

บทคัดย่อภาษาไทย

รหัสโครงการ	MRG 5080333
ชื่อโครงการวิจัย	การพัฒนาวิธีวิเคราะห์ยาปฏิชีวนะ amoxicillin ในเภสัชภัณฑ์โดยใช้เอนไซม์
ชื่อผู้วิจัยและสถาบัน	ผศ.ดร.ธีรศักดิ์ โรจนราช คณะเภสัชศาสตร์ มหาวิทยาลัยศิลปากร theerasak@email.pharm.su.ac.th
ระยะเวลาโครงการ	2 ปี (1 ก.ค. 2550- 30 มิ.ย. 2552)

บทคัดย่อ

งานวิจัยนี้ได้พัฒนาวิธีวิเคราะห์ยาปฏิมาณอะม็อกซิซิลลินในเภสัชภัณฑ์ที่ง่าย รวดเร็ว มีความไว และตันทุนตា โดยอาศัยปฏิกิริยาซึ่งเร่งด้วยเอนไซม์ 2 ปฏิกิริยา ในขั้นตอนแรก หมู่ดี-4-ไฮดรอกซีฟินิลกลัลย์ชีนในโครงสร้างของอะม็อกซิซิลลินถูกตัดออกอย่างจำเพาะออกจากโมเลกุลของอะม็อกซิซิลลินโดยเอนไซม์เพนนิซิลลินอะซีเลส จากนั้นดี-4-ไฮดรอกซีฟินิลกลัลย์ชีนที่เกิดขึ้นเข้าทำปฏิกิริยากับ 2-ออกโซกลูต้าเรตโดยมีเอนไซม์ดี-ฟินิลกลัลย์ชีนอะมิโนทรานส์ฟอเรสเป็นตัวเร่ง เกิดผลิตภัณฑ์ตัวหนึ่งได้แก่ 4-ไฮดรอกเบนซิลฟอร์เมตซึ่งสามารถดูดกลืนและอัลตราไวโอล็อตได้สูง ดังนั้นปริมาณอะม็อกซิซิลลินจึงถูกวิเคราะห์ได้จากค่าการดูดกลืนและซึ่งเพิ่มขึ้น ณ ความยาวคลื่น 335 นาโนเมตร การวิจัยครั้งนี้ได้ทำการศึกษาและปรับเลือกสภาวะที่เหมาะสมสำหรับการวิเคราะห์ตลอดจนได้ทำการตรวจสอบความถูกต้องของวิธีวิเคราะห์ที่พัฒนาขึ้น พบว่าการฟาร์มาตรูนาระหว่างปริมาณอะม็อกซิซิลลินเริ่มต้นที่มีอยู่ในตัวอย่างกับค่าการดูดกลืนและซึ่งเพิ่มขึ้นมีความสัมพันธ์ในเชิงเส้นตรงดีมาก ($r^2 = 0.9998$ ในช่วงความเข้มข้นของอะม็อกซิซิลลิน 0 – 100 ไมโครโมลาร์) มีค่าขีดจำกัดของการตรวจวัด และขีดจำกัดของวิเคราะห์ยาปฏิมาณ เป็น 0.77 และ 2.55 ไมโครโมลาร์ ตามลำดับ เมื่อนำวิธีนี้ไปวิเคราะห์เภสัชภัณฑ์อะม็อกซิซิลลินในรูปแบบยาแคปซูลและยาผงสำหรับละลายน้ำได้ยาแขวนตะกอน พบร่วมกับความถูกต้องและแม่นยำดี ไม่ถูกบกวนโดยสารปรุงแต่งอื่นๆ ในตัวรับ รวมถึงผลิตภัณฑ์อันเกิดจากการสลายตัวของอะม็อกซิซิลลิน นอกจากนี้ เนื่องจากทุกขั้นตอนของการวิเคราะห์ปราศจากการใช้ตัวทำละลายอินทรีย์ตลอดจนสารเคมีที่เป็นอันตราย จึงนับว่าวิธีที่พัฒนาขึ้นใหม่นี้เป็นวิธีวิเคราะห์ยาปฏิมาณอะม็อกซิซิลลินในเภสัชภัณฑ์ที่ปลอดภัยต่อสิ่งแวดล้อมอีกด้วย

กุญแจคำ: อะม็อกซิซิลลิน เอนไซม์ สเปกโตรโฟโตเมตรี การวิเคราะห์ยา เภสัชภัณฑ์

บทคัดย่อภาษาอังกฤษ

Project Code: MRG 5080333

Project Title: Development of enzymatic assay of amoxycillin in pharmaceutical preparations

Investigator: Assist. Prof. Dr. THEERASAK ROJANARATA

Faculty of Pharmacy, Silpakorn University

E-mail Address: theerasak@email.pharm.su.ac.th

Project period: 2 years (1 July 2007- 30 June 2009)

Abstract

A simple, fast, sensitive and inexpensive UV-spectrophotometric method for the determination of amoxicillin in pharmaceutical preparations has been developed based on two enzymatic reactions. In this method, d-4-hydroxyphenylglycine side chain of amoxicillin was selectively cleaved off by penicillin acylase. Subsequently, it was reacted with 2-oxoglutarate, by the catalysis of D-phenylglycine aminotransferase, to yield the product with high UV absorption namely 4-hydroxybenzoylformate. The amount of amoxicillin was then determined as a change in absorbance at 335 nm. In this work, the assay conditions were studied and optimized and the method was validated. The calibration curve presented an excellent linearity with r^2 of 0.9998 (0 – 100 μ M amoxicillin). Detection and quantitation limits were 0.77 and 2.55 μ M, respectively. Good accuracy and precision were obtained when the method was tested with amoxicillin capsules and powder for oral suspension. No interference from common excipients in the formulations or degradation products was observed. Finally, since all procedures were performed without the use of any organic solvents or hazardous chemicals which were detrimental to the environment and had a low consumption of reagents, this proposed assay was an ideal green analytical method suitable for the quality control of amoxicillin in pharmaceuticals.

Keywords: Amoxicillin, Enzymatic method, Spectrophotometry, Drug analysis, Pharmaceutical preparations