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Abstract

The aim of this project is to theoretically and numerically study the performance
improvement of two-dimensional principal component analysis (2DPCA) and its variants by
employing super-resolution techniques and variable selection methods. This study will
mainly focus on face and automatic target recognition applications using standard
databases as Yale, AR, ORL and MSTAR. 2DPCA has been successfully applied to

various two-dimensional pattern recognition problems, especially in image understandings.

In this study, we derive directional 2DPCA from diagonal 2DPCA. Furthermore, we
introduce crossed-2DPCA by modifying the PCA covariance matrix heuristically. We also
investigate and find out that both directional and crossed-2DPCA are biological plausible.
There are quite a number of explainable reasons that 2DPCA use be used to imitate our
vision systems. In particular, cell in major vertebrate retina and visual pathways as well as
our proposed 2DPCA are directionally selective. Multiple classifier systems has been
proposed to use based on the fact that all ganglion are working irregularly and
independently. This way, several ensemble-based classification methods have been
investigated, such as random subspace method and feature selective combining. The

criteria used for our feature selective combining is Kullback-Leibler distance.

Another issue that will be included in this study is to study the property of the
directional selectivity of natural image. Here, the new 2D cross-covariance matrices can be
constructed from 1-D covariance matrix using directional wavelet. This way, we can get
new directional 2DPCA to replace the above directional and crossed-2DPCA. Our
extensive study posed many open research problems that should be investigated in the

future.
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logical plausible) U84 N1INAY (vision) ﬁmu"‘;%’u*ﬁﬂﬁﬂUﬂ‘ﬁaﬁ'umsfﬁ‘iﬂuuﬁwﬁasl PCA
(Werblin, 2007) 735890 sarszamen (retina) UTeananadanIlaanTFsIanatsIuIn
annlussawes vaduludnumadoiud wio Bonsn  wenanil lusdseiAgatasssd

Y ' [ .. a & o
NIIAUNLIN ﬁﬂ?ﬁﬂ%ﬁﬂW?LﬁQﬂttUﬂY?]? (crossed selectivity) m@mu%mmz@ulmaﬂs:mﬂ

ANVAINIZEY BNENY DINWIFUIRRRANDIAINUINUITET NI LEIUUD mMIunugyl
o dl Qe 1 ot 1
sypnmi lasuanasdzamaidiululszan lgisuleunanaTedsund  uar  WaIw
% A:i 1 Qs 1 a ‘é U @ YR a

°11aamsl,mugﬂmwslwmwaamytynm"l,ﬂgauaﬂwmnm TIN DU gwngaﬂmﬂgulﬂu
v o Ao av X ' & A ' € < Yo Ao
Adanvindasiduainenin  Natiadunainin auawaomgwLﬂus:uugaww@wqwluiaﬂ
A2LANUANARIINTIAINLIIEN NI NN laN I wesRa T RINALAT RN L6

1 =S J =) v U Vo QJdJ é o v v
ALNIRND ﬁJZLﬁJ@IamEﬂﬁmL°1rfl,ﬁ1ﬂi:mumﬂumigmvl,@mu Fezrn lwsuInag

Yo daa &

TUUFRNNANRAUN L6 bba U DN TE

9

2

luund 2 imezndnimaeijadamaasiuguililunuitoiodnte  duluund
3 i’]EJE\IZL?J‘U@TadizuﬁEllle,]%‘ﬁlLi’lﬁu’]Lﬁ%@l%ﬂ’]iﬁ%’]ﬂﬁ%ﬂ%{}ﬁﬂﬂﬂ 2DPCA ANWazlBAgIEIa
59 azldgnihannani srunsandoavessndouislunisld 2DPCA judinan
\T% diagonal 2DPCA uaz 2DPCA uuled  Tumsiiluwiuazithwang dalun azgn
ihanusasluuni 4 Fsluunilineznaniis midadan 2DPCA JUOANN 1AWz
ﬁauﬂi:ﬂaugméﬁﬁtyﬁﬁé'ﬂmm:ﬁLms,» Wosnanaln  ssuUSusnuULBRaIses  (multiple
classifier system) lu‘im“?ll 5 Namimaaauug’miaga FERET, Yale, ORL, AR L®82
MSTAR azgnibuaua  &u ayduazfoiauauus dymiuazawissluawiaa azgnnanis
Tuundi 6
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1.2 %mqﬂ‘s:aaﬁwaamﬁ%'ﬂ

[ 6 [ a v d‘p d' = 3; a a el

’J@lqﬂizﬁdﬂ%ﬂﬂ%aﬂﬂidﬂ’ﬁ’mElu LWQﬂﬂH’W]G‘YI’NVlL’]HQLLazNaLﬂNLa‘Uluﬂ’]iﬂiu ﬂi;d
aminuz"uadmﬁLmﬂ:ﬁadﬁﬂimauymé’nﬁ@ (Principal Component Analysis: PCA) lagla
MINaLRaNaILT uae ﬂ'lsa%“ﬂaﬁumma:lﬁmgam@‘fmﬁmﬁaﬂ afauiliznayym"vﬂ”@/ﬁad

v

46 lv3 (cross-two-dimensional principal component analysis: cross- 2DPCA) ﬁaﬁﬁm lag

D

v

wmmmamwauﬁmgam@@ﬂmzé’u ﬂ?gﬁa”nym: AWz (eigen-domain) UNWNNILHN
o A A o ad & a & X A o o A

TuszaunnaadarinlwnITaddaaan  NetNadwnIIaanIIa W el e AN LAy

amsnu:maomﬁﬁﬂuwﬁwLLazLi’Jmmmé'quifa

=S g

=< J a o A A A o o A
lumsanuflazinsanen aaviindonzuuy (measure or score) NI LaLNE

' ]
a =

\§an  cross-2DPCA  fidfgandwimannuaindanuulsdriuiunoloinedid (@D
cross-covariance matrix) WaKniaasiann: (eigen-vector) %38 L’Jﬂma‘iﬁlﬁ’]ﬁmu
(principal vector) NAaLRaNINEIWIMNLINGINSAMWINaaNaanEal (feature extraction)
[ o o 6 [ Aa 6 @ 6 . ni o v di Yo
wiannmIanasnusalnzld waSndanwal (feature matrix) NenwnsnildlfiNansid
o Ay o wn A \ o & a 4 @ &
lunihvaiihnunsoaluald Suand19nMIdwIns PCA wuuasaniiazle tnmas
o & o & a a € & el A o
anwal  (lunsdwine PCA  uuuaaduwaingnwazgnudaadunniaeidaiiadwio

nnmeimMuignulasuinurasadanaasianiz azldinaeianwsal)

Fo'leiUSouTaniliues cross-2DPCA @a PCA @a 2DPCA ﬁﬁmmgnﬁaﬂums
fFwmneesianzannniiissannnaefianzaziamadnninen WenaN U
ﬂmz;ﬁ?ﬁ'ﬂﬁmmaﬂa dpdAydmusznauyyiAysesiduuylyd (generalized 2DPCA)
ﬂmz;ﬁr{mLﬂuﬂmunﬂﬁmmsna%ame‘haaomamﬁmma@%ﬁmmma%mu o luvag
2DPCA ldasunndians s‘fiﬂuﬁﬁ'ﬂ:gﬂﬁm’h cross-2DPCA  LazaNMINA[8IIZNL I
nnmeflawzuwiamaaziianugndaslumilunihainniianaefianzluieans
i nfinaminaassmaandany arwiulylenieFanw (biological plausible) 184
M3 (vision) Feazfianyhdemaasuudamisuwineninnnimeuwas  nda

lenSauvas 2DPCA wuuly @ansd

anzAToiaoRalumInnsuaznsdwadaisy  leenusadeuds e
I~ a o

anwalAuazldyagILIndinTadauYesanyinNazidsad1  (sequence  of  low-

resolution features) LiTﬂﬁ’ﬁJNamiLLﬂmnWLam:qﬁﬂ‘md (directional wavelet transform)
a ad ¥ A o o vo v A ad A ad ~ ) o o
3$L1JElll’]'ﬁﬁi']dﬂuﬁ']ﬁiﬂﬂ’]‘igﬁ]’ﬂﬂ‘ﬁu’m 277 FLLUYUIADBLLIN LNEAVBINUNIIRINS
a o @ o @ ~
ARNWANNAIBIAFILIAEINNTANAUIBINMWANNABAG wae  Bntpniailung

sinAuaNuaziBsagesabsluizauinios wasnNUWNTAEEUT (training set) 284NN

mmanﬁmgomwﬁaﬁaﬁ”mﬁuﬁﬂﬁay AT AIANINLA D TLRNE
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fwluIzidauisnaas nﬂL@aﬁaww:mwauﬁU@gdm@@ngﬂﬁwﬁﬂmmamﬂ
TaNaaflanzNAwIINTalieun; (training set) BaInIWANNAIBLAMNIdINTE
A A o A A o P v A & a a
mMIudasnwimilauiu wWis andanikfanIaieasaneeiianzANNaslBuagieIa
[ ) . . = AL a 6 ' = (3
Tuszau 1infiiawie (eigenspace-domain) Falunih wwasndnvul/susiusvinga lvizas
{6 (2D cross-covariance matrix) ﬁ]:gﬂﬁmﬂ%ﬁﬁmmﬁwﬁuawmsmwamﬁmgam@@o
~ Aad AR o L g o & a a
NN T UATNAN IRz WA 19z la N TAVEI INLABTIANITANNALLDUAFIEIND
NEUIUNAINIIWIN N LU VDI 2D cross-covariance matrix NIRIe 13489977 l,’.ml,@lai‘fj
1 v Vo { 1 e 5 é
LWNIZUGARZIINLGATIN N LINLeas a:ﬁmwgﬂ@aﬂumigmﬁLmﬂmanu WIDDNULWILI
LINLADILANIZLNIA ﬁmmmmmlumsaﬁhé’nmﬁﬁmmzﬁ'umsiﬁﬂuwﬁﬂ"lﬁﬁﬂdﬂ
nAwaslamziwfe (ReanalLsedINaasew i lufanmenisannninfansan)  éae
m@;ﬁmmmsna%ws:uuj"«ﬁ’ﬂUﬁﬁwLLa:Lilmmﬂé'@lIuﬁ'a NN WIRENa e 1ilw 2
ad
3%
AaA ~

2BuIn IG]Elﬂ’]iﬂ’]l,’)ﬂL@]BgLQW’IZﬂ@I‘Yla(ﬂLWUGL’)ﬂLGlﬂgtaEl’)Lﬁﬂﬁ%”]x‘i FITWMBNUTY UNTY

9
=

. o @ o v Aa { v 1 A o d %
(strong classifier) mmugmluv\m %39 IdNaasliianiaasianizuinninnikatNaad
e o ' . o ~ v A d o e
@397 uNaan (weak classifier) IMTUIBALY LIRS 5’JNN§]°UE]\1ﬂ’]3@]@]§T%LﬁE]ﬁ§"]{1 ISUUGIVNLUN
@ . g = @ v & & ] <
Uuunaaad (multiple classifier systems) Fannandsnsauninuaduasmiiuad

NI ?NIﬂSG M

o o = = Ao =2 o A

funsudnasmiksvadlasamAisidumsdnesn  mslvdlanisiinuizay (cross-
selectivity) AduwImlasassann 1D cross-covariance matrix Lival# e 2D cross-covariance
. ug/ o R K a AD A v . v J
matrix 1wddu  lagdilsBasunBniugimianiiu (neighborhood element) Tunan
lasnsldwanisulaannianszyfianis (directional wavelet) azvirlwle 2DPCA uuulyd
a v o Aa a & [ a a ' g
Tur @A wAuAinTIe Tz ALLLRAN8IZAUANNAZID B (8 azidoaludiniiaz

) 2 o o ' A o v A & a
namtede lluiitetendald)  aftamauiTariimsssdunneeiianizanuazidaa

§9820 54284 cross-2DPCA TR AT LA UTZ D U TNANE1ININ AW WL THN

1.3 VOULUAVDINTTIVY

1.mﬁmiﬂ:ﬁﬂ%{]ﬁﬂaﬂ 2DPCA g3

=

z.maaumsjﬁ‘iﬂU%ﬁﬁLLazLﬁmu’méT@]Iuﬁa @Twmiﬁ‘wﬁaﬂé‘al,l,ﬂiﬁawq@ Y8
2DPCA a7
3.ai"mLLum‘i’maamoﬂfﬁmmam’maamm%ﬁaﬁué’nmﬁmmau‘é‘mgw’mﬁo ANNTA
seuvessnuoinuasfoadeis  2DPCA  lad ﬁ%m%'umifaﬁﬂuwﬁma:
Whnunoaaluda
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4.°nmﬂaaﬁmwjﬁmmammﬂmLaWLamzyﬁﬂma \WWasd9 2DPCA oY iiWawene
analwdnena
= Id U A 1 3’ > =3 a o s [
5. anmanutdulylduas msdandasinniniasaad1niu 2DPCA a7 uaz 2DPCA

"Lmﬁmwxmmzé’umwau?ﬁm

1.4 Uslaniinaininazlasy

1. gmﬁagalwfﬁLLa:Li’Jmmﬂﬁ%ﬁ%%’ﬂ%ﬂ@aamuﬁuﬁ%‘ifugﬂuamﬂm

2. Tunauiiluniusaihnansdalui@losszdouiysnltes 2DPCA uwuu'lad

3. asanuimumiliensdauleneuyrddnysefidled warszuuiuunnanodm
Taumsenssininatnadaaa

4. s=dsuis myenziiniides 2DPCA §u (random 2DPCA 1f3nitias analysis)

5. @Ry uaz uuudtaesmeadiacan’ saimiaiefuansalaNuazlBuagInIa
ﬁamnmﬁwé’waoé'ﬂmiﬂfnua:lﬁm@“hﬁusJ 2DPCA oy

6. asfANUFTuHANMILaIINIaATTYTiaNg

7. Uﬂm’]w%’m'maualuﬁﬂizqwmma WAZ MIRITITIMNI T AUUIWITG

1.5 A1AUDA D 1N

1. muaessuudayaluniuaziihning (YALE AR ORL uaz MSTAR)

2. uanmnftﬂ'ﬂﬁﬁmsm%augmﬁagaluwﬁwm@lmy' (FERET) ﬁLﬁa"L@T%'uamgfym
300 NIST

3. Anmansuianiziianivaimaiiensiaiudsznauyriaysedialyd

4. AnwuAINaFEU INMKRITlumMInaLEan qwmaaé’uﬂs:ﬁwﬁaa 2DPCA a7

5. ?iﬂmLLazmaaumiﬁﬁ‘iﬂwﬁ’]LLa:Lﬂmmaé’eﬂuﬁa deomIliulennuasdags
éam@imzﬁuﬂ%gﬁmwwz (eigenspace-domain) 284 2DPCA ‘lu¥

6. &31 Wow uaz hiaue mm’nuluﬁﬂsz‘*gu'imm‘ﬂmzé‘umum&

7. @nmuamIklasnianIzyfiang iahansanlEiu 2DPCA

8. ?mmua:maaumﬁaﬁﬂuwﬁwLLa:Lﬂmmﬂé’@l%ﬁ(’?\ donaeauligiianie
mman’é‘mgaﬁam@ 2DPCA fmsramsulasniaauuyszyians

9. a3l Wow uaziiaue uwmmluﬁﬂs:"qﬁmms nID MIRNTITINT  LIEAU
WIWIT6
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s a ddslu
2. ﬂqas}gﬂmmﬂ'mmswug'm

UNi UIILIUNLINY NaeamamaasiugIuiineites Ny msgmluwmuanm
WUNLAALWIA lagaznaneTsduudT nMIRNaaLedd aae mﬁmmzﬁa’mﬂsznau&;m
fd (PCA) waldiuszunids  vwfamadivdyp dagwn uazguaisazes PCA e
ﬁ']vl,ﬂg'( PCA g’uf’f@m 1T 2DPCA 1as 2DPCA wuv s 1Tudw PANINHU LAQNALLAS

[-% 9‘0/ 1 I Q ] 1 { v g J 1
U3IUWAA L lWNIITTAIN PCA 1WA IL61 9N ANIZ R a:gﬂmmalmﬁummwﬂumumo
v o g \ ) & @ a & R
ANMUFUNWETzNI9 PCA nu anadtdunlyldnisiniwuesnisuas  annn 13192081709
a Aad v A a a A R =2 a P ad
RS T e R b bR P PR VR HIGHE LA P IK Waln ladnEnfaTyaziduaasIzidauis
NIRDIALAD LIINALNEND ﬂﬁaﬁ'méffmo@mﬂ’smazlﬁmgam@ﬁﬂmzé’umaaﬂ%gﬁfjaa f

J o et Yo v Y o a
mmzz«mmﬂ"uummumigaﬂuwm aztinnan EIE’NII%N@]

wazwsziaziin 2DPCA wuvled anldifudatiseng Sasléwuin eadsensfiania
e Lﬁaﬁmﬂ*’ﬁﬁmzuuiﬁw S UL AAUEHAIRaNANIIVEs 2DPCA A1l 1939dnald
mIfaanaiteeng laseanisiniasdaniamzaiwnieues 2DPCA lotudn sy
fﬁ‘hﬁ]zﬁmmgﬂﬁaalumsjﬁwmn%u m@;mhmﬁnﬂ%@mm 2DPCA uwuuley 1w
wnzauadgwauanuululdnedinimia ﬂwﬂszmﬂﬁLﬁm"ﬁaoﬁurmiﬁ‘hﬁ?uﬁﬂmw
%ﬁ%aumammmiﬁ'ua%i LAY “ﬁ’;ﬂﬁ'ﬂ%ﬂﬁjﬁ‘i’] q@ﬁmlﬁwzﬂm’;ﬁa NAN1ILU AN
LWNALULTEY AN %aﬁi’mqﬂi:adﬁﬁazﬁﬂ%ﬁu 2DPCA Lﬁﬂﬂ%’ﬂﬂ‘gaammuﬂumiiﬁw

o

a ¢ 1 ¥
21 ﬂ’]i’)tﬂiﬂz%ﬁ%%‘ﬂ‘wﬂaﬂ&!ﬂﬁ’] 31

mﬁtﬂﬁzﬁﬁ?uﬂxnauywﬁm@ (Principal Component Analysis: PCA) @8
ATTLIMNINNATRAMFASNT  N13utaddsaiain (orthogonal transformation) Tuns
d' U o Kdl I > 0 d'd o o 6 . 1 % @
Lﬂaﬂuﬂ;mﬂnawagamm@mmma’mﬂumLLﬂi@gwm FNFUAUS  (correlation) ¢iany 14
A I3 a oA ' o o &4 @ A a ' ' o o .
Lﬂaﬂmﬂu"g@maamLLiJiqvasJamaqumanu TIgniIndn muﬂa‘znauywmmy (prin-
. A wva o ' o @ A Aaa . . A
cipal component) 1%1’1’1\‘]1J§]1J@1 mmwnaamuﬂizﬂam\gma’lmyazu UG (dimension) N
HAUNINRIYNNUNAAILANVAINILLTAURIU mmﬂaaﬁgnﬁmﬂué’nmm:ﬁmu 1yznay
o s a d' g: A I 1 o > p.l'd a
ymmmyu,snazwmmmLLﬂsﬂiaugowq@ (wuae HusudsznaydaynunsuysHuued
doyaunfiga) uaz sudnevdallazlanuulsdrwvesdeyangigada ldnafiduly
1 v v v
muldtasnanin d@nilsznaunwazaasnsainnualnilsznaunawiviin B3a dniy
A 1 1 ] [ [ 6 1 %) { o @ a
%nive AaluddmilsznavazluNandunwsaann miﬁmuﬂs:ﬂaugmmmyﬁmﬂuam:

Ve ) & a & ad @ a &
@]aﬂuaﬂqﬂauﬂgm%zl,ﬂ@mu Lﬁquiuﬂjmcl’n!@"ﬂaa&auﬂ’]iLLﬁ]ﬂLL’ﬂﬂLﬂu
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P o
o<

d' ' o o A d o o
E‘]JVI 2.1 muﬂi:ﬂaugmm B NENAINDINULLASN T

N17UaNUavLNATIN (joint normal distribution) 19608289 PCA fia PCA %iiAau
' 1 o e 6 . . az v L ad [ ] s
aau"l,mma MIFNIFUNND (relative scaling) PIUTAURUY PCA 41an®a1dnN

J @ v 1
aaﬂ"l,ﬂmuagﬂumiﬂizqﬂ@ﬂmm % WaNIULay Karhunen—Loéve (KLT), wamuiay

Hotelling W30 MIUYNEaULTIIRINTUANIZAN (proper orthogonal decomposition: POD)

PCA gnaetiulull a.a. 1901 lag Karl Pearson  amzit PCA saulmajazgnlsidin
wsasialn MyIATIHYaYATIIRedE (exploratory data analysis) Waz &1MILNITY
UWULIIRaYiIIUIE  (predictive model) PCA munTafuwIos lay msugngasan
ANBHLANIE (eigenvalue decomposition) °lla\‘lLwﬂ%ﬂﬁfﬁ’lm’mLLﬂiﬂi’Jui’JmﬁmﬂladﬁaHa
%38 mnwnz/amﬁmngm (singular value decomposition: SVD) ?Ja\‘il,&m%ﬂ‘fﬁa%la %GI@]U

'ﬂﬂaazﬂs:ﬁmé’amnﬁwmsﬂ%’uﬁa;&awﬁmmﬁmvhgmﬂmwiazﬁ@uﬁa

PCA ﬁ'ﬂgﬂﬁmimdwLﬂum%aaﬁaﬁmmsnLTJ@LNuqmauﬁ'@mslumaaiwsaa%wamaa
Toya I@zlmwwﬂuudﬁmmma%mﬂmmLLﬂiﬂiaumadﬁayavl@Tﬁﬁq@ Tunsain ToyauLL
BRRUAILLST ﬁayaazgﬂwm’mﬂuq@ﬁa%ﬂu 7aAAA (set of coordinates) maaﬂ%gﬁﬁagaﬁﬁ
AA ' . . . . i a o | @ Y
ddwwalnagiuan (high dimensionality) Twh® 1 unuwineazivinnunieaauls PCA
o & AAd aa = . . . A A
mmmlmamw@ﬂugﬂl,l,wm ifwaldn (low dimensionality) 84 93U 2.1 "L1" 9
Usnguw  Ianunanenidszlomiagnann aaaztAnledn Tasmslaines
FIRUTENOURANFIENNAIULIA  (RAIRNUAUANA 1) 32 laIn muﬂﬂﬁamaaﬁagaﬁgﬂ

A Aadl
L8zl PwIaNANAaR

HUNaITBY PCA @la"lﬂﬁ Junsaanunangaas PCA Lwnsdinies I@]Uﬁ%’]‘if]ﬂ

foyaidu @ut/sgy (random variable) MuNOEHVad nwzuIRnIElnIuasan
. kg N = v & A { a g
(stochastic process) W2 nO®JUN Karhunen-Lodve (B9ldnnasTaiiaiduiiossie
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Kari Karhunen uaz Michel Logve) famiunujuniziiunmsalniuaa@ndionasiandaidu
foe A & o v & L oA o & o
289 WINTHiTIAIRIN (orthogonal) INWILAUA pUaNmEwABIAUMTUNUIUN AT
I o @ W a . . ~ A {
93 nady aunIuWiies (Fourier Series)  aflanszuau nsalnsuaadn Adsnglugy
o o v & AN e =< ) o A~
vasaynIndauatudzluuitlaiimifinsuineunihitlas Dharmananda  Damodar
Kosambi AIN32978 (expansion) NITLAIMMIFINIUAFANIWRANINAAILAD W
nzuaumIgninualiaglutifa,bludy - Nedfugrunaniiasainlanaunaansous
lémdigd *([a,b]) Asansounuginszuiunmsdsnindnanudld  enw ddguas
a N A & o o Aad A
nO®JuN Karhunen-Lodve agfin imaansamilsnidugiunaniidngaluananunoii
Wintugunanin leazlden aawlanwarmadsisigas (mean square error) Ndeniiay
A )
Ngale
a 6 a Qf | o a 6 o s
sunauWTiliaudseanmraimmneznaduimauiis  uasinTug unanUeIns
'Y & & o o A a o &
nyensdiznauaae Wargu krinarnnasanuddwiunis  (fasidsznaudans
o o o R o £ A
Wortdu lmiuazlalol) lunsasanudia arangefun Karhunen-Loéve dnilszansile
®) o ' . 6 o [ 4 v Y
il gut/sgu (random variables) wuag NlanTug1wranzaIn13nIzeNliy a9
A a & o o a & A ~ o
ANNTZUINNNT 71933 WendugwnaniBsasannililunsunugdmwitazgninua
& o \ A i . a A
lay WenTuaNuuUTUTIUTINALY (covariance function) UBINTELIRANT  MBNUINILS
“ a 5 ™ A v a 6 o o aid
WanIulay  Karhunen-Loeve finsUsuarenanszuaums  inelWiiawsnisugiunania

ﬁq@ FIMIUNNTNITZINYNITZUINANT

o

A a A 6 A a ° a AX 6 P
luﬂ?ﬂWlﬂiﬁJ'J%ﬁIVﬁLLﬂﬁ@]ﬂ&lquﬂﬂaqx‘iE] cu°(1‘W @]"i‘!@]ﬂ’] L@ { Xt }te[a b 1u‘ﬂumuﬂﬂm\m

]
AnaafuilauaInTzuIUMT WAL AIAIIWAIARITT (expectation) E (X, ) HdvinAugud

[

) a 6 o & a i =
anaaTHNIMAaeTad t 1u [a,b] awun X, azlinsusndesdad
X, =2.Z& ()
k=1

dl I Qs 1 dl =1 g o 6 1 Qs & 6 o 1 dl dld 1 & a 1
laaf z, LﬂumLLﬂiquﬂVLuuaﬂastumaﬂu uaz e, tuisngudaiiasnlanduatelugg
g; & % a { 1 Qs 1 ¥
[a,b] LR AIBINTINWLAZ N1 LZ([a,b]) Wunwganainl nsnszanedh 1unng
a & A a & a a A 1 @ e '
NENUBIAIRINEINT fa z, asannulu U3pdaaawiaziiu (probability space) &3u
Wodu g asannuly U3pdian nsdimludvesnsziiuns X, Ngudnandves
ﬂszmumi"l&ia%iﬁﬂﬁ‘m;@ﬁ%ﬁ@ mmmLLﬂaaﬂéﬁJmLﬂum:muaiwmﬂaaﬂﬁﬁﬂuﬁﬂma
1 IQU o =) o lé U | U Qs
agﬁwnm@mm@iﬂmmsmmm X, —E(X,) o ANITEUIRNITTWUULLNFLED 69
' = = & & A A& a @
w3y z, AazdinInIzNBUULINE uaztiwntzuinnIsInsuaaanmiudaszdans PCA
o o @ o o o @o o = < > A
Vl,ﬂgﬂmmsl%’l,umiaﬂ@mmmammumigmlwm Falaanild e1auisAniuas PCA

vasmwluwi  Aeugnassundguldidudiudsguniimmeaneduuninmd  edelsng

MRG5080427 i 19/90 21 nINHAN 2554



nansdnie ﬁmmmMﬁau"L@T%’umgmm

lagvanald Asudszantves PCA aasmwluninanuninnszangduuuang Ala1ns
aa v Q [ U v Y 3 1 dl 1 e = Qg
sidauduge s daznavagdiy  anzgRdplddunainit lwamed drduilszdndvas PCA
Qs Qd L= ] { ] Qs =) :s( =)
suauuIng  azdinmsnzneanduwwuuims  lusmen  dsudsednives  msliemed
dautznay uddzy (minor component analysis) whaziudiudsguniininszasduiu
A A v & A AA Aa v o A e
whuuaUne v3e enalimsnszansanduuuudn Aldmeaiifeuauay uaz & luwiny
6 & A v o O A A o A A o
aud  lasnmassuadgulifidomld  luewaamazsansnfenuidslulwifineny

msaﬁ”’mﬁuﬂ’nwa:lﬁmgam@@ﬂmzé’uﬂ%gﬁsiasl PCA

wanand daeunianunes MIsangudls K-AUady (K-mean clustering)
(PCA, nd.) mmmm"l,ﬁéhﬂmnmuﬂszﬂaugmﬁwﬁ@ PCA uaz 13niidas PCA Nunau

Aiemaypinagazlienansal winnu Uiglidesvasaunasangungninvuaciy wning

7:%I9ANIA (between-class matrix) PCA azanuifiniidas ldaauwr dnauas

2
=

n319 (global solution) Va3 MIANGUAIY K-Alady  droinqil PCA et lF NN

=

mdaaulndliuda (near optimum) 284 MITANFUAIL K-FLa]

o

mimtzmﬂiﬁﬁ%ﬁﬁﬂﬁﬁ@éﬁLLﬂi@iuﬁvlajﬁa%é'wﬁuﬁ(ﬁ'uf: Lﬂuﬁfﬁ'ﬂﬁuaiﬁ fams
N32378 Karhunen—Loéve %38 nsuangas Karhunen—Loéve E%m%'ugmmm%dﬂsz%'ﬂﬁ
(empirical  version) WBIMTIATEHEINUTZNALVINTZUIRNIRINTUARANT &390
Muwimlannaietng wia  erededszang %uﬂuﬁfﬁ'ﬂﬁuﬁlu%'jﬂ Aanansulas
Karhunen-Loéve (KLT) m3iiasziadiudsznauydeny MILENE L EI RN AN TN
(proper orthogonal decomposition) WeriFuasaniEslszans (ﬁwﬁﬁwlﬁuq@ﬁw%m

a 6

LRz BIWARNE) W3a Wan1Iulad Hotelling

2.1.1 §ALA82

PCA Lmugﬂﬂ’]WlU%ﬁz’]@hUNaLﬂaﬂﬁﬁﬂﬂiﬁldﬁﬁﬁﬁﬂ luphaneal  1eering

v v a 6 a 6 v v P
LL‘Y]‘H:EI]“IJ@]J’]’]WIU%%’W AILANINDYWIA N XM LunInD ﬂizﬂﬂ‘u@]’)ﬂﬂ’]‘l"llﬂ‘ﬁ%’] X V]Qﬂ

>

wlFdwanans I uss Medanuluuniasdaiiasnuly nia L :[E,--~,TM} lag
A N IR ANLTANIRNAUAINW IR waz M 1Huwinwinalraganlglun1sindu

MW IR RIRINITDF I T LG A9tk

—_ 13 (1)
m==2)

i=1
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Tagnisvaaanaigradluninaanainmwluniiudaznin 119z le
L:DrmL“JM_m}:DUUJM} 2)

& g a , v o ¢ v o e °
TAVBINNLADIRNIZH 22)NIINIT Tunsthanual luninaneoith  dwImann
AT 38 LOWLTULUA (ensemble) VI unINTANNULUTUTIUT NN

(T \ (T ) 3)
=31 i)
i=1
MIFWIWBAT LINLABIIANIZ NLUNINTG C @399 wIa NI3unI1 MIswImsan NSRS
Mewan (outer product) "L&immzawlumaﬂﬁﬂ'a NIHLIHINIINTT VWAVAILUNING C A2
sl,my'mﬂ lunisuansinilsznauvad PCA wn3ng C ﬁ]zgmmﬂﬂaﬂﬁ’m MILENLaYAILEN
& o v v o 1 o { 1 ~a ]
3% Gﬁaml,a’flu@laﬂ‘*ﬁmimmmuawmwmalmwmﬁlmymn mmumﬂ%ﬁmm@iv\m
mMIfwI ez TuSauiunIRazfi I la daoah 9lafimaiiaue  (Fukunnaka,
1991: Turk, 1991) MTFWIHALITZNIDA LINLADILANIT A8 wagmnm?u (inner product)
a 6 T d'd = 1
PBILUNINT R=L LNUBU19LannINyIN

.
(LLV, = VA (4)
A A A o & A A eda .
lauf V, o wvsndanwol uae A, Ao Wwn3ngni dawie (eigenvalue) Tag
ms@mﬁ‘aaaﬁwwadaumsﬁw L 139s e

(LLOLY, = LVA, (5)

v

o & a € A & 6 T o Y A
AIBW LUNINDLTINIRIN VaIINLAaIanIe Yad C = LL mmmmmmvl,@mu

1
= 6
®=LVA 2 ©)
smiumwluwinudsznw x, nneeasiwmEn a, sasafmwImldnn mIae

(projecting) A wlunihngnudanduwianiee’  aswulunihanwal dwaw K luwih
®=[e, ]

a =@l -m) (7)

P A v v ¥ 6 v v 2 v
JUN1IN (7) 91 ﬂ’]SLL‘YI‘HElIﬂ’]WsL‘]J%%’]@’JU 11J‘H‘H,’]ﬂﬂ1:}m ﬂ’]WIU%%’]&’]&I’]iﬂ&i’]dﬂ%vL@

0 luninansal

r=®a +m (8)
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€1 €2 €3 €4 €5 €10 €50 €100 €200 €300 €400 €500 €600

o o« v o e o . .
Eﬂﬂ 2.2 datslunihansol (eigenface) NLILIAUTUIAVBI ALANIE (eigenvalue)

wwdganuIndauiened wuunsigsina (multiscale)  PCA wangagnwlumiin
& = [ P v o ¢ dAa a
aan {unaguauaud aausadlugun 22 luwihanwal A% dnamzgs azdl
anumdannumwluninfuusssnwassuifvasdndsznavanaidr & luwih
ANHONTANANIZE  FINALSIIZINTDURTY QI AIVNIN FINAN WU RUUAVDITIN
Usznauanungs \he991n PCA unaunugdmwlumihngnge  luwibhanwal K
v dAa a & o o a =2 vl Ao o A
lumihnddiamzanniige uduimsinuanigs Jeaelidsinasisdyngaesa
Joyalumihnw  dulunhansal duduinnnd K azgnassun@giwindusygim
UM% ANAURswulamadusin wer aug Nuanwioanlaseaiisluniin LT
Weanunsdmanakanwuuunaesng - ifssnudinlngzesniwazagiunuanund
: ' [ & o
fauunuaNNAFIIzUNUIUVEUTRINN  waz  uauaNnadNgInnIuldazunugdsy g
UM mMIf PCA mansndsi limgusutifvesunuanudgiuazdrvasniwluninle
& . A A ¢ . A A a & v @ 4
w Wzinnmerand wrindenuudsiniuiiniey Wagnudaayisoiudazlien
sunasunieanan A% ALLAKled1 PCA mansaulsueansinlsznaunsnnad
lasnstszanalwdanmuazdaslidayanlslumaBndulunsdwan luaaeiins
Annziuuurassing doaldainsasnisanad wie WanTugIuranNdnaaausweInIg
a @ P & o o v o & ' v A =
AWA @199nK Twnmstszuaans lasAnsitugunan ledmammuadnanaisni dolid

1 d' (2 s o U t-ﬂl QR
mummmaaﬂummmagaﬂmmu

2.1.2 da9i@

L%as]f: Yang (Yang et al, 2004) fusin3sefivusnildianamefia A5uniims
’3Lﬂﬁm{af?uﬂiznaﬂywﬁﬂﬂvzyaadﬁﬁ (two-dimensional principal component analysis:
2DPCA) %9 nSndanuudslviusiniigrvesmuwlundin azgndwimlasaann wn
SnBUBININ Lﬁaﬁa:vlﬁmvh”%mmmiﬁgﬂué’mﬂ%gﬁ@"nLmu',c]Ltaﬂmaa%ﬁwaamwlumﬁw

Yang uazAtue (Yang et al., 2004) l@¥iINnIINaaadlazwyINaNITIOUUD

2DPCA @ni1 PCA luminanasnugudoyaluninaogiudoys
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]
1l

A % = a ng Aaa a 6 ]
wikluanuldiSouvesdouitiednin  awalfvesunindanuudsyiuim
Ner lndih enaflawafifiriny anunhesesnwlowih wia enugeasmwlumih (lu

a a Aad, A o | A a A ] & A
nadl vesszidouATiuiwmmndesn 2DPCA)  Teaziinadlumamdn nniaeiianiziaz

FUINATUD mvl@i”m ALIININN

| nl' o U & A A 1 aa a 6 1 dl n}l A
WHunensazi ilunsdifiiasin smadifves wndndanuudsdsiusiaiest ael
wnaannI1 wnIndidaslilunisdwin PCA anuind@ Ndwindiuragmniuan wn
Aonannngeganvinasduisy  wnindenuudsdnunuies  Adwimanaw
[ A A @ v ' a 6 1 a a o ¢ -
luwih wia Gunligneesit wndndanaudsdsmsangnBelszdns (empi-rical
. . & = a c 1 d' A Y a
covariance matrix) % LUunN1TUTENE ININBAMNLUIUIIWIINLNLINUNDIG (true
covariance matrix) 2a33ninwlumih  winimazdszinaiamingassitlitiona
v o v v v o o é v Aa v
anded indnduazdaslfmwlumihdwnannlunsdwon saduldldonlumaljia
luaanindanuudsnuiiuieized 2DPCA  Huazlawialdnninunn
MIAnsUseanmh (estimation) LWvSnglalay rank %3 Henlnaidssanuiduasedinin
I@]slmwwﬂ%@wﬁagaﬂnﬂuﬁﬁaﬂm"]mﬂ 6?5\1mm:auﬁ'umﬁﬁﬂuwﬁwLﬂuasmmﬂ EAVEN
A v A o & a 'Y ' o @ a 4
Waimaunsadszanmlalnaifssnuanuduasilaunnnin - ez ldinaunsananibes
o @ o A ° o .
dymdanlunisidh sendedym Suwaurnauias (small sample size: SSS)

{ { U v v v { J

UBNNNIAGHALALY SSS ANANANTAULED  auITaUENATUVe 2DPCA a13nID

A o o A A A | o o A o = v =i
adunudmenanmInwdeiianinladnnanenanns  wielunanmsh leun avdavas
A & [ a ] - { a '
aanuAy (Occam'’s razor) G409 1HiTwAnsdun William of Ockham (Occam, n.d.) NiiFinat
Tuga9l a4 1285-1349 wanzasaulazaseanuauaitllaainig ql “auufgiu
. A o a ' ea & A A o AA v A . =
(hypothesis) w38 dabunsdalnngnrsinugiuigs fe dAeaunilinazgndesfige” o
LLﬂﬂ’%’]ﬂﬂ’]‘H’]&lﬂﬂHI@]ﬂ@]N a9% “The simplest explanation is most likely the correct one”
win MAsundeslanuanniin “Simpler explanations are, other things being equal,
generally better than more complex ones” %38 ANNAINLNALALINLLKIAINNAAAILGNNIN
“Plurality must never be posited without necessity” laof anusndunuiass (truly
i AL a o o e A A
necessary entity) Wi wuefs wIzid7 (God) tlasiasgnineudises Contact T4

LLN@GI@U Jodi Foster a:i’h Occam'’s razor LﬂuLLﬁua’ﬁmadn’lwslu@TL%adﬁ

A o a PN a Y ¥ ¥ [ et
Gﬁmaﬂﬂwﬁmaaaammu RINNINDDTUIULNWNLAN VL@@\‘iﬁ I%ﬂitﬁmadﬁﬂmaﬂ;}ﬂﬁﬂﬁ‘iUﬂ’ﬁ

P Aa o o A o o g A € \ A
NNNUNNITWINLDE Luamqwa;&aumlﬁumiﬂi:mm LUNINTAMNLYTUTIBIINLNY

(RUNAFIU) V89 PCA GIdunmnadidlndann (mmeﬁ'ueﬁaugamﬂ) M iAe mMInTeTLIAY

- L | Py o d'd [ U Aa &
aua37 (overfiting)  dulunalitoannan unudaasniienadudauwinniinluiu azgn
UMWY FYYIHIUNIUNIIENG (statistical noise) lad1e  undanadn

o Ao o AL wa a a & i
LUYUIIRINTUDDY uuuﬂuﬂ’]iaﬁﬂ’]ﬂlu NE g ﬂ']?l/j:i”f“ﬁdﬂ?fu (function
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\ . { o Y o . .
approximation) NdaiunuzUNaridulas dan Wariduwnuru (polynomial function) ane
duay uwdianiTunimnauaugI gazdeutvdenlmdesyymunin denagih M3
a U { ‘é a A U o
Uszanns lwn3ndanuudsdsinsauiel 289 2DPCA Sslvmal@idnninann (Luy $1ae9

A& ! , o 9 Ao o v o & o
ﬂwugﬂumﬂ) u']'ﬁ]za’]lnjﬂ"ﬂULﬂ']Iﬂiﬂwaq E]JUVL@@ﬂ'J'] auﬁ]gLﬂuNﬂlﬂﬁﬂJiiﬂuzluﬂqi
o ] a

ﬂquqﬂﬂjqﬂi]ﬂqimqﬂﬂﬂ‘hn@ﬂ?’]

Uam overfiting  wugaiduniainnuanengudenusnaziduiaznsdssinm uag
myfgduny lasawzlwiiFesiineiy niunanuewdesiuauugilsi (bias-
variance dilemma) 38 MIUANUAEBIZHINANNEWALINUANNLLTLTIN  (bias-
variance trade-off) udlutiuniuandseantd lumsdsznuisigunlsfaizunnmunin
winuuimdunadurzuududs wdanllrdunpnandsuduginiidudusas anld

v v a 1 v { 1 0/ a Qs’
lunsdszinaszuy weaniidayadasannifiuniazaivsumaiieud lomdndudzdng

6 & v ddy Aa .. A Aa
vasgasidunpmanInaald  lunsditaziionns overfiting w3a nslszanmid A
. 6 o dl v Qs 1 1 ‘ﬂl v v

uilysau (variance) g9 wwmzaidunnmunlilaudugenitszuy udilalddayalunis
= & > a £ x> o o A \ & A '
Andwioezdu daulssandraslinmunrwuduaugs gazlednringud  aawndaanizd
e a A€ 6 o @ v A & a ¥ o ¥ e e o
fulszAnvesiaidunnmnauaudundudodu vlw overfiting wuald  lumenauniu

% t:l"v % c§ U L% 6 o % [ P=3 =3
winlfzuufidudeuann  Sadaslifaitunnmuauaugs guldlumadszanaisaziiona
wnzan udinldgasidunnmunfisusuduinld inazlenudulyldne: awdss

(bias) TUdngudayausnguuiniiuly

slumijﬁ‘iﬂuﬁﬁw%aﬁmmmaaﬁ@ﬂmy’mn WINITUUIMUNAAMNTUTaUIIN
(nlawiy  msldgalsidunnmududugaann)  aldlumidasuaaavaaag S
Fudwazdaslimealumsinduduimnunn Fadwlulildlwmed fualumsiin
lunir  wzlomafesiunwluwinduiwnunldevsadwldle @u  5e1ed
Iammﬁumwiv%ﬁwa@;jriams%”]ﬂ"L@?Lﬁﬂd"Lﬁjﬁﬂwwiuwﬁw st 1Sludn sTuduwLn?
dudawaziliiia myddaya wis ddenuudsUnulumsdadulags  lumenduiu
winlgszuusuunfidusauios ﬁﬁm’mLﬂuvl,ﬂvlﬁﬁLiwzl,aw,’é'm"[ﬂéTan&jumwM%ﬁwma
ﬂq'ummﬁuvlﬂ IFIRIAITENTZUUIIUNN s fI8NALNAS Aanududanlisnn wia
wasauinly

wanand doywn SSS wia overfitting Haiuniindludnsadn da1wvesld (curse of
. . . . v A i~ £ {
dimensionality) Richard Bellman (Bellman, 1961) "L@aﬁmmﬁaﬂtymﬁmmmﬁa
a AI J I (=3 dl o a v AI J A nn:i AI c?{’s:: d‘
USVNATLANT 1O L1990 LuammmaaLmuwnmwwmmmﬂsgmaﬂa wiuduglaisan
o e a 6 v A aa 1 ﬁ | & a d': o ] ﬁ
mmyiummme:magamm@m&lﬂ@mn T RHAINNANNLTUIIINGT NNF IR UITI
Lawags’mﬁmﬂuﬁaoﬁu ﬁ]xvl,&ia%muﬁu@iavlﬂ waaznszanauanaladminidusns

. £ A oA o £ A =) & . A o
SLV\Q.JN’]T]"U% RONANIBDNULNRUS A ﬂ?qﬂlilulnﬂﬁuﬂ/ (sparsity) ﬁ]zLWNluﬁ@a’]uLLﬂULaﬂ
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|

luwwdua da Swndunisdayanashn  lesmld dawvedid dugiasiafiddny

AA o o \

da MwTzuizesinIas (machine learning) lumitiuuian1izvasdayanlsmiudratneg
VU o R o a a Aa e ' 1 tﬂld aa ]
lEgniudndudauuliglididdeandemeiidlnga

Addaa {

Bellman  @asmyzlitauin  Jogmndifidlvwguing  axdesldsuadgmwnian
dudauluniseiunsdsingmanl usrdaslidayatSunamnnineldlunsaiaaungiuiu
s ° @ vo @ o o PN v A {
yusaudaanunansdmivmaiiluniuanimanodaludd ldasi  iesnnam
luwihuazdhwanadsznaudmeinimasiwinann  @alvwialnajain) S

o =) a =3 Y v Vo v A Y =] I3
(wuudraasniasundziu) Jgnaulidadldiuniwluniwiadhnanslunstinduiu
° o o Af o A ® o ' ° a
Pwmann  EwmanwluninnltinduwaisaziiduiiwmnirinvesdwinAnisavanin)
afldrzuuliausrnuzigelumsid (szunfanumaninlumsaiuneg wisduwunnw

v 1 v

v 9 e g: d v s 1 a [ &
slwmﬁal,ﬂmmU"L@amagn@aa) G9%t MINME @aUeansms LT 2DPCA @9

o Y1 dnac‘ v 1 1A 1 ¥ Yo dld‘r 1 & o v
mu’gmvlm’ml,l,awmﬂuaﬂﬂ’n VLNL‘WEJ\‘]LLGILi"l'ilzﬁ']N']iﬂﬁiﬁﬂ?$ﬂﬂ3’*ﬂ']ﬂwugﬁuﬂ’3'] 511(1“/1’]1%

S v gd

sundzwvasrzuuinahdulienududeutosnit dwazvnlddwaunmndadldlung
= A o o o ] a A o 1% > ' % P
Anduiifwaundosndt uaz sruvlilamanazvihwngldgndasninniugy vafildlung

FBNANFEIIZHALNINDNAE

o A

wanndidywigare uae uwiugwiaaynga Aansdwia mIusndasdiien

A A PN & ' o @ a € ' a
g’]u w3 SVD “(lﬂa&lW’JL@Iaiﬁlzv[,&]ﬁ'lll’ﬁﬂﬂ’]u’smvl@] BN leiﬂﬁ]jﬂ’n&lLL‘ﬂiﬂi’]ui’J&lLﬂﬂ’J

A ]
Juwalnaun

2DPCA LLV]%Eﬂﬂ’]Wi‘iJWI’]ﬁ’JUNaLagﬂﬁﬁﬂﬁﬁ’Nﬁ’mﬁﬂ lunshansol 1uwdgany
PCA uandifuansfimnindanuulstdsuiiaie 6 fiuandn9an R 189 PCA 1313z
rmaunugdranwlowi wrng A Usznaudionwlowi x (eglustiunindniwlail
mautasldiduaniaas) Medetumauwinmasdaiiiasiuly wie A=[x,X,] wn
Avualst nxm Wuswaanunhouasgenasmwlumin wa M iludwiudedrenldlu

v & a = '
NN A% LUNINT A JIRIUIG nxmM  TILaN§1991n PCA

1% 2DPCA tuv3ndanuudsdsiusiuieinn G Qﬂﬁﬂ’]&llﬁlﬂu

G - E|(A- E[A]) (A -E[A])] ©)

Tag lwn3nd A LLmuwa%ﬂsﬁgﬂnWWIU%ﬁwlugﬂLmﬂm waz E[A] unudianaianis
a 6 =3 U a 6 1 d' a Aaa 1 [
YBILWUNING A WFRRIAIN  wWnIndanuwlslsniniigs G azdvwaiawinn
é 1 ) 1 { a wa
nxn SN WyIndauulsUsausauier 289 PCA vn TunedJod wn
Sndanuulsduiiuiey G AuUszunmla (estimated covariance matrix) ATRINNID

dunslaadnning lunstivasn T nduwn s winadatn9iiag
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a € ' a A v Ao
WNINTANNLYIUTINIINLNLY G 7]1]33&]’15%‘1@ NONRITUNIIN LBWLTNLLUR VDI
¥ v o @ ] a a v dQ/
magamwiv%mmmuﬂﬂﬂuﬁm 'i]?,L‘UU%VL@’I@’I\‘]%
13 INTTOE (10)
G =2 (A-A(A-A)
M3
da ~ . 4 4 y — 1
los? da Aduadoiwnindunugdmwlumibh uas A=M2Ak
k=1

Mwnald @ :[e;,m,e'K]LﬂunﬂLmas’mwwzﬁmﬁwé’umﬂlmﬁq@ K 1naas
wwnw Ssunwlunindaznn LINLADIUININ a suInfwInLleaIn N3
a18 (projecting) Mwlumihasunluniansal 1w K lunia tI)’z[e'l,---,e'K]uu K
ipdisias (Uiniidas)

a, =@ (x-A) (1)
{ v v v v a d 1 { v
nvinafldnnmasnadiadu aldduaninguine nx K $3d1931n PCA fla1vina ld
& e
Wunneaindvwe Kx1

NIUIWMITUUNMNIATY  dre 2DPCA  snansnldndeu @”ﬁ)ﬁi’nmnm‘lnﬁﬁq@
(nearest neighbor classifier) lwnssuuwn dssniudasldszozvinslumssunn  ludd
FYAWEWIN WNSNTUIAY (feature matrix) §09WVSNG &) =[ay,a,, & | uas
a; =|a,a,,ay | Faldunanmaane MWIARFBINTN AIUINLABTIANIZVDINW

@ A AL & o =2 o ~ 2o o
100 a9l NNLADIAWIZTBINIWIAT 'mnunﬂwmLawwﬂummmaamigmiwm
e LNRUNELaNI Mﬂ'ﬁtﬁmaamiﬁﬁwLﬂmmﬂé'miuﬁ?l AVAAU TauNauTnuaue

AzLUNIND Lﬂmm’mauﬁ"lﬁa’mﬂ'ﬁm ymwi’mqaﬂﬂuuu@ia:nmm ai‘mww:maomwi’mq

FLUTWIITHIN  LUNINFUIAIFAINNINT 11960 a1amvualwmiln ¥19338e%

= ey N S a ! I v dq'
T4%aUIN (additive distance measure) TIRINITAW UL BIUNTT laasdt
IR ST IRE (12)
d(a;,a;) :Zuaip —aij
p=1

lasf “ai'p —a'ij Wnu 3282 NELARA (Euclidean distance) 3:wiNd Laiay nnmaﬁia@myw
#1617y (principal feature vector) 8; uaz @; FUNEI i lT@ITUBALLD 1-a23uun
dlnafiga Aindudigadoyadmivindu M drad uaz wrindusdng @, lawd

q=123--,M 13130 1%I1 0 LaNNI IR BLE
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]
A o

LIRIVNIDWLANFVBINIWIANNINNINATDD MNLUTIINDUIANNE WIS By

q
v

1}

=1

K

test !

(13)

d(a,.a,)=min d(a'test,a'[})
q

WAz A, € o, W8d NMANARDY X, znnduunlagluaais ¢
U U

aaAal s

2.1.3 @290 ATBDANN

q

oeglsfia  wilaludadasues 2DPCA muﬁﬂﬁamaaé’uﬂsz'ﬁw%ﬁlﬂumumugﬂmw
lunitiiu szfivwialngnin PCA ﬁmua‘hmumﬂﬁmLaualﬁaﬁagmﬁaﬂmﬁ: LB% MY
1% PCA ludufigasdiaannmsvin 2DPCA w3a nssiiaue 2DPCA wuull nsatgaasnig
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P lag9099u38TUvead  Olshausen (Olshausen, 2004) 7La1a7n ng
UsamMaNAT (receptive field) Naganassiuniin azyinmsszananadyyImInINAW
nanadnaadszanen  @ae nmmugiluuummawg/uﬂ’ (sparse representation) I¥UU
dranlfiadszamiwnisslduninlunsunugdludnsucd ldrwavas
RUEANNIRVALEN LTI ANTAWIRNNTTNIRRMINAIEY  wanAINT HIRIIY
A & o A \ a A D A o o,
anludwaunnninudn  Soadudszanihdefienisluasdszanan LATENBITUIEIL
v e 6 dq’ v 1 1 dl 1 e o dl d v
ﬂmmaoammmgﬂms_luumulmy 3UN 2.9 LtamoﬂQNUizaﬁﬂauwawaaLm’lzﬁ"lmrm
= 1Y a o ' o o A o Aa ) . Ao o
mMIHnAudmsWITIT NN ngulEamnIuRE 1% 2:i%e (orientation) Aanuwmzlng

AuNIFuRL (spatially localized) uae uAINTBIHIBNA (LUBANAR)

ﬁrme;wa"iT’leuf: aadelain 2DPCA ﬁmmimzqﬁﬂmﬂﬁ 1aziianny
mmsn‘tumsﬁaﬁﬁLL&iuﬁwmnﬁu LLa:LﬁaqﬁnﬂﬂuﬂizmmzﬁauﬁuﬁﬁmﬂumsiﬁiﬂmULL@'
a1 AN IR RTIFIIRUANAI A UA AT 8 IALE4 Lm:f‘:ﬁam@lwaq@ﬁmﬁm
ihanlFasiuayu lunsld 2DPCA unuszyfians wia 20PCA uuyled Sruwaunanaen

WUNDRIITLUUIUUNLU IR lumiéfmaui'@lqi'wﬁ’u
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2.2 msa%ﬁaﬁ%mwmwauﬁﬂﬂgommﬁo

3 v

139N TAIINANNIEAIN e INAINNaZLE AT ININT Le LN T 1T 9

)
fegifindasnna szuumMwWnaNTanifie sy muss (aliased) Wia gﬂé'mﬁﬁjué'tymﬂm@‘iw
nifensandu wnsmwanuaizesdasulinuuiune é'faﬂ'auiﬁawuiﬁﬁayluqﬂﬂsrﬁmw
3un 130 waz N&asflE charge coupled device (CCD) fuasunansSuRwaIN
INAfANIATY (direct) WAZLULAUEN (iterative) z%m%’umwauﬁﬂ@gwmﬁa W30 NI
ABNIWANNALLBHARY (high-resolution: LR) ﬁﬂﬂﬂmm&y@’]mum AMNNNANNAZLD L
6 (low-resolution: LR) AAfi&ymy muel A IUIn DTN INeI9aEiNIana
aoﬁﬂizﬂaummﬁgemnﬁagammﬁ@‘i‘ﬂﬁﬁag"lumlsw LR dud3ginises wia imanald
LWINNNITTINAY V8 miﬂizmmiwﬁw-mmgmz (interpolation-restoration) %n3n M3
ﬁmsmﬁtymLiluﬂrymmaamsqué'tytywml,l,uuﬁﬁfﬁﬁ"ﬂﬂmadiagamemmu wonanit
SINITNNIIFINNAL WU TTyWINNAT (inverse problem) ﬁmaa‘mﬂuﬁaﬂ%ﬂfmﬁﬂ@m

2‘ dln U o s Ad [
wupwtn Nhsuldnulywinnaundamaln

TN Ia 9 R UM BN TR UL LI UL insndudasnnumniiaeiangg

WAEN% Aa  @aduRBuMIIuMITYIINT) (blur operator) MIMURITTUNL  FUNWIITA  (affine

transform)  war  @adBunsiunIansaIMITNAI88N Tagrumsasnzidan

(registration) 4N WesTuWnIndNnIzvhdenwanuaziBuagesiabudiazldge
raamwanNazidnadl  lesdndimezimsuidamieniy  semsdotnaaningn
nizvinde HR lddusasganwenuanidoad  infldnwanusziduagisiais ud
P A& X Fa , v 2 a vy A ad &
hasnsunmsnasduidvmalungain lunmsuntymisieul s doviTunuiug

~ add o A a a ' v &
Iﬂmﬁll izLUE]lnﬁﬂlﬂ%ﬂ'\ﬁﬁi’]ﬁﬂuﬂqv\lﬂqquazLaﬂl@fﬂﬁﬂ'}(ﬂﬁ\‘i LLll\jﬂﬂﬂvL@lLl]u 2

v 1 dl =3 /a o 1 a d(y
w9 lalA n9aNd (frequency) Las mMelanlidunis (space) luwsuisad

'«J:Lﬁumsﬁnﬁumaﬂ%gﬁ@‘hme@% g3l DyUATULUIWEN

2.2.1 me‘i'maamwmwaztﬁﬂﬂqwmﬁa

ATAFAATUNIR I U TUATINUNTOLVBINIRTNAUNNANNAIBEAFIBIAEY
(Nguyen et al., 2001) fnual#aNUFNRUTIZRII MWANUAZIBHAZI (high resolution:
HR) U nwaNuaziBaad (low resolution: LR) Nawnsaliswaglugthaming 1wl

Aol

f. =DB,Ex+n,, 1<k<p (1)
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{ o Y { th
laan p iudwmnsy f, uazxduwnieainlaain Wsuwesmw LR A1 k' waz 7MW HR
ﬁgﬂ%‘@ﬁmmmﬁé‘mmuém MUSIAU  WAY D A@IdNRWMIINNIAN8AIINITEN
18819 B Aa@d L AUMTIUMIININT ®38 MIBRUNN WaE £ A MTRUadIIsuIy aU

W33 (affine transform) uas n, Aegarmsunwidnngluwsuin k awsau

>

LFIRINITDLTUUFUNIIN 2.1 16 LRN A9

f; D,B.E, n,
= X+| @ 2)
f, D,B,E, n,
%38
f, =HX+n, (3)
f =Hx+n.

[ a K 6 ¥ =
2.2.2 2aNdIDNANIIEINIAK

v o oo ~ ad 9 Y . Aa &
auﬂ’]?m’]ﬂ@]ua’]u’]iﬂufﬂ@@jszLUﬂ‘].nﬁ LLﬂijE]Ju‘ﬂ’]NﬂNu (Inverse problem) NANIW

LiQm'Z?LﬁIffu (regularization) %30

x=HT(HHT + A)*f. (4)

]

g A o ' A € & A &€ A & . Aa .
WUNURILNAIN lnIng H 1w Lil?’l?ﬂﬂf?f%@&l']ﬂtﬂ"ﬂg%ﬁl (sparse matrix) mmm@l%mu’m

o v a 6 v (% 1 o U o & ~ d' I aa
Mlirumsadiamaastnsau liaansamdiaey ladie aann szidoundunfiow
Flunsmdaeud fa sufsyifaruaiatusiga (conjugate gradient method)

a A =

¥ A a
2.3 ﬂ’]iﬁ‘i']\‘iﬂ%ﬂiﬂ&lﬂ?’]&la&taﬂﬂgdﬂﬁﬂﬁl\‘]

u

msﬂizmaNamwmmﬁ’]mumnﬁﬁaulﬂumﬁa‘h #Ia NIUAANIW Aa N1IAa
mmwﬁamaﬁa;&a Tumsezvmw PCA  iuszidaudsnidunioulmiluwagiaann
Ml @ Jdu  lumbanwal  (eigenface) NiddRaN laadnanudideulasns  aa

ATANAUT (decorrelate) Tznitadayamulunin x luwihansohifuda azgniiu
danlNiuwunlag @T’mmq}ﬁ AN X %dﬁaagﬂﬁﬂﬁﬂunﬂma%ﬁam‘*ﬁ'uﬁu QI NNT

=3 a = 1 o 3 d‘y
LL‘]’]%EIILLU‘]JL&GLR?I‘IJSGJ’NW X mmmmﬂuaglugﬂ m@]avl,ﬂu

X=®da+e,, (5)

P [ o o cddaa A & a A a
loofl a \lu drvsaneainfifa Lx1 Alslumaunugy x uaz e, iuanufananafiiaan
maunugd  wndmueld ¥ dwawvindawe p2N7 <L Mdszneudae lunihanwsal

o o ea th ! ! a L A . '
maﬂiﬂﬁuqaﬂﬂm‘ﬂ k waIWINAIN LR I@]Uﬂ’lw’lmi’la’auﬂd’lua:Laﬂ@l i) sﬁ\ﬁuﬂ’]agizﬁ'}ﬁl\‘]
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099 1 uag N ﬁafﬁﬁmuﬁmmmadmwiuwﬁﬂ mmmmlﬁiﬁuaumimﬂmugﬂmmmw

AMNAZLALAGNEIE PCA laadth

f,=Wa, +e, . (6)

Tagmsunudt (5) uaz (6) lu (3) 1312zl

Ya, +e, =H ®a+H.e, +n,. )
\lagan
¥Y'e, =0 (8)
Uay
Yy=1 9)
IEansamsunIaaallil
a, =Y'H®a+¥Y He +¥n,. (10)

lasmsnasonliwasinaasuazaudusyaimwsunun ldanmssang  Iwlinmsnszane

2

WULLANE (Gunturk et al., 2003) L3N8 URNNNTINIG U Lo lnd a9dt
a =ANa+¥'¢g, (11)
Taud
Sy =He,+n, (12)
113+
A, =VY'H® (13)

logldgaifeioidy inamansauisumstsdudalild ddsdnsalanuszdoagisa
A A I 6 o a A v =
Banaglugdianiaas luszaudipfiawz adaaunisly wie

a=AT(AAT +/) "4 (14)

A = & o A Y A ad A o ' AL
IG]EJY] Y LﬂuWﬁ]%LSQS’]VL‘IjT% LW81‘1)1Li’]ﬁ’]&l’]iﬂLLUﬂSzLiJEIU’JﬁV]ﬁ]Z%']Lﬁ%a@]avl,l] luﬂ%L‘iﬁﬁ]Z
v o € = e @ A A 2 ) ad a A
1°II mymmuJumma pl%ﬁ&lﬂ'ﬁ (14) LWBRBAITNANIED i$LUUU'Jﬁﬂ’J']&JE]$L@U@§\‘]U'J@El\‘i
7 lu529U PCA (Gunturk et al., 2003)

T T -13
a,=A, (A A, +A)7a, (15)

Tuundald iazhianasynsolvasszdouiTnuandrsnuoan |y
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2.4 TUUVIUBAULURIILAD

Twi3asnfianudiagan 1u 113E% NMITNBINLILIS §IAN NYANY 3D 1389819
AUaNUTUTaL  IEFmMImIaNUARIFEd  AauwimIaeawla  u9RTudaIns
ANUARNRIN  LAZUATIINGIMIANUABIIAN IS Hai laanuinens guiua
I TINABNANUAUG 9%Y Laz  IUTINNBITGenwlasmIdszalaanufaiin
Y o | . A A @ v A & o A A &
denuatwlaadunile inalinmsdadulalusugarie Sularuwnmadszuiaualugu
gavhoudhandunsdadulan@iga (Polikar, 2006) auumsnlslunsdinm
‘Wammynaoaw  feunsdadulaludugarne  endusrwm@ansessennlums
o Aa @ ada 2 A o oo A o
dwdialudagdu  nnwadndageannang  Salimshandsgndldiudymidesns

v A o wn A va A 1 A o a o o .
msaaanlaawludd Tlaiialia ldwuwaindlusiay arwaaianfuwiala (computational

intelligence)

FUUTMHBNUUURAILA2 (multiple classifier systems: MCS) ﬁagﬂiﬁ'ﬂﬁ'ﬂu%a@ms]
% JUULTIATLE (ensemble based system) ALZNITUNIIAITULUN (committee of
classifier) MINANTINVBIFITLITIY (mixture of experts) LTudu  MCS  usadlwiAuua

o d'd 1 c.l' Y @ A a [ a v 1
nmahnuidndt  szupfldmaedulaiissdidonr  lumsdszandlglududna guinang

LR ﬂl@qfﬁﬂﬁ %ﬂ’]iﬂiﬁ‘lﬁ MNNAREY

. A - 4o & vd o A4 X
luundasit 131aznanfs MCs afiadnag adunsyduanuineinuGesd lag
MCS udazafia aedanuuandsny luisasuasaanastud NiTlumsasns aaaaulatas
udazal waz sudsudTnlalunsrunavasnsaaaula MCS fivhaula laun bagging
boosting AdaBoost stacked generalization SZLﬁUUeJ%ﬂ%QﬁEiaULLUUEiN (random
subspace method) U8z MINFNTINVBIFITLITYEIAAUTY (hiera-rchical) PPHVK!
npfldlunInuniaaguwla 1w NIBINURILESS  (Voting) M3 L AR R
(template decision) %38 5ﬁ'al,mﬁvgm%m%'m’1mﬂwlmﬁmﬁ@wm@lﬁgﬂﬁao (error correcting
output codes) iwszUszluziuas MCS Falinathlddszendld lunanasudays (data
fusion) MIzuuziNuaIwdaIiad (incremental learning) TNulsmdeItenmaudun
= A A @ o o oA o A Aa
sulaluvnizdt 209 MCS MApTasiumsAaRandILid war nMIdsuilasfidinimna

PHUDINILIGANS

| g P o o A &
luuﬂﬂaﬂu Li']ﬁ]tﬂﬂ']']ﬂﬁﬂﬁ]ﬁ]ﬂﬁ’] fyﬂauﬂﬁl#uu%aﬂ’.l’]uﬂ@mﬂﬂ MCS 7]\11%“(]’]\1

2
A o A

N1 waeN LU a9tk

n9dana  WJunNnnudadn 2180381 (neural networks) %38 @2UUNNTINH

=

aaluudlasni llazdszaudamin udelisussousiailarinmstindu udsusTnuzaunie
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>

m ez lizvrviwelaawinladn  WWeanazauad pfaya 3N LA ULARNI AL
] =1
FERIWNIHNAY

' ' s = % < ‘:s' ' % o =1 (% a (d‘
Angyernusazdn acll el Auend1ann  winvinnsHnduweswI LG eI
LANENINY WNINLILANTDY WITITLADSIRET OLA ANT9IRTENAIAY WD 208 EneL
dl ] Q A o = fd‘ v =1 Q/ U & v U d‘y
Auanedank Wia wuwindimeindaansindu (@nududan) udu dromalh win
a ' AN A o 9 o P AN o
LIENANIDLRRIANUFNTIN WAz RN LA I waatasadld 1319zana NN e
=g 2 Y o d'd a =y c; = EZ d' 1
NN NHWLRD LAAI T AN DT AN TG A7 MIRRYT IRINITDLANTUE
dEUUNNGNge wWia da9uunTudusINga (strong classifier) lei  udlusiuau 199z

a & P A v o o A
a’]ll’]sna(ﬂﬂ?ql]Laﬁ@ﬂ@%u@ﬂﬁ]zl,aﬂﬂvl(ﬂ AL UNTILLE

(Y =3 Aad o = A o Y a ! = o
?laﬂa?.l%']ﬂlaﬂ Iuﬂimcnma;ﬁ]ﬂﬂjﬂ“uw%ququuaUNWﬂﬁ]uLﬂuﬂ?’]'ﬂzLﬂu@'}]LL‘Y]%?JENﬂ’]?

niznadvastoyaiuiaisld  laonsldinedia n1sgudy (resampling) 1alwld Liatay
@ ' o o o o A . P
¢ LEVEEE I@sJLmawmmmmgﬂmmimmNu daduunNsana (weak classifier) 7
1 Q o é v = o 1 g o w“ 1
LANANINWIIWIURATEI @ mﬁnLLuﬂmmﬁa:gﬂmmlﬁum‘mmau‘[mauLLuuaaﬁﬂmz
LIANNAATE LaﬁaummLﬁumaaﬂszm‘*ﬁugﬁamim’mmn HaNANINNITAARUVAILNAD

niq

wisuanuazdnasas  lunstin dagnindasnsaadulaanadianududanauinnii

ﬁ?ﬁl"ﬂLL%ﬂLﬁm(gf’JLam%mmmﬁ@%ﬂﬂﬁ I@ULﬂquLﬁQTQULm@TaGﬂqié’@au&L"ﬂLU.i\'iﬂa']ﬁ

o a o o A ' A o A A ° @
maamagauﬂﬂ&l‘ﬁwﬁau HnI a%lluaﬂL‘Viua"llallLmﬂmadﬁﬁﬂ%uﬂﬂzlﬁuﬂqiLaaﬂLLﬁJUﬁnaa\‘i@n
Fuun 1w adwwniiluriodadun  ud vauwanIaaaule (decision boundary) U89

199U L RN A AN TUT é’ma@ﬂugﬂﬁ 2.10

LI 99NNVAUANIAAFUIATANVTUTAUNIN  WINLIIFINIIOLRONLG @3N
I J 1 @ o a U & d'a‘ly =3 @ o d'd 1 “ A
UDIUITIAUNTNAITUUNLTILEW D9 LN D mmtmﬂmgﬂﬁwawaummsmaﬂa
~ U Qs o 1 { v é’ 1 g J o

UL 297 %38 9NAN WRWIAIT AT uwndanta NEITLEARTAIURNUVDLLYA
madﬁagaﬁlﬁumiﬂﬂﬂu LYV LLUANITAN T LAVDIAITIUNNIRNG NITINNW 137192 |6
mamwmsﬁﬂaﬂﬂuﬁuqﬂﬁm AENNIDUTZNN MV ULINNIIA AR AN L6 aanaaalis
gﬂﬁ 2.11

241 anavainvang

ANuRAINAaNY  (diversity) Lﬂuadﬁﬂizﬂauﬁéwﬁ'@ﬁwLa"flm%m%'umijﬁwﬁw MCS
mM3aaaulaNAANANATEIFIIUNNLARZEITEI MCS AIT9z@asuaneeni  lagsssuana
ANULANGNITBIANUAANAATBINITaAWITES IS UBNUARE S0 RAT W Lazgn
TINENaEN WU IezmanTnananuRanaalumsaaaulauriwuaas e

wIANNUAaBIBLBIANNAANABUTNIILLRABWNUNTNTBINIUA (low pass)
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) v a Ao o do ' ' '
3U7 2.10 veuwamsdadulanidudautian $uun 317 2.1 amensaumavssriuunfiusivh
waswldausaudsuenld Pinfvasmsdaiul

fynmeanIINFYYIMILNIU  laual MCS daamididuuni vauanidadula
LERZA LANAIIIINVILLUANITIAARHLIVDINITINNAI D q@maaé’aﬁ‘imuﬂﬁ%w:gﬂ

NTWINN AIWHRAINNEY

é’auamlugﬂﬁ 212 1 IEPIMUBIIBN 3 61 s uwnudszeiveuIa
madaaulafiuanenan ‘ﬁ\‘lLﬁ@ﬁ]ﬁﬂ“ﬁ/a;&aﬂﬁiﬂﬂﬂuﬁLL@lﬂ@iNﬁ% LININAITIUUNLG
a:éhﬁlzmmsnEﬁ”’]wauLm@msﬁ@%ﬂaﬁﬁammu:ga mmsmmaﬂmwaﬁagaﬁw
?JmJu"L@TazmgﬂéTaaLLajuﬂﬁ uannisnaanldarsunnaaladinitsnnarsunninue
Hlummesauaie®s srsuunsis lieaFuwnteu asdinit denuRanaals
MIFWBITNAY 4 §RSURISIWUNGIT 1 (1 SIWRREY Uas 3 29Nan) Uar A
ROWAALTINAL 4 WU IUUNGIT 2 (1 SWWABY 2 29naw uas 1 Jwasw) udn
udiiadusnamNenTNts 19192l NauveananIaaawla AsanTn

1 1 a a J
LLU\‘]ﬂa’]ﬁ(ﬂ(ﬂEIVLSJfIﬂ’J’]NN@’IWﬂ’]@Lﬂ@T%LQU

= =1 L 1 1
2.5 MIaalaananFwsudiag

MIFNAGILIG (feature extraction) Uas N1IAMAENAILNG (feature selection)

]
o v A

=4 1 o g tﬂl 1 L Vo qI, a s ] 1 v dl
Lﬂuaaamumﬂnummﬁmﬂmaﬂulumsgmgﬂm_m Tasnald mssnaadLiaeaniin bl

s 1 1 dld [ vV & et 1 1 Idl 1 N 1 caAa dl o Q 1 g’
mautasansdnaiiog 1%Lﬂummmwg@ivﬁwLma:mmqnmnmwmmyLLa:"LsJém
Taunt  ANWHWIZLRONLANIZAILIENINH ﬁwé’ammmgo 738 Qmauﬂ'@lumsﬁa‘hge

' ' 3

Lﬁaamna‘hmuﬁ’mod’]ﬂmjﬁQﬂLﬁaﬂﬁﬁ‘hmuﬁaﬂaa e dgUATNNIRNAAILIAN9T 971N

Aa

mIsauwmadannuwmadfvesartsdradunlumalng loiduartsenslunainlaweiia

= Aa A Ao A v o 4 da v o ed ) o o
LANANN ﬂ’]iﬂ@mu’]@m@]ﬂz&lauiiﬂuzﬂ@Lualﬁﬂﬂ@]']u@@’]ﬂ'ﬂwﬂ')’]uawwuﬁ‘ﬂsﬁqsﬁa%ﬂu
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wnansdnde ﬁmmmt&iﬁau‘l@ﬁuagmm

P @ o a a rv @ ' o = a e
E‘LJY] 2.12 ﬂ’]ii’JN@’J"ﬂ’]LLuﬂﬂLiﬂuzﬂ’JEJ“]JEHRLT@]Uaﬂmadwaﬂaﬂﬂﬂluﬂu@]ﬂ@ndﬂu

6

A A o o 4, v A A o 4 A a A o o
NDIBNYNRIS msaﬂ@mmmwﬂvﬁNamlumqu@mmmmwmimuav\auwuﬁ
@iaﬁ'u@iauﬂ’wga Tupen MInaLRaNAILNAI wIa n1IRatRananls asdausTausd
Taisinwalatin Lﬁal%ﬁ'uqmaaé’nia@haslué'nwm:ﬁand'n NItz lunns
L = Qs ] 1 s 1 1 dld e e fd‘ U v £ dl v 1
AALRENAILIANS ArtdInRanaunusninanuazla udu (score) NAFNK  WINLAIN
{ Qs 1 1 g: [ v Qs 1 1 g: = A a Qs 1
Lﬁammmdmaaaﬁmmaummga mmmamaaam:gmﬁan FluwauTlnase a1
dansrasltFananmadydemsiinazioadonu innlianduiusnlndido
o = ~ @o ag e o o = A e & a ' @o Y
b mlunsmwaomigmlummuuu MsddmkbiuanianigIwedanTiiua
IWTERUSIN IR YNAUATUTIN  WINIANILIEINTuduINNuNMRD fas
= A a Y o = L& & @ v o
LﬂumsmmnmswmsﬁaumazvluLﬂuﬂszhmmﬂ@uﬂlumigﬁn 21]

o

nnanuiuuluundesidua inldnnuisadeuitlunssasweiidea
GHNMAD  EWSUMIAGLRENAILIAIY  sanTauenaen lolduaasuuinig  (Wolf,
2005 & Guyon, 2003)  WwINIUIAISEAIN wuuuaas (filter method)  luwuaneds
ALA9920N 9AAIALAIWFEIALY (ranking) 8 UGN (score) PN ey udw
=) nql’ o v dlo J [} & 1 o a a(
wio azuuu B azgndwindioinaiimueiu  lesgu  etadudn  sudszdng

o o ¢ . .. A ' ' o . . & ¥
ANAUNUD (correlation coefficient) %I 217877324n% (mutual information) LJua%
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wnansdnde ﬁmmmt&iﬁau‘l@ﬁuagmm

LWIN9NERY (30NN WIATUE (wrapper method) NYINANIAALAANTALBLUDIALIA
198NINARBLKNANBLTUNAIN AU (AIF1UUN) AadLisananiaan

MNIUMINALRENAILEY TluuAaas i MITAEALANNIIALDDIAILINE
g; & g; v dl 1o [ v J - N o e A N 1 1
R DU TUTE NIRRT WA Vl"l,mmﬂu@awuagﬂummuw MINALAaNAILIGI 11
ANBeHIINUTEENTAWlnnId I wI A a Ut 9NN A aﬁq@@iaé‘aﬁ’lmﬂlm Tauie
nly  (generalization) ﬁ'@ﬁl,ﬁaommﬂqmamﬂ'aL%aé'amﬂ ez AN udaIEAaN®
U g Q ] U o I v J Q@ -5 o v v
FIWMIAALRANAILIAI UL AT Tuiludastinagnuaavime LLawmaoﬁmamm
A Nl umInagauNana Ty fmvluﬂam LIANNY ﬂUﬂ’]‘i‘J'«J’ﬂ‘UV\ ’1L‘Y]’11(7‘|%ﬂ
Lﬁaamm‘hmuﬁagamaomwiwﬁwaamwmuauuamwamwﬂwmmaaﬁa

Mmijﬁ]"ﬂmaﬁf’] 131zieatINgIRaIRNNTasaat AR TU L TNIH N kLA
NARAUINWTANNY LATUIAVINAVAINTNALNUUIAAILARAIFNNNY TUIUDI AAULEY
U vAa 6 A 1 v
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NI ANTANTUNUDLNE TAY (Pearson correlation coefficient)

_ COV (X,Y,) (16)

Jvar(X)var(Y;)

A Ao @ @ o o @ A s A A A a A . .

Ldauvl?ma’lmu:luﬂ’liﬁma’mumma’mmwaﬂ@l’muamﬂmﬂu Na)213877  (information
A { U Q a Qs ] ] Qs

theory) Fangasnun sl adidseinsued 1181300

// x:,7) log ——— P(xny) dxdy an
Pl )08 Pl

lagf P(x) wae P(y) tduanasiazduwes x  waz y uaz Pxy) tHuwnedtuainy

nwLUwaNU1z duIIN (joint probability density function) Hawlafnedasny

wulnil (entropy) 289annFIAINTIN NN Faans
Baulatsauwduwananiaanududsszdanuizniig  x, anunwwinsasaanls

G Ay mwwmuﬂuéﬁLLﬂiﬁjmﬂmmﬂ y  We9ann P(x) P(y) 48z P(x,y) anunsa
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PX=x.Y=y) (17)
PX=x)P(T —y)

Ii)=> Y PX=x.Y =y)log

' ca A o o & P & o oA A A
g9 lana Wowludsan udanluiugin g9ty waniritaanniknile
Gau"lfnﬁa@iamifﬁ‘h W Lawlnt N&INIININANNLANEINTININURILURAINUNDE
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. aa 1 dld I Q = o o 6 . d'qz
minant) NIRAATERIIAAENE Tw Na5Ia aulnIUaunns (relative entropy) 130
' o oA a A1 & ve o oA, ~ o
mmu@mmwaamim:mﬂmLLﬂiqwaﬂa awlnt N9 FINNua tawlntlla?
(cross entropy) W30 s28=hY Kullback-Leibler (Kullback-Leibler distance) n3n I-diver-

gence (Saito, 1995 LLazg]Laﬂmsé"w‘éﬂuum’nmﬂ'uﬁ)
n
P (18)
I(p.q)= plog-—
i=1 o
Taedt p={p, }:Ll wsz g =1{q }::1 Lﬂué’ﬂﬁuﬁﬁ@iﬂmﬂuﬂuﬁ (@1vagfluztlrasiiasinm)

LLa:Z P, :Z g =1 (RansannilennunInauea B lin1INITANAIVBIMRIIHYDS

v o 4 A v > A A o o &
FUUWIDIAILIAIN 1 waz 2 TRTauvinnw) IuﬂiﬂmLS’]ﬁ]ZﬂiiQﬂ@ﬂ“ﬁﬁJ’]@]i’J@]u
uay INaaNTIas LN I IF1ETRUALR  AINIATIATERINIAILIE1IN
dwimldannaunisn (18) § gasud@idiuan (addive)  sumIn (18) & wiu
o [-% o % o Q dl Q 1 (=4 Q d‘v
ANUIMNITIARAUANNEATY wﬂsuﬂ;ﬂ%mzmumu
k n
= Ky P (19)
I(p,oy)=>> plog—-
=1 i1 G ;

1agf k A8 S1WINAILIIEN (@@maaﬁaﬂa@iw) Tuynizu9 TeUUIUBALLURANAD
datduna taulntl Alluaunsn (18) Hanalisuanasznin pusz g oy
A o A Aa A o i '
Tupnensdh tnasld Leulnstl Alanuanunas wia 14 J-divergence 321319 P uaz q
o
At
£l T k 1 (~K
J(p,a)=1(p,a;)+1(a;,p) (20)
wInuNLe 8819 1
W - 2 1)
(p.a) =|p.q

= ° o P ~ o A o 4 o
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waNuaAarainanulasviaaszyianig launain Auaasia (Fan fiter) #
drzauanuduialumsdgndlinuiuoud wer nInasiudisneuiiaed M3
AAeENenTalingt  uar  dduAnsmzidaBLduLazIUTU I WAy g ok
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Mufinsldnulunuivdanw  uwanudeduaedie lagnuiudsslvdsiguaui
24ansLUaIINLaAlae Bamberger (Bamberger, 1992) 31]"71 2.13 LaAIR eI Na
nisguauAvasnanLlaswian %K Kansudasnnilaanuy sy ey
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atnlsfia namsudasnviaauuuugnaanantule Ansndredudt s9limana
IWnsunugdatnsanniaugud (sparse representation) Aunmwndlassasrsansnuaanly
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amnmssananlasmldwuin  Aewasmsivazaslaseeiiasmn s
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\%1 (zoom in) %aLfluwwmﬁL(ﬂai‘ﬁ'ﬁwﬁtymaawammﬂmm\ham gﬂﬁ 215 URAILIA
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LUULDIWEW w3 wWinvsaauldriuIndnlaldunntn azin e FNNTNAILINVA
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% MATLAB program to compute PCA, row-based 2DPCA, column-based 2DPCA (column), and its diagonal
>>syms al a2 a3 a4 a5 a6 a7 a8 a9 b1 b2 b3 b4 b5 b6 b7 b8 b9

>> A=[al a2 a3;a4 a5 a6;a7 a8 a9]

A=

[ a1, a2, a3]

[ a4, a5, a6]

[a7, a8, a9]

>> C=A()*A(). % conventional PCA
C=

[ a172, al*a4, al*a7, al*a2, al*a5, al*a8, al*a3, al*a6, al*a9]
[al*ad, ad"2, ad*a7, ad4*a2, a4*a5, a4*a8, a4*a3, a4*a6, a4*a9)
[al*a7, ad*a7, a7”2, a7*a2, a7*a5, a7*a8, a7*a3, a7*a6, a7*a9]
[ al*a2, a4*a2, a7*a2, a2"2, a2*a5, a2*a8, a2*a3, a2*a6, a2*a9)]
[ al*a5, a4*ab5, a7*ab, a2*a5, a5"2, a5*a8, a5*a3, a5*a6, a5*a9]
[ al*a8, ad*a8, a7*a8, a2*a8, a5*a8, a8"2, a8*a3, a8*ab, a8*a9]
[ al*a3, a4*a3, a7*a3, a2*a3, ab*a3, a8*a3, a3"2, a3*a6, a3*a9]
[ al*a6, a4*a6, a7*a6, a2*a6, a5*a6, a8*a6, a3*a6, a6"2, a6*a9]
[al*a9, ad*a9, a7*a9, a2*a9, a5*a9, a8*a9, a3*a9, a6*a9, ad9"2]

>> G1=A*A % row-based 2DPCA
Gl=

[ al"2+ad"2+a7”2, al*a2+ad*ab+a7*a8, al*a3+ad*ab+a7*ag]

[ al*a2+ad*ab+a7*a8, a2"2+a5"2+a8"2, a2*a3+a5*a6+a8*a9]

[ al*a3+ad4*a6+a7*a9, a2*a3+a5*a6+a8*a9, a3"2+a6"2+a9"2]

>> G2=A*A. % column-based 2DPCA
G2=

[ al”2+a2"2+a3"2, al*ad+a2*a5+a3*a6, al*a7+a2*a8+a3*ag]

[ al*a4+a2*a5+a3*ab, ad"2+ab"2+a6"2, ad*a7+ab*a8+a6*ad]

[ al*a7+a2*a8+a3*a9, ad*a7+a5*a8+a6*a9, a7"2+a8"2+a9"2]

>> DiagA = % construct diagonal matrix A.
[al, a2, a3]
[ a5, a6, a4]
[ a9, a7, a8]

>> G3 = DiagA."*DiagA % row-based diagonal PCA
G3=

[ al"2+a5"2+a9"2, al*a2+a5*a6+a7*a9, al*a3+ad*a5+a8*ag]
[al*a2+a5*ab+a7*a9,  a2/’2+a6"2+a7"2, a2*a3+ad*ab+a7*a8]

[ al*a3+a4*a5+a8*a9, a2*a3+ad*a6+a7*a8, a3"2+a4"2+a8"2]

>> G4 = DiagA*DiagA.’ % column-based diagonal PCA
[ al™2+a2"\2+a3"2, al*ab+a2*a6+ad*a3, al*ad+a7*a2+a8*a3]
[ al*a5+a2*a6+ad*a3, a4"2+a5"2+a6"2, ab*ad+a7*ab+ad*a8]
[ al*a9+a7*a2+a8*a3, a5*ad+a7*ab6+a4*a8, a7\2+a8"2+a9"2]
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ﬂmwﬁ%’ﬂ (Sanguansat, 2007a) WU31 RINNTALLUAS nIndananlslTin
1 { & a 1 { 1
swneawad PCA lihilu silu wnsndanuudsdsiusiuieivas 2DPCA wuuengg
% > 1l 1 a o (% a 6 A & A o v A A
16 uaz dLivdINaNalean wnIndanuulsdsiwiulasvwazisiwmaluniidazwlan
1 > & =4 a 6 1 d' A a?.
NN 611\1L‘i']ﬁ]tLiUﬂ"lZ@“lla\‘]LﬂJ‘YliﬂGIiﬂ’J’mLL‘.L]TIJTJWS’J&JLﬂﬂ’mQﬂLLﬂa\‘lu’N ALY TLTIN
; ' > , _ ' o >
s9utAE7 [T (cross image covariance) 3U7 3.2 uges nivanadulyldlunisda
%y; LWNINTANULLTUTINIINALIVEI 2DPCA NHWIIIN LUNINGAMNLUTUTINTIN
L8IUBI PCA WAL Wikl LunIndanuulslsiwiauiieluas 2DPCA
(corrG1) 1iaan MItRanLaIAILadNnIngaNNLLsUTIMTINNEes PCA wuuiiln
WNAN (WRAWNLNTUUAINI AN WalTAeINIIass 2DPCA WULTIY We LUN
SnFaNuUTUIIWINALIVAY 2DPCA LULTINY T WAINaTINUaIARIIwILAA1N
1 °4 o o & A o = I 1 ai % J
AOAAFUNWE s IvinnTiRanuuuLdwienay 19l sdsinsiuneluy &
azdu nanNvaImMAasuliannanduRusIzwIgAnoan W lsAnsado i)

LSIENNI0ETS ¥y ues 2DPCA Twlwesavwnalng Aszney 20pPcA o woy
@49 Taomsnlsuiaauunlng (ABAN) PoarisnanuulslTIusanisives PcA
Sonq niuluudazadiinmsmnernluusanues nxn lasft n @uanunia
PBINWIAY Twiuaadieann  enainisdiuidonuninensasunsnany
wlsUTusanfisaves PCA Aazld 7av89 2DPCA o '5ﬂ°gwﬁo ANAIBENITY 1%
n3dl asmwianiawia 3x 3 1aw1In 2DPCA lud unuegld 8 wuy Auanen
91N 2DPCA WULWDIHEY H3ID ‘é"usl,@ﬁl,l,amslugﬂﬁ 3.1 2DPCA lafvasnwama
3x3 ﬁﬁammmmlugﬂﬁ 3.2 guaau

1 ~ k% { v J 1 ‘g o v v J a
aﬂ']\'ivlﬁﬂa 2DPCA VLT'JﬁﬁT]\‘]TuFLViNﬁ "ﬂqLﬂ%@]a\jﬁiq\‘]TuNTﬂqﬂ Luﬂjﬂsfﬂ'g']u
1 { & LU L 1 a
wdsUmiuiiuieres PCA Suiawasasmwianiiomalng  wridndannuudsdsm
] A & A . A ' ° v &2
JULNEIVad PCA ﬂﬁ]zumu’]@l%m"w’]ﬂ quqdﬂimﬂa’]ﬁ]vlllaqlnﬁﬂﬂqujmvl,@ LT wng

pnfiazaihs 20PCA luf 91n PCA lumsujiia

.

lasauiiaday #3390 (Asdornwised, 2008) Wud wrindanauidyiuiam
e luiaedla iaan Hagmen1el (inner product) BTA szwinimwiagduuuy A iy
a [ A [l A a 6 U A
wrisndawiidiumaudas B lasfiwningnw B gnaiianmaudasimanzaued
LWr3Ingnw A AINNANMINILED LIUNTNY aNuulslIunNNgIzadda Nife
1A t:ll [l LA a e dl 1 t:ll aAa t:l;:!l
nngAnoaf WlaRnadsiuunuionuudsdnuinieaela lra@nim
a [ A v A d'p.? o [ > A
sansnwInIudananing B aanzawld  Sslunil éwuniwian auwie 3x 3 wik
P o o A ¢ P o N v A o a &
lunmswdasninanzsusmiuaning B Asansaile Aalasvinisfesuouduwinaw

1 a é o { d
maumuaumaammwfmw A Wik wazvimatenuuuidwianasianicuninani
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A A a 6 a &)
LR 1NNV E‘IJYI 3.2 LR LunIne B ‘YlN’]uﬂ'ﬁLLﬂa\‘iLL‘].I‘IJ‘V\&J%’J%L‘L]%'NT]R&J 13318
wah L ﬁNW%ﬂi%LLﬂ’)%ﬂ%

Id ¢:{' ] [ ] =1 ndt:ll o a 6 2 U a 6
WuNvnganedn szidaudsnvinawalunisudadiuning B udale wn3ndain
' d o v A & A a { ° [

wdvtsamwanusiuiiedluives 2DPCA lastadnnn Hunialuisnanansovila
wn v A A Aad A A € oA ~ o
AIdplanuseinziitnmansnudasaning B adwdu  sansnaiieniw
wannanslunsas MCS Aianinitle qﬂﬁwéﬂiLﬁwﬁ?{m%’ua%ﬁum%ﬂsﬁmm
wisUrutang ot lauaas W lunamuan .

>>corrGl = >>Bl=
[ al*a4+ad*a7+a7*a2, ad*a2+a7*a5+a2*a8, ad*a3+a7*ab+a2*a9] [ a4, a5, a6]
[ al*a5+a4*a8+a7*a3, a2*ab+a5*a8+a8*a3, ab*a3+a8*a6+a3*a9] [a7, a8, a9]
[ al*a6+a4*a9+al*a7, a2*a6+a5*a9+al*a8, a3*a6+a6*ad+al*a9] [a2, a3, al]
>> corrG2 = >>B2=
[ al*a7+ad4*a2+a7*a5, a7*a2+a2*a5+a5*a8, a7*a3+a2*a6+a5*a9] [a7, a8, a9]
[ al*a8+a4*a3+a7*a6, a2*a8+a5*a3+a8*a6, aB*a3+a3*a6+a6*a9] [a2, a3, al]
[ al*a9+al*a4+ad*a7, a2*a9+al*a5+ad4*a8, a3*a9+al*ab+ad*a9] [ a5, a6, ad]
>> corrG3 = >>B3 =
[ al*a2+ad4*a5+a7*a8, a2"2+a5"2+a8"2, a2*a3+a5*a6+a8*ad] [a2, a3, al]
[ al*a3+ad*a6+a7*a9, a2*a3+a5*a6+a8*a9, a3"2+a6"2+a9"2] [ a5, a6, a4]
[ al~2+ad"2+a7”2, al*a2+ad*ab+a7*a8, al*a3+ad*a6+a7*ag] [ a8, a9, a7]
>>corrG4 = >>B4 =
[ al*a5+a4*a8+a7*a3, a2*a5+a5*a8+a8*a3, ab*a3+a8*a6+a3*a9] [ a5, a6, a4]
[ al*a6+ad4*a9+al*a7, a2*a6+a5*a9+al*a8, a3*a6+a6*ad+al*ad] [a8, a9, a7]
[ al*ad+ad*a7+a7*a2, ad*a2+a7*a5+a2*a8, ad*a3+a7*a6+a2*a9] [a3,al, a2]
>> corrG5 = >>B5=
[ al*a8+ad4*a3+a7*a6, a2*a8+a5*a3+a8*a6, aB*a3+a3*a6+a6*ad] [a8, a9, a7]
[ al*a9+al*ad+ad*a7, a2*a9+al*a5+ad*a8, a3*ad+al*a6+a4*a9] [a3, a1, a2]
[ al*a7+ad*a2+a7*a5, a7*a2+a2*a5+a5*a8, a7*a3+a2*a6+a5*a9] [ a6, a4, a5]
>> corrG6 = >>B6 =
[ al*a3+ad*a6+a7*a9, a2*a3+a5*a6+a8*a9, a3"2+a6"2+a9"2] [ a3, al, a2]
[ alr2+ad"2+a7”2, al*a2+ad*ab+a7*a8, al*a3+ad*a6+a7*ag] [ a6, a4, a5]
[ al*a2+ad*ab+a7*a8, a2/\2+a5"2+a8"2, a2*a3+a5*a6+a8*a9] [a9, a7, a8]
>> corrG7 = >>B7=
[ al*a6+ad*a9+al*a7, a2*ab6+a5*a9+al*a8, a3*ab+a6*ad+al*a9] [ a6, a4, a5]
al*ad+ad*a7+a7*a2, ad*a2+a7*a5+a2*a8, a4*a3+a7*ab+a2*a a9, a7, a
1*ad+ad*a7+a7*a2, ad*a2+a7*ab+a2*a8, ad*a3+a7*a6+a2*a9 9, a7, a8
al*a5+a4*a8+a7*a3, a2*a5+a5*a8+a8*a3, ab*a3+a8*a6+a3*a al, a2, a
1*a5+a4*a8+a7*a3, a2*ab+a5*a8+a8*a3, ab*a3+a8*a6+a3*a9 1, a2, a3
>> corrG8 = >>B8 =
al*a9+al*ad+ad*a7, a2*a9+al*ab+ad*a8, a3*a9+al*ab+ad*a a9, a7, a
1*a9+al*ad+ad*a7, a2*a9+al*ab+ad*a8, a3*a9+al*a6+ad*a9 9, a7, a8
al*a7+ad4*a2+a7*ab, a7*a2+a2*ab+a5*a8, a7*a3+a2*a6+a5*a al, a2, a
1*a7+ad*a2+a7*ab, a7*a2+a2*ab+a5*a8, a7*a3+a2*a6+a5*a9 1, a2, a3
[ al*a8+a4*a3+a7*a6, a2*a8+a5*a3+a8*ab, a8*a3+a3*a6+a6*a9] [ a4, a5, a6]

307 3.2 enwudsUmuianieilad sesdid uaziundng B AlFlumaudas
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v a Aal AaaAa a
3.2 ﬂ'l‘iﬂ‘i'l\‘iﬁ%lliﬂ&lﬂaElﬂ?.l\‘l&l@lﬂ')'l&laztaﬂﬂgﬂﬂ?ﬂﬂﬂ

nnanuiadlamaaiiugunlananiduundawniiit  imazsunadiouns

WU Tagmanansanmsanaaly PCA laggunaiaidn
x (21)

loo?l X wnugthanindvasmwlumimenaaneglusinmsdanuwsasanindninlunsi
AUGN {g,--,6,} \duraras nnieaianiz (eigenvectors) NNAININNFALTLIAIALIMN
o A, o g A € & A € o A Sda,

W ldwstes Adenwdwanindian: @ wazv 1w wninduasauysz@ndnNiuwin
{ 2 Q o Q 1 1 { v té
NROAARBINY INWIKINLABTIANIEZ ¥ID AILI6 N 1AINNATREAN HR a9L1 O @9

p.l'n:? a 1 a 6 1 o gt . . . A A
luniaziSundy wnSndaur/sznauysday (principal component matrix) lasidawluf

Ifinamdaauluauns 21) ldnandsuualluuni 2

3.2.1 NMILADNLULINRDIAIN

Tuundassh 1319z aRanI9L8anlNNIIFIR0ININ LN ENRANFUADNITRIN
ﬁuﬂ‘%gﬁﬂasmma:fémgwmﬁo Tag39emAua i AW LR waz HR Aauaunus
% (Vijay, 2008) Q¥

f =L¥R +f,, l<k<p (22)

' ~
o o

Tagfl p usrwawsesnsuiidansan L, R, Dwaninduaimiguaygimdt waz 1,
wae X 1wandndnind ldanniWsunw LR uas HR 71 k" enwgnen Duivingana
T NI EFeIld dnsnunsaunuiilads wrsndg L uaz R, Ainsnaanainfiuldwas
67 (@ﬁﬂa:lféﬂmﬁmaw Tuundas 9 3.1.1 Fr9s9il) Wufihdanain awlunsi LR
ez HR Alfluund ﬁlzagjisl,ugﬂl,w%ﬂéfmwﬁgmﬁu ldfinsudasunsndidwnnaasuuy

15296 (lexicography) tilawny setdsudFnlelu PCA anuaunsh (1)

o v S v o o 1 4
3.2.2 ﬂ'li‘l’l'ﬂ‘ﬁi'l‘ﬂliﬂﬂﬂ')ﬂ@nﬂ'l‘iﬂi'l tnd

diumimldnuisoumad (Gsmooth, n.d.) Hudiduiiuns sviauins
(convolution) &a9did Nsuldlunmsrimwsnin wia MIVIATLAzIBEN wIa AL
UMK ansaemIuwlenuasisadiny Aieasiafs (mean filter) 1Npue L

o A P , o L A ) o A & @
luﬂ’]‘iﬂqLuuﬂqs‘ﬂu@ﬂ@n\‘iﬂu‘lﬂ PINaa Eﬂammqm%ﬂﬁﬂﬂwﬂaglugﬂLLUU"U@QLﬂ']a (3z903)

MRG5080427 il 54/90 21 nINHIAN 2554



wnansdnde ﬁ'lmwmmﬁau"l@ﬁ'uagmm

P 7126 41| 26| 7
273

4 |16 | 26| 16| 4

114 7 4] 1

3U7 3.3 matsznnauduwibodmIudsidumd

o A a o o ~ ¢ A = A & o .
aunassn I lvnuSsunuung sadnian Warigun3z9189a (point
. . & o o ' A & A = v & A =
spreading function) lagidunmsgsiauwnmisszninaansngniw nauliiduinoaidu
' o A € & o & A & 'Y = ' . a
win AU wninduaswsigmmaUszanmiiu Tuuuduniis wwnw  lunmenged
ﬁaﬁﬂﬁ'w,mﬁﬁ]zﬁmvlaiLﬂuﬂuﬁnnﬁ Favinlwm g auwInIdarinttnasiug aatilwlyl

Tildlumalfdd  lunmsdjifmensdeanalddwesfaifumdvinugud - win
PaddurisNiivnINEIUINTaIANNLLITLTIRINN AURFENaTY (mean) LAKDEINITHN
TsuBauazgniliauas 3N 3.3 usasunudriauwinmadwmdunlilszanm

WINTWNENR anadeaun (o) Wiy 1.0

wAnFawmMITedui s llumsssiawnmssesianuwningnn
1%?’1’]5&%35%3’]’]?“@’3’1&1&&5U@gdﬁg@]ﬁ xR e duansng LN anY
MW HR ﬁgmmauﬂunm@aimuﬁmﬁw Feaz ldnaaniTuasniumsssiauing
LTUN

091588 MIUUAIUNINERININNUARIINT I ER09T8 s dwiuNT
a%”mﬁumwmma:l,ﬁmgom@ﬁa waz aN9AUEIULINAUYIMALANNALLDUAFIEIN
Banitelia st uadifluuuninaasmeadiamans lmanziumissanainlsznay
gmﬁwﬁtymmanﬁmgdmmﬁa XDING

Wasdhy  mIseiamnsnn T,@ﬂmﬂﬁmuﬁwwsﬁLméﬁgﬂﬂszmmashal,ﬁ:u
wihpdadn  mansanssinlinesidn  lagendunmssumeie namnsmes (tensor
product) VBIUWILN® X Uaz Y Ausneananiwld  vaiiiosnnanin mIseiawmns
MNFINAIWIRTULNNTRDIRG ﬁ?uLﬂuﬂﬁiﬁﬁLﬁumsl,l,uuuﬁuﬁmlunﬂﬁﬂma (2D

isotropic)
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.006(.061(.242.383|.242(.061|.006

{ Y A an a ° o o aa
Eﬂﬁ 3.4 UNUBRIIGUINITRUING LW&Iﬂ’J’]&JL%’Jl%ﬂ’]iﬂ']H’JMﬂ’]Sad’J@]%’m’]iﬁﬂ\‘m@]

v g = = ana o =) v v 5 5 ‘é aAa
mmm@gﬁ MIFITAWINNIFAING  F1AIDGILAUNNT LAY NIITRITAUINITRILING
AUANWNINEA X AIUANG LLﬁﬁaﬁwmsé’ﬁ@mmWﬁaﬁaﬁ'uLmﬁvgmﬁ"lﬁmﬁauﬁ MIne
= a a & di 6 o 6 ai Id o a ci 6 X
Y $#38 dnnanid 1iba990n WIRTUINE ‘nLﬂumLuumiwaummuwnmﬂ@uauugm ON|
' [z ' A ' A aa A ° o A o
RNUIDLENEAYAAN LAAINATD gﬂ‘*n 3.4 URAILAUNLING Nsau1Tnvinanltinelvig
o Qs (% 1 a s L% 1 o ' 6 ana d' d' & 4:!' 1
NIRIIAUINTT W RNALTWLA AN LNT M LARYIWI LN ARDING mmmlugﬂw 5.3 Junun
[ ' & A o A o v & o = A oA
RILNGI LINLGDINVUIG 7 LUBLIIVIINITLU R BIUIGNI8 273 1mﬂummumw1ﬂawq@
o @ A =i o e A A A x> & o A €
R mwwnLsﬁaﬂlﬂaﬂumagmaumwLuaamnwmlﬂaﬂugmﬂ 13192 leLun3ndaue
5x 5 WNUNLUNINGUWIA 7 x 7 f19ATU  ALAaTIUNNIYINIING Y azlidvinnm
LN eI ARz 9 118U 19

FURane  809Uen1T  USEmuIn  LTERNIRYINTIa18avi NN N AN
LLﬂsﬂsaugavLéT@ﬂ 1 RUW UM IINFITOUWINTAMNEI AN TUNNEN A
uisdrwiessiwmunanagass  denswdinasiiunsdiwmidutewudinaansarinle

° A & o & A e A a A
TagNITAN I TRUU LYW Uszningas Wantwmsd  iunaulavesinding
o v . . . A < [ a 1
funld (computational biologist) tHadanannanudulylean1edinn o nutwauns
a A ' A ad & Ao P ' = a
ﬁu@waglumamu ¥Ia 90 2a9n1TNaIRUNN LAY NRINITDUILTNRAALFLAIN

A o 6 o [
Wl awNUWInTHLSZIN VeI S

lagmMsugnanaINAUDaILARIITVIIND LNFIFNIINFIIRUUIIBBIN
adiaenaas umadenlnd lao L uaz R, ludadifiunsimd uaz miguaygm
8AAY N9E1Y LAz 291 MUAIAY asugadluaunIn (22)

3.2.3 528U S n1saIARNEILEWE

AIThe Lﬁ?wzmmtmzﬁwawmsmwé’uﬁufﬂawauﬁU@qom@lﬁwmﬂ%gﬁ 1elsmal

2

19
IV +e; =LOVR +LeR +0, (23)

P & & Aa P = o @ @ o
loo?l {T,-,1,} du vnwefiawzniidwnnigadussauananldwides s d
o A J Qs I a [ A a 6 [ a n:‘t:lld o A 3
a1 nusenavvuTINNwidunIng I ua vV, LUNINDVIRNUTZRNTNNINUIUNTDAAR DI

AU IWIBINLADILANTZ WID AILIANS fldanmIansan LR aNuw I

lagldfnadanoian 19nla
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I'e, =0 (24)
WAz
rr=1 (25)
Tiviwmsenn feziuaumise Uil
Vv, =T'LOWR, +T''LeR, +I'N, (26)

13 dl 1 g ~ J [ a 6 1 1 té ] A ‘14 ~ dldy 13 6
Wunhssnadn 0, lund dwanindusds dsldmiowny &, nlsnsunduwniaas
196119 mﬂmmuﬁoﬁsﬁ' FoulaniaudansuAyninngw 209619619 Miiu wvsng

UinldesanuaziBuagisnats v, lasnld@mdniiunmimannmainiiauelay
Kumar and Schott (Kumar, 2008 & Schott, 2005),

FUNIN (26) zaNTadew ba lnaiin

N

By =L+, (27)
laof § =vec(¥,) A =vec(v) E =R ®T'LO Uaz 5 =vec(I'Le,R, +I"H,)
% ® Wuadtfiunis Kronecker Gt 13NITENNIDUAT YWILNYIINTELIY

' aa o ' 04 a2 A ~ ad A v S] o A
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v

(18) aevsdt
B=2"(ZE"+/)"p (28)
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3.3.1 s21igu35 A: ﬂ'%gﬁsiamjad

3$Lﬁﬂu3%ﬂ%gﬁﬂ'amju (Random Subspace Method: RSM) (Ho, 1998) 1Juniislu
~ ad L oA Y . . A o ' A&
2188033109 MCS 1 BU@8INL Bagging Laz Boosting ualidauanssagnng
Bagging 4az Boosting hifinsaaumwevasld iatrvlumsaagula luwmefi RSM &
msamm@ﬁ@imagjﬁm miﬁvlaiﬁmia@mmmaaﬁ&azﬁﬂﬁéﬁﬁqLLumL@iazﬁaﬁa%ﬂu
o A a v A A a o A '
ﬂmzmiumm@aﬂwmmLLﬂiﬂiauiuﬂﬁi@@aulaga LRNANNLWBEIEN  B9a1 bl
wanznuMIziinwiagiinwenenunaniaes Madd@ ag  (Bagging azvinmaiaen
o . oA = ' , A Yo o o a o a A o
mamwiﬁ’lumsdﬂﬂuamaqm LWE]I%@I’J%’]LL%ﬂV]’m’YSLSEME lunsdiitasnnn S1wn
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datiitasagud madenlvdeuasludnazvliifia 71397 (memory) @reenenls
=1 d’ aada 1 o v o v s Q/ U U
dnduw waz  asaniiafvwalng) mivxmmLLuﬂ@awmwmumaugemﬂﬂmsl
Tuauef Boosting 3:¥nMIUsUMIEahniinnInIzaneazedalagif lasumstlindu
wi) el RSM Asmwnsalddszlomifannmiaaumedidlda 1{ha9a1n
v a o & 1 Qs a 1 s

RSM &INNTD&TIAIALUDIAITILUA TInaazardanuidudaszdont 1313981313037
miaaaula laagrdivaidounuuunwiie g 1w mMIssnzuuwiss wio ngnsuan Ju

A

v
=

I@Uﬁ;ﬂ Uszlomivadni1sls RSM Jassia b

v

1. ®WINRANELS MU drenIaaIwaid
2. manziudwau dragalunstlindu daw g 1w msjiniwdag

3. Mmduunuuumn@nlniifssnga (nearest neighbor classifier) N lFlun133dn
Tanuu deutedenlnida mInwaedatnimainann (sparsity) vaadlymind

TR LY (TNl

4. ldmsmidaeauuuuIugi wia nstuia (hill climbing) 39 lidadnalinaziinng

ANMAULAILAAYIBIAY (local optimum)

5. RSM Hauisauzani’ myzinenudiduunudaus (strong classifier) LNg9a)

=
LAIE

@i”wm@gﬁ RSM 39anunnnaniasdidam fadid uat SSS vaunsanundndn

vo A o AA o o ' =2 o a PP '
’Lumsgm‘nmmzauﬂuﬂfywmwmmumama‘l,umsclmluuam LR mm@meﬂmymﬂ
RsM légnihanldiu 2DPCA & wiumaidilumin (Chawla, 2005; Nguyen, N. 2007;
Wang, 2006; Sanguansat, 2007b & Sanguansat, 2007c) ANIUITIIAH WL
RSM limanznunislssauny PCA wizilavinnisidan andednen ldannnisany

mwmuunﬂmaﬁawmmmﬁuLﬁaa%ﬁaLﬂué'aﬂa@mﬁ'hmumﬂﬁfu Lwiﬂmmiﬁﬁagj
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' a SR & A o & Aa
Tundazaandn (AUeen9) 289 PCA v laiivinfisunn nNaasanIznil Aanie
(eigenvalue) 1NN ladiuunazimIndmaydanisziinanni WINAILIIAS

~ o & Aa & . A o o A9 o0 1 o & v a
nasanunneesianzifdanniulignien  @dwunlddidsdanulunmdaduls
VA Ao o A v 4 o
2zl snawalunisaazulalwuaingd
1 a U Qs { v 1 1 1 a é
ey matszgndldniu 20PCA Mimazld ddsdnaduaming Samnisuden
v 6 v ' ] 1 o 6 s 1 ] u&/ o [ 3
ABANYBIAILIGNS 2DPCA LuLgy  Aasutuasdidin ldduiunaesianz  daw

¥ { v 1 Qs v =) Cg/
m@ﬁ RSM 39tanznazlfausiuny 2DPCA MIFUUad RSM LAATHINNAIT
o dll ) A 1 a a [ 1 ] 1 1 % dl =
m:mLwammnaaﬂmmaaﬂigwaar*naommmaamoqwawauaﬂ"ﬁ’lummﬂﬂu lag
Un@isnazyimsguuuuiangy WWagsLTatiag Tagfi  aqusealninlaasiame
R G R IRl PN RN R TN R RO TEGEY WasandngIndanngdadaidiuuni

Aaad @ o AN o a R = o ' ' o
PUANINIARI mmuunw%mnmsnwgmLﬂu fITuunaevdan (weak classifier)
1 =1 Q o 1 [ L= v IQJ 1 Vo J
at9b3N6 A uwnatvaaw aLfalanalRaNIInUL NG meamip’mamumnﬁ
NMINUNIAA T AT ILTAL DEUDINITIUWN AL I8 DT Iu"ﬂ'uq@ﬁw‘uadﬂﬁﬁwmﬁ"q@

2YDINBENINAFAL

RSM %G‘lﬁﬂ‘iziil‘ﬁﬁ’inﬂﬂ’]ﬂfﬂ%ﬂﬁEiaFJ NI N TRIILRZNITIILIINAIT LU
A o @ \ A o = Ao o A A ) Aaa
Taganiziiasnwmiuasaaganiuninlwisiwinta sl aisunuI a6 Tay
minmissaedasdolinldesuuuguih inazaansoudiym sss ld 2WANA
a Aa d' =3 1 a a aAa d' o > 1 ai =1 ] a
maaﬂiguﬂaﬂmaﬂmwﬂigmw Tup e NS 1wIna1a819IN LT I sHnHwLYNLE Y
o a o o ' o o ¢d a R A a = @ 4 @ o '
RH ﬁnmumamaauwmwlﬂumsnwgaagmuauumﬂmu LNNINAITL N LG
a:é’aazimﬁ'ﬂ%ﬁagamomuﬁﬁﬁﬁauﬁu LL@iﬂ'}ﬁ’aumsﬁ@%Mﬂuﬂ%Qﬁﬂaaﬁﬂuaﬂw
1 v @ A g; v { J 1 Qs o 1 v I { v v v {
qufﬂﬂwamm@auimmuqmmuﬁﬁmumw AN DENILT WD ﬁﬁmgmwa;&aﬁﬁ
YUANAAILAN
"Igﬂﬁ’]ﬁ?\‘ll,ﬁU&lﬁﬁ%%ﬂﬁ%’]ﬁ:ﬂﬂiﬁ’]LL‘]J‘]J%&’]&I(?I"J@T’JU"E%ﬂ%gﬁﬂamf"{wﬁ’m%ﬁ 2DPCA

W LALRAI I I nIaNWIN .

3.3.2 sz1igu35 B: yalInddasianie

LNUNLINZLRAN AGvesditseinsacnigu wya Lansunsnluloauas 2DPCA lud
GHEKE Y {enatdenmaienind laumsld aumsh (17) (19) v3a (20) waltlu
WNadwI Tk T1A7 (cost) MNTU NMIAALRENAILIASLLLALAS (filter method)

qwﬁwé’uﬁwﬁm%’uﬁn i:uujﬁmuuwmﬂﬁaﬁam:l,ﬁﬂu'i'%ﬁ'@uﬁaﬂﬁaﬂwm

2DPCA 17 lenaas I3 luwntanuan 2.
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a 6 1 o @
4, ﬂ"li’)Lﬂi’]%ﬂﬁ')%ﬂ‘izﬂauag?ﬂﬂ']ﬂfyﬁ?ﬂ

Nani1sulas nﬂmmszqﬁﬂma

a

\aruITAuE IS aNTiAng ﬂ%{]ﬁimﬁaﬂamnﬂuﬂ%guﬁlﬁ"zjnmsﬁéﬁﬁ'zy@ia
Mg é’ﬂwm:ﬂamaﬁ"l,ﬁmﬂmsaﬁ'ﬂmiﬁ]:éau"lm@iaﬁﬂmdﬁgm:q wae ldaanlnalu
ﬁﬂmaﬁ"[&ignszq ANGIBENILT I 3niszyhia 'ﬁmﬁzgﬂLﬁanmiazﬁaamwmia
anuduassusasmwlumhAeTestuAimin  noluisnuLaswal

N & A ad A o & ~ A : v &
UILITULRN ¢ ﬂSQNﬂQﬂLaaﬂmﬁ]ﬁi’]\‘]"ﬂuIﬂﬂ 2DPCA UL guUNNRIININaUBABIN

aginalafia f8nmadenwilslumesnaaneuztdfi danam s Ay ituwiu
AEn19 I@mﬁ%ﬁumimuwammﬂmLav\lLa@]ﬁmmsmzqﬁﬂﬁau T IEAT R A
RNANALIANIG2E PCA w38 2DPCA ﬁvl,&ié'fadizqﬁﬂmd sfiﬂwﬁ'q@Li’]ﬁ]ﬂﬁﬁﬂﬂmfzm@mﬁ
NNean9 Ge'le dtisens InuaueuidesNfanioudd enarinmIsaiaen
faU9ensdIn FUMIN (17) (19) e (20) Wasuams s1e0 (cost) dmsuldsnnuns

AALRaNAILIAILLLRABS (filter method)

4.1 Dual-Tree Wavelet THAA1HINDII

waINI gm%é‘ﬂmaanwLamzaﬁqﬂimﬁfﬂ FmuFyn mwaniefialassiulng
UEEINIL  WNamMILUaININIAa TN G mwz"l,&immsam%@qmmﬂ'@ﬁﬁﬁq@ﬁm%’umw
sysumana ol m@gmauﬂ%a%}ﬁfh NANTLURINWLEARBINALULLENDANINN
ldmusnunugdnniziengiuvesyaldadsfidsdninm. udezlifidszdninmdanii:
LangnluiwlEuas wia taulds (Fuvay) @Tzlm@ﬁ%ﬂﬁﬁmuﬁ%’wmﬂ%mﬂﬁ%%’ﬂ W&
MILURILLUUARRETEAUAN AL ARDING ﬁmmmLmugﬂ"uaumwvl,ﬁasmﬁ
UsganSawni  mamaudasdiaasesiifuuunsnsananiuld  witslwaviaaiiszy

q

a v A a o a ﬁ v
fimmala fe dual-tree wavelet FadWINTT (real dual-tree wavelet) Ty laaany

[
e A

AW UAZ URAITARIRI MATLAB Nl w8 9%
1 dl v =Y Qs v 1 a
AawduwualitiI NI NaNIILUaINWIRALLLLENAANNNWES 1319w
NWLRANUNAE 3 1WA Aa

U1 (X, y) = P (0 Y (W) (LH wavelet),
b2 (x, y) = P (xX) p(y) (HL wavelet),
3 (X y) = (X)) ¥ () (HH wavelet).
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(b)

37 4.1 waldlu mamaudsaaiaadanie 30 (a) ugaaanian
ﬂag}i’luﬂ‘%nﬁﬁ@‘mmmmamnummﬁﬂay LH HL uaz HH 31 (b) ugas

4 a 3 Al aa
NRADUIUDINIIAINUD N@@ﬁluﬂﬂaﬂdagﬂﬂm@n’lw ez HH dgsudantn

d I3 et 1 ol aa { A Q/
loofl LH 1flunagmuuas Weridunsassnudig(.) ldmefi@nnis usz w () Weridunsas
' Aad = a 1 A ' 6 o a A aa 1 a =
HIWE lunsfianees ¢(.) Bondnagiamitedn WitTusmnadanisld s w () Bondn
1 A 1 6 A an
ad19niedn WanTwaniaaniali@

]
a

Turinaadeanu wouanudtes HL wa:z HH ﬁLﬂuwagmmaaﬂaﬁﬁuamaaa P
nae GIFNMIN (29) ey 3UN 4.1 waes MardFuowaaluliglduns uaz
NAMBLELAININANND 2090w LT9NUNRINad7 wouaud HH lduaaauswadnd &9

a £ a e o a A v & & LA

LLﬂanﬂuLLuumi’lmmn;ﬂ ALETIN gondanduiduginusaslviinnsnnalui
a a > v =) =1 a &

Uz ANT NNV INANITLU R INWLRALLULENINNNK b #38 BNUURH Nan1TuladInian

LULLENANNN beT "l&immsmmugﬂiuﬁﬂ 45 2361 laahLa9

warannanIulasndauuunsnaniuld ldaunsauwnugdnwluwwuwny 45

9 @ hazifieandy () duierizuess denusdnasuveslsnigulnduuuy sad
o i = \ a A o a o =i £ & A

19 (two-sided) 9 ldaanTananidadlanaziie sywimauingg mu’luma&gu P4
aa { { A a J o v ' £

TUWIURDINA L HIINNMITUMUBNNANUANIAATIY 39 lwiRwan L liauTalunig

ﬂ%gﬁﬁ%mm NALNWLTDS U89 HH LRSI laazunty da'ly &
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IF vl,@ammwaamﬂm%’maawaﬂmmaa HH NA%a waastnIaah

#M3U dual-tree wavelet THATIWINITING  Selesnick uazanelaiauna LIWAAN
\Ju WanTuiiasnzh (analytic function) w3aidu Wendwedaw NsUnasunisanad
= @ a . & ~ o
\uunndn9i@en (one-sided spectrum)  HAQAANILTET LULLALINY WanTudadnlae

WULLENANNU LG LRAIAIFNNNTA (30)

Wi, y) = [p (0 + ] Yool [p() +5 g ()]
= V(D Ypy) — Yg() Yrg(y) (30)
+ 1 [y wp @) + a0 dg(y)].

LAY "L@ammtmaamﬂnm%’mawaﬂm AUFUNATURUUT 987 WEITIa19%

LﬁEllﬁl,ﬁ@]ﬁﬂ“llﬂGLQWLa@II@Uﬁ&I‘UEﬂI Selesnick Lazaby na LA Imas I wInas

tﬂl o v Aa et v J lﬂl a 1 | a lﬁl
WBIRUNIIN (30) ‘YI']l‘ViLﬂ(ﬂﬁLﬂﬂ@]i&lLLUﬁJﬁﬂGT’N‘ﬂ% TIvUINTuaNNfaNaa1auIn

Real Part{y (x, y)} = ¥rp(x0) Yrp(y) — Yg(x) ¥rg(y). (31)

LN "L@aummmaamﬂn@%’madNaﬂtwnaa HH N%uie 45 8961 LEAIT19819%

Real Part { }=

Tuviuaadedns 1nazla nWealuiianvuly 135 asen awannsn (32) 19an9i
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Y2(x, ¥) = [V () + i (] [l +] veW)]
= [Vr(0) + g [Yny) — ] ¥e()]

(32)
= Yrp () Yp(y) + Yg(x) wgly)
+J [¥glx) Yp(y) — p(x) Yg(m)].
%38
Yo (x, ) = v (X)) ¥ (y), (33)
LR "L@ammwadmﬂﬂm%‘mamaﬂm AfmUna UL LaaddnaEnsit
X -
waslapnIIFI AT WIUGSY BaIENMIN (32) 131az e
Real Part{vro (x, 1)} = ¥ (x) Yp (1) + ¥g(X) Yg(y), (34)

LS VL@ﬂtLLﬂi&PlladﬁLﬂJﬂ@l%&l"ﬂﬂdNﬂﬂﬂL“ﬂﬂd HH NAuNer 135 8461 WEAIT19819%

Real Part { } =

ﬁ’]%%ﬂL’]WLN@]"ﬁ’]%’J%ﬁﬁG 4 (??f’] ﬁmﬁaifu ZRINIIDATUIHIN NRL‘VI‘HL‘HG% NN
SO (V). (G, $OF () iz w(0F(y)  Tasil 40 =¢,(0+ g, (0 uaz
W () =y, (0 + jyry (%) e

gﬂﬁ 4.2 WRAINWRALUUINAA 3111 6 @2 LUUNUIFINA7I0 IWLEaNInNa2
TufitTymssudandn tmlan WwanuuLananNnle 1Hw JUN 4.3 uaaagadi
MATLAB nllunisdnuwisianisnlasianiaaunuuifie
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Eﬂﬁ 4.2 Dual-tree wavelet 1433988906 31 (a) uFaILINLAR
ﬁagj‘luﬂ’%gﬁ@‘mmuwaumummﬁdaa 3U (b) ugas
d 1a ¢
NRABUAUBINIIANNDWIYS

function w = dual tree2D(x, J, Faf, af)
% 2D Dual - Tree Di screte Wavel et Transform

%
% w = dual tree2D(x, J, Faf, af)
% | NPUT:

% x - 2-D signal

% J - nunber of stages

% Faf - first stage filters

%af - filters for remaining stages

% OUPUT:

%wWi}{1l:J+1}: tree i wavelet coeffs (i = 1,2)

[érl \Iiv{i}{zl}] = afb2D(x, Faf{1});
[xl wWk}{1}] = afb2D(x1, af{1});

W{.J+1}{1}

[x2 \/\/{1}{2}] = afb2D(x, Faf{2});

[x2 w{k}{Z}] = afb2D(x2, af{2});

\N{J+1}{2}
for k =
for m= 1:3
[W{Ekn}d{l}{n? WkH2Hm] = pm(wW{k}{1}{m, W{k}{2}{n});
end

gﬂﬁ 43 yﬂﬁwéﬁ MATLAB #1#3UMWIsNan 1wl adtiwias dual-tree 34314954
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5. Han1Inaaad

o a A A v A o A | ' Y ° o
duaundzIund indtayansnumuafenlninsudasnainsaudin vy
msansalidayamaitll dasirawninduasdmduiumanlglunssigeddunn
anuazidsadaIMuaNandoagisiats assumanimualilu 5)  lunianaaas
209137 Aniravasmwithaneasauazgnifawatwgueadiiduengwimwan gn
° [ 1 v 6 ' 6 Aa A @
il w3 (blur) dreNeriduwinuuimMdune 4x4 niidndeauwyiniy 1 uaz gnaaiIal
M3TNAI8679 (downsampling) &4 4 11 e adugadvunwaNuaiBsad W
1 & a U Cod A
16 MW o AIIMWANUAZIBLAFITUAIY lagmsi@anmw 9 AW N 16 AN
GanaNENWN 1T9TmNInaiIlininNasBoagnai War MWANUAZLIBUAFT
22084 ldauiey  nmwmazinesiouiiey sadsuisnduawe Ao n1eid

Tuniuazinunsoa i@ Imzé'uﬂ‘%gﬁﬁmﬁm

5.1 gwdayadilglunsnagay

szLﬁﬂﬁ%‘ﬂ’%ﬁﬂﬂﬁﬁwmwwzmma:lﬁy@gommﬁa%gnﬁmﬂﬁﬂmnﬁuuﬁ%‘éﬁz\iﬁu
TumaSenifisaursnusiusadouaiamiiaue lagvnsifSouiisudsgudays
luwhussihminodalud@niduniindud léud giudeyaluwsih FERET Yale AR ua:
ORL (Phillips, 2000; Yale, 1997 & Martinez, 1998) Lae gmﬁ’a;&a MSTAR %\‘JLﬂ%ﬂ’lW
SAR 289NUNIMULNIINTT (Center, 1997) aWE1AL

5.1.1 3"wUaaA FERET

lsunsudadusianiavas DOD iugmivayuldsunsunanaluladlunisii
luwi (Facial Recognition Technology: FERET) wazilugWaungiudoya FERET lapd
National Institute of Standards and Technology (NIST) tuguandnug udaya Faudays
faafuluszndng \PaugaAN A 1993 09 FIwAN 1996 gmﬁagaé’omﬁnﬁﬁ"ﬁ

di v a =1 Qdd‘ Vo v
W bT Walw) nagay was Usziiin i:wﬂmﬁﬂlﬂuﬂﬁgmluwm

mw‘luwﬁwzgr}%@lﬁuﬁmm 15 asstion  udazasstaspasmMssafuazldiaala
WAk 2 % Lﬁalﬁl,ﬁ@mmaﬁﬂmuaﬂnaagm"ﬁaga nwlunihrasudszyanaIzgniaLiy
lostszanm 5 89 11 awdneniiasigedniw (fa uaz fb) aniaiu Toglunwenefl
azaadvzgnueiadliuaasarsuniuandrinuaanluanwiium mMwenewiassnwi
mngmhUI@ﬂlﬁﬂﬁaadWHmWﬂﬁaaﬁu waslusarnfuandanuaanly  (AwAswil
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dowmaigudayaiilniniiananannaioinn Junanzaunazldiunmmesey

a&lmnuzmadmiﬁﬁ‘hluwﬁﬁ

5.1.2 1uTaYA Yale

gm"ﬁaga Yale ﬂizﬂauﬁwquﬂﬂm"wmu 165 MW ﬁl,ﬁua'mqﬂﬂa 15 A %ﬁ;oyﬂﬂa
311 mw ﬁ%m%'mwia:qﬂﬂaa:ﬂiznauﬁaﬂmwﬁuammwfﬁﬂmﬂwﬁw LT LRIANTI
TawInen ﬁmmqm wadgadannItie Tlawinen Und wa9agesannmenin @i $29
Usznana 13 wae vinnineu gﬂé’haLmﬁv'mmmaaqﬂﬂa%ﬁamﬂgmﬁaga Yale L&Q3

lugﬂﬁ 52 I@]aﬁmwLL@iazmw"léTQﬂﬁ’mﬁmauﬁ@LLazﬂ%'ulﬁﬁmuﬂﬂ 100 x 80 AnLwa

IUNINARBINIRNA AMNAIBEIFINWUIA (LFIATI LFLIUAN augy uRddes
Mgy waz laninen) aglFaniunsines wazrnawiwae (Und wadgadan
N9 L@ $39 Uszrana la wae vinwsinew) fﬂ:liﬁﬁamsmaaummmgﬂﬁaolums

331

U

5.1.3 s7uana AR
o9 u

udayanil AR gnainslas Robert Benavente uaz Aleix Martinez 3aansilazdn
autnauiaaiirial (CVC) i UAB. gmﬁa;&a‘ﬁfﬂs:ﬂauﬁwmwﬁmﬂﬂdﬂ 4000 NN
vasmwlunihvadyeaaduiu 126 au I@UluﬁﬁuﬁuﬁLﬂuﬁE‘ﬁ’]ﬂ 70 AUUAZENY 56
aw  mwluwidunwluwiessfidmsusaseenmalunindiegiu - msdeslni
@9N% Wae § MIU@UY (occlusions) msuatiafiin laud nslewiuiuuae uas
KA UA8 mwﬁmmgndwﬁ CcvC I@Umimquam’s:arhal,mfaﬂ%'@ ua lifida
valumsiedasudime ((Forh winan wWia aue) LA%eada19 NTINY B8 Bug UAAA
LL@iazﬂm:gﬂL’%amLiTﬂvLﬂrhUmWLﬁuvLﬁ’]mu 2 119 udaztrenwliFossensk (14 )
waztnsmwlnanw s d o iunigastig
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fa b duplicate | fc duplicate Il

3U7 5.1 mwaadsasyaaaniklugiudays FERET dmiuyaaail gafiidiud1i 1 (duplicate 1)

' o d a4 A o a S =
YRR fa WD LTULALINY ‘qﬂﬂﬂ’]&l‘ﬁ']‘qa‘ﬂ 2 ez NN fb

3U7 5.2 mwiadwvasyaaanililugudeya Yale

U7 5.3 mwaradvasyaaaniklugudays AR

lunsneass ezt wAlinsueds  (Mslawiunuiaauasinnuag)
1 14 vasudaziiyans aanuaaalugun 5.3 T,@ﬂﬁmwu,@iazmwvl,éfgnﬁwmsmau
dauaztsulafiame 112x92 Anwoa nnrukdasnmwimanitlmduninszauim

a ' v = A = o A Yo
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5.1.4 g1uTaya ORL

3wTaya ORL U3znaudunIwuaIuanadIuin 40 au udazauiinwag 10 nw
mwimauugniu B lunafuandeiu - Sugsnfiuandranu  Horsuaiiuansdrinu
(HaAlaan du/laidy) waziiseazdeaduyg dawinw/lilauwin) mwninuedislasiiain
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U7 5.4 dMaiezlnIw SAR vaIg uTays MSTAR: LnduLLeia BMP2 APCs

LDIATINANIAE BTR70 APCs uazunianailuns 172

5.1.5 37D yA MSTAR

wdoya MSTAR ugudayamwiuinoungansine  Unaudiedayanw
nanTteunlaiBidiansianuaidoags  (SAR) %agﬂs’m‘nﬂ@mmgmu DARPA/
KosUJuan1s  Wright 6’1’5'\1Lﬂﬂﬂidﬂﬁﬂ%ﬂﬂi@ﬁ%’]ﬁé&LLazmsjf{hLi’]'mmmﬂﬁ'au"l,m
LLazag'ﬁ'uﬁ (Moving and Stationary Target Acquisition and Recognition: MSTAR)
Tayatiznaudinmw  SAR 2w1a 128x128 vaisuwinuzmsausia ldun sndu
mswzmuqﬂﬂag}” (APCs) 3% BMP2, APCs 314 BTR70 uaz 009 wT72  mwiihwang
Motvangudaya MSTAR LLamﬁalugﬂﬁ 5.4 Lﬁaomﬂgmﬁa;&a MSTAR U110
ngj mwnavualdgnaseudannsunaadlifione 32x 32 finaa iaanunaiily
MINARDY
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@399 5.1 MW MSTAR ﬁﬂ‘i:ﬂauﬁ’)Uﬁﬂﬁaﬂﬂﬁh%%ﬂﬂ’ﬁﬂﬂﬂ%

Vehicle Serial Depression
Images
No. No. Angle

1 9563 233

BMP-2 2 9566 17° 231
3 C21 233

BTR-70 1 C71 17° 233
1 132 232

T-72 2 812 17° 231
3 S7 228

A1319N 5.2 7MW MSTAR ﬁﬂs:nau?ﬁu‘gﬂ“ﬁagaﬁm%'umsmaau

Vehicle Serial Depression
Images
No. No. Angle

1 9563 195

BMP-2 2 9566 15° 196
3 c21 196

BTR-70 1 c71 15° 196
1 132 196

T-72 2 812 15° 195
3 S7 191

AN 51 UAr 5.2 URAITIHAZLALaUaINIWLT NN eNlTlunTE NN wLAZNNY

A v . = Aa U
I@U‘YI 327!1/7'7.1! (depression) ‘mnUms;mwuma\‘lmemﬂwadu%ﬂ"mmmnﬂ

v v { a & v s =3 1 { 1 o v
MutvadnIadsdn E]‘Hu{'lﬂﬁ‘W&qlﬂJﬂﬁJ SAR E}ﬂ"ﬂ@]LﬂUI%‘H’JGL’JRWﬁLL@]ﬂ@HGﬂ% magm;@

d' U d' 1 £ d' 8
Vmaau*n&4wﬂmmamﬂqmagaﬂﬂumim AP

ﬁaga"g@maauﬁ

NN EN

Qnﬁnwﬂﬂumsmaauﬂizﬁw'ﬁmw

=4 o UV K N v al/ v [
ﬁmmminmml‘mﬂummeuawagamaaﬂ@ﬂmvlﬂvlmama

5.2 dan1Inaaad 2DPCA 53‘1.!ﬁﬁ°ﬂ']\‘3

' g ' = g
UNHasRTNANININANITNAREY 2DPCA UWIUIY ‘ﬁGLﬂ%ﬁuﬂﬁuﬂla\‘i 2DPCA Y

NN
mﬁwé’mﬁw TumanwIn U, 1aa

MuRoufisy uasynmImeseuuugIuioya Yale

MRG5080427

AU 69/90

I@Uﬁ'@nmmuLLmﬁmzuuﬁﬁLLuﬂLLuum’mﬁ’;@‘T’sﬁ%ﬂ%gﬁﬂ'amju

d' @
T9lauaas
lagiazld 2DPCA Und (usussnusivugiulu
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I
___________ e h it — = —2DPCA Y ale
: : ] ] DiagPCA Yale

................................................................................................

................................................................................................

Recagnition Accuracy (%)

_________________________________________________________________________________________________

The number of principal componant vectors

U7 5.5 ausmnuema3inluninazning 2DPCA uwszwiuTy AU wpuugudays Yale

Wasdn Mmsmaamiﬂ 1 UNEUENIINUEYEY 2DPCA LW WIU NU

2DPCA U124 lasiimsifsusiwinues Lunmafmuﬂxnauywﬁm@ (principal

component vector) KANTINARBILAAIGILUIUN 5.5 2DPCA uwinyslianssnusil
@n31 2DPCA uwiszmundwawnaneesniesg  (Junmnases suudigaunni

a o & % a ' 3  , | o o =
Wenanuduldldmaginmuiinmaueadu 19 dnmndayazgniiulilung
AAN19 NN NEdn)

nInaaednged iunmmessuruuGzIwNUudszanvaInsue i Fuieu

nuwuwuulaidussidey e ﬂﬂﬂﬁ%ﬂ‘%ﬁﬁ tanga Tun3m7 ey BIVDY HNNIAA T

4:{":1‘ A Yo e o > A A o &
luﬂuLi’I"ﬂZﬂ@aﬂdI@]UﬂﬂiLﬂﬂﬂ%I%'ﬂ’]%’)% @l’)"iﬂLL%ﬂl%ﬂMZﬂ'ﬁ&lﬂ’]i@l@ﬁul’i] U 3wt

dl g; 1 =S n:ll A o I n:ll =3 dl v v A
LRTAGILLE 1 D19 99 ATnaandwIniduniavd fnalAmsaaaulaannms
SR EATR TSN IR PV ST B PY W10l 209 U3Ntasgu (random subspace) VWA
Wil 1 9 100 (100 Aa ANFIVRINTWILAR) aweddwinny 100 13azle

2DPCA k132774 Un@ 1 @1duun gﬁﬁ 5.6 LLa@mmmLL&iuz‘i’]‘lumiiﬁi’maa 2DPCA
wIMINUYIpddaugunmIMiiineide g AanuninigIgaadziiouis
19 3 3218057 lausas il an319n 5.3
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Recognition Acouracy (%)

100

Murmber of classifiers ) .
Dimension

3U7 5.6 anwuaiugnlunsiinues 2DPCA uwirenuATlRplidesdu vugudoya Yale

AN319N 5.3 aadIuuiieuaNIInNe 2DPCA 33WIUIY 2DPCA W19

WAz 2DPCA wnw Wi Tiiidesdy vugudeya Yale

Database T E) AN ET 91%I% el 1I%
LINLAB BN @930
2DPCA 95.56% 11 100 1
Yale 2DPCA LLyya13 95.56% 10 100 1
RSM+2DPCA Luy 97.78% 10 4 9
PINN

AIRWIGI1  RSM+2DPCA LmumﬂﬂﬁmmLL;iuﬂﬂumijﬁﬁvl, A Uz

)
=5
=)

-2

& o a , = A
ﬂ’J’WJL‘]Juvlﬂ_]vl@ﬂﬁlx‘]“ﬁjﬂf]wuﬂ\‘]ﬂqiu a\'}LﬂuﬁJqﬂﬂq@
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. e . - . od ith
3U7 5.8 auvnuzmsiilumihuugiudays Yale inasauny 2DPCA luif I

. e . . . od ith
3U7 5.9 sussnurmaiiluwihuugudays ORL inasauiu 2DPCA i |

5.3 NaN1INAad9 2DPCA 125

undasifaznaninammanas 20PCA o Safunilslu 20PCA sz fians
Foldummsgaddaiion lumanwan o, uih lasinldnanasnugutayalumi
Yale usz ORL lasfanuwindilunisidrgegariny 97.5 usz 94.5 wadidud
RHERLoT gﬂﬁ 5.8 UAZ 5.9 UAAIANTINUVEI 2DPCA loT uuzudaya Yale uaz ORL
gy lufhdnad 4 " iy @e 2DPCA wwaTw ﬁvl,sjﬁmimgmmmﬂu

A a € ' a v
WNANLNARUININTAMUUUTUTIUIINLN EI'JVL“]J'J
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Criginal

o

U7 5.9 mwlunihfignuuadled Alvanuusiugnlu

3]
a
vo dad %

ﬂ’]igﬁ]’]“ﬂ@ q(ﬂ Taﬂﬁ’]u’ﬂa%}a Yale

Criginal B71 a7

o A

anudaslyd Alwanuuainsnlu
a

307 5.10 mwlunvihdi
X
]

mIjinhange vasg udaya ORL

3 1

auAwin WawSsufisuiunmesasi 5.2 uds  20PCA 'lat Sanuudugiln
mﬁﬁiﬁﬁaﬁq@ﬁﬂd'} 2DPCA U711 Uaz 2DPCA eyfianis (ﬁm’mmjuﬁﬂumsiﬁﬁﬁﬁ
ﬁq@whﬁ'u 95.56% LYiNNW) #3a anin LLWJ‘Iﬁ%E’]u (base line) 71w 2DPCA uuwIsu ot
NN 2 Wasidud (g}gﬂ‘ﬁ' 5.8 U8z 5.9) gﬂﬁ 5.10 U8z 5.1 LLa@dgﬂlugﬁuﬁaga Yale
Waz ORL fitiamsutaaifon ﬁlﬁﬂ’)’]&]LL&i%ﬂﬁl%ﬂ’]ii‘ﬁ’]gdg@] mngﬂﬁ 510 WA
5.11 iManaganuldhanduiuisznitdunibiuey Ao a1 wia a0 fu iy anading

@iaa‘hmﬁﬂuﬂﬁﬁ‘imuﬂmw*ﬁ'@q

w1 dvdnsnanalaain 2DPCA la¥ ’ﬂzlﬁﬂ’)’]l]LL&i%ﬂ’]Iuﬂ’ﬁm‘%”ﬁ’lﬁdq@ L1 Lb
draensled edresldnalunmsiifidndmnasgu TnsunaHanTzluunafia
137873 WHATINVDIAILIANNAILITIN  ALIEINRa I IwwneIuns  inlwaais
' A A A ° A
dnantaRaddwalunmsdnunn lidwa

wana N 20PCA ot @sludiidu ertlsdnefiviawafiallumsae o
Sunnegnatuuds WResdnden S9liszEntawaasnin RSM+2DPCA wuLT 49
Jw S2uusuwnuuunatsds lasiisrsunnudazaiiu rsuunagnisdonts uariins
daaulaniunwduame  laumIadnsunwmiss  (aNTIauzaad  2DPCA vt wae
RSM+2DPCA WULUINY NN 97.78 Uaz 95.5 1asidud aus1au)
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137998k Walwn 2DPCA lad Ivimsdaaulanuuame  IWarduwnudazal Ju

@IL961997N 2DPCA  1i7ieinans Uas NaaINIIAA R ANNRIASULWLELS LNa LW
v w A g: v tﬁ e U { ‘31 Q

"L@Namsmaulalumuq@mﬂ F9lwn1INAW 13192 lENANIINAaINGTW aITUazLBA

da'luit

[ on Yale database 1F¥n wlunsEineis 5 W waznagay 6 NIw
B Max rate of 2DPCA = 95.56%
B Max rate of proposed method

= 97.78% @ 49th Shifting

[J on ORL database lEnwlumstindu 5 nw uaznasay 6 A
B Max rate of 2DPCA = 92.5%
B Max rate of proposed method
= 94.5% @ 4th and 110th Shifting

a13797 5.4 ugasnsUSoUfisy susTausU09 2DPCA uwmTu  2DPCA lud
frswuuneen uaz  20PCA luf wau@asunn  eWANIREIANNEUE® 137192158N
2DPCA o drsunniiien uaz  2DPCA lud wansdasiuun sugin 20PCA lat uas
MCS-2DPCA 'loF  enugeu  luansei 54 d wanai s1wwaneesianisil 2DPCA
Wmlumﬁaﬁﬁﬁqa wae L wansde 1wan 2DPCA 1ot Aifaanidannnduuuuiiv

LWNINTAIN B $1UIUNIRNG L AT

~ U v { o QI =) =y Vo % J
2B 1A37 MCS-2DPCA a3 ﬁmmuammsnLwuﬂszammwiumigﬁnlﬁﬁmu
v [l v v { { [ 1 { A Q 1 1
6 agnvlsnanld 2DPCA 1y Adnnsifanatnssiaiites Seluu1aaltieeng anaazi
ANUTITaK wIa UewialwnIaeauladn @dnn 139a2T8ananI: 2DPCA

AA o o A
aNIzNdsmwalunisaagula 9

Tuanuduass mawnsaaie gaves 20PCA lad lddnunuowaoge igu
27N 2DPCA LWI69 %38 2DPCA LTI UaILIITIU %39 2DPCA WikIU9U8ILUIGY
WuwNinanadn 2DPCA lﬁﬁmmwﬁﬁé’amumaawé’wﬁuﬂuumLmuﬁvl,ajvlﬁgmﬁaﬂ

o . . AA o ~ A i &a = a '
wazaaeLadnsnfismnaliluuuwiunuiignifen atnilan@ iunspniazgih
LWILN A LB NWNAIIAaLRaN 2DPCA URZEIBTYNY MULWIANAR bb

£ dl 1 v A dl' A d' o aaAa & dl U

myvnnuluwwnnudayanwilildifen inenaniassdym daddd dundhla
o A Ada a A A Ao oo vo af ' a o \ '
ldd &dT9a ImaRenfienvilidmamsiiaau lasdwmwnaGoui o 910993
Uszan lagodeI TN T dwi a8 wnI LR N&ITNANYIAIRN AN N B LIAN

° v A A & a AL L v A Ada \ Aa & v
sannnuldeinunanzauiign  Svevanduiiizuenvegiviliiaudaziianld
= ' o = o & o ' '
FINU L6 blrauaI0UTZRINGT LA mmuj’[umswaomu ’Luammmgmmﬂuumuimy
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TN 5.4 anadSouiisuaNsIaus 2DPCA s:uuy 2DPCA ot uas
2DPCA lo¥ uuumaadaduun uugutaya Yale uaz ORL

Database ‘ iguIs ANINUNWET (%) d ‘ L ‘
Yale 2DPCA 95.56 20 1
2DPCA 'l 97.5 20 1
MCS-2DPCA ¥ 97.78 20 49
ORL 2DPCA 925 5 1
2DPCA 'l 945 5 1
MCS-2DPCA a7 95 5 671

WINIENEAMUAaHK aaﬂvl,ﬂéﬁ'mﬁnﬁaﬂ 13101992ARIT ANNLTUVDIE WD
° ' ' @ s {1 ao
’ﬂ’]LL%ﬂI%LL(ﬂﬂuLﬂ%“UE}Gﬂ’]W ﬁvl,&]%’]"ﬂm‘ﬂ’m% ‘]Ix‘il%lﬁﬂﬂizﬁ’]ﬂ“lla\ﬁL‘i’]ﬁN’]%’J’J@N%’Wﬂ’]‘i

%

' Y o o A 6 o 1 g’ o A v v 6 @
&l’]i’]il’]dEI’]’]uﬂuv[,(ﬂ‘Yl’Tﬁu’]ﬂﬁ’]ﬂdﬂﬂi%l%ﬂ’ﬁﬂ’)du’]ﬁuﬂﬂL‘P\&HZ@&JLL@’J Vlﬂﬂanmugmmn

] ]
ada

A A A a & & & fo A o A
ﬂ@lumaunmdauvlm Ium\‘mmmmam WGﬂﬁuL?WLa@l L ﬂ\‘]ﬂ"ﬁu ANAINRUI NN
' A .- a A =] o
q(ﬂl%ﬂ’]‘iwﬂugﬂE]U’]\TVLNNNE]%VLT (uncondltlonal bases) ANNNLIBNAWIVDINIININN
a 6 ' A Aa Aaa ¥ o
LNINDTAMNNLUTUTIUTINLNLINANITIAAUV WO AR LT]E’]’H]I"UNGTTT?LL‘L]@OHWLQ@] ny
a € 1 A A v a [ 1 A Aa
LWNINTAMULUTUTIUIWNLNLWEY  PCA  LWaRITNLUNINTANNLYTUIINIINLNEING

PYUANGLANRI LA mmim:qﬁﬂvl,@i”

37 6]‘?: WaN1TU89NI1Ue  (Gabor transform) "L@Tgﬂﬁmﬂ%l,ﬂumsﬂi:mawaﬁhu
wihl#nu MIw PCA lasdnin Namesniua (Gabor fiter) AN AN
8779 LAZ ADUNITR (contrast) mu"lﬂﬁamimguﬁgﬂmmLmumwaaaﬁa uae auNa lu
snwandenuil  Iensaenulsiaswasanindanuudsswufsmieda
Tagandamstlow sundnvastundndanuudslyiusiuioiwieda HIUTAAINTOINDY
wagIzaUAMNaZLasa (multiresolution filter banks) %38 wan1sLUaIINIRALLLANH
350 1enaasuitlunsehawrindanuulsdsiusanisauas 2DPCA 9
PCA §1%3U msj’a‘hmwluwﬁw wae Hhuanoda luae

I(?’IEJ?J'WTEI MIFUABUUL  Hilbert #38 U%L?Mﬂﬁﬁ"ﬂﬂiiwﬁx‘] LIIRINIIDLAK
o a ¥ = J v
mmmmmlumimmm PCA uaz 2DPCA LL‘]J‘]JfIV]ﬂI%LT)LLGZLWN’lzﬁﬂJN’]ﬂ"IJHVL@]
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5.4 wam‘mmaaamsa%‘mﬁuﬂ%gﬁmm

azLSﬂmgammﬁwﬁaﬁatmuﬂmaquz

un ﬂaﬂﬁﬂzﬂﬁﬂ’]ﬁd ammuﬂumﬁﬁwmwi’mqh Uﬂﬁiﬁ%ﬂdﬁuﬂﬁ’]&lﬂnaﬂ(ﬂfﬁd g6

Eﬂmzé’uﬂ%gﬁ WIsuisy nu m‘sﬁa‘hmwi'@lqi@ﬂmm%’nﬁumwauﬁﬂ@gamﬂﬁﬂu

v A @ vo o d ° =
TAUNNLDS lagldmaisinweasiaginmmeazdoadniemuiduuwigu
(baseline) luninnaassnugudayaniwluni Yale uaz AR uaz mMwimany
udlygnunmusmanmisuugudayga MSTAR AMULANGNNIZAINWITLRUA

NIV agjﬁLiwauﬂ,ﬁ]nﬂL@]a‘?w@quﬁ@‘hsaqmamﬁamaaéﬁmm‘huuﬂﬁw SlriN e

éﬂmﬁﬂumﬂmugﬂmaa PCA L¥IN1hib

Tuaudsnil mlFmaduuy aarmaniz (class specific) Azenin asEanIe
HRNpAsIIEnTagseanmuamainTy  uasluudazeas  nasmnIaes
LANIZVDILARZARE Goun WINd Swauams iy C imesiinnae
L@WZIIWIU C 79 damldnaefianiziiwm C TAUR? Iumﬁ'«iw 1519z3NANIAE
fidosmnasey  (linsuaaa ﬁaaﬂﬁmﬂmﬂﬁﬁumwf@qﬁ) lagyinnsaneadu
INADSAMIZTBINANZAME  UASHNMSEINARAIN  lagmInINaTINE s winYas
A SAMZTILARAAE 1919 I WATTIERINTIINNA C AW N TN
PARNANNMNTE LN (distance) U MwnaaLlay  aanalaf liazosinaszninenn

v PN A P @ A
%ﬂﬂ‘ﬂq(ﬂ fa ﬂﬂ?ﬁ‘ﬂﬁ’]'ﬂ&@]@]ﬁ%l"ﬂ

A o 2o A A v A =

Imfluwumﬂizqnmﬁlm MIFULY ansawiz Welinahedunwanuazidse
gwmﬁa‘lm:é’uﬁméﬁa UWIANTN) KID Lﬁaﬁmm%aﬁummanﬁmgwmﬁﬂm:é’u
Uiniidas LR NUSHU O URNIIDUET 16T @AN319N 5.5 AT 5.6 LEAIANRINITD LA
ﬂﬁjﬁ‘iwaoi:l,ﬁﬂﬁ%ﬁﬂdnﬁa ANAAL ﬁlzLﬁu’hmwmmin‘lumiiﬁ‘iwaamia%ﬁa
=} Qs a 1 et a Aa " Y £ = a Aa =)
ﬂuflms:@mwnmagamﬂmmuﬂsgaJﬂasl LL@“D@VL@]LﬂEEIU?JadLLUUﬂiQNElailﬂa ANl
Mo lwngraInIaafula @190 5.7 anaSouifisusuIInus LR PCA  PCA
FINAUTZAUANLTR WAz PCA aﬁ”ﬁaﬁm:ﬁuﬂ%gﬁﬂas WA ASABINAMNEINITD LN
msj’?ﬁwaamsaﬁ”nﬁulm:ﬁuﬂnmagandﬂm:é’uﬂ%gﬁﬂaﬂ weida lelUT UYL
Uindideuda anua lunzuaINIIaaF Ul 1unfh LR PCA wanaf msiﬁﬂm
lneasianizluszauainuaziduae JUN 511 uaz 512 ugaINIIEINIAUIe
MWL IITAU NALTR WAL Uinfidey AVIIAU
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@A1790 5.5 mwmmm‘lumsﬁﬂ ﬁmmiﬁwﬁu‘lmzﬁuﬂ%gﬁﬂﬂwﬁa

BMDP-2 | BTR-70 | T-72 | Percent
BMP-2 526 0 61 89.61
BTR-70 103 0 93 0
T-72 19 0 563 96.74
Avg. - - - - 79.78

AN314N 5.6 mmmmmiumsﬁaﬁﬁ vﬁ”mmsa%”wﬁu‘lm:ﬁuﬂ%qﬁtiam

BMP-2 | BTR-70 | T-72 | Percent
BMD-2 526 0 61 89.61
BTR-70 116 0 R0 0
T-72 41 0 a4l 92.96
Avg. - - - - 78.17

719 5.7 anafTeuisuanIIous LR PCA PCA nAuszauiinian uas PCA aivauszaulipiidey

MRG5080427

Databasc | CSS-PCA | Pixcl-Domain | Eigen-Domain
Mcthod SR-CSS SR-CSS
Yale 88.89 88.56 81.11
AR 88.00 88.00 87.50
MSTAR. 7744 79.78 78.17
Wi 77/90
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El]ﬁ 5.11 mwéﬁasmmaamﬁaﬁaﬁummanﬁﬂﬂgwmﬁqmw'lm:ﬁuﬂnma

Eﬂﬁ 5.12 mwé’amhwmmmﬁ"ﬂﬁummauﬁzmgamﬂ@dmmlm:ﬁunnmaﬁaww:
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U
6. a‘gﬂuawmaummz

6.1 &1l

mu%%’mﬁvlﬁﬁwmimaaamsiﬁﬂumﬁﬁLLa:Li’JmmUé'quﬁ’a TaeduwnIg19an
m’maznﬁmgm’m@ﬂmzé’u LINLADTLAN mvl,é]”ﬁ’]muamu‘i%’miugaﬁmum
d' d' U s % A a a' g a a dl' Yo a
MRETRINY MIFIAUNNUAZIBAFILINDY 1uiz@uﬂsgu Lwalﬁunﬂsgmmwamq
AMNTYa AN Ia391300 WA LTI TN INIR UG mvlﬁﬁ'uauaaoﬁmmj R

o Aaf 1 d' Yo et s Aasf 6 g ,_-3’
AANAIDUA LN Lwalﬂumigmmwmq%mUaaﬂasﬁm At

1. Lmur{haaa‘maﬂtfmmam%ﬁm%’umsﬁnﬁumwazlﬁ'ﬂ@g«imm@'ﬂm:ﬁu
IR ERHE RN

2. #nmanuduldldmeBinimnisnmIneniu 283 2DPCA  2DPCA 32y
figms  2DPCA lvt msafeamclunsaasula Judu

3. sufaudtlunmsshawnindanuudsdsusuniedle?  agraduszuvan
W3NG B SfiaLﬂuwamammmﬂmLwﬂ%ﬂ%mwi'mq

4. izl,ﬁzm%%‘lumsiﬁwﬁm STULGISURNUULRANEG?  (MCS) Avheusaniy

| AL aEUaIRILNENS Ng1931an 2DPCA LULGN9 9

wuilanddesgu

LUUANIAALRENAILIAY WIB TAVBIAILIAN

aadANNiHAM LN ALUL Y TiA

Mgty e nnamulasnwiaassyia

N o oo o o

TEUUAIRUBNUULRI DA ﬁlﬁﬁué’ammaszqﬁﬂ Aa9nuansulad
NWLEAZYTe

8. nasauszduuifsiianany PuiYaNWINQUIAI % LTk FERET Yale
AR ORL w8 MSTAR

NWh  lervimMTILat1In eI UAZ T U9 1unﬂn1ﬂdauﬁLﬁma°ﬁaoﬁ'Uﬂ1§
Aendsulznauyrddysesfiduazdiuems  nMIasAuenuazdoagisiailu
szé’uﬂ%{]ﬁﬂaﬂ NammﬂaoLQWLamLumzqﬁﬂma uaz a2l ldneminwnranis

=3 6 q/n:l' U I3 6 a e o =)

VDILRA aoﬂmmgﬂ"lmzmuﬂsz‘[muman’mfﬂy NMINWIINITEILU NITFDW AL

ﬂ"l‘iﬂ‘itQﬂ@ﬂ%\‘ﬂuluﬂﬂi(ﬂ‘i'l‘ﬂ@iﬁLﬁ aInEANNlaaany
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NNANWIN 2.

qﬂﬁﬁﬁatﬁﬂu

% function cross-covariance matrix
S1: For i = 1 to the number of classifiers
S2: Transforming all training images A to B

S3: Find the outer product B'A

S4:  A=B
S5:  Construct the /" 2DPCA
S6: End

% function super-resolved 2DPCA

S1: Transforming all LR training images A | to diagonal images LR Ay |r
S2: Find the LR outer product Aq r Aqr

S3: Find LR 2DPCA eigenvectors

S4: Transforming all HR training images A.r to diagonal images HR Ay r
S5: Find the HR outer product Aq g Agir

S6: Find HR 2DPCA eigenvectors

S7: Reconstruct super-resolved feature matrix using (28)

% function Diagonal-2DPCA with Random Subspace Method

S§1: Transforming all training images A to diagonal images Ay

S2: Find the outer product AdTAd

S3: Project image, A onto the calculated 2DPCA

S4: For i = 1 to the number of classifiers

S5: Randomly select a r dimensional random subspace from Y (r <m).

S6: Construct the i nearest neighbor classifier using the proposed distance
S7: End

S8: Combine all of the outputs of classifiers by using majority voting
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% function Directional-2DPCA with Feature Selection Method

S1: For i = 1 to the number of classifiers

S2: Construct the /" 2DPCA from cross-covariance matrix function

S3: Construct the i" nearest neighbor classifier using the proposed distance
S4: End

S5: Select K using Kullback-Leibler distance or Mutual Information cost function

S6: Combine all of the outputs of classifiers by using majority voting or sum rule

% function 2DPCA with Real Dual-Tree Wavelet

S1: Implement dualtree2D for each training image

S1: For i = 1 to the number of classifiers

S2: Construct the /" 2DPCA from the i directional subband

S3: Construct the i" nearest neighbor classifier using the proposed distance
S4: End

S5: Select K using Kullback-Leibler distance or Mutual Information cost function

S6: Combine all of the outputs of classifiers by using majority voting or sum rule
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Face and Automatic Target Recognition Based
on Super-Resolved Discriminant Subspace

Widhyakorn Asdornwised
Department of Electrical Engineering, Chulalongkorn University, Bangkok
Thailand

1. Introduction

Recently, super-resolution reconstruction (SRR) method of low-dimensional face subspaces
has been proposed for face recognition. This face subspace, also known as eigenface, is
extracted using principal component analysis (PCA). One of the disadvantages of the
reconstructed features obtained from the super-resolution face subspace is that no class
information is included. To remedy the mentioned problem, at first, this chapter will be
discussed about two novel methods for super-resolution reconstruction of discriminative
features, i.e., class-specific and discriminant analysis of principal components; that aims on
improving the discriminant power of the recognition systems. Next, we discuss about two-
dimensional principal component analysis (2DPCA), also refered to as image PCA. We suggest
new reconstruction algorithm based on the replacement of PCA with 2DPCA in extracting
super-resolution subspace for face and automatic target recognition. Our experimental
results on Yale and ORL face databases are very encouraging. Furthermore, the performance
of our proposed approach on the MSTAR database is also tested.

In general, the fidelity of data, feature extraction, discriminant analysis, and classification
rule are four basic elements in face and target recognition systems. One of the efficacies of
recognition systems could be improved by enhancing the fidelity of the noisy, blurred, and
undersampled images that are captured by the surveillance imagers. Regarding to the
fidelity of data, when the resolution of the captured image is too small, the quality of the
detail information becomes too limited, leading to severely poor decisions in most of the
existing recognition systems. Having used super-resolution reconstruction algorithms (Park
et al., 2003), it is fortunately to learn that a high-resolution (HR) image can be reconstructed
from an undersampled image sequence obtained from the original scene with pixel
displacements among images. This HR image is then used to input to the recognition system
in order to improve the recognition performance. In fact, super-resolution can be considered
as the numerical and regularization study of the ill-conditioned large scale problem given to
describe the relationship between low-resolution (LR) and HR pixels (Nguyen et al., 2001).
On the one hand, feature extraction aims at reducing the dimensionality of face or target
image so that the extracted feature is as representative as possible. On the other hand,
super-resolution aims at visually increasing the dimensionality of face or target image.
Having applied super-resolution methods at pixel domain (Lin et al., 2005; Wagner et al.,
2004), the performance of face and target recognition applicably increases. However, with
the emphases on improving computational complexity and robustness to registration error
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2 Face Recognition / Book 1

and noise, the continuing research direction of face recognition is now focusing on using
eigenface super-resolution (Gunturk et al., 2003; Jia & Gong, 2005; Sezer et al., 2006).
The essential idea of eigen-domain based super-resolution using 2D eigenface instead of the
conventional 1D eigenface is to overcome the three major problems in face recognition
system, i.e., the curse of dimensionality, the prohibited computing processing of the singular
value decomposition at visually improved high-quality image, and natural structure and
correlation breaking in the original data.

In Section 2, the basic of super-resolution for low-dimensional framework is briefly
explained. Then, discriminant approaches are detailed in Section 3 with the purpose of
increasing the discrimination power of the eigen-domain based super-resolution. In Section
4, the implement of the two dimensional eigen-domain based super-resolution is addressed.
We also discuss the possibility of the extension of two dimensional eigen-domain based
super-resolution with discriminant information in Section 5. Finally, Section 6 provides the
experimental results on the Yale and ORL face databases and MSTAR non-face database.

2. Eigenface-domain super-resolution

The fundamental of the super-resolution for in low-dimensional face subspace is formulated
here. The important of the image super-resolution model and its eigenface-domain based
reconstruction is that they can be used for practical extensions of one- and two-dimensional
super-resolved discriminant face subspaces in the next sections, respectively.

2.1 Image super-resolution model

According to the numerically computational SRR framework (Nguyen et al., 2001), the
relationship between an HR image and a set of LR images can be formulated in matrix form
as follows:

f =DBEx+n, 1<k<p 1)

where p is the number of available frame, f, and x are vectors extracted from the kth LR

image frame and HR image in lexicographical order, respectively, and D is the down-
sampling operator, B is the blurring or averaging operator, and Ey is the affine transform,
and ny is noise of the frame k, respectively.

Thus, we can reformulate (1) as

f, D,B/E, n,
D= : x+| : 2)
fp D,B,E, n,

or

f =Hx+n, 3)

f=Hx+n.

The above equation can be solved as an inverse problem with a regularization term, or

x=H"(HH" + AT)'f . 4)
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Face and Automatic Target Recognition Based on Super-Resolved Discriminant Subspace 3

It should be noted that the matrix H is a very large sparse matrix. As a result, the analytic
solution of x is very hard to find. One of the popular methods used for finding the solution
of this kind of the inverse problem is by using conjugate gradient method.

2.1 Reconstruction algorithm

Common preprocessing step used for pattern recognition and in compression schemes is
dimensionality reduction of data. In image analysis, PCA is one of the popular methods
used for dimensionality reduction. Let @ be an optimal eigenface that removes the
redundancy by decorrelating the image data x. The optimal eigenfaces are coded in its
columns. Face image x is assumed to be vectored. Thus, the optimal image representation of
x can be written as

x=Pa+e,, ®)

where a is the Lx1 dimensional feature that represents x, and ey is its representation error.
Given that W is the B’N’xL matrix that contains eigenfaces of the kth LR image frame,
where the scaling resolution factor £ is within the range 0 to 1 and N is the total face image
pixels. We can formulate the low-resolution image representation as

f,=Wa, te, . ©6)

By substituting (5) and (6) in (3), we obtain

Wa, +e, =H,®a+He, +n,. (7)
Since
1PTefk =0 )
and
wiy-1. )

It is easy to derive the following equation
i, =W'H®a+W He, +¥'n,. (10)

By considering the second and third terms as the observation noise with Gaussian
distribution (Gunturk et al., 2003), we can obtain

i =Aa+W®'¢, (11)
where

{i=He, +n,, (12)
and

A =WH®. (13)
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Without loss of generality, we can numerically solve for the true super-resolution feature
vector at the eigen-domain level as in (5), or

a=A"(AAT +y1)"a, (14)

where y is the regularization term. In particular, we introduce the notation p in (14) in order

to differentiate the PCA-domain based super-resolution approach (Gunturk et al., 2003)
from our proposed approaches which will be presented in the upcoming sections,

a,=A (A A +7D)7"a,. (15)

3. Discriminant face subspaces

PCA and its eigenface extension are constructed around the criteria of preserving the data
distribution. Hence, it is well suited for face representation and reconstruction from the
projected face feature. However, it is not an efficient classification method because the
between classes relationship has been neglected. Here, we discuss on the possibilities that
how we can embed discriminant information into eigenface-domain based super-resolution.

3.1 Face-specific subspace Super-resolution

As widely known, the eigen-domain based face recognition methods use the subspace
projections that do not consider class label information. The eigenface's criterion chooses the
face subspace (coordinates) as the function of data distribution that yields the maximum
covariance of all sample data. In fact, the coordinates that maximize the scatter of the data
from all training samples might not be so adequate to discriminate classes. In recognition
task, a projection is always preferred to include discrimination information between classes.
One of the extensions of eigenface, called face-specific subspace (FSS) (Shan, 2003), is
proposed as an alternative feature extraction method to include class information for face
recognition application. According to FSS, each reduced dimensional basis of class-specific
subspace (CSS) is learned from the training samples of the same class. Actually, each
individual set of CSS optimally represents the data within its own class with negligible
error. As a result, large representation error occurs, when the input data is projected and
then reconstructed using a reduced set with less maximum covariance coordinates (or
equivalently, using a set of principal components that does not belong to the input class).
This way, by using reconstruction error obtained from projection-reconstruction process
between classes, also called distance from CSS (DFCSS), a new metric can be suitably used
as the distance for classifying the input data. In other words, the smaller the DFCSS is, the
higher the probability that the input data belongs to the corresponding class will be. Similar
work based on FSS (Belhumeur, 1997) attacking wide attentions in face recognition society is
also published recently.

The original face-specific subspace (FSS) was proposed to manipulate the conventional
eigenface in order to improve the recognition performance. According to FSS, the difference
between FSS and the traditional method is that the covariance matrix of the p# class is
individually evaluated from training samples of the p* class. Thus, the pt" FSS is represented
as a 4-tuple, i.e., the projection matrix, the mean of the p class, the eigenvalues of
covariance matrix, and the dimension of the p CSS. For identification, the input sample is
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projected using all CSSs and then reconstruct by those CSSs. If reconstruction error which
obtained from the pf CSS is minimum then the input sample is belong to the p'" class, also
called distance from CSS (DFCSS).

There are many advantages of using CSS in face and target recognition. For example, the
transformation matrices are trained from samples within their own classes, thus it is more
optimum (using fewer components) to represent each sample in its own class than a
transformation matrix trained by samples in all classes. Additionally, since DFCSS is the
distance between the original image and its reconstruction image obtained from CSS, the
memory space needed is only for storing the C transformation matrices, where C is the
number of classes. This is far less than the conventional subspace methods, where we need
to store both a single all-classes transformation matrix and also its prototypes (a large set of
feature vectors calculated for all training samples). Moreover, the number of distance
calculation in CSS is less than the number of distance calculation in conventional methods,
since the number of classes is usually less than the number of training samples.

By combining super-resolution reconstruction approach with class-specific idea, a new
method for face and automatic target recognition is proposed.

3.2 Discriminant analysis of principal components

The PCA's criterion chooses the subspace as the function of data probability distribution
while linear discriminant analysis (LDA) chooses the subspace which yields maximal inter-
class distance, and at the same time, keeping the intra-class distance small. In general, LDA
extracts features which are better suitable for classification task. Both techniques intend to
project the vector representing face image onto lower dimensional subspace, in which each
2D face image matrix must be first transformed into vector and then a collection of the
transformed face vectors are concatenated into a matrix.

The PCA and LDA implementation causes three major problems in pattern recognition. First
of all, the covariance matrix, which collects the feature vectors with high dimension, will
lead to curse of dimensionality. It will further cause the very demanding computation both in
terms of memory and time. Secondly, the spatial structure information could be lost when
the column-stacking vectorization and image resize are applied. Finally, especially in face
recognition task, the available number of training samples is relatively small compared to
the feature dimension, so the covariance matrix which estimated by these features trends to
be singular, which is addressed ased singularity problem or small sample zize (SSS) problem.
Especially, as a supervised technique, LDA has a tendency to overfitting because of the SSS
problems.

Various solutions have been proposed for solving the SSS problem. Among these LDA
extensions, Fisherface and the discriminant analysis of principal components framework
(Zhao, 1998) demonstrate a significant improvement when applying LDA over principal
components subspace. Since both PCA and LDA can overcome the drawbacks of each other.
It has also been noted that LDA faces two certain drawbacks when directly applied to the
original input space. First of all, some non-face information such as image background has
been regarded by LDA as the discriminant information. This causes misclassification when
the face of the same subject is presented on different background. Secondly, the within-class
scatter matrix trends to be singular when SSS problem has occurred. Projecting the high
dimensional input space into low dimensional subspace via PCA first can solve the
shortcomings of the LDA problems. In other words, class information should be included to
PCA by incorporating LDA.
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3.2.1 Proposed reconstruction algorithm

Here, we can obtain a linear projection which maps the HR input image x first into the face
subspace, and finally into the classification space z. Thus, we can modify the equation (5) to
be

x=Wda, +e, +e,, (16)
where W, is the optimal discrimination projection obtained from solving the generalized
eigenvalue problem:

S,W. =AS_W_, 17)
and Sy, S,, are the between-class and within-class scatter matrices, respectively. Similarly, we
can find the optimal discriminant project of the LR image frame W, , by little manipulating
on (16)-(17) with corresponding LR images.

With little manipulations, we can reconstruct discriminant analysis of principal components
based super-resolution as

a, =Al (A, AL +7D) 4, (18)
where
A, =W¥HW®, 19)
and
C=He, +He, +n,. (20)

4. Two-dimensional eigen-domain based super-resolution

Recently, Yang (Yang et al., 2004) proposed an original technique called two-dimensional
principal component analysis (2DPCA), in which the image covariance matrix is computed
directly on image matrices so the spatial structure information can be preserved. One of the
benefits of this method is that the dimension of the covariance matrix just equals to the
width of the face image or the height in case of 2DPCA variant. This size is much smaller
than the size of covariance matrix estimated in PCA. Therefore, the image covariance matrix
can be better estimated with full rank in case of few training examples, like in face
recognition.
We now consider linear projection of the form

X=0v+e,, (21)

X

where X represents any face image in its original matrix form, {6,,---,6,}, be the d largest

eigenvectors that can be form to be ® ,and v is the projected HR feature of this image on
®, called principal component matrix. The criterion used for obtaining the eigenvectors in
(21) has been descriptively shown in Yang and Sanguangsat (Yang et al., 2004;
Sanguangsat, 2006).
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4.1 Alternative image super-resolution model
LR and HR images can be simply related as (Vijay, 2008)

f=LXR, +1,, 1<k<p. (22)

where p is the number of available frame; L, , R, are downsampling matrices, and fk , X are
image matrices from the kth LR image frame and HR image, respectively. It should be noted
that two-dimensional Gaussian blur can be represented by using together the two
separate L, and R, . An extension to downsampling and affine transform can also be easily
conducted by placing the elements of the matrices properly (Gsmooth, n.d.). It should also
be noted that both the input LR and HR image are represented in its original matrix form.
We do not transform the LR and HR images to be vectors in lexicography order as in (1).

4.2 Proposed reconstruction algorithm
Thus,

TV, +e, =LOVR, +LeR, +7,, (23)

i
where {Fl,---,Fd} , be the d largest eigenvectors that can be form to beT ,and v, is the

projected LR feature of the imageon I'.
Without loss of generality,

Ie, =0 (24)
and
I'r=1. (25)
It is easy to derive the following equation
v, =I"LO®VR, +T'Le R, +I'n,. (26)

It should be noted that v, is a feature matrix, unlike a, which is a feature vector. Thus, it is a
little more complicated to solve the inverse problem for super-resolution feature matrix v, .

By applying vector operator as presented in Kumar and Schott (Kumar, 2008; Schott, 2005),
(26) can be rewritten as

B =EB+n,, (27)

where f, = vec(¥,), B, = vec(v) ,E, = RT ®T'L,® and 77, = vec(T"L,e,R, +T'h,). Here ® is
Kronecker operator. This way, we can solve for the two-dimensional feature matrix at the
eigen-domain level similarly to (15) and (18), or

A~

B=E"EE"+,1)"B, (28)
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where y is the regularization term. Thus, after we convert f back to matrix, we will obtain

the desired super-resolution feature matrix.

5. Extensions to two-dimensional linear discriminant analysis of principal
component matrix

Similarly to PCA, 2DPCA is more suitable for face representation than face recognition. For
better performance in recognition task, LDA is necessary. Unfortunately, the linear
transformation of 2DPCA reduces only the size of rows. However, if we apply LDA directly
to 2DPCA, the number of the rows still equals to the height of original image. As a result,
we are still facing the singular problem in LDA. Thus, a modified LDA, called two-
dimensional linear discriminant analysis (2DLDA), based on the 2DPCA concept is proposed to
overcome the SSS problem. Applying 2DLDA to 2DPCA not only can solve the SSS problem
and the curse of dimensionality dilemma but also allows us to work directly on the image
matrix in all projections. This way, the spatial structure information is still maintained.
Moreover, the SSS problem has been remedy since the size of all scatter matrices cannot be
greater than the width of face image. Our research group (Sanguangsat, 2006) are the first
group that focus on the extension of discriminant analysis of principal component of Section
3.1 by two-dimensional projection, called two-dimensional linear discriminant of principal
component matrix

6. Experimental results

Having assumed that we can perfectly obtain the information regarding to frame to frame
motion, hence we can use these information to form the proper super-resolution matrix
equation in (5). In our experiment settings, evaluation images were shifted by a uniform
random integer, blurred with 4x4 Gaussian point spreading function with standard
deviation 1, and downsampled by a factor of four to produce 16 low-resolution images for
each high-resolution image. Using 9 (preselected) out of 16 complete set of frames of each
image, we can construct the super-resolution subspaces and also super-resolution images,
respectively. Our super-resolution subspace approach is then compared with pixel-domain
super-resolution approach using the class-specific subspace for face and automatic target
recognition. Here, we conduct and show experiments according to the algorithm proposed
in Subsection 3.1 only. Ongoing experiments on the other reconstruction algorithms, i.e.,
discriminant analysis of principal components, two-dimensional eigenface-domain based super-
resolution, and 2DLDA of 2DPCA, are conducting. Essentially, we expect very encouraging
the recognition results.

6.1 Evaluation databases
Eigenface-domain super-resolution method is used as the baseline for comparison based on
the well-known Yale and AR face databases (Yale, 1997; Martinez, 1998) and MSTAR non-

face database (Center, 1997), respectively.

6.1.1 Yale Database
The Yale database contains 165 images of 15 subjects. There are 11images per subject, one for
each of the following facial expressions or configurations: center-light, with glasses, happy,
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left-light, without glasses, normal, right-light, sad, sleepy, surprised, and wink. All sample
images of one person from the Yale database are shown in Fig. 1. Each image was manually
cropped and resized to 100x80 pixels. In all experiments, the five image samples
(centerlight, glasses, happy, leftlight, and noglasses) are used for training, and the six
remaining images (normal, rightlight, sad, sleepy, surprise and wink) for test.

Fig. 1. The sample images of one subject in the Yale database

Fig. 2. The sample images of one subject in the AR database

6.1.2 AR database

The AR face database was created by Aleix Martinez and Robert Benavente in the Computer
Vision Center (CVC) at the U.A.B. It contains over 4,000 color images corresponding to 126
people's faces (70 men and 56 women). Images feature frontal view faces with different
facial expressions, illumination conditions, and occlusions (sun glasses and scarf). The
pictures were taken at the CVC under strictly controlled conditions. No restrictions on wear
(clothes, glasses, etc.), make-up, hair style, etc. were imposed to participants. Each person
participated in two sessions, separated by two weeks (14 days) time. The same pictures were
taken in both sessions.

In our experiments, only 14 images without occlusions (sun glasses and scarf) are used for
each subject, as shown in Fig. 2. All images were manually cropped and resized to
112 x 92 pixels, and then convert to 256 level gray scale images. The first five images per
subject are used to train, and the remaining images to test.

6.1.3 MSTAR database

The MSTAR public release data set contains high resolution synthetic aperture radar data
collected by the DARPA /Wright laboratory Moving and Stationary Target Acquisition and
Recognition (MSTAR) program. The data set contains SAR images with size 128x128 of
three difference types of military vehicles, i.e., BMP2 armored personal carriers (APCs),
BTR70 APCs, and T72 tanks. The sample images from the MSTAR database are shown in
Fig. 3. Because the MSTAR database is large, at this time, all images were centrally cropped
to 32x32 pixels for evaluation purpose.
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Fig. 3. Sample SAR images of MSTAR database: the upper row is BMP2 APCs, the middle
row is BTR70 APCs, and the lower row is T72 tank.

Tables 1 and 2 detail the training and testing sets, where the depression angle means the
look angle pointed at the target by the antenna beam at the side of the aircraft. Based on the
different depression angles SAR images acquired at different times, the testing set can be
used as a representative sample set of the SAR images of the targets for testing the
recognition performance.

Vehicle No. Serial No. Depression Angle Images

1 9563 233

BMP-2 2 9566 170 231
3 C21 233

BTR-70 1 C71 170 233
1 132 232

T-72 2 812 170 231
3 57 228

Table 1. MSTAR images comprising training set

Vehicle No. Serial No. Depression Angle Images

1 9563 195

BMP-2 2 9566 150 196
3 C21 196

BTR-70 1 c71 150 196
1 132 196

T-72 2 812 150 195
3 57 191

Table 2. MSTAR images comprising testing set

6.2 Class-specific subspace results
The class-specific super-resolution images reconstructed for classification with pixel-domain
and eigen-domain based approaches are shown in Fig. 4 and 5, respectively. The first images
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in the first column are the input testing images. The images from the second to the sixth
columns are corresponding to the class-specific super-resolution reconstruction obtained
from the corresponding five different set of class-specific eigenfaces. Here, we show five
class-specific units. Thus, five reconstructed images are obtained from each input image.
Image with least error at i class-specific unit will be identified to it class. It should be noted
that the images reconstructed using pixel-domain based super-resolution approach give us
good perceptual view. However, as shown for eigen-domain based approach, the fourth and
fifth input images also give us good perceptual views, while others give comparable
reconstruction results. Thus, the reconstruction images based on class-specific super-
resolution subspace are more dependent to its corresponding eigen-vectors.

Fig. 4. Samples of class-specific pixel-domain based super-resolution reconstruction images

Fig. 5. Samples of class-specific eigen-domain based super-resolution reconstruction images
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Recognition
BMP-2 BTR-70 T-72 Acc.
BMP-2 526 0 61 89.61
BTR-70 103 0 93 0
T-72 19 0 563 96.74
Average - - - 79.78

Table 3. The pixel-domain super-resolution based class-specific subspace method:
Recognition test of a three class problem for 32 x 32 images.

Recognition
BMP-2 BTR-70 T-72 Acc.
BMP-2 526 0 61 89.61
BTR-70 116 0 80 0
T-72 41 0 541 92.96
Average - - - 78.17

Table 4. Our proposed method: Recognition test of a three class problem for 32 x 32 images.

Database Pixel-Domain | Eigen-Domain
Yale 88.56 81.11
AR 88.00 87.50
MSTAR 79.78 78.17

Table 5. Comparison Results for 32 x 32 images.

Table 3 and 4 show the confusion matrices of the MSTAR target recognition. As shown in
Table 5, the performance of the pixel-domain based super-resolution method is slightly
better than our proposed method. However, our method is greatly benefits in term of
computation. Additionally, we can derive principal component coefficients of the face
databases using simple matrix inversion of very small size, which is 36x36 only. This is
because of the reason we use inner product approach to calculate the PCA coefficients. Thus,
our algorithm is far faster than implementing super-resolution at pixel-domain. In pixel-
domain based super-resolution approach, they have to solve a very large and sparse matrix
using conjugate gradient method. In the MSTAR database, we found that the class 2 target
cannot be recognized at all. This may be because the size of the low-resolution test image is
too small. If we increase the size of the test images to 48x48 or larger, we think that we can
have better recognition accuracy.

7. Conclusion

In this chapter we have conducted experiments on face and automatic target recognition by
focusing on the eigenface-domain based super-resolution implementations. We have also
presented an extensive literature survey on the subject of more advanced and/or
discriminant eigenface subspaces. From our discussion, several new super-resolution
reconstruction algorithms have been proposed here.
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In particular, several new eigenface-domain super-resolution algorithms are suggested as
follows
1. Class-specific face subspace based super-resolution is proposed in Subsection 3.1
2. Equation (18) is used for including discriminant analysis of principal components for
extracting face feature for eigenface-domain super-resolution
3. Equation (28) is used for two-dimensional eigenface-domain super-resolution
4. Two-dimensional eigenface in Equation (28) is proposed to be replaced by two-
dimensional linear discriminant analysis of principal component matrix
Current research in face and automatic target recognition is yet to utilize the full potential of
these techniques. During preparing this chapter, we have just realized that there many
aspects of studies and comparisons that should be conducted to gain more understanding
on the variants of the eigenface-domain based super-resolution. For example, recognition
accuracy should be compared between majority-voting using multiple low-resolution
eigenfaces VS one super-resolved eigenface. This way, we can relate a set of LR face
recognition with multiple classifier system. Furthermore, all of the proposed algorithms use
a two-stage approach, that is, dimensionality reduction is first implemented, after that the
super-resolution enhancement is performed. It may be a little more encouraging if we can
further conduct the study on joint dimensionality reduction-resolution enhancement. This idea is
quite similar to joint source-channel coding, which is a very popular approach studied for
transmitting data over network. Evidently, we are thinking about computing certain desired
eigenfaces and then super-resolve the computed eigenfaces on the fry. This approach trends
to be quite a more biological plausible.
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ABSTRACT

Recently, super-resolution reconstruction (SRR) method of low-dimensional face subspaces has been proposed for
face recognition. However, the reconstructed features obtained from the face-specific super-resolution subspace
contain no class information. This paper proposes a novel method for super-resolution reconstruction of class-
specific features that aims on improving the discriminant power of the recognition systems. Our experimental
results on Yale and ORL face databases are very encouraging. Furthermore, the performance of our proposed
approach on the MSTAR database is also tested for preliminary evaluation.

Keywords: Super-resolution image reconstruction, Eigenface, Class-specilic subspace, MSTAR

1. INTRODUCTION

In general, the fidelity of data, feature extraction, discriminant analysis, and classification rule are four basic
elements in face and target recognition systems. One of the efficacy of recognition systems could be improved
by enhancing the fidelity of the noisy, blurred, and undersampled images that are captured by the surveillance
imagers. Regarding (o the [lidelity ol data, when the resolution of the captured image is too small, the quality of
the detail information becomes (oo limited, leading to severely poor decisions in most of the existing recognition
systems. Having used super-resolution reconstruction algorithms,! it is fortunately (o learn thal a high-resolution
(HR) image can be reconstructed from an undersampled image sequence obtained from the original scene with
pixel displacements among images. This HR image is then used to input to the recognition system for improved
performance. In fact, super-resolution can be considered as the numerical and regularization study of the ill-
conditioned large scale problem given to describe the relationship between low-resolution (LR) and HR pixels.?

On the one hand, feature extraction aims at reducing the dimensionality of face or target image so that the
extracted feature is as representative as possible. On the other hand, super-resolution aims at visually increasing
the dimensionality of face or target image. Having applied super-resolution methods at pixel domain,®* the
performance of face and target recognition applicably increases. However, with the emphases on improving
computational complexity and robustness to registration error and noise, the continuing research direction of
face recognition is now focusing on using eigenface super-resolution.>~%

It should be noted that the above eigenface-domain super-resolution face recognition methods use the subspace
projections that do not consider class label information. The eigenface’s criterion chooses the face subspace
(coordinates) as the function of data distribution that yields the maximum covariance of all sample data. In
fact, the coordinates that maximize the scatter of the data from all training samples might not be so adequate to
discriminate classes. In recognition task, a projection is always preferred to include discrimination information
between classes. One of the extensions of eigenface, called face-specific subspace (FSS),® is proposed as an
alternative feature extraction method to include class information for face recognition application. According
to FSS, each reduced dimensional basis of class-specific subspace (CSS) is learned from the training samples of
the same class. Actually, each individual set of CSS optimally represents the data within its own class with
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negligible error. As a result, large representation error occurs, when the input data is projected and then
reconstructed using a reduced set with less maximum covariance coordinates (or equivalently, using a set of
principal components that does not belong to the input class). This way, by using reconstruction error obtained
from projection-reconstruction process between class, also called distance from CSS (DFCSS), a new metric can
be suitably used as the distance for classifying the input data. In other words, the smaller the DFCSS is, the
higher the probability that the input data belongs to the corresponding class will be.

There are many advantages of using CSS in face and target recognition. For example, the transformation
matrices are trained from samples within their own classes, thus it is more optimum (using fewer components) to
represent each sample in its own class than a transformation matrix trained by samples in all classes. Additionally,
since DFCSS is the distance between the original image and its reconstruction image obtained from CSS, the
memory space needed is only for storing the NV transformation matrices, where NV is the number of classes. This is
far less than the conventional subspace methods, where we need to store both a single all-classes transformation
matrix and also its prototypes (a large set of feature vectors calculated for all training samples). Moreover, the
number of distance calculation in CSS is less than the number of distance calculation in conventional methods,
since the number of classes is usually less than the number of training samples.

In this paper, we propose an efficient super-resolution method for face and target recognition that aims on
including low-dimensional discriminant information within the super-resolution framework in order to improve
performance. In Section 2, the idea of super-resolution for low-dimensional framework is formulated. Then, class-
specific recognition approach is detailed in Section 3. By combining super-resolution reconstruction approach with
class-specific idea, we propose a new method for face and automatic target recognition. Section 4 provides the
experimental results for the Yale and ORL face databases and non-face database, MSTAR. Finally, conclusions
are presented in Section 5.

2. SUPER-RESOLUTION FOR LOW-DIMENSIONAL FRAMEWORK

By arranging image pixels in lexicographical order according to the numerically computational SRR framework,?
the relationship between an HR image and a set of LR images can be formulated in matrix form as follows:

fr, = DCEpx + ny, 1<k<p (1)

where D is the downsampling operator, C' is the blurring or averaging operator, and Ej, is the affine transform
and ny is noise of the frame k, respectively.

Thus, we can reformulated (1) as

fl Hl n;
I R S I (2)
fk Hk n;
or
f =Hx+n, (3)
where
DCE; H,
H=| : |=]: | (4)
DCE; Hy

The above equation can be solved by adding a regularization term, or

x = HT(HHT + \I)'f. (5)

It should be noted that matrix H is a large sparse matrix, which is very hard to find the solution of 2 One of
the popular methods used to find the solution of the above inverse problem is the conjugate gradient method.



Dimensionality reduction of data is a common preprocessing step used for pattern recognition and classifica-
tion applications and in compression schemes. In image analysis, principal component analysis (PCA) is also one
of the popular methods used. Let @ be a reversible transformation that removes the redundancy by decorrelating
the image data x. Assuming face image x is ordered in lexicographic, thus, the represent ion form of x can be
written as

x = ®a + ey, (6)

where a is the L x 1 dimensional feature that represents x, and ey is its representation error. Given that ¥ is
B2N? x L dimensional reversible transformation matrix where 3 is the scaling resolution factor (0 < 3 < 1), we
can formulate low-resolution image representation as

fic = ¥ay + ey, . (7)
By substituting (6) and (7) in (4), we obtain
‘I’ak +egf = Hy®a + Hyex + ny. (8)
Since
TTer =0 9)
and
Ty =1, (10)
it is easy to derive the following equation
ay = $TH ®a + ¥THie, + TTn,. (11)
Given
(k = Hiex + nx (12)
and
A, =9TH,® (13)

as the new observation noise with Gaussian distribution (see detail®) and the new linear transformation matrix
respectively, we can obtain
ax = Aya+ PTG (14)

Without loss of generality, we can numerically solve for the true PCA feature vector as in (5), or

a=AT(AAT + XI)7'a. (15)

3. CLASS-SPECIFIC SUPER-RESOLUTION SUBSPACE

The original face-specific subspace (FSS) was proposed for applying to eigenface to improve performance. Ac-
cording to FSS, the difference between CSS and the traditional method is that the covariance matrix of the p*”
class is individually evaluated from training samples of the p** class. Thus, the pt* CSS is represented as a
4-tuple: the projection matrix, the mean of the pt” class, the eigenvalues ol covariance matrix and the dimension
of the p'* CSS. For identification, the input sample is projected using all CSSs and then reconstruct by those
CSSs. If reconstruction error which obtained from the p!* CSS is minimum then the input sample is belong to
the p!" class, also called distance from CSS (DFCSS).

By combining super-resolution reconstruction approach with class-specific idea, we propose a new method
for face and automatic target recognition.



Figure 1. The sample images of one subject in the Yale database.

Figure 2. The sample images of one subject in the AR database.

4. EXPERIMENTAL RESULTS

Eigenface-domain super-resolution method is used as the baseline for comparison based on the well-known Yale,?
AR!0 face database and MSTAR!! non-face databases, respectively. The test images were shifted by a uniform
random integer, blurred with 4 x4 Gaussian point spreading function with standard deviation 1, and downsampled
by a factor of four to produce 16 low-resolution images for each high-resolution image. Using 9 (preselected)
out of 16 complete set of frames of each image, we can construct the super-resolution subspaces and also super-
resolution images for face recognition evaluation.

Having assumed that we can perfectly obtain the information regarding to frame to frame motion, hence we
can use these molions (o form the proper super-resolution malrix equation in (5). Our super-resolution subspace
approach is then compared with pixel-domain super-resolution approach using the class-specific subspace for face
recognition.

4.1. Experiments on Yale database

The Yale database contains 165 images of 15 subjects. There are 1limages per subject, one for each of the
following facial expressions or configurations: center-light, with glasses, happy, left-light, without glasses, normal,
right-light, sad, sleepy, surprised, and wink. All sample images of one person from the Yale database are shown
in Fig.1. Each image was manually cropped and resized to 100 x 80 pixels.

In all experiments, the five image samples (centerlight, glasses, happy, leftlight, and noglasses) are used for
training, and the six remaining images (normal, rightlight, sad, sleepy, surprised and wink) for test.

4.2. Experiments on AR database

The AR face database was created by Aleix Martinez and Robert Benavente in the Computer Vision Center
(CVC) at the U.A.B. It contains over 4,000 color images corresponding to 126 people’s faces (70 men and
56 women). Images feature frontal view faces with different facial expressions, illumination conditions, and
occlusions (sun glasses and scarf). The pictures were taken at the CVC under strictly controlled conditions. No
restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. were imposed to participants. Each person
participated in two sessions, separated by two weeks (14 days) time. The same pictures were taken in both
sessions.

In our experiments, only 14 images without occlusions (sun glasses and scarf) are used for each subject, as
shown in Fig. 2. All images were manually cropped and resized to 112 x 92 pixels, and then convert to 256 level
gray scale images. The first five images per subject are used to train, and the remaining images for test.

4.3. Experiments on MSTAR database

The MSTAR public release data set contains high resolution synthetic aperture radar data collected by the
DARPA/Wright laboratory Moving and Stationary Target Acquisition and Recognition (MSTAR) program.
The data set contains SAR images with size 128 x 128 of three difference types of military vehicles — BMP2
armored personal carriers (APCs), BTR70 APCs, and T72 tanks. The sample images from the MSTAR database



Figure 3. Sample SAR images of MSTAR database: the upper row is BMP2 APCs, the middle row is BTR70 APCs,
and the lower row is T72 tank.

Table 1. MSTAR imnages comprising training set.

Vehicle No. | Serial No. | Depression | Images

BMP-2 1 9563 17Y 233
2 9566 231

3 c21 233

BTR70 1 c71 17Y 233
T-72 1 132 170 232
2 812 231

3 s7 228

are shown in Fig.3. Because the MSTAR database is large, at this time, all images were centrally cropped to
32 x 32 pixels for evaluation purpose.

Tables 1 and 2 detail the training and testing sets, where the depression angle means the look angle pointed
at the target by the antenna beam at the side of the aircraft. Based on the different depression angles SAR
images acquired at different times, the testing set can be used as a representative sample set of the SAR images
of the targets for testing the recognition perlormance.

4.4. Face and Target Recognition Results

Fig. 4-5 are the reconstruction images used for class-specilic classilication method using pixel-domain and eigen-
domain based reconstruction approaches. FEach image is reconstructed from each class-specific’s corresponding
eigen-vectors. Here, we show five class-specific units. So five reconstructed images are obtained from each input
image. Image with least error at i'" class-specific unit will be identified to i'* class. Note that images recon-
structed using pixel-domain based approach at their corresponding class-specific units give us good perceptual

Table 2. MSTAR images comprising testing set.

Vehicle No. | Serial No. | Depression | Images

BMP-2 1 9563 159 195
2 9566 196

3 c21 196

BTR70 1 c7l 159 196
T-72 1 132 159 196
2 812 195

3 s7 191




Table 3. The pixel-domain super-resolution based class-specific subspace method: Recognition test of a three class
problem for 32 x 32 images.

BMP-2 | BTR-70 | T-72 | Percent
BMP-2 | 526 0 61 | 89.61
BTR-70 | 103 0 93 0
T-72 19 0 563 | 96.74
Avg. - - - - 79.78

Table 4. Our proposed method: Recognition test of a three class problem for 32 x 32 images.

BMP-2 | BTR-70 | T-72 | Percent
BMDP-2 | 526 0 61 | 89.61
BTR-70 | 116 0 80 0
T-72 41 0 541 | 92.96
Avg. - - - - 7817

view. In eigen-domain based approach, the fourth and fifth input images give a very good perceptual view, while
others give comparable reconstruction results. The reconstruction images based on class-specific super-resolution
subspace are more dependent to its corresponding eigen-vectors.

Table 3-4 show the confusion matrices of the MSTAR target recognition. As shown in Table 5, the performance
of the pixel-domain based super-resolution method is slightly better than our proposed method. However, our
method is greatly benefit in term of computation. Additionally, we can derive principal component coefficients
of the face databases using simple matrix inversion of size only 36 x 36. This is because we use inner product
approach for calculating the PCA coefficients. In pixel-domain based super-resolution approach, however, we
still have to solve a very large and sparse matrix using conjugate gradient method. Additionally, we increased the
low-resolution testing images of the reference frame to the original resolution and then used them to evaluate with
the training images at the original resolution. We got 85.56 and 77.00 percents for the recognition accuracy of the
Yale and AR Face databases, respectively. As the result, our proposed method is better than the interpolation
method for the AR face database, but not as good as the interpolation method for the Yale face database.

In the MSTAR database, class 2 of the target cannot be recognized at all. We think if we test images with a
size of 48 x 48 or larger, we can recognize its class more correctly.

Table 5. Comparisons of the Recognition Accuracy (in percent) of PCA, PCA-SRR, CSS-SRR, and MD-CSS-SRR on
Yale, AR, and MSTAR databases

Database | CSS-PCA | Pixel-Domain | Eigen-Domain

Method SR-CSS SR-CSS
Yale 88.89 88.56 81.11
AR 88.00 88.00 87.50

MSTAR 77.44 79.78 78.17




Figure 4. Samples of reconstruction images used for class-specific classification approach. The first images in the first
column are the input testing images. Images of the second to the sixth columns are corresponding to the class-specific
principal component analysis reconstruction. Note that all the images here are reconstructed using the pixel-domain
based reconstruction approach.

5. CONCLUSIONS

In this paper, we proposed an alternative method to eigen-domain super-resolution for face recognition method.
Our proposed scheme was inspired from the frameworks of class-specific pattern analysis. One of the advantages
of class-specific concept is that the feature vectors are no need to be stored, only Ntransformation matrices are
need to be stored, where N is the number of classes. This is not the case in the conventional PCA method.
Thus, the memory consumption is reduced significantly.

So far, we have not record and compare training and recognition time of all the methods. But we certainly
believe that our proposed method can be benefit in term of computational complexity from the class-specific and
eigen-domain based super-resolution approaches.
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