃ samples as a function of sintering temperature. In the two-stage sintering process (Figure 3a), the first sintering temperature was fixed at 1100° C, for constant dwell time of 2 h and heating/cooling rates of 5° C/min, while the second sintering temperature was varied from 1200° C to 1400° C. It can be seen that the relative density of the two-stage sintered ceramics increased significantly from 60 to 97% with increasing sintering temperature, while grain size changed only slightly (about 0.6–0.9 μ m). However, in normal sintering process, while the relative density changed from 77 to 98%, similar to that of the two-stage sintering, but the average grain size increased significantly from 1 to 23 μ m as the sintering temperature increased from 1250 to 1400° C. Further increase in the sintering temperature to 1450° C, the observed fall-off in density is probably due to the dominant effect of grain coarsening mechanism at high sintering temperature as suggested by other workers [25, 26]. The observation clearly signifies the advantage of the two-stage sintering technique in producing fine-grained BT ceramics.


The microstructure of BT ceramics with the highest density was revealed by SEM. Micrographs of BT samples sintered with different schemes are shown in Fig. 4. Clearly, the microstructure of the two-stage sintered ceramics (Fig. 4a) is significantly different from that of the normal sintered BT samples (Fig. 4b) which exhibit highly dense microstructure with abnormal grains of size around \sim 50 μ m due to the recrystallization during firing and variation of stoichiometric compositions [27, 28]. The two-stage sintered ceramic contains small grain size consisted with many pores. The average grain size is about $0.92 \mu m$. Moreover, with careful observation, it can be found that BT grains in two-stage sintered ceramics also exhibit whisker-like shape. With sizes of \sim 300–500 nm in length and \sim 10 nm in width, these whiskers are seen to distribute and coat on the grain. Even though exact mechanism of the microstructure observed here is not well established, but it should be noted that the various features of microstructure in BT ceramics are dependent on the grain growth rate in the different planes [29]. However, the sintering process and growth environment also play an important role in the formation [30]. More importantly, it can be assumed that the two-stage sintering process could suppress the grain growth mechanism efficiently whereas the highest density of both normal- and two-stage sintered ceramics is similar in value. This can be explained that the feasibility of densification without grain growth, which is believed to occur in two-stage sintered ceramic, relies on the suppression of grain boundary migration while keeping grain boundary diffusion active. The kinetic and the driving force for grain growth behavior in the second-step sintering were previously discussed by Chen and Wang [17]. Their work suggested that the suppression of the final stage grain growth was achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration.

The dielectric properties of sintered BaTiO₃, in fact, exhibit a strong dependence on grain size [10, 11, 31]. For the grain size $<1~\mu$ m, anomalously high room-temperature permittivity values were obtained along with a general broadening and flattening of the permittivity peak at Curie temperature [15]. Therefore, grain size control of the sintered bodies is very important. Figure 5 shows a comparison of the dielectric properties of maximum density BT ceramics sintered by the two different schemes. It is very interesting to observe that though the average grain size of the two-stage sintered ceramic is lower than 1 μ m, the Curie temperatures and the dielectric constants of the two ceramics are about the same.

Figure 4. SEM micrographs of BT ceramics (a) two-stage sintered at $1100/1400^{\circ}$ C, and (b) normal sintered at 1400° C.

Since the densities of the two ceramics are very similar in value (97–98%), this indicated that density could not be the controlling factor. It can be assumed that the employed sintering temperature in the two-stage sintering process is not enough for driving densification mechanism to achieve dense BT ceramics, as evidenced in Fig. 4(a). The highly porous microstructure was induced which could be the main reasons for low dielectric constant in fine grain case. However, the scope for improving two-stage sintering by raising the temperature is limited by the capability of the furnace. Nevertheless, the room temperature

Figure 5. Variation with temperature of relative permittivity (ε_r) and dissipation factor $(\tan \delta)$ at 10 kHz for two-stage sintered BT ceramics.

dielectric values in the order of 2000 for both ceramics are higher than those reported earlier [11, 23]. In the same way with the dielectric properties, the ferroelectric properties of the two-stage sintered BT ceramic were similar to those of the normal sintered ceramic, as shown in Fig. 6.

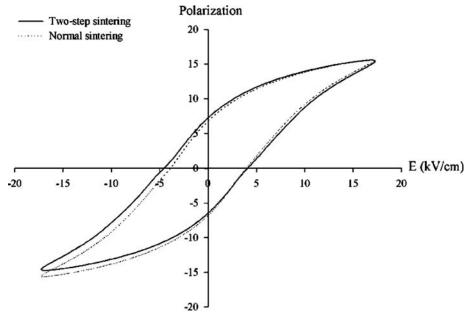


Figure 6. Hysteresis graphs of normal and two-stage sintered BT ceramics.

4. Conclusion

Even though the simple mixed-oxide method employing a conventional ball-milling was used, this work demonstrated that it was possible to obtain smaller grain size BT ceramics with high densification by the two-stage sintering technique. It has been shown that, under suitable condition, two-stage sintering can effectively suppress the grain growth in BT, leading to fine-grained microstructure ($\sim 1 \mu m$). Moreover, whisker morphology is also found in all two-stage sintered ceramics. More importantly, the dielectric properties of BT ceramics in this work are interestingly independent of the grain size, as it is evident that dielectric constant of the small grained ceramic prepared by the two-stage sintering is of the same value with large grained ceramic prepared by the normal sintering.

Acknowledgment

We thank the Thailand Research Fund (TRF), Commission on Higher Education (CHE) the Faculty of Science, Chiang Mai University for all support.

References

- 1. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (John Wiley & Sons Ltd., Chichester, 2003), pp. 500.
- 2. G. H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999).
- 3. K. Uchino, Piezoelectrics Actuators and Ultrasonic Motors (Kluwer, Boston, 1997), pp. 349.
- 4. S. L. Swartz, *IEEE Trans. Electr.* Insul. **25**, 935–987 (1990).
- 5. T. R. Shrout and J. P. Dougherty, *Ceramic Transactions*. **8**, 3–19 (1990).
- 6. Y. Xu, Ferroelectric Materials and Their Applications (Elsevier Science Publishers B. V., 1991), pp. 391.
- 7. K. Uchino, Ferroelectric Devices (Marcel Dekker, New York, 2000), pp. 308.
- 8. N. Halder, D. Chattopadhyay, A. D. Sharma, D. Saha, A. Sen, and H. S. Maiti, Mat. Res. Bull. **36.** 905–913 (2001).
- 9. B. D. Stojanovic, C. R. Foschini, M. A. Zaghete, F. O. S. Veira, K. A. Peron, M. Cilense, and J. A. Varela, J. Mater. Process. Technol. 113-114, 802-806 (2003).
- 10. K. Kinoshita and A. Yamaji, J. Appl. Phys. 47, 371–373 (1976).
- 11. H. T. Kim and Y. H. Han, Ceram. Int. 30, 1719–1723 (2004).
- 12. A. Yamaji, Y. Enomoto, K. Kinoshita, and T. Murakami, *J. Am. Ceram. Soc.* **60**, 97–101 (1977).
- 13. M. Kahn, J. Am. Ceram. Soc. 54, 452–454 (1971).
- 14. V. S. Tiwari, N. Singh, and D. Pandey, J. Am. Ceram. Soc. 77, 1813–1818 (1994).
- 15. J. S. Choi and H. G. Kim, J. Mater. Sci. 27, 1285–1290 (1992).
- 16. J. K. Lee, K. S. Hong, and J. W. Jang, J. Am. Ceram. Soc. 84, 2001–2006 (2001).
- 17. I. W. Chen and X. H. Wang, Nature. 404, 168–171 (2000).
- 18. W. Chaisan, S. Ananta, and T. Tunkasiri, Cur. Appl. Phys. 4, 182–185 (2004).
- 19. R. L. Fullman, Trans. AIME. 197, 447-452 (1953).
- 20. R. Yimnirun, S. Ananta, A. Ngamjarurojana, and S. Wongsaenmai, Appl. Phys. A: Mat. Sci. Proc. 81, 1227-1231 (2005).
- 21. W. Maison, R. Kleeberg, R. Heimann, and S. Phanichphant, J. Eur. Ceram. Soc. 23, 127-132 (2003).
- 22. V. Berbenni, A. Marini, and G. Bruni, Thermochimica Acta. 374, 151-158 (2001).
- 23. W. Chaisan, R. Yimnirun, S. Ananta, and D. P. Cann, Mater. Lett. 59, 3732–3737 (2005).
- 24. JCPDS-ICDD card no. 5-0626. International Centre for Diffraction Data, Newtown, PA, 2002.
- 25. F. Valdivieso, M. Pijolat, C. Magnier, and M. Soustelle, Solid State Ionics. 83, 283-292 (1996).
- 26. G. S. Rohrer, Annu. Rev. Mater. Res. 35, 99-126 (2005).

- 27. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971), pp. 317.
- 28. S. H. Hur, J. K. Lee, K. W. Park, K. S. Hong, and S. J. Park, *Mater. Lett.* 35, 78–84 (1998).
- 29. M. H. Lin, J. F. Chou, and H. Y. Lu, *J. Eur. Ceram. Soc.* **20**, 517–526 (2000).
- 30. R. M. German, Sintering Theory and Practice (Wiley, New York, 1996), pp. 550.
- 31. G. Arlt, D. Hennings, and G. d. With, J. Appl. Phys. 58, 1619–1625 (1985).

Phys. Scr. T129 (2007) 205-208

doi:10.1088/0031-8949/2007/T129/046

Changes in ferroelectric properties of barium titanate ceramic with compressive stress

Wanwilai Chaisan, Rattikorn Yimnirun and Supon Ananta

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail: wanwilai_chaisan@yahoo.com

Received 26 February 2007 Accepted for publication 17 August 2007 Published 28 November 2007 Online at stacks.iop.org/PhysScr/T129/205

Abstract

In this work, barium titanate (BT) ceramic was prepared using a conventional mixed oxide method. The effect of uniaxial compressive stress on the ferroelectric properties of BT ceramics were investigated. The changes in ferroelectric properties were observed at stress up to 60 MPa using a compressometer in conjunction with a modified Sawyer–Tower circuit. The results showed that applied stress had a significant influence on the ferroelectric properties of BT ceramics. Ferroelectric characteristics, i.e. the area of the ferroelectric hysteresis (P–E) loop, the saturation polarization (P_{sat}), the remanent polarization (P_r) and the loop squareness (P_{sq}), decreased with increasing compressive stress, while the coercive field (P_c) remained constant. Stress-induced domain wall motion suppression and non-180° ferroelectric domain switching processes are responsible for the changes observed.

PACS numbers: 77.80.-e, 77.84.-s, 77.84.Dy

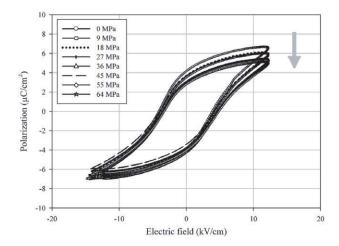
1. Introduction

Barium titanate (BaTiO₃; BT), which exhibits a perovskite structure and a Curie temperature ~120 °C, is a classical ferroelectric material which has been extensively exploited both for fundamental research and for technological utilization over the past decades [1, 2]. Owing to its high dielectric constant, large mechanical-quality factor, large pyroelectric coefficient, non-toxic handling, low cost of manufacturing and being a lead-free ferroelectric ceramic, BT is an environmentally friendly material, thus making it a strong candidate for various electronic applications in this global climatic situation. These include commercial capacitors, positive temperature coefficient resistors, high-density optical data storage, ultrasonic transducers, piezoelectric devices and semiconductors [3–6]. In many of these applications, BT ceramics are often subjected to mechanical loading, either deliberately in the design of the device itself or the device is used under environmental stresses. Despite this fact, material constants used in any design calculations are often obtained from a stress-free measuring condition, which in turn may lead to incorrect or inappropriate actuator and transducer designs [7]. It is therefore important to determine the electrical properties of BT ceramics as a function of applied stress. Previous

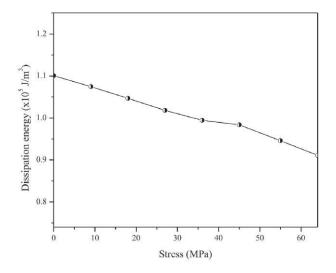
investigations on stress-dependence of electrical properties of many ferroelectric ceramics, such as lead zirconate titanate (PZT), lead magnesium niobate (PMN) and PMN-lead titanate (PT) [7, 8], have clearly emphasized the importance of this subject. These works reported that the electrical properties of these ceramics changed significantly on the application of stress. Yimnirun et al [7] and Zhou et al [9] investigated the effect of external stress on the ferroelectric properties of soft PZT ceramics. Their results showed that the ferroelectric characteristics, i.e. the area of the ferroelectric hysteresis (P-E) loops, the saturation polarization (P_{sat}) , the remanent polarization (P_r) and the loop squareness (R_{sq}) , decrease with increasing compressive stress. For BT, the stress dependence on its electrical properties has been widely studied for many decades. Konkol and Piotrowska [10] have studied the effect of one-dimensional stress on the permittivity (ε) of BT ceramics. Their work showed that the ε value increased with pressure below 100 kg cm⁻² and increased more slowly after pressure above 100 kg cm⁻² as domain movement is restricted. After removal of stress, the ε slowly decreased to the original value. Moreover, Kim et al [11] observed the change in domain configuration under external stress and explained it in terms of elastic strain energy minimization. However, there are few works studying the ferroelectric

properties of BT under stress. Desu [12] studied the influence of stress on the ferroelectric properties of BT thin film and reported that the coercive fields of BT thin film increased while remanent polarization decreased with increasing compressive stress. Sinyakov and Flerova [13] studied the hysteresis loop behavior of BT single crystal with tensile stress. Nevertheless, as well known, the experimental results of thin films and single crystals are always totally different from bulk ceramics because of their different microstructures [14].

Thus far, there have been no systematic studies on the ferroelectric properties of BT bulk ceramics and even though, as mentioned above, there have been many works on electrical properties of BT ceramics since 1940s [1, 2], there are no previous reports on the P–E hysteresis loop results under various environmental stresses of BT bulk ceramics. Therefore, this work will be the first to investigate the dependence of hysteresis loop with stress for BT ceramic. The major purpose of this work is to report the results of P–E hysteresis loops of BT ceramic under various compressive stresses and to discuss these new experimental results. Moreover, the ferroelectric data, i.e. the saturation polarization (P_s), the remanent polarization (P_r), the coercive field (E_c) and the loop squareness (R_{sq}), of BT ceramic under compressive stress will also be reported.

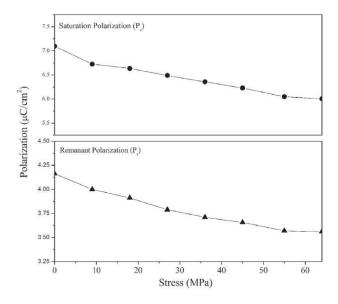

2. Experimental procedure

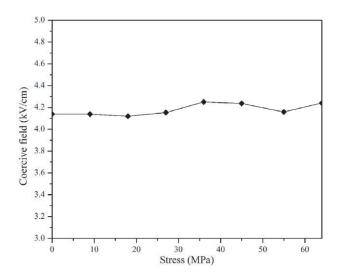
Investigations were performed on BT ceramics produced by the conventional mixed oxide method. The x-ray diffraction test at room temperature showed that BT ceramics have a pure perovskite phase with tetragonal symmetry, matched with JCPDS file no 5-0626 with unit cell parameters $a = 3.994 \,\text{Å}$ and $c = 4.038 \,\text{Å}$, space group $P4 \,mm$ (no 99) [15]. Disk samples with a diameter of 12.5 mm and a thickness of 0.8 mm were chosen for the electrical measurements and the samples were electroded by silver painting.


The ferroelectric hysteresis (P-E) loops were characterized by using a computer controlled modified Sawyer-Tower circuit. The electric field was applied to a sample by a high voltage ac amplifier (Trek, model 610D) with the input sinusoidal signal with a frequency of 100 Hz from a signal generator (Goodwill, model GAG-809). To study the effect of the compressive stress on the ferroelectric properties, the uniaxial compressometer was constructed. The detailed descriptions of this system are explained elsewhere [7, 16]. During the measurements, the specimen was immersed in silicone oil to prevent high-voltage arcing during electric loading. Measurements were performed as a function of mechanical stress applied discretely between 0 and 60 MPa. During the measurements, a desired stress was first applied to the sample and then the electric field was applied. The ferroelectric hysteresis (P-E) loop was recorded at room temperature (25 °C). The parameters obtained from the loops were the saturation polarization (P_s) , the remanent polarization (P_r) and the coercive field (E_c) , which are defined as the points where the loops reach the maximum polarization, cross the zero field and the zero polarization, respectively.

3. Results and discussion

The polarization versus electric field (P-E) hysteresis loops of the BT ceramics under different compressive stress are


Figure 1. Polarization versus electric field (*P–E*) hysteresis loops as a function of compressive stress for BT ceramic.


Figure 2. Changes in dissipation energy (hysteresis loop area) with compressive stress for BT ceramic.

shown in figure 1. It should first be noted that the area of these *P–E* hysteresis loops slightly decreases with increasing stress. The P-E loop area represents the unit-volume polarization dissipation energy of a ferroelectric material subject to one full cycle of electric field loading [17]. The change in polarization dissipation energy is plotted in figure 2 as a function of compressive stress, in which the dissipation energy is found to decrease linearly with the stress increment. The polarization dissipation energy is also termed energy loss consumed for self-heating of the specimen and related directly to the number of domains participating in the switching process during an electric loading cycle [9]. From figure 2, it is clear that the number of domains contributing to polarization reversal gradually decreases with increasing compressive stress. In the stress-free state (0 MPa), the dissipation energy is $1.10 \times 10^5 \,\mathrm{J}\,\mathrm{m}^{-3}$, whereas at maximum stress (60 MPa), the dissipation energy decreases to $0.9 \times 10^5 \,\mathrm{J}\,\mathrm{m}^{-3}$ ($\sim 20\%$ of the stress-free state), which implies that a lower number of domains participate in polarization reversal under high compressive stress.

The changes in the saturation polarization (P_s) , remanent polarization (P_r) and coercive field (E_c) with the compressive

Figure 3. Changes in saturated polarization (P_s) and remanent polarization (P_r) with compressive stress for BT ceramic.

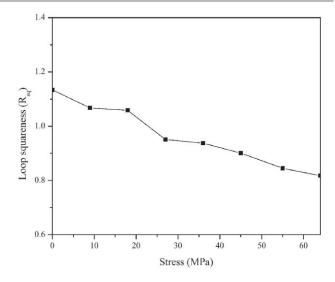


Figure 4. Changes in coercive field (E_c) with compressive stress for BT ceramic.

stress are plotted in figures 3 and 4, respectively. Similarly to the trend observed in the dissipation energy, figure 3 clearly shows that both the $P_{\rm s}$ and $P_{\rm r}$ decrease as the compressive stress increases. This suggests a significant stress induced decrease in the switchable part of the spontaneous polarization of the BT ceramic resulting in the observed decrease in the polarization value under high stress [18]. In contrast, the applied stress shows little or no influence on the coercive field $(E_{\rm c})$, as plotted in figure 4. These results clearly indicate that BT ceramics are not suitable for high compressive stress applications. It should be noted here that previous works on other ceramics systems, such as PZT, PLZT and PMN–PT, showed a similar tendency [9, 19, 20].

The ferroelectric characteristics of the BT ceramic can also be assessed with the hysteresis loop squareness (R_{sq}), which can be calculated from the empirical expression [21, 22]:

$$R_{\rm sq} = \frac{P_{\rm r}}{P_{\rm s}} + \frac{P_{1.1E_{\rm c}}}{P_{\rm r}},\tag{1}$$

Figure 5. Changes in loop squareness (R_{sq}) with compressive stress for BT ceramic.

where $P_{\rm r}$ is the remanent polarization, $P_{\rm s}$ is the saturated polarization obtained at some finite field strength below the dielectric breakdown and $P_{1.1E_{\rm c}}$ is the absolute value of the polarization at the field equal to $1.1E_{\rm c}$. For the ideal square loop, $R_{\rm sq}$ is equal to 2. As shown in figure 5, the $R_{\rm sq}$ values gradually decrease with increasing compressive stress. This observation is clearly a result of the decrease in polarization under the compressive stress. From these results, it can be said that the ferroelectric characteristics of BT ceramic decrease considerably under application of compressive stress.

To understand these experimental results on the BT ceramic, one can interpret the changes in terms of domainreorientation processes. When the compressive stress is applied in the direction parallel to the poling direction, the applied stress tends to keep the ferroelectric domains aligned with their polar axes away from the stress direction through the non-180° domain switching processes. Therefore, it takes a larger than usual applied electric field to reorient the domain along the stress direction, resulting in a lower value of the saturated polarization (figure 3). When the electric field is reduced to zero the domain tends to rotate back away from the stress direction, resulting in a lower than usual remanent polarization (figure 3). Moreover, the decrease in the dissipation energy with increasing compressive stress indicates that more and more ferroelectric domains are constrained by the stress and cannot be reoriented by the electric field so as to participate in the polarization reversal. Consequently, both the saturated and remanent polarizations become lower with increasing compressive stress. The results of the changes in the ferroelectric characteristics of the BT ceramic with increasing compressive stress are in agreement with previous investigations of many ferroelectric ceramics [7, 9, 23].

4. Conclusions

In this study, the effects of compressive stress on the ferroelectric properties of BT ceramic are investigated. Ferroelectric properties under compressive stress are observed up to 60 MPa using a compressometer in conjunction with

a modified Saywer–Tower circuit. The results show that the area of the hysteresis loops, which corresponds to the dissipation energy, the saturation polarization ($P_{\rm s}$), the remanent polarization ($P_{\rm r}$) and the loop squareness ($R_{\rm sq}$) decrease with increasing compressive stress, whereas the coercive field ($E_{\rm c}$) appears unaffected by stress. The non-180° ferroelectric domain switching and stress-induced domain wall suppression processes are responsible for the changes observed. These values ($P_{\rm s}$, $P_{\rm r}$, $R_{\rm sq}$ and $E_{\rm c}$) confirmed that the ferroelectric characteristics of BT ceramic decrease considerably under the application of compressive stress.

Acknowledgments

This work is supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE) and the Faculty of Science, Chiang Mai University.

References

- Moulson A J and Herbert J M 2003 Electroceramics: Materials, Properties, Applications (Chichester, UK: Wiley)
- [2] Haertling G H 1999 J. Am. Ceram. Soc. 82 797-818
- [3] Uchino K 1998 Piezoelectrics and Ultrasonic Applications (Dordrecht: Kluwer)
- [4] Uchino K 2000 Ferroelectric Devices (New York: Dekker)
- [5] Hennings D 1987 J. High Technol. Ceram. 3 91–111

- [6] Sreekantan S, Noora A, Ahmad Z, Othman R and West A 2007 J. Mater. Process. Technol. at press
- [7] Yimnirun R, Laosiritaworn Y and Wongsaenmai S 2006 J. Phys. D: Appl. Phys. 39 759–64
- [8] Steiner O, Tagantsev A K, Colla E L and Setter N 1999 J. Eur. Ceram. Soc. 19 1243–6
- [9] Zhou D, Kamlah M and Munz D 2005 J. Eur. Ceram. Soc. 25 425–32
- [10] Konkol R and Piotrowska A 1976 Mater. Sci. 2 127-8
- [11] Kim S B, Chung T J and Kim D Y 1993 *J. Eur. Ceram. Soc.* 12 147–51
- [12] Desu S B 1993 J. Electrochem. Soc. 140 2981-7
- [13] Sinyakov E V and Flerova S A 1970 *Phys. Solid State* **12** 2728–30
- [14] Chiang Y-M, Birnie D P and Kingery W D 1997 *Physical Ceramics* (New York: Wisley)
- [15] JCPDS-ICDD card no. 5-0626. International Centre for Diffraction Data, Newtown, PA, 2002
- [16] Park S E and Shrout T R 1997 J. Appl. Phys. 82 1804–11
- [17] Lines M E and Glass A M 1997 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon)
- [18] Yang G, Ren W, Liu S F, Masys A J and Mukherjee B K 2000 Proc. 2000 IEEE Ultrason. Symp. (San Juan, Puerto Rico) p 1005–8
- [19] Lynch C S 1996 Acta Mater. 44 4137-48
- [20] Zhao J and Zhang Q M 1996 Ferroelectrics 2 971-4
- [21] Chaisan W, Yimnirun R, Ananta S and Cann D P 2007 Mat. Chem. Phys. 104 103–8
- [22] Haertling G H and Zimmer W J 1966 *Am. Ceram. Soc. Bull.* **45** 1084–9
- [23] Yimnirun R, Ananta S, Ngamjarurojana A and Wongsaenmai S 2005 Appl. Phys. A: Mat. Sci. Proc. 81 1227–31

This article was downloaded by:[2007 Chiang Mai University]

On: 30 November 2007

Access Details: [subscription number 780894008]

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Ferroelectrics

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713617887

A Two-Stage Solid-State Reaction to Lead Zirconate Titanate Powders

Wanwilai Chaisan ^a; Orawan Khamman ^a; Rattikorn Yimnirun ^a; Supon Ananta ^a Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

First Published on: 01 January 2007

To cite this Article: Chaisan, Wanwilai, Khamman, Orawan, Yimnirun, Rattikorn and Ananta, Supon (2007) 'A Two-Stage Solid-State Reaction to Lead Zirconate Titanate

Powders', Ferroelectrics, 356:1, 242 - 246

To link to this article: DOI: 10.1080/00150190701512763 URL: http://dx.doi.org/10.1080/00150190701512763

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Ferroelectrics, 356:242–246, 2007 Copyright © Taylor & Francis Group, LLC ISSN: 0015-0193 print / 1563-5112 online DOI: 10.1080/00150190701512763

A Two-Stage Solid-State Reaction to Lead Zirconate Titanate Powders

WANWILAI CHAISAN, ORAWAN KHAMMAN,* RATTIKORN YIMNIRUN, AND SUPON ANANTA

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand

An approach to synthesize lead zirconate titanate (PZT) powders with a modified twostage mixed oxide synthetic route has been developed. To ensure a single-phase perovskite formation, an intermediate phase of lead zirconate (PbZrO₃) was employed as starting precursor. The formation of perovskite phase in the calcined powders has been investigated as a function of calcination temperature. It has been found that the perovskite PbZrO₃ and PbTiO₃ phases tend to form together with PZT, with the latter appearing in both tetragonal and rhombohedral phases, depending on calcination temperatures. It is seen that optimization of calcination can lead to 100% yield of PZT phase.

Keywords Lead zirconate titanate; PZT powders; solid-state reaction

1. Introduction

There has been a great deal of interest in the preparation of single-phase lead zirconate titanate, $Pb(Zr_{1-x}Ti_x)O_3$ or PZT, powders as well as in the sintering and piezoelectric properties of PZT-based ceramics [1]. The reaction sequence through which PZT is formed by solid-state reaction has been investigated by many workers but with varying approaches [2-4]. Mori et al. [2] were the first to study the mechanisms of a two-step reaction, initiated by the constituent oxides reacting to form a solid solution of lead titanate (PbTiO₃) and zirconium oxide (ZrO₂), which later homogenized to form the PZT phase. On the other hand, zirconium titanate-based compositions were also proposed as alternative key precursor for a two-step reaction sequence by other workers [3, 4]. The essentially pyrochlore-free PZT powders obtained could be attributed to their high reactivity with PbO. However, high firing temperatures (>1200°C) are required for the formation of mixed-oxide derived zirconium titanate-based powders [4, 5]. Moreover, the preparation of PZT using PbZrO₃ precursor, to date, has not been as extensive as that of PZT using PbTiO₃ or zirconium titanatebased precursors. Thus, the purpose of this study was to synthesize and investigate the PZT powders prepared by a two-stage solid-state reaction with lead zirconate (PbZrO₃) as a key precursor.

2. Experimental Procedure

The modified mixed oxide method was developed for preparation of Pb(Zr_{0.5}Ti_{0.5})O₃ powders, analogous to the synthesis of other perovskite powders [5]. Starting precursors were PbO, ZrO₂ and TiO₂(Fluka, > 99% purity). These three oxide powders exhibited an average particle size in the range of 5.0 to 10.0 μ m. First, an intermediate phase of lead zirconate, PbZrO₃, was separately prepared by the solid-state reaction method previously reported [6]. In the second stage, TiO₂ and excess PbO were reacted with PbZrO₃ to give the final product of PZT:

$$PbO(s) + ZrO2(s) => PbZrO3(s)$$
 (1)

$$0.5PbZrO_3(s) + 0.5PbO(s) + 0.5TiO_2(s) => Pb(Zr_{0.5}Ti_{0.5})O_3(s)$$
 (2)

Instead of employing a ball-milling procedure [2], a McCrone vibro-milling was used. In order to improve the reactivity of the constituents, the milling process was carried out for 1 h (instead of 30 min[4]) with corundum media in isopropanal. After drying at 120 °C, various firing temperatures (inside a closed alumina crucible) were applied in order to investigate the formation of PZT phase in each calcined powders. The reactions of the uncalcined powders taking place during heat treatment were investigated by a combination of thermogravimetric and differential thermal analysis techniques (TG-DTA, Shimadzu) using a heating rate of 10°C/min in air. Calcined powders were subsequently examined by room temperature X-ray diffraction (XRD; Siemens-D500 diffractometer) using CuK $_{\alpha}$ radiation to identify the phases formed and optimum calcination temperature for the manufacture

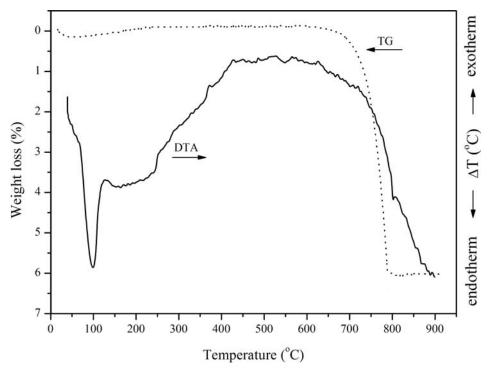
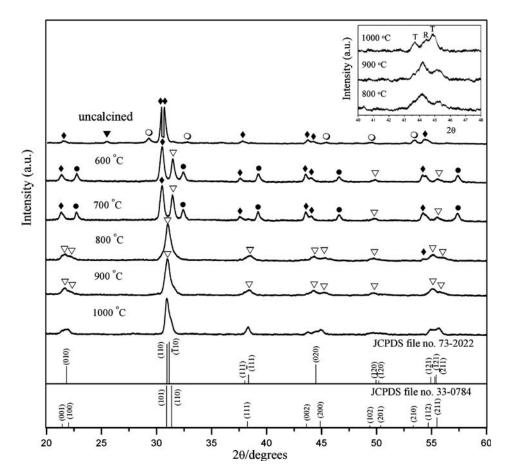



Figure 1. TG-DTA curves for the mixture of PbZrO₃-PbO-TiO₂ powders.

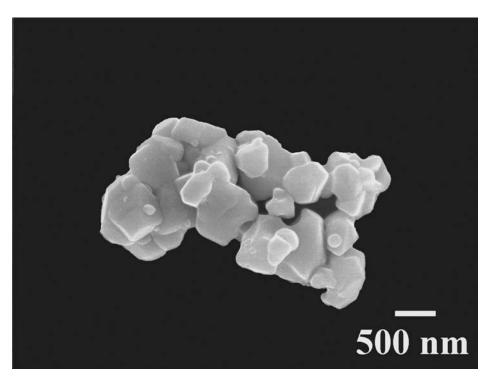


Figure 2. XRD patterns of PZT powders calcined at various conditions for 1 h (inset: enlarged XRD peaks for the tetragonal (T) and rhombohedral (R) phases as a function of calcination temperatures).

of PZT powders. Powder morphologies were directly imaged using scanning electron microscopy (SEM; JEOL JSM-840A).

3. Results and Discussion

As shown in Fig. 1, in the temperature range from room temperature to $\sim 150^{\circ} C$, the sample shows both exothermic and endothermic peaks in the DTA curve, consistent with a drop in weight loss over the same temperature range. This observation can be attributed to the decomposition of the organic species from the milling process [4], in agreement with other works[5,6]. Increasing the temperature up to $\sim 900^{\circ} C$, the solid-state reaction occurred between PbZrO3 and TiO2. The broad exotherm from 300 to 750°C in the DTA curve represents that reaction, which is not associated with a weight loss. This may correspond to a phase transformation or to reaction between solids in this temperature range not involved with any weight change [7]. Finally, a significant drop in weight loss is also observed above 650°C associated with the DTA peaks at the same temperature range. This may be attributed to full crystallization of PZT phase together with the PbO volatilization commonly found

Figure 3. SEM micrograph of the PZT powders calcined at 900°C for 1 h with heating/cooling rates of 30°C/min.

in the lead-based perovskites [5, 6]. These data and literature [4] were used to assign the range of calcination temperatures for XRD investigation.

To further study the phase development with increasing calcination temperature, the powders were calcined for 1 h with heating/cooling rates of 10° C/min at various temperatures followed by phase analysis using XRD. As shown in Fig. 2, for the uncalcined powder, only X-ray peaks of precursors PbZrO₃ (•), PbO (o) and TiO₂ (•), which could be matched with JCPDS file numbers 77-1971, 35-0739 and 21-1272, respectively, are present, indicating that no reaction had yet been triggered during the milling process. It is seen that PZT crystallites (∇) were already found in the powders at a calcination temperature as low as 600°C, accompanying with PbZrO₃ and PbTiO₃ as separated phases. This observation agrees well with those derived from the TG-DTA results. The occurrence of PbTiO₃ in this work can be attributed to the result of formation between PbO and TiO₂ precursors during firing process as proposed by Matsua and Sasaki [8].

As the temperature increased to 800° C, the intensity of the PZT peaks was further enhanced and became the predominant phase. The optimum calcination temperature for the formation of a high purity PZT phase was found to be about 900° C, i.e. slightly higher than the exothermic temperature in Fig. 1. In general, the strongest reflections apparent in the majority of the XRD patterns indicate the formation of two PZT phases. These can be matched with JCPDS file number 73-2022 and 33-0748 for the rhombohedral Pb(Zr_{0.58}Ti_{0.42})O₃ and tetragonal Pb(Zr_{0.52}Ti_{0.48})O₃ (Fig. 2), respectively. As is well known, the variation in composition may lead to a diffuse morphotropic phase boundary (MPB) between the tetragonal and rhombohedral PZT phases [1]. The most obvious difference between the patterns for

tetragonal and rhombohedral PZT phases concerns the presence of a splitting of (002)/(200) peak at 2θ about 43° – 46° for the former phase (inset shown in Fig. 2). It is seen that the rhombohedral PZT phase is always present in the product. This study also shows that minor amount of the intermediate phases of PbZrO₃ and PbTiO₃ tends to coexist along with the PZT phase, agreed with earlier work [9]. Upon calcination at 900° C with heating/cooling rates of 10 or 30° C/min, the phases of PbZrO₃ and PbTiO₃ have been found to completely disappear, and crystalline PZT of both tetragonal and rhombohedral is the only detectable phase in the powder. The finding condition is close to that of Fernandes et al. [10] (900° C for 1 h with heating/cooling rates of 5° C/min) but with significantly faster heating/cooling rates. By increasing temperature up to 1000° C, the yield of the tetragonal PZT phase seems to increase.

The experimental work carried out here suggests that the optimal calcination condition for single-phase PZT (with impurities undetected by XRD technique) is 900°C for 1 h, with heating/cooling rates of 30°C/min. The morphology of these PZT powders was also examined as illustrated in Fig. 3. In general, the particles are basically irregular in shape with substantial agglomerations. This observation is also similar to that of PZT powders synthesized by previous researchers [4, 10] but with smaller particle sizes of about 74-725 nm (estimated from SEM micrographs).

4. Conclusions

Perovskite phase of PZT powders may be produced by employing a two-stage solid stage reaction process using PbZrO₃ as precursor. Evidence has been obtained for a pure PZT phase after calcined at 900°C for 1 h with heating/cooling rates of 30°C/min.

Acknowledgments

This work was supported by the nanoscience and nanotechnology center, Thailand Research Fund (TRF), Commission on Higher Education (CHE), Thailand Toray Science Foundation, the Faculty of Science and the Graduate School, Chiang Mai University.

References

- 1. A. J. Moulson and J. M. Herbert, Electroceramics (Wiley, Chichester, 2003).
- 2. S. Mori, H. Mitsuda, K. Date, H. Hioki, and T. Miyazawa, Natl. Tech. Rept. 10, 32 (1964).
- 3. O. Babuhskin, T. Lindback, J. C. Lue, and J. Y. M. Leblais, J. Eur. Ceram. Soc. 16, 1293 (1996).
- 4. R. Tipakontitikul and S. Ananta, Mater. Lett. 58, 449 (2004).
- 5. S. Ananta and N. W. Thomas, J. Eur. Ceram. Soc. 19, 155 (1999).
- 6. W. Chaisan, O. Khamman, R. Yimnirun and S. Ananta, J. Mater. Sci. (2006) in press.
- 7. R. N. Das, A. Pathak, S. K. Saha, S. Sannigrahi, and P. Pramanik, Mat. Res. Bull. 36, 1539 (2001).
- 8. Y. Matsuo and H. Sasaki, J. Am. Ceram. Soc. 48, 289 (1965).
- 9. N. Chakrabarti and H. S. Maiti, Mater. Lett. 30, 169 (1997).
- J. C. Fernandes, D. A. Hall, M. R. Cockburn and G. N. Greaves, *Nucl. Instrum. Meth.* B **97**, 137 (1995).

CERAMICS INTERNATIONAL

Ceramics International 34 (2008) 813-817

www.elsevier.com/locate/ceramint

Potential of vibro-milling technique for preparation of electroceramic nanopowders

R. Wongmaneerung, W. Chaisan, O. Khamman, R. Yimnirun, S. Ananta*

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Available online 3 October 2007

Abstract

The potential of the vibro-milling technique as a simple method to obtain usable quantities of single-phase electroceramic powders with nanosized particles was examined. A detailed study considering the role of both milling time and firing condition on phase formation and particle size of the final product was performed. The calcination temperature for the formation of the desired phase was lower when longer milling times have been applied. More importantly, by employing an appropriate choice of the milling time and calcination condition, high purity electroceramic nanopowders have been successfully prepared with a simple solid-state reaction method.

© 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Powders: solid-state reaction; A. Milling; D. Perovskite

1. Introduction

Recently, it has been reported that many nanoparticles can be successfully synthesized by using several mechanical milling method [1-3]. From the point of view of energy efficiency, the vibro-mill (or vibratory mill or vibro-energy mill, which is a machine for vibrating vessel filled with grinding media at amplitudes up to a approximately 5 cm) seems to be more attractive than the ball mill [1]. Relative to ball-milling, vibro-milling produces finer particles and a narrower size distribution at a faster rate [1-3]. This implies that mills, especially, fine grinders such as the vibro-mill are recognized as a tool for producing nanopowders, and the milling time is a key operation for such materials processing, as well as for the nanopowder preparation. Moreover, the advantage of using a solid-state reaction method via mechanical milling for preparation of nanopowders lies in its ability to produce mass quantities of powder in the solid state, using simple equipment and low cost starting precursors. Although some research has been done into the preparation of electroceramic powders via a vibro-milling technique [1-3], to our knowledge a detailed study considering the role of both milling times and firing conditions on the preparation of electroceramic nanopowders has not yet been widely reported. In the present study, we have demonstrated the potential of a rapid vibro-milling technique in the production of several important electroceramic nanopowders such as PbZrO₃ or PZ, PbTiO₃ or PT and BaTiO₃ or BT.

2. Experimental procedure

The raw materials used were commercially available lead oxide, zirconium oxide, titanium oxide and barium carbonate (Fluka, >99% purity). These oxide powders exhibited an average particle size in the range of 3.0-5.0 µm. PbZrO₃, PbTiO₃ and BaTiO₃ powders were synthesized by the solidstate reaction of these raw materials. A vibratory laboratory mill (McCrone Micronizing Mill) powered by a 1/30 HP motor was employed for preparing the stoichiometric powders [2]. The grinding vessel consists of a 125 ml capacity polypropylene jar fitted with a screw-capped, gasketless, polythene closure. The jar is packed with an ordered array of identical, cylindrical, grinding media of polycrystalline corundum. A total of 48 milling media cylindrical with a powder weight of 20 g was kept constant in each batch. The milling operation was carried out in isopropanol, inert to the polypropylene jar. Various milling times ranging from 0.5 to 35 h were selected in order to investigate the phase formation characteristics of all desired powders and to obtain the smallest particle size. After drying at

^{*} Corresponding author. Tel.: +66 53 943367; fax: +66 53 943445. E-mail address: suponananta@yahoo.com (S. Ananta).

 $120~^{\circ}\mathrm{C}$ for 2 h, various calcination conditions, i.e. temperatures ranging from 500 to $1200~^{\circ}\mathrm{C}$, dwell times ranging from 1 to 6 h and heating/cooling rates ranging from 10 to 30 $^{\circ}\mathrm{C/min}$, were applied (the powders were calcined inside a closed alumina crucible) in order to investigate the formation of the desired phases.

All powders were examined by room temperature X-ray diffraction (XRD; Siemens-D500 diffractometer) using Ni-filtered CuK_{α} radiation, to identify the phases formed and the firing conditions for the production of single-phase powders. The average crystallite size is also estimated from XRD patterns [4]. The particle size distributions of the powders were determined by a laser diffraction technique (DIAS 1640 laser diffraction spectrometer) with the particle sizes and morphologies of the powders observed by scanning electron microscopy (JEOL JSM-840A SEM).

3. Results and discussion

XRD patterns of the calcined PbZrO₃ powders after different combination of milling time and calcination condition are given in Fig. 1. For the uncalcined powder subjected to 15 h of vibromilling, only X-ray peaks of the precursors PbO (\blacksquare) and ZrO₂ (\bigcirc) are present, indicating that no reaction was yet triggered during the vibro-milling process. However, after calcination at 800 °C, for 1 h, it is seen that the perovskite PbZrO₃ becomes the predominant phase indicating that the reaction has occurred to a considerable extent. It should be noted that when the dwell time of the calcination at 800 °C was extended up to 2 h, then a

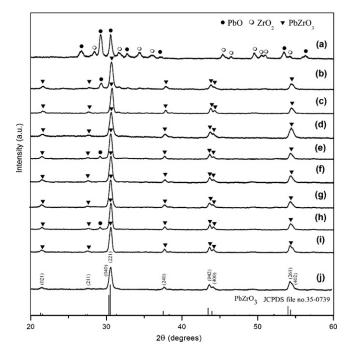


Fig. 1. XRD patterns of PZ powders milled for 15 h (a) uncalcined, and calcined at $800\,^{\circ}\text{C}$ for (b) 1 h and (c) 2 h with heating/cooling rates of $10\,^{\circ}\text{C/min}$ and (d) $30\,^{\circ}\text{C/min}$; milled for 25 h and calcined at (e) 750 $^{\circ}\text{C}$ for 5 h (f) $800\,^{\circ}\text{C}$ for 1 h with heating/cooling rates of $10\,^{\circ}\text{C/min}$ and (g) $30\,^{\circ}\text{C/min}$; and milled for 35 h and calcined at 750 $^{\circ}\text{C}$ for (h) 3 h and (i) 4 h with heating/cooling rates of $10\,^{\circ}\text{C/min}$ and (j) $30\,^{\circ}\text{C/min}$.

single phase of perovskite PZ (yield of 100% within the limitations of the XRD technique) was obtained. This was apparently a consequence of the enhancement in crystallinity of the perovskite phase with increasing degree of mixing and dwell time, in good agreement with other works [2–3]. In general, the strongest reflections apparent in the majority of these XRD patterns indicate the formation of the lead zirconate, PbZrO₃ (JCPDS file number 35-0739) [5], consistent with other works [6,7]. For 15 h of milling, the optimum calcination condition for the formation of a high purity PbZrO₃ phase was found to be about 800 °C for 2 h with heating/cooling rates of 30 °C/min.

To further study the phase development with increasing milling times, an attempt was also made to calcine mixed powders milled at 25 and 35 h under various conditions as shown in Fig. 1(e-j). In this connection, it is seen that by varying the calcination condition, the minimum firing temperature for the single-phase formation of each milling batch is gradually decreased with increasing milling time. The main reason for this behavior is that a complete solid-state reaction probably takes place more easily when the particle size is milled down by accelerating an atomic diffusion mechanism to meet the suitable level of homogeneity. It is thought that reducing the particle size significantly reduces the heat diffusion limitations. It is therefore believed that the solidstate reaction to form perovskite PZ phase occurs at lower temperatures on decreasing the particle size of the oxide powders.

In the work reported here, evidence for the presence of the minor phase of PbO which coexists with the parent phase of PbZrO₃ is found after calcination at temperature 750–800 °C, in agreement with literature [8]. This second phase has an orthorhombic structure with cell parameters a = 589.3 pm, b = 549.0 pm and c = 475.2 pm (JCPDS file number 77-1971) [9]. This observation could be attributed mainly to the poor reactivity of the lead and zirconium species [8] and also the limited mixing capability of the mechanical method [2,3]. A noticeable difference is noted when employing milling times longer than 15 h (Fig. 1(e-j)), since an essentially monophasic PbZrO₃ of the perovskite structure was obtained at 800 °C for 1 h (or 750 °C for 4 h) for the milling time of 25 h (or 35 h). This was apparently a consequence of enhancement in the crystallinity of the perovskite phase with increasing degree of mixing and dwell time, in good agreement with other work

After establishing the optimum combination between vibromilling time and calcination condition, a similar investigation was also undertaken on the preparation of PbTiO₃ and BaTiO₃ powders as shown in Figs. 3 and 4, respectively. It should be noted that no evidences for the introduction of impurities due to wear debris from the selected milling process was observed in all calcined powders, indicating the effectiveness of the vibromilling technique for the production of high purity nanopowders. As expected, there is evidence that, even for a wide range of calcination conditions, the single phase of all the selected electroceramic powders cannot easily be produced, in agreement with literature [1–3]. This could be attributed mainly to

Table 1
Effect of milling time on the variation of particle size of perovskite powders calcined at their optimum conditions with heating/cooling rates of 30 °C/min and measured by different techniques

Powders	Milling time (h)	Calcination condition (°C/h)	XRD A (nm)	SEM		Laser scattering	
				D (nm)	P (nm)	D (nm)	P (nm)
PZ	15	800/2	60.41	280	53-692	700	35–2000
	25	800/1	35.11	223	31-400	170	35-750
	35	750/4	27.50	121	31–228	1570	10-6000
PT	5	600/1	22.50	101	67–135	690	290-1140
	15	600/1	22.00	78	43-114	4640	1640-7790
	25	600/1	21.50	63	17–109	180	70–310
BT	0.5	1300/2	38.32	610	250-1400	1000	400-1500
	25	1200/2	31.60	390	250-700	400	60-700
	30	1200/2	31.56	250	100-400	600	120-1000

A: crystallite size; D: average particle size; P: particle size distribution or range.

the poor reactivity of starting species [2,3] and also to the limited mixing capability of the mechanical method [1–3].

The variation of calculated crystallite size of all the singlephase perovskite powders milled for different times and calcined at their optimum conditions is given in Table 1. In general, it is seen that the crystallite size of all powders decreases with increasing milling times. These observations indicate that the particle size affects the evolution of crystallinity of the phase formed by prolonged milling treatment. Moreover, it has been observed that with increasing milling time, all diffraction lines broaden, as shown in Figs. 2(a), 3(a) and 4(a), which is an indication of a continuous decrease in particle size and of the introduction of lattice strain [4].

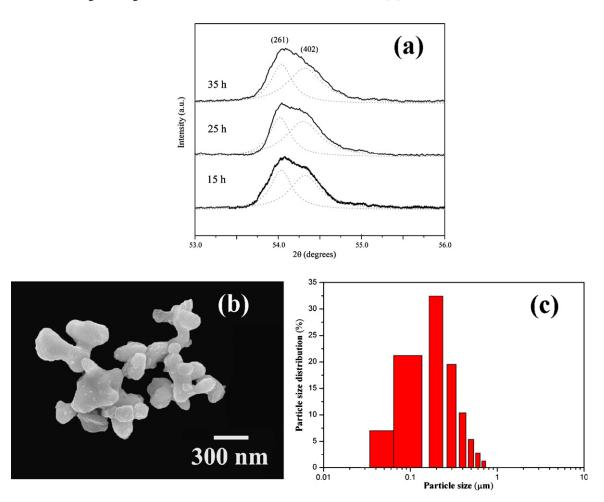


Fig. 2. (a) Enlarged zone of XRD patterns showing peaks broadening as a function of milling times of PZ powders, (b) SEM micrograph and (c) particle size distribution of PZ powders milled for 25 h and calcined at 800 °C for 1 h with heating/cooling rates of 30 °C/min.

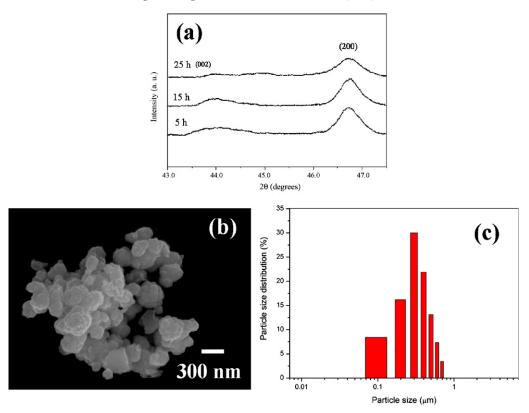


Fig. 3. (a) Enlarged zone of XRD patterns showing peaks broadening as a function of milling times of PT powders, (b) SEM micrograph and (c) particle size distribution of PT powders milled for 25 h and calcined at 600 °C for 1 h with heating/cooling rates of 30 °C/min.



Fig. 4. (a) Enlarged zone of XRD patterns showing peaks broadening as a function of milling times of BT powders, (b) SEM micrograph and (c) particle size distribution of BT powders milled for 25 h and calcined at 1200 °C for 2 h with heating/cooling rates of 30 °C/min.

A combination of SEM and laser diffraction techniques was also employed for the morphology and particle size distribution measurement, as some examples shown in Figs. 2(b and c), 3(b and c) and 4(b and c). In general, all powders are agglomerated and basically irregular in shape, with a substantial variation in particle size, particularly in powders subjected to high firing temperatures (Fig. 4(b)). The powders consist of primary particles in the nanometers size range. It is also of interest to point out that degree of agglomeration tends to increase with milling time and calcination temperatures (Fig. 4(b and c)), in good agreement with other works [1–3]. This observation may be attributed to the occurrence of hard agglomeration with strong inter-particle bond within each aggregates resulting from firing process. The experimental work carried out here suggests that mass production of single-phase PZ, PT and BT nanopowders with the smallest particle size \sim 31 nm, 17 nm and 100 nm, respectively (estimated from SEM micrographs), can be achieved by employing a combination of suitable vibromilling time and calcination condition. Moreover, the employed heating/cooling rates for all selected powders observed in this work are faster than for those reported earlier [10–12].

4. Conclusions

Using commercially available oxide powders as the starting materials, it has been demonstrated that a rapid vibro-milling technique has considerable potential for the low cost, large-scale production of several high purity electroceramic nanopowders.

Acknowledgements

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), the

Thailand Toray Science Foundation (TTSF), the National Nanotechnology Center (NANOTEC), NSTDA and the Faculty of Science, Chiang Mai University.

References

- R. Wongmaneerung, T. Sarakonsri, R. Yimnirun, S. Ananta, Effects of milling method and calcination condition on phase and morphology characteristics of Mg₄Nb₂O₉ powders, Mater. Sci. Eng. B 130 (2006) 246–253.
- [2] R. Wongmaneerung, R. Yimnirun, S. Ananta, Effect of vibro-milling time on phase formation and particle size of lead titanate nanopowders, Mater. Lett. 60 (2006) 1447–1452.
- [3] R. Wongmaneerung, R. Yimnirun, S. Ananta, Effect of milling time and calcination condition on phase formation and particle size of lead titanate nanopowders prepared by vibro-milling, Mater. Lett. 60 (2006) 2666– 2671.
- [4] H. Klug, L. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, second ed., Wiley, New York, 1974.
- [5] JCPDS-ICDD Card no. 35-0739, International Centre for Diffraction Data, Newtown Square, PA, 2000.
- [6] S.D. Pradhan, S.D. Sathaye, K.R. Patil, A. Mitra, Low temperature synthesis of stoichiometric lead zirconate by coprecipitation in nonaqueous medium, Mater. Lett. 48 (2001) 351–355.
- [7] E.E. Oren, E. Taspinar, A.C. Tas, Preparation of lead zirconate by homogeneous precipitation and calcination, J. Am. Ceram. Soc. 80 (1997) 2714.
- [8] W. Chaisan, O. Khamman, R. Yimnirun, S. Ananta, Effects of calcination condition on phase and morphology evolution of lead zirconate powders synthesized by solid-state reaction, J. Mater. Sci. 42 (2007) 4624–4629.
- [9] JCPDS-ICDD Card no. 77-1971, International Centre for Diffraction Data, Newtown Square, PA, 2000.
- [10] A. Revesz, T. Ungar, A. Borbely, J. Lendvai, Dislocations and grain size in ball-milled iron powder, Nanostruct. Mater. 7 (1996) 779–788.
- [11] A. Udomporn, S. Ananta, Effect of calcination condition on phase formation and particle size of lead titanate powders synthesized by the solid-state reaction, Mater. Lett. 58 (2004) 1154–1159.
- [12] W. Chaisan, S. Ananta, T. Tunkasiri, Synthesis of barium titanate-lead zirconate titanate solid solutions by a modified mixed oxide synthetic route, Curr. Appl. Phys. 4 (2004) 182–185.

Journal of Alloys and Compounds 456 (2008) 492-497

www.elsevier.com/locate/jallcom

Preparation of perovskite nanopowders by vibro-milling technique

Orawan Khamman, Rewadee Wongmaneerung, Wanwilai Chaisan, Rattikorn Yimnirun, Supon Ananta*

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
Received 24 December 2006; received in revised form 27 January 2007; accepted 20 February 2007
Available online 23 February 2007

Abstract

The potential of the vibro-milling technique as a simple method to obtain usable quantities of single-phase perovskite powders with nanosized particles was examined. A detailed study considering the role of both milling time and firing condition on phase formation and particle size of the final product was performed. Powder samples were mainly characterized using XRD, SEM and laser diffraction techniques. The calcination temperature for the formation of the desired phase was lower when longer milling times applied. More importantly, by employing an appropriate choice of the milling time and calcination condition, high purity perovskite nanopowders have been successfully prepared with a simple solid-state reaction method.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Powders; Solid-state reaction; Milling; Perovskite

1. Introduction

Electroceramic materials with perovskite structure, such as BaTiO₃, PbTiO₃, PbZrO₃, Pb(Zr,Ti)O₃, etc. have attracted interest for several decades, with tremendous applications including multilayer ceramic capacitors, transducers, sensors and actuators [1–3]. The major challenge in manufacturing these materials is in the processing of the materials with reliable and reproducible properties [3,4].

Recently, the studies of nanoparticles are also very attractive field [5,6]. The evolution of a method to produce nanopowders of precise stoichiometry and desired properties is complex, depending on a number of variables, such as starting materials, processing history, temperature, etc. It is known that electroceramic nanopowders with very good mixing on an atomic scale have normally been synthesized by a number of processing techniques, such as sol–gel [7], co-precipitation [8] and hydrothermal [9]. All of these techniques are aimed at reducing temperature of preparation of the compound even though they are more involved and complicated than the mixed oxide route.

Generally, the mixed oxide method involves the heating of a mixture of oxide constituents at high temperature for long times and has been employed intensively in the last decade [10–12]. The optimization of calcination conditions used in the mixed oxide process, however, has not received much detailed attention, and the effects of applied dwell time and heating/cooling rates have not been studied extensively.

More recently, it has been reported that many nanoparticles can be successfully synthesized by using several mechanical milling method [6,12-14]. From the point of view of energy efficiency, the vibro-mill (or vibratory mill or vibro-energy mill which is a machine for vibrating vessel filled with grinding media at amplitudes up to a approximately 5 cm) seems to be more attractive than the ball mill [12]. Relative to ball-milling, vibro-milling produces finer particles and a narrower size distribution at a faster rate [12–14]. This implies that mills, especially, fine grinders like a vibro-mill are recognized as a tool for producing nanopowders, and the milling time is a key operation for such materials processing as well as the nanopowder preparation. Moreover, the advantage of using a solid-state reaction method via mechanical milling for preparation of nanopowders lies in its ability to produce mass quantities of powder in the solid-state using simple equipment and low cost starting precursors. Although some research has been done in the

^{*} Corresponding author.

E-mail address: suponananta@yahoo.com (S. Ananta).

preparation of perovskite powders via a vibro-milling technique [12–14], to our knowledge a detailed study considering the role of both milling times and firing conditions on the preparation of perovskite nanopowders has not been widely reported yet.

In the present study, we have demonstrated the potential of a rapid vibro-milling technique in the production of several important perovskite nanopowders, such as PbZrO₃ or PZ, PbTiO₃ or PT and BaTiO₃ or BT.

2. Experimental

The raw materials used were commercially available lead oxide, zirconium oxide, titanium oxide and barium carbonate (Fluka, >99% purity). These oxide powders exhibited an average particle size in the range of 3.0–5.0 μm. PbZrO₃, PbTiO₃ and BaTiO₃ powders were synthesized by the solid-state reaction of these raw materials. A vibratory laboratory mill (McCrone Micronizing Mill) powered by a 1/30 HP motor was employed for preparing the stoichiometric powders [13]. The grinding vessel consists of a 125 ml capacity polypropylene jar fitted with a screw-capped, gasketless, polythene closure. The jar is packed with an ordered array of identical, cylindrical, grinding media of polycrystalline corundum. A total of 48 milling media cylindrical with a powder weight of 20 g was kept constant in each batch. The milling operation was carried out in isopropanal inert to the polypropylene jar. Various milling times ranging from 0.5 to 35 h were selected in order to investigate the phase formation characteristic of all desired powders and the smallest particle size. After drying at 120 °C for 2 h, various calcination conditions, i.e. temperature ranging from 500 to 1200 °C, dwell times ranging from 1 to 6 h and heating/cooling rates ranging from 10 to 30 °C/min, were applied (the powders were calcined inside a closed alumina crucible) in order to investigate the formation of the desired phases.

All powders were examined by room temperature X-ray diffraction (XRD; Siemens-D500 diffractometer) using Ni-filtered Cu K α radiation, to identify the phases formed, optimum milling time and firing conditions for the production of single-phase powders. The average crystallite size is also estimated from XRD patterns [15]. The particle size distributions of the powders were determined by laser diffraction technique (DIAS 1640 laser diffraction spectrometer) with the particle sizes and morphologies of the powders observed by scanning electron microscopy (JEOL JSM-840A SEM). The chemical compositions of the phases formed were elucidated by an energy-dispersive X-ray (EDX) analyzer with an ultra-thin window. EDX spectra were quantified with the virtual standard peaks supplied with the Oxford Instruments eXL software.

3. Results and discussion

XRD patterns of the calcined PbZrO₃ powders after different combination of milling time and calcination condition are given

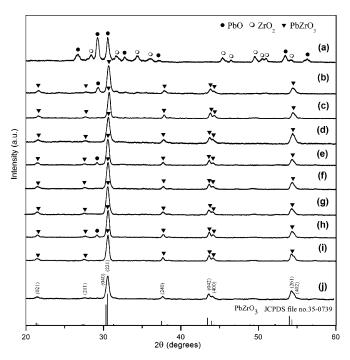


Fig. 1. XRD patterns of PZ powders milled for 15 h (a) uncalcined, and calcined at 800 °C for (b) 1 h and (c) 2 h with heating/cooling rates of 10 °C/min and (d) 30 °C/min; milled for 25 h and calcined at (e) 750 °C for 5 h (f) 800 °C for 1 h with heating/cooling rates of 10 °C/min and (g) 30 °C/min.; and milled for 35 h and calcined at 750 °C for (h) 3 h and (i) 4 h with heating/cooling rates of 10 °C/min and (j) 30 °C/min.

in Fig. 1. For the uncalcined powder subjected to 15 h of vibro-milling, only X-ray peaks of precursors PbO (●) and ZrO₂ (○) are present, indicating that no reaction was yet triggered during the vibro-milling process. However, after calcination at 800 °C for 1 h, it is seen that the perovskite PbZrO₃ becomes the predominant phase, indicating that the reaction has occurred to a considerable extent. It should be noted that when the dwell time of the calcination at 800 °C was extended up to 2 h, the single-phase of perovskite PZ (yield of 100% within the limitations of the XRD technique) was obtained. This was apparently a consequence of the enhancement in crystallinity of the perovskite phase with increasing degree of mixing and dwell time, in good

Table 1 Effect of milling time on the variation of particle size of perovskite powders calcined at their optimum conditions with heating/cooling rates of 30 °C/min and measured by different techniques

Powders	Milling time (h)	Calcination condition (°C/h)	XRD A (nm)	SEM		Laser scattering	
				D (nm)	P (nm)	$\overline{D \text{ (nm)}}$	P (nm)
PZ	15	800/2	60.41	280	53–692	700	35–2000
	25	800/1	35.11	223	31-400	170	35-750
	35	750/4	27.50	121	31–228	1570	10-6000
PT	5	600/1	22.50	101	67–135	690	290-1140
	15	600/1	22.00	78	43-114	4640	1640-7790
	25	600/1	21.50	63	17–109	180	70–310
BT	0.5	1300/2	38.32	610	250-1400	1000	400-1500
	25	1200/2	31.60	390	250-700	400	60-700
	30	1200/2	31.56	250	100-400	600	120-1000

A: Crystallite size; D: average particle size; P: particle size distribution or range.

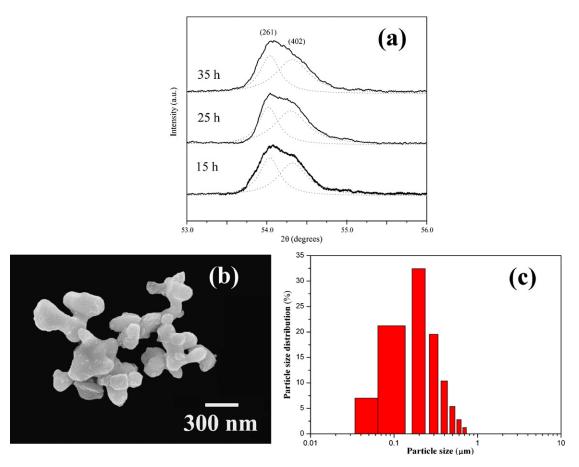


Fig. 2. (a) Enlarged zone of XRD patterns showing peaks broadening as a function of milling times of PZ powders, (b) SEM micrograph and (c) particle size distribution of PZ powders milled for 25 h and calcined at 800 °C for 1 h with heating/cooling rates of 30 °C/min.

agreement with other works [13,14]. In general, the strongest reflections apparent in the majority of these XRD patterns indicate the formation of the lead zirconate, PbZrO₃. These can be matched with JCPDS file number 35-0739 for the orthorhombic phase, in space group P2cb (no. 32) with cell parameters a=823 pm, b=1177 pm and c=588 pm [16], consistent with other works [17,18]. For 15 h of milling, the optimum calcination condition for the formation of a high purity PbZrO₃ phase was found to be about $800\,^{\circ}$ C for 2 h with heating/cooling rates of $30\,^{\circ}$ C/min.

To further study the phase development with increasing milling times, an attempt was also made to calcine mixed powders milled at 25 and 35 h under various conditions as shown in Fig. 1(e–j). In this connection, it is seen that by varying the calcination condition, the minimum firing temperature for the single-phase formation of each milling batch is gradually decreased with increasing milling time. The main reason for this behavior is that a complete solid-state reaction probably takes place more easily when the particle size is milled down by accelerating an atomic diffusion mechanism to meet the suitable level of homogeneity mixing. It is thought that reducing the particle size significantly reduces heat diffusion limitations. It is therefore, believed that the solid-state reaction to form perovskite PZ phase occurs at lower temperatures with decreasing the particle size of the oxide powders.

In the work reported here, evidence for the minor phase of PbO which coexists with the parent phase of PbZrO₃ is found after calcination at temperature 750–800 °C, in agreement with literature [11,19]. This second phase has an orthorhombic structure with cell parameters a = 589.3 pm, b = 549.0 pm and c = 475.2 pm (JCPDS file number 77-1971) [20]. This observation could be attributed mainly to the poor reactivity of lead and zirconium species [19] and also the limited mixing capability of the mechanical method [13,14]. A noticeable difference is noted when employing the milling time longer than 15 h, Fig. 1(e-j), since an essentially monophasic PbZrO₃ of perovskite structure was obtained at 800 °C for 1 h (or 750 °C for 4 h) for the milling time of 25 h (or 35 h). This was apparently a consequence of the enhancement in crystallinity of the perovskite phase with increasing degree of mixing and dwell time, in good agreement with other works [13,14].

In the present study, an attempt was also made to calcine the powders under various heating/cooling rates (Fig. 1). In this connection, it is shown that the yield of PbZrO₃ phase did not vary significantly with different heating/cooling rates ranging from 10 to 30 °C/min, in good agreement with the early observation for the PbZrO₃ powders subjected to 0.5 h of vibro-milling time [19].

After establishing the optimum combination between vibromilling time and calcination condition, similar investigation was

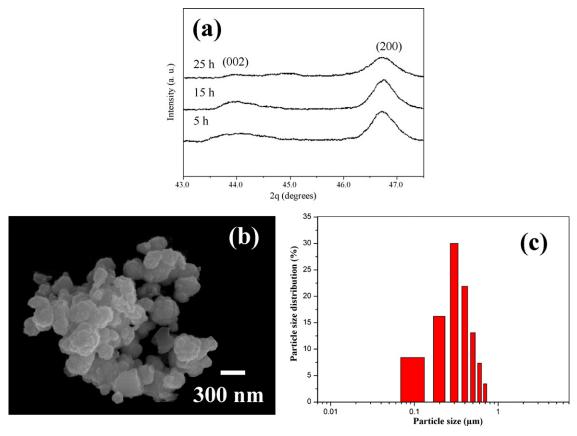


Fig. 3. (a) Enlarged zone of XRD patterns showing peaks broadening as a function of milling times of PT powders, (b) SEM micrograph and (c) particle size distribution of PT powders milled for $25 \, h$ and calcined at $600 \, ^{\circ} C$ for $1 \, h$ with heating/cooling rates of $30 \, ^{\circ} C$ /min.

also performed on the preparation of PbTiO₃ and BaTiO₃ powders as shown in Figs. 3 and 4, respectively. It should be noted that no evidences of the introduction of impurity due to wear debris from the selected milling process was observed in all calcined powders, indicating the effectiveness of the vibro-milling technique for the production of high purity nanopowders. Our previous investigations on related systems also indicated that no evidence of contamination from milling media was detected by XRD, EDX–SEM and TEM techniques [12,14,19,21,22]. As expected, there is evidence that, even for a wide range of calcination conditions, single-phase of all selected electroceramic powders cannot easily be produced, in agreement with literature [11–14]. This could be attributed mainly to the poor reactivity of starting species [13,14] and also the limited mixing capability of the mechanical method [23].

The variation of calculated crystallite size of all single-phase perovskite powders milled for different times and calcined at their optimum conditions is given in Table 1. In general, it is seen that the crystalline size of all powders decreases with increasing milling times. These observations indicate that the particle size affects the evolution of crystallinity of the phase formed by prolong milling treatment. Moreover, it has been observed that with increasing milling time, all diffraction lines broaden, as shown in Figs. 2(a), 3(a) and 4(a), which are an indication of a continuous decrease in particle size and of the introduction of lattice strain [15].

For all powders, the longer the milling time, the finer is the particle size. Also the relative intensities of the Bragg peaks and the calculated crystallite size for all powders tend to decrease with the increase of milling time. However, it is well documented that, as Scherer's analysis provides only a measurement of the extension of the coherently diffracting domains, the particle sizes estimated by this method can be significantly under estimated [14,15]. In addition to strain, factors, such as dislocations, stacking faults, heterogeneities in composition and instrumental broadening can contribute to peak broadening, making it almost impossible to extract a reliable particle size solely from XRD [15,23]. However, it should be noted that by increasing the calcination time from 1 to 4h, these calculated values decrease to the minimum at 2 h and then grow up further after more dwell time applied. There is no obvious interpretation of these observations, although it is likely to correspond to the competition between the major mechanisms leading to crystallization and agglomeration [19].

In this connection, a combination of SEM and laser diffraction techniques was also employed for the morphology and particle size distribution measurement, as some examples shown in Figs. 2(b,c), 3(b,c) and 4(b,c). In general, all powders are agglomerated and basically irregular in shape, with a substantial variation in particle sizes, particularly in powders subjected to high firing temperatures (Fig. 4(b)). The powders consist of primary particles of nanometers in size. The primary particles have

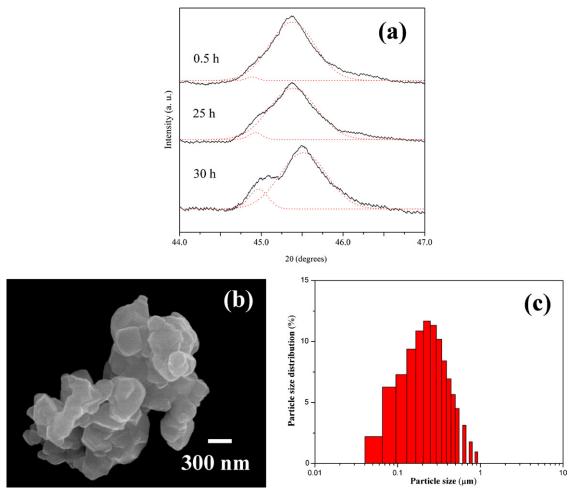


Fig. 4. (a) Enlarged zone of XRD patterns showing peaks broadening as a function of milling times of BT powders, (b) SEM micrograph and (c) particle size distribution of BT powders milled for $25 \, h$ and calcined at $1200 \, ^{\circ} C$ for $2 \, h$ with heating/cooling rates of $30 \, ^{\circ} C$ /min.

sizes of \sim 31–400, 17–109 and 250–700 nm, and the agglomerates measured \sim 35–750, 70–310 and 60–700 nm, for PZ, PT and BT powders, respectively. It is also of interest to point out that degree of agglomeration tends to increase with milling time and calcination temperatures (Fig. 4(b and c)), in good agreement with other works [12–14]. This observation may be attributed to the occurrence of hard agglomeration with strong inter-particle bond within each aggregates resulting from firing process. Any milling parameter, such as milling time, milling media or milling frequency, that influences the grain size within the particles has a corresponding effect on the resulting particle size.

The experimental work carried out here, suggests that mass production of single-phase PZ, PT and BT nanopowders with the smallest particle size $\sim 31,17$ and 100 nm, respectively (estimated from SEM micrographs), can be achieved by employing a combination of suitable vibro-milling time and calcination condition. Moreover, the employed heating/cooling rates for all selected powders observed in this work are also faster than those reported earlier [23–25]. In general, EDX analysis using a 20 nm probe on a large number of particles of these calcined electroceramic powders confirmed the existence of single (perovskite)-phase, in good agreement with XRD results.

4. Conclusions

Using commercially available oxide powders as the starting materials, this work demonstrated that a rapid vibro-milling technique has considerable potential for the low cost, large scale production of several high purity perovskite nanopowders. Through the suitable selection of milling time and calcination condition, the vibro-milling technique may be extended to the preparation of a very wide range of nanopowders.

Acknowledgements

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), National Nanotechnology Center (Nanotec), the Faculty of Science and the Graduate School of Chiang Mai University.

- [1] A.J. Moulson, J.M. Herbert, Electroceramics, second ed., Wiley, Chichester 2003
- [2] Y. Xu, Ferroelectric Materials and their Applications, North-Holland, New York, 1991.

- [3] G.H. Haertling, J. Am. Ceram. Soc. 82 (1999) 797–818.
- [4] D. Segal, Processing of ceramics, Part 1, in: R.J. Brook (Ed.), Materials Science and Technology, Verlagsgesellscaft mbH, Weinheim, 1996.
- [5] N. Setter, J. Eur. Ceram. Soc. 21 (2001) 1279-1293.
- [6] P.G. McCormick, T. Tsuzuki, J.S. Robinson, J. Ding, Adv. Mater. 13 (2001) 1008–1010.
- [7] D.D.E. Lakeman, D.A. Payne, Mater. Chem. Phys. 38 (1994) 305-324.
- [8] W.E. Rhine, K. Saegusa, R.B. Hallock, M.J. Cima, Ceram. Trans. 12 (1990) 107–118
- [9] A. Dias, V.T.L. Buono, V.S.T. Ciminelli, R.L. Moreira, J. Eur. Ceram. Soc. 19 (1999) 1027–1031.
- [10] M. Dambekalne, I. Brante, A. Sternberg, Ferroelectrics 90 (1989) 1–14.
- [11] S. Ananta, N.W. Thomas, J. Eur. Ceram. Soc. 19 (1999) 155–163.
- [12] R. Wongmaneerung, T. Sarakonsri, R. Yimnirun, S. Ananta, Mater. Sci. Eng. B 130 (2006) 246–253.
- [13] R. Wongmaneerung, R. Yimnirun, S. Ananta, Mater. Lett. 60 (2006) 1447–1452.
- [14] R. Wongmaneerung, R. Yimnirun, S. Ananta, Mater. Lett. 60 (2006) 2666–2671.

- [15] H. Klug, L. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, second ed., Wiley, New York, 1974.
- [16] JCPDS-ICDD Card no. 35-0739, International Centre for Diffraction Data, Newtown Square, PA, 2000.
- [17] S.D. Pradhan, S.D. Sathaye, K.R. Patil, A. Mitra, Mater. Lett. 48 (2001) 351–355
- [18] E.E. Oren, E. Taspinar, A.C. Tas, J. Am. Ceram. Soc. 80 (1997) 2714– 2716.
- [19] W. Chaisan, O. Khamman, R. Yimnirun, S. Ananta, J. Mater. Sci., in press.
- [20] JCPDS-ICDD Card no. 77-1971, International Centre for Diffraction Data, Newtown Square, PA, 2000.
- [21] R. Wongmaneerung, T. Sarnkonsri, R. Yimnirun, S. Ananta, Mater. Sci. Eng. B132 (2006) 292–299.
- [22] A. Prasatkhetragarn, R. Yimnirun, S. Ananta, Mater. Lett., in press.
- [23] A. Revesz, T. Ungar, A. Borbely, J. Lendvai, Nanostruct. Mater. 7 (1996) 779–788.
- [24] A. Udomporn, S. Ananta, Mater. Lett. 58 (2004) 1154-1159.
- [25] W. Chaisan, S. Ananta, T. Tunkasiri, Curr. Appl. Phys. 4 (2004) 182–185.

Effect of Annealing on the Structure and Dielectric Properties in PZT-PCoN Ceramics

N. Vittayakorn^{1,5,a}, N. Chaiyo¹, R. Muanghlua², A. Ruangphanit³ and W. C. Vittayakorn⁴

^a e-mail: naratipcmu@yahoo.com

Keyword: Ferroelectric Materials, Lead Zirconate Titanate, Lead Cobolt Niobate

Abstract The solid solution between the normal ferroelectric $Pb(Zr_{1/2}Ti_{1/2})O_3$ (PZT) and relaxor ferroelectric $Pb(Co_{1/3}Nb_{2/3})O_3$ (PCoN) was synthesized by the solid state reaction method. Sintered PZT-PCoN ceramics were annealed at temperatures ranging from 850 to 1,100°C for 4 h. X-ray diffraction patterns revealed changes of crystalline structure after annealing, which could be correlated to the accompanied changes in dielectric properties. Furthermore, significant improvements in the dielectric responses were observed in this system. After annealing, a huge increase of up to 200% occurred in the dielectric constants, especially near the temperature of maximum dielectric constant.

Introduction

Piezoelectric lead zirconate titanate (PZT) ceramic material has been widely used for transducer applications, due to its excellent piezoelectric properties, and was a candidate in a number of recent investigations [1, 2]. It is well known that PZT material is almost always used with a dopent, modifier or other chemical constituents to improve and optimize its basic properties for a particular application [1, 3]. Lead zirconate titanate ceramics and their solid solution, along with several complex perovskite oxides represented by Pb(B'B")O₃, have been investigated [4-6]. Among the various complex ferroelectric oxide materials, several niobates with transition temperatures below room temperature are $Pb(Mg_{1/3}Nb_{2/3})O_3$, $Pb(Ni_{1/3}Nb_{2/3})O_3$, and $Pb(Co_{1/3}Nb_{2/3})O_3$. Among them, lead cobalt niobate [Pb(Co_{1/3}Nb_{2/3})O₃ (PCoN)] is also a typical ferroelectric relaxor material with a transition temperature of -70°C, as reported by Smolenskii et al. [7] in 1958. In this compound, the octahedral sites of the crystal are occupied randomly by Co²⁺ and Nb⁵⁺ ions. Recently, our previous work has shown promise in producing phase pure perovskite PZT-PCoN ceramics with the solid state reaction method [5, 8]. A morphotropic phase boundary (MPB) between the PCoN-rich pseudo-cubic phase and the PZT-rich tetragonal phase reported $0.7Pb(Zr_{1/2}Ti_{1/2})O_3:0.3Pb(Co_{1/3}Nb_{2/3})O_3[5].$

In this study, we emphasized the effect of annealing on the crystal structure, and dielectric properties in PZT–PCoN ceramics. Based on our previous results for the PZT–PCoN system, PZT containing 30 mol% of PCoN was selected as the starting composition, which is close to the rhombohedral MPB in this system. For annealing, the samples were heat treated at 850-1,100°C for

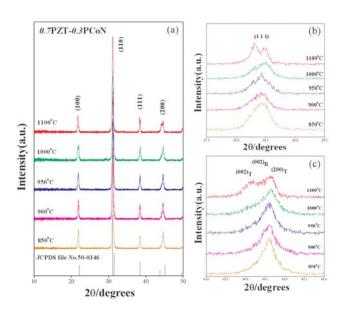
¹ King Mongkut's Institute of Technology Ladkrabang Nanotechnology Research Center(NRC), King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520

²Electronics Research Center, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok Thailand 10520

³ Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand 50200

⁴ Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, Nation Science and Technology Development Agency, Ministry of Science and Technology, Chachoengsao 24000, Thailand

Materials Science Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520


4 hours in a sealed Al₂O₃ crucible, with PbO-rich atmosphere. This paper reports evolution of the perovskite phase, and crystal structure of the PZT–PCoN ceramics. Next, the temperature and frequency dependence of the dielectric constant are given for as-sintered and annealed samples. The results of influence on the post-sintering annealing of these properties are shown in brief.

Experiment

The 0.7Pb(Zr_{1/2}Ti_{1/2})O₃-0.3Pb(Co_{1/3}Nb_{2/3})O₃ ceramics were prepared by conventionally mixed-oxide processing, in which stoichiometric mixtures of reagent-grade metal oxide powders of 99% + purity (PbO, CoO, TiO₂, ZrO₂ and Nb₂O₅) were used as the starting raw materials. Thermal synthesis of blended and pressed mixture of the starting material was carried out at 900°C for a period of 4 h. Crumbled, milled and sieved material was pressed again in the form of cylinders and then sintered at 1,100°C for 4 h. The sintered pellets were then annealed at various temperatures from 850 to 1,100°C for 4 h. These annealing processes were performed in a double crucible, with interior PbO + ZrO₂ atmosphere, in order to maintain the established composition and, especially, avoid the loss of PbO caused by its sublimation. The Archimedes displacement method with distilled water was employed to evaluate sample density. The ceramic pellets were ground and polished to make parallel surfaces, and densities were determined geometrically. After gold sputtering onto the major faces of the pellets as electrodes, dielectric constants and losses at the frequency decades of 10 kHz were measured, using a computer-interfaced LCR meter.

Results and Discussions

The phase development in the annealed samples was analyzed by XRD and the results are presented in Figure 1. All samples show a single-phase powder diffraction pattern. No secondary reaction phases such as PbO, Pb-based compounds, unreacted oxide and so on, are observed in the pattern.

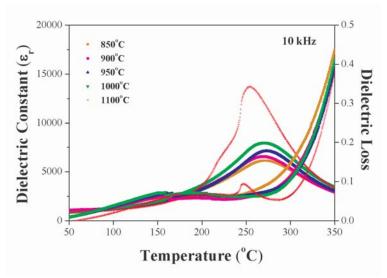
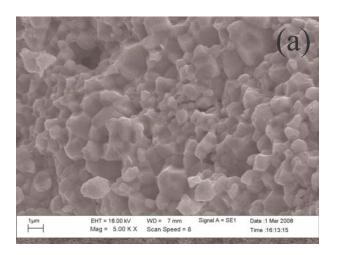
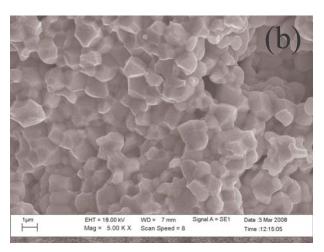


Figure 1 (a) XRD patterns of 0.7PZT-0.3PZN annealed samples at various temperatures for 4 h, (b) XRD pattern of the (1 1 1) peak, (c) XRD pattern of the (2 0 0) peak.


After annealing, a significant change in the crystal structure was observed, especially above an annealing temperature of $1,000^{\circ}$ C, where the crystal structure changes from pseudo-cubic to tetragonal and rhombohedral. On the basis of XRD and dielectric experiments, we have identified the MPB in the (1-x)PZT-xPCoN system from our previous work. The MPB resides at around $x \sim 0.2$, separating the tetragonal phase for $x \leq 0.2$ from the rhombohedral phase for $x \geq 0.3$. In this study, the XRD data show that splitting of the (200) and (111) peak is not observed in ceramic



samples annealed at temperatures below 1,000°C. These results indicated that the major phase in this ceramic sample had pseudo-cubic symmetry. Splitting of the (200) peak becomes more pronounced as the annealing temperature approaches 1,100°C, thus indicating stabilization of the tetragonal phase. Furthermore, the unambiguous splitting of the (111) peak indicated the coexistence of the rhombohedral and tetragonal phase. The co-existence of the tetragonal and rhombohedral phase is seen clearly when the XRD profile peak splits with increasing annealing temperature. From these results, it is clear that the composition of the annealed sample has shifted very closely to the MPB.

Figure 2 Variation of the dielectric constant (ε_r) and loss tangent $(\tan \delta)$ with different annealing temperatures at 10 kHz.

Figure 3 SEM photographs of 0.7PZT-0.3PCoN ceramics (a) as-sintered samples (b) annealing at 1,100°C.

Figure 2 shows the dielectric constant (ε_r) at 10 kHz versus the temperature for 0.7PZT-0.3PCoN ceramics annealed at different temperatures for 4 h. After annealing, a significant improvement in the dielectric constant was observed, especially near the temperature of the maximum dielectric constant (ε_m), where the improvement was up to 200%. This change in behavior might be due to a shift in a chemical composition close to the MPB, caused by thermal annealing. This behavior is consistent with the conclusions of Randall *et al.* [9]and Leite *et al.* [10] in the PMN–PT system. Figure 3 shows scanning electron microscopy (SEM) images of the fractured surfaces of 0.7PZT-

0.3PCoN ceramics before and after annealing at 1,100°C. There was no change in the grain size. The density of the samples decreased from 8.120 to 8.015 g/cm³ after annealing at 1,100°C for 4 h. Obviously, the decrease in density did not lead to an improvement of electrical responses.

Summary

The dielectric properties of 0.7PZT–0.3PCoN ceramics, formed via the solid state reaction, were investigated. Thermal annealing was seen to be effective at improving the dielectric and piezoelectric responses of PZT-based ferroelectric ceramics. The annealing time was found to have an effect on the electrical properties. After annealing at 1,100°C for 4h in a PbO-rich atmosphere, 0.7PZT-0.3PCoN ceramics with $\varepsilon_{\rm m}$ 14,400 were achieved in this study. The large improvements in dielectric properties after annealing were attributed to a shift in the phase composition to the MPB composition.

Acknowledgements

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), Thailand Graduate Institute of Science and Technology (TGIST), National Research Council of Thailand (NRCT) and King Mongkut's Institute of Technology Ladkrabang (KMITL).

- [1] G. H. Haertling: J. Am. Ceram. Soc. Vol. 82 (1999), p. 797.
- [2] K. Uchino: Ferroelectric Devices (Marcel Dekker, Inc., New York, 2000)
- [3] K. Uchino: Solid State Ionics Vol. 108 (1998), p. 43.
- [4] N. Vittayakorn, G. Rujijanagul, X. Tan, M. A. Marquardt and D. P. Cann: J. Appl. Phys. Vol. 96 (2004), p. 5103.
- [5] N. Vittayakorn and T. Tunkasiri: Phys. Scr. Vol. T129 (2007), p. 199.
- [6] N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M. A. Marquardt and D. P. Cann, J. Electroceramic Vol. 16 (2006), p. 141.
- [7] G. A. Smolenskii and A. L. Agranovskaya: Sov. Phys.-Tech. Phys. (1958), p. 1380.
- [8] N. Vittayakorn, S. Wirunchit, S. Traisak, R. Yimnirun and G. Rujijanagul: Curr. Appl Phys. Vol. 8 (2008), p. 128.
- [9] C. A. Randall, A. D. Hilton, D. J. Barber and T. R. Shrout: J. Mater. Res. Vol. 8 (1993), p. 880
- [10] E. R. Leite, A. M. Scotch, A. Khan, T. Li, H. M. Chan, M. P. Harmer, S.-F. Liu and S.-E. Park: J. Am. Ceram. Soc. Vol. 85 (2002), p. 3018.

Microstuctural Study and Properties of 0.8PZT-0.2BT Ceramics using a Two-stage Sintering Procedure

W. C. Vittayakorn

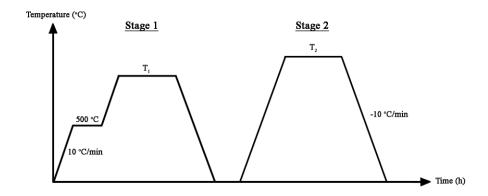
Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand wanwilai_chaisan@yahoo.com

Keywords: Microstructure, Sintering, PZT, BT

Abstract. Lead zirconate titanate-barium titanate (0.8PZT-0.2BT) ceramic was prepared by conventional mixed-oxide method combined with a two-stage sintering procedure. A sintering time of 2 h at 1000 °C followed by a second step in the temperature range of 1000-1200 °C for 2 h was employed to the samples and compared to the one-step sintering process. Phase formation, densification and microstructure of all ceramics were examined via X-ray diffraction (XRD), Archimedes method and scanning electron microscope (SEM). The results lead to the conclusion that the pure perovskite phase and high densification of 0.8PZT-0.2BT ceramics with small grain can be successfully achieved under suitable two-stage sintering conditions.

Introduction

Nowadays, lead-based ferroelectric ceramics are widely applied in multilayer capacitors, transducers and sensors because of their excellent electrical properties [1]. Many of these applications require materials with superior electrical properties. Both PZT and BT are among the most common ferroelectric ceramics and have been studied extensively since the late 1940s [2, 3]. These two ceramics have distinct characteristics that make each ceramic suitable for different applications. The PZT ceramic has great piezoelectric properties which can be applied in transducer applications. Furthermore, it has a high $T_{\rm C}$ of 390 °C which allows electronic devices to be operated at high temperatures. BT ceramic is a normal ferroelectric material which exhibits a high dielectric constant, a lower $T_{\rm C}$ (~120 °C) and better mechanical properties [1-3]. However, sintering temperature of BT is higher than PZT. Thus, mixing PZT with BT is expected to decrease the sintering temperature of BT-based ceramics, a desirable move towards electrode of lower cost [4]. Moreover, since PZT-BT is not a pure-lead system, it is easier to prepare single phase ceramics with significantly lower amount of undesirable pyrochlore phases, usually associated with lead-based system [5, 6]. With their complimentary characteristics, it is expected that excellent electrical properties with preparation ease can be obtained from ceramics in PZT-BT system.


The electrical properties of ferroelectric ceramics depend strongly on microstructure as well as chemical compositions [1, 7]. It was reported earlier that the high value of dielectric constant can be revealed if polycrystalline ferroelectric ceramics of fine grain size is achieved [8, 9]. Thus, a fine grain is essential to attain optimum dielectric properties. In the literatures, it is well known that the microstructure of most ferroelectric ceramics can be normally controlled by two approaches. Utilizing additives to prohibit the grain growth is one approach [10-12]. Another approach uses novel processing technique to modify the microstructure. Numerous studies on the sintering process of ferroelectric ceramics have been reported in previous works [9, 13, 14]. Recently, a two-stage sintering method has been proposed by Chen and Wang to achieve the densification of ceramic bodies without significant grain growth [15]. Moreover, Kim and Han [9] found that intermediate dense and fine grain size BT ceramic was achieved from the two-stage sintering technique and showed much greater dielectric constant than that of the normal sintering technique. However, there is no systematic study about two-stage sintering on lead-based ferroelectric ceramics. Therefore, in this work a two-stage sintering method, which is a low-cost technique and simple ceramic fabrication to obtain highly dense ceramics, has been adopted to produce the fine

grain PZT-BT ceramic. The influence of two-stage sintering on densification and microstructure of the ceramics is investigated with comparison to the normal sintering scheme.

Experimental

0.8Pb(Zr_{0.52}Ti_{0.48})O₃-0.2BaTiO₃ powders used in this study were prepared by a simple mixed oxide synthetic route. Commercially available powders of PbO, ZrO₂, BaCO₃ and TiO₂, (Fluka, >99% purity) were used as starting materials. PZT and BT powders were first form in order to avoid unwanted pyrochlore phases. The 0.8PZT-0.2BT powders were then formulated from the PZT and BT components by employing the mixed-oxide procedure. The mixing process was carried out by ball-milled a mixture of raw materials for 24 h with corundum media in ethanol. After wet-milling, the slurry was dried at 120 °C and calcined in a closed alumina crucible, with the optimum calcination condition (1200 °C for 2 h). Ceramic fabrication was achieved by adding 1 wt% polyvinyl alcohol (PVA) binder, prior to pressing as pellets (15 mm of diameter and 1.0 mm of thickness) in an uniaxial die press at 100 MPa. Each pellet was placed in an alumina crucible together with atmosphere powders of identical chemical composition. In the so-called two-stage sintering process, the first sintering temperature (T1) was assigned for 1000 °C and variation of the second sintering temperature (T₂) between 1000 °C and 1200 °C was carried out (Fig. 1). For comparison, normal sintering process was also carried out at the firing temperature between 1150 and 1350 °C for 2 h. The two sintering schemes also included the binder burn out process at 500 °C for 1 h. Phase formation of all ceramics was examined via X-ray diffraction (XRD). Densities of the final sintered products were determined by using the Archimedes principle. Microstructural development was characterized using a JEOL JSM-840A scanning electron microscopy (SEM).

Fig. 1. A two-stage sintering procedure.

Results and Discussion

The XRD patterns of two-stage sintered 0.8PZT-0.2BT ceramic compared with normal sintered ceramic were illustrated in Fig. 2. The XRD graphs for both ceramics show almost the same. From Fig. 2, it can be indicated that the single phase of 0.8PZT-0.2BT (yield of 100% within the limitations of the XRD technique) was found in both samples. The ceramics were identified as perovskite structure having tetragonal symmetry and the diffraction peaks shifted towards to XRD pattern of tetragonal PZT which can be matched with the JCPDS file no. 33-0784. The cell parameter of each ceramic can be calculated using nonlinear least-square method. The cell parameters a = 0.4013 nm, c = 0.4071 nm can be achieved for normal sintered ceramics and a = 0.3994 nm, c = 0.4056 nm for two-stage sintered ceramic.

The microstructure of 0.8PZT-0.2BT ceramics with the highest density was revealed by SEM. Micrographs of samples sintered with different schemes are shown in Fig. 3. As shown in Fig. 3, SEM micrographs reveal that the both ceramics exhibit good densification and homogenous grain

size. For the normal sintered ceramic, the grain size varies greatly from 0.5 to 10 μ m. However, it can be noticed that the microstructure of the two-stage sintered ceramics (Fig. 3b) is slightly different from that of the normal sintered PZT-BT samples (Fig. 3a). The two-stage sintered ceramic contains smaller average grain size ($\sim 2.0~\mu$ m) and some degree of porosity is clearly seen. In the two-stage sintering process, the first sintering temperature was fixed at 1000 °C, for constant dwell time of 2 h and heating/cooling rates of 10 °C/min, while the second sintering temperature was varied from 1000 °C to 1200 °C. It is found that the relative density of the two-stage sintered ceramics increased significantly from 69 to 82 % with increasing sintering temperature, while grain size changed only slightly (about 1-5 μ m). However, in normal sintering process, while the highest relative density is about 99 %, but the highest grain size is about 10 μ m. From this observation, it can be said that the advantage of the two-stage sintering technique in producing small grain size of 0.8PZT-0.2BT ceramic is clearly signified. Although the average grain size of 0.8PZT-0.2BT ceramic prepared by two-stage sintering is small but the highest densification is not so effective (82%), this is the result of volatile PbO loss due to double firing at moderate temperature. However, the highest densification can be improved by designing the proper sintering temperature.

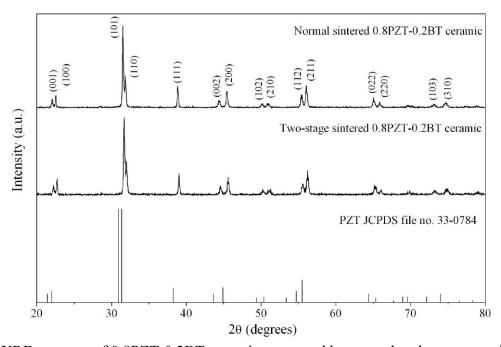
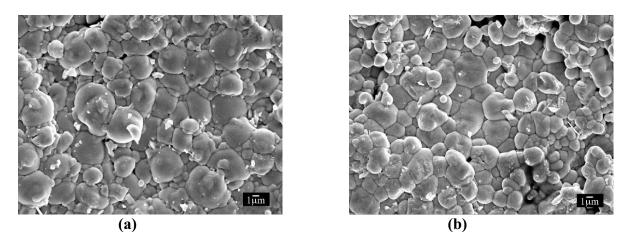



Fig. 2. XRD patterns of 0.8PZT-0.2BT ceramics prepared by normal and two-stage sintering.

Fig. 3. SEM micrographs of 0.8PZT-0.2BT ceramics (a) normal sintered at 1300 °C and (b) two-stage sintered at 1000/1200 °C.

Even though exact mechanism of the microstructure observed here is not well established, but it should be noted that the various features of microstructure in PZT-BT ceramics are dependent on the grain growth rate in the different planes [16]. However, the sintering process and growth environment also play an important role in the formation [17]. More importantly, it can be assumed that the two-stage sintering process could suppress the grain growth mechanism efficiently whereas the relative density of both normal- and two-stage sintered ceramics is in high value. This can be explained that the feasibility of densification without grain growth, which is believed to occur in two-stage sintered ceramic, relies on the suppression of grain boundary migration while keeping grain boundary diffusion active. The kinetic and the driving force for grain growth behavior in the second-step sintering were previously discussed by Chen and Wang [15]. Their work suggested that the suppression of the final stage grain growth was achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration.

Summary

Even though the simple mixed-oxide method employing a conventional ball-milling was used, this work demonstrated that it was possible to obtain smaller grain size ferroelectric PZT-BT ceramics with high densification by the two-stage sintering technique. It has been shown that, under suitable condition, two-stage sintering can effectively suppress the grain growth in 0.8PZT-0.2BT, leading to small-grained microstructure.

Acknowledgements

This work was supported by the Thailand Research Fund (TRF), Commission on Higher Education (CHE) and Faculty of Science of Chiang Mai University. I would also like to grateful to Assoc. Prof. Dr. Supon Ananta and Asst. Prof. Dr. Rattikorn Yimnirun from Department of Physics, Faculty of Science, CMU and Mr. Rangsan Muanghlua from Electronic Research Center, KMITL for all support.

- [1] A. J. Moulson and J. M. Herbert: *Electroceramics: Materials, Properties, Applications* (John Wiley & Sons Ltd., Chichester, 2003).
- [2] G. H. Haertling: J. Am. Ceram. Soc. Vol. 82 (1999), p. 797.
- [3] B. Jaffe, W. R. Cook and H. Jaffe: *Piezoelectric Ceramics* (Academic Press, London, 1971).
- [4] J. Chen, Z. Shen, F. Liu, X. Liu and J. Yun: Scripta Mater. Vol. 49 (2003), p. 509.
- [5] W. Chaisan, S. Ananta and T. Tunkasiri: Cur. Appl. Phys. Vol. 4 (2004), p. 182.
- [6] B. K. Gan, J. M. Xue, D. M. Wan and J. Wang: Appl. Phys. A Vol. 69 (1999), p. 433.
- [7] Y. Xu: Ferroelectric Materials and Their Applications (Elsevier Science Publishers B.V., 1991).
- [8] K. Kinoshita and A. Yamaji: J. Appl. Phys. Vol. 47 (1976), p. 371.
- [9] H. T. Kim and Y. H. Han: Ceram. Int. Vol. 30 (2004), p. 1719.
- [10] A. Yamaji, Y. Enomoto, K. Kinoshita and T. Murakami: J. Am. Ceram. Soc. Vol. 60 (1977), p. 97.
- [11] M. Kahn: J. Am. Ceram. Soc. Vol. 54 (1971), p. 452.
- [12] V. S. Tiwari, N. Singh and D. Pandey: J. Am. Ceram. Soc. Vol. 77 (1994), p. 1813.
- [13] J. S. Choi and H. G. Kim: J. Mater. Sci. Vol. 27 (1992), p. 1285.
- [14] J. K. Lee, K. S. Hong and J. W. Jang: J. Am. Ceram. Soc. Vol. 84 (2001), p. 2001.
- [15] I. W. Chen and X. H. Wang: Nature Vol. 404 (2000), p. 168.
- [16] M. H. Lin, J. F. Chou and H. Y. Lu: J. Eur. Ceram. Soc. Vol. 20 (2000), p. 517.
- [17] R. M. German: Sintering Theory and Practice (Wiley, New York, 1996).

Synthesis, Crystal Structures, Phase Transition Characterization and Thermal Properties of the (1-x)PbZrO₃-xPb(Co_{1/3}Nb_{2/3})O₃ Solid Solution System

W. Banlue¹, R. Muanghlua², W. C. Vittayakorn³ and N. Vittayakorn^{1,a}

¹Materials Science Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520

²Electronics Research Center, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok Thailand 10520

Keyword: Antiferroelectric Materials, Ferroelectric, Lead Zirconate

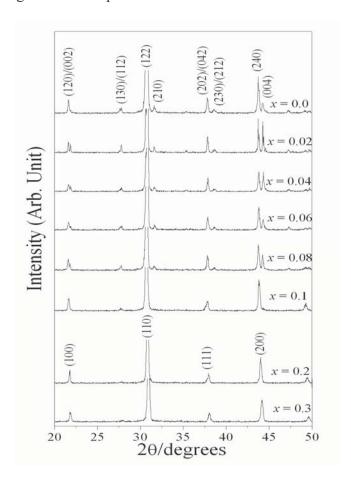
Abstract The phase transition behavior of the (1-x) PbZrO₃-xPb(Co_{1/3}Nb_{2/3})O₃ (PZCN) solid solution system ($0 \le x \le 0.30$) has been investigated by X-ray diffraction and DSC. In the solid solution, for $x \le 0.20$, the transition shows a first-order phase transition behavior and its antiferroelectric (AFE) crystal structure is orthorhombic. The transition temperature gradually decreases with increased Co²⁺/Nb⁵⁺ concentration. On the composition range $0.20 \le x \le 0.30$, a typical relaxor-like behavior is displayed. The low temperature crystal structure is pseudo-cubic in this composition range. With these data, the ferroelectric phase diagram between PZ and PCoN has been established.

Introduction

Lead zirconate [PbZrO₃, abbreviated as PZ] is an antiferroelectric ceramic with a Curie temperature of 230°C [1, 2]. PZ is a parent compound of PbZr_{1-x}Ti_xO₃ (PZT) solid solutions, which are of high scientific and technological interest for their ferroelectricity and piezoelectricity observed over a wide range of compositions [3]. It is reported that the antiferroelectric (AFE) to ferroelectric transition (under the application of a strong electric field to the ceramic in the antiferroelectric state) leads to significant energy storage for the DC field [4]. This feature of PbZrO₃ makes it a candidate material for energy storage applications [3]. Lead cobolt niobate [Pb(Co_{1/3}Nb_{2/3})O₃, abbreviated as PCoN] is a relaxor ferroelectric, characterized by frequency-dependent dielectric maxima and a diffuse phase transition [5, 6]. The diffuse phase transition characteristic of the PCoN was first explained by Smolenskii and Agranovskaya on the basis of local compositional fluctuations on a microscopic scale [6, 7]. PCoN-based ceramics are considered to possess low sintering temperatures. Therefore, these materials can be applied for fabricating multilayer capacitors with low-temperature melting inner electrodes [8]. There have been many studies concerning the solid solution of PZ and other perovskite materials such as PbTiO₃ [9], BaZrO₃, [4, 10] PbSnO₃ [11] and SrZrO₃ [9]. However, to the best of the authors' knowledge, no work has been done on the solid solution between PZ and PCoN. Therefore, the objective of our present study is to investigate phase transition of (1-x)PbZrO₃ – xPb(Co_{1/3}Nb_{2/3})O₃ (PZ – PCoN) with x = 0.00 - 0.30 as a function of composition and temperature.

Experimental

The (1-x)PbZrO₃ – xPb(Co_{1/3}Nb_{2/3})O₃ ceramics, where x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20 and 0.30, were prepared by a columbite precursor. First, a columbite (CoNb₂O₆) precursor was prepared using reagent-grade CoO and Nb₂O₅ in stoichiometric proportions. The powders were thoroughly mixed in a ball mill for 18 h, using ethanol as a grinding medium, and the mixed powder was calcined at 1,100°C for 4 h to obtain the columbite precursor. Single-phase formation of the



³ Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand 50200 a naratipcmu@yahoo.com

precursor was confirmed by X-ray diffraction. The columbite precursor was mixed with PbO (99% purity), and ZrO₂ (99% purity) in different proportions for making different compositions, and each mix was calcined at 900°C for 4 h to acquire the desired composition of (1-x)PZ-xPCoN. Two mol percent of excess PbO was added to all the compositions to compensate for the lead loss during sintering. Single-phase formation was verified by powder XRD. Powders were compacted in disk form with a diameter of 15 mm and thickness of 2–3 mm. These disks were sintered in PbO-rich atmosphere at 1,150°C for 2 h. The densities of the sintered samples were measured to ~95% of the theoretical values. The crystal structure of the sintered pellets was determined by X-ray diffraction (XRD). The phase transition temperatures and enthalpy (Δ H) of the phase transitions were determined by DSC. This was operated from room temperature to 250°C with a heating rate of 10°C/min.

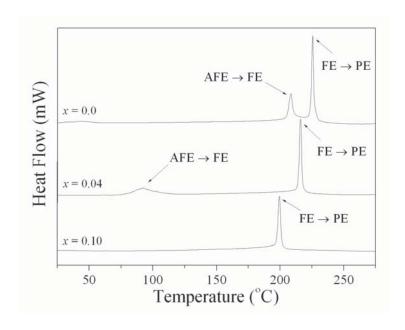
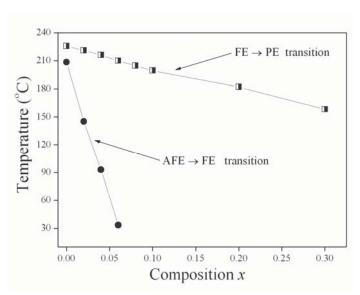

Results and Discussion

Figure 1 illustrates the XRD patterns of (1-x)PZ-xPCoN sintered pellets for $0.00 \le x \le 0.30$. It can be seen that the sintered pellets are single-phase: all the lines in each XRD pattern could be indexed with a perovskite cell. The diffraction peaks move gradually towards higher angles with increasing PCoN contents, indicating smaller cell parameters.

Figure 1 XRD patterns of (1-x)PbZrO₃ – xPb $(Co_{1/3}Nb_{2/3})O_3$ sintered pellets.

Figure 2 DSC thermographs of PZ-PCoN samples for: (a) x = 0, (b) x = 0.04 and (c) x = 0.10.


For the composition $0.00 \le x \le 0.10$, superstructure lines along with strong peaks are clearly observed, indicating that this composition belongs to the AFE orthorhombic phase. Furthermore, the samples with x = 0.1, 0.2 and 0.3 had a split (1 1 1) and (2 2 0) reflection and single (2 0 0) reflection, confirming that the crystal structure of the samples with x = 0.1, 0.2 and 0.3 is a rhombohedral perovskite. The DSC technique was used to investigate the phase transition of PZ-PCoN ceramics, with increasing PCoN concentration. A typical result of the DSC of PZ-PCoN for the composition x = 0, 0.04 and 0.10 is presented in Figure 2(a)-(c). Two distinct endothermic peaks observed for PZ at about 208.4 and 225.6°C are shown in Figure 2(a). The lower temperature corresponds to the transition temperature of the AFE phase transition, while the higher temperature corresponds to the FE

PE phase transition. In Figure 2(b), two endothermic peaks are shown at 92.8 and 216.1°C for the composition, x = 0.04. The AFE \rightarrow FE phase transition was found in the compositions of $0.00 \le x \le 0.10$. The peaks shift to lower temperatures, with a higher composition of x. This result corresponds to a decreasing AFE phase, with increasing amounts of PCoN content. Table 1 gives the transition temperature, including AFE→FE and FE→PE transitions of different PZ-PCoN compositions observed from DSC. The temperature range width of the FE phase increases progressively with PCoN content. After accumulating all these data, the ferroelectric phase diagram of (1-x)PZ-xPCoN has been finally established as a function of temperature and composition, as shown in Figure 3.

Table 1 Phase transitions temperature of (1-x)PZ-xPCoN ceramics

Composition	Phase transition temperature (°C)			
X	AFE→FE	FE→PE		
0.00	208.4	225.6		
0.02	145.2	220.9		
0.04	92.8	216.1		
0.06	33.3	209.9		
0.08	-	204.6		
0.10	-	199.4		
0.20	-	182.0		
0.30	-	158.2		

Figure 3 Ferroelectric phase diagram of the (1-x)PZ - xPCoN, x = 0.0-0.30 binary system.

The transition temperature decreases linearly with x, from approximately $T_c = 235^{\circ}C$ for x = 0.0 to $158.2^{\circ}C$ for x = 0.3. At room temperature, the phase boundary between the orthorhombic, antiferroelectric and rhombohedral ferroelectric phases was observed near x = 0.08. The phase diagram consists of three distinct crystallographic phases in this system; high temperature paraelectric cubic, rhombohedral, and ferroelectric orthorhombic.

Summary

Relaxor ferroelectric PCoN has been found to strongly influence crystal structure and thermal properties of PZ ceramics. The crystal structure data obtained from XRD indicate that the solid solution (I-x)PZ - xPCoN, where x = 0.0-0.3, successively transforms from orthorhombic to rhombohedral symmetry with increased PCoN concentration. The AFE \rightarrow FE phase transition is found in compositions of $0.0 \le x \le 0.08$. The AFE \rightarrow FE phase transition shifts to lower temperatures with higher compositions of x. The temperature range width of the FE phase increases with increased PCoN.

Acknowledgment

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), and King Mongkut's Institute of Technology Ladkrabang (KMITL).

- [1] E. Sawaguchi, G. Shirane and S. Hoshino: Phys. Rev. Vol. 83 (1951), p. 1078.
- [2] F. Jona, G. Shirane, F. Mazzi and R. Pepinsky: Phys. Rev. Vol. 105 (1957), p. 849.
- [3] G. H. Haertling: J. Am. Ceram. Soc. Vol. 82 (1999), p. 797.
- [4] B. P. Pokharel and D. Pandey: J. Appl. Phys. Vol. 86 (1999), p. 3327.
- [5] K. Uchino: Ferroelectrics Vol. 151 (1994), p. 321.
- [6] G. A. Smolenskii and Isupov: Sov. Phys. doklady. Vol. 9 (1954), p. 653.
- [7] N. Setter and L. E. Cross: J. Appl. Phys. Vol. 51 (1980), p. 4356.
- [8] A. Halliyal, U. Kumar, R. E. Newham and L. E. Cross: Am. Ceram. Soc. Bull. Vol. 66 (1987), p. 671.
- [9] B. Jaffe and W. R. Cook: *Piezoelectric ceramic* (R.A.N. Publishers, 1971).
- [10] B. P. Pokharel and D. Pandey, Phys. Rev. B. Vol. 65 (2002), p. 214108.
- [11] Y. Xu, Ferroelectric Materials and Their Application (Elsevier Science Publishers B.V., 1991).

Effects of Zr/Ti Ratio on the Structure and Ferroelectric Properties in PZT-PZN-PMN Ceramics Near the Morphotropic Phase Boundary

R. Muanghlua¹, S. Niemchareon ¹, W. C. Vittayakorn² and N. Vittayakorn^{3,a}

¹Electronics Research Center, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok Thailand 10520

^a e-mail: naratipcmu@yahoo.com

Keyword: Ferroelectric Materials, Lead Zirconate titanate, Morphotropic phase boundary

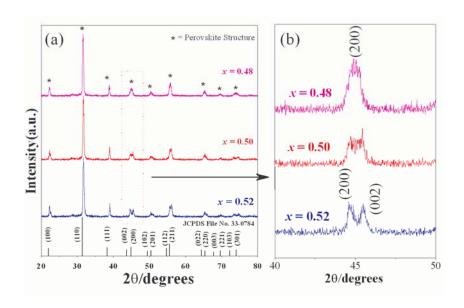
Abstract The piezoelectric ceramics of $Pb(Zr_xTi_{1-x})O_3 - Pb(Zn_{1/3}Nb_{2/3})O_3 - Pb(Mn_{1/3}Nb_{2/3})O_3$; PZT-PZN-PMN with Zr/Ti ratios of 48/52, 50/50 and 52/48 were fabricated in order to investigate the effect of compositional modifications on the ferroelectric properties of PZT-PZN-PMN ceramics. The phase structure of ceramics sintered at 1,150°C was analyzed. Results show that the pure perovskite phase was in all ceramic specimens, and the phase structure of PZT-PZN-PMN piezoelectric ceramics transformed from tetragonal to rhombohedral, with the Zr/Ti ratios increased in the system. The PZT-PZN-PMN ceramics with a Zr/Ti ratio of 50/50 exhibited the most promising properties including high remanent polarization and low coercive field of 25.95 μ C cm⁻² and 12.5 kV cm⁻¹, respectively. Furthermore, the transition temperature decreased when the Zr/Ti ratio increased in the system.

Introduction

Lead zirconate titanate (PZT) is one of the most commonly used ferroelectric ceramic materials. The material has been studied intensively since discovery of the miscibility of lead titanate and lead zirconate in the 1950s. Due to their excellent dielectric, pyroelectric, piezoelectric and electro optic properties, they have a variety of applications in high energy capacitors, non-volatile memories (FRAM), ultrasonic sensors, infra red detectors, electro optic devices, and step-down multilayer piezoelectric transformers for AC–DC converter applications. Until now, many ternary and quaternary systems, such as PNW–PMN–PZT [1], PMN–PZN–PZT [2], PZT–PNN–PZN [3], and PZT–PFW–PMN [4] have been synthesized by modifications or substitutions to satisfy the requirements of the multilayered piezoelectric transformers. In this work, we studied influences of the Zr/Ti ratio on the crystal structure, and piezoelectric and dielectric properties of Pb(Zr_xTi_{1-x})O₃ – Pb(Zr_xTi_{1-x})O₃ –

Experimental

The powders and ceramics with compositions of $Pb_{0.97}Sr_{0.03}[(Mn_{1/3}Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_{0.06}(Zr_{(1-x)}Ti_x)_{0.87}]O_3$ were prepared via a conventional mixed-oxide process, where x=0.48, 0.50 and 0.52. Reagent-grade oxide powders PbO (99.0%), ZrO_2 (99.0%), TiO_2 (99.5%), Nb_2O_5 (99.5%), ZnO(99.9%) and MnO_2 (99.0%) were mixed, consecutively. The mixtures were milled in ethanol using zirconium ball as media in a polyethylene jar for 18 h. The mixed slurry was dried at 80°C and calcined at 850°C for 4 h. Then, the calcined powders were ground again under the same condition in order to obtain fine uniform powders. After drying, the powders were added to 5 wt.% polyvinyl alcohol (PVA) solution, and then pressed into 15 mm diameter plates under a pressure of 100 MPa. The pressed plates were sintered at 950–1,100°C for 6 h in a sealed alumina crucible with lead atmosphere. The sintered ceramics were examined by X-ray diffractometry (XRD, D8



Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand 50200
 Materials Science Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520

Advance) to determine the phase structure. Subsequently, the sintered disks were polished, and silver-paste electrodes were fired at 850° C. In addition, the polarization (P) was measured as a function of electric field (E), using a ferroelectric tester system (Radiant Technologies, Inc., PT66A).

Results and Discussion

Figure 1 (a) and (b) show the XRD patterns of $Pb_{0.97}Sr_{0.03}[(Mn_{1/3}Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_{0.06}(Zr_{(1-x)}Ti_x)_{0.87}]O_3$ sintered pellets for x=0.48, 0.50 and 0.52. The sintered pellets can be seen as a single-phase: all the lines in each XRD pattern could be indexed with a perovskite cell. No secondary reaction phases, such as PbO, Pb-based compounds, unreacted oxide and so on, are observed in the pattern.

Figure 1 XRD patterns of $Pb_{0.97}Sr_{0.03}[(Mn_{1/3}Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_{0.06}(Zr_{(1-x)}Ti_x)_{0.87}]O_3$ sintered pellets.

Based on the careful XRD study of $(2\ 0\ 0)$ reflections in Figure 1(b), we found that a phase transformation from the pseudo-cubic structure to the tetragonal structure occurs with increasing x content. The ceramics with x=0.48 exist as a pseudo-cubic phase revealed by the single $(2\ 0\ 0)_R$ peak. At x=0.50, the ceramics coexist as a tetragonal and pseudo-cubic phase revealed by the coexistence of $(0\ 0\ 2)_T$ and $(2\ 0\ 0)_R$ peaks in the 2θ range of 43.5° to 45.5° . The ceramics exist as a tetragonal phase when indicated by the splitting of $(0\ 0\ 2)$ and $(2\ 0\ 0)$ peaks in the 2θ range of 43.5° to 46.5° at x=0.52.

Table 1 Characteristics of $Pb_{0.97}Sr_{0.03}[(Mn_{1/3}Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_{0.06}(Zr_{(1-x)}Ti_x)_{0.87}]O_3$ ceramics with optimized processing conditions

Composition <i>x</i>	Crystal structure	Theoretical Density (%)	Grain Size (µm)
0.48	PC	94.05	2.84
0.50	PC+T	94.03	2.72
0.52	PC	95.21	2.94

In the first approximation, it could be said that the composition between x=0.50 is close to the morphotropic phase boundary (MPB) of this system, where the structure of the $Pb_{0.97}Sr_{0.03}[(Mn_{1/3}Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_{0.06}(Zr_{(1-x)}Ti_x)_{0.87}]O_3$ compositions is gradually changing from pseudo-cubic to tetragonal. The physical properties do not vary significantly with the ceramic compositions, as listed in Table 1.

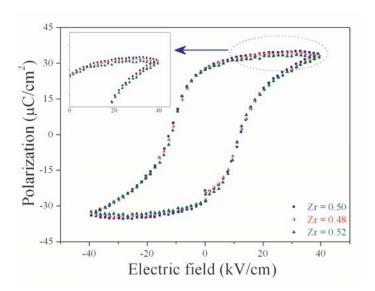


Figure 2 Hysteresis loops of the $Pb_{0.97}Sr_{0.03}[(Mn_{1/3}Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_{0.06}(Zr_{(1-x)}Ti_x)_{0.87}]O_3$ ceramics with x = 0.48, 0.50 and 0.52 measured at 40 kV/cm.

Figure 2 illustrates the P–E curves of the samples, with x = 0.48, 0.50 and 0.52 measured at 25 kV/cm. All compositions show symmetry in shape and reveal rectangular hysteresis loops, which is typical of a phase that contains long-range cooperation between dipoles. No evidence of pinning effect or asymmetric loop was detected in any electric field strengths. From the fully saturated loops, the remanent polarization P_r and coercive field E_c were determined. The values of P_r and E_c for composition x = 0.50 are 25.95 μ C/cm² and 12.5 kV/cm, respectively, whereas the remanent polarization P_r is 25.7 μ C/cm² for composition x = 0.48. Maximum remanent polarization was observed in the ceramic with composition x = 0.5. It has been seen that the samples with compositions x = 0.5 exhibit the highest saturation and remnant polarization among all the ceramics studied. As indicated by the above XRD, the composition with x = 0.5 contains both tetragonal and pseudo-cubic phases, so it should favor a strong ferroelectric effect. This is due to the increased ease of reorientation during poling by the transformation of a number of 180° domains into 90° ones. Also revealed from these results, the MPB coexisting in the tetragonal and pseudo-cubic phases in the present system is a broad composition region of x = 0.5, which exhibits high ferroelectric properties around the center of the MPB.

Summary

The Zr/Ti ratio has been found to influence crystal structure and ferroelectric properties of $Pb_{0.97}Sr_{0.03}[(Mn_{1/3}Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_{0.06}(Zr_{(1-x)}Ti_x)_{0.87}]O_3$ ceramics. The crystal structure data obtained from XRD indicate that the solid solution $Pb_{0.97}Sr_{0.03}[(Mn_{1/3}Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_{0.06}(Zr_{(1-x)}Ti_x)_{0.87}]$, where x=0.48, 0.50 and 0.52, successively transforms from pseudo-cubic to tetragonal symmetry with increased x concentration. More interestingly, XRD analysis and ferroelectric property measurements indicated the existence of the MPB composition at between x=0.50.

Acknowledgment

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), and Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang and King Mongkut's Institute of Technology Ladkrabang (KMITL).

- [1] Z. Yang, R. Zhang, L. Yang and Y. Chang: Materials Research Bulletin. Vol. 42 (2007), p. 2156.
- [2] J. Yoo, K. Kim, C. Lee, L. Hwang, D. Paik, H. Yoon and H. Choi: Sensors and Actuators A: Physical. Vol. 137 (2007), p. 81.
- [3] N. Vittayakorn and D. P. Cann; Appl. Phys. A. Vol. 86 (2007), p. 403.
- [4] Z. Yang, X. Chao, C. Kang and R. Zhang: Materials Research Bulletin. Vol. 43 (2008), p. 38.

Synthesis, Phase Formation and Characterization of Co₄Nb₂O₉ Powders Synthesized by Solid-State Reaction

N. Chaiyo¹, R. Muanghlua², A. Ruangphanit³, W. C. Vittayakorn⁴ and N. Vittayakorn^{1,5,a}

- ¹ King Mongkut's Institute of Technology Ladkrabang Nanotechnology Research Center (NRC), King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520
- ²Electronics Research Center, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok Thailand 10520
- ³ Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, Nation Science and Technology Development Agency, Ministry of Science and Technology, Chachoengsao 24000, Thailand
- ⁴ Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand 50200
- Materials Science Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 10520

^a e-mail: naratipcmu@yahoo.com

Keywords: Co₄Nb₂O₉; Calcinations; Powder synthesis; Microwave dielectric

Abstract. A corundum-type structure of cobalt niobate $(Co_4Nb_2O_9)$ has been synthesized by a solid-state reaction. The formation of the $Co_4Nb_2O_9$ phase in the calcined powders was investigated as a function of calcination conditions by differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. Morphology and particle size have been determined by scanning electron microscopy (SEM). It was found that the minor phases of unreacted Co_3O_4 tend to form together with the columbite $CoNb_2O_6$ phase at a low calcination temperature and short dwell time. It seems that the single-phase of $Co_4Nb_2O_9$ in a corundum phase can be obtained successfully at the calcination conditions of $900^{\circ}C$ for 60 min, with heating/cooling rates of $20^{\circ}C$ /min.

Introduction

A variety of microwave dielectric ceramics have been utilized for microwave dielectric applications including the filters and resonators in the wireless communication system [1]. There are three important properties required, i.e., a high dielectric constant ε_r , high quality factor $Q \times f$ and low temperature coefficient of resonant frequency τ_f , in order to miniaturize the size of the microwave dielectric resonator and reach suitability for application at high frequency, and the resonant frequency must be stable at various operating temperatures. A high $Q \times f$ value of more than 30,000 GHz is required to withstand high electric loads, especially for microwave dielectric ceramics used in the base stations of mobile phones. However, still higher $Q \times f$ – value materials are required for new digital systems [2]. Over the past few years, the demand for smaller, lighter and temperature stable devices has increased. Cobalt niobate CoNb₂O₆ is one of the best known microwave dielectric materials, which recently gained considerable attention. In general, production of single-phase CoNb₂O₆ is not straightforward, as a minor concentration of Co₄Nb₂O₉ sometimes forms alongside the major phase of CoNb₂O₆. The crystal structure of Co₄Nb₂O₉ ceramic is known to have a corundum-type structure. The oxygen ions are located at the lattice sites of a hexagonal closed-packed unit cell. In the HCP crystal structure, as in the FCC structure, there are as many octahedral interstitial sites as there are atoms in the unit cell. In recent study, the microwave dielectric properties of a corundum-type structure such as Mg₄Nb₂O₉ ceramic was reported to have a high $Q \times f$ value, which was comparable to that of Al₂O₃. Thus far, although Co₄Nb₂O₉ is identical

in stoichiometry to Mg₄Nb₂O₉, it has not been synthesized to the corundum-type structure. Interestingly, the mixed oxide route for the production of Co₄Nb₂O₉ powders has not received detailed attention, and the effects of calcination conditions have not yet been studied extensively. The objective of this work was to study the reaction between the starting cobalt oxide and niobium oxide precursors, phase formation and microstructure of corundum-type structure cobalt niobate powder.

Experimental

Reagent-grade oxides of Co_3O_4 (99.99 %, Aldrich, USA) and Nb_2O_5 (99.9%, Aldrich, USA) were used in this study. $Co_4Nb_2O_9$ powders were synthesized by the solid-state reaction of Co_3O_4 and Nb_2O_5 powders that were homogenized by ball milling with ethyl alcohol in the required stoichiometric ratio. The mixed slurry was dried at 80° C. The reactions of the uncalcined $Co_4Nb_2O_9$ powder, taking place during heat treatment, were investigated by differential thermal analysis (DTA; Perkin-Elmer 7 series) using a heating rate of 10° C /min in air from room temperature to 1,350 °C. According to the DTA results, various calcination conditions (i.e. temperatures ranging from 700 – 1,100 °C and dwell times from 15 to 240 min) were applied, with a heating/cooling rate of 20° C/min in order to investigate the formation of $Co_4Nb_2O_9$. Calcined powders were subsequently examined by room temperature X-ray diffraction (XRD; Bruker D8 Advance) using Ni-filtered CuK_{α} radiation to identify the phase formed and optimum calcination condition for the formation of $Co_4Nb_2O_9$ powders. Powder morphologies and grain size were directly imaged using scanning electron microscopy (LEO, LEO 1455VP, Cambridge, England).

Results and Discussion

The DTA curve for the powder mixed in the stoichiometric proportions of $Co_4Nb_2O_9$ is shown in Figure 1. Three endothermic peaks centered at $121^{\circ}C$, $294^{\circ}C$ and $837^{\circ}C$ were observed. The first and second endothermic peaks should correspond to the evaporation of water molecules and decomposition of the organic species from the milling process, respectively [3, 4]. The third endothermic peak, at $837^{\circ}C$, was assigned to the formation of $Co_4Nb_2O_9$ by combination reactions of Co_3O_4 and Nb_2O_5 . Based on the DTA measurements, these data were used to define the range of calcination temperature at between 700 to 1,100 $^{\circ}C$ for XRD investigation.

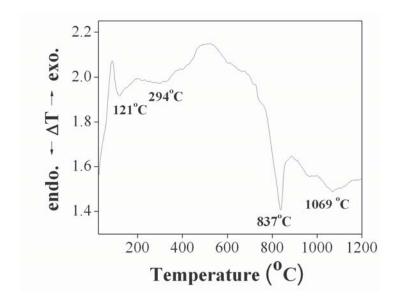


Figure 1. DTA curve for the mixture of Co₃O₄-Nb₂O₅ powder.

XRD patterns of all calcined powders are given in Figure 2. At a clacination temperature as low as 800°C, the strongest reflections were apparent in the majority of the XRD patterns, which indicated the formation of a columbite phase of $CoNb_2O_6$ (A) that could be matched with JCPDS file numbers 32-0304. The minor phase of unreacted cubic- Co_3O_4 (Y), which could be matched with JCPDS files No 78-1969, were found. As the calcination temperature increased to 900°C, intensity of the corundum $Co_4Nb_2O_9$ peaks was enhanced further and became the monophasic phase. This $Co_4Nb_2O_9$ phase was indexable according to a hexagonal corundum-type structure, with a lattice parameter of a = 517 pm and c = 1412 pm, and space group P3c1 (no. 165), consistent with JCPDS file numbers 38-1457. Upon calcinations at 1,000 and 1,100 °C, an essentially monophasic phase of $Co_4Nb_2O_9$ was obtained. However, in this work, there were no significant differences between the powders calcined at temperatures ranging from 900 to 1,100 °C.

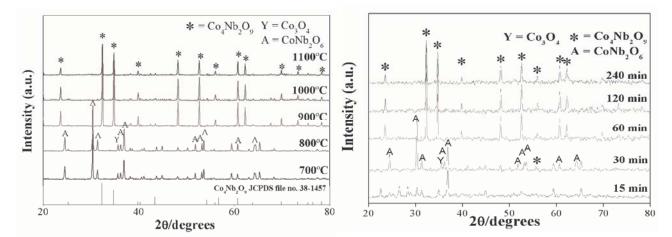


Figure 2. XRD patterns of Co₄Nb₂O₉ powder calcined at various temperatures for 4 h with heating/cooling rates of 20 °C /min.

Figure 3. XRD patterns of Co₄Nb₂O₉ powder calcined with heating/cooling rates of 20 °C /min at 900 °C for 15-240 min.

After obtaining the optimum calcination temperature, dwell times ranging from 15 min to 120 min, with a constant heating/cooling rate of 20°C/min were applied at 900 °C, as shown in Figure 3. It was observed that the single-phase of Co₄Nb₂O₉ (yield of 100% within the limitations of the XRD technique) powder was possible in powders calcined at 900°C, with a dwell time of 60 min or more applied. Observation that the dwell time effect may also play an important role in obtaining a single-phase product is also consistent with other systems [5, 6].

The average grain sizes were determined from the XRD pattern according to the Scherrer's equation

$$D = \frac{k\lambda}{\beta\cos\theta_B}$$

where D is the average grain size, k is a constant equal to 0.89, θ_B is the (3 1 1) peak angle, λ is the X-ray wavelength equal to 1.5406 Å and β is the half peak width. The average grain size of Co₄Nb₂O₉ powders was about 280 nm at 900 °C, with a dwell time of 60 min. The morphology of the calcined Co₄Nb₂O₉ powders was investigated by scanning electron microscopy (SEM), which is illustrated in Figure 4(a) and 4(b). In general, the particles are agglomerated and basically irregular in shape, with a substantial variation in particle size and morphology. The particle size can be estimated in the range of 300-400 nm from SEM micrographs. A detailed study at higher

magnification [Fig. 5(b)] shows that the particles had spherical secondary particles, composed of nano-sized primary particulates.

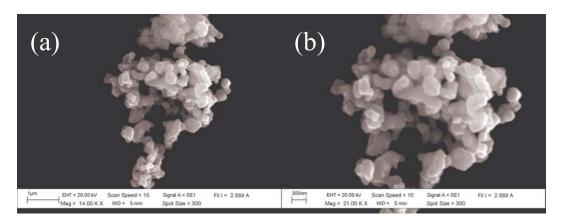
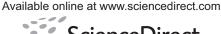


Figure 4. Scanning electron micrographs of the Co₄Nb₂O₉ powders calcined at 900 °C for 60 min, with a heating/cooling rate of 20 °C /min.

Summary

The corundum-structure, $Co_4Nb_2O_9$, was synthesized by solid state reaction using oxides as starting materials. The content of the impurity phases decreased with increasing calcination temperature and dwell time. Evidence has been obtained of a 100% yield of $Co_4Nb_2O_9$ at a calcination temperature of 900°C for 60 min, with heating/cooling rates of 20°C/minute. XRD showed the compound to have a corundum structure, with hexagonal lattice parameters of a = 5.1669(\pm 0.0014) and c = 14.1248 (\pm 0.0072). The particle size can be estimated in the range of 300-400 nm from SEM micrographs.


Acknowledgements

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), Thailand Graduate Institute of Science and Technology (TGIST), National Research Council of Thailand (NRCT) and King Mongkut's Institute of Technology Ladkrabang (KMITL).

- [1] A. Kan, H. Ogawa, A. Yokoi and Y. Nakamura: J. Euro. Ceram. Soc. Vol. 27 (2007), p. 2977.
- [2] A. J. Moulson and J. M. Herbert: *Electroceramics: Materials, Properties, Applications* (Chapman and Hall, New York, 1990)
- [3] S. Ananta, Mater. Lett. Vol. 58 (2004), p. 2530.
- [4] R. Wongmaneerung, T. Sarakonsri, R. Yimnirun and S. Ananta: Materials Science and Engineering: B. Vol. 130 (2006), p. 246.
- [5] R. Wongmaneerung, R. Yimnirun and S. Ananta: Mater. Lett. Vol. 60 (2006), p. 2666.
- [6] S. Wongsaenmai, R. Yimnirun and S. Ananta: Mater. Lett. Vol. 61 (2007), p. 2426.

ScienceDirect

Ceramics International 35 (2009) 121-124

INTERNATIONA

CERAMICS

www.elsevier.com/locate/ceramint

Preparation and characterization of ceramic nanocomposites in the PZT-BT system

Wanwilai Chaisan*, Rattikorn Yimnirun, Supon Ananta

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Accepted 1 October 2007 Available online 23 February 2008

Abstract

Nanocomposites of the (1 - x)PZT-xBT system were fabricated by the bimodal particle concept. The effect of fabricating conditions on structural characteristics and dielectric properties of the ceramics was investigated using XRD, SEM, and a standard dielectric measurement. The ceramic-solid solutions and -nanocomposites in the PZT-BT system were comparatively explored. It was clearly seen that the microstructures and the dielectric properties of PZT-BT ceramic-nanocomposites are totally different from those of ceramic-solid solutions. The dielectric behavior of ceramic-nanocomposites displayed superimposition of two phase transitions with a lower maximum value of the dielectric constant than that of the solid solutions.

© 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: B. Nanocomposites; C. Dielectric properties; D. PZT; BT

1. Introduction

Piezoelectric ceramics (e.g. $Pb(Zr_x,Ti_{(1-x)})O_3$, $BaTiO_3$ and its related compounds), which are widely used as transducers, pressure sensors and actuators, suffer from mechanical and electrical deterioration in service because of fatigue damage. When piezoelectric devices are used in severe circumstances, such as high stress or high power applications, problems that are related to reliability (i.e. degradation of electrical properties and fatigue fracture) become more critical and important. Therefore, it is necessary to investigate the electrical behavior of piezoelectric ceramics and to design microstructure that possesses excellent electrical properties. Both BaTiO₃ (BT) and Pb(Zr,Ti)O₃ (PZT) are among the most common ferroelectric materials and have been studied extensively since the late 1940s [1,2]. These two ceramics have distinct characteristics that make each individual ceramic suitable for different applications. The compound PZT has highly desirable piezoelectric properties which can be applied in transducer applications. Furthermore, it has a high $T_{\rm C}$ of 390 °C which allows piezoelectric devices to be operated at relatively high temperatures. BT is a normal ferroelectric material which exhibits a high dielectric constant, a lower $T_{\rm C}$ (~120 °C) and better mechanical properties [1–3]. Thus, mixing PZT with BT is expected to decrease the sintering temperature of BT-based ceramics, allowing a desirable move towards electrodes of lower cost [4]. Moreover, the nano-reinforced structure is believed to improve densification and mechanical properties of the ceramic composite. Therefore, ceramic-nanocomposites of the lead zirconate titanate-barium titanate ((1 - x)PZT-xBT)system with various compositions, were fabricated using a modified mixed-oxide synthetic route and a bimodal particle concept. The effect of processing parameters on the arrangement of phases, microstructural evolution and electrical properties of the ceramics was carefully investigated using XRD, SEM and dielectric measurements.

2. Experimental procedure

Ceramic-nanocomposites in the system (1 - x)PZT-xBT $(0.1 \le x \le 0.5; \ \Delta x = 0.1)$ have been fabricated from PZT powder and BT nanopowder, employing a normal sintering method. Reagent grade PbO, ZrO₂, TiO₂ and BaCO₃ powders (Fluka, >99% purity) were used as starting materials. Powder of each end member (PZT and BT) was first formed in order to avoid unwanted pyrochlore phases. For the preparation of BT

^{*} Corresponding author. Tel.: +66 53 943367; fax: +66 53 943445. E-mail address: wanwilai_chaisan@yahoo.com (W. Chaisan).

nanopowder, a vibratory laboratory mill (McCrone Micronizing Mill) powered by a 1/30 HP motor was employed for 30 h with zirconia media in ethanol. The well-mixed powder was calcined at 1300 °C for 2 h in an alumina crucible. With a modified mixed-oxide method [5], the PZT powders were prepared using a lead zirconate (PbZrO₃) as precursor in order to reduce the occurrence of undesirable phase. Pure PbZrO₃ phase was first formed by reacting PbO with ZrO₂ at 800 °C for 2 h. PbZrO₃ powder was then mixed with PbO and TiO₂ and milled, dried and calcined at 900 °C for 2 h to form single phase PZT.

The (1-x)PZT-xBT mixed powders were then formulated from the BT and PZT components by employing the similar mixed-oxide procedure. In the mixing process, the calculated relevant proportions of constituents were weighed, suspended in ethanol and intimately mixed in a ball-mill with zirconia media. Drying was carried out for 2 h and the dried powder was then ground into the fine powders. The powders were then isostatically cold-pressed into pellets with a diameter of 15 mm and a thickness of 2 mm at a pressure of 4 MPa and sintered at 1200 °C for 2 h.

Densities of sintered ceramics were measured by Archimedes method and X-ray diffraction (XRD using CuK_{α} radiation) was employed to identify the phases formed. The grain morphology and size were directly imaged using scanning electron microscopy (SEM). For electrical measurements, silver paste was fired on both sides of the polished samples at 750 °C for 12 min as the electrodes. Dielectric properties of the sintered ceramics were studied as a function of both temperature and frequency. The capacitance was measured with a HP4284A LCR meter in connection with a Delta Design 9023 temperature chamber and a sample holder capable of high temperature measurement. Dielectric constant (ε_r) was calculated using the geometric area and thickness of the discs.

3. Results and discussion

XRD patterns of all sintered ceramic-nanocomposites are shown in Fig. 1. Here the peak positions and intensities of the XRD patterns vary according to the amount and chemical composition of the phases present. It is seen that the diffraction peaks shifted towards a higher angle with increasing x and the XRD peaks of all ceramic-nanocomposites are broader than those of solid-solution case in our earlier work [6]. These can be interpreted in terms of co-existing perovskite phases, i.e. PZT, BT and their reacted intermediate phases. Moreover, with careful observation, it is found that the sintered samples of $0.3 \le x \le 0.5$ nanocomposites exhibit the perovskite structure with traces of unwanted phase (∇) occurring at $2\theta \sim 28^{\circ}$. It is believed that this unwanted phase is ZrO₂ matched with JCPDS file no. 37-1484 [7]. Compositional fluctuations due to the evaporation of lead oxide within surface regions are believed to be responsible for the occurrence of free ZrO2 phase in the sintered (1 - x)PZT-xBT ceramics of $0.3 \le x \le 0.5$ nanocomposites. Another possibility was put forward by Fushimi and Ikeda [8], who suggested that melting of PT-PZ solid solution can change from congruent to incongruent and induce ZrO2 to

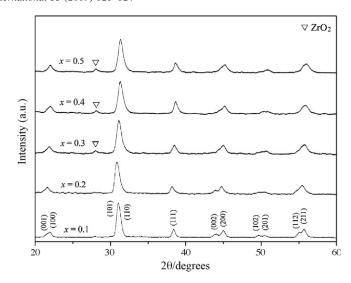


Fig. 1. XRD patterns of the (1 - x)PZT-xBT ceramic-nanocomposites sintered at 1200 °C for 2 h.

form at ~ 1340 °C. On the other hand, Brankovic et al. [9] suggested that incomplete reaction of the starting precursors can also result in the persistence of free ZrO_2 phase. Since no trace of ZrO_2 has been observed for sintered samples of x = 0.1 and 0.2, it is believed that the segregation of ZrO_2 may be associated with loss of Pb content and also depend on the level of BT content, similar with observations made in other perovskite systems [10,11].

The microstructural morphology of (1-x)PZT-xBT ceramic-nanocomposites was initially examined by SEM. Micrographs of as-fired surface of all ceramic-nanocomposites are shown in Fig. 2(a–e). In general, high porosity, heterogeneous microstructures consisting mainly of two ranges of particles (in respect of size and shape) were found in all samples. A distribution of very small spherical BT particles (brighter phase with diameter \sim 200–500 nm) is found over the PZT grains, especially for rich-BT samples. Large pore-sizes of the order of 2 μ m were also observed. These poorly sintered samples could be attributed to several factors, including the effect of different particle size fractions between the two end components, ineffective mixing and the use of low density green bodies produced by conventional uniaxial die-pressing.

Densities in the range 4.80–6.21 g/cm³ were obtained, which are considerably lower than the values obtained for sintered PZT–BT solid solution ceramics in our earlier work [6]. In order to preserve the ceramics with a nanostructural arrangement, it is possible that the sintering temperature employed in this work is not enough for driving the densification mechanism to achieve dense PZT/BT ceramicnanocomposites. However, so far, there are no reports on the production of highly dense PZT/BT ceramic-nanocomposites by a pressureless sintering method. Moreover, the scope for improving pressureless sintering by raising the temperature is limited by the melting point of PZT (~1400 °C) whilst the hotpressing technique can cause severe PbO-volatilization problems [12].

The temperature dependence of the dielectric constant (ε_r) measured at 1 MHz for (1 - x)PZT–xBT nanocomposites with

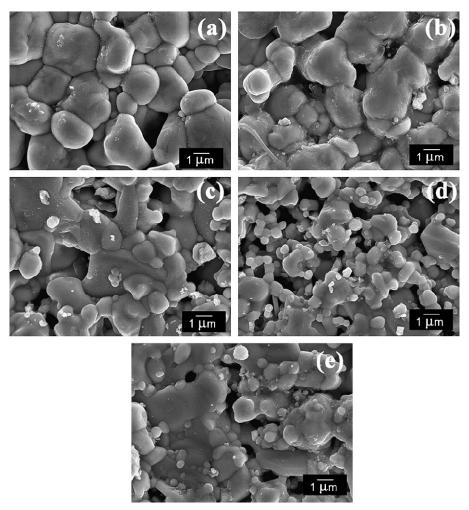


Fig. 2. SEM micrographs of as-fired surfaces of the sintered (1 - x)PZT-xBT ceramic-nanocomposites with $x = (a) \ 0.1$, $(b) \ 0.2$, $(c) \ 0.3$, $(d) \ 0.4$ and $(e) \ 0.5$.

 $0.1 \le x \le 0.5$ is shown in Fig. 3. All ceramic-nanocomposites display dielectric peak superimposition of the two phase transitions (T_1 and T_2) with no frequency dependence. The shape of dielectric peak for each composition seems to be the two peaks merged into a mound. The height of the mound was

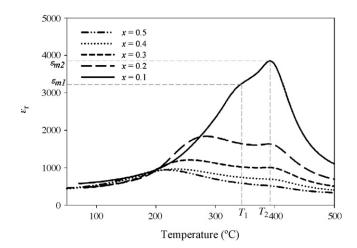


Fig. 3. Comparison of dielectric constant (e_r) at 1 MHz for (1-x)PZT-xBT ceramic-nanocomposites.

lower than those of solid solutions [6]. The phase transition temperatures, T_1 and T_2 , and dielectric data are illustrated in Fig. 3 and list in Table 1. As is well known, the dielectric constant of pure PZT and pure BT showed anomalies at 390 and 130 °C, respectively. Therefore, ceramic-nanocomposites between PZT and BT are expected to show a transition temperature between 390 and 130 °C. An attempt was made to characterize the dielectric temperature of PZT–BT as a function of x. However, difficulties were encountered in indexing the measured dielectric peak broadening obtained. As seen in Fig. 3, with increasing of x, T_1 and T_2 decrease moving toward

Table 1 Dielectric properties of ceramic-nanocomposites in the (1 - x)PZT-xBT system

Compositions (x)	<i>T</i> ₁ (°C)	$\varepsilon_{\mathrm{m}1}$	<i>T</i> ₂ (°C)	ε_{m2}
0.1	340	3200	392	3800
0.2	285	1800	390	1600
0.3	257	1200	388	1000
0.4	234	960	385	700
0.5	216	940	380	530

 $\varepsilon_{\rm m1}$ and $\varepsilon_{\rm m2}$ are the maximum dielectric constant at T_1 and T_2 , respectively (see also Fig. 3).

the Curie temperature of BT. T_1 refers to transition temperature of BT and T_2 refers to transition temperature of PZT. There are various proposals for explaining the dielectric response of composite materials. Ausloos [13] studied effective dielectric constant theories of composite solids. Their work reported that the broad spectrum of dielectric constant is the results of clustering effects, the shape of particle (or cluster) effect and particle heterogeneity effect. In this work, it is possible that the incorporation of BT nanoparticles into a PZT matrix may hinder domain wall motion sufficiently to reduce the dielectric constant [14]. Moreover, the presence of unwanted ZrO₂ phase (confirmed by XRD) and high porosity (confirmed by SEM) are other reasons for the low dielectric constants in ceramic-nanocomposites with composition of x > 0.2. However, by neglect accounting for the porosity, the maximum dielectric constant $(\varepsilon_{\rm max})$ of all ceramic-nanocomposites was back-calculated to 100% density for a better comparison with the solid solutions. Although the dielectric values of ceramic-nanocomposites are still lower than those of the solid solutions, the broadening is greater which infers the operating temperature with the moderate dielectric constant (\sim 1000–4000) of these ceramics is much wider in range, suitable for certain electronic devices.

4. Conclusions

Ceramics-nanocomposites in the system (1 - x)PZT-xBT were successfully processes by employing the bimodal particle concept. All PZT-BT compositions in this study were of the perovskite structure with tetragonal symmetry. The dielectric properties of all the ceramic-nanocomposites are strongly influenced by the presence of secondary phases and densification mechanism. The dielectric peak shows superimposition of the two phase transitions with no frequency dependence and the dielectric value is lower than that of solid solutions for all compositions, explained by theory of the dielectric response for composite materials. With increasing of x, the phase transition temperatures of all ceramics decrease moving toward to Curie temperature of BT.

Acknowledgement

I would like to thank the Thailand Research Fund (TRF), Commission on Higher Education (CHE) and the Faculty of Science, Chiang Mai University for all financial support.

- [1] G.H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (4) (1999) 797–818.
- [2] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971.
- [3] A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons Ltd., Chichester, 2003.
- [4] J. Chen, Z. Shen, F. Liu, X. Liu, J. Yun, Preparation and properties of barium titanate nanopowder by conventional and high-gravity reactive precipitation methods, Scripta Mater. 49 (2003) 509–514.
- [5] W. Chaisan, S. Ananta, T. Tunkasiri, Synthesis of barium titanate-lead zirconate titanate solid solutions by a modified mixed-oxide synthetic route, Curr. Appl. Phys. 4 (2–4) (2004) 182–185.
- [6] W. Chaisan, R. Yimnirun, S. Ananta, D.P. Cann, Dielectric properties of solid solutions in the lead zirconate titanate-barium titanate system prepared by a modified mixed-oxide method, Mater. Lett. 59 (2005) 3732–3737.
- [7] JCPDS-ICDD card no. 37-1484, International Centre for Diffraction Data, Newtown Square, PA, 2002.
- [8] S. Fushimi, T. Ikeda, Phase equilibrium in the system PbO-TiO₂-ZrO₂, J. Am. Ceram. Soc. 50 (1967) 129–132.
- [9] Z. Brankovic, G. Brankovic, J.A. Varela, PZT ceramics obtained from mechanochemically synthesized powders, J. Mater. Sci. 14 (2003) 37–41
- [10] F. Xia, X. Yao, Piezoelectric and dielectric properties of PZN-BT-PZT solid solutions, J. Mater. Sci. 34 (1999) 3341–3343.
- [11] N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, Influence of processing conditions on the phase transition and ferroelectric properties of Pb(Zn_{1/3}Nb_{2/3})O₃-Pb(Zr_{1/2}Ti_{1/2})O₃ ceramics, Mater. Sci. Eng. B 108 (2004) 258–265.
- [12] V.L. Balkevich, C.M. Flidlider, Hot-pressing of some piezoelectric ceramics in the PZT system, Ceramurgia Inter. 2 (1976) 81–87.
- [13] M. Ausloos, Dielectric response of composite materials, J. Phys. C: Solid State Phys. 18 (1985) L1163–L1167.
- [14] S.R. Panteny, C.R. Bowen, R. Stevens, Piezoelectric Particulate Reinforced Nanocomposites, The Alden Group, Oxford, 2000.

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 35 (2009) 173-176

Effect of vibro-milling time on phase formation and particle size of barium titanate nanopowders

W. Chaisan *, R. Yimnirun, S. Ananta

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
Accepted 1 October 2007
Available online 26 February 2008

Abstract

Barium titanate (BT) nanopowder was synthesized by a solid state reaction via a rapid vibro-milling technique. The effect of milling time on phase formation and particle size of BT powder was investigated. Powder samples were characterized using XRD (X-ray diffraction) and SEM techniques. It was found that the resulting BT powders have a range of particle size depending on milling times. Production of a single-phase BT nanopowder can be successfully achieved by employing a combination of 30 h milling time and calcination conditions of 1200 °C for 2 h. © 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Milling; Powders: solid state reaction; D. BaTiO₃

1. Introduction

Barium titanate (BaTiO₃ or BT), which exhibits a perovskite structure and a Curie temperature $\sim \! 120$ °C, is a classical ferroelectric material that has been extensively exploited both for academic and technological utilizations over the past decades [1,2]. Owing to its high dielectric constant, large mechanical-quality factor, large pyroelectric coefficient, nontoxic handling and low cost of manufacturing, compared to several lead-based perovskite ferroelectrics, BT-based ceramics have been a strong candidates for several electronic applications, including ultrasonic transducers, multilayer capacitors, pyroelectric detectors, semiconductors with positive temperature coefficient of resistance (PTCR) and electro-optic devices [3,4]. To fabricate them, a fine powder of perovskite phase with a minimal degree of particle agglomeration is needed as the starting material to achieve a dense and uniform microstructure at a given sintering temperature. In order to improve the sintering behavior of ceramics, a crucial focus of powder synthesis in recent years has been the formation of uniformsized, single morphology particulates ranging in size from nanometer to micrometers.

The development of a method to produce nanopowders of precise stoichiometry and desired properties is complex, depending on a number of variables such as nature and purity of starting materials, processing history, temperature, etc. To obtain nanosized BT powders, many investigations have focused on several chemistry-based preparation routes, such as sol-gel [5], sol-precipitation [6], hydrothermal reaction [7], besides the more conventional solid state reaction of mixed oxides [8]. All these techniques are aimed at reducing the particle size and temperature of preparation of the compound even though they are more involved and complicated in approach than the solid state reaction. The advantage of using mechanical milling for preparation of nanosized powders lies in its ability to produce mass quantities of powders in the solid state using simple equipment and low cost starting precursors [9,10]. The ball-milling technique is a very popular solid state reaction because of easy and low cost technique, however the size of particle from this technique is still large (micrometer). Thus, the potentiality of vibro-milling technique will be then focused in order to achieve the nanosized powder. Although some research has been done in the preparation of BT nanopowders via a vibro-milling technique [11], to our knowledge a systematic study regarding the influence of milling time on the preparation of BT nanopowders has not yet been reported. Therefore, in this work, the effect of milling time on phase formation, and particle size of BT nanopowders was investigated in this connection. The potential of the vibro-

^{*} Corresponding author. Tel.: +66 53 943376; fax: +66 53 943445. E-mail address: wanwilai_chaisan@yahoo.com (W. Chaisan).

milling technique as a simple and low-cost method to obtain usable quantities of single-phase BT powders at low temperature and with nanosized particles was also examined.

2. Experimental procedure

Commercially available powders of BaCO3 and TiO2 (anatase form), (Fluka, >99% purity) were used as starting materials. BaTiO₃ powder was synthesized by the solid state reaction of these raw materials. A vibratory laboratory mill (McCrone Micronizing Mill) powered by a 1/30 HP motor was employed for preparing the stoichiometric BaTiO₃ powder [9]. The mixed powder was vibro-milled for 0.5 h with corundum media in isopropyl alcohol (IPA). Drying was carried out for 2 h at 120 °C. Various calcination temperatures ranging from 700 to 1400 °C were selected to investigate the phase development of BT. Moreover, in order to investigate the effect of milling time on phase formation and particle size, the milling times were then ranged from 0.5 to 30 h. All powders were examined by room temperature X-ray diffraction (XRD; Siemens-D500 diffractometer) using Ni-filtered Cu Kα radiation, to identified the phase formed and the optimum firing temperature for the production of single-phase BT powders under various milling conditions. The crystallite size and tetragonality factor (c/a)were also estimated from these XRD patterns [12]. The morphologies of the powders observed by scanning electron microscopy (JEOL JSM-840 A SEM).

3. Results and discussion

From the TG-DTA data in previous work [13], the range of calcination temperatures between 700 and 1400 °C were designed for BT powder to investigate the phase formation. To study the phase development with increasing calcination temperature in BT powder prepared from vibro-milling technique for 0.5 h, it was calcined for 2 h in air at various temperatures, up to 1400 °C, followed by phase analysis using XRD. As shown in Fig. 1, for the uncalcined powder, only X-ray peaks of precursors, BaCO₃ (\bullet) and TiO₂ (\bullet), which could be matched with JCPDS file numbers 5-0378 [14] and 21-1272 [15], respectively, are presented, indicating that no reaction had yet been triggered during the milling process. In this work, it is seen that the desired perovskite BaTiO₃ (\bigtriangledown) was already observed in the powder calcined at 700 °C, accompanying with unreacted BaCO₃ and TiO₂ precursors as

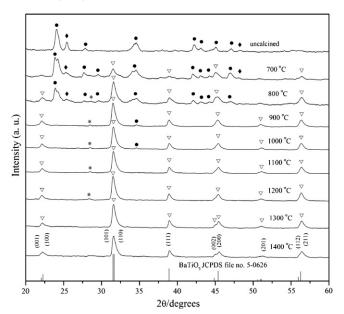


Fig. 1. XRD patterns of BT powders calcined at various temperatures for 2 h with heating/cooling rates of 10 °C/min (\bullet = BaCO₃, \diamond = TiO₂, \bigtriangledown = BaTiO₃ and * = Ba₂TiO₄).

separated phases, in good agreement with literature [16,17]. Moreover, the unknown phase (\star) started to occur at $2\theta \sim 28.5^{\circ}$, consistent with earlier work of Simon-Seveyrat et al. [18]. According to the literature [19,20], the reaction sequence of the phase formation in the BT mixture can be described as follow.

$$2BaCO_3 + TiO_2 \rightarrow Ba_2TiO_4 + 2CO_2 \tag{1}$$

$$Ba_2TiO_4 + TiO_2 \rightarrow 2BaTiO_3$$
 (2)

It was believed that this unknown phase corresponds to Ba_2TiO_4 , which could be matched with JCPDS file numbers 72-0135 [21], always found in conventional mixed oxide processing [16,22]. As the temperature increased to $1000\,^{\circ}$ C, the intensity of the $BaTiO_3$ peaks was further enhanced. The starting materials completely disappeared after calcination at $1100\,^{\circ}$ C, however, the unwanted Ba_2TiO_4 phase still be detected. Upon calcination at $1300\,^{\circ}$ C, an essentially monophasic of $BaTiO_3$ phase was obtained. This observation agrees well with other workers [23,24]. This BT phase was indexable according to a tetragonal perovskite-type structure with lattice parameters $a=3.994\,^{\circ}$ A and $c=4.038\,^{\circ}$ A, space group P4mm (no. 99), consistent with JCPDS file number 5-0626 [25].

Table 1

Effect of milling time on the optimum calcination temperature and the variation of particle size of BT powders measured by different techniques

Milling time (h)	Perovskite phase (%)	Calcination temperature (°C)	XRD		SEM	
			A (nm)	cla	D (nm)	P (nm)
0.5	100	1300	38.32	1.0090	610	250-1400
10	100	1250	32.09	1.0059	260	100-500
15	100	1250	32.38	1.0036	490	100-1000
20	100	1250	31.95	1.0058	590	250-700
25	100	1200	31.60	1.0065	390	250-700
30	100	1200	31.56	1.0056	250	100-400

A = crystallite size, c/a = tetragonality factor, D = average particle size, P = particle size range.

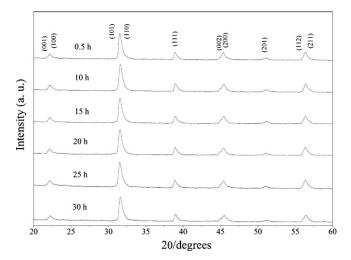


Fig. 2. XRD patterns of BT powders milled at different times.

Having established the optimum calcination temperature of BT powder vibro-milled for 0.5 h, an attempt was also made to calcine the BT powder under various milling times. The optimum calcination temperature of each powder was reported in Table 1 and the XRD patterns of all BT powders are shown in Fig. 2. It has been observed that with increasing milling time, all diffraction lines broaden, e.g., (0 0 2) and (2 0 0) peaks, an indication of a continuous decrease in particle size and of the introduction of lattice strain. These values indicate that the prolonged milling treatment affects the particle size and evolution of crystallinity of the phase formed. For BT powders, the longer the milling time, the lower the required (optimum)

firing temperature. Additionally, the crystallite size and tetragonality factor (*c/a*) were estimated from these XRD patterns as also given in Table 1. The calculated crystalline size value was also found to decrease with increasing milling time. Though, the relative intensities of the Bragg peaks and the calculated tetragonality factor (*c/a*) for the powders exhibit independent of milling time, it is well documented that, as Scherer's analysis provides only a measurement of the extension of the coherently diffracting domains, the crystallite sizes determined by this method can be significantly under estimation [26]. In addition to strain, factors such as dislocations, stacking faults, heterogeneities in composition and instrumental broadening can attribute to peak broadening, making it almost impossible to extract a reliable particle size solely from XRD [27].

In this connection, SEM was also employed for particle size measurement (Table 1). The morphological evolution of the powders as a function of milling time was also revealed, as illustrated in the SEM micrographs (Fig. 3). At first sight, the morphological characteristic of BT powders with various milling times is similar for all cases. In general, the particles are agglomerated and basically irregular shape, with a substantial variation in particle sizes. The powders consist of primary particles with nanometers in size. Increasing milling time over the range 0.5–30 h, the powders exhibit spatial fluctuation in their particle sizes. The extent of the fluctuation depends on the milling time as well as on the calcination temperature applied. In this study, it is seen that the optimum milling time for the production of the smallest nanosized BT powder with low firing temperature was found to be at 30 h. The finding of this

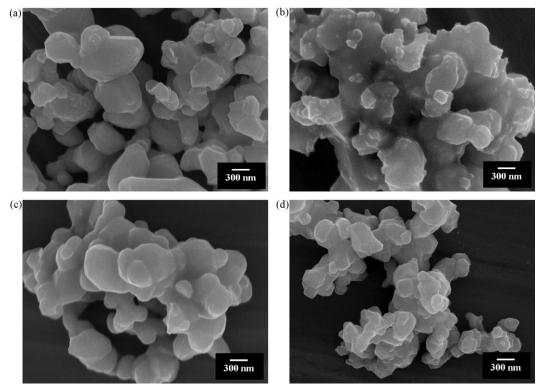


Fig. 3. SEM micrographs of BT powders after milling times of (a) 0.5, (b) 15, (c) 25 and (d) 30 h (calcined at their optimized conditions).

investigation indicates a strong relationship between the vibromilling process and the yield of BT nanopowders.

4. Conclusions

The synthesis of perovskite BT nanopowder by a solid state reaction and the influence of milling time on its formation were studied. It was established that the milling time influences not only the development of the solid state reaction of BT phase but also particle size and morphology. It was shown that the increase of vibro-milling time significantly decreases the calcination temperature and particle size. A single phase of BT nanopowder can be successfully produced by employing a combination of 30 h milling time and calcination condition of 1200 °C for 2 h.

Acknowledgements

I would like to thank the Thailand Research Fund (TRF), Commission on Higher Education (CHE) and the Faculty of Science, Chiang Mai University for all financial support.

- A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons Ltd., Chichester, 2003.
- [2] G.H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (4) (1999) 797–818.
- [3] K. Uchino, Piezoelectrics and Ultrasonic Applications, Kluwer, Deventer, 1998.
- [4] Y. Xu, Ferroelectric Materials and their Applications, Elsevier Science Publishers B.V., 1991.
- [5] S. Tangwiwat, S. Milne, Barium titanate sols prepared by a diol-based solgel route, J. Non-Cryst. Solids 351 (12/13) (2005) 976–980.
- [6] W. Luan, L. Gao, J. Guo, Study on drying stage of nanoscale powder preparation, NanoStruct. Mater. 10 (7) (1998) 1119–1125.
- [7] S. Kwon, D. Yoon, Effects of heat treatment and particle size on the tetragonality of nano-sized barium titanate powder, Ceram. Int. 33 (7) (2007) 1357–1362.
- [8] J. Chen, Z. Shen, F. Liu, X. Liu, J. Yun, Preparation and properties of barium titanate nanopowder by conventional and high-gravity reactive precipitation methods, Scripta Mater. 49 (2003) 509–514.
- [9] R. Wongmaneerung, R. Yimnirun, S. Ananta, Effect of vibro-milling time on phase formation and particle size of lead titanate nanopowders, Mater. Lett. 60 (12) (2006) 1447–1452.

- [10] R. Wongmaneerung, T. Sarakonsri, R. Yimnirun, S. Ananta, Effects of milling method and calcination condition on phase and morphology characteristics of Mg₄Nb₂O₉ powders, Mat. Sci. Eng. B 130 (2006) 246–253.
- [11] B.D. Stojanovic, C. Jovalekic, V. Vukotic, A.Z. Simoes, J.A. Varela, Ferroelectric properties of mechanically synthesized nanosized barium titanate, Ferroelectrics 319 (2005) 65–73.
- [12] C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, Plenum Press, New York, 1998.
- [13] W. Chaisan, Preparation and Characterization of Ceramic Nanocomposite in the PZT-BT and TiO₂-SnO₂ Systems, Ph.D. Thesis, Chiang Mai University, Chiang Mai, Thailand, 2006.
- [14] JCPDS-ICDD card no. 5-0378, International Centre for Diffraction Data, Newtown Square, PA, 2002.
- [15] JCPDS-ICDD card no. 21-1272, International Centre for Diffraction Data, Newtown Square, PA, 2002.
- [16] V. Berbenni, A. Marini, G. Bruni, Effect of mechanical milling on solid state formation of BaTiO₃ from BaCO₃-TiO₂ (rutile) mixtures, Thermochim. acta 374 (2) (2001) 151–158.
- [17] E. Brzozowski, M.S. Castro, Synthesis of barium titanate improved by modifications in the kinetics of the solid state reaction, J. Eur. Ceram. Soc. 20 (2000) 2347–2351.
- [18] L. Simon-Seveyrat, A. Hajjaji, Y. Emziane, B. Guiffard, D. Guyomar, Reinvestigation of Synthesis of BaTiO₃ by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications, Ceram. Int. 33 (1) (2007) 35–40.
- [19] A. Beauger, J.C. Mutin, J.C. Niepce, Synthesis reaction of metatitanate BaTiO₃. Part 2: study of solid-solid reaction interfaces, J. Mat. Sci. 18 (1983) 3543–3550.
- [20] L.B. Kong, J. Ma, H. Huang, R.F. Zhang, W.X. Que, Barium titanate derived from mechanochemically activated powders, J. Alloys Compd. 337 (2002) 226–230.
- [21] JCPDS-ICDD card no. 72-0135, International Centre for Diffraction Data, Newtown Square, PA, 2002.
- [22] J.K. Lee, K.S. Hong, J.W. Jang, Roles of Ba/Ti ratios in the dielectric properties of BaTiO₃ ceramics, J. Am. Ceram. Soc. 84 (9) (2001) 2001– 2006
- [23] W. Chaisan, S. Ananta, T. Tunkasiri, Synthesis of barium titanate-lead zirconate titanate solid solutions by a modified mixed-oxide synthetic route, Cur. Appl. Phys. 4 (2–4) (2004) 182–185.
- [24] W. Chaisan, R. Yimnirun, S. Ananta, D.P. Cann, Dielectric properties of solid solutions in the lead zirconate titanate-barium titanate system prepared by a modified mixed-oxide method, Mater. Lett. 59 (2005) 3732–3737.
- [25] JCPDS-ICDD card no. 5-0626, International Centre for Diffraction Data, Newtown, PA, 2002.
- [26] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1–184.
- [27] H. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, 1974.

Composition, Structure and Properties of PZT-BT Ceramics Prepared by Two-stage Sintering

Wanwilai C. Vittayakorn^{1*}, Rattikorn Yimnirun² and Supon Ananta³

¹Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai THAILAND

Keywords: sintering, PZT, BT.

ABSTRACT

Ceramic solid solutions within the system (1-x)PZT-xBT, where x = 0.1, 0.2, 0.3, 0.4 and 0.5, were prepared by conventional mixed-oxide method combined with a two-stage sintering procedure. A sintering time of 2 h at 1000 °C followed by a second step in the temperature range of 1000-1200 °C for 2 h was employed to all samples and compared to the one-step sintering process. Phase formation, densification and microstructure of all ceramics were examined via X-ray diffraction (XRD), Archimedes method and scanning electron microscope (SEM). The results lead to the conclusion that the pure perovskite phase and high densification of (1-x)PZT-xBT ceramics with fine grain can be successfully achieved under suitable two-stage sintering conditions.

INTRODUCTION

Lead-based ferroelectric ceramics are widely used in smart electronic devices such as actuators and micro-positioners because of their favorable characteristics [1]. Both PZT and BT are among the most common ferroelectric ceramics and have been studied extensively since the late 1940s [2]. These two ceramics have distinct characteristics that make each ceramic suitable for different The PZT ceramic has great piezoelectric properties which can be applied in transducer and actuator applications. Moreover, it has a high T_C of 390 °C allowed devices to be operated at high temperatures. BT ceramic is a classical ferroelectric material which exhibits a high dielectric constant, large mechanical-quality factor and large pyroelectric coefficient. mixing PZT with BT is expected that excellent properties with preparation ease can be obtained from ceramics in the PZT-BT system. Furthermore, the electrical properties of ferroelectric ceramics depend strongly on microstructure as well as chemical compositions. It was reported earlier that the high value of dielectric constant can be revealed if polycrystalline ferroelectric ceramics of fine grain size is achieved. Thus, a fine grain is essential to achieve optimum dielectric properties. It is well known that the microstructure of most ferroelectric ceramics can be normally controlled by two approaches. Utilizing additives to prohibit the grain growth is one approach [3]. Another approach uses novel processing technique to modify the microstructure. Numerous studies on the sintering of ferroelectric ceramics have been reported in the literature [4]. Recently, a two-stage sintering method has been proposed by Chen and Wang to achieve the densification of ceramic bodies without significant grain growth [5]. Since the two-stage sintering process is a low-cost technique and simple ceramic fabrication to obtain highly dense ceramics with pure phase, therefore, in this work a two-stage sintering method has been adopted to produce the The influence of two-stage sintering condition on phase fine grain (1-x)PZT-xBT ceramic. formation, densification and microstructure of all ceramics is investigated.

²Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai THAILAND

³Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai THAILAND

METHOD

(1-x)Pb(Zr_{0.52}Ti_{0.48})O₃–xBaTiO₃ or (1-x)PZT–xBT powders, where x = 0.1, 0.2, 0.3, 0.4 and 0.5, were prepared by a conventional mixed-oxide method. Commercially powders of PbO, ZrO₂, BaCO₃ and TiO₂ were used as starting materials. PZT and BT powders were first form in order to avoid unwanted pyrochlore phases. The (1-x)PZT–xBT powders were then formulated from the PZT and BT precursors by employing the similar mixed-oxide procedure. After ball-milling for 24 h in ethanol, the slurry was dried at 120 °C and calcined in a closed alumina crucible with the optimum calcination conditions for each composition. The calcined powders were then pressed to pellets with 15.0 mm of diameter and 1.0 mm of thickness using an uniaxial die press at 50 MPa. In the so-called two-stage sintering process, the first sintering temperature was assigned for 1000 °C and variation of the second sintering temperature between 1000 °C and 1200 °C was carried out. For comparison, normal sintering process was also carried out at the firing temperature between 1150 and 1350 °C for 2 h. Phase formation, densification and microstructure development of all final sintered products were determined by using the X-ray diffractometer (XRD), Archimedes principle and scanning electron microscopy (SEM), respectively.

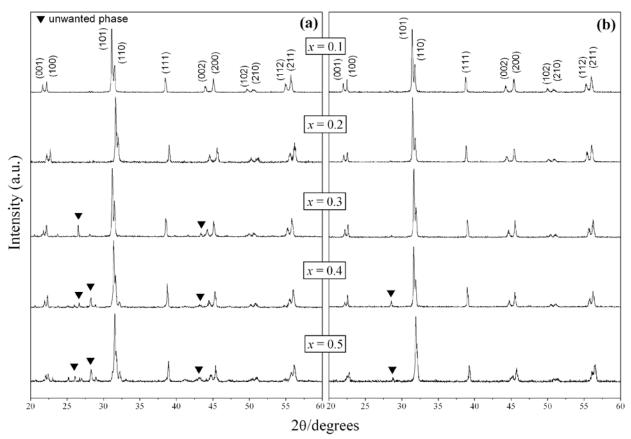


Fig. 1. XRD patterns of (1-x)PZT-xBT ceramics prepared by (a) two-stage sintering compared with (b) normal sintering.

RESULTS AND DISCUSSION

The XRD patterns of two-stage sintered (1-x)PZT-xBT ceramics at various compositions compared with normal sintered ceramic are illustrated in Fig. 1. The XRD graphs for both sintering techniques show slightly different peaks. From Fig. 1(a), it can be indicated that the pure perovskite phase of two-stage sintered ceramics was found in the compositions of x = 0.1 and 0.2, whereas the unwanted phase can be detected with increasing of x. Likewise, the same situation

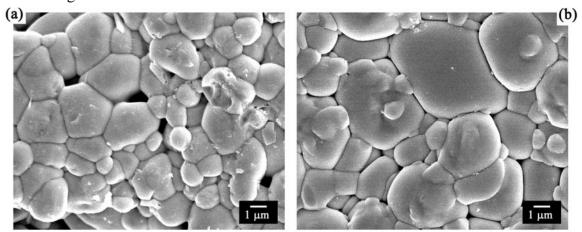

was also found in normal sintered ceramics but less. The compositions of x = 0.1, 0.2 and 0.3 show XRD peaks of pure perovskite phase (Fig. 1(b)), while the graphs of 0.6PZT-0.4BT and 0.5PZT-0.5BT ceramics indicate perovskite phase with traces of unwanted peaks. With carefully investigation, it is believed that this unwanted phase (∇) which occur in both sintering techniques is ZrO₂ matched with JCPDS file no. 37-1484. Compositional fluctuations due to the evaporation of lead oxide within surface regions are believed to be responsible for the occurrence of free ZrO₂ phase in the sintered (1 - x)PZT-xBT ceramics.

Table 1 Characterizations of sintered (1-x)PZT-xBT ceramics.

	Two-stage sintering			Normal sintering			
x (BT content)	Sintering temperature (°C)	Relative density (%)	Average grain size (µm)	Sintering temperature (°C)	Relative density (%)	Average grain size (μm)	
0.5	1150	71.90	3.47	1250	84.92	3.55	
0.4	1200	77.36	2.55	1250	81.82	3.33	
0.3	1150	78.19	2.75	1250	85.24	3.34	
0.2	1200	81.47	2.56	1300	99.29	3.79	
0.1	1200	78.50	2.82	1300	94.19	4.03	

The effect of sintering techniques on the densification and microstructure for (1-x)PZT-xBT ceramics are listed in Table 1. Generally, it is evident that the relative densities obtained by two-stage sintering are slightly lower than that of ceramics sintered by conventional in all compositions. Normal sintered ceramics reached a maximum density of ~ 99% at 1300 °C for single phase 0.8PZT-0.2BT. On the other hand, two-stage sintered samples exhibit reduced densification, and a temperature of 1200 °C was required to reach a densification level of ~81% for the same composition. However, even the densification of two-stage sintered ceramics decreases but the required sintering temperature for each composition is also significantly reduced. Moreover, from Table 1, it is seen that the average grain size of the two-stage sintered ceramics is much smaller than that of normal sintered ceramics for all compositions. microstructures of PZT-BT ceramic (x = 0.2) which exhibit the highest density sintered with different schemes were revealed by SEM and shown in Fig. 2. SEM micrographs show that for the first approximation both ceramics exhibit good densification and homogenous grain size. However, it can be noticed the microstructure of the two-stage sintered ceramics (Fig. 2a) is slightly different from that of the normal sintered samples (Fig. 2b). Grain size of normal sintered ceramic varies greatly from 0.5 to 10 µm whereas the two-stage sintered ceramic contains smaller average grain size (~ 2.5 µm) and some degree of porosity is clearly seen. In addition, other compositions also show the same trend of grain size compared between two different sintering schemes. For comparison, even though exact mechanism of the microstructure observed here is not well established, but it should be noted that the various features of microstructure in PZT-BT ceramics are dependent on the grain growth rate in the different planes [6]. However, the sintering process and growth environment also play an important role in the formation [7]. More importantly, it can be assumed that the two-stage sintering process could suppress the grain growth mechanism efficiently whereas the relative density of both normal- and two-stage sintered ceramics is in high value. This can be explained that the feasibility of densification without grain growth, which is believed to occur in two-stage sintered ceramic, relies on the suppression of grain boundary migration while keeping grain boundary diffusion active. The kinetic and the driving force for grain growth behavior in the second-step sintering were previously discussed by Chen and Wang [5]. Their work suggested that the suppression of the final stage grain growth was achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration.

Fig. 2. SEM micrographs of sintered 0.8PZT-0.2BT ceramics: (a) two-stage sintering and (b) normal sintering.

CONCLUSION

Even though the simple mixed-oxide method employing a conventional ball-milling was used, this work demonstrated that it was possible to obtain smaller grain size ferroelectric (1-x)PZT-xBT ceramics with high densification by the two-stage sintering technique. It has been shown that, under suitable condition, two-stage sintering can effectively suppress the grain growth in this system leading to small-grained microstructure.

ACKNOWLEDGEMENTS

This work was supported by the Thailand Research Fund (TRF), Commission on Higher Education (CHE) and Faculty of Science of Chiang Mai University.

REFERENCES

- [1] K. Uchino, "Ferroelectric Devices", (Marcel Dekker, New York, 2000), pp 1-308.
- [2] G. H. Haertling, J. Am. Ceram. Soc., 82 (1999), p. 797.
- [3] A. Yamaji, Y. Enomoto, K. Kinoshita, T. Murakami, J. Am. Ceram. Soc., 60 (1977), p. 97.
- [4] H. T. Kim, Y. H. Han YH, Ceram. Int., 30 (2004), p. 1719.
- [5] I. W. Chen, X. H. Wang, Nature, 404 (2000) p. 168.
- [6] M. H. Lin, J. F. Chou, H. Y. Lu, J. Eur. Ceram. Soc., 20 (2000), p. 517.
- [7] R. M. German, "Sintering Theory and Practice", (Wiley, New York, 1996), pp. 1-550.

e-mail: wanwilai chaisan@yahoo.com

Fax: +66-53-94-3445