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Project Title: Numerical Investigation of Heat Transfer Enhancement of Swirl Flows
through Corrugated Tubes and of the Optimal Elemental T and Y Shapes of Duct
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1. Abstract:

This research is divided into two parts. The first part is aimed to study the effects of
corrugated tube geometries on heat transfer enhancement and pressure drop of flows in
the Reynolds number range of 100 to 1,000 by numerical method. The numerical
results show that the corrugated tubes with shorter pitch and deeper threads have
higher heat transfer capability as well as higher pressure drop. The formula that relates

the corrugated tube geometries and the average Nusselt number can be written as

—~0.529 -0.673
Nu, = 0.0513Re"*! P (d/ ) (%)

, while the formula that shows the effect of corrugated tube geometries on the pressure

drop friction factor is

= 6073 Ren.8919 [%:I—o.om [%}

In the second part, the optimal geometries of the elemental T and Y shapes of duct

-1.0587

networks as functions of the flow direction, wall roughness, duct cross-sectional shape,
and sveltness (Sv) were numerically investigated. The computational results show that
the effects of junction pressure losses on the optimal architecture of duct networks can

be neglected when Sv*¥?

is greater than approximately.
Keywords: Heat Transfer Enhancement, Corrugated Tubes, Flow Networks and

Junction Losses
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Elemental T and Y Shapes of Tree Networks of Ducts with
Various Cross-Sectional Shapes

W. Wechsatol'; S. Lorente?; A. Bejan®; and J. C. Ordonez*

Abstract: This paper reports optimal bifurcation shapes (T and Y) in turbulent regime of tree-shaped flows. Unlike earlier studies of T
and Y constructs, here the effect of pressure losses at the junction is taken into account, and the wall roughness and duct cross-sectional
shapes are free to vary. The optimal ratio of duct cross-sectional areas (as a generalization of Murray’s law), the optimal ratio of duct
lengths, and the optimal angle between the branches of the Y are presented. These optimal geometrical features are reported as functions
of the flow direction (splitting flow versus merging flow), wall roughness, duct cross-sectional shape, and svelteness. The svelteness, Sv,
is a global property defined as the external length scale of the flow construct divided by the internal length scale. It is shown that the effect
of junction pressure losses on the optimized architecture can be neglected when Sv¥? is greater than approximately 10*. Two dimension-
less terms are introduced and shown to be useful for the optimization of flow networks.

DOI: 10.1061/(ASCE)0733-9429(2009)135:2(132)

CE Database subject headings: Cross sections; Bifurcations; Walls; Roughness; Hydraulic networks.

Introduction

In recent years, hydraulic networks have become more complex
due to the increase in demand and population. How to distribute
water to a large city area and to effectively design city plumbing
systems to collect household wastewater for treatment are impor-
tant issues. Wechsatol et al. (2001) proposed the tree-shaped net-
works in Fig. 1(a) in domestic distribution of hot water. The
insulation was arranged optimally to minimize heat losses. Sahin
and Kalyon (2005) showed that the temperature of hot water can
be maintained along a pipe by strategically arranging the insula-
tion. The tree-shaped network proposed by Wechsatol et al.
(2001) shows significant reduction of hydraulic resistance. Wech-
satol et al. (2002) proposed the dendritic tree-shaped networks in
Fig. 1(b) to distribute flow between one point source and many
points situated equidistantly from the source. Similarly shaped
flow networks appear in nature. Fig. 1(c) shows the dendritic flow
pattern of the Sacramento River. The generation of flow architec-
ture is a phenomenon at work everywhere, not only in engineered
but also in natural flow systems (Poirier 2003). The universality
of the phenomenon of generation of flow configuration was ex-
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pressed in a compact statement [the constructal law (Bejan 1997)]
regarding a natural tendency in time: the maximization of access
for the currents that flow through a morphing flow system. That
this principle can be used to rationalize the occurrence of opti-
mized flow structures in nature (e.g., tree networks, round tubes)
was named constructal theory (Bejan et al. 2000, 2004).

Dendritic tree networks are relevant not only to the domestic
distribution of water but also to a wide range of physiological and
engineering applications: air conditioning (ASHRAE 1967), irri-
gation systems (Ordonez et al. 2003), fuel cells (Senn and Poul-
ikakos 2004a, b), electronics cooling (Chen and Cheng 2002),
heat exchanger design (da Silva et al. 2004), and reactive porous
media (Azoumah et al. 2004).

Basic constructs that appear in tree networks are the T and
Y-shaped assemblies as illustrated in Fig. 1. Murray (1926)
showed that there is an optimal size step in diameter of blood
vessels at each bifurcation node in the vascular system. In this
paper, it is shown that all the geometrical features of T and
Y-shaped constructs can be derived from minimization of overall
flow resistance. The optimal geometry of T and Y assemblies can
be used as an elemental unit to construct complex networks like
those of Fig. 1. The optimization of the T and Y-shaped configu-
rations reported in the present paper extends the work of Murray
(1926) and Bejan et al. (2000) in three directions: (1) junction
losses are included, therefore, the flow direction plays an impor-
tant role in determining the optimal shape of the construct; (2) the
effect of Reynolds number and relative roughness is taken into
account; and (3) the cross-sectional shape of every duct is
arbitrary.

Flow Resistances

Consider a fully developed turbulent flow through a T-shaped
assembly of ducts such as the one illustrated in Fig. 2, where
entrance and pressure recovery effects are neglected, and ducts
with arbitrary cross-sectional shapes are considered. In Fig. 2
(left), the flow enters the stem and splits equally into two
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Fig. 1. Dendritic flow patterns in engineering and nature

branches. The flow in the opposite direction (merging flow) is
shown in Fig. 2 (right). The change in flow direction causes a
change in the characteristics of eddy formation at the junction.
One objective of this work is to investigate the effect of the flow
direction on the optimal shape of the flow path.

The total duct volume V and the total rectangular area, S,
occupied by the assembly are fixed, and serve as constraints.
Wechsatol et al. (2001) optimized dendritic flow networks in a
square-shaped area for the purpose of minimizing pressure drop
and duct material. They reported that minimizing pressure drop
by keeping the duct material fixed provides the same optimal
geometry of networks as minimizing pressure drop with the duct
volume constraint. The total volume of ducts also refers to the
mass of fluid in the networks, which is important to the design of
cooling-flow channels as well as the design of refrigeration and
air conditioning systems for the purpose of minimizing working
fluid. Networks with less total volume require less working fluid.
The use of unnecessarily large ducts not only increases the mate-
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rial cost, but also may create wavy flow (two-phase flow) and
may cause damage to junctions due to the resultant force created
by the wavy flow (Whalley 1987, Wongwises 1996; Wongwises
and Kalinitchenko 2002). In this paper, the focus is on single-
phase flow that fully wets the inner side of ducts. The total duct
volume V can be calculated by writing

V=L1A1+2L2A2 (1)

The size of the rectangular area S occupied by the T-shaped con-
struct is

S = 2L1L2 (2)
where L,=length of stem duct; L,=lengths of the two branches;

and A; and A,=cross-sectional areas of the ducts. The pressure
drop along each duct is given by

3
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Fig. 2. T-shaped assembly of ducts with general cross-sectional shapes
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fipiLin

AP;=
84l p

3)
where m;=mass flow rate through duct i; p;=wetted perimeter of
the duct; and AP;=pressure drop in each duct. Here, because the
fluid fully wets the inner surface of the ducts, the wetted perim-
eter is the same as the duct perimeter.

The total pressure drop of T-shaped flow in Fig. 2 is given by

PAP fipiL, faply frl

=g +T 3 )
m? 8 A} 32 A3 242

where AP=total pressure drop; f; ,=Darcy friction factors, which
depend on the Reynolds number and the relative roughness; and

fr=junction loss coefficient (Idelchik 1986). The density p is as-
sumed constant. If one introduces the dimensionless length scale

~ L,

L S1/2 (5)
and the dimensionless shape parameter

~ _ Pi

Pi=71n (6)

and eliminate A; between Eq. (4) and Eq. (1), the dimensionless
hydraulic resistance Ry is obtained

pAPV§/2 f f 5 512
R,= =| 25 L+ 2Psz

mis" |8 32
. . A fr 1 A Ay\2
X (Ll + 2L2A1) + E_S 7 (L1 + 2L2A—1 @)

The dimensionless shape parameters of typical cross-sectional
shapes are reported in Fig. 3. Here, Sv=svelteness of the flow
structure, which is a global property, defined as the ratio between
the external and internal length scales

S1/2

SV=W

®)

The two duct lengths in the assembly are related via the volume
constraint (1), (Sv3/S)(£,4,+20,A,)=1 and the area constraint

?), 2f,1£2=1. In Eq. (7), the hydraulic resistance or flow resis-
tance R, depends on the geometry of the assembly, the friction
factor, and the loss coefficient. The objective here is to find the
optimal geometry of the assembly such that the global flow resis-
tance is minimized.

Dimensionless Shape Parameter and Reynolds
Number

In this section, it is shown how the dimensionless cross-sectional
shape parameter, p, can be used to simplify the dimensionless
flow resistance in Eq. (7). Fig. 3 reports the dimensionless shape
parameters, p, of ducts with round, square, rectangular, and regu-
lar polygonal shapes with n sides. The dimensionless shape pa-
rameter of ducts with regular polygonal cross-sectional shapes is

7=2n"[tan(m/n)]"? 9)

The dimensionless shape parameter, 7, depends only on the shape
of the duct cross section. It does not depend on the duct size. If all
the ducts in the assembly have the same cross-sectional shape,
P1=P>=pP3=D, then Eq. (7) becomes

p=4
. _2a+b) b
p= (ab)2 l
| : |
5
b
]
P
4 °
o
o
o
oo
3 T
1 10 10

n

Fig. 3. The dimensionless shape parameter 5 for three common and
regular polygonal cross sections

fr U [+ a4\
+?TW L +20,-2 (10)

We search for the optimal T-shaped flow configuration where all
ducts in the assembly have the same cross-sectional shape. The
Reynolds number in the stem is given by

4 my
Ri==2 RE
p W

R A A 12
5v3’2(L1 + 2—2L> (11)
A

where p=dynamic viscosity of the fluid. This shows that the Rey-
nolds number depends on the geometry of the flow assembly, the
svelteness, the cross-sectional shape, and the dimensionless group
riry/ wSY2. The dimensionless group riz;/ p.S'/2 represents a design
requirement (the duty) of the flow network. The Reynolds number
in the two branches (R,) is proportional to the Reynolds number
in the stem, R,/R;=0.5(5,/p,)(A,/A,)"2.
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Fig. 6. The optimal cross-sectional area ratio for T assemblies of
ducts with round cross-sectional shape when 7,/ uS"2=10%
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Fig. 8. The optimal cross-sectional area ratio for T assemblies of
ducts with square cross-sectional shape when &/ A{’2= 10~

S of 1 m? the junction losses may be neglected when the total
volume of ducts in the T-shaped assembly is less than or equal to
10~ m? (or 0.1 ), which normally appears in the refrigerant de-
livery network of multiple variable refrigerant air-conditioning
systems. In the occupied area S of 1 km?, the junction losses may
be ignored when the total duct volume is less than or equal to
10 m®. When Sv¥?=10%, the optimal area and length ratios, re-
spectively, approach 0.57 and 0.89.

Figs. 6 and 7 illustrate the effects of the relative roughness,
/D, which is redefined as &/AY? on the optimal shape of T
assemblies. In the limit of large svelteness, Sv, the curves for
splitting and merging flows with the same redefined relative
roughness approach the same value. The roughness continues to
have an effect on optimal geometry (A,/A,, L,/L,) in the limit of
large Sv: the optimal area ratio increases with the roughness,
whereas the optimal length ratio decreases as the roughness
increases.
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Fig. 7. The optimal length ratio for T assemblies of ducts with round
cross-sectional shape when 1,/ wS"2=10*

T-Shaped Assemblies of Ducts with Rectangular
and Square Cross-Sectional Shapes

Rectangular shapes are commonly used in the design of duct net-
works of air-conditioning systems, fuel cell flow channels, and
microelectromechanical systems devices. The dimensionless
shape parameter of the rectangular cross-sectional shape ducts is

_ 2(a+b) (1+AR)
DPr= (ab)2 =STAR

The dimensions a and b are defined in Fig. 3, and AR=b/a is the
cross-sectional aspect ratio. Eq. (10) shows that the minimal flow
resistance occurs when the shape parameter is minimized. For
rectangular cross-sectional shapes, py is minimized when the as-
pect ratio of cross-section AR is equal to 1. This means that the
square shape (p=4) is the optimal cross-sectional shape of ducts
with rectangular cross sections. In the search for the optimal con-
figuration of T assemblies, j=4 was substituted into Eq. (10).
Figs. 8 and 9 report the optimal shapes of T assemblies of

(17)

09 Square cross -sectional shape
B=4, e/AV? 1074

splitting flow

........ merging flow
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Fig. 9. The optimal length ratio for T assemblies of ducts with square
cross-sectional shape when &/A}?=10"
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By comparing Y-shaped with V-shaped assemblies, it was
shown that the area aspect ratio determines which assembly will
perform better. The V-shape assembly [Fig. 12(b)] is better than
Y-shape assembly when the area aspect ratio (x/y) is greater than
0.8, regardless of the cross-sectional shape j, surface roughness,
and mass flow rate.

Throughout this work, the symmetry of flow is assumed a
priori at every bifurcation node. The optimal geometry of T and
Y-shaped flow channels reported is specific for symmetrical flow
geometries such as in uniform distribution of hot water over an
area (Wechsatol et al. 2001, 2002) where symmetrical networks
require less pumping power than asymmetric networks. The opti-
mal geometry of junctions for asymmetrical flow distribution was
presented by Wechsatol et al. (2006).
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Notation

The following symbols are used in this paper:
A = cross-sectional area, (m?);
AR = aspect ratio of rectangular cross-section, Eq. (17);
D = duct diameter (m);
D, = hydraulic diameter (m);
fi = friction factor;
Jr = junction loss coefficient;
K = constant, Eq. (15);

L = duct length (m);
m = mass flow rate, (kg/s);
n = number of sides of the regular polygon;
P = pressure (N/m?);
p = wetted perimeter (m);
R = Reynolds number;
R, = flow resistance, Egs. (7) and (10);
S = occupied area (m?);
Sv = svelteness number, Eq. (8);
V = total duct volume, (m°);
AP = pressure drop, (N/m?);
€ = roughness (m);
w = dynamic viscosity (kg/ms); and

p = fluid density, (kg/m?).
Subscripts

i = duct rank; and
R = rectangular cross section.

Superscripts

(") = dimensionless, Eq. (5); and
(~) = dimensionless, Eq. (6).
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