บทคัดย่อ (ภาษาไทย)

โรคมาเลเรียเป็นปัญหาสาธารณสุขหลัก ๆ ของ โลก ทุก ๆ วันจะมีเด็กเสียชีวิตด้วยโรค มาเลเรียมากกว่าสามพันคน รายงานฉบับนี้ครอบคลุมสามหัวข้องานวิจัยเกี่ยวกับมาเลเรีย กล่าวคือ กระบวนการทางวิวัฒนาการที่ทำให้เกิดการดื้อยา anti-folate ในเชื้อมาเลเรีย การผัน ผวนของยีนแอนติเจนของเชื้อ และกลไกระดับโมเลกุลที่ก่อให้เกิดความยืดหยุ่นของเม็ดเลือด แดง

ในหัวข้อของการดื้อยา เราได้แสดงว่าการกลายพันธุ์ที่ยืน dihydrofolate reductase-thymidylate synthase (DHFR-TS) ที่ทำให้เกิดการดื้อยา anti-folate มีช่องทางการเกิดที่จำกัด เราได้สร้าง mutants ที่เป็นทางผ่านทั้งหมด จาก wild-type ไปเป็น mutants ที่ดื้อยา เราพบว่า ประโยชน์จากการดื้อยาจะต้องสมดุลกับความสูญเสียการทำงานของโปรตีน ผลการทดลองนี้ ช่วยอธิบายการกระจายตัวของ mutants ต่าง ๆ ในธรรมชาติ

ในหัวข้อที่สอง เราติดตามความผันผวนของยืนแอนติเจน เชื้อมาเลเรียมียืนที่เรียกว่า var ซึ่งสามารถเปลี่ยนแปลงการแสดงออกเพื่อหลบหลีกระบบภูมิคุ้มกันของมนุษย์ได้ ทว่า โปรตีนแอนติเจนไม่สามารถถูกส่งไปที่ผิวเม็ดเลือดแดง ในเม็ดเลือดที่มีความผิดปกติของ hemoglobin ในหัวข้อนี้ เราถามว่าการลดลงของแอนติเจนที่ผิว จะทำให้การควบคุมจากระบบ ภูมิคุ้มกันน้อยลง และอนุญาตให้เชื้อมีการแสดงออกของยืน var ที่หลากหลายเพิ่มขึ้นหรือไม่ เราจะรายงานถึงความคืบหน้า และการวิเคราะห์การแสดงออกของยืน var ในเม็ดเลือดแดงที่มี ความผิดปกติของ hemoglobin

ในหัวข้อที่สาม เราทำการศึกษาโปรตีน band 3 complex ที่ทำให้เกิดความยืดหยุ่นของ เม็ดเลือดแดง เชื้อมาเลเรียจะเข้าไปในเม็ดเลือดแดง และปรับเปลี่ยน complex นี้ ซึ่งจะทำให้ เกิดการสูญเสียความยืดหยุ่น เราได้ทำการเตรียมโปรตีนนี้เพื่อนำไปหาโครงสร้างโดยวิธี single-particle cryo-electron microscopy

Abstract

บทคัดย่อ (ภาษาอังกฤษ)

Malaria is a major public health threat. Everyday more than 3,000 children are

killed by malaria. This report includes three malaria research topics namely the

evolution process behind anti-folate drug resistance, malaria antigenic variation and

molecular machineries underlying red cell membrane elasticity.

On the drug resistance topic, we showed that the evolutionary processes

leading to drug-resistant phenotypes follow few specific paths. Our system of interest is

anti-folate resistant mutations at dihydrofolate reductase-thymidylate synthase (DHFR-

TS). We tested and compared all possible paths toward the most resistant phenotype.

The advantage of drug resistance is counter-balanced by the loss of protein function.

Our finding helps explain the distribution of malaria mutants in the field.

The second topic involves malaria antigenic variation. The var antigen gene

family can switch between their large repertoires to avoid the host immune system. In

red blood cells with abnormal hemoglobin, the antigenic protein cannot be effectively

transported to the red cell membrane. We asked whether the reduced exposure to

human immunity affects the diversity of the var transcripts. Here we report our progress

on this project and the analysis of the var transcripts from samples with abnormal

hemoglobin traits.

The third topic is on the band 3 complex which is responsible for red cell

membrane elasticity. Malaria infection perturbs its organization and makes the red cell

membrane rigid. We purified the complex for studying structural determination using

single-particle cryo-electron microscopy.

Keywords: malaria; drug resistance; antigenic variation; band 3.

(คำหลัก)