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ABSTRACT

Maspin or SERPIN B5 belongs to the serine protease inhibitor
superfamily of proteins. Maspin is a tumor suppressor SERPIN because it can
inhibit growth, invasion and metastasis of cancer in vitro and in vivo. Although
the underlying mechanism of maspin activity is still mystifying, several reports
have proposed models of its actions including the inhibition of 26S proteasome
activity of carcinoma cells. The aims of this study are to investigate whether the
reactive center loop (RCL) of maspin is responsible for inhibiting the
proteasome activity and determine an effect of maspin-ISG15 conjugation on
cellular ubiquitin conjugating system. Using mammalian transfection system,
6xHis-FLAG-maspin, -ovalbumin or two maspin/ovalbumin chimeric mutants
were expressed in mammary carcinoma cell line MDA-MB-231. The 20S
proteasome activity was measured using a fluorometric assay, and the
ubiquitin-protein conjugates detected by Western blotting. Expression of wild-
type maspin and the mutants decreased the proteasome activity, but increased
the accumulation of ubiquitin-protein conjugates indicating that the RCL of
maspin is sufficient, but not necessary for its activity. Furthermore, conjugation
of maspin by a ubiquitin-like protein, ISG15 was shown by co-expressing
recombinant maspin, ISG15, UBE1L, and UbcHS8 in the carcinoma cells and
analyzed by a nickel pull-down assay and immunoblotting. The accumulation of
ubiquitin-protein conjugates was further enhanced by ISG15 conjugation
system suggesting that modification by ISG15 play a pivotal role on the
function of maspin toward the cellular ubiquitin-proteasome system.

Keywords: Maspin, ISG15, Ubiquitin, Proteasome, Conjugation
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Introduction

Cancer is one of the major public health problems worldwide, and now
has a very high mortality rate in Thailand. Cancer cells are typically classified
by uncontrolled cell growth and cell division leading to a mass of unwanted
cells called a tumor. Besides, many cancer cells have an ability to relocalize to
distant tissues and these distant settlements of cancer cells consequently
account for the major cause of death in cancer.

Carcinogenesis is a complicated multi-step process in which initiation
and progression of cancer in cells involve genetic/epigenetic aberrations of
human genome. A typical cancer cell does not result from a single mutation,
but rather the multiple mutations of numerous genes. Such alterations in the
genome lead to either over-activation (e.g. proto-oncogenes) or inactivation
(e.g tumor suppressor genes) of specific groups of genes. Altered regulation of
these genes in cancer cells eventually causes uncontrolled-cell proliferation,
invasion, and metastasis. Understanding gene regulation at the transcriptional
and post-transcriptional levels as well as post-translational modifications of the
protein is thus necessary for development of novel efficient cancer therapy.

Maspin (mammary serine protease inhibitor) is a 42 kDa protein and a
member of the serine proteinase inhibitor (SERPIN) superfamily of proteins
including al-anti-trypsin, plasminogen activator inhibitor and ovalbumin (Irving
JA, et al. 2000). Despite its similarity to other SERPIN members, maspin does
not directly exert its biological functions as a proteinase inhibitor (Bass R, et al.

2002, Pemberton PA, et al. 1995). Several studies have revealed the tumor



suppressor role of maspin as an effective inhibitor of cancer cell invasion and
metastasis (Bailey CM, et al. 2006, Seftor RE, et al. 1998). Down-regulation of
maspin in carcinoma tissues is also correlated with progression of tumors (Hojo
T, et al. 2001, Ito R, et al. 2004, Khalkhali-Ellis Z. 2006, Maass N, et al. 2001).
Therefore, maspin becomes a promising target for both prognosis/diagnosis
and therapeutic intervention against cancer (Sheng S. 2004).

Maspin has been characterized as a class Il tumor suppressor since it
effectively inhibits tumor invasion and metastasis (Sager R, et al. 1997, Zou Z,
et al. 1994). Re-expression of maspin in carcinoma cell lines lead to inhibition
of cell invasion and metastasis both in vitro and in vivo (Maass N, et al. 2000,
Streuli CH. 2002). The underlying mechanisms of action by which maspin
elicits its anti-tumor and anti-metastatic effects are not well established and still
remain to be solved. Earlier studies have characterized the functional domain
of maspin (Figure 1) and further revealed that the functional domain called
reactive center loop (RCL) is required for the anti-invasive effect of maspin
(Ngamkitidechakul C, et al. 2003, Sheng S, et al. 1996, Zhang M, et al. 1993).
Deletion of maspin’s RCL or substitution with the ovalbumin RCL completely
abolishes maspin activities. The mode of maspin action appears to mediate
RCL binding to a cell surface receptor since addition of anti-RCL maspin
antibody can block the effect of exogenously added maspin (Sheng S, et al.
1996). However, other functions for intracellular maspin cannot be excluded
because immunohistochemical analysis shows prominent nuclear and
cytoplasmic staining of maspin (Abd El-Wahed MM, et al. 2005, Marioni G, et

al. 2006, Pemberton PA, et al. 1997). In order to elucidate the biological



function(s) of maspin, several maspin-binding proteins have been identified
using the yeast two-hybrid approach. Glutathione S-transferase (Yin S, et al.
2005) and interferon regulatory factor 6 (Bailey CM, et al. 2005) are among the
maspin’s binding partners and their interactions suggest the role of maspin in
cellular responding to oxidative stress and in maintaining the normal cellular

phenotype, respectively.

Figure 1 Structure of Maspin

The regulation of maspin expression has been extensively studied at
the transcriptional level and shown to involve an epigenetic mechanism
(Akiyama Y, et al. 2003, Futscher BW, et al. 2002, Maass N, et al. 2002, Zou
Z, et al. 2000).The transcription of maspin gene is regulated at the 5’ upstream
of the maspin promoter by cytosine methylation (Maass N, et al. 2002).
Hypermethylation of the promoter of the maspin gene is often found and plays
a role on gene silencing in several cancers e.g. breast, thyroid, skin, and colon
(Bettstetter M, et al. 2005, Boltze C, et al. 2003, Primeau M, et al. 2003, Wada

K, et al. 2004).



Re-expression of maspin in cancer cell lines modifies several
phenotypes including a reorganization of actin cytoskeleton, a reduction in
invasive property, an induction of apoptosis, and an alteration in protein
degradation through the ubiquitin (Ub) pathway, which may be fundamental to
anti-invasive activity of maspin (Chen El, et al. 2005). Shotgun proteomics
analysis revealed that the re-expression of maspin has widespread effects on
the tumor cell proteome. In most cases, protein expression was affected
without changes in mRNA levels, indicating that maspin has a significant
influence on posttranscriptional regulation of protein levels. Maspin has a major
impact on the composition and function of the tumor cell proteasome. Maspin
expression reduces the chymotrypsin-like activity of the 26S proteasome via
the down-regulation of the B5 subunit of the proteasome leading to the
accumulation of high molecular weight ubiquitin conjugates in all maspin-
transfected cells. These observations indicate that maspin's mechanism of anti-
invasion may be mediated through the ubiquitin-proteasome pathway.

Ubiquitin (Ub) is a highly conserved 76 amino acid protein (8,565 Da)
that is present in all eukaryotic organisms (Goldstein G, et al. 1975). Ub has no
enzymatic activity per se but exerts its biological function through a covalent
ligation to a variety of cellular proteins by an ATP-dependent process (Pickart
CM. 2001). Polyubiquitin chains formed on the target protein result in selective
targeting to the 26S proteasome for protein degradation (Hershko A, et al.
1992). The covalent ligation of Ub occurs at the essential carboxyl terminal

glycine of Ub, and is required to target proteins for degradation by the 26S



proteasome. This ligation of Ub on target proteins requires a cascade of

enzymatic reactions as shown in Figure 2.

Figure 2 The Ubiquitin- Proteasome System
(Ciechanover A. 2005)

The initial step requires a Ubiquitin activating enzyme or Ubal (E1)
that catalyzes formation of a ternary complex in which E1 contains both a non-
covalently bound Ub adenylate and a Ub thiolester (Haas AL, et al. 1982). The
Ub moiety of the E1-Ub thiolester is then transferred to an active site cysteine
of a Ubiquitin carrier protein (Ubc or E2) to form a high energy thiolester E2-Ub

(Jentsch S, et al. 1990). While eukaryotes generally contain a single E1, the
5



E2s represent a superfamily of related paralogs (Haas AL, et al. 1997). All
members of the E2 superfamily share a common folding and a conserved core
domain comprising ca. 150 residues within which is the active site cysteine
(Hemelaar J, et al. 2004). Finally, the Ub moiety of the E2-Ub thiolester is
transferred to the target protein to form an isopeptide bond between the
carboxyl-terminal glycine of Ub and an e€-amino group of a specific lysine
residue(s) on the target protein. The reaction is catalyzed by a very large set of
Ub ligases (E3) which confer target protein specificity. Once the polyubiquitin
degradation signal is formed on the substrate protein, it is recognized and
degraded by the 26S proteasome (Gregori L, et al. 1990).

The proteasome is a large multi-catalytic protease that degrades
polyubiquitinated proteins to small peptides (Ciechanover A. 2005). This
proteolytic machine regulates the turnover of the vast majority of proteins
expressed in the cell, and therefore controls the complement of proteins
expressed in a cell. It is composed of two sub complexes: a 20S core patrticle
(CP) that carries the catalytic activity, and a regulatory 19S regulatory particle
(RP) (Figure 3). One important function of the 19S RP is to recognize
ubiquitinated proteins and unfold substrates to facilitate entry into the barrel-
shaped 20S CP. The 20S proteasome possesses chymotrypsin-like, trypsin-
like, and caspase-like protease subunits. Studies using cell permeable
proteasome inhibitors revealed that the Ub-proteasome pathway is responsible
for 80—-90% of protein turnover in cells and is essential for the regulation of

virtually all cellular processes (Lee DH, et al. 1998).



Figure 3 The Composition of 26S Proteasome
(Ciechanover A. 2005)

Maspin expression has a major impact on the complement of proteins
in cells that are marked for 26S proteasome degradation by polyubiquitination.
Such observations suggest that maspin’s mechanism of anti-invasive action
results from its ability to inhibit (and/or regulate) protein degradation by the
proteasome. Therefore, it is of the particular interest to elucidate whether the
functional domain of maspin (RCL) also involves in the ubiquitin-26S
proteasome activities in order to connect the anti-metastatic effect of maspin
and the ubiquitin-26S proteasome system.

In contrast to its transcriptional regulation, little is known about the
post-translational modification of maspin protein. Phosphorylation on one or
more tyrosine residues of maspin was detected; however, the biological effect
has not been verified (Odero-Marah VA, et al. 2002). Conjugation of an
ubiquitin-like protein, 1SG15, to maspin has been previously shown in
carcinoma cells (Zhao C, et al 2005). Like ubiquitin, ISG15 is conjugated to
cellular proteins by a mechanism similar to that of ubiquitin (Loeb KR, et al.
1992). However, unlike ubiquitination, the ISG15 conjugation does not target
the protein to proteasome degradation (Hamerman JA, et al. 2002, Malakhov

MP, et al. 2003). Overexpression of ISG15 is also associated with decreased



polyubiquitination of target proteins and their turnover in tumor cells (Desai SD,
et al. 2006). It has not yet been shown whether the ISG15 conjugation to
maspin is crucial for modulation of maspin stability and/or activities.

Ubiquitin-like proteins are a family of proteins that function to post-
translationally modify cellular targets in a pathway parallel to, but distinct from,
that of Ub (Jentsch S, et al. 2000). Members of the Ub-like protein superfamily
include ISG15, SUMO, NEDD8/RUB1, APG12, HUB, and FAT10 (Walters KJ,
et al. 2004, Yuan Q, et al. 2004). Conjugation system of Ub-like proteins is well
characterized, but does not share common conjugation machinery with that of
Ub. For example, the activating enzyme or E1 and the carrier protein or E2 for
the ISG15 conjugation pathway have been identified as UBELL (Pitha-Rowe I,
et al. 2004) and UbcH8 (Zhao C, et al. 2004), respectively. Like ISG15, both
UBE1L and UbcHS8 are induced by IFN (Nyman TA, et al. 2000, Zhao C, et al.
2004). Using bioinformatics approaches, IFN-inducible EFP and Herc5 were
identified and then experimentally proven to be ISG15 E3 ligases (Dye BT, et
al. 2007).

Unlike SUMO and NEDDS8, a large number of protein targets are
modified by ISG15 upon treatment of Type | interferon (IFN-a/B) (Loeb KR, et
al. 1992). The serine protease inhibitor 2a (Serpin 2a) is the first identified
target (Hamerman JA, et al. 2002). Using high-throughput immunoblotting and
proteomic approaches, both IFN inducible and constitutively expressed
proteins are identified as ISG15 targets including maspin as shown in Figure 4
(Giannakopoulos NV, et al. 2005, Malakhov MP, et al. 2003). Proteins

conjugated with Ub-like proteins are not targeted for degradation by the 26S



proteasome (Narasimhan J, et al. 1996). Interestingly, modification of target
proteins by ISG15 seems to inhibit their activities. Two ISG15-identified targets
are Ub-E2 enzymes, Ubcl3 and UbcH6, and their modification by ISG15
inhibits their ability to form a thiolester linkage with Ub (Takeuchi T, et al. 2005,
Zou W, et al. 2005). The third characterized target is phosphatase 2CB and its
enzymatic activity is also suppressed by ISG15 modification (Takeuchi T, et al.
2006). Moreover, the ISG15 pathway negatively regulates the Ub pathway. The
elevated expression of ISG15 and its protein conjugates possibly modulates
protein stability by antagonizing Ub-conjugation and reducing protein
polyubiquitination. Interestingly, maspin is also conjugated by an ubiquitin-like
protein, 1ISG15 through three sequential enzymatic reactions similar to the
ubiquitin conjugation pathway (Zhao C, et al. 2005). Thus, the significance of

ISG15 modification on maspin needs to be further elucidated.
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Figure 4 1SG15 Conjugation of Maspin
(Malakhov MP, et al. 2003)



In summary, characterization of the molecular mechanism by which
maspin modulates the ubiquitin-26S proteasome system would directly lead to
better understanding the molecular mechanism of maspin’s anti-invasive
function. Two specific aims are therefore proposed in the study to determine
whether: 1) the reactive center loop (RCL) of maspin is required for inhibition
of the chymotrypsin-like activity of the 26S proteasome, and 2) ISG15-
conjugation by maspin reduce the accumulation of high molecular weight
ubiquitin-protein conjugates. The basic knowledge from this finding will
profoundly contribute to novel therapeutic approaches for treatment of invasive

cancer.

Materials and Methods

Subcloning of cDNA into mammalian expression vectors and site directed

mutagenesis

The full length cDNAs of 6xHis-FLAG tagged-maspin, ovalbumin, and
maspin/ovalbumin chimeric mutants (MOM: maspin mutant containing the RCL
of ovalbumin, OMO: ovalbumin mutant containing the RCL of maspin) in pYEP
vectors and the 8xHis-TEV-maspin-pcDNA are kindly provided by Professor
S.S. Twining, Medical College of Wisconsin, USA. All of cDNAs in the pYEP
were later subcloned into the pcDNA mammalian expression vector (pcDNA
3.1) (Invitrogen). The full length cDNAs of human 1SG15, human UBE1L and
human UbcHS8 are kindly provided by Professor A.L. Haas, Louisiana State
University, USA. cDNAs of ISG15 and UBE1L were subcloned into pFLAG

(Sigma Aldrich, USA), and UbcH8 cDNA was subcloned into a pcDNAS3.1. All

10



cDNAs were subcloned into indicated plasmids by PCR-based method as
described elsewhere (Jung V, et al. 1993).

The selected lysine residue was mutated to arginine using the
QuickChange Il Site-Directed Mutagenesis Kit (Stratagene). pCDNA 6xHis-
FLAG maspin was used as a template. The correct coding sequence and a

single nucleotide mutation were confirmed by DNA sequencing.

Cell culture and transfection

Human mammary adenocarcinoma MDA-MB-231, human cervical
carcinoma HelLa, and human lung carcinoma A549 cell lines (ATCC) were
regularly maintained in Dulbecco’s modified Eagle's medium (Invitrogen) with
10% fetal bovine serum (FBS) and 100 ug/ml penicillin/streptomycin at 37 °C in
a humidified incubator of 5% CO,. These cells were transfected with pcDNA-
6xHis-FLAG-maspin wild type or pcDNA-6xHis-FLAG-chimeric mutant
expression vectors using TurboFect reagent according to the manufacturer’s
protocol (Fermentus). Transfection of empty vector and pcDNA-6xHis-FLAG-
ovalbumin was used for the controls.

To determine the effect of 1SG15-conjugation, pcDNA-8xHis-TEV-
maspin was co-transfected with pFLAG-ISG15, pFLAG-UBELL, and pcDNA-
UbcH8 as previously described by Zhao et al 2005. Briefly, IFN- was added at
24 h post-transfection to the cultures at the final concentration of 1,000 units/ml
and the cultures were further incubated for another 24 hours. Transfection of
pcDNA-6xHis-FLAG-maspin alone or pFLAG-ISG15 alone was used for the

controls. All transfectant cells were maintained in the same media with addition

11



of G418 neomycin. The expression of these cDNAs was confirmed by Western

blot.

Western blot analysis

Total cell lysate of transfectants was collected using a mammalian lysis
buffer (GE Health-Amersham Bioscience, Piscataway, NJ) including protease
inhibitor mix (GE Health-Amersham Bioscience, Piscataway, NJ). Cell debris
was removed by centrifugation at 14,000 x g for 10 min at 4°C. The
supernatant was subjected to 10 or 12% sodium dodecyl sulfate -polyarylamide
gel electrophoresis (SDS-PAGE), transferred to a nitrocellulose membrane,
and blocked with 5% nonfat milk. The blot was incubated with primary
antibody; monoclonal anti-human maspin antibody (BD Bioscience, USA), or
monoclonal anti-FLAG® M2, or polyclonal anti-actin antibody (Sigma Aldrich,
USA), or polyclonal anti-ISG15 antibody or polyclonal anti-ubiquitin antibody
(kindly provided by Professor A.L. Haas, Louisiana State University, USA) for 2
h at room temperature. Then, the blot was washed three times, followed by a
corresponding HRP-conjugated secondary antibody (Bio-Rad, Hercules, CA)
for 1 h at room temperature. Finally, the specific band was visualized by
chemiluminescence ECL detection system (GE Health-Amersham Bioscience,

Piscataway, NJ).

Fluorometric 26S proteasome assay

Cells were harvested and homogenized in ice-cold lysis buffer without
addition of protease inhibitors. Cellular chymotrypsin-like activity of 20S
proteasome was assayed using the fluorogenic peptide substrate Suc-LLVY-

AMC (Millipore Chemicon, Billerica, MA). Briefly, 10 ug of the protein lysates
12



was added to the reaction buffer diluted from the 20x reaction buffer (500 mM
HEPES, 10 mM EDTA, pH 7.6) so that the final reaction volume was 90 pl.
Triplicate reactions were performed for each cell lysate. The diluted lysates
were incubated for 5 min for equilibration at 37°C. During incubation, a 20x
substrate solution was made by diluting the fluorogenic peptide substrate
stocks in reaction buffer. To each reaction, 10 ul of the appropriate 20x
substrate stock solution was added; the final substrate concentration was 10
UM. Next, the fluorescence activity (Ex: 380 nm; Em: 460 nm) was measured in

a fluorescence microplate reader.

Induction of ISG15 and ISG15 conjugates

IFN-B (kindly provided by Professor A.L. Haas, Louisiana State
University, USA) was added into a confluent cell culture at final concentration
of 1,000 units/ml. After 24 hours induction, total protein lysates were collected
directly in SDS-sample loading buffer (62.5 mM Tris-HCI pH 6.8, 10 %
Glycerol, 2% SDS, 0.01% bromphenol blue). They were separated in a 12%
SDS-PAGE and followed by Western blotting as described above. The blot was

then stripped and reprobed with a specific anti-actin antibody for normalization.

A nickel affinity pull-down assay

Ni-NTA agarose beads were equilibrated by pre-absorbing with 1 mg/ml
bovine serum albumin at 4°C overnight and then washed with a washing buffer
(50mM phosphate buffer pH 8.0, 150 mM NaCl, and 0.1% Tween-20). Total
cell lysate was prepared using ice-cold mammalian lysis buffer containing
protease inhibitor mix without EDTA. Then, the supernatant was mixed with the

beads and incubated at room temperature for 2 hours with gentle rocking.
13



Next, the beads were washed five times with washing buffer containing 0.1%
Tween-20, and further eluted by 50mM phosphate buffer pH 8.0 containing 250
mM Imidazole.

Statistical analysis

All experiments were tested at least three times in each experiment. The
differences in the mean value among the groups are determined by one-way
ANOVA with Student—-Newman—Keuls test using the SPSS 11.5 software
(SPSS Inc., Chicago, IL). Data were expressed as mean + S.D. with P value <

0.05 indicating significance.

Results and Discussion

Inhibition of cancer invasion and metastasis is one of the major
biological activities of tumor suppressor maspin (Seftor RE, et al. 1998).
However, information on the molecular mode of maspin action is quite limited.
Either addition of exogenous recombinant maspin (Sheng S, et al. 1996) or
transfection of maspin cDNA into carcinoma cells (Shi HY, et al. 2001)
effectively inhibits the invasion and metastasis both in vitro and in vivo.
Importantly, mutagenesis studies revealed that the reactive center loop (RCL)
of maspin is necessary and sufficient for the inhibition of cancer cell invasion
(Ngamkitidechakul C, et al. 2003). In this study, the cDNAs of maspin and
maspin/ovalbumin chimeric mutants (MOM and OMO) were subcloned into the
pcDNA mammalian expression vector. Initially, condition of transfection was
tested in A549 at two different ratios of transfection reagent (uL) to ug DNA
(3:1 and 6:1). As shown in Figure 5, without maspin transfection, A549 cells

produced undetectable level of endogenous maspin. However, recombinant
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maspin was successfully produced within 24 hrs after transfection with pcDNA-
8xHis-TEV-maspin by using the only ratio of 3 to 1. Subsequently, transfection
of all constructs into MDA-MB-231 cells was carried out using the 3 to 1 ratio
(Figure 6).

Transfection of pcDNA-6xHis-FLAG-maspin and the mutant vectors
into MDA-MB-231 showed a time-dependent expression (24 vs 48 hr). As
shown in Figure 6, more than two-fold increased expressions of maspin and
MOM were detected at 48-h as compared to 24-h post transfection. Unlike
maspin and MOM, transfection of pcDNA-6xHis-FLAG-ovalbumin (OV) and

OMO mutant gave a lower level of expression at 48 h post-transfection.
O R T
- —

Figure 5 Ectopic Expression of Recombinant Maspin in A549 Cells. A
pcDNA-8xHis-TEV-maspin vector was transfected into A549 using two different
ratios of the transfection reagent (ul) to ug plasmid DNA (3:1 and 6:1). After 24
hours transfection, total cell lysates were subjected to Western blot analysis
using a specific monoclonal anti-Maspin (A). The blot was stripped and

reprobed with a specific polyclonal anti-actin (B).
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24 48 24 48 48 48 h post-transfection

Figure 6 Expressions of Recombinant 6xHis-FLAG Maspin, Mutants
(MOM, OMO) and Ovalbumin (OV) in MDA-MB-231 Cells. After 24 or 48 h
post-transfection, total cell lysate was analyzed for recombinant protein

expression using monoclonal anti-FLAG-M2 antibody.

Effect of maspin and mutants on cellular proteasome activity and
ubiquitin conjugation

Not only does re-expression of maspin in breast carcinoma cell lines
inhibit their invasiveness, but also alters the carcinoma’s proteome by inhibiting
the chymotrypsin-like activity of 20S proteasome (Chen El, et al. 2005). The
functional domain responsible for maspin’s proteomic regulation was herein
proposed as the RCL domain if the biological function of maspin results from its
ability to inhibit the proteasome activity. Therefore, the cell lysates of maspin
and mutant transfectants were analyzed for 20S proteasome activity as shown
in Figure 7. Similar to the previous report (Chen El, et al. 2005), maspin was
able to reduce the proteasome activity of MDA-MB-231 cells in our assay.
Significantly, the proteasome activity was also reduced in MDA-MB-231
transfected with either OMO mutant containing maspin’s RCL or MOM mutant
containing ovalbumin’s RCL. However, ovalbumin significantly had no inhibitory

effect on this activity. The result suggests that not only is the RCL, but other
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region of the maspin molecule also sufficient for regulating the proteasome
activity.

Since function of the proteasome is regularly associated with ubiquitin
conjugating system, free ubiquitin and ubiquitin conjugates were also
determined in the MDA-MB-231 transfectants. The level of free ubiquitin was
somewhat similar among the transfectants and control, except in the OV
transfectant that had a slightly higher free ubiquitin level than the other (Figure
8). Interestingly, MDA-MB-231 transfectants with maspin, MOM and OMO
showed a significant higher level of ubiquitin-protein conjugates than that in the
control. The result was consistent with the proteasome assay in which the
activity was reduced in these transfectants, leading to the accumulation of high
molecular weight of ubiquitin-protein conjugates. Therefore, the proteasome
and ubiquitin conjugating system are regulated by maspin, and the reactive
center loop (RCL) of maspin is sufficient, but unnecessary for the inhibition of

proteasome activity.
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Figure 7 Effect Of Maspin and Other Mutants’ Transfection on the
Proteasome Activity of MDA-MB-231. Total cell lysate of the transfectants
was analyzed for the cellular chymotrypsin-like activity of 20S proteasome
using the fluorogenic peptide substrate Suc-LLVY-AMC by measuring at Ex:

380 nm; Em: 460 nm (* p< 0.05 relative to control)
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Figure 8 Effect of Maspin and Mutants on the Accumulation of High
Molecular Weight Ubiquitin-protein Conjugates. After 48-h transfection of
either maspin or mutant constructs, total protein lysate of MDA-MB-231 cells

was collected and analyzed by immunobloting using anti-ubiquitin antibody.

Effect of maspin on ISG15-conjugation and the accumulation of high
molecular weight ubiquitin-protein conjugates

It is noteworthy that specific activities of many proteins can be
regulated by post-translational modifications. ISG15 conjugation to cellular
target proteins seems to regulate the activity of target proteins (Takeuchi T, et
al. 2005). ISG15 is highly elevated and extensively conjugated to cellular
proteins in many tumors and tumor cell lines. In addition, the increased level of
ISG15 has been shown to reduce levels of polyubiquitinated proteins.
Importantly, ISG15-conjugation of maspin (Zhao C, et al. 2005) has been

demonstrated in carcinoma cells; however, the consequence of this
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modification remains mysterious. In this study, the effect of ISG15-conjugation
on maspin’s ability to accumulate the ubiquitinated proteins was investigated.
Interferon-B (IFN-B) is known to induce free ISG15 and ISG15
conjugates. Initially, A549 cells were tested for ISG15 induction by IFN-B since
they have been extensively used to study ISG15 conjugation system
(Narasimhan J, et al. 1996). As shown in Figure 9, both free ISG15 and ISG15
conjugates were clearly induced by IFN-B suggesting that A549 cells possess

complete ISG15 conjugation machinery.

—IFN$
+IFNP

Figure 9 Induction of Free ISG15 and ISG15 Conjugates by IFN-B in A549
Cells. 1 x 10® units/ml IFN-B was added into A549 cells. After 24 hours
incubation, total cell lysates were subjected to Western blot analysis using a
specific polyclonal anti-ISG15 (A). The blot was stripped and reprobed with a

specific polyclonal anti-actin (B).
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To determine the effect of ISG15-conjugation on maspin expression,
1,000 units/ml of IFN-B was added to the cultures at 24 or 48 h post-
transfection with pcDNA-8xHis-TEV-maspin, and the cultures were further
incubated for another 24 hours. As shown in Figure 10, recombinant maspin
was synthesized after 24 hours and continually to 48 hours after transfection.
Comparable level of synthesized recombinant maspin was observed in the
absence or presence of IFN-B (Figure 10A) suggesting that IFN- has no effect
on recombinant maspin synthesis.

Maspin Transfecton {hrs) - 24 48 48
IFN-B Induction {hrs) - - - 24

. S e S
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Figure 10 Induction of Free ISG15 and ISG15 Conjugates by Maspin
Expression in A549 cells. At 24 h post-transfection with pcDNA-8xHis-TEV-
maspin, A549 cells were later treated with IFN- (1,000 units/ml). After another
24 or 48 h incubation, total cell lysates were collected and subjected to
Western blot analysis using a specific monoclonal anti-Maspin (A), a specific
polyclonal anti-ISG15 (B), a specific polyclonal anti-Ub (C), or a specific

polyclonal anti-actin (D).

Interestingly, free ISG15 and ISG15 conjugates were clearly increased
in maspin transfectant cells with or without addition of IFN-B. While the level of
free ISG15 was similar, the increased level of ISG15 conjugates without IFN-8
treatment was significantly lower than those in the transfectant cells treated
with IFN-B (Figure 10B lane 3 and 4). Furthermore, the induction of ISG15
conjugation by either IFN-B induction or maspin transfection did not alter the
level of ubiquitin (Ub) conjugation (Figure 10C). Thus, ISG15 conjugation by
IFN-B induction did not affect maspin’s ability to accumulate the ubiquitin
conjugated proteins.

Although ISG15 conjugation was induced in A549 cells transfected with
maspin cDNA, the maspin-ISG15 conjugate was undetectable (data not
shown). To study the effect of maspin-ISG15 conjugation, overexpression of
both E1 and E2 for ISG15 machinery was performed along with 8xHis-TEV-
maspin and FLAG-ISG15 transfection in MDA-MB-231 cells. As shown in
Figure 11, recombinant FLAG-ISG15 was conjugated to cellular proteins in the

co-transfection experiment without addition of IFN-B detected by anti-FLAG M2

22



antibody. The observed conjugation of FLAG-ISG15 was detected only in co-
transfection of FLAG-ISG15 and ISG15 conjugation machinery (both FLAG-

UBE1L and UbcHS).

Co-Transfection

pFLAG-ISG15 - + O+ o+ %
pFLAG-UBEIL - + -+ .
pcDNA-UbcHB - + o+ - -

pcDNA-BxHis-maspin - + o+ o+ o+

Figure 11 Induction of Recombinant ISG15 Conjugates by Co-transfection
in MDA-MB-231 cells. pcDNA-8xHis-TEV-maspin and pFLAG-ISG15 with or
without ISG15 conjugation machinery (pFlag-UBE1L and pcDNA-UbcH8) were
co-transfected into MDA-MB-231 cells. After 48 h incubation, total cell lysates
were collected and subjected to Western blot analysis using a monoclonal anti-

FLAG M2 antibody.
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In order to detect recombinant maspin-ISG15 conjugate, maspin-ISG15
conjugates were first pull-downed by a nickel column and then detected by
antibodies against either the FLAG tag or maspin. As shown in Figure 12,
8xHis-maspin was effectively conjugated to FLAG-ISG15 in MDA-MB-231
transfectants. Next, analyzed by Western blotting using anti-ubiquitin antibody,
the level of high molecular weight ubiquitin-protein conjugates was very much
enhanced in the transfectants as compared with the control (Figure 13),
suggesting that maspin-ISG15 conjugation likely affects the ubiquitin
conjugation system. Since maspin was capable of inhibiting the proteasome
activity (Figure 7) and ISG15 conjugation did not affect the ubiquitin
conjugation (Figurel0 C), ISGylation of maspin could directly enhance its
activity leading to an increased accumulation of ubquitin-protein conjugates. It
is however unknown whether ISG15 regulates the proteasome inhibitory
activity of maspin. Additional experiments are necessary to investigate the

effect of maspin-ISG15 conjugation on the proteasome activity.
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Figure 12 Conjugation of Maspin-flag ISG15. MDA-MB-231 cells were co-
transfected with pcDNA-8xHis-TEV-maspin, pFLAG-ISG15, pFLAG-UBELL,
and pcDNA-UbcH8. Maspin-ISG15 conjugates were isolated by a nickel pull-
down assay. Fractions (W: wash; E: elutent) were collected and subjected to

Western blotting using anti-FLAG M2 (A) and anti-maspin antibodies (B).
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Figure 13 Effect of Maspin-ISG15 Conjugation on the Accumulation of
High Molecular Weight Ubiquitin-protein Conjugates. After 48-h
cotransfection of pcDNA-8xHis-TEV-maspin, pFLAG-ISG15, pFLAG-UBELL,
and pcDNA-UbcH8, total protein lysate of MDA-MB-231 cells was collected

and analyzed by Western bloting using anti-ubiquitin antibody.

In order to determine the ISG15 conjugating site(s) on maspin, initially,
ISG15 conjugation machinery (FLAG-ISG15, FLAG-UbE1L, and UbcHS8) along
with either 6xHis-FLAG-maspin or two maspin/ovalbumin chimeric mutants,
6xHis-FLAG-MOM or 6xHis-FLAG-OMO, were co-transfected into HelLa cells.
After 48-h co-transfection, recombinant ISG15 conjugates were pulled down by
nickel beads and then detected by Western blot analysis using anti-FLAG M2
(Figure 14A) or anti-maspin (Figure 14B) antibodies. As shown in Figure 14,
both 6xHis-FLAG-maspin and 6xHis-FLAG-MOM formed a conjugate with

ISG15 in a comparable amount whereas; conjugation of 6xHis-FLAG-OMO to
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ISG15 was significantly less. Since anti-maspin antibody successfully detected
only recombinant maspin and MOM, free OMO was not observed in Figure
14B. The results indicate that ISG15 conjugation site is not located in the

reactive site loop of maspin.

A B

Co-Transfection

pcDNAZA - + -+ - - - + -+ - +
Conjugation machinery - -+ -+ - # - -+ - #
pcDMNABxHIs-FLAG-maspin - + 0+ - . - . . .+
pcDNA-BxHis-FLAG-MOM - - N T . - .-+ o+
pcDMABxHis-FLAG-OMO - - - - - ¥ - - - - - %

FLAG-SG15 comupate —>

&!His-FLAO-maspanM(?

bxHis-FLAG-OMO

P Mi-beads Nr-beads
wB Anti-FLAG M2 antibod\( Anﬁ-maﬂin antibody

Figure 14 Conjugation of ISG15 to Recombinant Maspin or
Maspin/Ovalbumin Chimeric Mutants (MOM or OMO). HelLa cells were co-
transfected with plasmids encoding ISG15 conjugation machinery (pFLAG-
ISG15, pFLAG-UBE1L, and pcDNA-UbcH8) and pcDNA-6xHis-FLAG-maspin
or two maspin/ovalbumin chimeric mutants (MOM and OMO). Maspin-ISG15
conjugates were isolated by a nickel pull-down assay. Bound fractions were
collected and subjected to Western blotting using anti-FLAG M2 (A) and anti-

maspin antibodies (B).
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Human maspin contains 37 total lysine residues. However, the crystal
structure of maspin reveals approximately 9 lysine residues exposed on the
surface molecule. Interestingly, K47 and K311 are conserved between maspin
and serpin 2a (a member of the serine protease inhibitor which is also
conjugated to ISG15). K345 resides closely to the reactive center loop which is
required for inhibition of cell invasion. Therefore, K47, K311, and K345 were
initially mutated to arginine and subjected to test for ISG15 conjugation.

Either 6xHis-FLAG-Maspin wild type, K47R, K311R, or K345R was co-
transfected with ISG15 conjugation machinery (FLAG-ISG15, FLAG-UBEIL,
and UbcHS8) into HelLa cells. As described above, free 6xHis-FLAG-Maspin and
conjugates were precipitated by Ni pull down assay. As shown in Figure 15, all
mutants were able to form a conjugate to FLAG-ISG15 in a comparable
amount to wild type as confirmed by Western blot analysis using anti-FLAG
M2 (Figure 15A) and anti-maspin (Figure 15B) antibodies. The results
indicated that K47, K311, and K345 are not the ISG15 conjugation site on
maspin proteins. Screening of other surface lysines for the ISG15 conjugation

site is still under investigated.
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Figure 15 Identification of Lysine on Maspin for ISG15 Conjugation site.
HelLa cells were co-transfected with plasmids encoding ISG15 conjugation
machinery (pFLAG-ISG15, pFLAG-UBELL, and pcDNA-UbcH8) and pcDNA-
6xHis-FLAG-maspin or three maspin mutants (K47R, K311R, and K345R).
Maspin-ISG15 conjugates were isolated by a nickel pull-down assay. Bound
fractions were collected and subjected to Western blotting using anti-FLAG M2

(A) and anti-maspin antibodies (B).

In summary, maspin has been shown to inhibit carcinoma cell invasion by
altering cellular proteome via the 26S proteasome inhibition. In this study, a
known functional domain, the reactive center loop (RCL), of maspin is
sufficient, though not required, for this inhibitory action. Notably, inhibition of
proteasome activity in turn increases the accumulation of high molecular

weight ubiquitin-proteins conjugates. Furthermore, post-translation of maspin
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by ISG15 conjugation system is effectively demonstrated and also has a
remarkable effect on the ubiquitin conjugation system; however, the

ISG15conjugation site(s) are under investigated.
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