

บทคัดย่อ

วัตถุประสงค์ของโครงการวิจัยนี้ เพื่อศึกษาการปรับปรุงสมรรถนะของ การวิเคราะห์ส่วนประกอบมุขสำคัญสองมิติ (two-dimensional principal component analysis :2DPCA) และ ส่วนขยาย ทั้งในทางทฤษฎี และ การคำนวณเชิงเลข โดยเทคนิคการสร้างคืนความลับอีกด้วย ยัง และ การคัดเลือกตัวแปร การศึกษานี้จะเน้นการประยุกต์ใช้ในการรู้จำภาพใบหน้าและ เป้าหมายทางทหาร โดยการใช้ฐานข้อมูลมาตรฐาน เช่น Yale, AR, ORL และ MSTAR 2DPCA ประสบความสำเร็จในการประยุกต์ใช้งานกับปัญหาการรู้จำรูปแบบสองมิติ โดยเฉพาะการเข้าใจภาพ

ในการศึกษานี้ เราได้พัฒนา 2DPCA แบบระบุทิศจาก 2DPCA แนววาง นอกจากนั้น เราได้นำเสนอ 2DPCA ไขว้ ที่ได้จากการปรับปรุง เมทริกซ์ความแปรปรวนร่วมเกี่ยวของ PCA อย่าง มีแบบแผน เรายังได้พบว่า ทั้ง 2DPCA แบบระบุทิศ และ ไขว้ ต่างก็มีความเป็นไปได้ทางชีวภาพของการมองเห็น ด้วยเหตุผลหลายประการที่สามารถอธิบายได้ว่า 2DPCA น่าจะทำงานคล้ายกับระบบมองเห็นของเรานะ โดยเฉพาะมีการพบว่า เชลในจอประสาทตาและ ทางเดินของการมองเห็นของสัตว์ลี้ยงลูกด้วยนมส่วนใหญ่ มีลักษณะที่อ่อนไหวต่อทิศ ระบบจำแนกแบบหลายตัวได้ถูกนำเสนอเนื่องมาจากเหตุผลที่ว่า ปัมประสาท โดยส่วนใหญ่ทำงานแบบ ไม่สมมาตร และ เป็นอิสระต่อกัน ดังนั้น วิธีจำแนกเชิงองค์คณะหลายวิธีจึงได้ถูกศึกษา เช่น วิธีปริภูมิสุ่ม (random subspace method) หรือ การรวมแบบคัดเลือกตัวบ่งต่าง เงื่อนไขที่ใช้ ในการรวมแบบคัดเลือกตัวบ่งต่าง ได้แก่ ระยะห่าง Kullback-Leibler

อีกหนึ่งที่รวมอยู่ในการศึกษาครั้นี้ ได้แก่ การศึกษาถึงคุณสมบัติการเลือกสรรที่ขึ้นกับ ทิศของภาพธรรมชาติ ในที่นี้ เราอาจสร้าง เมทริกซ์ความแปรปรวนร่วมเกี่ยวไขว้สองมิติ จาก เมทริกซ์ความแปรปรวนร่วมเกี่ยวหนึ่งมิติ โดยการใช้เวฟเลตระบุทิศ ด้วยวิธีนี้ เราจะสามารถสร้าง 2DPCA แบบใหม่ เพื่อแทนที่ 2DPCA แบบระบุทิศ และ ไขว้ ที่กล่าวมาก่อนหน้านี้ ผลงานของ การศึกษาอย่างกว้างขวางของเราก่อให้เกิดปัญหาวิจัยเปิดมากมายที่น่าจะศึกษาต่อไปในอนาคต

Abstract

The aim of this project is to theoretically and numerically study the performance improvement of two-dimensional principal component analysis (2DPCA) and its variants by employing super-resolution techniques and variable selection methods. This study will mainly focus on face and automatic target recognition applications using standard databases as Yale, AR, ORL and MSTAR. 2DPCA has been successfully applied to various two-dimensional pattern recognition problems, especially in image understandings.

In this study, we derive directional 2DPCA from diagonal 2DPCA. Furthermore, we introduce crossed-2DPCA by modifying the PCA covariance matrix heuristically. We also investigate and find out that both directional and crossed-2DPCA are biological plausible. There are quite a number of explainable reasons that 2DPCA use be used to imitate our vision systems. In particular, cell in major vertebrate retina and visual pathways as well as our proposed 2DPCA are directionally selective. Multiple classifier systems has been proposed to use based on the fact that all ganglion are working irregularly and independently. This way, several ensemble-based classification methods have been investigated, such as random subspace method and feature selective combining. The criteria used for our feature selective combining is *Kullback-Leibler* distance.

Another issue that will be included in this study is to study the property of the directional selectivity of natural image. Here, the new 2D cross-covariance matrices can be constructed from 1-D covariance matrix using directional wavelet. This way, we can get new directional 2DPCA to replace the above directional and crossed-2DPCA. Our extensive study posed many open research problems that should be investigated in the future.