การวิจัยนี้ เป็นการศึกษาถึงความเป็นไปได้และประสิทธิภาพของระบบบึงประดิษฐ์ในการลด Mn และ Fe ในน้ำบาคาล โดยน้ำบาคาลได้ถูกระบายลงสู่ระบบบึงประดิษฐ์ที่ปลูกฐปฤาษี ด้วยอัตราการ ระบายน้ำ เท่ากับ 200, 100 และ 50 1/d ซึ่งทำให้น้ำบาดาลมีระยะกักพักเท่ากับ 0.5, 1 และ 2 day ตามลำคับ ผลการศึกษาพบว่าประสิทธิภาพในการบำบัค Mn และ Fe ในน้ำบาคาลของระบบ ์ บึงประคิษฐ์ สูงกว่าหน่วยควบคุม ประสิทธิภาพในการลดความเข้มข้นของ Mn และ Fe ของบึงประคิษฐ์ ที่ทำการบำบัดน้ำที่ระยะกักพัก 0.5, 1 และ 2 day มีค่าเฉลี่ยเท่ากับ 94.0, 96.4 และ 98.8 % และ 79.2, 83.2 และ 86.4 % ตามลำดับ โดยระบบที่มีระยะกักพักน้ำ 2 day มีประสิทธิภาพสูงสุดในการลดความ เข้มข้นของ Mn และ Fe อย่างไรก็ตาม ประสิทธิภาพในการลดความเข้มข้นของ Fe ของระบบที่มีระยะ การกักพักที่แตกต่างกัน มีค่า ไม่แตกต่างกันทางสถิติ ทั้งนี้ พบว่า การกักพักน้ำที่ระยะกักพัก 0.5 day มี ประสิทธิภาพสูงสุดในการลดปริมาณ Mn และ Fe ในน้ำบาดาล ต่อพื้นที่ต่อช่วงเวลาที่เท่ากัน และพบว่า มีประสิทธิภาพแตกต่างจากการบำบัดที่ระยะกักพัก 1 และ 2 day อย่างมีนัยสำคัญทางสถิติ (P < 0.05) ข้อมูลจากการศึกษาได้นำมาใช้สร้างสมการทางคณิตศาสตร์ในการคาดการณ์ประสิทธิภาพของระบบใน การบำบัค Mn และ Fe ในรูปของสมการสหสัมพันธ์ถคถอย (Regression) และสมการปฏิกิริยาลำคับ หนึ่ง (First-order kinetics) ผลการทดสอบประสิทธิภาพของสมการที่กำหนดขึ้นในการคาดการณ์ ประสิทธิภาพของระบบ พบว่า อัตราการบำบัด Mn และ Fe ที่คำนวณ โดย Regression prediction model โดยส่วนใหญ่มีค่าต่ำกว่าค่าจากการตรวจวัด และแตกต่างกันทางสถิติ ส่วนการทดสอบ Pair t-test ระหว่างอัตราการบำบัด Mn และ Fe ที่คำนวณ โดย First order kinetics prediction model และอัตรา การบำบัค Mn และ Fe ที่ได้จากการตรวจวัด พบว่าไม่แตกต่างกันทางสถิติ การศึกษาการสะสม Mn และ Fe ของฐปฤาษี พบว่าฐปฤาษีส่วนเหนือดินและส่วนใต้ดินมีการสะสม Mn ไว้ ในรูปของมวลต่อพื้นที่ ต่อช่วงเวลา เท่ากับ 2.65-7.65 และ 3.18-13.40 mg/m²/d โดยพบอัตราการสะสมในใบสูงกว่าส่วนต้น และพบอัตราการสะสมในรากฝอยสูงกว่าราก ขณะที่ ฐปฤาษีส่วนเหนือดินและส่วนใต้ดินมีการสะสม Fe ไว้ ในรูปของมวลต่อพื้นที่ต่อช่วงเวลา เท่ากับ -0.14-0.29 และ 721.22-1, $285.66~\mathrm{mg/m^2/d}$ โดยพบ อัตราการสะสมในใบสูงกว่าลำต้น และพบว่าอัตราการสะสม Fe ในรูปของมวลต่อพื้นที่ต่อเวลา ของ ลำต้นมีค่าลดลง และพบอัตราการสะสมในรากสูงกว่ารากฝอย โดยพบว่าอัตราการสะสมทั้ง Mn และ Fe ในฐปฤาษีทั้งส่วนเหนือคินและส่วนใต้คินสูงในระบบที่มีระยะการกักพักสั้น มีปริมาณการรองรับน้ำ รวมถึงปริมาณการรองรับ Mn และ Fe สูง

คำสำคัญ: การบำบัด, เหล็ก, แมงกานีส, น้ำบาดาล, บึงประดิษฐ์, แบบจำลองในการคาดการณ์, การสะสม, ฐปฤาษี

Abstract

This research was conducted to investigate the possibility and efficiency of constructed wetland for removal of manganese (Mn) and iron (Fe) from groundwater. In this study, the groundwater was fed into the constructed wetlands planted with cattails (Typha angustifolia) at 200, 100, and 50 l/d resulting in the HRT of 0.5, 1 and 2 days, respectively. The result showed that efficiencies of constructed wetlands for Fe and Mn removal from groundwater were higher than control units. Average efficiencies of the system that operated at 0.5, 1, and 2 days of HRT for reduction of Mn and Fe in term of concentrations were 94.0, 96.4 and 98.8 %, and 79.2, 83.2 and 86.4 %, respectively. It was found that the system operated at 2 days of HRT showed the highest efficiency for reduction of Mn and Fe. However, there was not significant difference between HRT variations for Fe reduction. The systems operated at 0.5 days of HRT showed the highest efficiency for Mn and Fe reduction in term of mass per area per time. Their efficiency was significantly difference (P < 0.05) from the efficiency of the systems operated at 1 and 2 of HRT. Experimental data were used to establish Regression and First-order kinetics model in order to predict the effectiveness of the system for Mn and Fe elimination. Efficiency of Regression and First-order kinetics model was examined. It was found that calculated rate for Mn and Fe removal obtained from the Regression prediction model were significantly lower than observed Mn and Fe removal rates. However, Paired t-test analysis showed no significant differences between observed Mn and Fe removal rates and predicted Mn and Fe removal rates achieved from the First-order kinetics prediction model. In this study, Mn and Fe removal by plant accumulation was also considered. The result showed that aboveground tissue and underground tissue of cattail accumulated Mn in term of mass per area per time equaled to 2.65-7.65 and 3.18-13.40 mg/m²/d. The accumulation rate of leaf was higher than that of stem and the accumulation rate of fibrous root was higher than that of root. For Fe, accumulation rate of aboveground and underground tissue was -0.14-0.29 and 721.22-1,285.66 mg/m²/d. Fe accumulation rate of leaf was higher than that of stem. While, reduction of Fe accumulation rate of stem was observed. Root showed higher Fe accumulation rate than fibrous root. It was found that Mn and Fe accumulation rate of both aboveground and underground tissue was highest in cattail that grown in the system operated at short HRT, high hydraulic loading rate and high Mn and Fe loading rate.

Key words: Removal, Iron, Manganese, Groundwater, Constructed wetland, Prediction model,
Accumulation, Cattail