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We present two results related to machine learning and online computation.

The first result presents short proofs on the mistake bounds of the 1-nearest neighbor
algorithm on an online prediction problem of path labels. The algorithm is one of key ingredients in
the algorithm by Herbster, Lever, and Pontil for general graphs. Our proofs are combinatorial
and naturally show that the algorithm works when the set of labels is not binary.

The second result is related to our previous work on learning reductions. We present a
counter example showing that an algorithm for constructing multiclass predictors from binary
predictors cannot preserve the performance of the binary predictors. Through this example, we

discover that our previous result contains errors.
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1. Introduction

We consider the online prediction of graph labels which
can be described briefly as follows. There is a graph G =
. (V, E) with a fixed node labeling u: V — L for some label
set L; initially, the algorithm does net have any informa-
tion of u. The learning process proceeds in rounds. For
each round t, Nature asks for a label of node q; € V. The
algorithm predicts the label U(q:) and later receives the
true label u(q;). It makes a mistake when i(qe) # u(qy).
The goal is to minimize the number of times the algo-
- rithm makes mistakes. For motivation and applications of
the problem, see, e.g., [1.6].

The performance of the algorithm is measured against
fhe number of cut edges on the partition of graph nodes
induced by the true labeling. We denote by ®¢(u) the
number of edges in G whose labels on both ends are dif-
ferent.

The recent result of Herbster, Lever, and Pontil [6] gives
an efficient algorithm with a mistake bound of

*
Corresponding author.

R E-mail addresses: jittat@gmail.com (J. Fakcharoenphol),
Boonsenn.K@chuIa.ac_th (B. Kijsirikul).
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They first embed G into a path graph S, called a spine of G,
then they use the 1-nearest neighbor (1-NN) algorithm for
label prediction. The first step only incurs a factor of 2 on
the cut size (®¢(u)); their mistake bound follows from the
proof of the second step.

Herbster et al’s proof of the mistake bound of the
1-NN algorithm is based on the result on the Halving al-
gorithm [9]. To do so, they define a probability distribution
over the possible hypotheses so that the Halving algorithm
implements the 1-NN algorithm.

In this manuscript we give a short combinatorial proof
that the 1-NN algorithm on an n-node path with k cut
edges makes at most O(klog(n/k) + k) mistakes. This
bound is off by a constant factor from the bound in [6].
We also show that with a more careful analysis, this bound
can be improved to almost match the bound of [6].

Apart of being very short and combinatorial, another
nice property of our proof is that the bound does not de-
pend on the set of labels. Therefore, they also imply that _
the algorithm of Herbster et al. also works when labels are
not binary. ‘

We present our proofs in Section 2. The next section
reviews other closely related work.




1.1. Other related work

Early works [8,7] on graph prediction use algorithms
based on the Perceptron algorithm using pseudoinverse of
graph Laplacian as a kernel and provide mistake bounds
that depend on the cut size and the largest effective re-
sistance between any pair of vertices in the graph. Herb-
ster [4] exploits the cluster structure of the labeling on the
graph, and provides an improved mistake bounds. How-
ever, there is an example by [6] that shows that the algo-
rithm based on this approach may make ®(\/n) on some
n-node graph. Recently, Herbster and Lever (5] explore an-
other class of seminorms, called Laplacian p-seminorms,
and show that with the right setting of p (which depends
only on the graph) the mistake bound is logarithmic.

Recent work of Cesa-Bianchi, Gentile, and Vitale [1]
presents an algorithm for prediction on trees whose worst-
case number of mistakes over all labeling and all query
sequence is optimal up to a constant factor.

We also note that our work in this paper stems from
. the proof of a slightly weaker bound appeared in [3] based
. on result in [2].

2. The 1-NN algorithm on paths

We are given a line graph G = (V, E); let n = |V|. With-
- out loss of generality, we label nodes in G as 1,2,...,n,
where nodes 1 and n are the only two degree-1 nodes,
and there is an edge (i,i+1) € E, forall 1 <i <n.

The online prediction problem proceeds in rounds. Each
round t, when Nature asks for a label of node g, the
1-NN algorithm finds the closest node s whose true label
is known and returns s's label. For that round, we call g,
the query node and s the source node. Later on, when the
true label of i is revealed, the algorithm updates i's label
on the graph. If the predicted label of q; is not the same
as the revealed label, the algorithm makes a mistake.

In our analysis, a distance from a given node i to an-
other node j is the number of edges on the unique path
from i to j, ie., itis |i — j|. A distance fromi to edge (j, j+1)
is the minimum of the distances from i to j or from i to
j+ 1 ie, itis min(ji — j|,|i— j—1)).

We first present a simpler theorem that shows the
same asymptotic bound but with a higher constant.

Theorem 1. The 1-NN algorithm makes at most O (k +k log( )
mistakes where n = |V | and k is the number cut edges.

Proof. First assume that k < n — 1, otherwise the bound
holds trivially.

Denote all cut edges by ey, es....,ex; we assume that
they are ordered by the smaller indices of their end points.
These cut edges partition G into k + 1 connected sub-
graphs. Call them Cy, Cy, .. .. Ck; note that each edge e; is
adjacent to C;_, and Ci.

We start our analysis after the first mistake is made.

: For each mistake the algorithm makes after that, we
% have that the true labels of query node i and source node s
g 2re different. Therefore, there exists some cut edge along

. the unique path P from i to 5. We charge this mistake to

the closest cut edge on P from i.

s
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To see that each edge e; is charged by at most 1 +
log|C;] times by nodes in C;, consider the sequence of
nodes that charge to e;: vy, v,,.... For j > 1, in order for
vj to make a mistake, e; must be closer to v; than all
other known nodes, including v;_;. Thus, we have that the
distance from a node in C; charging to e; decreases by at
least a factor of 2 each time e; is charged. Thus, e; can be
charged at most 1 + log|C;| times by nodes in C;. We can
use the same argument to show that e; is charged by at
most 1+ log|C;—;| times from nodes in C;_;.

Note that only mistakes on nodes in C;_; or C; can
be charged to e;. Therefore e; is charged by at most
2+ log|Ci—1| + log|C;| times.

Summing over all cut edges, the number of mistakes
charged to any cut edge is at most 2k + Z:‘:OZlog{C,-[.
Since ZLOIC,-] =n, the number of mistakes maximized
when every subgraph is of the same size, i.e, the num-
ber of mistakes is at most 2k + (k + 1)(2log(n/(k + 1))).

Accounting for the first mistake, we have that the num-
ber of mistake is at most 1+2k+(k+1)(2log(n/(k+1))) =
O(klog(n/k) +k) as claimed. 0O

The next theorem shows a tighter bound. To prove it
we need more notations. :

First denote the end points of each edge e;, for 1 <i <
k. by p; and p; + 1. For simplicity, we set pg = 0. Note that
nodes in Cj are pi_; + 1, pi—1+2, ..., pi. We also refers to
a set of contiguous nodes as an interval of nodes.

We call any node on which the algorithm makes a mis-
take a blue node; note that the number of blue nodes at
any time equals the number of mistakes the algorithm
makes so far.

As in the proof of Theorem 1, we shall trace the execu-
tion of the algorithm. ,
Theorem 2. The 1-NN algorithm makes at most 2k +k log(n/k)
+ 1 mistakes where n = |V | and k is the number cut edges.

Proof. We use a slightly different charging scheme. For
each component C;, we charge the first mistake from
nodes in C; to the component itself. For other mistakes,
we use the same charging scheme, i.e., we charge them to
the first cut edges encountered on the paths to the source
nodes.

For each i, 1 < i<k, we will define an interval of nodes
W; that contains all node charging to e; such that the sets
Wi, Wa, ..., Wy are pair-wise disjoint.

The total number of mistakes charged to the compo-
nents is at most k + 1. Using the same argument on the
maximum of the sum of logarithms as in the end of the
proof of Theorem 1, to prove the theorem, it suffices to
show that the number of times each cut edge e; is charged
is 1+ log|Wil.

Consider edge e; that has at least one mistake charged
to it.

Let v be the first blue node that charges to e;. Note
that v is either from C;_; or C;; let C’ be one of these
subgraphs that contains v, and let C” be another subgraph.

We assume that v is the first blue node in C’; thus the
mistake on v can be charged to C’. We shall deal with the
case when v is not the first one later.

Srionling.
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There are two cases. The first case is when every node
charging to e; is from C’. Define W, to be the minimal
interval containing one of the endpoint of e; in C’ and v.
| The proof from Theorem 1 shows that e; is charged at most
1+ log|Wi| times.

Now consider the second case. Let u be the first node
in C” that charges to e;. We also assume that u is also the
first blue node C”. Recall that u's mistake can be charged
to C”. We define W; to be the minimal interval containing
‘u and v.

At any step t in the execution of the algorithm, let
D‘ be a set of nodes that can possibly charge to e; after
step t. The argument as in Theorem 1 implies that after
u charges to ej, in each step ¢ that some node charges to
;, the size of Df decreases at least by a factor of two, i.e.,
DI < IS 2.

Now consider each step t before u charges to e;. Ob-
serve that every candidate discarded in this step must be
in Wi, ie, DI”' — D! C Wi thus, in those steps, we also
have that

|Dinwi| <|Dj nwil/2.

Since u does not charges to e;, we have that e; is charged
by at most 1+ log|W;] times.

We are left with the case that v or u (or both) are not
the first blue nodes on C’ or C”. We only consider the case
‘where there exists some mistake in C” that charges to e;.
‘Similar argument can be used when all mistakes charged
to e; are from nodes in C’ but u is not the first blue node
in C".

= Let w' and w"” be the first blue nodes in C’ and C”.
EIf v w, we let v/ be the node adjacent to w’ which is
 closer to e,; otherwise we let v/ = v. We define u’ simi-
Iarly ie, u” is the node adjacent to w” closer to e; or u
itself if u' = w”. We define Wi to be the minimal interval
‘containing v’ and u’.

We are done if we can show that for each x {u. v}
uch that x is not the first node, when fhe algorithm makes
‘mistakes on x, the set [D‘ N W] also shrinks by a factor of
two. We look at the case where x = u, the other case is
similar. To see that this claim is true, note that one of the
candidate sources of u is w”, but u chooses another node

Wwhich is as far as the furthest node on the direction to e;
inDinw;. o
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Using Theorem 2 with the algorithm of Herbster et ai.,
we obtain the mistake bound of

2(Pg () max[o, log2< )] +4dc(u) + 1,

n
20¢(u)

which is comparable to the original bound except on the
constant of the second term. (We have 4, [6] has ,—— ~
2.88.)
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Abstract. There are errors in our paper “Constructing Multiclass
Learners from Binary Learners: A Simple Black-Box Analysis of the
Generalization Errors,” which appeared in ALT’05 [3]. The errors are
related to our uses of union bounds. We briefly describe the problem
and discuss which of our results can be shown to hold. We also provide a
counter example for our previous claim in the full version of the erratum.

1 Background

" In [3], we analyzed various multiclass learning algorithms that use binary classifi-

cations as subroutines. We viewed binary classifiers as black-boxes and analyzed
the error rate of the multiclass construction as a function of binary error rates.
This approach is mainly known as learning reductions [1].

In what follows, we assurpe that the readers are familiar with the pair-wise
reductions such as Decision Directed Acyclic Graphs [5] (DDAG), Adaptive Di-
rected Acyclic Graphs [4] (ADAG).

2 The Errors

The problems in that paper is in our analysis of adaptive constructions, i.e.,
those whose set of invoked binary classifiers changes over the input. They include
DDAG, ADAG, and Randomized Decision Directed Acyclic Graphs (R-DDAG).
More specifically, the errors are regarding our use of the union bound.

To see the problem, we consider our analysis of ADAG for the problem with
k classes. We start with the setting. Let D be the distribution over X, set of
all data points. There are (k) classifiers: there is a binary classifier A4; ; for each

. - N 2 . .
bair 7 # j. Error rate of classifier A j, € is defined to be

P%[Ai.j(:c) gives a wrong prediction|z belongs to class i or class j].
T~

Y. Freund ct al. (Eds.): ALT 2008, LNAI 5254, pp. 464-166, 2008.
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In the ADAG reduction, we have a full binary tree T, with k leaves initially
labelled with all classes, while all internal nodes are unlabelled. Call the leaf
labelled with 7, L;. Given a data point =, the prediction algorithm picks any
unlabelled node u whose children are all labelled. Suppose that they arc labelled
with i and j. We then call A; ;(z) and assign the result of the classifier as the
label of u. The algorithm iterates until there is no unlabelled node left. The
multiclass prediction is the label of the root node.

Our analysis first assume that the data point belongs to class i. Let Z(i) denote
the set of internal nodes of 7" on the path from L; to the root. The algorithm
makes a wrong prediction if any classifier called on these nodes make mistakes.
Denote by &(u) the event that the classifier on node u makes a wrong prediction;
thus, the multiclass error rate is Pr {Uuez(z) E(u)| < Z_“_GI(,.) Pr[&(u)].

For any node u, let £(4) denote the sct of leaf labels in the subtree rooted
at u. We claim, erroneously, that max;ec(,) €;; is an upperbound on Pr[€(u)].

If this were true, we would have that, since |I(i)| < [logk], the error rate is
at most Z]“:‘"f o €ir;, When r; is the class ¢ with the j-th largest error rate e .

The above claim would have work if cach classifiers 4;; is randomized and
for any data point z, it makes a mistake with probability € ;. However, usually
for a fixed x, the error is not random.

The correct analysis of Pr[€(u)] must consider all binary classifiers A, j for
j € L(u). Let event F(i,7) denote the event that the classifier A;j is used at
node u and makes a wrong prediction. Thus, Pr[€(u)] = PrlU e F5)] =
2 jec(w PrlF (3, 7)]. With no further assumption, we can only bound this with

jec(u) €ig» using the union bound. Thus, the probability of making mistake
is at most ) j#i €i.j» UsIng again the union bound. In the case of uniform error
rate, this only gives the bound of (k — 1)e. This analysis is tight (se¢e an example
in [2]). .

The erroneous theorems are Theorems 2, 3, and 4. In Theorem 2, we claim an
upper bound d; for input from class i to be at most max{} ; ; €ij. D s, €ij)-
The correct upperbound is i €i.5- This is the correct bounds for Theorems 3
and 4 as well.

Our analyses of non-adaptive constructions (Theorems 1, 5, and 6) remain
correct. -

3 A Tight Example

In the full version of the erratum [2], we describe the probability space of the
input with & classes and a set of binary classifiers such that the binary error rate
is 1/(k — 1) while multiclass error rate of the constructions is 1, for £ > 2.
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