

มาก อุณหภูมิต่ำ ขนาดเล็ก ค่าความเป็นกรด-ด่าง และค่าการนำไฟฟ้าสูง การปักคลุมของเรือนยอดมาก PC-3 อธิบายความแปรผัน 14.5% ของความแปรผันทั้งหมด แหล่งอาศัยที่มีค่า PC-3 สูง มีค่าความเป็นกรด-ด่างต่ำ อยู่สูงจากระดับน้ำทะเลมาก น้ำทะเลเรียว เป็นลำธารเปิดไม่มีพืชริมน้ำ PC-4 อธิบายความแปรผัน 11.3% แหล่งอาศัยที่มีค่า PC-4 สูงเป็นแหล่งอาศัยที่มีความลึกของน้ำมาก วัสดุพื้นลำธารขนาดเล็ก ค่าการนำไฟฟ้าสูง PC-5 อธิบายความแปรผัน 9.3% ของความแปรผันทั้งหมด แหล่งอาศัยที่มีค่า PC-5 สูง มีค่าการนำไฟฟ้า และความเป็นกรด-ด่างสูง ระดับน้ำตื้น และระดับการปักคลุมเรือนยอดน้อย

การวิเคราะห์ความสัมพันธ์ระหว่างการป่าภูเขา/ไม่ป่าภูเขาของสปีชีส์กับ PCs โดย Forward regression analysis พบว่าแมลงรินด้า 4 สปีชีส์ที่มีการกระจายกว้างขวางสามารถตอบได้มากกว่า 20% ของแหล่งอาศัย ได้แก่ *S. siamense* *S. aureohirtum* *S. angulistylum* และ *S. nakhonense* มีความสัมพันธ์อย่างมีนัยสำคัญทางสถิติกับ PCs ($P < 0.001$, ตารางที่ 7) โดยค่าความถูกต้องของการทำนายจากสมการมีค่าระหว่าง 75.4% - 95.1% PC-1 มีความสัมพันธ์กับการกระจายของแมลงรินด้า 3 สปีชีส์ ได้แก่ *S. aureohirtum* *S. angulistylum* และ *S. nakhonense*

S. aureohirtum มีความสัมพันธ์เชิงลบกับ PC-1 ดังนั้นจึงพบมากในแหล่งอาศัยที่มีขนาดเล็ก น้ำทะเลไม่แรง ไม่มีการปักคลุมของเรือนยอด และ วัสดุพื้นลำธารมีขนาดเล็ก แมลงรินด้า *S. nakhonense* และ *S. angulistylum* มีความสัมพันธ์เชิงบวกกับ PC-1 ดังนั้นแมลงรินด้าทั้งสองสปีชีส์จะพบมากในแหล่งอาศัยที่มีขนาดใหญ่ อัตราการไหลแรง วัสดุพื้นลำธารขนาดใหญ่ และมีการปักคลุมของเรือนยอด การกระจายทางภูมิศาสตร์ของแมลงรินด้า *S. siamense* มีความสัมพันธ์เชิงบวกกับ PC-3 ดังนั้นจึงพบมากในแหล่งอาศัยที่มีค่าความเป็นกรด-ด่างสูง ความเร็วของกระแสน้ำต่ำ ค่าการนำไฟฟ้าต่ำ ความสูงจากระดับน้ำทะเลไม่มาก และเป็นลำธารที่มีพืชริมน้ำขนาดใหญ่

ตารางที่ 7 ผลการวิเคราะห์ความสัมพันธ์ระหว่างการปรากฏ/ไม่ปรากฏของแมลงรินด์ดำเนินแหล่งอาศัยกับ Principal components (PCs) ที่ได้จากการวิเคราะห์ด้วย Principal components analysis (PCA) โดยใช้ Forward logistic regression analysis ในการวิเคราะห์ข้อมูลใช้เฉพาะสปีชีส์ที่มีการกระจายมากกว่า 20% ของแหล่งอาศัยที่เก็บตัวอย่างในถุดุฟน (61 แห่ง)

Species	Regression coefficient*							P	Correct (%)
	K	PC-1	PC-2	PC-3	PC-4	PC-5	Impound		
<i>S. aureohirtum</i>	-0.002	-2.250	0.999	-	-	-	-	<0.001	75.4
<i>S. siamense "A"</i>	0.778	-	-	-1.089	-	-	-	<0.001	78.7
<i>S. angulistylum</i>	-1.569	1.078	-	-	-	-	-	0.001	82.0
<i>S. nakhonense</i>	-4.312	6.307	-5.183	-3.705	-2.109	-	-	<0.001	95.1

จากจำนวนแหล่งอาศัยของแมลงรินดดำที่สำรวจทั้งหมด 143 แหล่ง แบ่งเป็นที่อยู่ในพื้นที่ป่า 69 แหล่ง และในพื้นที่เกษตรกรรม 74 แหล่ง การวิเคราะห์ความแตกต่างของปัจจัยทางนิเวศวิทยาของแหล่งอาศัยของแมลงรินดดำทั้งสองกุ่มโดย Analysis of Variance (ANOVA) พบว่าปัจจัยทางนิเวศวิทยาส่วนใหญ่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (ตารางที่ 8) โดยแหล่งอาศัยในพื้นที่ป่าจะมีขนาดใหญ่กว่า แหล่งแรงกว่า และมีขนาดของ streambed particles ใหญ่กว่า แหล่งอาศัยที่อยู่ในพื้นที่การเกษตรมีค่าการนำไฟฟ้าและอุณหภูมิของน้ำสูงกว่า มีการปักคุณของเรือนยอด และพืชริมแม่น้ำอยกว่า ความหลากหลายของแมลงรินดดำในพื้นที่ป่า (2.91 ± 1.48) มีมากกว่าในแหล่งอาศัยในพื้นที่การเกษตร (2.13 ± 0.99) อย่างมีนัยสำคัญทางสถิติ ($t = 3.61, P < 0.001$) การวิเคราะห์ความแตกต่างของโครงสร้างสังคมของแมลงรินดดำในพื้นที่ป่าและพื้นที่การเกษตรโดย Analysis of Similarities (ANOSIM) พบว่ามีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($R = 0.343 P < 0.001$) การวิเคราะห์เพื่อหาปัจจัยที่มีผลต่อความแตกต่างระหว่างแหล่งอาศัยของแมลงรินดดำที่อยู่ในพื้นที่การเกษตรกับพื้นที่ป่าด้วย Discriminant function analysis (DFA) โดยใช้สเปชีส์เป็นปัจจัยที่ใช้ในการแบ่งแยก พบว่าแหล่งอาศัยส่วนใหญ่สามารถแบ่งแยกตามประเภท (พื้นที่ป่าหรือการเกษตร) ได้ถูกต้อง โดยร้อยละของจำนวนแหล่งอาศัยที่สามารถจัดจำแนกได้ถูกต้องมีค่า 74.1% แหล่งอาศัยที่มาจากพื้นที่ป่าสามารถจำแนกได้ถูกต้อง 76.6% และแหล่งอาศัยจากพื้นที่การเกษตรสามารถแบ่งแยกได้ถูกต้อง 72.2% (ตารางที่ 9) ค่า standardized canonical coefficient แสดงให้เห็นว่าแมลงรินดดำ *S. aureohirtum* *S. nakhonense* และ *S. trangense* เป็นสเปชีส์ที่มีความสำคัญที่สุดในการจำแนกแหล่งอาศัยระหว่างพื้นที่ป่าและการเกษตร

การวิเคราะห์ DFA โดยใช้ปัจจัยทางนิเวศวิทยาของแหล่งอาศัยในการจำแนก พบว่าแหล่งอาศัยส่วนใหญ่ (91.8%) สามารถจำแนกได้ถูกต้องตามประเภทของแหล่งอาศัย โดยแหล่งอาศัยที่เป็นพื้นที่ป่าสามารถจำแนกได้ถูกต้อง 88.9% และแหล่งอาศัยที่เป็นพื้นที่การเกษตรสามารถจำแนกได้ถูกต้อง 94.1% ค่า standardized canonical coefficient บ่งชี้ว่าขนาดของสำาระ อัตราการไหล การปรากฏของพืชริมน้ำ และค่าการนำไฟฟ้าเป็นปัจจัยที่สำคัญที่สุดที่แบ่งแยกแหล่งอาศัยในพื้นที่ป่ากับแหล่งอาศัยในพื้นที่การเกษตร

ตารางที่ 8 ค่าปัจจัยทางนิเวศวิทยาของแหล่งอาศัยในพื้นที่ป่าและพื้นที่การเกษตร และผลการวิเคราะห์ความแตกต่างของค่าปัจจัยทางนิเวศวิทยาของแหล่งอาศัยโดย Analysis of variance (ANOVA) และ Kruskal-Wallis tests

Variable	Forest		Agriculture		Test statistic	P
	Mean (\pm S.E.)	Range	Mean (\pm S.E.)	Range		
Width (m)	2.02 (0.51)	0.14 – 25.00	0.77 (0.09)	0.13 – 6.00	7.20 ^a	0.008
Depth (m)	0.06 (0.01)	0.01 – 0.23	0.07 (0.01)	0.01 – 0.33	1.32 ^a	0.253
Velocity (m/s)	0.72 (0.04)	0.21 – 1.60	0.62 (0.27)	0.23 – 1.40	4.69 ^a	0.032
Discharge (m^3/s)	0.17 (0.06)	0.0007 – 3.06	0.04 (0.01)	0.0003 – 0.28	5.63 ^a	0.019
Altitude (m)	407.82 (39.33)	132.00 – 1302.00	356.85 (20.69)	149.00 – 749.00	1.46 ^a	0.229
pH	6.76 (0.10)	5.50 – 8.89	6.60 (0.08)	5.03 – 8.49	1.47 ^a	0.228
Conductivity ($\mu S/cm$)	47.52 (9.02)	6.00 – 339.00	98.32 (15.76)	3.00 – 487.00	6.92 ^a	0.009
Temperature ($^{\circ}C$)	24.90 (0.41)	16.90 – 37.90	26.51 (0.37)	19.10 – 36.00	8.60 ^a	0.004
Streambed particle size	6 ^c	1-6	3 ^c	1-6	32.02 ^b	<0.001
Coverage	2 ^c	1-3	1 ^c	1-3	25.91 ^b	<0.001
Riparian vegetation	3 ^c	1-3	1 ^c	1-3	65.18 ^b	<0.001

^aF เป็นค่าทดสอบทางสถิติของ ANOVA

^bค่า Median ของประเภทสัดส่วนสำหรับ การปกรคลุมของเรือนยอด และ ประเภทของพืชริมแม่น้ำ

^cH เป็นค่าทดสอบทางสถิติสำหรับ Kruskal-Wallis test

ตารางที่ 9 ผลการวิเคราะห์ข้อมูลด้วย Discriminant function analysis (DFA) เพื่อตรวจสอบ
ปัจจัยที่มีผลต่อความแตกต่างของโครงสร้างสังคมและลักษณะทางนิเวศวิทยาของ
แหล่งอาศัยของแมลงรินดคำในพื้นที่ป่า และพื้นที่การเกษตร

Summary statistic		Discriminant variables		
% Correct (N)		Stream conditions	Species	
Forest (64)		88.9		76.6
Agriculture (79)		94.1		72.2
Total (143)		91.8		74.1
Standardized coefficient	Width	1.260	<i>S. aureohirtum</i>	-0.674
	Discharge	-1.105	<i>S. nakhonense</i>	0.517
	Riparian	1.038	<i>S. trangense</i>	0.430
	vegetation	-0.478	<i>S. asakaoae</i>	0.270
	Conductivity	0.427	<i>S. angulistylum</i>	0.247
	Depth			

*ค่า standardized coefficient แสดงเฉพาะ 5 ลำดับแรกที่มีค่าสัมบูรณ์สูงที่สุดเท่านั้น

4. อภิปราย และสรุปผลการศึกษา

4.1 ความหลากหลาย นิเวศวิทยา และการกระจายทางภูมิศาสตร์ ของแมลงรินด์ดำในภาคตะวันออกเฉียงเหนือของประเทศไทย

การศึกษาในภูมิภาคต่างๆของโลกพบว่าปัจจัยที่สำคัญที่สุดที่มีผลต่อการปรากฏ/ไม่ปรากฏของแมลงรินด์ดำในแหล่งอาศัย ได้แก่ ขนาดของแหล่งน้ำไหล ความเร็วของกระแสน้ำ และการมี water impoundment (Grillet and Barrera, 1997; McCreadie and Adler, 1998; Hamada and McCreadie, 1999; Hamada et al., 2002; Scheder and Waringer, 2002; McCreadie et al., 2004) ผลการศึกษานี้สอดคล้องกับการศึกษาในภูมิภาคอื่นๆ การปรากฏ/ไม่ปรากฏในแหล่งอาศัยของแมลงรินด์ดำที่พบกระจายอย่างกว้างขวาง 4 สปีชีส์ ได้แก่ *S. siamense* *S. aureohirtum* *S. angulistylum* และ *S. nakhonense* มีความสัมพันธ์อย่างมีนัยสำคัญกับขนาดของแหล่งน้ำไหล ความเร็วของกระแสน้ำ และพืชริมน้ำ (riparian vegetation) ความสอดคล้องของผลการศึกษาในแต่ละภูมิภาคแสดงให้เห็นว่าการปรากฏ/ไม่ปรากฏของแมลงรินด์ดำในแหล่งอาศัยเป็นปัจจัยเดียวกันสำหรับแมลงรินด์ดำทั่วโลก

ความหลากหลายของแมลงรินด์ดำในแหล่งอาศัยมีความสัมพันธ์อย่างมีนัยสำคัญทางสถิติกับแหล่งน้ำไหลที่มีขนาดใหญ่ ความเร็วของกระแสน้ำสูง วัสดุพื้นลำธารขนาดใหญ่ อุณหภูมิต่ำอยู่สูงจากระดับน้ำทะเลมาก และมีพืชริมน้ำ ผลการศึกษานี้สอดคล้องกับการศึกษาในภูมิภาคอื่นๆ เช่น การศึกษาในอเมริกาใต้ พบร่วมกับความหลากหลายของแมลงรินด์ดำมีความสัมพันธ์กับแหล่งอาศัยที่มีขนาดใหญ่ อุณหภูมิน้ำต่ำ กระแสน้ำไหลเร็ว และ วัสดุพื้นลำธารขนาดใหญ่ (Grillet and Barrera, 1997; Hamada et al., 2002) การศึกษาในยุโรปบ่งชี้ความหลากหลายของแมลงรินด์ดำมีความสัมพันธ์กับแหล่งอาศัยที่มีความเร็วของกระแสน้ำสูง และมีวัสดุพื้นลำธารขนาดใหญ่

ความหลากหลายของสปีชีส์โดยทั่วไปสัมพันธ์โดยตรงกับความหลากหลายของแหล่งอาศัยย่อย (microhabitat) (Ward, 1992) ลำธารที่มีขนาดใหญ่ น้ำไหลเร็ว และมีวัสดุพื้นลำธารขนาดใหญ่มีโอกาสทำให้เกิดแหล่งอาศัยย่อยที่หลากหลายภายในแหล่งน้ำไหล เนื่องจากมีความแปรผันของอัตราการไหลมากในลำธารขนาดใหญ่ ที่มีกระแสน้ำแรง และมีวัสดุพื้นลำธารขนาดใหญ่ เช่น การมีโขดหินขนาดใหญ่ในลำธาร จะทำให้เกิดความแปรผันของความเร็วของกระแสน้ำบริเวณโขดหิน ซึ่งเป็นแหล่งอาศัยย่อยที่แตกต่างกันสำหรับแมลงรินด์ดำแต่ละสปีชีส์ ดังนั้นแหล่งอาศัยลักษณะนี้จึงสามารถรับแมลงรินด์ดำได้หลากหลายสปีชีส์กว่าแหล่งอาศัยที่มีอัตราการไหลคงที่ เช่น ลำธารขนาดเล็ก ความเร็วของกระแสน้ำต่ำ เป็นต้น

การปรากฏของพืชริมน้ำ (riparian vegetation) พบร่วมกับการกระจายทางภูมิศาสตร์และความหลากหลายของแมลงรินด์ดำ การศึกษาในแมลงน้ำและสัตว์ไม่มีกระดูกสันหลังขนาดใหญ่ (macroinvertebrates) ที่อาศัยในแหล่งน้ำพบว่าพืชริมน้ำมีผลต่อการกระจายและความหลากหลาย (Sponseller et al., 2001; Subramanian et al., 2005; Dudgeon, 2006; Kasangaki et al., 2008) บทบาทของพืชริมน้ำต่อการกระจายทางภูมิศาสตร์และความหลากหลายของแมลงรินด์ดำ

ของแมลงรินดำมีรายงานโดย Lautenschläger and Kiel (2005) พบความสัมพันธ์ระหว่างการกระจายของสปีชีส์กับพืชริมน้ำในแมลงรินดำบางชนิดในยุโรป พืชริมน้ำช่วยป้องกันแสงแดดที่ส่องลงยังผิวน้ำ ทำให้อุณหภูมิของน้ำไม่สูงเกินไป ซึ่งจะมีผลต่อแมลงรินดำเนื่องจากตัวอ่อนของแมลงรินดำไม่สามารถทนต่ออุณหภูมิที่สูงได้ (Crosskey, 1990) ดังนั้นถ้าการที่มีพืชริมน้ำจึงมีความหลากหลายมากกว่าเนื่องจากมีอุณหภูมิที่ไม่สูงมาก นอกจากนี้รากและใบของพืชที่ร่วงลงในแหล่งน้ำยังเป็นแหล่งยึดเกาะ (substrate) สำหรับตัวอ่อนและตักษะของแมลงรินดำ ดังนั้นในถ้าการที่มีพืชริมน้ำอยู่จึงมีความหลากหลายของแหล่งอาศัยมากกว่าถ้าการที่ไม่มีพืชริมน้ำ ทำให้จำนวนสปีชีส์ที่อาศัยในแหล่งอาศัยมีมากกว่า ปัจจัยอื่นๆที่พอบว่ามีความสัมพันธ์กับความหลากหลายชนิดของแมลงรินดำ ได้แก่ ปริมาณน้ำฝน อุณหภูมิของน้ำ (Colbo and Moorhouse, 1979) และระยะห่างจากแหล่งน้ำ (Scheder and Waringer, 2002)

4.2 ผลกระทบของการทำเกษตรกรรมต่อคุณภาพทางกายภาพและเคมีของแหล่งอาศัย และโครงสร้างสังคมของแมลงรินดำ

การทำลายแหล่งอาศัยตามธรรมชาติจากกิจกรรมของมนุษย์เป็นปัจจัยที่สำคัญที่สุดที่มีผลกระทบต่อความหลากหลายทางชีวภาพทั่วโลก สำหรับระบบนิเวศแหล่งน้ำไหล (lotic ecosystem) การใช้ที่ดินเพื่อการเกษตรเป็นสาเหตุหลักที่มีผลกระทบต่อคุณภาพของแหล่งน้ำ ซึ่งส่งผลต่อเนื่องไปยังความหลากหลายชนิดและโครงสร้างสังคมของสิ่งมีชีวิตที่อาศัยในระบบนิเวศ ดังกล่าว (Allan and Flecker 1993; Allan, 2004) ผลการศึกษาครั้งนี้แสดงให้เห็นถึงผลกระทบของการทำเกษตรกรรมต่อคุณภาพของแหล่งน้ำ ความหลากหลายชนิดและโครงสร้างสังคมของแมลงรินดำในประเทศไทย ผลการวิเคราะห์ CCA แสดงให้เห็นความแตกต่างของปัจจัยทางนิเวศวิทยาของแหล่งอาศัยของแมลงรินดำในพื้นที่ป่าและพื้นที่การเกษตร แหล่งอาศัยที่อยู่ในพื้นที่เกษตรกรรมมีอุณหภูมิของน้ำสูงกว่า ค่าการนำไฟฟ้าของน้ำสูงกว่า ค่าเฉลี่ยของค่าการนำไฟฟ้าของน้ำในพื้นที่การเกษตรมากกว่าแหล่งอาศัยในพื้นที่ป่ามากกว่า 2 เท่า นอกจากนี้แหล่งอาศัยพื้นที่การเกษตรยังมีพืชริมน้ำน้อยกว่า ผลการศึกษานี้สอดคล้องกับการศึกษาอื่นๆ เช่น Kasangaki et al. (2008) ศึกษาพบว่าถ้าการในพื้นที่การเกษตรในประเทศไทยกวนด้วยค่าการนำไฟฟ้ามากกว่าถ้าการในพื้นที่ป่าหลายเท่า นอกเหนือจากปัจจัยด้านเคมี ปัจจัยด้านกายภาพของแหล่งอาศัยยังมีความแตกต่างอย่างมีนัยสำคัญ แหล่งอาศัยที่อยู่ในพื้นที่เกษตรกรรมมีพืชริมน้ำน้อยกว่าแหล่งอาศัยในพื้นที่ป่า การถางป่าเพื่อใช้เป็นที่ดินสำหรับการเกษตร โดยเฉพาะอย่างยิ่งพืชริมน้ำมีผลกระทบอย่างมากต่อความหลากหลายชนิดและโครงสร้างชุมชนของแมลงรินดำ รวมถึงสิ่งมีชีวิตอื่นๆที่อาศัยในแหล่งน้ำนั้น การทำลายพืชริมน้ำทำให้อุณหภูมิของน้ำเพิ่มขึ้นเนื่องจากพืชริมน้ำช่วยป้องกันแสงแดด ดังนั้นสปีชีส์ที่ไม่สามารถทนต่ออุณหภูมิที่สูงขึ้นจะสูญพันธุ์จากแหล่งอาศัยนั้น ซึ่งจะมีผลให้ความหลากหลายชนิดในแหล่งอาศัยนั้นลดลง (Hamada et al., 2002; Allan, 2004)

การทำทรายพืชริมฝั่นนอกจากจะส่งผลต่ออุณหภูมิของแหล่งน้ำ ยังมีผลกระทบต่อการพัฒนาของหน้าดิน ซึ่งจะทำให้เกิดการชะล้างสารอาหารต่างๆ ลงสู่แหล่งน้ำ ผลกระทบร่วมกับการเพิ่มของปริมาณแสงจะทำให้สาหร่ายในแหล่งน้ำเจริญเติบโตได้อย่างรวดเร็ว การเพิ่มขึ้นของสาหร่ายในแหล่งน้ำทำให้ความหลากหลายของแมลงรินด์ลดลง การศึกษาในยุโรปพบว่าสาหร่ายมีผลกระทบเชิงลบต่อตัวอ่อนของแมลงรินด์ (Zhang et al., 1998)

การทำทรายพืชริมฝั่นในพื้นที่เกษตรกรรมเป็นปัจจัยที่สำคัญที่ส่งผลต่อความหลากหลายของแมลงรินด์ การศึกษาในหลายภูมิภาคของโลกแสดงให้เห็นถึงความสำคัญของพืชริมฝั่นต่อความหลากหลายของสัตว์ไม่มีกระดูกสันหลังในแหล่งน้ำ เช่น Subramanian et al. (2005) พบว่าความหลากหลายของสัตว์ไม่มีกระดูกสันหลังในพื้นที่ที่ไม่มีพืชริมฝั่นน้อยกว่าในพื้นที่ที่มีพืชริมฝั่นใน Western Ghats ประเทศอินเดีย Dudgeon (2006) พบว่าลักษณะในพื้นที่ที่ถูกรบกวนจากมนุษย์ เช่น ในพื้นที่การเกษตร ในเกาะสูลาเวสี (Sulawesi) ประเทศอินโดนีเซีย มีความหลากหลายของสัตว์ไม่มีกระดูกสันหลังน้อยกว่าในพื้นที่ที่ไม่ถูกรบกวน Lorion และ Kennedy (2008) พบว่าลักษณะที่มีพืชริมฝั่นน้ำมีความหลากหลายของสัตว์ไม่มีกระดูกสันหลังหน้าดิน (benthic macroinvertebrates) มากกว่าพื้นที่ที่ไม่มีพืชริมฝั่น ในลักษณะของประเทศคอสตาริกา (Costa Rica)

นอกจากความแตกต่างของความหลากหลายนิด ลักษณะในพื้นที่ป่าและพื้นที่เกษตรกรรม การวิเคราะห์โดย ANOSIM พบว่ามีความแตกต่างของโครงสร้างสังคม เนื่องจากพื้นที่การเกษตร กับพื้นที่ป่าไม่มีแนวโน้มทางภูมิศาสตร์ที่ส่งผลต่อการอพยพระหว่างแหล่งอาศัย ดังนั้นความแตกต่างของโครงสร้างสังคมของแมลงรินด์ดำเนิน 2 พื้นที่จึงน่าจะมีสาเหตุหลักจากความแตกต่างทางนิเวศวิทยาของแหล่งอาศัย (McCreadie and Adler, 2006) แมลงรินด์ที่พบได้มากในแหล่งอาศัยในพื้นที่ป่า ได้แก่ *S. nakhonense* *S. asakoae* *S. trangense* และ *S. angulistylum* ขณะที่สปีชีส์ที่พบมากในพื้นที่เกษตรกรรม ได้แก่ *S. aureohirtum* จากการวิเคราะห์ DFA พบว่า *S. aureohirtum* เป็นสปีชีส์ที่มีความสำคัญที่สุดในการแบ่งแยกแหล่งอาศัยระหว่างพื้นที่การเกษตร กับพื้นที่ป่า การวิเคราะห์ CCA พบว่าแมลงรินด์ *S. aureohirtum* อยู่ในแหล่งอาศัยที่มีค่าการนำไฟฟ้า และอุณหภูมิของน้ำสูง นอกจากนี้ยังเป็นแหล่งอาศัยเปิด ไม่มีการปักคุกของเรือนยอด ของพืชริมฝั่น ซึ่งเป็นคุณสมบัติของแหล่งอาศัยในพื้นที่การเกษตร แมลงรินด์ *S. aureohirtum* เป็นสปีชีส์ที่มีพิสัยของค่าอุณหภูมิ และค่าการนำไฟฟ้าสูงที่สุด โดยอุณหภูมิของแหล่งอาศัยที่พบ แมลงรินด์ชนิดนี้อยู่ระหว่าง $16.9^{\circ}\text{C} - 37.9^{\circ}\text{C}$ และค่าการนำไฟฟ้าอยู่ระหว่าง $3 \mu\text{Scm}^{-1} - 487 \mu\text{Scm}^{-1}$ เนื่องจากแมลงรินด์สามารถสืบสานการทดแทนต่อสภาพแวดล้อมที่แตกต่างกันได้อย่างมาก ดังนั้นการเปลี่ยนแปลงของสภาพแวดล้อมจากการทำเกษตรกรรม ส่งผลทำให้สปีชีส์สูญพันธุ์ไปจากแหล่งอาศัย ขณะที่ *S. aureohirtum* ยังคงอยู่ได้ จากจำนวนแหล่งอาศัยที่สำรวจในพื้นที่เกษตรกรรม พบว่า 27% ของแหล่งอาศัยพบ *S. aureohirtum* เพียงสปีชีส์เดียวเท่านั้น ผลการศึกษานี้คล้ายคลึงกับการศึกษาในประเทศบรasil ที่พบว่า *S. perflavum* เป็นแมลงรินด์ที่ทน

ต่อการเปลี่ยนแปลงของแหล่งอาชัยที่เกิดจากกิจกรรมของมนุษย์ (Hamada and Adler, 1999; Hamada et al., 2002)

โดยสรุปการศึกษานิเวศวิทยาและความหลากหลายนิดของแมลงรินเดินภาคตะวันออกเฉียงเหนือของประเทศไทย ได้ผลสอดคล้องกับการศึกษาในภูมิภาคอื่นๆ ของโลก โดยปัจจัยที่มีผลมากที่สุดต่อการปรากรถ/ไม่ปรากรถของแมลงรินเดินแต่ละสปีชีส์ในแหล่งอาชัย ได้แก่ ขนาดของแหล่งน้ำที่เหลือ และความเร็วของกระแสน้ำ การเปรียบเทียบสภาพนิเวศวิทยา ความหลากหลายนิด และโครงสร้างสังคมของแมลงรินเดินพื้นที่ป่า และพื้นที่การเกษตร แสดงให้เห็นว่า การเปลี่ยนแปลงสภาพแวดล้อมจากการการทำที่ดินมนุษย์มีผลต่อคุณภาพของแหล่งน้ำ ซึ่งส่งผลกระทบต่อความหลากหลายนิดและโครงสร้างสังคมของแมลงรินเดิน การศึกษานี้ยังแสดงให้เห็นว่า แมลงรินเดินแต่ละสปีชีส์มีความสามารถในการทนต่อสภาพแวดล้อมแตกต่างกันได้ ดังนั้นจึงอาจใช้ความแตกต่างของสปีชีส์ และโครงสร้างสังคมของแมลงรินเดินเป็นดัชนีบ่งชี้การเปลี่ยนแปลงของสภาพแวดล้อม

ເອກສາຮ້ອງອີງ

ເລື່ອງວ່າ ກຸງຄະດິລາ ຂໍ້ຜົນຮົງ ບຸນູ້ເຂີມທອງ ແລະ ສຸວະກຳ ພູ້ທະເນາ (2544) ຄວາມໜາກທລາຍແລະ ພັນຍາຄາສຕ່ວົງປະກາດຂອງສປີ່ເສົ້າຂອງວິນດຳໃນປະເທດໄທຢ ໃນ: ຮາຍງານກາງວິຈີຍໂຄງການ BRT 2544, ວິສຸທົ່ງ ໄປໄໝ ແລະ ຮັງສິມາ ຄຸ້ມໂຄມ (ບຣນາທິກາຣ) ຫ້າ 286 – 311. ຈັດພິມພ ໂດຍໂຄງການ BRT ບຣິ່ນທຈິຣວັນເອັກເພຣສ ຈຳກັດ ກຽມເທິງ

Adler PH, Currie DC and Wood DM (2004) *The Black Flies (Simuliidae) of North America*. Cornell University Press, USA.

Adler P and Kim KC (1984) Ecological characterization of the sibling species, IIIL-1 and IS-7, in the *Simulium vittatum* complex (Diptera: Simuliidae). *Can. J. Zool.* 62: 1308-1315.

Adler PH and McCreadie JW (1997). The hidden ecology of black flies; sibling species and ecological scale. *American Entomol*, Fall, 153-161.

Allan DJ (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. *Ann. Rev. Ecol. Syst.* 35: 257-284.

Allan DJ and Flecker AS (1993) Biodiversity conservation in running waters. *BioScience* 43: 32-43.

Boakye DA, Back C, Fiasorgbor GK, Sib APP, and Coulibaly Y (1998) Sibling species distributions of the *Simulium damnosum* complex in the West African Onchocerciasis Control Programme area during the decade 1984-93, following intensive larviciding since 1974. *Med. Vet. Entomol.* 12: 345-358.

Clarke KR and Warwick RM (1994) *Change in Marine Communities: An Approach to Statistical Analysis and Interpretation*. National Environment Research Council, Plymouth, U.K.

Colbo MH and Moorhouse DE (1979) The ecology of preimaginal Simuliidae (Diptera) in south-east Queensland, Australia. *Hydrobiologia* 63-79.

Crosskey RW (1990) *The natural history of blackflies*. John Wiley and Sons, London.

Cummins KW (1987) The functional role of black flies in stream ecosystems. In Kim K C and Merrit RW (eds), *Black Flies: Ecology, population management and annotated world list*. The Pennsylvania State University, University Park: 1-10.

Dudgeon D (2006) The impacts of human disturbance on stream benthic invertebrates and their drift in North Sulawesi, Indonesia. *Freshwater Biol.* 51: 1710-1729.

Feld CK, Kiel E and Lautenschlager M (2002) The indication of morphological degradation of streams and rivers using Simuliidae. *Limnologica* 32: 273-288.

Fukuda M, Choochote W, Bain O, Aoki C and Takaoka H (2003) Natural infections with filarial larvae in two species of black flies (Diptera: Simuliidae) in northern Thailand. *Jpn. J. Trop. Med. Hyg.* 31:99-102.

Grillet ME and Barrera R (1997) Spatial and temporal abundance, substrate partitioning and species co-occurrence in a guild of Neotropical blackflies (Diptera: Simuliidae). *Hydrobiologia* 345: 197-208.

Hamada N and Adler PH (1999) Cytotaxonomy of four species in the *Simulium perflavum* species group (Diptera: Simuliidae) from Brazilian Amazonia. *Syst. Entomol.* 24: 273-288.

Hamada N and McCreadie JM (1999) Environmental factors associated with the distribution of *Simulium perflavum* (Diptera: Simuliidae) among streams in Brazilian Amazonia. *Hydrobiologia* 397: 71-78.

Hamada N, McCreadie JW and Adler PH (2002) Species richness and spatial distribution of blackflies (Diptera: Simuliidae) in streams of Central Amazonia, Brazil. *Freshwater Biol.* 47: 31-40.

Hamer Q, Harper DAT and Ryan P (2007) *PAST-PAleaeontological Statistics*, Version 1.73. <http://folk.unio.no/ohammer/past/>.

Hosmer DW and Lemeshow S (1989) *Applied Logistic Regression*. Wiley Interscience, Chichester, UK.

Joy DA and Conn JE (2001) Molecular and morphological phylogenetic analysis of an insular radiation in Pacific black flies (*Simulium*). *Syst. Biol.* 50: 18-38.

Kasangaki A, Chapman LJ and Balirwa J (2008) Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. *Freshwater Biol.* 53: 681-697.

Kettle DS (1990) *Medical and Veterinary Entomology*. CAP International UK.

Kuvangkadilok C, Boonkemtong C and Phayuhasena S (1999) Distribution of the larvae of blackflies (Diptera: Simuliidae) at Doi Inthanon National Park, northern Thailand. *Southeast Asian J.Trop.Med.Public Health.* 30(2):328-337

Kuvangkadilok C and Takaoka H (2000) Taxonomic notes on Simuliidae (Diptera) from Thailand: description of a new species and new distributional records of nine known species. *Jpn. J. Trop. Med. Hyg.*, 28: 167-175.

Lautenschläger M and Kiel E (2005) Assessing morphological degradation in running waters using blackfly communities (Diptera, Simuliidae): Can habitat quality be predicted from land use? *Limnologica* 35: 262-273.

Lorion CM and Kennedy BP (2008) Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. *Freshwater Biol.* 54: 165-180.

Malmqvist B, Zhang Y, and Adler PH (1999) Diversity, distribution and larval habitats of north Swedish blackflies (Diptera: Simuliidae). *Freshwater Biol.* 42: 301-314.

McCall PJ, Cheke RA, Wilson MD, Post RJ, Flook PK, Mank R, Sima A, and Mas J (1998) Distribution of the *Simulium damnosum* complex on Bioko island, Equatorial Guinea, and the potential for onchocerciasis elimination by vector eradication. *Med. Vet. Entomol.* 12: 267-275.

McCreadie JW and Adler PH (1998) Scale, time, space, and predictability: species distributions of preimaginal black flies (Diptera: Simuliidae). *Oecologia* 114: 79-92.

McCreadie, J. W. and Adler, P. H. (2006) Ecoregions as predictors of lotic assemblages of blackflies (Diptera: Simuliidae). *Ecography* 29: 603-613.

McCreadie JW, Adler PH, Grillet ME and Hamada N (2006) Sampling statistics in understanding distributions of black fly larvae (Diptera: Simuliidae). *Acta Entomol. serbica* Supplement: 89-96

McCreadie JW, Adler PH and Hamada N (2005) Patterns of species richness for blackflies (Diptera: Simuliidae) in the Nearctic and Neotropical regions. *Ecol. Entomol.* 30: 201-209.

McCreadie JW, Hamada N and Grillet ME (2004) Spatial-temporal distribution of preimaginal blackflies in Neotropical streams. *Hydrobiologia* 513: 183-196.

McCune B and Mefford MJ (2006) *PC-ORD. Multivariate Analysis of Ecological Data*. Version 5.14 MjM Software, Gleneden Beach, Oregon, U.S.A.

Mead DG, Maré CJ and Ramberg FB (1999) Bite transmission of Vesicular stomatitis virus (New Jersey serotype) to laboratory mice by *Simulium vittatum* (Diptera: Simuliidae). *J. Med. Entomol.* 36(4): 410-413

Papp L, Merz B and Földvári M (2006) Diptera of Thailand. A summary of the families and genera with references to the species representations. *Acta Zool. Acad. Scien. Hungaricae*. 52: 97-268.

Phasuk J, Champaisaeng J, Adler PH and Courtney GW (2005) Chromosomal and morphological taxonomy of larvae of *Simulium* (*Gomphostilbia*) (Diptera: Simuliidae) in Thailand. *Zootaxa* 1052: 49-60.

Richards F, Hopkins D and Cupp ED (2000) Programmatic goals and approaches to onchocerciasis. *The Lancet*. 335: 1663-1664

Rothfels KH (1979) Cytotaxonomy of blackflies (Simuliidae). *Ann. Rev. Ecol. Syst.*.. 24: 507-539.

Rothfels KH (1989) Speciation in blackflies. *Genome* 32: 500-509.

Rothfels KH and Dunbar RW (1953) The salivary gland chromosomes of black fly *Simulium vittatum* Zett. *Can. J. Zool.* 31: 226–241.

Scheder C and Waringer JA (2002) Distribution patterns and habitat characterization of Simuliidae (Insecta: Diptera) in a low-order sandstone stream (Weidlingbach, Lower Austria). *Limnologica* 32: 236-247.

Sponseller RA, Benfield EF and Valett HM (2001) Relationships between land use, spatial scale and stream macroinvertebrate communities. *Freshwater Biol.* 46: 1409-1424.

Subramanian KA, Sivaramakrishnan KG and Gadgil M (2005) Impact of riparian land use on stream insects of Kudremukh National Park, Karnataka state, India. *J. Insect Science* 5: 1-10.

Takaoka H (1979) The blackflies of Taiwan (Diptera: Simuliidae). *Pac. Insect.* 20: 365-403.

Takaoka H and Choochote W (2004) A list of and keys to black flies (Diptera: Simuliidae) in Thailand. *Trop. Med. Health*, 32: 189-197.

Takaoka H and Choochote W (2005) A new subgenus and a new species of *Simulium* s. l. (Diptera: Simuliidae) from Thailand. *Med. Entomol. Zool.*, 56: 3-41.

Takaoka H, Choochote W, Aoki C, Fukuda M and Bain M (2003) Black flies (Diptera: Simuliidae) attracted to humans and water buffalo and natural infections with filarial larvae, probably *Onchocerca* sp. in northern Thailand. *Parasite*. 10: 3-8.

Takaoka H and Davies DM (1995) *The Blackflies (Diptera:Simuliidae) of West Malaysia*. Kyushu University Press, Fukuoka. 175 pp.

Takaoka H and Saito K (1996) A new species and new records of black flies (Diptera: Simuliidae) from Thailand. *Jpn. J. Trop. Med. Hyg.* 27: 189-194.

Takaoka, H. and Suzuki, H. (1984) The black flies (Diptera: Simuliidae) from Thailand. *Japan. J. Sanit. Zool.* 35: 7-45.

Ward JV (1992) *Aquatic insect ecology. 1. Biology and habitat*. Wiley, New York, pp 117–168.

Zhang Y and Malmqvist B (1996) Relationships between labral fan morphology, body size and habitat in north Swedish blackfly larvae (Diptera: Simuliidae). *Biol. J. Linn. Soc.* 59: 261-280.

Zhang Y, Malmqvist B and Englund G (1998) Ecological processes affecting

community structure of blackfly larvae in regulated and unregulated rivers: a regional study. *J. Applied Ecol.* 35: 673-686.

Output จากโครงการวิจัย

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

ผลจากการดำเนินโครงการวิจัยเรื่อง ความหลากหลายและนิเวศวิทยาของแมลงริ้นดำในภาคตะวันออกเฉียงเหนือของประเทศไทย สามารถตีพิมพ์ผลงานวิจัยในวารสารวิชาการนานาชาติ จำนวน 3 เรื่อง ได้แก่

1. **Pramual, P.** and Kuvangkadilok, C. (2009). Agricultural land use and black fly (Diptera, Simuliidae) species richness and species assemblages in tropical streams, Northeastern Thailand. *Hydrobiologia*, 625: 173-184
2. **Pramual, P.**, Wongpakam, K. and Kuvangkadilok, C. (2008). Cytogenetics of the black fly *Simulium aureohirtum* Brunetti from Thailand. *Cytologia*, 73(3): 293-304
3. **Pramual, P.** and Tangkawanit, U. (2008). A new species of *Simulium* (Gomphostilbia) (Diptera: Simuliidae) from northeastern Thailand. *Medical Entomology and Zoology*, 59: 297-303

2. การนำผลงานวิจัยไปใช้ประโยชน์

ผลจากการดำเนินงานในโครงการนี้สามารถนำไปใช้ประโยชน์ในเชิงวิชาการ ได้แก่ การพัฒนาการเรียนการสอน โดยนำองค์ความรู้จากการวิจัยไปใช้ในการเรียนการสอนวิชา วิวัฒนาการ นอกจากนี้ยังสามารถสร้างนักวิจัยรุ่นใหม่ จำนวน 6 คน ซึ่งเป็นนิสิตระดับปริญญาตรี สาขาวิชาวิทยา ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม ซึ่งทำโครงการงานปัฒนาพิเศษทางชีววิทยา เรื่อง ความแปรผันทางพันธุกรรมและนิเวศวิทยาของแมลงรืนด้า *Simulium siamense*

3. การนำเสนอผลงานในที่ประชุมวิชาการ

ผลงานวิจัยจากโครงการได้นำเสนอในที่ประชุมวิชาการ 1 เรื่อง ได้แก่

1. Pramual, P. and Kuvangkadilok, C. (2008) Species diversity and ecology of the black fly (Diptera: Simuliidae) in northeastern Thailand. การประชุมวิชาการนักวิจัยรุ่นใหม่พนเมืองวิจัยอาชญากรรม ครั้งที่ 8 16 – 18 ตุลาคม 2551 โรงแรมอโอลิเดย์ อินน์ รีสอร์ท รีเจนท์ บีช ชะอำ จังหวัดเพชรบุรี

ภาคผนวก

Reprints ผลงานวิจัยที่ตีพิมพ์เผยแพร่ในวารสารวิชาการนานาชาติ 3 เรื่อง ได้แก่

1. **Pramual, P.** and Kuvangkadilok, C. (2009). Agricultural land use and black fly (Diptera, Simuliidae) species richness and species assemblages in tropical streams, Northeastern Thailand. *Hydrobiologia*, 625: 173-184
2. **Pramual, P.**, Wongpakam, K. and Kuvangkadilok, C. (2008). Cytogenetics of the black fly *Simulium aureohirtum* Brunetti from Thailand. *Cytologia*, 73(3): 293-304
3. **Pramual, P.** and Tangkawanit, U. (2008). A new species of *Simulium* (Gomphostilbia) (Diptera: Simuliidae) from northeastern Thailand. *Medical Entomology and Zoology*, 59: 297-303

Agricultural land use and black fly (Diptera, Simuliidae) species richness and species assemblages in tropical streams, Northeastern Thailand

Pairot Pramual · Chaliow Kuvangkadilok

Received: 3 October 2008 / Revised: 29 December 2008 / Accepted: 2 January 2009 / Published online: 17 January 2009
© Springer Science+Business Media B.V. 2009

Abstract Habitat degradation through agricultural land use is the major factor threatening lotic ecosystems. Although black flies are major components of these ecosystems, the impact of agricultural land use on species diversity and species assemblages has been largely ignored in tropical streams of the Oriental region. The objectives of this study are to examine patterns of species distribution and species richness and to compare black fly species richness and species assemblages in forest and agricultural streams in Thailand. A total of 143 collections were made from 70 stream sites between June 2007 and May 2008. Whereas 19 black fly species found in these collections were all found in forest sites, only 13 species were found in agricultural sites. High species richness was associated with larger, faster, and cooler streams with larger streambed particles and the presence of riparian trees. Logistic regression analyses revealed that stream size, velocity, and riparian vegetation are among the most important factors determining patterns of spatial

distribution. The results are largely consistent with studies in other zoogeographic regions, suggesting the existence of general rules for black fly species distributions. Comparisons of the physicochemical conditions between forest and agricultural streams indicated that streams in agricultural areas are warmer, with higher conductivity and fewer riparian trees. Species richness was significantly higher in forest than in agricultural streams ($t = 3.61, P < 0.001$). Streams in forest areas were predominantly occupied by *S. siamense* (73%) but other species were also found at a relatively high frequency (>20%) of the sampling sites. In contrast, streams in agricultural areas were predominantly occupied by *S. aureohirtum* (>80%) among the sole black fly species at 27% of the sites. The results indicate that agricultural land use has a significantly detrimental impact on black fly diversity and species assemblages.

Keywords Black fly · Species richness · Species assemblage · Simuliidae · Riparian forest

Handling editor: D. Dudgeon

P. Pramual (✉)
Department of Biology, Faculty of Science,
Mahasarakham University, Kantharawichai District,
Maha Sarakham 44150, Thailand
e-mail: paiprot.p@msu.ac.th

C. Kuvangkadilok
Department of Biology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand

Introduction

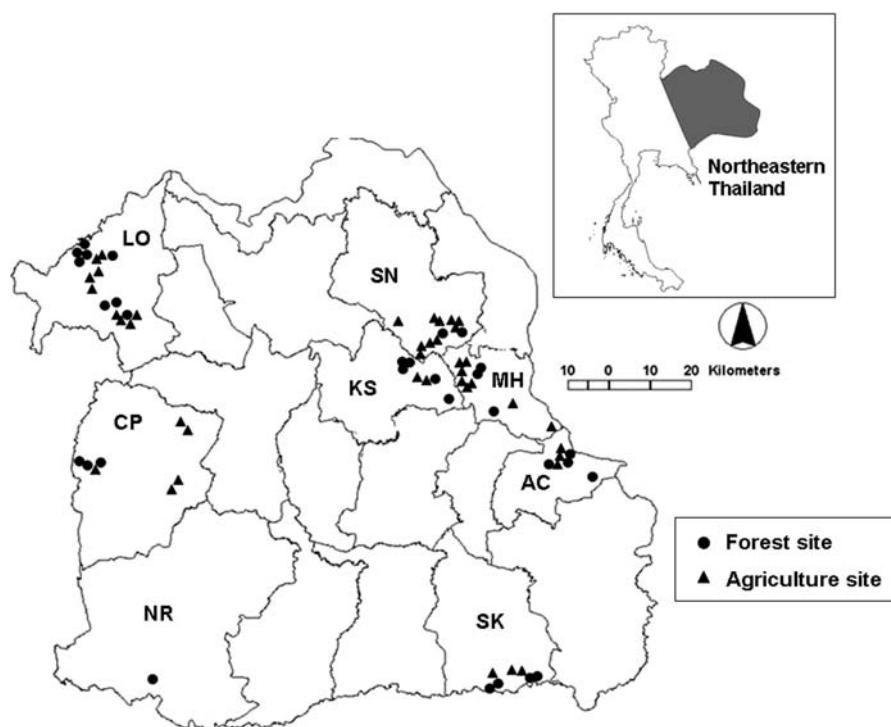
Habitat degradation due to human activity is the major factor threatening biodiversity. For lotic ecosystems, disturbance from agriculture is one of the most important global issues concerning biodiversity (Matson et al., 1997). Human disturbance for

agricultural purposes could have several negative impacts on lotic ecosystems (Allan & Flecker, 1993; Dudgeon, 2000; Allan, 2004). Despite rapid habitat destruction as a result of agriculture and urbanization, knowledge of both the basic ecology and the impact of habitat degradation on lotic ecosystems is still rare in the Oriental region (Dudgeon, 2000).

Black flies are important components of the stream ecosystem. They are usually present as a dominant component of the stream macroinvertebrates (Cummins, 1987). Knowledge of the parameters affecting the spatial distributions of preimaginal black flies is largely from temperate regions (McCreadie & Adler, 1998, 2006; McCreadie et al., 2005) and the tropical region of South America (Grillet & Barrera, 1997; Hamada & McCreadie, 1999; Hamada et al., 2002; McCreadie et al., 2004). There has been some ecological characterization of tropical streams in the Oriental region, mostly associated with the description of new black fly species (e.g. Takaoka & Choochote, 2005), but this is limited. The study of the ecology of black flies in tropical streams of the Oriental region has been largely untouched to date due to inadequate taxonomic information. However, a rapid growth in taxonomic knowledge of black fly, both morphological (e.g. Takaoka & Choochote, 2004) and cytological in Thailand (Phasuk et al., 2005; Kuvangkadilok et al., 2008; Tangkawanit et al., 2009), now allows us to gain an insight into black fly ecology in this region.

Several factors influence preimaginal black fly species distributions (Crosskey, 1990; Adler et al., 2004). Physicochemical factors such as stream size, velocity, pH, conductivity, water temperature, altitude, riparian forest, and presence of impoundments (Hamada & McCreadie, 1999; Hamada et al., 2002; Scheder & Waringer, 2002; McCreadie et al., 2004; Illéšová et al., 2008) are associated with black fly distribution. Among these factors, stream size, velocity, and presence of water impoundments play particularly an important role. In addition to individual species' distributions, species richness and species assemblage are also affected by physicochemical factors of the stream (McCreadie et al., 2005; McCreadie & Adler, 2006). Recent studies indicate that black fly communities are also impacted by human disturbance (e.g. Zhang et al., 1998; Feld et al., 2002; Illéšová et al., 2008). Streams change as a result of urbanization and agricultural land use can

have profound effects on community structure and the diversity of black flies (Adler et al., 2004). Thus, changes in black fly community structure could be used as an indicator of habitat degradation (Adler et al., 2004; Lautenschläger & Kiel, 2005).


In this study, we investigate species diversity and the ecological conditions of the habitat of black flies in tropical streams in Northeastern Thailand. We also compare physicochemical parameters of the streams in forest and agricultural areas and address three questions: (i) Does the spatial distribution of black flies in tropical streams of the Oriental region resemble that of other regions? (ii) Do physicochemical conditions of streams in forest and agricultural areas differ? and (iii) Do the black fly fauna in forest and agricultural streams differ?

Materials and methods

Study area and black fly sampling and identification

The study area is located in the Northeastern Thailand (Fig. 1). Most of the land in this region is used for agriculture. The major land uses are the cultivation of rice, sugar cane, cassava, and rubber trees. There are patches of forest, mostly in protected areas. Samples were collected throughout Northeast Thailand, which covers more than 168,000 km². Sampling sites were selected in both forest and agricultural areas based on accessibility. A total of 143 black fly collections were made from 70 stream sites in three seasons, wet (61 sites sampling June–October), cold (50 sites sampling November–February) and dry (32 sites sampling March–May). Thirty-one of these sites were sampled in all the above three seasons, and collections were made at the remaining 49 sites in one or two seasons due to lack of water. Larvae and pupae were collected by hand from the substrates (such as leaves or trailing grass), using fine forceps. Previous studies have demonstrated that the samples collected by this sampling procedure are representative of local species occurrence (McCreadie & Colbo, 1991; McCreadie et al., 2004). Larval samples were fixed in Carnoy' solution (3:1, 95% ethanol/acetic acid). Fixative was changed twice within 1 h and again after 24 h.

Fig. 1 Map showing the approximate locations of the seventy sampling sites and (inset) map of Thailand showing the study area (shaded). *AC* Amnat Chareon, *CP* Chaiyaphum, *KS* Kalasin, *LO* Loei, *MH* Mukdahan, *NR* Nakhon Ratchasima, *SK* Si Sa Ket, *SN* Sakon Nakhon

Stream variables, found useful as predictors of species distribution in previous studies (McCreadie & Adler, 1998; Hamada & McCreadie, 1999; McCreadie et al., 2004, 2006), were measured. These variables are stream width, depth, velocity, stream discharge, pH, conductivity, altitude, dominant streambed particle size, canopy cover, and riparian vegetation. Methods of variable measurement and classification of streambed particle and riparian vegetation were adopted according to those of McCreadie et al. (2006).

Preimaginal black flies were identified using both morphology and cytology. For morphological identification, the keys and descriptions of black flies in Thailand were used (e.g., Takaoka & Suzuki, 1984; Takaoka & Choochote, 2004). Species that are morphologically similar or previously reported to be composed of several cytoforms were identified cytologically. Salivary gland polytene chromosomes were prepared according to the method of Rothfels & Dunbar (1953). Voucher specimens have been deposited in the Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand.

Data analysis

Presence/absence of a species was expressed on a binary scale (0 = species absent, 1 = species present) as in previous studies (e.g. Hamada & McCreadie, 1999; McCreadie et al., 2004). To avoid the problem of seasonal variation, only data from the rainy season (61 sites) were used for spatial distribution analysis. Because stream variables are often inter-correlated, principal components analysis (PCA) was used to reduce the number of variables into groups of independent components. Stream variables not normally distributed were subjected to \log_{10} transformation prior to entering into PCA. The PCs with eigenvalues greater than 1.0 were retained as variables. To interpret PCs, Spearman rank correlations were used to detect relationships between principal component and the stream variable (McCreadie et al., 2006) using a significance level of $P \leq 0.01$. Forward logistic regression analysis was used to examine the relationship between spatial distributions and the PCs. The presence/absence of a water impoundment was also entered into the regression analysis. Significance of the predictor was assessed using maximum likelihood

estimation (Hosmer & Lemeshow, 1989). The use of species that are present at a frequency lower than 20% results in lack of power of the test statistic due to a large number of zero values (McCreadie et al., 2005), and hence, only species that occurred at more than 20% of the sampling sites were used for regression analysis.

Linear regression was used to test the relationship between species richness (i.e., number of species in each sampling site) and the physicochemical parameters of the sampling sites (i.e., PC score). Previous studies suggest that for species richness analysis, both spatial and temporal data need to be taken into account (McCreadie et al., 2005); thus all collections (143 sites) were subjected to PCA, and the PC scores were used for regression analysis.

Species assemblages were examined using the combined data from pooling the samples from the three seasons. Differences in species assemblages and environmental conditions between forest and agricultural streams were tested using analysis of similarities (ANOSIM) (Clarke & Warwick, 1994). ANOSIM analysis was implemented using PAST version 1.81 (Hammer et al., 2007). Discriminant function analysis

(DFA) was used to determine the factor that most significantly contributed to differentiation of streams in forest and agricultural areas. Standardized coefficients from the first discriminant function were used to indicate the most important variable (or species) that contributed to separation of the streams. Student's *t*-test was used to determine the differentiation of species richness between forest and agricultural streams. Canonical correspondence analysis (CCA) was used to examine the relationship between environmental variables and species assemblages. CCA was analyzed using the combined data set (143 sites). The CCA was carried out using the program PCORD (version 5.14) (McCune & Mefford, 2006).

Results

Black fly species richness and species assemblages

A total of 19 black fly species were found in 143 collections (Table 1), representing about 26% of the

Table 1 Frequency of black fly species in Northeastern Thailand during June 2007–April 2008

Species	% Occurrence (N)		
	Forest (64)	Agriculture (79)	Total (143)
<i>Simulium angulistylum</i> Takaoka & Davies	21.9	5.1	12.6
<i>S. asakoe</i> Takaoka & Davies	21.9	13.9	17.5
<i>S. aureohirtum</i> Brunetti	40.6	82.3	63.6
<i>S. chainarongi</i> Kuvangkadilok & Takaoka	4.7	2.5	3.5
<i>S. decuplum</i> Takaoka & Davies	4.7	0	2.1
<i>S. fenestratum</i> Edwards	12.5	11.4	11.9
<i>S. feuerborni</i> Edwards	4.7	0	2.1
<i>S. gombakense</i> Takaoka & Davies	3.1	1.3	2.1
<i>S. nakhonense</i> Takaoka & Suzuki	29.7	10.1	18.9
<i>S. oblongum</i> Takaoka & Choochote	9.4	3.8	6.3
<i>S. quinquestriatum</i> Shiraki	7.8	0	3.5
<i>S. rufibasis</i> Brunetti	3.1	0	1.4
<i>S. sheilae</i> Takaoka & Davies	12.5	3.8	7.7
<i>S. nr. sheilae</i> Phasuk, Chanpaisaeng, Adler & Courtney	14.1	3.8	8.4
<i>S. siamense</i> Takaoka & Suzuki "A"	73.4	59.5	65.7
<i>S. tani</i> Takaoka & Davies "G"	4.7	0	2.1
<i>S. weji</i> Takaoka	4.7	6.3	5.6
<i>S. yuphae</i> Takaoka & Choochote	6.3	0	2.8
<i>Simulium</i> sp.	9.4	6.3	7.7

Letter in quotation marks denote cytoforms

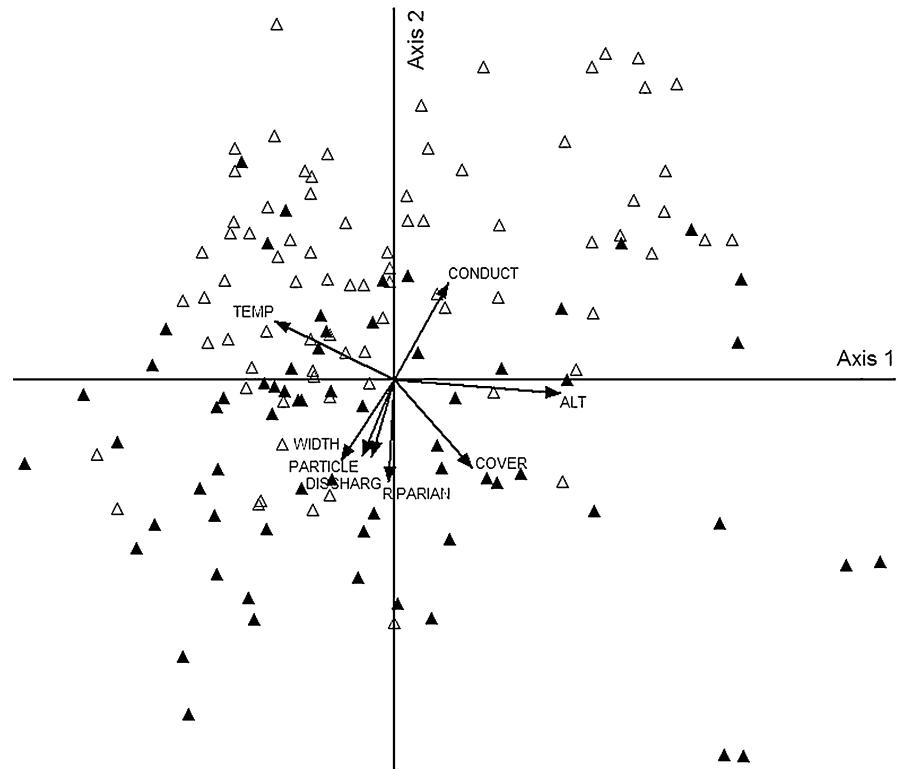
total black fly species found in Thailand (73 species—Kuvangkadilok, unpublished data). The most frequently collected species were *S. siamense* (65.7%) and *S. aureohirtum* (63.6%). Relatively common species were *S. nakhonense* (18.9%), *S. asakoae* (17.5%), *S. angulistylum* (12.6%), and *S. feneustratum* (11.9%). Other species were collected at a frequency lower than 10% (Table 1). Numbers of black fly species per sampling site for all the samples

(143 sites) varied from 1 to 8, with a mean of 2.5 ± 0.1 (SE).

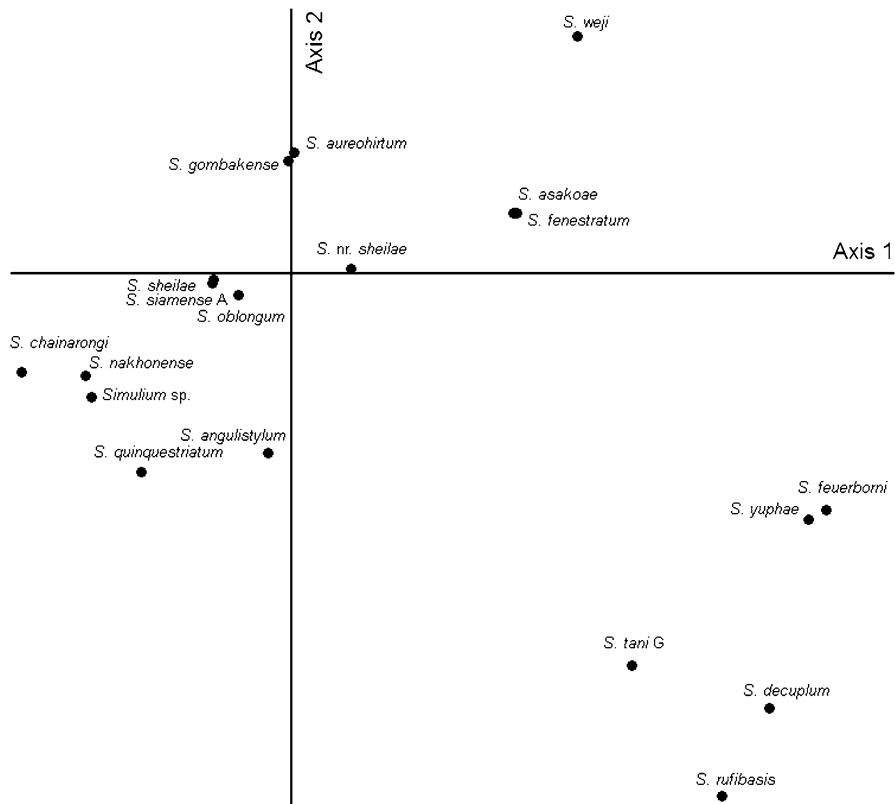
PCA of all collections (143 sites) revealed five PCs which had eigenvalues >1.0 accounted for 78.1% of the total intersite variance of the physicochemical conditions (Table 2). PC-1 and which explained 24.3% of the total variance. Spearman's rank correlations revealed that sites with higher PC-1 were larger, deeper, and faster, with lower pH and

Table 2 Results of PCA and Spearman's rank correlation coefficient between stream variables and principal components (PCs) for all collections combined and for rainy season collections alone

Variable	Stream sites			Principal components				
	Min	Max	Mean (\pm SE)	PC-1	PC-2	PC-3	PC-4	PC-5
All (143)								
Width (m)	0.13	25.00	1.33 \pm 0.24	0.745**	-0.041	0.163	0.201	-0.098
Depth (m)	0.008	0.33	0.07 \pm 0.005	0.590**	-0.267*	0.367**	0.075	0.482**
Velocity (m/s)	0.21	1.60	0.67 \pm 0.02	0.688**	0.084	0.383**	-0.095	-0.162
Discharge (m ³ /s)	0.0003	3.06	0.10 \pm 0.03	0.836**	-0.110	0.366**	0.131	0.134
Altitude (m)	132.00	1302.00	379.66 \pm 21.01	-0.200	0.513**	0.463**	-0.227*	-0.062
pH	5.03	8.89	6.67 \pm 0.06	-0.333**	0.577**	-0.165	0.555**	-0.099
Conductivity (μS/cm)	3.00	487.00	75.58 \pm 9.80	-0.370**	0.181	0.404**	0.618**	0.015
Temperature (°C)	16.90	37.90	25.78 \pm 0.28	-0.016	-0.510**	-0.499**	-0.246*	0.078
Stream-bed particle	Mud	Bedrock		0.324**	0.497**	-0.492**	-0.083	-0.481**
Riparian vegetation	Open	Forest		0.425**	0.657**	-0.374**	0.020	0.286*
Canopy cover	Open	Complete		0.247*	0.676**	-0.133	-0.003	0.493**
% Variance explained in PCA								
Proportion				24.3	20.2	14.2	10.2	9.2
Cumulative				24.3	44.5	58.7	68.9	78.1
Rainy season (61)								
Width (m)	0.22	25.00	1.90 \pm 0.53	0.615**	-0.622**	0.109	-0.139	0.177
Depth (m)	0.01	0.33	0.10 \pm 0.01	0.164	-0.269	0.284	0.679**	-0.365
Velocity (m/s)	0.28	1.60	0.79 \pm 0.04	0.549**	-0.049	0.510**	-0.095	0.220
Discharge (m ³ /s)	0.001	3.060	0.18 \pm 0.06	0.607**	-0.622**	0.210	-0.109	0.128
Altitude (m)	132.0	1302.0	391.64 \pm 35.43	0.120	0.615**	0.568**	-0.248	-0.245
pH	5.03	7.74	6.26 \pm 0.08	0.278	0.413*	-0.542**	0.209	0.464**
Conductivity (μS/cm)	3.00	487.00	66.42 \pm 14.56	-0.064	0.360*	0.263	0.460**	0.523**
Temperature (°C)	20.00	36.00	26.20 \pm 0.37	-0.441**	-0.600**	-0.455**	0.081	0.083
Stream-bed particle	Mud	Bedrock		0.595**	0.222	-0.303	-0.531**	0.025
Riparian vegetation	Open	Forest		0.728**	0.180	-0.379*	0.305	-0.056
Canopy cover	Open	complete		0.536**	0.420*	-0.254	0.309	-0.375*
% Variance explained in PCA								
Proportion				24.5	20.7	14.5	11.3	9.3
Cumulative				24.5	45.2	59.7	71.0	80.3


* $P < 0.01$, ** $P < 0.001$

conductivity, larger streambed particles, and more cover and riparian trees. PC-2 explains 20.2% of the total variance. Sites with higher PC-2 score were at higher altitude, had a higher pH, and were cooler, with larger streambed particles and more cover and riparian trees. PC-3 accounted for 14.2% of the total variance. Sites with higher PC-3 scores were larger, faster, and deeper, with higher altitude, higher conductivity, and cooler with smaller streambed particles, and less cover and riparian trees. PC-4 explains 10.2% of the intersite variance. Sites with higher PC-4 were higher in pH and cooler, with smaller streambed particles and less riparian trees. PC-5 accounted for 9.2% of the total variance. Sites with higher PC-5 scores were deeper and had smaller streambed particles, with more cover and riparian trees. Regression analysis between species richness and PCs revealed that species richness was significantly associated with PC-1 and PC-2. The regression equation is species richness = $2.48 + 0.44 \text{ PC-1} + 0.43 \text{ PC-2}$ ($F = 20.96$, $\text{df} = 2, 140$; $P < 0.001$; $R^2_{\text{adj}} = 21.9\%$).


CCA indicated that altitude, stream width, discharge, conductivity, water temperature, canopy cover, and riparian vegetation were the most important

predictors of the black fly species assemblage (Fig. 2). Relationship between species and environmental conditions was high (>0.738) for the first three canonical axes, indicating that the variables used in this study were strongly related to black fly species assemblage. This is supported by a Monte Carlo permutation test, which indicated a significant relationship between environmental conditions and species ($P = 0.001$). Altitude and water temperature were the most important factor on the CCA axis I (Fig. 2). Species associated with high altitude sites (bottom right, Fig. 3) were, for example, *S. feuerborni* and *S. yuphae*. The upper right side of the biplot is composed of sites with high water conductivity. Black fly species found predominantly at these sites are *S. weji*, *S. asakoae*, and *S. fenestratum*. The bottom left panel of the biplot is characterized by sites with large size, high discharge, and large streambed particles (e.g. boulders). These sites were predominated by species such as *S. nakhonense*, *Simulium* sp., *S. quinquestriatum*, *S. chainarongi*, and *S. angulistylum*. The upper left panel of the biplot is composed of sites with warm water and open stream sides (i.e., without riparian vegetation), which is characteristic of

Fig. 2 Ordination diagram of the first two axes of canonical correspondence analysis (CCA) of 143 sampling collections (closed triangles represent forest sites; open triangles represent agricultural sites). Arrows denote environmental variables with strength of the environmental condition indicated by arrow length and closeness to the CCA axis

Fig. 3 Ordination diagram of the first two axes of canonical correspondence analysis (CCA) of the 19 black fly species

agricultural streams. Black fly species predominating at these sites are *S. aureohirtum* and *S. gombakense*.

Pattern of spatial distribution

PCA of 61 sites collected in the rainy season revealed five principal components with eigenvalues >1.0 . These principal components together accounted for 80.3% of the total variance in the sampled conditions among streams (Table 2). Principal component 1 (PC-1) accounted for 24.5% of the variation among streams. Sites with higher PC-1 scores are larger and faster, with greater discharge, and more cover and riparian trees, and cooler and larger streambed particles. PC-2 accounted for 20.7% of intersite variability. Sites with higher PC-2 were at higher altitudes, cooler, smaller, and had higher pH and conductivity and more cover. PC-3 explained 14.5% of the site variability. Sampling sites with higher PC-3 values were lower in pH, at higher altitude and flowing faster with less riparian vegetation. PC-4 accounted for 11.3% of the between-stream variation. Sites with higher PC-4 values were deeper with

smaller streambed particles and higher conductivity. PC-5 accounted for 9.3% of the intersite variation. Sampling sites with higher PC-5 values had higher conductivity and pH, and were shallower with less cover.

Forward logistic regression analyses were conducted for the four species (*S. siamense*, *S. aureohirtum*, *S. angulistylum*, and *S. nakhonense*) which could be found at $>20\%$ of the sampling sites. All regression models of species distribution were significant ($P < 0.001$, Table 3) with correct classification varying from 75.4% to 95.1%. PC-1, which largely explained stream size, velocity, and streambed particles, was significantly associated with the distributions of three species (*S. aureohirtum*, *S. angulistylum*, and *S. nakhonense*). *Simulium aureohirtum* was negatively associated with PC-1; thus, this species is more common in smaller, slower streams, with open and small streambed particles. The distributions of *S. angulistylum* and *S. nakhonense* were positively associated with PC-1; thus, these species are more common in larger, fast flowing streams with large streambed particles and more cover. The distribution of *S. siamense* was negatively

Table 3 Regression analyses for the distribution of preimaginal black fly species in streams from Northeastern Thailand for 61 sites of rainy season collections (June–October 2007)

Species	Regression coefficient ^a							<i>P</i>	Correct (%)
	<i>K</i>	PC-1	PC-2	PC-3	PC-4	PC-5	Impound		
<i>S. aureohirtum</i>	−0.002	−2.250	0.999	−	−	−	−	<0.001	75.4
<i>S. siamense</i> “A”	0.778	−	−	−1.089	−	−	−	<0.001	78.7
<i>S. angulistylum</i>	−1.569	1.078	−	−	−	−	−	0.001	82.0
<i>S. nakhonense</i>	−4.312	6.307	−5.183	−3.705	−2.109	−	−	<0.001	95.1

Only species that were present at >20% of the sampling sites were analyzed

^a For logistic regression p_i is the probability that a species is present at the i -th site, and $p_i = e^L/(1 + e^L)$ where $L = B_0 + BX_{i1} + \dots + BX_{ji}$, where $X_{i1} \dots X_{ji}$ are predictor variables and $B_1 \dots B_j$ are the regression coefficients for linear regression of the predictors. K = the intercept

associated with PC-3; thus, this species is common at sites with high pH, slow current, low conductivity, at low altitude, with riparian forest.

Ecological conditions and species assemblages in forest and agriculture streams

ANOVA revealed that, with the exception of altitude, depth, and pH, all other variables measured differed significantly between forest and agricultural streams (Table 4). Streams in forests are larger, faster, and with larger streambed particles. Conductivity and

water temperature were higher in agricultural streams, which have less cover and riparian trees. Species richness also differed between forest and agricultural stream sites; 19 species were found at forest sites, whereas only 13 were found at agricultural sites. The mean number of species between sampling sites in the forest (2.91 ± 1.48) and agricultural streams (2.13 ± 0.99) was significantly different ($t = 3.61, P < 0.001$).

ANOSIM indicated a significant difference ($R = 0.343, P < 0.001$) in species composition among forest and agricultural streams. DFA based

Table 4 Physicochemical conditions for forest and agricultural streams and the results of ANOVA and Kruskal–Wallis tests for differentiation between the two types area

Variable	Forest		Agriculture		Test statistic	<i>P</i>
	Mean (\pm SE)	Range	Mean (\pm SE)	Range		
Width (m)	2.02 (0.51)	0.14–25.00	0.77 (0.09)	0.13–6.00	7.20 ^a	0.008
Depth (m)	0.06 (0.01)	0.01–0.23	0.07 (0.01)	0.01–0.33	1.32 ^a	0.253
Velocity (m/s)	0.72 (0.04)	0.21–1.60	0.62 (0.27)	0.23–1.40	4.69 ^a	0.032
Discharge (m ³ /s)	0.17 (0.06)	0.0007–3.06	0.04 (0.01)	0.0003–0.28	5.63 ^a	0.019
Altitude (m)	407.82 (39.33)	132.00–1302.00	356.85 (20.69)	149.00–749.00	1.46 ^a	0.229
pH	6.76 (0.10)	5.50–8.89	6.60 (0.08)	5.03–8.49	1.47 ^a	0.228
Conductivity (μ S/cm)	47.52 (9.02)	6.00–339.00	98.32 (15.76)	3.00–487.00	6.92 ^a	0.009
Temperature (°C)	24.90 (0.41)	16.90–37.90	26.51 (0.37)	19.10–36.00	8.60 ^a	0.004
Streambed particle size	6 ^b	1–6	3 ^b	1–6	32.02 ^c	<0.001
Coverage	2 ^b	1–3	1 ^b	1–3	25.91 ^c	<0.001
Riparian vegetation	3 ^b	1–3	1 ^b	1–3	65.18 ^c	<0.001

^a *F* values for ANOVA analysis

^b Median values for the streambed particle size [range from 1 (sand) to 6 (bedrock)]; for coverage values range from 1 (<10% covered) to 3 (completely covered); and values for riparian vegetation range from 1 (grass land) to 3 (trees) along stream (McCreadie et al. 2006)

^c *H* values for Kruskal–Wallis test

Table 5 Results of discriminant function analysis (DFA) of the correspondence between black fly species and area type (forest or agriculture) of stream origin for preimaginal black fly species in Northeastern Thailand, June 2007–April 2008

Summary statistic	Discriminant variables		
	Stream conditions	Species	
% Correct (N)			
Forest (64)	88.9		76.6
Agriculture (79)	94.1		72.2
Total (143)	91.8		74.1
Standardized coefficient ^a	Width	1.260	<i>S. aureohirtum</i> –0.674
	Discharge	–1.105	<i>S. nakhonense</i> 0.517
	Riparian vegetation	1.038	<i>S. nr. sheilae</i> 0.430
	Conductivity	–0.478	<i>S. asakoae</i> 0.270
	Depth	0.427	<i>S. angulistylum</i> 0.247

^a Only the first five variables that have the highest absolute values of the standardized coefficient are presented

on species indicated that most streams could be correctly assigned to region of origin (i.e., forest or agricultural area). The overall percentage correctly assigned was 74.1%, with 76.6% and 72.2% for forest and agricultural regions, respectively (Table 5). The standardized canonical discriminant function coefficient indicated that *S. aureohirtum*, *S. nakhonense*, and *S. nr. sheilae* are among the most important species contributing to regional separation (Table 5). DFA based on stream site conditions also showed that most streams (91.8%) could be correctly assigned to region of origin with 88.9% and 94.1% of stream sites correctly assigned as forest and agricultural streams, respectively (Table 5). Based on the absolute value of standardized canonical discriminant function coefficients, the most important stream conditions contributing to the differentiation of streams are stream width, discharge, riparian vegetation, and conductivity (Table 5).

Discussion

Species richness and spatial distribution of preimaginal black flies in Oriental streams

Previous studies found that the most important factors influencing preimaginal black fly species distribution are stream size, velocity, and presence of impoundment (Grillet & Barrera, 1997; McCreadie & Adler, 1998; Hamada & McCreadie, 1999; Hamada et al., 2002; Scheder & Waranger, 2002; McCreadie et al.,

2004). Our results showed that the distribution of preimaginal black fly species in tropical streams of the Oriental region were consistent with the patterns found in other regions. We found that the distributions of four common black fly species are related to stream size, velocity, and riparian vegetation (i.e., PC-1). The consistency of our results with other studies from other regions suggests general rules for black fly distribution.

Previous studies have indicated that both temporal and spatial variations need to be taken into account in considering patterns of species richness (McCreadie et al., 2005). Consequently, we used the whole data set (i.e., all the seasons and both the forest and agricultural regions) to analyze patterns of species richness. Regression analysis revealed that species richness was associated with large, fast flowing streams, large streambed particles, and cool water at high altitude with cover, and riparian forest along the stream. This is largely consistent with the pattern of species richness found in previous studies: Hamada et al. (2002) found that species richness was associated with larger streams, cooler water temperature, faster flowing, and larger streambed particles; Grillet & Barrera (1997) found higher diversity in larger streams; and Scheder & Waranger (2002) found that species richness of black flies in European streams increased with current velocity and size of streambed particle.

Species diversity is usually related to microhabitat diversity (Ward, 1992). Large streams with fast flow and larger streambed particles could provide more

microhabitats within a single stream as there is likely to be some variation throughout the stream in current velocity. Consequently, more species might be able to inhabit this type of stream than small streams with slow flowing water and small streambed particles in which water velocity is more homogenous. The presence of riparian trees, which is directly related to stream cover, could also play an important role in species diversity. Several studies found a relationship between riparian trees and benthic macroinvertebrate diversity (e.g. Sponseller et al., 2001; Subramanian et al., 2005; Dudgeon, 2006; Kasangaki et al., 2008). For black flies, the role of riparian trees on species diversity is sparsely documented. Lautenschläger & Kiel (2005) found an association between riparian vegetation and the distributions of some black fly species in Europe. The presence of riparian trees prevents light penetration, which moderates temperature. Streams with cooler water could support more species because black flies are usually intolerant of high water temperature (Crosskey, 1990) (see below). Roots and fallen leaves provided by riparian trees are also important substrate for the attachment of preimaginal black flies; therefore, more diverse types of habitats are available. Other factors known to be associated with black fly species richness are rainfall rate, water temperature (Colbo & Moorhouse, 1979), and distance from water source (Scheder & Waringer, 2002).

Effects of agriculture on physicochemical conditions and black fly species assemblage

Habitat degradation as a result of anthropogenic disturbance is a major impact threatening biodiversity worldwide. For the lotic ecosystem, land use for agriculture is one of the most important factors affecting water quality and consequently, species richness and assemblage (Allan & Flecker, 1993; Allan, 2004). Our results revealed the impact of agriculture on physicochemical conditions and black fly species assemblages in tropical streams. The first two CCA axes indicated the differentiation of agricultural and forest sites (Fig. 2). The general conditions of agricultural sites are warmer, with higher conductivity and more open streams (i.e. without riparian trees). Mean water conductivity in agricultural streams was two-fold higher than those of forest streams (Table 4). These results were

consistent with other studies. For example, Kasangaki et al. (2008) found that in Uganda, streams in agricultural areas had much higher conductivity than streams in forest area.

Another factor that is distinctly different between forest and agricultural sites is the lack of riparian forest in agricultural areas (CCA plot; Fig. 2). The removal of riparian forest for agricultural purposes could have profound effects on stream ecology (Allan & Flecker, 1993). Riparian forest provides shading; removing it from stream sides will therefore increase water temperature, which might eliminate intolerant species from a stream (Allan, 2004), and reduce local species richness (Hamada et al., 2002; Allan, 2004). Increased light penetration and nutrient concentration due to bank erosion as a consequence of riparian removal could also increase algal production. This could impact black fly diversity, as a negative relationship between algal cover and black fly diversity on the substratum and black fly species richness has been reported (Zhang et al., 1998).

We found that species diversity was significantly lower in agricultural than in forest streams. Our results, thus, reveal the impact of habitat degradation through agricultural land use on black fly diversity. A major contribution to habitat degradation is the removal of riparian trees, as this is one of the major factors differentiating stream sites in forest and agricultural areas. Several studies have indicated the important role of riparian forest on macroinvertebrate diversity in the tropics. Subramanian et al. (2005) found that the diversity of stream insects in the Western Ghats, India, was lower in open streams than in the streams with riparian trees. Dudgeon (2006) found that streams in areas of human impact (e.g., agricultural land) have fewer species of macroinvertebrates than those in pristine forest streams in Sulawesi, Indonesia. Lorion & Kennedy (2008) found that streams with riparian vegetation support a greater diversity of benthic macroinvertebrates in tropical streams of Costa Rica.

We found a significant difference in species composition between sites in forest and agricultural areas based on ANOSIM. Given that there is no apparent geographical barrier for adult dispersal between forest and agricultural streams, differences in stream conditions likely account for differing species composition (McCreadie & Adler, 2006). Species that preferentially occur in forest stream sites

are *S. nakhonense*, *S. asakoae*, *S. nr. sheilae*, and *S. angulistylum*. These species are found in streams with low temperature, large size, and fast flow with cover and riparian trees, the characteristics of forest sites. Stream sites in agricultural areas are less diverse: *S. aureohirtum* was a dominant species at agricultural sites being found at >80% of the sampling sites (Table 1) and in fact only two species were present at >20% of the sampling sites in agricultural areas. In contrast, streams in forest areas, although predominated by *S. siamense* (73%), also had other species present at relatively high frequencies (Table 1). Based on the standardized coefficient of the DFA, *S. aureohirtum* was the most important species differentiating forest and agricultural stream sites. The first two plotted axes of CCA indicate that *S. aureohirtum* prefers high conductivity and warm, open streams, which are characteristic of agricultural areas. This species has the greatest range of temperature and conductivity compared to all other species found in this study. Its habitat temperature range was between 16.9 and 37.9°C and conductivity between 3 and 487 μScm^{-1} . Thus, this species can be considered as a tolerant species. Other species that are sensitive to physicochemical change would be eliminated from stream sites impacted by agriculture whereas *S. aureohirtum* would persist. We found *S. aureohirtum* to be the sole black fly species at 27% of agricultural stream sites. Similar results have also been reported in other regions. For example, *S. perflavum* is a dominant species found in anthropogenically impacted streams in Brazil (Hamada & Adler, 1999; Hamada et al., 2002).

In conclusion, we found that the spatial distributions of black flies in the Oriental region resemble those in the Nearctic, Neotropical, and Palearctic regions. This indicates there is a general rule for black fly species distributions in which the most important factors are stream size and velocity. Comparison of streams in forest and agricultural areas differed in both species assemblage and richness, reflecting differentiation of the physicochemical conditions of the two regions. Our results indicate that anthropogenic impacts could change the community structure and diversity of black flies. Finally, because different species vary in their tolerance level, black flies can be useful indicators of stream degradation (Adler et al., 2004; Lautenschläger & Kiel, 2005).

Acknowledgments This work was funded by the Thailand Research Fund and Commission on Higher Education (grant No. MRG5080363). We thank Prof. Peter Adler (Clemson University, USA) for his valuable comments on the manuscript. We also thank Jolyon Dodgson (Mahasarakham University, Thailand) and Cathy Walton (University of Manchester, UK) for language correction. Three anonymous reviewers offered valuable comments on an earlier draft of the manuscript.

References

Adler, P. H., D. C. Currie & D. M. Wood, 2004. The Black Flies (Simuliidae) of North America. Cornell University Press, USA.

Allan, D. J., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. *Annual Review of Ecology and Systematics* 35: 257–284.

Allan, D. J. & A. S. Flecker, 1993. Biodiversity conservation in running waters. *BioScience* 43: 32–43.

Clarke, K. R. & R. M. Warwick, 1994. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. National Environment Research Council, Plymouth, UK.

Colbo, M. H. & D. E. Moorhouse, 1979. The ecology of pre-imaginal Simuliidae (Diptera) in south-east Queensland, Australia. *Hydrobiologia* 63: 63–79.

Crosskey, R. W., 1990. The Natural History of Blackflies. John Wiley and Sons, London.

Cummins, K. W., 1987. The functional role of black flies in stream ecosystems. In Kim, K. C. & R. W. Merritt (eds), *Black Flies: Ecology, Population Management and Annotated World List*. The Pennsylvania State University, University Park: 1–10.

Dudgeon, D., 2000. The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. *Annual Review of Ecology and Systematics* 31: 239–263.

Dudgeon, D., 2006. The impacts of human disturbance on stream benthic invertebrates and their drift in North Sulawesi, Indonesia. *Freshwater Biology* 51: 1710–1729.

Feld, C. K., E. Kiel & M. Lautenschläger, 2002. The indication of morphological degradation of streams and rivers using Simuliidae. *Limnologica* 32: 273–288.

Grillet, M. E. & R. Barrera, 1997. Spatial and temporal abundance, substrate partitioning and species co-occurrence in a guild of Neotropical blackflies (Diptera: Simuliidae). *Hydrobiologia* 345: 197–208.

Hamada, N. & P. H. Adler, 1999. Cytotaxonomy of four species in the *Simulium perflavum* species group (Diptera: Simuliidae) from Brazilian Amazonia. *Systematic Entomology* 24: 273–288.

Hamada, N. & J. M. McCreadie, 1999. Environmental factors associated with the distribution of *Simulium perflavum* (Diptera: Simuliidae) among streams in Brazilian Amazonia. *Hydrobiologia* 397: 71–78.

Hamada, N., J. W. McCreadie & P. H. Adler, 2002. Species richness and spatial distribution of blackflies (Diptera: Simuliidae) in streams of Central Amazonia, Brazil. *Freshwater Biology* 47: 31–40.

Hamer, Q., D. A. T. Harper & P. Ryan, 2007. PAST-PAlaeontological Statistics, Version 1.73. <http://folk.unio.no/ohammer/past/>.

Hosmer, D. W. & S. Lemeshaw, 1989. Applied Logistic Regression. Wiley Interscience, Chichester, UK.

Illéšová, D., J. Halgoš & I. Krno, 2008. Blackfly assemblages (Diptera, Simuliidae) of the Carpathian river: habitat characteristics, longitudinal zonation and eutrophication. *Hydrobiologia* 598: 163–174.

Kasangaki, A., L. J. Chapman & J. Balirwa, 2008. Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. *Freshwater Biology* 53: 681–697.

Kuvangkadilok, C., U. Lualon & V. Baimai, 2008. Cytotaxonomy of *Simulium siamense* Takaoka and Suzuki (Diptera: Simuliidae) in Thailand. *Genome* 51:972–987.

Lautenschläger, M. & E. Kiel, 2005. Assessing morphological degradation in running waters using blackfly communities (Diptera, Simuliidae): can habitat quality be predicted from land use? *Limnologica* 35: 262–273.

Lorion, C. M. & B. P. Kennedy, 2008. Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. *Freshwater Biology*. doi:[10.1111/j.1365-2427.2008.02092.x](https://doi.org/10.1111/j.1365-2427.2008.02092.x).

Matson, P. A., W. J. Parton, A. G. Power & M. J. Swift, 1997. Agricultural intensification and ecosystem properties. *Science* 277: 504–509.

McCreadie, J. W. & P. H. Adler, 1998. Scale, time, space, and predictability: species distributions of preimaginal black flies (Diptera: Simuliidae). *Oecologia* 114: 79–92.

McCreadie, J. W. & P. H. Adler, 2006. Ecoregions as predictors of lotic assemblages of blackflies (Diptera: Simuliidae). *Ecography* 29: 603–613.

McCreadie, J. W. & M. H. Colbo, 1991. Spatial distribution patterns of larval cytotypes of the *Simulium venustum/verecundum* complex (Dipter: Simuliidae) on the Avalon Peninsula, Newfoundland: factors associated with occurrence. *Canadian Journal of Zoology* 69: 2651–2659.

McCreadie, J. W., N. Hamada & M. E. Grillet, 2004. Spatial-temporal distribution of preimaginal blackflies in Neotropical streams. *Hydrobiologia* 513: 183–196.

McCreadie, J. W., P. H. Adler & N. Hamada, 2005. Patterns of species richness for blackflies (Diptera: Simuliidae) in the Nearctic and Neotropical regions. *Ecological Entomology* 30: 201–209.

McCreadie, J. W., P. H. Adler, M. E. Grillet & N. Hamada, 2006. Sampling statistics in understanding distributions of black fly larvae (Diptera: Simuliidae). *Acta Entomologica Serbica Supplement*: 89–96.

McCune, B. & M. J. Mefford, 2006. PC-ORD. Multivariate Analysis of Ecological Data, Version 5.14. MjM Software, Gleneden Beach, Oregon, USA.

Phasuk, J., J. Chanpaisaeng, P. H. Adler & G. W. Courtney, 2005. Chromosomal and morphological taxonomy of larvae of *Simulium (Gomphostilbia)* (Diptera: Simuliidae) in Thailand. *Zootaxa* 1052: 49–60.

Rothfels, K. H. & R. W. Dunbar, 1953. The salivary gland chromosomes of black fly *Simulium vittatum* Zett. *Canadian Journal of Zoology* 31: 226–241.

Scheder, C. & J. A. Waringer, 2002. Distribution patterns and habitat characterization of Simuliidae (Insecta: Diptera) in a low-order sandstone stream (Weidlingbach, Lower Austria). *Limnologica* 32: 236–247.

Sponseller, R. A., E. F. Benfield & H. M. Valett, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. *Freshwater Biology* 46: 1409–1424.

Subramanian, K. A., K. G. Sivaramakrishnan & M. Gadgil, 2005. Impact of riparian land use on stream insects of Kudremukh National Park, Karnataka state, India. *Journal of Insect Science* 5: 1–10.

Takaoka, H. & W. Choochote, 2004. A list of and keys to black flies (Diptera: Simuliidae) in Thailand. *Tropical Medicine and Health* 32: 189–197.

Takaoka, H. & W. Choochote, 2005. Two new species of *Simulium* Latreille (Diptera: Simuliidae) from northwestern Thailand. *Medical Entomology and Zoology* 56: 123–133.

Takaoka, H. & H. Suzuki, 1984. The black flies (Diptera: Simuliidae) from Thailand. *Japanese Journal of Sanitary Zoology* 35: 7–45.

Tangkawanit, U., C. Kuvangkadilok, V. Baimai & P. H. Adler, 2009. Cytosystematics of the *Simulium tuberosum* group (Diptera: Simuliidae) in Thailand. *Zoological Journal of the Linnean Society* (in press).

Ward, J. V., 1992. Aquatic insect ecology. 1. Biology and habitat. Wiley, New York: 117–168.

Zhang, Y., B. Malmqvist & G. Englund, 1998. Ecological processes affecting community structure of blackfly larvae in regulated and unregulated rivers: a regional study. *Journal of Applied Ecology* 35: 673–686.

A new species of *Simulium (Gomphostilbia)* (Diptera: Simuliidae) from Northeastern Thailand

Pairot PRAMUAL¹⁾ and Ubon TANGKAWANIT²⁾

¹⁾ Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai district, Maha Sarakham, 44150 Thailand

²⁾ Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Rajthevee, Bangkok, 10400 Thailand

(Received: 14 August 2008; Accepted: 13 October 2008)

Abstract: *Simulium (Gomphostilbia) kuvangkadilokae* sp. nov. is described based on male, pupal and mature larval specimens collected from northeastern Thailand. This species is assigned to the *varicorne* species-group of the subgenus *Gomphostilbia* based on the adult antenna composed of the scape, pedicel and eight flagellomeres. The pupal gill, which is composed of two V-shapes inflated elements with 12 thread-like filaments, is very distinctive and easily separates this new species from the other known species.

Key words: Black fly, *Gomphostilbia*, Simuliidae, *Simulium*, *varicorne* species-group

INTRODUCTION

A total of 72 species of black flies were found in Thailand. These species were assigned to six subgenera of the genus *Simulium*; *Asiosimulium* Takaoka and Choochote, *Daviesellum* Takaoka and Adler, *Gomphostilbia* Enderlein, *Montisimulium* Rubstov, *Nevermannia* Enderlein, and *Simulium* Latreille (Takaoka and Choochote, 2004a, b, 2005a-j, 2006a-d, 2007; Phasuk et al., 2005; Jitklang and Kuvangkadilok, 2008). *Gomphostilbia* is the second largest with 17 species assigned to this subgenus. Worldwide there are 163 species of the subgenus *Gomphostilbia* assigned into nine species-groups (Adler and Crosskey, 2008). The *varicorne*-species group is a small group of the *Gomphostilbia* represented by only six species (Adler and Crosskey, 2008). In Thailand, there are three species of *varicorne*-group: *Simulium (Gomphostilbia) burtoni* Takaoka and Davies, *S. (G.) chumpornense* Takaoka and Kuvangka-

dilok, and *S. (G.) novemarticulatum* Takaoka and Davies. We discovered a new species in the subgenus *Gomphostilbia* during observations of the black flies in northeastern Thailand, which is described based on male, pupa and mature larva.

MATERIALS AND METHODS

All larvae were fixed in Carnoy's solution (1 : 3, glacial acetic acid: 95% ethanol). Three adult males were reared from pupae and fixed in Carnoy's solution. Morphological characters were compared with the descriptions of black flies from West Malaysia and Thailand (Takaoka and Davies, 1995; Kuvangkadilok and Takaoka, 2000; Phasuk et al., 2005). Adult male reared from a pupa were dissected, head and genitalia were cleared with 85% lactic acid and placed in glycerine to illustrate and photograph diagnostic morphological characters. Pupae were placed in acetic acid and examined under a stereo microscope and photographed. Hypostoma, postgenal cleft, and mandible of

the mature larva were placed in a drop of 50% acetic acid on a microscope slide and cover slip was applied and each part was photographed. Morphological terminology follows that of Takaoka and Davies (1995).

The holotype of the new species is deposited in the Natural History Museum, Prathumtani Province, Thailand. The paratypes of this new species are deposited in the Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham Province, Thailand.

*Simulium (Gomphostilbia)
kuvangkadilokae* sp. nov.

DESCRIPTION. Female. Unknown.

Male. Body length (n=3) 2.0–2.2 mm. **Head.** Slightly wider than thorax. Upper eye consisting of 9 or 10 vertical columns and 12 horizontal rows of large facets. Face brownish black with white pruinose. Clypeus brownish black, white pruinose, covered with dark brown hairs. Antenna (Fig. 1A) composed of scape, pedicel and 8 flagellomeres, dark yellow on scape and pedicel, 1st, 2nd, and 4th flagellomeres whitish brown, 3rd, and 5th to 8th flagellomeres dark brown. Maxillary palp (Fig. 1B) composed of 5 segments, brown, proportional lengths of 3rd, 4th, and 5th segments 1.0 : 1.25 : 3.0, sensory vesicle small, ellipsoidal, 0.38 times as long as 3rd segment. **Thorax.** Scutum black, with white pubescence and densely covered with whitish yellow short hairs. Scutellum brownish black, densely covered with yellow short hairs as well as several dark brown long upright hairs. Postnotum brownish black, white pruinose, bare. Pleural membrane bare. Katepisternum brownish black with fine, short, yellowish hairs. **Legs.** Foreleg: coxa and trochanter whitish yellow, femur and tibia medium brown, tarsus brownish black, basitarsus dilated, 6 times as long as its greatest width. Midleg: coxa medium brown, trochanter whitish yellow, femur light to medium brown, tibia dark brown except less than basal 1/2 light brown, tarsus brownish black except basal 2/3 of basitarsus and basal 1/3 of 2nd and 3rd segments yellow. Hind leg (Fig. 1C): coxa medium brown, trochanter whitish yellow, femur medium brown except apical cap brown-

ish black, tibia yellowish brown on basal 3/5 and brownish black on rest, tarsus dark brown except basal 3/5 of basitarsus and basal 1/3 of 2nd and 3rd segments whitish yellow; basitarsus slender and parallel sided shape. Calcipala 1.3× as long as wide, pedisulcus well developed. All femora, tibiae and parts of tarsi densely covered with scale-like hairs as well as usual simple hairs at least on outer and posterior surfaces. **Wing.** Length 2.0 mm. Costa with spinules and hairs. Subcosta bare. Hair tuft on stem vein yellow. Basal portion of radial vein fully haired. R_1 with spinules and hairs. R_2 with hairs only. Basal cell and basal medium cell absent. **Abdomen.** Basal scale brownish black, with fringe of whitish yellow. Dorsal surface of abdominal segments brownish black, except 2nd segment yellowish brown, covered with dark hairs. Segments 2 and 5–7 with a dorsolateral pair of shiny areas. **Genitalia.** Coxite (Fig. 1D) large, subquadrate, 1.6 times as long as wide when viewed ventrally. Style (Fig. 1D) slightly shorter than coxite, curved inward, tapered toward apex, with single apical spine. Ventral plate (Fig. 1E–G) in ventral view with nearly rectangle in shape, basal arms directly forward and then inward. Median sclerite (Fig. 1H) plate-like, long and almost parallel sided. Parameres (Fig. 1I) broad basally, each with 3 long apical hooks and several short ones. Aedeagal membrane moderately setose.

Pupa. Body length (excluding gill filaments) 2.5 mm. **Head.** Integument yellow densely covered with round tubercles, antennal sheath bare, head with 1 facial and 3 frontal pairs of long simple trichomes. **Thorax.** Integument yellow, densely covered with round tubercles on anterior 2/3, and almost bare on posterior 1/3; thorax with 3 long simple trichomes mediodorsally, 2 long simple trichomes anterolaterally, 1 medium long simple trichome posterolaterally. Gill (Fig. 1J) composed of V-shaped inflated structure in lateral view, with 12 slender thread-like filaments, 8 on the dorsal inflated element and 4 on the ventral inflated element. Surface of the inflated elements with numerous cone-shaped processes and covered with minute tubercles. Of the 12 thread-like filaments 1 arising from the apex of the ventral element, 1 arising near the apex of the dorsal inflated element, of the remaining 10 filaments 7 arising from the outer surface of the dorsal inflated element and 3 arising from the outer

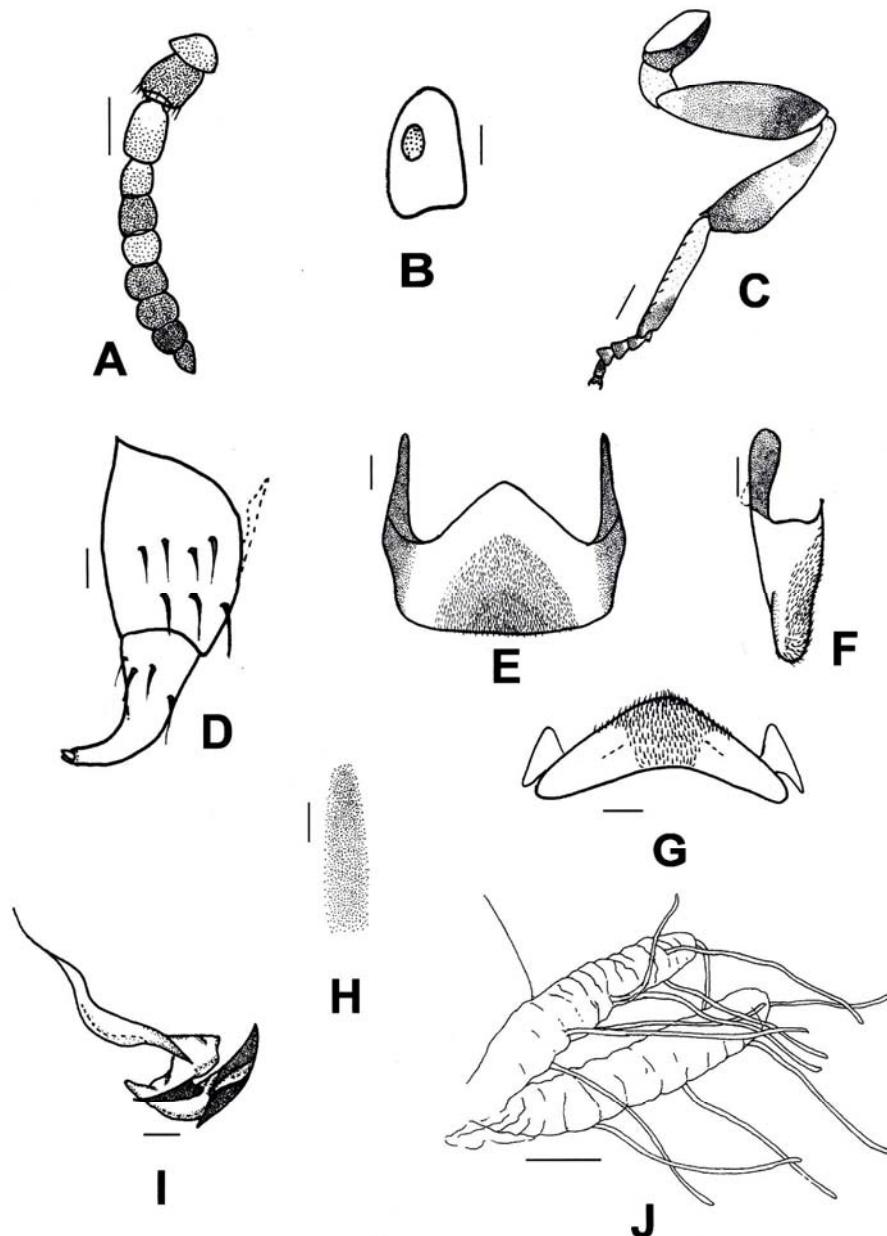


Fig. 1. Adult male of *Simulium (Gomphostilbia) kuvangkadilokae* sp. nov. A, antenna (left side); B, 3rd segment of maxillary palp (right side, front view); C, hind leg (right side, inner view); D, coxite and style (left side, ventral view); E, F, and G, ventral plate (E, ventral view; F, lateral view; G, end view); H, median sclerite (end view); I, paramere (ventral view); J, gill filaments (right side, dorsal view). Scale bars. 0.06 mm for A; 0.02 for B; 0.1 mm for C; 0.02 mm for D-I; 0.2 mm for J.

surface of the ventral inflated element. All of the thread-like filaments are individually arising from the inflated element, subequal in length and thickness, with distinct annular

ridges and furrows. **Abdomen.** Tergum 1 with single long dark seta on each side, tergum 2 with 1 medium long simple and 5 short setae on each side, terga 3 and 4 each with 4 stout

hooks and 1 short pale spine on each side, tergum 5 bare, terga 6–9 each with spine-combs and comb-like groups of minute spines along anterior margin on each side. Tergum 9 with pair of conical terminal hooks, with round apex. Sternum 4 with 1 simple hook and a few minute setae on each side; sternum 5 with pair of bifid hook on each side; sternum 6 with 1 simple hook on each side; sternum 7 with 1 bifid hook on each side; last segment with 3 grapnel-like hooklets on each side. **Cocoon.** Simple, wall-pocket shaped, densely woven, moderately extending ventrolaterally.

Mature larva. Body length 4.5 mm. Thorax grayish brown with grayish transverse band, abdominal segment 1–5 each with reddish brown or grayish transverse band. Cephalic apotome pale yellow, darkened along posterior margin, moderately covered with simple colorless setae; head spot indistinct. Antenna with three segments plus apical sensillum, longer than stem of labral fan; proportional lengths of three segments from proximal to distal 0.7 : 1.0 : 0.5; base of antenna brown and remainder pale yellow. Labral fan with 24–26 primary rays. Mandible (Fig. 2A) with comb-teeth decreasing in length from 1st to 3rd, mandibular serrations consisting of 1 large and 1 small tooth. Hypostoma (Fig. 2B) with a row of 9 apical teeth, median tooth as long as corner tooth; lateral margins serrated throughout their length, hypostomal bristles 3 or 4 in numbers, slightly diverging posteriorly from lateral margin on each side. Postgenal cleft (Fig. 2C) very deep reaching posterior margin of hypostoma. Thoracic segment 1 and 2 with two pairs of minute conical protuberance, segment 3 with 4 pairs of conical protuberance (2 dorsal, 1 dorsolateral, 1 lateral); thoracic cuticle sparsely cover with simple, bifid, trifid and rarely quadrifid setae similar to those on the abdomen. Dorsum of abdominal segment 1–5 each with 4 pair of conical protuberances (2 dorsal, 1 dorsolateral, 1 lateral), size and shape of the protuberance are shown in Figure 2D; abdominal cuticle with simple, bifid, trifid and rarely quadrifid setae (Fig. 2E), which are almost colorless except base darkened, sparsely on segment 1–4 and densely on segment 5–8; last segment moderately cover with simple, bifid and trifid setae on each side of the anal sclerite. Ventral papillae well developed. Rectal papilla composed of 3 lobes each with 6 finger-like secondary lobules. Anal sclerite X-

shaped with posterior arm ca. 1.2 times as long as anterior arm. Accessory sclerite absent. Posterior circlet with about 68 rows of 10–12 hooklets per row.

TYPE SPECIMENS. Holotype male with its associated pupal exuvia and cocoon, collected at Tad Yai Waterfall, N $16^{\circ}04'06''E 104^{\circ}57'01''$, Chanuman District, Amnat Charoen Province, Thailand, 22.IX.2007, by Pairot Pramual. Paratypes: 3 males with pupal exuviae and cocoons (in Carnoy's fixative), 13 pupae and 8 mature larvae (in Carnoy's fixative), same data as for holotype.

ECOLOGICAL NOTES. The larvae and pupae of *S. (G.) kuvangkadilokae* sp. nov. were attached to trailing grass in a warm (28.9°C), open, slow-flowing stream at altitude 132 m. This species was collected with *S. (S.) nakhonense* Takaoka and Suzuki.

ETYMOLOGY. The species name *kuvangkadilokae* is in honor of Associate Prof. Chaliow Kuvangkadilok, Department of Biology, Faculty of Science, Mahidol University, Thailand, who has a pioneer work on cytogenetics of black flies in Thailand.

REMARKS. *Simulium (G.) kuvangkadilokae* sp. nov. is assigned to the *varicorne* species-group on the basis of the adult antenna with 10 segments (Takaoka and Davies, 1995). Color pattern of the antenna also resembles those of the known species of the *varicorne*-species group (Takaoka and Davies, 1995).

This species is characterized by pupal gill which has two inflated elements with 12 thread-like filaments. This is the most distinctive character that easily differentiates this new species from other species. The other species of the *varicorne* species-group including *S. (G.) burtoni*, *S. (G.) chumpornense*, *S. (G.) novemarticulatum*, *S. (G.) shogakii* Rubtsov, and *S. (G.) varicorne* Edwards have eight gill filaments. The

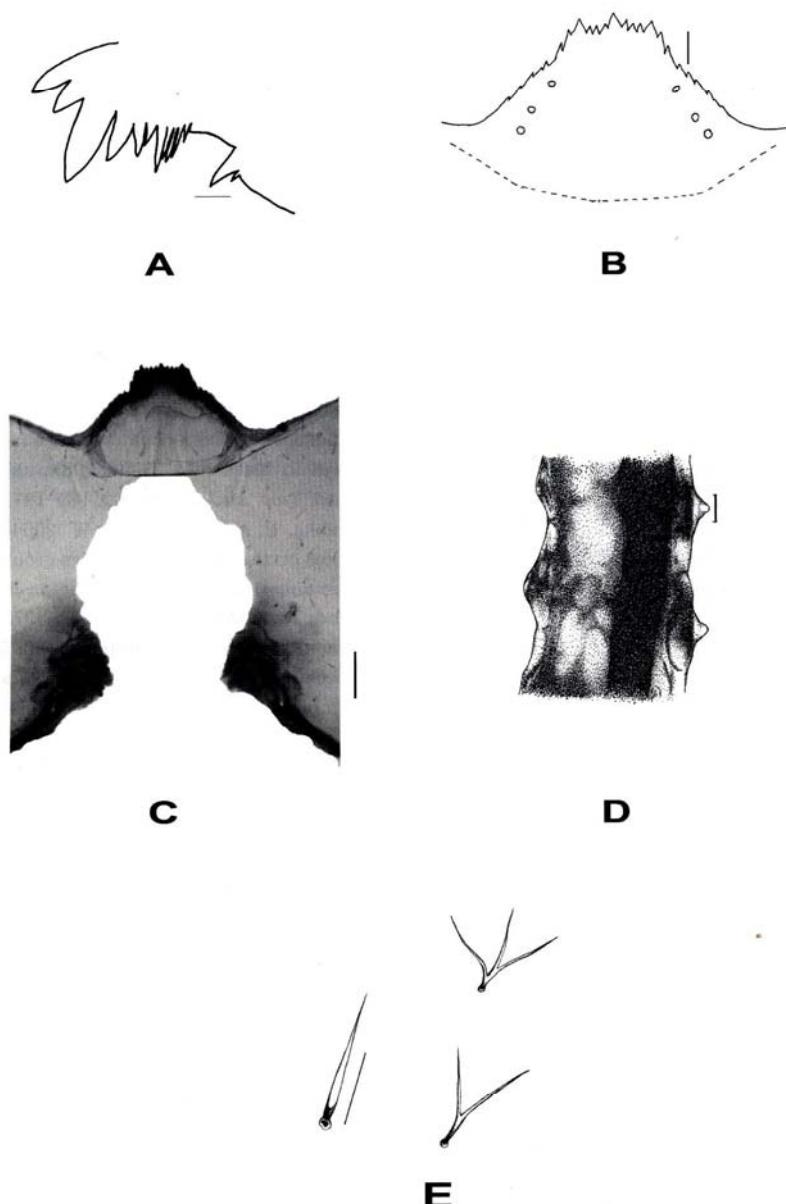


Fig. 2. Larva of *Simulium (Gomphostilbia) kuvangkadilokae* sp. nov. A, mandible; B, hypostoma (ventral view); C, postgenal cleft (ventral view); D, protuberances on the abdominal cuticle; E, abdominal setae. Scale bars. 0.01 mm for A and D; 0.02 mm for B; 0.05 mm for C; 0.025 mm for E.

pupal gill of this new species is similar to *S. (G.) prayongi* Takaoka and Choochote described from northwestern Thailand (Takaoka and Choochote, 2005e) by having V-shape inflated elements with

thread-like filaments. However, *S. (G.) kuvangkadilokae* sp. nov. differs from *S. (G.) prayongi* by having 12 thread-like filament instead of 8 as in *S. (G.) prayongi*.

The adult of *S. (G.) kuvangkadilokae* is

distinguished from *S. (G.) novemarticulatum* by number of antennal segments, consisting of 2+8 segments in the former but 2+7 in the latter species. Adult male of this new species differs from *S. (G.) burtoni* by the number of eye facets in vertical column (9 or 10 in the former and 12 or 13 in the latter species). Male genitalia are similar to *S. (G.) varicorne* Edwards. However, it is separated from *S. (G.) varicorne* Edwards by the larger size of sensory vesicle.

The larva of *S. (G.) kuvangkadilokae* is most similar to *S. (G.) chumpornense* by having deep postgenal cleft, with protuberances on the abdominal segments 1-5 and with simple, bifid, trifid and quadrifid setae on the abdominal cuticle. However, *S. (G.) kuvangkadilokae* is distinguished from *S. (G.) chumpornense* by numbers of the protuberance (four pairs of conical protuberance on the abdominal segments 1-5 in the former, two pairs in the latter species (Kuvangkadilok and Takaoka, 2000)).

ACKNOWLEDGEMENTS

This work was financially supported by Faculty of Science, Mahasarakham University (grant year 2006) and the Thailand Research Fund and Commission on Higher Education (grant No. MRG 5080363). We are grateful to Prof. Hiro-yuki Takaoka, Oita University, Japan, for valuable comments on the manuscript. We thank Prof. Peter Adler, Clemson University, U.S.A. for his advice on the morphological studies. We also thank Dr. Sanae Jitklang for help on morphological slide preparation.

REFERENCES

Adler, P. H. and Crosskey, R. W. 2008. World Blackflies (Diptera: Simuliidae): A Fully Revised Edition of the Taxonomic and Geographical Inventory. <http://entweb.clemson.edu/biomia/pdfs/blackflyinventory.pdf> [accessed 14 May 2008]

Jitklang, S. and Kuvangkadilok, C. 2008. A new species of *Simulium (Gomphostilbia)* (Diptera: Simuliidae) from southern Thailand, with description of its polytene chromosome. *Stud. Dipt.*, (in press).

Kuvangkadilok, C. and Takaoka, H. 2000. Taxonomic notes on Simuliidae (Diptera) from Thailand: description of a new species and new distributional records of nine known species. *Jpn. J. Trop. Med. Hyg.*, 28: 167-175.

Phasuk, J., Chanpaisaeng, J., Adler, P. H. and Courtney, G. W. 2005. Chromosomal and morphological taxonomy of larvae of *Simulium (Gomphostilbia)* (Diptera: Simuliidae) in Thailand. *Zootaxa*, 1052: 49-60.

Takaoka, H. and Choochote, W. 2004a. A list of and keys to black flies (Diptera: Simuliidae) in Thailand. *Trop. Med. Health*, 32: 189-197.

Takaoka, H. and Choochote, W. 2004b. Taxonomic notes on the *griseifrons* species-group of *Simulium (Simulium)* (Diptera: Simuliidae) in northern Thailand. *Trop. Med. Health*, 32: 311-327.

Takaoka, H. and Choochote, W. 2005a. Two new species of *Simulium (Montisimulium)* (Diptera: Simuliidae) from northern Thailand. *Med. Entomol. Zool.*, 56: 21-31.

Takaoka, H. and Choochote, W. 2005b. A new subgenus and a new species of *Simulium* s.l. (Diptera: Simuliidae) from Thailand. *Med. Entomol. Zool.*, 56: 33-41.

Takaoka, H. and Choochote, W. 2005c. A new species of *Simulium (Simulium)* (Diptera: Simuliidae) from Thailand. *Med. Entomol. Zool.*, 56: 43-47.

Takaoka, H. and Choochote, W. 2005d. Two new species of *Simulium (Simulium)* (Diptera: Simuliidae) from northern Thailand. *Med. Entomol. Zool.*, 56: 99-110.

Takaoka, H. and Choochote, W. 2005e. Two new species of *Simulium* Latreille (Diptera: Simuliidae) from northwestern Thailand. *Med. Entomol. Zool.*, 56: 123-133.

Takaoka, H. and Choochote, W. 2005f. Two new species of *griseifrons* species-group of *Simulium (Simulium)* (Diptera: Simuliidae) in northern Thailand. *Med. Entomol. Zool.*, 56: 219-235.

Takaoka, H. and Choochote, W. 2005g. Two new species of black flies (Diptera: Simuliidae) from Thailand. *Med. Entomol. Zool.*, 56: 319-334.

Takaoka, H. and Choochote, W. 2005h. A new species of *Simulium (Simulium)* from northern Thailand (Diptera: Simuliidae). *Trop. Med. Health*, 33: 95-101.

Takaoka, H. and Choochote, W. 2005i. Two new species of *Simulium (Nevermannia)* (Diptera: Simuliidae) from northern Thailand. *Trop. Med. Health*, 33: 133-141.

Takaoka, H. and Choochote, W. 2005j. Discovery of two more species of *Simulium (Montisimulium)* (Diptera: Simuliidae) in Doi Inthanon National Park, Chiang Mai, Thailand. *Trop. Med. Health*, 33: 209-215.

Takaoka, H. and Choochote, W. 2006a. A new species of the subgenus *Simulium (Asiosimulium)* (Diptera: Simuliidae) from Thailand. *Med. Entomol. Zool.*, 57: 45-48.

Takaoka, H. and Choochote, W. 2006b. A new species of *Simulium (Nevermannia)* from northern Thailand (Diptera: Simuliidae). *Med. Entomol. Zool.*, 57: 83-92.

Takaoka, H. and Choochote, W. 2006c. A new species of the *griseifrons* species group of *Simulium (Simulium)* (Diptera: Simuliidae) in northern Thailand. *Med. Entomol. Zool.*, 57: 115-124.

Takaoka, H. and Choochote, W. 2006d. A new species of *Simulium (Gomphostilbia)* (Diptera: Simuliidae) from northern Thailand. *Med. Entomol. Zool.*, 57: 229-233.

Takaoka, H. and Choochote, W. 2007. A new species of the *multisimulium* species-group of *Simulium (Simulium)* (Diptera: Simuliidae) from Northern Thailand. *Trop. Med. Health*, 35: 19-22.

Takaoka, H. and Davies, D. M. 1995. The Black Flies (Diptera: Simuliidae) of West Malaysia. 175 pp., Kyushu University Press, Fukuoka.

บทความวิจัยสำหรับการเผยแพร่

ผลกระทบจากการใช้ที่ดินเพื่อการเกษตรต่อความหลากหลายชีวภาพ และโครงสร้างสังคมของแมลงรินด์

การทำลายแหล่งที่อยู่อาศัยตามธรรมชาติเป็นสาเหตุสำคัญที่ทำให้ความหลากหลายชีวภาพลดลง สาเหตุที่หลักของการทำลายแหล่งที่อยู่อาศัยคือความต้องการการใช้ที่ดินเพื่อการเกษตร ประเทศไทยมีพื้นที่ถือครองเพื่อการเกษตรประมาณ 100 ล้านไร่ หรือประมาณร้อยละ 30 ของพื้นที่ประเทศไทย จำนวนประชากรที่เพิ่มขึ้นทำให้ความต้องการพื้นที่เพื่อการเพาะปลูกเพิ่มขึ้น ปัจจุบันพื้นที่ป่าดันน้ำถูกทำลายและเปลี่ยนแปลงเป็นพื้นที่การเกษตรจำนวนมาก (ภาพที่ 1) ส่งผลกระทบต่อคุณภาพของแหล่งน้ำทั้งด้านกายภาพและชีวภาพ

ภาพที่ 1 การเปลี่ยนแปลงพื้นที่ป่าไม้เพื่อใช้ประโยชน์ทางการเกษตร

ตัวอ่อนของแมลงรินด์ (black fly, Diptera: Simuliidae) (ภาพที่ 2) เป็นองค์ประกอบที่สำคัญของระบบนิเวศแหล่งน้ำไหล (lotic ecosystem) เนื่องจากสามารถพำนได้เป็นจำนวนมาก และมีกระจายในทุกพื้นที่ที่มีแหล่งน้ำไหลธรรมชาติที่เหมาะสมกับการเจริญเติบโต โดยทั่วไปมักเป็นแหล่งน้ำไหลที่สะอาด น้ำใส และอุณหภูมิของน้ำไม่สูงมาก (น้อยกว่า 30 องศาเซลเซียส) แมลงรินด์ทำมีบทบาทสำคัญในระบบนิเวศแหล่งน้ำไหล เนื่องจากตัวอ่อนกินเศษอินทรีย์รัตถุที่ล่องลอยในกระแสน้ำ และยังเป็นอาหารของสัตว์น้ำอื่นๆ เช่น ปลา หรือแมลงน้ำชนิดอื่นๆ ดังนั้นตัวอ่อนแมลงรินด์จึงทำหน้าที่เป็นตัวเชื่อมในห่วงโซ่ออาหารของระบบนิเวศ

การศึกษาในยุโรป และอเมริกาใต้ แสดงให้เห็นว่าแมลงรินด์แต่ละสายพันธุ์มีความสามารถในการทนทานต่อการเปลี่ยนแปลงสภาพแวดล้อมของแหล่งอาศัยที่แตกต่างกัน ดังนั้นจึงสามารถใช้แมลงรินด์เป็นดัชนีบ่งชี้การเปลี่ยนแปลงของสภาพแวดล้อมของแหล่งน้ำไหลได้ การศึกษานิเวศวิทยาของแมลงรินด์ในภาคตะวันออกเฉียงเหนือของประเทศไทย

ภาพที่ 2 ตัวอ่อน (larva) ของแมลงรินดำเป็นองค์ประกอบสำคัญของระบบนิเวศแหล่งน้ำที่แหล่งน้ำที่มีแมลงรินดำอยู่

พบว่าแหล่งอาศัยในเขตพื้นที่ป่าที่ไม่ถูก grub กวนจากกิจกรรมของมนุษย์ มีความแตกต่างด้านปัจจัยทางนิเวศวิทยา แหล่งอาศัยในพื้นที่การเกษตรมีอุณหภูมิของน้ำ ค่าการนำไฟฟ้า สูงกว่าแหล่งอาศัยในพื้นที่ป่า และมีพืชริมแม่น้ำ (riparian vegetation) น้อยกว่าแหล่งอาศัยในพื้นที่ป่า ความแตกต่างของปัจจัยทางนิเวศวิทยาของแหล่งอาศัยส่งผลต่อแมลงรินดำ ในพื้นที่ป่ามีความหลากหลายมากกว่าแหล่งอาศัยในพื้นที่การเกษตร นอกจากนี้ยังพบว่าโครงสร้างสังคมของแมลงรินดำในพื้นที่ป่าแตกต่างจากโครงสร้างสังคมของแมลงรินดำในพื้นที่การเกษตร แมลงรินดำในพื้นที่การเกษตรโดยทั่วไปจะมีสปีชีส์เด่นเพียงสปีชีส์เดียว ซึ่งสามารถทนทานต่อการเปลี่ยนแปลงของสภาพแวดล้อมได้ดี จากการศึกษาพบว่าแมลงรินดำที่พบมากในพื้นที่การเกษตรคือ *Simulium aureohirtum* ซึ่งพบได้มากกว่าร้อยละ 80 ของจำนวนแหล่งอาศัยในพื้นที่การเกษตรที่ทำการสำรวจ โดยในจำนวนนี้ร้อยละ 27 เป็นแหล่งอาศัยที่พบแมลงรินดำชนิดนี้เพียงสปีชีส์เดียว

ผลจากการศึกษานี้บ่งชี้ให้เห็นว่าการเปลี่ยนแปลงของแหล่งอาศัยจากการใช้ที่ดินเพื่อการเกษตร ส่งผลกระทบต่อความหลากหลายทางชีวภาพของแมลงรินดำ และอาจส่งผลต่อเนื่องไปยังสิ่งมีชีวิตชนิดอื่นๆ ที่อยู่ในระบบนิเวศเดียวกัน ดังนั้นจึงมีความจำเป็นอย่างยิ่งที่จะต้องศึกษาผลกระทบต่อสิ่งมีชีวิตชนิดอื่นเพิ่มเติม ทั้งนี้ข้อมูลที่ได้จะเป็นประโยชน์ต่อการวางแผนจัดการทรัพยากรชีวภาพ เพื่อการใช้ประโยชน์ที่ยั่งยืน นอกจากนี้ยังอาจใช้แมลงรินดำเป็นดัชนีบ่งชี้การเปลี่ยนแปลงคุณภาพของแหล่งน้ำได้