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CHAPTER 2

PRELIMINARIES

In this chapter, we give some defnitions, notations, and some useful results that will be used

in the later chapters.

2.1 Basic results.

Definition 2.1.1. Let X be a linear space over the field K, where K denoted for either R or C. A

function || - || : X — R is said to be a norm on X if it satisfies the following conditions:
i)zl =0, vz e X;
(ii)) |z =0 < x=0;
(i) o +yll <[l +llyll, Y2,y € X;
(iv) ||| = |a|||z], Vz € X and Va € K.

Definition 2.1.2. Let X be a linear space over the field K. A function (-,-) : X x X — K that assigns
each ordered pair (x,y) of vectors in X to a scalar (z,y) is said to be an inner product on X if it

satisfies the following conditions:

(i) (z,2) >0, Veze X and <z,2 >=0<& =0

(ii) (z,y) =(y.2), Vz,yeX;

(iii) (az,y) = alz,y), V z,y € X and Va € K;

(iv) (x+y,2)=(x,2) +(y,2), VuzuzelX.
Definition 2.1.3. A sequence {z,} in a normed space X is said to be strongly
convergent ( or convergent in norm ) if there exists z € X such that

lim ||z, — z|| =0 denoted by z,, — x.
n—oo

Definition 2.1.4. A sequence {z,} in a normed space X is said to be weakly
convergent if there exists an element z € X such that

lim f(zn) = f(2),

n—oo

for all f € X* where X* is the dual space. Denoted by z,, = x or w— lim z, = z.
n—od
It is clear that strong convergence implies weak convergence. And in a finite dimension normed space,

weak convergence implies strong convergence.

Definition 2.1.5. A norm space X is said to be a complete norm space if every Cauchy sequence in

X 1is a convergent sequence in X.

Definition 2.1.6. A complete norm linear space over the field IK is called a Banach space over K.



Definition 2.1.7. A subset C of a linear space X over the field IK is convex if for any x,y € C
implies

M={zeX:z=ar+(1—-a)y,0<a<1}CC.

(M is called closed segment with boundary point xz,y) or a subset C' of X is convex if every

x,y € C the segment joining = and y is contained in C.

Definition 2.1.8. A subset M of X is said to be weakly compact if every sequence {z,} in M

contains a subsequence converging weakly to some point in M.

Theorem 2.1.9. Let {z,,} be a sequence in extended real numbers and let b = limsup z,. Then
(1) r>b=x, <r ultimately;
(2) r<b=z,>r frequently.

Ultimately means from some index onward ; frequently means for infinitely many indices.

Theorem 2.1.10. Let {x,} be a sequence in extended real numbers and let ¢ = lim inf z,. Then
(1) r<c= x, >r ultimately;
(2) r>c=uz, <r frequently.

Definition 2.1.11. Let X be a Banach space and let C' be a nonempty subset of X. A mapping

T:C — C is said to be nonexpansive if
|Tx — Ty|| < ||z —y|| for all z,y € C.

Definition 2.1.12. Let X be a Banach space and let C' be a nonempty subset of X. A mapping
T :C — C is said to be asymptotically nonexpansive if, for each n > 1, there exists a sequence

of positive real numbers {k,} with k, — 1 such that
| T"x — T"y|| < ky|lx — y|| for all z,y € C.

Definition 2.1.13. Let X be a Banach space and let C' be a nonempty subset of X. A mapping
T :C — C is said to be asymptotically quasi —nonexpansive mapping if there exists u, € [0,+00),

with lim,, ., u,, = 0, such that
T2 = pl| < (1 4 un)llx = pl|,
for all x € C and for all p € F(T), and n € N.

Definition 2.1.14. Let X be a Banach space and let C' be a nonempty subset of X. A mapping
T :C — C is said to be asymptotically nonexpansive type if TV is continuous for some integer
N >1 and

limsup[sup{[|7"z — T"y|| — ||z — y[| : y € C}] <0 for each z € C.

n—oo



Definition 2.1.15. Let X be a Banach space and let C' be a nonempty subset of X. A mapping
T:C — C. A mapping T is called an asymptotically nonexpansive

mapping in the intermediate sense provided T is uniformly continuous and

limsup sup (|7"x — T"y| — ||z —y[|) < 0.

n—oo z,yeC

Definition 2.1.16. Let C' be a nonempty subset of a real normed space X. Let P : X — C be a

nonexpansive retraction of X onto K i.e.,
[Pz — Pyl < [lz -yl
for all z,y € X and Pz = z for all z € C, then C is said to be nonexpansive retract.

Definition 2.1.17. Let C' be a nonempty subset of a real normed space X. Let P : X —
C be a nonexpansive retraction of X onto C. A nonself-mapping 7" : ¢ — X is called an
asymptotically nonexpansive if there exists a sequence {k,} C [1,00) with k, — 1 as n — oo

such that for every n € N,
|T(PT)" 'o — T(PT)" Yy|| < knllz —y|| for every z,y € C.

T is said to be uniformly L — Lipschitzian if there exists a constant L > 0 such that
|T(PT)" 'z — T(PT)" 'y| < L||lx —y| for every z,y € C.

Definition 2.1.18. Let C' be a nonempty subset of a real Banach space X. A mapping 7' : C' — X is
called asymptotically nonexpansive in the intermediate sense nonself — mapping provided T is

uniformly continuous and

limsup sup (| T(PT)" 'z — T(PT)" "y ~ ||z — yl]) <0,

n—oo z,yeC

where P is a nonexpansive retraction of X onto C.

Definition 2.1.19. A mapping T : C — H is said to be k-strictly pseudo-contractive if there exists a
constant k € (0,1) such that

| T~ Ty|]> < |l — y|> + kI - T)a — (I - T)y|?, Va,y € C. @.1.1)

Definition 2.1.20. A mapping 7 : C' — C' is an asymptotically k-strict pseudo-contractive mapping if

there exists a constant 0 < k£ < 1 satisfying
|77 = T"y|)” < kallz — y|> + k| (I = T™)a — (I - Ty (2.12)
for all z,y € C and for all n € N where ,, > 0 for all n such that lim,, . k, = 1.

Definition 2.1.21. Let X be a Banach space. An element z € X is said to be a fized point of a
mapping 7' : X — X if Tz = .

Definition 2.1.22. A mapping f : C — C is demiclosed at y if for each {x,} C C' with z,, — = and
f(@n) — y, then f(z) =y .



Definition 2.1.23. Let M be the set a mapping f : M — R is weak lower semi — continuous if

f(z) <liminf f(z,) whenever z,, — x in M.

n—oo

Recall also that a one-parameter family 7 = {7'(¢) : 0 < t < oo} of self-mappings of a nonempty
closed convex subset C' of a Hilbert space H is said to be a (continuous) Lipschitian semigroup on

C (see, e. g., [41]) if the following conditions are satisfied:
i) T(0)x =z,z € C,
() T(t+s)x=Tt)T(s)x, t,s >0,z € C,
(iii) for each x € C, the map ¢ — T'(¢)x is continuous on [0, c0),

(iv) there exists a bounded measurable function L : (0,00) — [0, 00) such that, for each ¢ > 0,

IT(t)z — Tyl < Lellz —yll, =,y € C.

A Lipschitzian semigroup 7 is called nonexpansive (or a contraction

semigroup) if Ly = 1 for all ¢ > 0, and asymptotically nonexpansive if limsup, . L; < 1,

respectively. We use F'(7) to denote the common fixed point set of the semigroup; that is Fix(7) =
{reC:Tt)x=uxt>0}

2.2  Useful lemmas.
Lemma 2.2.1. Let H be a real Hilbert space. Then for any x,y € H we have
@ Nz +yll” < llz]” +2(y, 2 +y)
() o +yl* > |z + 2(y, z)
(i) [lo £ yl* = 2] + 2(z,y) + [ly[
@v) [tz + (1 = yl? = tl|® + 1 = llyll* =t = t)llz — yl1?, vt € [0,1].
Lemma 2.2.2. [40] Let {a,} be a sequence of nonnegative real numbers, satisfying the property,

an+1 < (1 - Vn)an + bn, n = 07

where {v,} C (0,1), and {b,} is a sequence in R such that:
1) X902 v = 003
ii) limsup,, o 22 <0 or 352, |by| < oo

Then lim,, .o, a, = 0.

Lemma 2.2.3. [27] Let C be a closed convex subset of a real Hilbert space H. Given x € H and
y € C. Then y = Pox if and only if there holds the inequality

(r—y,y—2) >0, VzeCl.



Lemma 2.2.4. [20] Let H be a Hilbert space, C' be a nonempty closed convex subset of H, and
f: H — H be a contraction with coefficient 0 < o« < 1, and A be a strongly positive linear bounded

operator with coefficient 7y > 0. Then, for 0 < v < Z,

(@ —y, (A=yf)e = AA=f)y) = (T —ya)lle —yl?, xyeH.
That is, A — v f is strongly monotone with coefficient ¥ — ya.

Lemma 2.2.5. [20] Assume A is a strongly positive linear bounded operator on a Hilbert space H with
coefficient ¥ > 0 and 0 < p < ||A[|=%. Then ||[I — pA| <1 — p7.

Lemma 2.2.6. [31] Let {z,} and {y,} be bounded sequences in a Banach space X and let {{3,} be a
sequence in [0, 1] with 0 < liminf,, . B, < limsup,,_,. Bn < 1. Suppose Zp+1 = (1 — Bpn)yn + Gnn

for all integers n > 0 and lim sup,, o (||Yn+1 —Ynl| — [|Zn+1 —2n]|) < 0. Then, lim, o0 ||y —zn|| = 0.

Lemma 2.2.7. [47] Let H be a Hilbert space, C be a closed convex subset of H. If T is a k-strictly
pseudo-contractive mapping on C, then the fixed point set F'(T") is closed convex, so that the projection

Pr 7y is well defined.

Lemma 2.2.8. [47] Let H be a Hilbert space, C' be a closed convex subset of H. Let T': C' — H be
a k-strictly pseudo-contractive mapping with F'(T') # (). Then F(PcT) = F(T).

Lemma 2.2.9. [47] Let H be a Hilbert space, C' be a closed convex subset of H. Let T': C' — H be
a k-strictly pseudo-contractive mapping. Define a mapping S : C — H by Sz = Az + (1 — \)T'z for
all x € C. Then, as A € [k, 1), S is a nonexpansive mapping such that F'(S) = F(T).

Lemma 2.2.10. [20] Let H be a Hilbert space, C' a nonempty closed convex subset of H. Let A
be a strongly positive linear bounded self-adjoint operator on H with coefficient 7 > 0. Assume
that 0 < v < g Let T : C — C be a nonexpansive mapping with fixed point x; of contraction
C 3z~ tyf(r)+ (1 —tA)Tz. Then {z;} converges strongly to fixed point = of 7" as ¢t — 0, which

solves the following variational inequality:
(vf—Azxz,z—1) <0, Vze F(T).
Let 1 be a continuous linear functional on [*° and s = (ag,ay,...) € (. We write p,(ay)

instead of p(s). We call p a Banach limit if g satisfies ||| = pn(1) =1 and pp(ant1) = pn(ayn) for

all (ag,ai,...) € [°°. If p is a Banach limit, then we have the following:
(i) for all n > 1, a, < ¢, implies pn(an) < pn(cn),
(ii) pin(antr) = pn(ay) for any fixed positive integer r,
(i) liminf, o0 ap < pn(a,) < limsup,,_, . a, for all s = (ag,ay,...) € [°°.

Lemma 2.2.11. [42] Let a € R be a real number and a sequence {a,} C [*° satisfying the condition

tin(an) < a for all Banach limits p. If limsup,, . (ant+1 — an) < 0, then limsup,,_, . a, < a.



Lemma 2.2.12. [46] Let H be a Hilbert space, C' a nonempty closed convex subset of H. For any
integer N > 1, assume that, for each 1 < i < N, T; : C' — H be k;-strictly pseudo-contractive
mappings for some 0 < k; < 1. Assume that {m}fil is a positive sequence such that Efvzlm = 1.

Then %Y 7T} is a non-self-k-strictly pseudo-contractive mapping with k = max{k; : 1 <i < N}.

Lemma 2.2.13. [46] Let {T;}, and {n;}}¥, be given as in Lemma 2.2.12. Suppose that {T;}¥ , has
a common fixed point in C. Then F(XX 0, T;) = N2, F(T;).

Lemma 2.2.14. [14] Let T be an asymptotically k-strictly pseudo-contractive mapping defined on a
bounded closed convex subset C' of a Hilbert space H. Assume that {x,} is a sequence in C' with the

properties

(1) =, — z and

@Gi) Tz, — x, — 0.
Then (I —T)z = 0.

Lemma 2.2.15. [27] Let C be a closed convex subset of a real Hilbert space H. Given x € H and
y € C. Then y = Pox if and only if there holds the inequality

(rt—y,y—2)>0, VzeCl.

Lemma 2.2.16. [14] Assume that C' is a closed convex subset of a Hilbert space H and let T': C' — C

be an asymptotically k-strictly pseudo-contraction. Then for each n > 1, T™ satisfies the Lipschitz

condition:
1T = TY|| < Lnl|lz — y||
for all z,y € C, where L,, = @

Lemma 2.2.17. [13] Let C be a nonempty bounded closed convex subset of a Hilbert spaces H and
S={T(t): 0 <t < oo} be an asymptotically nonexpansive semigroup on C. If {x,} is a sequence in
C satisfying the properties

a) T, — z; and

b) limsup,_,, limsup,, . ||T(t)x, — x| = 0,
then z € F ().

Lemma 2.2.18. [13] Let C' be a nonempty bounded closed convex subset of a Hilbert space [ and
I={T(t): 0 <t < oo} be an asymptotically nonexpansive semigroup on C. Then it holds that

. /Ot T(w)adu — T(s) (1 /Ot T(u)xdu) H 0,

lim sup lim sup sup
§—00 t—oo xzeC




CHAPTER 3

MAIN RESULTS

3.1 Strong convergence theorems for modified Mann for iteration method for asymptotically non-

expansive mapping

In this section, we prove strong convergence theorems by hybrid methods for asymptotically nonex-
pansive mappings in Hilbert spaces. Let C' be a closed bounded convex subset of a Hilbert space H,
T be an asymptotically nonexpansive mapping of C into itself and let xp € C. For C; = C and

x1 = Po,(x0), define {z,,} as follows way:

Yn = QpTyp + (1 - an)Tnxn>
Cni1=1{2 € Cpn : |lyn — 2|1> < ||z — 2]|* + 60}, (3.1.1)

Tntl1 = P0n+11’0, ne N7
where 0,, = (1 — ay,) (k2 — 1)(diamC)? — 0 as n — oo and 0 < o, < a < 1 for all n € N.

Theorem 3.1.1. Let H be a Hilbert space and let C' be a nonempty closed convex subset of H. Let T’
be an asymptotically nonexpansive mapping of C' into itself such that F(T) # () and let xy € C. For
Cy = C and z1 = Pc,x0, Then {x,} generated by (3.1.1) converges strongly to 20 = Pg(7)To.

Proof. We first show that F'(T)) C C, for all n € N, by induction. For any z € F(T') we have
z€ C =Cq hence F(T) C Cy. Let F(T) C Cy, for some k € N. Then we have, for u € F(T) C Cy,
lyx = ull® = gy + (1 — ar)TFag — ulf?

= [lag(zr —u) + (1 — ap)(Trazgp —u)|?

= agllzg — ull® + (1= ap) | TFar — ul]® — an(l — ag)llzg — TFay|?

< agllay —ul? + (1 = ap)[| T ), — ul]?

< agllay —ull? + (1 — ag)kgllag — ul®

= |z — wll? + (an + (1 — ap)kg = 1)[Jag — ulf?

= Jlzk —wll? + (1 — o) (kf = Dllzg — ul®

<l — ul]® + (1 — o) (k3 — 1) (diamC)?

= ||z — ul|? + 0} with 6, — 0.

It follows that u € Cyy1 and F(T') C Ck41, hence F(T') C C,, for all n € N. Next, we show that C),
is closed and convex for all n € N. It follows obvious that C; = C' is closed and convex. Suppose
that C}, is closed and convex for some k& € N. Let z,, € Cy11 C Cf with z,, — z. Since Cy is closed,

z € Oy and |lyr, — 2ml|® < ||2m — 2k||> + 0. Then

lye = 2I1* = llye — 2m + 2m — 2|
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= llgk = 2mll* + l2m = 2I* + 2(yk = 2m, 2m — 2)
< llzm = @ell® + Ok + llzm — 2l1* + 2llye — 2mllll2m — 2.

Taking m — oo,

gk = 2I1* < Iz — 2]l + O

Hence z € Cyy1. Let z,y € Cgy1 C Cf with z = ax + (1 — )y where o € [0, 1]. Since C}, is convex,
z € Cy and ||y, — z||* < [l — zxl® + O, g — ylI* < lly — 211> + Ok, we have
lye — 211 = llyr, — (az + (1 — a)y)||?
= [lalyr — @) + (1 — ) (g — »)|I?
= allye —z)* + (1 = a)llyr — ylI* — a(l = a)|l(ye — 2) — (g — y)II
< afllz = apl* + 0k) + (1 = a)([ly — zx]l* + ) — (1 — @) |ly — z|?
= allz — @[] + (1 = @)ly — 2l — a(l — &) |[(zx — @) — (2 = y)[|* + Ok
= Jla(zy — @) + (1 = a) (ks — y)|I* + O

= H:Ck — ZH2 + Hk

Then z € Cqq, it follows that Cjyq1 is closed and convex. Hence C), is closed and convex for all

n € N. This implies that {z,} is well-defined. From z,, = P¢, xo, we have
(o — Tn, T —y) > 0, for all y € Cy,.
Since F(T') C C,,, we have
(xo — Tp, Ty —u) >0 for all w € F(T) and n € N. (3.1.2)

So, for u € F(T), we have
0 <{(xo—zp,zH — u)
= (g — Tp,Tn — o+ o — )
= —(zp — T, Tn — o) + (X0 — Tn, To — U)
< —llzn = zol* + llzo — znllllzo — ull

This implies that

lzo = @nl|* < llwo — @nlllzo — ul

hence
|0 — zn|| < ||lxo —u|| for all w e F(T) and n € N. (3.1.3)

From z,, = Pc,x¢ and z,4+1 = P¢

wi120 € Cpy1 C Oy, we also have

(xo — Ty, Ty — Tpy1) > 0 for all n € N. 3.1.4)

So, for z,11 € C,, we have, for n € N
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0< <370 — Tny Tp — $n+1>
= (20 — Tn, Tn — o + To — Tnt1)

= —(zp — To, Ty, — X0) + (To — Tn, To — Tnt1)

N

< —llzn — ol + lzo — allllzo — T4 |

This implies that

lzo — zall* < llzo — zalllzo — Zn1

hence

lxg — xn|| < ||xo — Xpy1]| for all n € N. (3.1.5)

From (3.3.3) we have {x,} is bounded, lim,_, ||z, —x0|| exists. Next, we show that ||z, —x,4+1] — 0.

In fact, from (3.3.4) we have
25 — 21 |]* = [[(2n — 20) + (20 — Tnt1) ||
= ||lzn — zo|* + 2(xn — 0, 20 — Tny1) + 20 — Tny1 ||
= ||zn — 20|? + 2(xn — 20, T0 — Tn + Ty, — Tpi1) + ||T0 — Tna1])?
= ||zn — 20|? — 2(x0 — T, To — Tn) — 2(T0 — Ty T — Trr1) + ||T0 — Tpa1||?
< |lzn = 2ol* = 2l|zn — @ol]* + w0 — Tnsa1?
= —[lzn — @0]|* + 20 — znt1[*.

Since lim,, oo |2 — @o]| exists, we have that lim,, .~ ||Z, — Zn+1]] = 0. On the other hand, x,; €
Ch+1 C Cy, implies that
||yn - xn—&-l”z < ”xn - $n+1||2 + ena (316)

which implies that
1Y = Znall < llon — Znpall + V0o

Further, we have
[yn = znll = llan@n + (1 = o) T" @0 — |
= (1= an)||T"xy — x4
From (3.3.7), we have

[T"zn — @p|| = m”yn — Zn|

< (1ia) |Yn — x|

= ﬁ”yn — Tnt1 + Tt — T

< ﬁ”yn — Tpg1l| + ﬁ”ﬂfnﬂ — Zn|

IN

ﬁ(”xn — Ty + \/@) + ﬁ”xrﬂrl — |

= Zollen - anll + i VOn.
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Hence

1
[T" 20 — @p|| < [#n = Tns ]l + m vV 0n — 0.

2
(1—-a)
Putting

koo = sup{k, :n > 1} < oo,

we deduce that

T2 — @nl| < 1Tz — T || + 177 2n — T g || + 1T 2pe — 2pa|

H[Tn41 — Tnl|
< koolln — Txp|| + 1T 2ns1 — Tpaall + (1 + koo) |0 — Znsa || — 0. (3.1.7)

By (3.3.10), Lemma 2.2.14 and boundedness of {x,} we obtain ) # w,,(z,) C F(T). By the fact that
|Zn — @ol| < ||20 — wo| for all n > 0 where 29 = Pp(7)(z0) and the weak lower semi-continuity of the

norm, we have
[z = 20[| < [lzo — w| < liminfy oo 2o — @4l
< hmsupnﬂoo on - l’nH < HIL‘O - ZOHa

for all w € wy,(zy). However, since wy,(x,) C F(T'), we must have w = zy for all w € wy(zy,). Thus

ww(Tn) = {20} and then z,, — z0. Hence, z,, — 20 = Pp()(z0) by
20 = 201> = llzn — @0l” 4 2(zn — x0, 20 — 20) + [|lz0 — 20>

< 2(|lz0 — xol|? + (xn, — 20,70 — 20)) — 0 as n — oo.

This complete the proof. o

Now, we present the strong convergence theorem of asymptotically nonexpansive semigroups on

C in a Hilbert space.

Suppose that 7 = {T'(t) : 0 < ¢ < oo} is an asymptotically nonexpansive semigroup defined on
a nonempty closed convex bounded subset C' of a Hilbert space H. Recall that we use L] to denote the
Lipschitzian constant of the mapping 7'(¢). In the rest of this section, we put Lo, = sup{L!} and we
use Fiz(7T) to denote the fixed point set of 7. Furthermore, we use F := F'iz(7) to denote the set of
fixed points of asymptotically nonexpansive semigroups. Note that the boundedness of C' implies that
Fixz(T) is nonempty (see [40]) and we assume throughout in this theorem that the set of fixed point F’
is nonempty. Let C' be a closed bounded convex subset of a Hilbert space H, 7 = {T'(t) : 0 <t < oo}
be asymptotically nonexpansive semigroup of self mappings of a nonempty closed convex sunset C of
a Hilbert space such that F # ) and let 9 € C. For C1 = C and x1 = Pg, o, defined {z,} as

follows way:
Yn = OpTp + (]. - an)i fo/\” T(s)ﬂjndS,
Cor1 = {2 € Cu: lyn — 2II2 < llwn — 2] + 62}, (1.8) (.1.8)

Tptl = PCnJrl;E(), neN



14

- 2
where 0, = (1 — ay,) {(; fot" Lsds> - 1] (diamC)? — 0 asn — oo and 0 < o, < a < 1 for all
n € N and \,, — oc.

Theorem 3.1.2. Let H be a Hilbert space and let C' be a nonempty closed convex subset of H. Let
T ={T(t) : 0 <t < oo} be a one-parameter asymptotically nonexpansive of C' into itself such that
F = Fiz(T) # () and let g € C. For Cy = C and x; = Pg,xo. Then {xz,} generated by (3.1.8)

converges strongly to zg = Prxg.

Proof. First, we observe that F'(J) C C,, for all n € N. Since F(J) C C = C}. Let F(3) C C, for
some k € N. For all z € F(SJ) C Cf we have

A 2
Iy = 212 = [Jawp + (1 = )5k J3* T(s)ands — 2|

= [JonCer = 2) + (1 - o) (G fi¥ T(s)apds — )|

< apllzr — 2] + (1 — o) Hi fo)"“ T(s)xrds — 2H2

< ol — 2012+ (1 — ) (& o T (e — )
< agllzi — 2l + (0 — ) (3 Jo Lollon — 2lds)”

< agllzi = 2l + (1= ) (& Jo¥ Lods) w212
<ok — 2>+ (1 - ag) ( )‘k L ds) (diam(C')?

= . — 2l + O

So, z € Ci41. Hence F () C C, for all n € N. By the same argument as in the proof of Theorem
3.1, C, is closed and convex, {x,} is well-defined. Also, similar to the proof of Theorem 3.1, we can
show that

|xrn — nt1]] — 0. (3.1.9)

We can deduce that for all 0 < ¢ < oo,
IT(t)2n = nll = | TOzn = T(0) (3 Jo T(s)nds )|
+ ‘ < fo mnds> — fo mndsH

+ ‘—fo" s)rpds —

< (Loo +1) H—fo S)Tpds —

+ HT(t) ( o mnds> — fo " :cndsH
= (Loo + 1) Ay, + By (), (8)

where A,, 1= H—fon 8)xpds — x,|| and

B, = HT(t) (ﬁ fo’\” T(s):cnds) - i fo/\" T(s)azndsH.
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We claim that
(i) lim,, .o A, = 0; and

(i) limsup,_, . limsup,,_, ., Bn(t) = 0.
By Lemma 2.2.17, we have that (ii) is true, while (i) is verified by the following argument. By the

definition of y, we have

A, = H% I T (s)wnds —

= ﬁ“yn — Ty |
< ﬁ”yn - an

< ﬁ(”yn = Tt || + [[Tn1 — 2al)). (9)
Since z,41 € Cpy1 C Cp, we have

yn — $n+1||2 < |lzn — ~"3n+1H2 + an

which in turn implies that

lyn — Tng1ll < lon — zpall + V gn

1 [~

We thus conclude from (8) that

It follows from (9) that

limsup lim sup ||T'(t)x,, — z,|| = 0.

t—o0 n—o0

We note that by Lemma 2.2.17 that every weak limit point of {x,} is a number of F(J). Repeating
the last of the proof of Theorem 2.2 [14], we can prove that wy(z,) = { Pp(g)}. Hence {,} weakly

converges to Pp(g), and therefore the convergence is strong. This complete the proof.

3.2 Strong convergence theorems of hybrid method for two asymptotically nonexpansive mappings

Let C be a closed bounded convex subset of a Hilbert space H, S and 1" be two asymptotically
nonexpansive mappings of C into H and let o € H. For C; = C and x; = Pg,x¢, define {z,} as
follows way:

)
Yn = QnTp + (1 — an)T" 2y,

Zn = /677,3371 + (1 - ﬁn)snmru
Cry1 = {2 € O : |lyn — 2|* < [lzn — 2[* + 65},

(3.2.1)

Tny1 = Po,., 70, n €N

where 0, = (1 — a,)[(t2 — 1) + (1 — Bp)t2(s2 — 1)](diamC)? — 0 asn — oo and 0 < o, < a < 1
and 0 <b< 3, <c<1forall neN.
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Theorem 3.2.1. Let H be a Hilbert space and let C' be a nonempty bounded closed convex subset of
H. Let S,T : C — H be two asymptotically nonexpansive mappings with sequence {s,} and {¢,}
respectively, and F = F(S) N F(T) # (. Let xo € H and {x,} be a sequence generated by (3.2.1).

Then {z,} converges strongly to zy = Prxo.

Proof. Putting toc = sup{t, : n > 1} < 0o and sec = sup{s, : n > 1} < co. We first show by

induction that F' C C,, for all n € N. For F' C ('} is obvious. Suppose that F' C C} for some k € N.
Let ©w € F C (. Then, we have
ly. — ull® = llagzy + (1 — ag)T 2, — ul|®
= [lar(zr —u) + (1 = a)(TFz, — u)|?
= agllzgy —ull® + (1 = ap) | T* 2, — ul® = ap(l — ap)l|lzg — T2
< agllzy — ul]® + (1 — ap)[TFz — ul]?
< ol — ull® + (1 — o)tz — ull®. (3.1)
Similarly, we note that
Iz — ul|® = || Brr + (1 = Br)SFay, — ul|?
= [|Bk(zr — w) + (1 = Bg)(S*ay, — w)||?
= Brller — ull® + (1= )| S*x — ull® = Be(1 = Bp)l|lzx — S*a]®
< Bellze — wl* + (1 = By)siller — ull* = Br(1 = Bg)[lay, — S*a|?
< lloe = ul® + (1= B)(s§ = Dl — ull®. (3.2)
From (3.1) and (3.2), we have
lyr — ull? < agllzr — ul® + (1 = ap)lllax —ull® + (1= Br)(s§ — 1)z — ull?]
< agllzg —ul® + (1 = ap)ti|log —ul® + (1 — an)tF (1 = Br)(sf — 1)llxy, — ulf?
= llog —ull? = llax —ull? + agllor — ul]® + (1 = ar)tilor —ul]® + (1 — ar)t7 (1= Br) (sf —
Dlzg — ul?
= [lzg —ul® + (1 = ar) (87 — Vllag — ul® + (1 — an)ti(1 = Br) (7 — Dllax — ul]?
= Jlag, — w2 + (1 — ap)[(8 — 1) + 21— B) (7 — D]llae — ul]?
<l —ul® + (1= a)[(£ — 1) + 2(1 — B)(s} — D)(diamC)?
= ||zp — ul|® + 0y

It follows that u € Cyyq1 and F' C Cyy1. Hence F' C C), for all n € N. Next, we show that C,, is
closed and convex for all n € N. It obvious that C; = C' is closed and convex. Suppose that C, is
closed and convex for some k € N. Let {2} ; C Cjy1 C Cf with 2z, — z as m — oo. Since Cj,

is closed and z,, € Cy 1, we have z € Cy and ||yx — 2m||* < ||2m — 21]|*> + 0. Then

lye = 2I1* = llye — 2m + 2m — 2|
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= llgr = 2mll® + llzm = 2II* + 2{yk = 2m, 2m — 2)
< llzm = @ell® + 0k + llzm — 201> + 2l — 2mlll2m — 2.

Taking m — oo,

gk = 2I1* < Iz — 2]l + O

Then z € Cyy1 and hence Cyyq is closed. Let x,y € Crip C Ck with z = ax + (1 — a)y
where « € [0,1]. Since Cj is convex, z € Ck. Thus, we have |lyx — z||* < ||z — 24]|*> + 05 and

lyk — ylI* < |ly — xx]|* + Ok. Hence

lye = 21 = lly — (ax + (1 — a)y)||?

= llalye —2) + (1 = ) (e — »)|I?

= allye — 2[* + (1 = )llye =yl — (1 — )| (g — 2) — (& — @)

< o[l = zel* + 0) + (1 = @) (ly — z&l* + ) — (1 — )|y — ?

= allz -z + (1 = a)lly — 2xl* — a(1 = o) || (2 — 2) — (21 — Y)|I* + O
= lla(zr — 2) + (1= a)(zk — y)|I* + Ok

= ok — 2% + 4.

It follows that z € Cy41 and hence Cj; is closed and convex. Therefore C), is closed and convex for

all n € N. This implies that {z,,} is well-defined. Since x,, = P¢, o, it follows that
(xg — Tp,xp —y) >0 (3.3)
for all y € F C C, and Vn € N. So, for u € F', we have
0 < (xg—xp,Tn —u) = —(Tp — To, Tn, — To) + (To — Tn, To — )
< —llzn — 20l* + llzo — zalllzo — ul.

This implies that

lzo = @nl|* < llwo — @nlllzo — ul

and hence
llxo — xn|| < ||lxo — u|| for all w € F' and n € N. (3.4)

From z,, = P¢,zo and 41 = P

wi120 € Cpy1 C Oy, we also have

(xo — Ty Ty, — Tpt1) >0 for all n € N. (3.5)
So, for z,11 € C),, we have, for n € N
0 <(xo— T, Tn — Tnt1) = —(Tn — To, Ty, — To) + (To — Tn, To — Tnt1)
< —lzn = 2ol + llzo — znllllzo — zp1-

This implies that

20 — @all® < w0 — nllllzo — Tn1l]
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and hence

|lzo — x| < |l®o — Tp41]| for all n € N. (3.6)

Since {||zo — x|} is bounded, lim, . ||z, — x| exists. Next, we show that ||z, — zp41]| — 0. In

fact, from (3.5), we have
2 — Tnt1]* = (2 — 20) + (20 — Tpt1) ||
= [lzn — @oll* + 2{zn — 20, 20 — Tps1) + |0 — Tp |
= ||zn — 20l|? — 2(x0 — T, T0o — Tn) — 2(XT0 — Ty T — Trr1) + ||T0 — Try1||?
< |l — @ol* = 2llzn — ol + |20 — 2p41|?
= —[lzn — @0]|* + lz0 — znia[*.

Since limy, oo ||Zn, — @o| exists, we have that lim, .. |[|[n — Znt1]] = 0. We now claim that

lim, o0 [|[T2n — xp|| = 0 = limy,, 0 || Sy, — x4 ||. Indeed, by definition of y,,, we have

|yn — 2|l = lanzn — (1 — an)T"2n — znll = (1 — an) |[T" 20, — 24|,
it follows that

1720 = @l = 12 [ — @all < 12 (lyn — 2ot |+ 2o - @all

Since 2,11 € Cn, |yn — Tnt1]|? < |20 — Tps1||* +0n — 0 as n — oo, this implies that || 7"z, — x| —

0 as n — oo. We now show that ||S"z,, — z,|| — 0. Let {|[S™x,, — z,,||} be any subsequence
of {||S™z, — xy,||}. Since {z,,} is bounded, there exists a subsequence {xnkj} of {z,,} such that
lim; o Hxnk] —u|| = limsupy_, o, ||2n, — u|| := a. We note that H:Enkj —ul < Hxnk] — T Zny, Il +

T 20y, — ull < fomy, — T 2 |+ K llon,, — ], ¥ > 1. This implies that
a = liminf ||z, —u| <liminf|z,, —ul. (3.7)
j—00 J j—00 i
By (3.2), we note that

1
leme, = ull < Ny, =l + (1= By (3, = 1)F [z, — ul

and hence
limsup ||zp, — u| <limsup ||z, —ul:=a. (3.8)
j*)OO J ]*)OO J
Therefore
lim ||z, —ul|=a= lim |z, —ul.
J—00 J J—00 J

Furthermore by (3.2) again, we observe that
ﬁnkj(l - ﬁnkj)HSnijnkj — Ty, 1? < ||5UmcJ —ul]* — Hznkg — ulf?
(1= Buy, (52, = Dllen,, — ull

— 0 as j — oo.

This implies that lim; .o [|S™" 2, — Zny,, || = 0 and hence
J

lim ||S"x, — z,|| = 0. (3.9)
j—00
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Next, we note that

[#n = T"n|| < llzn = T"2pl| + [T 20 — T"@n|| < |20 — T" 20l + knllzn — @all. (3.10)
Since
lzn — x|l = |Bnn + (1 = Bn)S™ @y — xpll = (1 = Bp)||S" @y — zn|| — 0 as n — oo,
and lim,, o ||[T"2, — xy|| = 0, we have
lim ||z, — T"z,| = 0. (3.11)
n—oo

It follows that
|1 T27 = @nl| < 1Tz — T || + 17" 2n — T g | + 1T 2ps — 2|
H|zn+1 — 24l
< toollwn — Tl + [T 2ni1 — zpga ]l + (1 + too) lon — 2n |

— 0 as n — oo. (3.12)
Similarly, we have

|Sxy — x| — 0 as n — oo. (3.13)

By (3.12), (3.13), Lemma 2.2 and the boundedness of {z,}, we have () # wy(xz,) C F. Since
20 = Ppxo,20 € F C C), and x,, = Pg, z¢ by the definition of P, we obtain

lxo — znl| = ||zo — Po,xol| < ||xo — 20| for all n > 0. (3.14)
Let w € wy(zy,), by weak lower semi continuous of the norm, we have
lw — x| < limninf |lzn — zoll < ||z0 — xol|- (3.15)
Similarly, for zg = Ppxy and w € wy(x,) C F, it follows that
lxo — 20| = ||lxo — Prxol| < ||zo — w||, for w € F. (3.16)

From (3.15) and (3.16), this implies that zp = w thus wy,(x,) = {20} and then x,, — zp, and we note

that
lzn — 20/ = [lzn — z0 + z0 — 20|12
= [lzn — @0l* + 2{zy — 20, 0 — 20) + |20 — 20|
< |lz0 = wol|* = 2{xo — @n, 20 — 20) + ||lz0 — 20>
= 2|20 — z0||* — 2(x0 — Tn, 20 — 20) — 0 as n — oo.
Hence, x,, — z9 = Prxg. This complete the proof. O

If S =T, then Theorem 3.1 reduces to corollary.
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Corollary 3.2.2. [39] Let H be a Hilbert space and let C be a nonempty bounded closed convex subset
of H. Let T : C — C be an asymptotically nonexpansive mapping with sequence {t,}. Assume that
F(T) # 0 and let g € H. For C; = C and x1 = Pc,x¢, define a sequence {x,} of C as follows:

Yn = nZp + (1 — ap)T"xp,
Cop1 ={2 € Cpt [lyn — 2|1* < llan — 2[* + 00}
Tny1 = Po,., 70, n €N
where 0,, = (1 — ) (t2 —1)(diamC)? — 0 as n — oo and 0 < v, < a < 1 for all n € N. Then {z,}

converges strongly to zo = Pp(7)Zo.

By the same as argument in the proof of Theorem 3.1, we obtain the following theorem.

Theorem 3.2.3. Let H be a Hilbert space and let C' be a nonempty bounded closed convex subset of
H. Let S,T : C — H be two nonexpansive mappings and F = F(S)NF(T) # 0 and let xy € H. For

Cy = C and x1 = Pg,x0, define a sequence {x,} as follows:

Yn = Ty + (1 — ap) T2y,
Zn = BpZn + (1 — Bn)Sxy,
Cnpr ={z € Cn: |lyn — 2l < [z — 2[[},
Tny1 = Po, 70, n €N
where 0 < a, <a<1land 0 <b< g, <c<1forall n€N. Then {z,} converges strongly to

z0 = Prxo.

If S =T, then Theorem 3.3 reduces to Theorem 1.1. totically nonexpansive semigroup on C' in

a Hilbert spaces.

Suppose that 7 = {T'(t) : 0 <t < oo} and S = {S(t) : 0 < ¢ < oo} are two asymptotically
nonexpansive semigroups defined on a nonempty closed convex bounded subset C' of a Hilbert space
H. Recall that we use L] and Lj to denote the Lipschitzian constant of the mapping 7'(t) and S(t),
respectively. In the rest of this section, we put Lo, = sup{L{, Ly : 0 <t < oo} and we use Fiz(7)
and Fiz(S) to denote the common fixed point set of 7 and S, respectively. Furthermore we use
F := Fiz(T) N Fiz(S) to denote the set of common fixed points of two asymptotically nonexpansive
semigroups 7 and S. Note that the boundedness of C' implies that Fiz(7) and Fix(S) are nonempty
(see [40]) and we assume throughout in this theorem that the set of two common fixed point F' in

nonempty.

Theorem 3.2.4. Let H be a Hilbert space and let C' be a nonempty closed bounded convex subset of
H. Let 7T ={T(t):0<t<oo}and § ={S(t) : 0 <t < oo} be two asymptotically nonexpansive
semigroups on C' such that F = F(7) N F(S) # 0 and let zg € H. Let C; = C, z; = P,z and
{z,,} be a sequence defined by

Yn = Ty + (1 — an)i fO" T(t)zpdt,

o = Bt + (1= Bu) L 2 S(E)andt

Cri1={2 € Cn: [lyn — 2II* < l|zn — 2II* + 02}

Tny1 = Pe,, 70, n €N,
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where 6,, = (1—an)[(B2 =1)4+(1—B,)t2 (32 —1)](diamC)? — 0 as n — oo (here t, = i Jo" Lidt and 5, =
= Os”LtSdt),Oganga<1and0<b§6n§c<1forallneNU{O} and t, — 00, s, — 00.

Then {x,} converges strongly to zp = Prx.
Proof. First observe that F C C), for all n € N. For F C C' = (] is obvious. Suppose that F C Cj
for some k£ € N. Let z € F C C. Then we have
o= 1P = |Jostan = 2) + (L= @) i Tt = 2)||
< ol — 2| + (1 — ag) Hi g’“ T(t)zpdt — zH2
< aller = 22+ (1= ag) (& Jy 1Tz — 2lt)
< ol — 22+ (01— ) (= [ LT s — 2at)’

< apllzr — 2|2+ (1 — o) ( t’“ LTdt> llze — 2||?

<oy — 2l + (1 — an) (82 — 2|1 — |lx — 21%). (3.17)

By Lemma 2.1, we have
lzs = 211* = Brller — 2l + (1 = Bi)ll5- Jo* S(t)xxdt — z||?
—Br(1 = Bl — 5 Jo* S(E)axdt|?
< Bullzg —2[I* + (1 — ﬁk)(é JoF 1S(#)zy — 2||dt)?
—Br(1 = Be)llee — 5 Jo* SE)zpdt||?
< Baller, — 2| + (1 - ﬂk)(i oF B dt)? |z, — 2|7
—Be(1 = Bz — = [ S(t)xpdt|?

<l — 27+ (1 —ﬁw@% = Dllzg — 2| (3.18)
Substituting (3.18) in (3.17) yields,

lys = 2112 < ok — 202 + (1 = o) B[}k — 2]
+(1 = Be) (32 — Dllax — 212 = [l — 2[1?)
< e = 22+ [(1 = o) (B = 1) + (1= ai) (1 = BB} — 1))l — 2|2
< e — 22+ [(1 = ) (B — 1) + (1 — ap) (1 = B) (3} — 1)) (diamC)?
< ey — 21| + 62.

It follows that z € Ciy1. Hence F C C), for all n € N. Again, by using the same argument in the

proof of Theorem 3.1, we have C, is closed and convex for all » € N and

|xrn — nt1]] — 0. (3.19)
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We now claim that

lim sup lim sup ||T'(r)x,, — 25| = 0 = lim sup limsup || S(r)z, — =]

T—00 n—oo r—00 n—oo

Indeed, by definition of ¥, and x,+1 C C,, we have

H—fon t)zpdt — x,

= ﬁ”yn - $n”

IA

17101” (lyn = zna1ll + [Znt1 — 2al))

< 1—1C¥n (2”1'71—1—1 - mn—l—lH + \V 571) — 0 as n — oo. (320)
We now show that limsup,_, . limsup,, . [|S(r)z, — z,| = 0.

Let {H% fosnk S(t)zp,dt — aznkH} be any subsequence of {|| L[5 S(t)zndt — a:n||} Since {x,, } is
TLk,
bounded, there is a subsequence {$nkj} of {xy,} such that

lim ||z, — z||=lmsup |z, — 2| = a.
J—0 J —00
We observe that
||l’nkj —z|| < ‘xnkj - tnlk fo J T(t)znkjdt’ + tnlk fo J T(t)znkjdt— z
i i
< om, = o o T O ] 4 5 T, - 2l
J
< om, = o o™ Tz ]| + ol oI

This implies that a = hmmfjﬂooH:nnk zH < liminf; .o Hznk — z||. By (3.18) we note that

o, = 2l < lomg, = 2l + (L= Bay, )32 — 1)) |2, — 2] and hence

lim sup ”an — z|| < limsup ”fﬂnk —zll = a.
j—o00 Jj—00

Therefore lim; . ||an —z|| =a=limj . ||$nkj — z||. Furthermore, by (3.18) again, we observe that

ﬁnkj(l - /Bnk ) ‘xnk -

P o™ S, A <, — 2l o, ~ 2l

+(1 = By, )55, = Dllzn,, — 2|
J 7 J

— 0 as j — oo.

Snyp, .
This implies that lim;_,, ||a:nk] = Jo g (t)xnk,j dt|| = 0 and hence

Sny, .
k]

lim ||/ S(t)xndt — x,|| = 0. (3.21)

n—oo = 8,

For all 0 < r < oo, we note that

IS(r)zn — 2] < HS(r)ocn—sm(é o s<t>xndt>H+H$ o S(E)adt —

+ HS L[ S(t)andt) — L [ S(t):cndtH

< (Loo +1) H o S(t)zndt — :an
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+[|SIE S SOmadt) = & Ji Sy

= (Loo + 1)AS + B3 (1), (3.22)
where A3 = i 05" S(t)xndt — x| and
B3 (r) := HS 0 " S(t)zndt) — 0 "S(t mndtH By (3.21) and Lemma 2.5, we have lim,, .o, A5 =

0= hm SUp, o hm Sup,, o0 B;f(r). Moreover we observe that
‘ Ty — i IS T(t)xndtH < ||xn — i IS T(t)zndtH
+ Hti Jo" T()zndt — &= [ T(t)xndtH

<

< Hxn _ L T(t)zndtH +Ellzn — zall-
Since ||z, — an| = (1 = Ba)ll5- L [ S(t)zndt — z,|| — 0 and (3.20) we obtain

= I Tzt + & 57 1T (0 — Ti

1 [t
lim [, — — / T(t)a:ndtH 0. (3.23)
n—oo tn 0
We can deduce that for all 0 < r < oo,
T — 2l < [T~ T0) (& S0 Tt | + | [ T2t~ 2,

+ HT ( o (t)azndt) - T(t)xndtH
< (Loo + 1) Hi Jo" T(t)zndt — 2y,

0 i) S T

= (Loo + 1)AT + BT (r).
By (3.23) and Lemma 2.5, we have

lim AL = 0 = limsup limsup B (r). (3.24)

n—0oo r—00  N—00

From (3.22) and (3.24), we obtain

limsup limsup ||T'(r)x, — z,|| =0 = hmsup limsup ||S(r)x, — zn]|-

T—00 n—oo n—~oo

We note by Lemma 2.5 that every weak limit point of {z,} is a member of F. From z,, — z9 = Prxo,

we have xg — x, — x9 — 29 from H satisfies the Kadec-Klee property, it follows that
Trog — Tp — Ty — 20-

So, we have
|z — 20l = ||xn — 20 — (20 — x0)|| — 0 as n — oc.

Hence x,, — zp. This complete the proof. |

If S =7, then S(t)x,, = z,, for all n € N and for all ¢ > 0. Hence éfOS" S(u)xpdu =

T, 2n = Ty for all n € N and therefore theorem 3.3 reduces to the following corollary.
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Corollary 3.2.5. [39] Let H be a Hilbert space and let C be a nonempty closed bounded convex subset
of H. Let 7 = {T'(t) : 0 <t < oo} and be an asymptotically nonexpansive semigroup on C' such that
F(T) # 0 and let 29 € H. For Cy = C and 21 = P, o, define a sequence {z,} of C as follows:

Yn = Ty + (1 — an)i (;r T(t)andt,
Cr1 = {2 € Ot |lyn — 2II” < [z — 2[* + 0}

Tn+1 = Po, 120, n €N

where 5n =(1- an)(?i —1)(diamC)? — 0 as n — oo (here tn = i g" LTdt, 0 < a, <a<1 for

all n € NU{0} and t,, — 00, s, — oo. Then {x,} converges strongly to 20 = Pp(1)To.

By the same as argument in the proof of Theorem 3.4, we obtain the following theorem.

Theorem 3.2.6. Let H be a Hilbert space and let C' be a nonempty closed bounded convex subset of
H. . Let7 ={T(t):0<t<oo}and S ={S(t): 0 <t < oo} be two nonexpansive semigroups on C
such that F = F(T)N F(S) # 0 and let 9 € H. Let Cy = C, 1 = Pc,x¢ define a sequence {z,}
as follows:

Yn = QpTp + (1 — an)i fot” T(t)zpdt,

Zn = Ppn + (1 — ﬁn)s% o S(t)wndt,

Cnt1={z € Cn: llyn — 2| < |z — 2[I},

Tny1 = Po, 70, n €N
where 0 < o, <a<land 0<b< g, <c<1foralneN and t, — c0,s, — oco. Then {z,}

converges strongly to zp = Prxg.

If S =T, then Theorem 3.6 reduces to Theorem 1.2.

3.3 Strong convergence theorems of hybrid method for asymptotically k-strictly pseudo-contractive

mapping

In this section, we prove strong convergence theorems by hybrid methods for asymptotically

k-strict pseudo-contractive mappings in Hilbert spaces.

Theorem 3.3.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T’
be an asymptotically k-strictly pseudo-contractive mapping of C' into itself such that F(T") # () and let
xo € C. For Cy = C and z; = P¢, xo, define {x,} as follows way:

Yn = QpTp + (1 - an)anny
Coa1 = {2 € Cn: |lyn — 2[* <l — 27 + [k — an(1 — ap)]llzn — T || + 0}, (3.3.1)
Tnt+1 = PC'»,H_1:U07 ne N7

where 0,, = (diamC)?(1—ay,)y, — 0, (n — 00). Assume that the control sequence {av, }°; is chosen

so that limsup,,_,,, @, <1 — k. Then {z,} generated by (3.3.1) converges strongly to 20 = Pp(1)To-
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Proof. We first show that F'(T) C C), for all n € N, by induction. For any z € F(T) we have
z € C =Cq hence F(T) C Cy. Let F(T) C Cy, for each m € N. Then we have, for v € F(T) C C,,
lym — ull® = llomam + (1 = am) T n, — ul|?
= llom(@m —u) + (1 = o) (T2 — )|
I

= am|Tm — “H2 + (1 = am) | T zm — qu —am(l —am)||[Tm — T,

< aml[zm =l + (1= ) [(1+m) [l2m — l® + Ellzm — T"2m %] = cm (1 = am) | 2m —

Tz ||

= 1+ (1= am)ym)zm = ul® + [k — an(l = am)llzm — T[>

<Nl —ull® + [k = am(l = am)l|2m — T™zm|* + (1 = am)yml|2m — ul]?

< wm —ul? + [k — am(l — ap)]l|lzm — T"%m || + Om.-
It follows that u € Ci, 41 and F(T') C Cy,41, hence F(T') C C), for all n € N. Next, we show that C),
is closed and convex for all n € N. It follows obvious that C'; = C' is closed and convex. Suppose that
Cyn is closed and convex for each m € N. Let z; € Cj,41 C Cp, with z; — 2. Since Cp, is closed,
z € Oy, and |Jym — 2|12 < ||lzj — zm||* + [k — am (1 — am)]||l@m — T2 ||* + 05, Then

lym = 2% = llym — 25 + 25 — 2|I°

= llym — %lI* + ll2; — 2I* + 2{ym — 2j, 2 — 2)

< llzj = @ml? + [k — am (1 — o)l |2m — T™ @l * + O + 1125 — 2117 + 2llym — 2512 — 2]
Taking j — oo,

lym = 21 < |z = zml® + [k = am(1 = am)]l|zm — T @m]|* + O

Hence z € Cypy1. Let 2,y € Cpg1 C Cpy, with 2 = az + (1 — a)y where o € [0,1]. Since Cp, is
convex, z € Cy, and ||y — 2[|2 < ||z — 2m||? + [k — am (1 — a)]|Zm — T™2ml|? + Om, ||ym — y||? <
ly — 2m||? + [k — am (1 — am)ll|zm — T™@m||* + 0, we have
[Ym = 2l = lym — (az + (1 = a)y)|]?

= la(ym — 2) + (1 = &) (ym — )7
= aflym —z[* + (1 = ) lym — ylI> — a1l = ) |[(ym — 2) = (Ym — )|
< offlz - mez + [k — am (1 — am)]||zm — Tmfme2 +0m)

+(1 = a)(ly = zmll® + [k — an (1 — am)l|zm — T™ml|* + 0m) — a(l - o)y — =
= allz — 2l + (1 = )|y — zml® — a(l = a)|[(zm — 2) = (@m —y)|I?

+[Ek = am(1 — am)]||Tm — T™2ml|? + Om
= [la(@m —2) + (1 = a)(@m = YIIP + [k — an(l = ap)l|zm — T"@m||* + Om

= |zm — 2| + [k — am(1 — am)]|2m — T™2m]|? + Opm.



26

Then z € Cp,11, it follows that C,,+1 is closed and convex. Hence C), is closed and convex for all

n € N. This implies that {z,} is well-defined. From z,, = P¢, xo, we have
(xo — xp,xn —y) >0, for all y € Cp,.
Since F(T') C C,, we have
(xo — xp,xn —u) >0 for all w € F(T) and n € N. (3.3.2)

So, for u € F(T'), we have
0 <{(xp—xp,xn —u) = (Tg — Tp, Ty — To + o — u)
= —(xp — T, Tp — o) + (To — Tn, To — U)
< —llzn = zol” + llzo — znllllzo — ull.

This implies that

lzo — @l < llzo — @nllllzo — ull,

hence

lxo — n|| < ||lxo — u|| for all w € F(T') and n € N. (3.3.3)

From z,, = Pc,x¢ and z,4+1 = P¢

wi120 € Cpy1 C Oy, we also have

(o — Tpy Ty — Tpy1) >0 for all n € N. (3.3.4)
So, for z,11 € C),, we have, for n € N
0 < (20 — Tn, Tn — Tnt1) = (X0 — Tn, Tn — To + To — Tpi1)

= —(zp — To, Ty, — X0) + (To — Tpn, Lo — Tnt1)

A

< —llwn — ol + lzo — allllzo — zn4a -

This implies that

lzo = 2]l < llwo — @nllllzo — Zn4all,

hence

lxo — xn|| < ||lxo — Xpn41]| for all n € N. (3.3.5)

From (3.3.3) we have {x,} is bounded, lim,,_~ ||z, —x0|| exists. Next, we show that ||z, —x,+1| — O.

In fact, from (3.3.4) we have
2 — 2p1]? = [[(2n — 20) + (20 — nt1) ||
= ||lzn — zol|* + 2(xn — 0,20 — Tny1) + 20 — Tnya ||
= ||zn — 20|? + 2(xn — 70, T0 — Tn + Tn, — Tpi1) + |20 — Tna1|)?
= ||zn — 20]? — 2(x0 — T, T0 — Tn) — 2(T0 — Ty Ty — Tir1) + || 0 — Tp1||?

< llzn = @ol® = 2llzn — wol|* + [lz0 — znta
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= —[lzn = zol* + [z — Zntal®.
Since lim,, oo ||xn — xo|| exists, we have that

lim ||z, — zp41]] = 0. (3.3.6)

n—oo

On the other hand, x,+1 € Cp4+1 C C), implies that
lyn = Tnt1ll? < llon = @nr1|® + [k — an(l = an)]llzn — T 20| + n, (3.3.7)
By the definition of y,, we have
[yn — 2|l = [lon@n + (1 — an)T"2n — 0|
= (1 = ap)||T"xy — x4 ]|
From (3.3.7), we have
(1= o) [ T2 — 2a® = llyn — al®
= 1Yn — Tnt1 + Tnp1 — 2ol
< llyn = @nr1ll? + @t — 2l + 2llyn — 2t lllznrs — 2al
< Nl#n — znaal® + [k — an(l — an)llzn — T@nl® + 00 + |2nr1 — @0l
+2lyn — zniallllenir — zal|
= [k — an(l = an)ll|zn — T2 + 2l|zns1 = 2ol (12041 = 20l + lyn = 2gal]) + On.
It follows that
((1—an)? = (k= an(1 = an) |20 — T @nl* < 2l|nt1 — 2l (201 = 2nll+ Y0 — 20t ]]) + O
Hence
(1 =k = an)[[T"xn — @n|| < 2[zn1 — 2nl|([2n1 = 2ol + yn — 2ngall) + On. (3.3.8)

From limsup,, ,,, an < 1 —k, we can chosen ¢ > 0 such that o, < 1 — k — € for large enough n.
From (3.4.4) and (3.3.8), we have
lim ||T"x, — x,|| = 0. (3.3.9)

n—oo
Next, we show that lim,_, ||Tz,, — 2| = 0. From Lemma 2.2.16, we have
|Tzn — 20| < | Tn _TnJrlan + ”TnJrlxn _TnJrlxn-&-lH + HTn+1xn+1 — Tt + |Tns1 — 2|
< Lillzn — T + \|T"+1xn+1 — Tpy1|| + (1 + Log1)||zn — Tngal). (3.3.10)
From (3.4.4) and (3.4.6), we have
lim [Tz, — 2, = 0. (3.3.11)
n—oo

By (3.3.10), Lemma 2.2.14 and boundedness of {x,} we obtain () # w,,(z,,) C F(T). By the fact that
|[2n — o|| < [|20 — 2ol| for all n > 0 where 20 = Pr(7) (7o) and the weak lower semi-continuity of the

norm, we have
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lzo — 20| < ||lzo — w|| < liminf, . ||zo — zp]|
< hmsupn—n)o on - an < ||J)0 - ZOH,

for all w € wy(x,). However, since wy,(z,) C F(T), we must have w = zg for all w € wy,(x,). Thus

ww(Tn) = {20} and then z,, — z0. Hence, z,, — 20 = Pp()(z0) by
2 — 20[|* = [l — @0]|* + 2(s — w0, 20 — 20) + [|z0 — 20>

< 2(”20 - 9U0”2 + <$n — Zo, Lo — Zo)) — 0 as n — oo.

This complete the proof. O

Using this Theorem 3.4.1, we have the following corollaries.

Corollary 3.3.2. Let H be a Hilbert space and let C' be a nonempty closed convex subset of H. Let
T be k-strictly pseudo-contractive mapping of C' into itself for some 0 < k < 1 such that F(T) # ()
and let g € C. For C1 = C and =1 = P¢, xg, defined {x,} as follows;

Yp = QpTy + (1 - an)T$n7
Cn1={2€Cp: |lyn — 2|1 < [lzn — 2[7}, (3.3.12)
Tn+l = PCn+1x07

for all n € N, where {ay,,} C [o, 3] for some «, 3 € [k,1). Then {z,} generated by (3.4.9) converges

strongly to zo = Pr(1)Zo.

Corollary 3.3.3. [12] Let H be a Hilbert space and let C' be a nonempty closed convex subset of H.
Let T be an asymptotically nonexpansive mapping of C' into itself such that F'(T") # () and let 2o € C.
For Cy = C and x1 = Pg, xg, defined {x,} as follows;

Yn = QnpTp + (1 - an)Tnxnv
Crt1=1{2€Cp : |lyn — 2|12 < |lzn — 2|12 + 60}, (3.3.13)
Tnt1 = PCnJrl:COv ne Na

where 0, = (1 — o) (k2 — 1)(diamC)? — 0 asn — oo and 0 < a;, < a < 1 for all n € N. Then

{z,,} generated by (3.4.8) converges strongly to zp = Pr(1yxo.

Corollary 3.3.4. ([39] Theorem 4.1) Let H be a Hilbert space and C' be a nonempty closed convex
subset of H. Let T' be a nonexpansive mapping of C into H such that F'(T') # () and let xy € H. For

Cy = C and u; = Pg,xo, define a sequence {u,} of C as follows:

Yn = QpUn + (1 - an)Tuna
Crny1 ={2 € Cn: [lyn — 2[| < [lun — 2|}, (3.3.14)

Uny1 = Pe,,. 70, n €N,

where 0 < o, < a < 1 for all n € N. Then {u,,} converges strongly to zyp = Pr(ryzo.
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3.4 Strong convergence theorems for a new iterative method of k-strictly pseudo-contractive map-

pings

In this section, first we show that a mapping S : C' — H defined by Sz = kx + (1 — k)Tx is
a nonexpansive mapping, where C' a nonempty closed convex subset of a real Hilbert space H and
T :C — H be a k-strictly pseudo contractive mapping with a fixed point for some 0 < k£ < 1. Let

2,y € C and from Lemma 2.2.1 (iv), we have
|Sz — Sy||* = [[kz + (1 — k)Tx — (ky + (1 — k)Ty)|?
= [lk(z —y) + (1 — k)(Tz — Ty)||?
= kllz —y|> + (1 = k)| Tz — Ty[]* — k(1 = k)||(z — y)z — (Tz — Ty)|]?
= kllz—y|?+Q=k) (e —yl*+k|(I-T)a~(I-T)y|*) —k(1-k)||(z—y)z—(Tz~Ty)|?
= [lz —yl? + Q= k)| - )z — (I = T)yl|*) — k(1 = k)| = T)z — (I - T)y|?
<z —yl*.

Hence ||Sz — Sy|| < ||z — y||. Then S is a nonexpansive mapping and we have PgS is also
nonexpansive where Pc is a metrics projection on C. For any j € N, defined a mapping S; : C' — C

by Sjz = %’yf(m) + (I — %A)P(;S:U. Let us show that S; is contraction, let z,y € C, we have
1852 — Sjyll = | 37f () + (I = A) PoSz — (7 f(y) + (I — jA)PeSy)||
< jvallz =yl + (1= 59)|PeSz — PoSy|
< Lyallz — yll + (1 = 15) o — y]
< (157 =va)(lz —yl.

Hence, S; is a contraction. By Banach’s contraction principle there exists a unique fixed point
u; € C such that
1 1
uj = ;’yf(u]) +(1- ;A)Pcsu]'. (3.4.1)

Next, we prove the main results.

Theorem 3.4.1. Let H be a Hilbert space, C' a nonempty closed convex subset of H such that
C+C cCcCand T :C — H be a k-strictly pseudo-contractive mapping with a fixed point for some
0 <k < 1. Let A be strongly positive bounded linear operator on C' with coefficient 7 > 0 and
f:C — C be a contraction with the contractive constant (0 < o < 1) such that 0 < v < g Let {x,}

be sequence generated by;

x1 € C,

Tp+1 = an’}/f(xn) + ﬂnl'n + ((1 - ﬂn)l - OénA)PCSSUna

(3.4.2)

where S : C' — H is a mapping defined by Sz = kx+ (1 —k)Tz. If the control sequence {c, },{fn} C
(0,1) satisfying
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(i) lim,, o0 ap, = 0,limy, 00 B = 0,

(i1) 252 o = 00,

(iil) X521 lan41 — | < 00, B2 [Brt1 — Bal < 00.

Then {x,} converge strongly to a fixed point p of 7', which solves the following solution of the

variational inequalities (3.3.1).

Proof. Note that from the condition lim,, .., a, = 0, we may assume, without loss of generality, that

an < (1 —6,)||A||~!. Since A is a strongly positive bounded linear operator on H, then
[A[l = sup{[(Az, )| : = € H, [|lz|| = 1}.
Observe that
(1= —apA)x,x)y =1— B, — an(Azx, )
>1— By — anl/4]
> 0,
that is to say (1 — f3,)I — a, A is positive. It follows that
11 = Bu)T — an Al = sup{{((1 — Bu)] — anA)z,z) : 2 € H, |z = 1}
=sup{l — B, — ap(Az,z) : x € H, ||z|| = 1}
<1 —=0Bn — o7
We now observe that {z,,} is bounded. Indeed pick any p € F(T) N EP(F'), we have
201 = pll = llemyf(@n) + Bntn + (1 = Bn)I — anA)PoSzn — pl|
= llan(vf(@n) = Ap) + Bu(n — p) + (1 = Bn)I — anA)(PoSzn — p)|
< anllvf (@n) = Apll + Bullzn — pll + (1 = )T — anA)|[[| PoSzn — pl|
< anlyf(@n) = 7f () +7f(P) = Apll + Bullzn — pll + (1 = Bn — ) llzn — pl
< apyalzn —pll + anlvf(p) = Apll + Bullzn — pll + (1 = Bn — an?)lllzn — pll
< anyollzn = pll + anlvf(p) = Apll + Bullzn — pll + (1 = Bn — V) |20 — p

= (1 — an(¥ —v)||@n — p|| + awllvf () — Ap||

— — —A
= (1= an(7 = 10))[lan = pl| + an (7 — 7o) BEETSEL
It follows from induction that
p) — Ap
len - pll < max{fla; — pf, PL@ APy 5
(7 — o)

and hence {z,,} is bounded. We also obtain that {f(z,)} and {PcSz,} are bounded. From (3.4.1),

we have for any n,j € N
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|Zn+1 — PoSuj|| = llanyf(@n) + Bazn + (1 = Bn)I — anA)PoSxn — PoSuy||
= |lan(vf(zn) — APcSu;) + Bn(xn — PoSuy)
+((1 = B)I — o A)(PeSzn — PoSuy)|
< an||vf(2n) —APcSuj||+Bnlln— PoSuj||+(1=Bn—an¥) | PoSwn — PoSuj|
< an|vf(an) — APcSuj|| + Bullzn — PeSujl| + (1 = Bn — an¥)llzn — uy|
= an([[7f(#n) = APcSu;|| =7 lzn —u;]) + Bnll2n — PoSu; ||+ (1= ) [|2n —uj|
= 0 + Bnllzn — PoSu;|| + (1 = Bn)llzn — uyll

where 6, = o, (||vf(2n) — APcSuj|| —7|n —uj||), from lim,, .o ay, = 0, we have 6,, — 0 as n — oo.

It follows that
241 — PoSuj||? = (6n + Ballzn — PoSuj| + (1 = Ba) |20 — ujl)?
= (Bullzn—PoSuj||+(1=Bn)llan—u;l)*+2(Bnll2n — PoSuj||+ (1= B) l2n —u; ) dn+07
= Ballen — PoSuj|? + (1= Ba)?||lwn — ujl|? +28a(1 = Ba)llzn — PeSujll|lzn — il + on
where o, = 2(8, || — PoSu;|| + (1 = Ba)||2n — uj||)dn + 62 — 0 as n — oo, and hence
241 = PoSuj||* < Billen — PoSui|? + (1 = Bn)? 20 — ujl* + Ba(1 = Bn)([l2n — PoSu,l®
Hlzn = ujl*) + on
= Bullzn — PoSujl* + (1 = B)l|lzn — ujl* + o

For any Banach limit ; and (3, — 0, we have

pnllen — PoSug||* = palleni — PeSug|? < pnllan — . (3.4.3)

Since uj — z,, = %(fyf(u]) + (I — A)PcSuj —xy) + (1 — %)(PCSU]' — Zp,), thus we have

(1- ;)(ﬂcn — PoSu;) = (wn — uj) + ;(Vf(uj) + (I — A)PoSuj — xn).

It follows from Lemma 2.2.1 (ii), that
(1= 1]t — PoSus|2 = (o — ug) + L3/ () + (1 — A)PoSus — )|
> ||@y — ujl|? + %((vf(uj) + (I — A)PcSuj — zp), Tn — uj)
= |lzn — uj|® + %('yfuj) + (I — A)PcSuj —uj — (xn — uj), Tn — uj)
= Hxn—uj||2—|—%(’yf(uj)—i—(I—A)PcSuj—uj,mn—uj>—%<:vn—uj,mn—uj>
= |20 —uyl® + 3 (v f(uy) + (I = A)PoSuj — uj, w0 —uj) —
= (1—j)”xn—ujﬂz—i-j(’yf(u]')—l-(I—A)PcSUj—Uj,xn—uj>. (3.4.4)

So by (3.4.3) and (3.4.4), we have
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(1= 2 — w2 = (1= 12 PoSu; — ol
> (1= Dllwn —ujll* + 3(yf(uy) + (I = A)PoSuj —uj, wq — uj)

and hence

j%||$n —ujf|? > %<7f(u]) + (I — A)PcSuj — uj, xp — uj).
This implies that

Hnllzn = ugll® > pn (v f (ug) + (I = A)PeSuj — uj, n — ).
From Lemma 2.2.8 and 2.2.10, u; — p € F(T) = F(PcS) as j — oo, we get

pn(vf (p) — Ap, xn — p) <0, (3.4.5)

and p which the solution of variational inequality (3.3.1). Since, {x,}, {f(xn)} and {PcSz,} are

bounded, we choose
M = sup{|| f(zn)|| + [|&n|| + [P Sznll + [[APcSzn] : n € N}.
On the other hand,
|Zn+2 — Tt || = [lant17f (@n41) + Bor@ngr + (1 = Bus1)] — ant14) PoSzn i
—(n17f (2n) + Bnan + (1 = Bp)] — anA)PoSzy)||
= [lant17f (@nt1) =17 f (@n) +an17 f (0n) = any f (T0) + Bpt1Tnt1 = Bpt1Tn
+Bn+1Zn—LCnTn+((1—=Lp+1) I —an11A) PoStpi1—((1—Bny1) [ —ant1A) Po Sy,
+((1 = Bny1)] — ant1A)PeSxy, — (1 — Bp)I — anA)Po Sy ||
< o170l Tnp1—2pll+|anr—om |7 (@0) [ +Brsillznr—2n 14| Bn1 = Bnl |20 |
+(1 = Bns1 — ans1)||[PeStns1 — PoSay|
(A = Bna)] — an1A) = (1 = Bn)I — anA)][| PoSzn|
< 1Y Zng1 —Tnl|+omrr —an | |7 (2n) [+ Bn+ 1 | Tns1 —nl |+ Bns 1= Bnl | zn|
+(1=Prrr1=n17) [Tns1 =20 ||+ Bnir—Bnl) | PoSan ||+ ant1—om|[| APc S|
< (1= ans1(¥ = y))|[@nt1 — anll + [ongr — o[y M + |Bnsr — Bn|M
F|Bnt1 = Bul )M + |om g1 — o | M.
From (ii), (iii) and Lemma 2.2.2, we have
nh_)n;o |Tnt1 — znl| = 0. (3.4.6)
Next, we show that lim,, . ||z, — PoSxz,|| = 0. We consider
[2n — PoSzn| < llzn — Zniall + 2041 — PoSzall

< [lzn — @ntall + anllvf (@0 — Apl| + Bullzn — PoSzall.
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From, o, — 0,3, — 0 and (3.4.6), it follows that lim,,_,« ||z, — PcSz,|| = 0.
Next, we show that

lim sup,, o (7 (p) — Ap, z — p) <0,

where p € F(T), which p the solution of variational inequality (??). From (3.4.6), we have

limsup [(vf(p) — Ap, znt1 — p) — (vf(p) — Ap,zn — p)| = 0. (3.4.7)

n—oo

Hence it follows from (3.4.5), (3.4.7) and Lemma 2.2.11 that

limsup(vf(p) — Ap,zn —p) <0, (3.4.8)

n—oo

and from lim, . ||z, — PoSx,|| = 0, we have
lim sup,, oo (v.f(p) — Ap, PoSxy, — p) = limsup,,_(vf(p) — Ap, (PcSzn — 25) + (zn — p))

= limsup(yf(p) — Ap,zn, —p) <0.  (3.4.9)

—00

Finally, we prove that z,, — p as n — oo, we note that
201 = pl* = llanyf(@n) + Bozn + (1 — Ba) I — anA)PeSx, — pl|?
= [lan(vf(zn) = Ap) + Ba(zn — p) + (1 = Bu)I — anA)(PoSzy — p)|?
= |Ba(@n = p) + (1 = Bp)I — anA)(PeSzn — p)|I* + ap||vf(xn) — Apl|?
+2(Bn(@n — p) + (1 = Bp)] — anA)(PeSzpn — p), an(vf (2n) — Ap))
< Ballen = pll + (1 = B — anY)|I1PoSzn — pll)* + 28nan(zn — p, (vf (2n) — Ap))
+ag v f(2n) — Ap|)?
+2(1 = Bp)an((PeSay — p), (vf(2n) — Ap)) — 20 (A(PoSay — p), (vf(2a) — Ap))
< Bullza=pll+Q=8n—any)|zn—pl)*+200anar || w0 —pl* +26ncn (w0 —p, 7f (p) — Ap))
+2(1 = Bn)an((PeSzn —p), (vf(20) — Ap)) — 207 (A(PeSzn — p), (7f(20) — Ap))
+ap||vf(an) — Ap|?
< (1= an¥)?llzn = pl* + 2Bpanar||zn — plI* + 2Bnan (wn — p,vf(p) — Ap))
+2(1 = Bp)an((PoSan — p), (vf(zn) — Ap)) + 3ap M
= (1 -2(F —va)an)llzn — pl* + (an7)*M + 2Bpanary|lzy — pl|®
+26nan(zn — p,7f(p) — Ap))
+2(1 = Bp)an((PeSzy —p), (vf(2n) — Ap)) + 3ap M
= (1 -2(7 —va)an)l|lzn = plI* + an[28n(wn — p.7f(p) — Ap))

+2(1 = Bp){(PeSzn — p), (v (2n) — Ap)) + 3om M + a7 M]
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=t (1= yn)llzn — plI? + bn
where y, = 2(Y —ya)an, and by = an[26n(zn — p,7f(p) — Ap)) +2(1 = Bn){((PeSzn — p), (7f (2n) —
Ap)) + 3a, M + o, 7°M]. From X2, a, = oo, (3.4.8), (3.4.9), we have X7, = oo and
lim sup,, E)TZ < 0. by Lemma 2.2.2, we have a sequence {x,} converges strongly to a fixed point p

of T' which the solution of variational inequality (3.3.1). This completes the proof. O
If B, =0, in Theorem 3.4.1, we obtain the following corollary.

Corollary 3.4.2. [46] Let H be a Hilbert space, C' a nonempty closed convex subset of H such that
C+C cCand T:C — H be a k-strictly pseudo-contractive mapping with a fixed point for some
0 < k < 1. Let A be strongly positive bounded linear operator on C' with coefficient 7 > 0 and
f:C — C be a contraction with the contractive constant (0 < o < 1) such that 0 < vy < L. Let {z,}
be sequence generated by;

r1 € C,
(3.4.10)

Tnt1 = anYf(xn) + (I — anA)PoSzy,

where S : C' — H is a mapping defined by Sz = kx+ (1 —k)Tz. If the control sequence {a,} C (0,1)
satisfying

(1) limy, o0 ap, =0,
(i) 252 o = 00,
(iil) X224 an+1 — an| < oo.
Then {x,} converge strongly to a fixed point p of 7', which solves the following solution of the
variational inequalities (3.3.1).
O

Theorem 3.4.3. Let H be a Hilbert space, C' a nonempty closed convex subset of H such that
C+C CcCand T :C — H be a k-strictly pseudo-contractive mapping with a fixed point for some
0 < k < 1. Let A be strongly positive bounded linear operator on C' with coefficient ¥ > 0 and
f:C — C be a contraction with the contractive constant (0 < a < 1) such that 0 < v < 2 Let {x,}

be sequence generated bys;

x1 € C,

Tp4+1 = an’Yf(xn) + ﬁnxn + ((1 - ﬁn)l - anA>PCS$n7

(3.4.11)

where S : C' — H is a mapping defined by Sz = kx+ (1 —k)Tz. If the control sequence {c, },{f,} C
(0,1) satisfying

(1) limy, 00 oy = 0,
(i1) X020 = 00,

(iii) Ezozl‘an—f—l — Qp| < 00, E?ﬁ:l’ﬂn—i—l - ﬂn‘ < 00,
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(iv) 0 < liminf, o B < limsup,,_, On < 1.

Then {z,,} converge strongly to a fixed point p of 7', which solves the following solution of the

variational inequalities (3.3.1).

Proof. In the proof of theorem 3.4.1 we have, {z,} is bounded. We also obtain that {f(z,)}
and {PcSxzy} are bounded. Next, we show that |[z,4+; — x| — 0. Define the sequence z, =
ocnvf(xn)+((1—ﬂn)1—04nA)PCS“"", such that z,+1 = Bpxyn + (1 — Bn)2zn, n > 0. Observe that from the

n

definition of z, we obtain

— o1 (@ng1) H((L=Bnt1) ] —ony1A) PeStnyr _ onyf(@n)+((1—Bn)]—anA)PcSzn

zn—l—l — Zn = 1*/8n+1 17/871,
— ant17f(Tnt+1)  ant1vf(zn) + Oln+17f(wn) _ anyf(zn)
1—Bn+1 1—Bn+1 1—Bn+1 1—0n
_|_((1*5n+1)17an+1A)Pchn+1 (A =Bn+1)I—any1A)PcSzy + ((I=Png1)I—any1A)PcSn
1—PBn+1 1—PBn+1 1—fBnt1
_((1—6n)[—o¢nA)Pchn (A=pp)I—anA)PcSzy,  ((1=Pn)I—anA)Pc Sty
1—0rn+1 1-Bnt1 1-0n
= “"+17101(g::—11—xn) + (g1 — o )llvlf_(f;nﬂ)\l 4+ @= 5n1+_1%1 an+14) (Pe:Szpi1 — PoSzy)

(1 = Brt1)] — a1 A) = (1 = Bp)] — anA)|(PeSan)
+((1 = B — anA)(% — %m)(PCSa:n).
Thus,

Zn ” < ’anﬂ’va\\znﬂ z””—{—|oz

ey il —Q ’W zni)]| | (- 6"“5 an+”)||PCS$n+1—PCS$n||

n+1 1-

| Zna1 —

+[(1 = Bnt1 — an17) = (1= B — an?¥)]l| PeSznll + (1 = Bn — Oérﬁ)h_glinﬂ

— 25 1 Pe S|
< 2003,y — | 4 Sptely g Bt tnsiD) g |

+1Bnt1 = Bal + lan 11— TN APCS@n | + (1 = Bn — )| 2325502055 | Po S

= Q2% gy — | + By M 4 |z — 2l — 22T g —

+|Bn+1 = Bal + lant1 — anl¥]M + (1 = Bn — ani”%M
where M = sup{||f(zn)|| + ||PcSzn| + ||APcSzy|| + ||Znet — n|| : n € N} It follows that

znt1 = 2all = [nt1 — @nll < 2PE=22ly M+ [1Bag1 = Bal + lomis — anlFIM + (1 = Ba —

)| - Bn+1=Bn|
Oén’}/) ’ (1—=Br+1)(1—0n) M.

Since X900 |an41 — ap| < 00, 0| Bnt1 — Bn| < 0o, we have

limsup(||zn+1 — 2nll = [|Tn+1 — zn]]) < 0. (3.4.12)
n—oo

From 0 < liminf, o B, < limsup,,_,. On < 1, (3.4.12) and Lemma 2.2.6, we have

lim |[zn — || = 0. (3.4.13)

n—oo

We consider
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”xn—i-l — Ty = H(l — Bn)zn — BnZn — an
= (1 - Bn)llzn — ul|
then
lim ||zps1 — xp|| = Hm (1 = 6y)||zn —zn] =0
n—oo n—oo
Next, we show that lim,, . ||z, — PcSzy| = 0. We note that
|#n — PoSan|l < [|on — @pia || + 201 — PoSzn||
< ||$n - $n+1” + an||7f($n) - APCS-rnH + ﬁn”fvn - PCS:Unua (3.4.14)
and hence

(1= Bn)llen — PoSwnll < [l2n — ngall + anllvf(2n) — APoSzal,

from «;,, — 0 and lim,,_, |41 — zp|| = 0, it follows that lim,,_, ||z, — PoSx,|| = 0. From (3.4.1),

we have for any n,j € N
|Zn+1 — PoSuj|| = [lanyf(zn) + Bnxn + (1 = Bp)I — anA)Po Sz, — PoSu||

= |lan(vf(xn) — APcSuj) + Bn(xn — PoSu;) + (1 — Bn)I — anA)(Po Sy, —
PoSuy)|

< an|[7f (#n) — APcSu;||+ Bnllzn — PoSu;||+ (1= Bn —an¥) | PoSzn — PoSu,|
< anl[vf(zn) = APcSuj|| + Bullzn — PoSuj|| + (1 = Bn — an¥)lzn — uj|

= an(||7f(zn) = APcSuj|| =720 —usll) + Bnllwn — PoSu;l|+ (1= Bp) || @n —uj]
= 0n + Bnllon — PoSuj|| + (1 = Bn)llen — vyl

where 6, = o, (|| f(xn) — APcSu;|| —7|zn —u;||), from lim, . o, = 0, we have §,, — 0 as n — oo.

It follows that
[#nt1 — PoSujl|* = (8n + Ballen — PoSull + (1 = Bo)llen — ujll)?

= (5onn_PCSUjH +(1_6n)‘|xn_uj”)2+2(ﬂn”mn_PCSUJ'”+(1_ﬂn)Hxn_
uj||)5n‘|’572z

= Ballen — PoSu;||* + (1= Bn)?len — uj]|* + 280 (1 = o) lzn — PoSujl||zn —

uj| + on
where o, = 2(8, ||z — PoSu;l| + (1 — By)||zn — uj||)dn + 62 — 0 as n — oo, and hence
[2n+1 — PoSuj||? < Brllzn — PoSuj|? + (1 = Bu)?|l2n — ujl|®
+0n(1 = Bn)(llxn — PeSujl* + l|lzn —ujl?) + o

= Bnllxn — PcSujH2 + (1= Bn)|len — ujH2 + oy, (3.4.15)

From (3.4.25), we have
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|z — PoSuil|* = |(zn — 2n+1) + (@nt1 — PoSuy)|?
= Hxn+1 - PCSujH2 + 2<xn+1 - PCSUjaxn - xn+1> + ||$n - $n+1||2
= ||lznt1 — PCS“jH2 + 2(|Zn41 — PoSuj||[|zn — znta || + [|2n — $n+1H2’

< Bnllzn _PCSUJ'HQ“‘ (1= Bn)llzn _“j||2+0n+2”xn+1 _PCSUJ‘HHmn —Tpy1 +

[
and hence
(1=Bn)|wn—PeSu;|* < (1=Bn)l|@n—ujlI*+0n+2[|2ni1—PoSuj|||2n —zni1 |+ |20 —2nia >

For any Banach limit 4 and o, — 0, ||z, +1 — zp| — 0, we have

pinllzn — PoSuj||? < pnllzn — uj||*. (3.4.16)

Since u; — xp, = %(yf(uj) + (I — A)PcSuj —xy) + (1 — %)(PCSUJ- — Tp), thus we have

(1- ;)(xn — PeSuy) = (2n — uj) + ;(vf(uj) 4 (I = A)PeSu; — ).

It follows from Lemma 2.2.1 (ii), that
(1= 5)llen = PeSujl* = (2 — w;) + (v (u5) + (I — A)PeSu;j — @n)|?
> o — w2+ 2 (1) + (T = A)PoSu; — 2n), 0 — )
= ||lzn — uj]|® + %(’yfu]) + (I — A)PcSuj — uj — (zn, — uj), xp — uj)
= [lzn—u; [P+ 3 (v f (ug)+(I = A) PoSuj—uj, wn—uj) — 3 (xn—uj, 2n—u;)
= |lzn —uy]|® + %(’yf(u]) + (I —A)PcSuj —uj, xp — uj) — %|
= (=)o =+ (0f () + (T = A) Pty =y, 0 =5). (3417)
So by (3.4.23) and (3.4.17), we have
(1= 12w — w2 = (1= 12| PoSu; — ol
> (1= 2z — w2+ 2 (3£ (uy) + (T = A)YPoSu; — ujy - )
and hence
s —uj|? > 2y f (uy) + (I = A)PeSuj —uj, x — uj).
This implies that
2tinllen = uil® > (v f(ug) + (I = A)PoSuj — uj, ap — ).
From Lemma 2.2.8 and Lemma 2.2.10, uy, — p € F(T) = F(PcS) as j — oo, we get

pn{vf(p) — Ap, xn — p) <0, (3.4.18)

and p which the solution of variational inequality (3.3.1). Next, we show that
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limsup,, oo (vf(p) — Ap,zn — p) <0,

where p € F(T'), which p the solution of variational inequality (3.3.1). From lim,_, ||Zp+1 — 2| = 0,

we have

limsup [(vf(p) — Ap, Tnt1 —p) — (vf(p) — Ap,z,, — p)| = 0. (3.4.19)

n—oo

Hence it follows from (3.4.18), (3.4.19) and Lemma 2.2.11 that

limsup(vf(p) — Ap, zn —p) <0, (3.4.20)

n—oo

and from (3.4.14), we have

= limsup(yf(p) — Ap,x, —p) <0.  (3.4.21)

n—oo

By the same argument of final in Theorem 3.4.1, we have a sequence {x,} converges strongly to a

fixed point p of T" which the solution of variational inequality (3.3.1). This completes the proof. O

Theorem 3.4.4. Let H be a Hilbert space, C' a nonempty closed convex subset of H such that
C+C cCcC and T; : C — H be a k;-strictly pseudo-contractive mapping with a fixed point for some
0 <k <1and NY,F(T;) # 0. Let A be strongly positive bounded linear operator on C with
coefficient ¥ > 0 and f : C'— C be a contraction with the contractive constant (0 < « < 1) such that

0 <y < I Let {z,} be sequence generated by;

x1 € C,

Tp+1 = an’}/f(xn) + ﬂnl'n + ((1 - ﬂn)l - OénA)PCSSUny

(3.4.22)

where S : C — H is a mapping defined by Sz = kx + (1 — k)X Tz and k = max{k; : i =
1,2,..., N}. If the control sequence {a,},{B3,} C (0,1) satisfying

(1) limy,— 00 i = 0, limy, 00 ﬁn =0,
(if) 2 00 = o0,
(111) E%o:l‘an—f—l - O‘n’ < 00, 2720:1’/671—1—1 - ﬁn‘ < Q.

Then {z,} converge strongly to a common fixed point p of {T;}}¥,, which solves the following

solution of the variational inequalities:

(A=~f)p,p—z) <0, Vaoen,F(T). (3.4.23)

Proof. Define a mapping 7' : C — H by Tz = %Y 0 T;x. By Lemma 2.2.12 and 2.2.13, we conclude
that : C' — H is a k—strictly pseudo-contractive mapping with k& = max{k; : i = 1,2,..., N} and
F(T) = F(S¥,nT;) = N, F(T;). From Theorem 3.4.1, we can obtain desired conclusion easily.
This completes the proof. O

If 3, =0, Theorem 3.4.4 reduced to the following corollary.
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Corollary 3.4.5. [46] Let H be a Hilbert space, K a nonempty closed convex subset of H such that
K+K C K and T; : K — H be a k;-strictly pseudo-contractive mapping with a fixed point for
some 0 < k; < 1 and NI, F(T;) # 0. Let A be strongly positive bounded linear operator on K with
coefficient 7 > 0 and f : K — K be a contraction with the contractive constant (0 < o < 1) such that

0 <~ < Z. Let {x,} be sequence generated by;

«

r € K,
(3.4.24)

Tnt1 = anYf(xn) + (I — anA)PoSty,

where S : K — H is a mapping defined by Sz = kz + (1 — k)XY n;Tiz and k = max{k; : i =
1,2,..., N}. If the control sequence {a,},{B3,} C (0,1) satisfying

(1) limy, 00 oy = 0,
(i) 52 = o,
(iil) X224 |ap+1 — ap| < o0,

then {x,} converge strongly to a common fixed point p of {T;}¥ ,, which solves the following

solution of the variational inequalities:

(A=~f)p,p—x) <0, Vaenl,F(T;).

From the proved of Theorem 3.4.3, we can obtain the following Theorem.

Theorem 3.4.6. Let H be a Hilbert space, C' a nonempty closed convex subset of H such that
C+C cCcC and T; : C — H be a k;-strictly pseudo-contractive mapping with a fixed point for some
0 <k <1 and ﬁfilF (T;) # 0. Let A be strongly positive bounded linear operator on C' with
coefficient 7 > 0 and f : C'— C be a contraction with the contractive constant (0 < o < 1) such that

0<vy< g Let {z,,} be sequence generated by;

x1 € C,

Tn+1 = anwf(xn) + ﬂnxn + ((1 - 571)] - anA)PCS«Tny

(3.4.25)

where S : C — H is a mapping defined by Sz = kx + (1 — k)X n/T;x and k = max{k; : i =
1,2,...,N}. If the control sequence {c,},{A,} C (0,1) satisfying

(1) limy, o0 oy = 0,

(i1) X520 = 00,

(iil) X% [an41 — an| < 00, 3524 |Bnt1 — Bal < 0o,
(iv) 0 < liminf, o Br < limsup,,_,o On < 1.

Then {z,} converge strongly to a common fixed point p of {7;}}¥,, which solves the following

solution of the variational inequalities (3.4.23).



CHAPTER 4

CONCLUSIONS

3.1 Outputs 4 papers (Supported by TRF: MRG5180026)

1. Strong Convergence Theorems of Modified Mann Iteration Methods for Asymptotically Nonex-
pansive Mappings in Hilbert Spaces. Int. Journal of Math. Analysis, Vol. 2 (2008), no. 23.
1135 - 1145.

2. Strong convergence theorems of hybrid methods for two asymptotically nonexpansive mappings
in Hilbert spaces. Nonlinear Analysis: Hybrid Systems 2 (2008) 1125-1135.

3. Strong convergence theorems by hybrid method for asymptotically k-strict pseudo-contractive

mapping in Hilbert space. Nonlinear Analysis: Hybrid Systems 3 (2009) 380-385.

4. Strong convergence theorems for a new iterative method of k-strictly pseudo-contractive mappings

in Hilbert spaces. Computers and Mathematics with Applications 58 (2009) 1397-1407.



41

Y] v a
Y1139d091994

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of
a countable family of nonexpansive mappings in a Banach space, Nonlinear Analysis. 67(2007)
711211-1225 .

G.L. Acedo, H.K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear
Anal. 67(2007) 2258-2271.

F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad.
Sci., USA 53(2007) (1965) 1272-1276.

F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings
in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967) 82-90.

F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert
space, J. Math. Anal. Appl. 20 (1967) 197-228.

Y. J. Cho, S. M. Kang and X. Qin, Some results on kstrict pseudo-contractive mappings in Hilbert
space, Nonlinear Anal. doi:10.1016/j.na.2008.02.094.

L. C. Ceng and J. C. Yao, An Extragradient-like approximation method for variational inequality
problems and fixed point problems, Appl. Math. Comp. 190(2007) 205-215.

W. G. Doston, On the Mann iterative process, Trans. Amer. Math. Soc. 149(1970) 65-73.

K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings,
Proc. Amer. Math. Soc. 35 (1972), 171-174.

B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957-961.

S. Ishikawa, Fixed point theorems for asymptotically nonexpansive mappings, Proc. Amer. Math.
Soc. 44(1974) 147-150.

I. Inchan, Strong convergence theorems of modified Mann iteration methods for asymptotically
nonexpansive mappings in Hilbert spaces, Int. Journal of Math. Analysis. Vol 2, no. 23(2008)
1135-1145.

T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations for asymptotically

nonexpansive mappings and semigroups, Nonlinear. Anal. 64 (2006), 1140-1152.

T. H. Kim and H. K. Xu, Convergence of the modified Mann’s iterations method for asymptotically
strict pseudo-contractions, Nonlinear. Anal. 68 (2008) 2828-2836.

P. K. Lin, K. K. Tan and H. K. Xu, Demiclosedness principle and asymptotic behavior for
asymptotically nonexpansive mappings, Nonlinear. Anal. 24(1995) 929-946.



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

42
T.C. Lim, H.K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear
Anal.22(1994) 1345—1355.

P.L. Lions, Approximation de points fixes de contractions, C.R. Acad. Sci. Paris, Ser. A-B 284
(1977) A1357-A1359.

W. A. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953) 506-510.

C. Martinez-Yanes and H. K. Xu, Strong convergence of CQ method for fixed point iteration
processes, Nonlinear. Anal. 64(2006) 2400-2411.

G. Marino, H.K. Xu, Weak and strong convergence theorems for k-strict pseudo-contractions in
Hilbert spaces, J. Math. Anal. Appl.329(2007) 336—349.

A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl.
241(2000) 46-55.

G. Marino, H. K. Xu, A general iterative method for nonexpansive mapping in Hilbert sapces, J.
Math. Anal. Appl. 318(2006) 43-52.

K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and
nonexpansive semigroups. J. Math. Anal. Appl. 279(2003) 372-379.

M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl.
25(2000) 217-229.

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive
mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.

S. Plubtieng and K. Ungchittrakool, Strong convergence of modified Ishikawa iteration for two

asymptotically nonexpansive mappings and semigroups, Nonlinear. Anal. 67 (2007), 2306-2315.

S. Plubtieng, R. Punpaeng, A general iterative method for equilibrium problems and fixed point
problems in Hilbert spaces, J. Math Anal. Appl. 336 (2007), 455-469.

J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings,
Bull. Amer. Math. Soc. 43(1991) 153-159.

J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math.
Anal. Appl. 158(1991) 407—413.

J. Schu, Approximation of fixed points of asymptotically nonexpansive mappings, Proc. Amer.
Math. Soc. 112(1991) 143—151.

T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequence for one-parameter

nonexpansive semigroups without Bochner integrals, J. Math Anal. Appl.305(2005) 227-239.

G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, Comptes Rendus
del’ Academie des Sciences, Paris. 258(1964) 4413-4416.



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

43

H. F. Senter and W. G. Dotson. Jr., Approximating fixed points of nonexpansive mappings, Proc.

Amer.

W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for
families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276-286.

K. K. Tan and H. K. Xu, Fixed point theorems for Lipschitzian semigroups in Banach space,
Nonlinear. Anal. 20 (1993), 395-404.

K.K. Tan, H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings,
Proc. Amer. Math. Soc.122(1994) 733-739.

R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992)
486-491.

H. K. Xu, Strong asymptotic behavior of almost-orbits of nonlinear semigroups, Nonlinear. Anal.
46 (2001), 135-151.

H. K. Xu, An iterative approach to guadratic optimazation, J. Optim. Theory Appl. 116(2003)
659-678.

H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002) 240-256

H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull.
Austral. Math. Soc. 65 (2002) 109 -113.

H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math Anal. Appl. 298
(2004), 279-291.

H. K. Xu, Strong convergence of approximating fixed point sequences for nonexpansive mappings,
Bull. Aust. Math. Soc. 74(2006) 143-151.

Y. Yao, Y. C. Liou and J. C. Yao, An Extragradient Method for Fixed Point Problem and
Variational Inequality Problem, J. Inequalities Appl. (2007) doi:10.1155/2007/38752.

Y. Yao and M. A. Noor, On viscosity iterative methods for variational inequalities, J. Math. Anal.
Appl. 325(2007) 776-787.

Y. Yao, Y. C. Liou, R. Chen, Convergence theorem for for fixed point problems and variational
inequality problems, J. Nonlinear Convex Anal. (2008), doi:10.1016/j.na.2008.02.094.

H. Zhou, Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert space,
Nonlinear Anal. (2007), doi:10.1016/j.na.2007.05.032.



MANUIN



Int. Journal of Math. Analysis, Vol. 2, 2008, no. 23, 1135 - 1145

Strong Convergence Theorems of Modified
Mann Iteration Methods for Asymptotically
Nonexpansive Mappings in Hilbert Spaces
Issara Inchan

Department of Mathematics and Computor
Uttaradit Rajabhat University
Uttaradit 53000, Thailand
peissara@uru.ac.th

Abstract

In this paper, we introduce the iterative sequence for an asymp-
totically nonexpansive mapping and an asymptotically nonexpansive
semigroup. Then we prove that such a sequence converges strongly to
Pr(ryzo and Prxg, respectively. This main theorem concern result of
Takahashi, Takeuchi and Kubota | Strong convergence theorems by hy-
brid methods for families of nonexpansive mappings in Hilbert space, J.
Math. Anal. Appl. V.341, 2008, 276-286], and many others.
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1 Introduction

Let X be a real Banach Space, C' a nonempty closed convex subset of X
and T : C' — C a mapping. Recall that T is nonexpansive if ||Tx — Ty|| <
|z — y|| for all z,y € C, and T is asymptotically nonexpansive [1] if there
exists a sequence {k,} with k, > 1 for all n and lim,,_, k, = 1 and such that
Tz — T™y|| < ky|lz —yl| for allm > 1 and z,y € C. A point x € C is a fixed
point of T provided Tx = z. Denote by Fixz(T) the set of fixed points of T
that is, Fiz(T) = {x € C : Tx = x}. We know that a Hilbert space H satisfies
Opial’s condition [8], that is, for any sequence {z,} C H with z,, — z, the
inequality

lim inf ||z, — [| < liminf ||z, — y||
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holds for every y € H with y # x. We also know that H has Kadec-Klee
property, that is, x, — z and ||z,|| — ||z|| imply =, — z. Infact, from

lzn = 2]1* = llzall* = 2{@n, ) + [|2[I%,

we get that a Hilbert space has the Kadec-Klee property.

Recall also that a one-parameter family 7 = {T'(t) : 0 < t < oo} of self-
mappings of a nonempty closed convex subset C' of a Hilbert space H is said to
be a (continuous) Lipschitian semigroup on C' (see, e. g., [12]) if the following
conditions are satisfied:

(i) T(0)z =2,z € C,

(i) T(t+ s)x =T(t)T(s)x, t,s > 0,z € C,

(iii) for each x € C', the map ¢ +— T'(t)z is continuous on [0, 00),

(iv) there exists a bounded measurable function L : (0,00) — [0, c0) such
that, for each t > 0,

IT(t)z =Tyl < Lellz = yll, 2,y € C.

A Lipschitzian semigroup 7 is called nonexpansive (or a contraction
semigroup) if Ly = 1 for all ¢ > 0, and asymptotically nonexpansive if
limsup,_ . Ly < 1, respectively. We use F(7) to denote the common fixed
point set of the semigroup; that is Fiz(7) ={z € C: T(t)x = x,t > 0}.

Fixed point iteration processes for nonexpansive mappings and asymptot-
ically nonexpansive mappings in Hilbert spaces and Banach spaces including
Mann and Ishikawa iteration processes have been studied extensively by many
authors to solve nonlinear operator equations as well as variational inequali-
ties: see [2, 5, 9, 10]. However, Mann and Ishikawa iterations processes have
only weak convergence even in Hilbert space: see [3, 10].

In 2003, Nakajo and Takahashi [7] introduced the following modification of
the Mann iteration method for a nonexpansive mapping 7' of C' into itself in
a Hilbert space H:

xo € C' chosen arbitrarily ,

Yn = Ty + (1 — )Ty,

Cn={v e C:|lyn— vl < [lzn —vl]}, (1.1)
Qn={veC:(x,—v,x9—x,) >0},

Tnt1 = Pe,nq. (o),

where Pg denotes the metric projection from H onto a closed convex subset
K of H. They proved that if the sequence {«,} is bounded above from one,
then {x,} defined by (1.1) converges strongly to Ppiyr)(z0). Moreover they
introduced and studied an iteration process of a nonexpansive semigroup 7 =
{T'(t) : 0 <t < oo} of self mappings of a nonempty closed convex subset C' of
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a Hilbert space H:

xo € C' chosen arbitrarily ,

Yn = Qpy + (1 — O‘")i o T (u)x,du,

Co={2€C:|lyn — 2| < llwa— 2}, (1.2)
Qn={2€C:{(x,—z1x0—1,) >0},

’rn"rl = PCann (x())

Recently, Kim and Xu [3] adapted the iteration (1.1) to an asymptotically
nonexpansive mappings 1" of C' into itself in a Hilbert space H:

xg € C chosen arbitrarily ,

Yn = Ty + (1 — ) T2y,

Crn={veC:|lyn —vll> < lzn — 0| + 6.}, (1.3)
Qn={velC:(r,—v,290—1x,) >0}

Tn+1 = Po,nq. (2o),

where 0, = (1 — a,)(k? — 1)(diamC)?> — 0 as n — oo. They prove
that if o, < a for all n and for some 0 < a < 1, then the sequence {z,}
generated by (1.3) converges strongly to Ppry(20). They also modified an
iterative method (1.2) to the case of an asymptotically nonexpansive semigroup
T ={T(t): 0 <t < oo} of self mappings of a nonempty closed convex sunset
C of a Hilbert space H:

xo € C' chosen arbitrarily ,

Yn = @y, + (1 — an)i Jo T'(u)xpdu,

Crn={2€C:lyn—2|> < llzn — 21> + 0}, (1.4)
Qn={z€C:{(x,—zx0—1,) >0},

Tni1 = Pe,nq. (o),

where 6, = (1 — ) [(i o Lydu)? — 1} (diamC)? — 0 as n — oo.

In 2007, Takahashi, Takeuchi and Kubota [10] introduced the modification
Mann iteration method for a family of nonexpansive mappings {7}, } and non-
expansive semigroup § = {7'(t) : 0 < ¢t < oo} in a Hilbert space H. They
prove the following theorem:;

Theorem 1.1 (/10] Theorem 4.1) Let H be a Hilbert space and C' be a
nonempty closed convex subset of H. LetT' be a nonexpansive mapping of C
into H such that F(T) # 0 and let xo € H. For Cy = C and u; = Pg, o,
define a sequence {u,} of C as follows:

Yn = Qplp + (1 - &n)Tuna
Coi1 =12 € Cn: lyn — 2|| < [lun — 2|1}, (1.5)

uns1 = P, 0, n € N,

n+1

where 0 < a,, < a < 1 for alln € N. Then {u,} converges strongly to
20 — PF(T)I'().
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Theorem 1.2 ([10] Theorem 4.4) Let H be a Hilbert space and C be a
nonempty closed convex subset of H. Let T = {T'(s) : 0 < s < oo} be a one-
parameter nonexpansive semigroup on C such that F(T) # () and let xo € H.
For Cy = C and u; = Pg,xg define a sequence {u,} of C as follows:

yn = au, + (1 an)ﬁ 5 T(s)upds,

Cont1 ={2 € Cn: lyn — 2|| < [lun — 2|1}, (1.6)
Un1 = PCn+1x07 n e Na
where 0 < o, < a < 1,0 < A\, <00 foralln € N and N\, — oco. Then {u,}
converges strongly to zg = Pp1)To

Inspired and motivated by these fact, it is the purpose of this paper to
introduce the modified Ishikawa iteration processes for an asymptotically non-
expansive mapping by idear in (1.5). Let C' be a closed bounded convex subset
of a Hilbert space H, T be an asymptotically nonexpansive mapping of C' into
itself and let xy € C. For Cy = C and x; = P¢, (), define {z,} as follows
way:

yn =ty + (1 — )Ty,

Cr1={2 € Cu: llyn — 2] < llan — 2I1° + 0u}, (1.7)
Tpy1 = Po, %0, n €N,
where 6,, = (1 — a,,)(k? — 1)(diamC)* — 0 as n — oo and 0 < a,, < a < 1 for
all n € N.

The second purpose of this paper is to study the modified Ishikawa iteration
process for an asymptotically nonexpansive semigroup. Let C' be a closed
bounded convex subset of a Hilbert space H, 7 = {T'(t) : 0 < t < oo} be
asymptotically nonexpansive semigroup of self mappings of a nonempty closed
convex sunset C' of a Hilbert space such that F # () and let zy € C. For
Cy = C and 1 = Pg,x, defined {x,} as follows way:

Yn = pn + (1 — ) fo " T(s)xnds,
Cropr = {2 € Cu [lyn — 217 < Il — 2II? + 60}, (1.8)
Tny1 = Po, 0o, n €N

where 6, = (1 — a,) {(i on Lsds)2 - 1] (diamC)* — 0 asn — oo and 0 <
a, <a<1foralln e N and A\, — oo.
We shall prove that both iteration processes (1.7) and (1.8) converge strongly

to a fixed point of T" and a common fixed point of 7, respectively, provided
the sequence {«,} is bounded from above.
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2 Preliminary

In this section, we collect some lemmas which will be used in the proof
for the main result in next section.

Lemma 2.1 There holds the identity in a Hilbert space H :
Az + (1= X)ylI* = Al|* + (1 = Nyl = A1 = Nz — y]”

for all x,y € H and X € [0,1].

Lemma 2.2 [4] Let T be an asymptotically nonexpansive mapping defined
on a bounded closed convex subset C' of a Hilbert space H. Assume that {z,}
1s a sequence in C' with the properties

(i) z, — z and
(ii) Txy, — x, — 0.
Then z € Fiz(T).

Lemma 2.3 [3] Let C' be a nonempty bounded closed convex subset of a
Hilbert spaces H and S = {T(t) : 0 <t < oo} be an asymptotically nonexpan-
sive semigroup on C. If {x,} is a sequence in C satisfying the properties

a) x, — z; and
b) limsup,_, . limsup,,_.. ||T(t)z, — x,| = 0,
then z € F ().

Lemma 2.4 [3] Let C' be a nonempty bounded closed convex subset of a
Hilbert space H and S = {T'(t) : 0 <t < oo} be an asymptotically nonexpan-
sive semigroup on C. Then it holds that

1 /¢ 1 /¢
lim sup lim sup sup H; / T(u)xdu — T(s) <¥ / T(u)xdu)
0 0

§—00 t—oo zxzeC

o

3 Main Results

In this section, we prove strong convergence theorems by hybrid meth-
ods for asymptotically nonexpansive mappings in Hilbert spaces.

Theorem 3.1 Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let T be an asymptotically nonexpansive mapping of C
into itself such that F(T) # 0 and let xg € C. For C; = C and x1 = P, xy,

Then {x,} generated by (1.7) converges strongly to zo = Prr)Zy.
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Proof. We first show that F(T') C C, for all n € N, by induction. For any
z € F(T) we have z € C = C} hence F(T) C Cy. Let F(T) C Cj, for some
k € N. Then we have, for u € F(T) C Cy
1y — ull® = [y + (1 — )Ty — ulf?
= [le(zre —u) + (1 = ag)(TFay — ) ||?
agllzr = ull® + (L= )| T 2 — ul® = a(l — ag) log — TPy ||

ag ek — ul® + (1= ap)[[ T 2y, — ulf?
agflzr = ull* + (1 — ap)kgl|lzg — ull?

= o — ul]” + (o + (1 — ag)ki — )|z, — ul?

= [z — ul]> + (1 — o) (kg — 1)l|zw —ull?

< |z — ul|?* + (1 — ag)(k} — 1)(diamC)?
It follows that u € Cyyq and F(T') C Cyy1, hence F(T) C C, for all n € N.
Next, we show that C), is closed and convex for all n € N. It follows obvious
that C'; = C'is closed and convex. Suppose that C} is closed and convex for
some k € N. Let z, € Cyy1 C Cy with z,, — z. Since C}, is closed, z € Cj
and [|yx — zm||* < |2m — 71]|* + 0. Then

1y — 2117 = llyx — 2m + 2m — 2|

= 1gk — 2ml® + l2m — 211> + 2(yk — 2m; 2m — 2)

< lzm — 2ill® + Ok + lzm — 211° + 2[lye — 2mllll2m — 2]
Taking m — oo,

<
<

lye — 211* < ||z — 2|)* + .

Hence z € Ciyq. Let 2,y € Cry1 C Cy with z = az+ (1 —a)y where a € [0, 1].
Since Cj, is convex, z € C, and |lyr — z||* < ||z — z|]* + Ok, [Jlyx — y||* <
|y — x1||* + Ok, we have

lye = 211> = llyx — (e + (1 — a)y)
ey, — @) + (1 — ) (yr — y)|°
allye = [ + (1 = @)lyx — yl|* — (1 = a) || (yr. — ) — (yx — y)
allz = zx|? + 0k) + (1 — a)([ly — zl|* + 0k) — (1l — a)lly — |
allz =z |* + (1= a)ly — 2xl|* — a(l — &) || (w4 — 2) — (x5 —y) >+ O
(@ — 2) + (1 — a)(@r — y)[I” + Ok

= ||Ik — 2H2 + Qk

Then z € Cy,q, it follows that Cj; is closed and convex. Hence C,, is closed
and convex for all n € N. This implies that {z,} is well-defined. From
x, = Pc,xo, we have

I

I

IHIA

(xo — Tp,x, —y) >0, for all y € C,,.
Since F(T) C C,, we have
(xo — Tp,xy —u) >0 for all w € F(T) and n € N. (1)

So, for u € F(T), we have
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0 < {(xg— xpn, T, — u)
= (Tg — Tp, Ty, — To + To — )
= —(x, — T, Ty, — To) + (To — Ty, To — W)
< —lzn — 2ol + llzo — zallllz0 — ul|
This implies that
20 — @nl|® < [z — @[]0 — ul]

hence
|lzo — x| < ||wo — u|| for all uw € F(T) and n € N. (2)

From z,, = Pg,xy and 2,11 = Pg,,, 29 € Chyq1 C O, we also have

n+1

(xo — Tp,Tp — xpy1) >0 forall n € N. (3)

So, for z,.1 € C,, we have, for n € N
0 < <x0 — Tn, Tpn — xn+1>
= (Lo — Tp, Ty, — Tog + To — Tpy1)
= — (T — T0, Ty, — To) + (To — T, To — Tpy1)
< —llzn — zoll* + lzo — zallllwo — Taga ]
This implies that

lzo = 2all* < llzo = allllzo — Tl

hence
lzo — znll < ||xo — Tpya]| for all n € N. (4)

From (2) we have {z,} is bounded, lim,,_, ||z, — %] exists. Next, we show
that ||z, — z,41|| — 0. In fact, from (3) we have
l2n = 2nsa I = [l (20 — 20) + (20 — Tnsa)[I”
= ||zn — 2ol + 2(zn — w0, 0 — Tp1) + |70 — Tnpa [|?
= [|@n — o|* + 2{xp — w0, 20 — Tp + Tn — Tng1) + ([P0 — Tppa [P
= [|@n =0 |> =2(x0 — 20, To—Tn) = 2{T0 — T, Tn — Tp11) + || T0 = T pa ||
< lwn = zoll* = 2]|zn — wol* + [l — i [I®
= —llzn = zol* + [lwo — Ty [I*.
Since lim,, . ||z, — xo|| exists, we have that lim, . ||Z, — Zp+1]] = 0. On the
other hand, =, € C,,.1 C C), implies that

g = Zasal* < llwn — Tnal|* + 6n, (5)

which implies that

1yn — Tasall < 20 — Tagal| + /00

Further, we have
1y — Znll = lan@n + (1 — )Tz, — 20|
= (1 —a)||T"x, — ||
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From (5), we have
1T — 2]l = ol — 2l
< = l¥e —
11a Hyn Tpt1 + Tpy1 — an
(1—a) a) Hyn anrlH + ﬁHwTwl - an
ey (170 = Tasa | +V0) + gig T — 2l
= ol — sl + 1y v

I/\ I/\

Hence 5 .
700 = ]l < =l = sl + 5 /00 —

Putting
koo = sup{k, : n > 1} < oo,

we deduce that
[ Tw, — 2|l < |NTwp — T || + ([T 2y — T | + 1T 20g0 — 2|

+||xn+1 - an
< kOOHIn —T”an + HTn—Hxn-i-l _xn—&-lH +(1 +k00)||xn _xn—&-lH — 0. (6)

By (6), Lemma 2.2 and boundedness of {z,} we obtain 0 # w,(z,) C F(T).
By the fact that ||z, — xo|| < ||20 — 2o for all n > 0 where 2y = Ppr)(20) and
the weak lower semi-continuity of the norm, we have
[0 = Zoll < [0 — wl| < liminf,, o0 [lz0 — ]
< limsup,, .o [|zo — @l < [|l20 — 20,

for all w € wy(z,). However, since wy,(z,) C F(T'), we must have w = z, for
all w € wy(x,). Thus wy(r,) = {20} and then x, — zy. Hence, x,, — 29 =
Prry(wo) by

[z — 20l1* = l|l2n — 2ol|® + 2{zy — 20, 20 — 20) + [lz0 — 20|
< 2()|z0 — wol|* + (wy, — 20, T0 — 20)) — 0 as n — .
This complete the proof. o

Now, we present the strong convergence theorem of asymptotically nonex-
pansive semigroups on C' in a Hilbert space.

Suppose that 7 = {T'(t) : 0 < t < oo} is an asymptotically nonexpansive
semigroup defined on a nonempty closed convex bounded subset C' of a Hilbert
space H. Recall that we use L] to denote the Lipschitzian constant of the
mapping 7'(t). In the rest of this section, we put L., = sup{L!} and we use
Fixz(T) to denote the fixed point set of 7. Furthermore, we use F := Fixz(7)
to denote the set of fixed points of asymptotically nonexpansive semigroups.
Note that the boundedness of C' implies that Fiz(7) is nonempty (see [11])
and we assume throughout in this theorem that the set of fixed point F' is
nonempty.
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Theorem 3.2 Let H be a Hilbert space and let C' be a nonempty closed
convez subset of H. Let T = {T'(t) : 0 <t < oo} be a one-parameter asymp-
totically nonexpansive of C into itself such that F := Fix(T) # 0 and let
xo € C. For Cy = C and xy = Pgyxo. Then {x,} generated by (1.8) converges
strongly to zo = Prxy.

Proof. First, we observe that F'(I) C C, for all n € N. Since F(J) C C =
Cy. Let F() C Cy for some k € N. For all z € F(3) C C, we have
2
lyr — 2> = Hakxk + (1 — ozk)/\—lk J T (8)xpds — zH

= Joute =)+ 0 = B T e)mds =)

< apllee — 22 + (1 — o) H% JT(s) xkds—zH
< apller — 22+ (1 ag) (= 2 1T (s) k—zMQQ
< agllok — 2]+ (1= ar) (3 5 wa—zwﬂ
< agllzg — 2|2+ (1 — o ( 0’\’“L ds) |z — z||?

<|lwp —2|)* + (1 — ) ( " i Lsds) (diamC)?

= ||z — 2|* + Oy
So, z € Cyy1. Hence F(S) C C,, for all n € N. By the same argument as in
the proof of Theorem 3.1, C), is closed and convex, {z,} is well-defined. Also,
similar to the proof of Theorem 3.1, we can show that

l2n = Znpal — 0. (7)

We can deduce that for all 0 <t < oo,
Tt — | = || T(#)an — T(t) (= " T(s)znds)|

T(t) (ﬁ o T(s)xnds) — ﬁ o T(s)xndSH

_l’_
+ ﬁ o T(s)x,ds — an
(
_l’_

< (Lo +1) Hﬁ o T(s)xnds — an
T(t) (ﬁ o T(s)xnds) - o T(s)xndSH
= (Loo + 1)A,, + B, (1), (8)
where A, /\n 5" T(s)xpds — an and
B, = H (t) (E I T(s)xnds) - ﬁ I T(s)a:ndsH.

We claim that

(i) lim,, 0 A, = 0; and

(ii) limsup,_, limsup,,_,.. Bn(t) = 0.
By Lemma 2.3, we have that (ii) is true, while (i) is verified by the following
argument. By the definition of 1, we have

A, = Hﬁ Jo T(s)z,ds — xnf

= o llyn —
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< 122 llyn — ]
< 1 (g = zna | + llznsr — 2al))- (9)
Since x,11 € Cyy1 C C),, we have

Hyn - xn-l—lHQ < Hxn - In-&-lH? + gn

which in turn implies that

90 = s} < llan = sl + V0.
It follows from (9) that

1 =
A, < 1 <2||xn+1 — || + \/07) — 0.

—a
We thus conclude from (8) that

lim sup lim sup ||T°(¢)z,, — x| = 0.
t—o00 n— o0
We note that by Lemma 2.3 that every weak limit point of {z,} is a number
of F(S). Repeating the last of the proof of Theorem 2.2 [4], we can prove that
wy(Ty) = {Prs)}. Hence {x,} weakly converges to Pp(s), and therefore the
convergence is strong. This complete the proof. o
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1. Introduction

Let X be a real Banach Space, C a nonempty closed convex subset of X and T : C — C a mapping. Recall that T is
nonexpansive if |Tx — Ty|| < ||lx — y| for all x,y € C, and T is asymptotically nonexpansive [1] if there exists a sequence
{k,} with k, > 1 for all n and lim,_, o, k;, = 1 and such that ||[T"x — T"y|| < ky||x — y|| foralln > 1and x,y € C. A point
x € C is a fixed point of T provided Tx = x. Denote by Fix(T) the set of fixed points of T; that is, Fix(T) = {x € C : Tx = x}.
If S and T are two nonexpansive (asymptotically nonexpansive) mappings, then the point x € Fix(S) N Fix(T) is called the
common fixed point of S and T.

Recall also that a one-parameter family 7 = {T(t) : 0 < t < oo} of self-mappings of a nonempty closed convex subset
C of a Hilbert space H is said to be a (continuous) Lipschitian semigroup on C (see, e. g., [13]) if the following conditions are
satisfied:

(i) T(O)x =x,x € C,
1) TE+9s)x=TE)T(s)x, t,s >0,x € C,
(iii) for eachx € C, the map t + T(t)x is continuous on [0, c0),
(iv) there exists a bounded measurable function L : (0, 0c0) — [0, 0co) such that, for each t > 0, ||T(t)x — T(t)y| <
Lellx —yll, x,y € C.

A Lipschitzian semigroup .7 is called nonexpansive (or a contraction semigroup) if L, = 1 for all t > 0, and asymptotically
nonexpansive if lim sup;_, o, Ly < 1, respectively. We use F(.7) to denote the common fixed point set of the semigroup; that

isFix(7)={xeC:T(t)x=x,t > 0}.
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Fixed point iteration processes for nonexpansive mappings and asymptotically nonexpansive mappings in Hilbert spaces
and Banach spaces including Mann and Ishikawa iteration processes have been studied extensively by many authors to solve
nonlinear operator equations as well as variational inequalities: see [2,5,8,10,11]. However, Mann and Ishikawa iterations
processes have only weak convergence even in Hilbert space: see [3,11].

In 2003, Nakajo and Takahashi [7] introduced the following modification of the Mann iteration method for a nonexpansive
mapping T in a Hilbert space H:

Xo € C chosen arbitrarily,
Yn = onXp + (1 - O‘n)Txna
G={veC:ly,—vl = lxa —vll}, (1.1)
Qn={veC:{xy—v,x —Xo) = 0},
Xnt1 = Pc,ng, (X0),
where Py denotes the metric projection from H onto a closed convex subset K of H. They proved that if the sequence {«,,} is

bounded above from one, then {x,} defined by (1.1) converges strongly to Prixr)(Xo). Moreover they introduced and studied
an iteration process of a nonexpansive semigroup .7 = {T(t) : 0 < t < oo} in a Hilbert space H:

Xo € C chosen arbitrarily ,

1 [
Yn = onXp + (1 - an)? / T(u)xndu,
0

n
Ci={zeC:llyn—2zll < lI%a —zll},
Q={z€C:{x;—z % —x,) =0},
Xn+1 = Pc,ng, (X0)-

(1.2)

Recently, Kim and Xu [3] adapted the iteration (1.1) to asymptotically nonexpansive mappings in Hilbert space H:

Xo € C chosen arbitrarily ,
Yo = nXn + (1 — ) T"xy,
Ch={veC:|y.— v||2 < lIxn — U”2 + O}, (1.3)
Q={veC: (x,—v,x —xp) > 0},
Xnt1 = Pc,ng, (%0),
where 6, = (1 — ) (k3 — 1)(diam C)? — 0 asn — oo. They proved that if o, < a for all n and for some 0 < a < 1, then

the sequence {x,} generated by (1.3) converges strongly to Prir)(Xo). They also modified an iterative method (1.2) to the
case of an asymptotically nonexpansive semigroup .7 = {T(t) : 0 < t < oo} in Hilbert space H:

Xo € C chosen arbitrarily ,

1 [t
Yo = i + (1 — o) / T(Wad,
t’; 0 5 (1.4)
Co={ze€C:llyn—2zll* < llxn — zlI* + 6n},

Qu={z€C: (X —2,% — xp) > 0},
Xnt1 = Pc,ng, (X0).

2
where 6, = (1 — ay) [(;1 o Ludu) - 1] (diamC)? — 0asn — oo.

In 2007, Plubtieng and Ungchitrakool [9], introduced the modified Ishikawa iteration processes for two asymptotically
nonexpansive mappings S and T, and two asymptotically nonexpansive semigroups .7 = {T(t) : 0 < t < oo} and
7 ={S(t) : 0 <t < oo}, with C a closed convex bounded subset of a Hilbert space H:

Xo € C chosen arbitrarily ,

Yn =Xy + (1 — Oln)Tnzn»

Zy = ,ann + (1 - ,Bn)San

Go={v eC:lyn—vl® < llxa — vlI> + 64},
Q={veC:{x,—v,xg—xy) >0,

Xn+1 = Pc,ng,Xo,

(1.5)

where 0, = (1 — ap)[(t2 — 1) + (1 — By)t2(s2 — 1)](diam C)®> — 0 asn — oo (here {t;} and {s,} are two sequences from
T and S, respectively.) and
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Xo € C chosen arbitrarily ,

1 [
Yo = et + (1= ) / T(w)zadu,
0

n

1 [

Zy = Bpxn + (1 — ,311); / S(wxydu, (1.6)
nJo

Go=1{z€C:llya—2zl? < 1% — z]1* + 6},

Qu={zeC:{x,—z,x0—x,) >0,

Xn+1 = Pc,ngqXo,

where 6, = (1 — a)[T2 — 1) + (1 — B)E2( — 1)](diam C)? — 0 asn — oo(hereT, = L [orLldtand3, = L [ L3dr).
They also proved that both iterations (1.5) and (1.6) converge strongly to a common fixed point of two asymptotically
nonexpansive mappings S and T, and two asymptotically nonexpansive semigroups .7 and .#, respectively.

Very recently, Takahashi, Takeuchi and Kubota [11] proved the following strong convergence theorems by using the new
hybrid method for nonexpansive mappings and nonexpansive semigroups in Hilbert spaces.

Theorem 1.1. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C
into H such that F(T) # @ and let xo € H. For C; = C and u; = P, Xo, define a sequence {u,} of C as follows:

Yn = oty + (1 — o) Tuy,
G ={z€ G llyn—2zll < llun — 2|1},
Upy1 = Pcn+1X0, neN,

where 0 < o, < a < 1 foralln € N. Then {u,} converges strongly to zo = PrXo.

Theorem 1.2. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let 7 = {T(s) : 0 < s < oo} bea
one-parameter nonexpansive semigroup on C such that F(7) # @ and let xy € H. For C; = C and uy = Pc, Xo define a sequence
{u,} of C as follows: space H:

1 [
Yn = oy + (1 — an)r / T(s)upds,
0

n
G ={zeG:lyn—2zl < llun — 2|1},
Upy1 = Pcn+1X0, neN

whereand 0 < a, <a < 1,0 < A, < oo foralln € Nand A, — oc. Then {u,} converges strongly to zo = Pr(z)Xo.

Inspired and motivated by these facts, it is the purpose of this paper to introduce the modified Ishikawa iteration
processes for two asymptotically nonexpansive mappings by in idea in (1.3). Let C be a closed bounded convex subset of
a Hilbert space H, S and T be two asymptotically nonexpansive mappings of C into itself and let x, € C. For C; = C and
X1 = P¢, X, define {x;} as follows way:

Yn = Xy + (1 — ) T"z,,

Zn = ,ann + 01— ﬂn)snxm

Cop1 = {2 € Gut llyn — 2017 < llxa — 2I1° + 6a),
Xnt1 = Pc, X0, neEN

(1.7)

where 0, = (1—ap)[(t2 — 1) + (1 — Bp)t2 (s> — 1)](diam C)> — Oasn — coand0 <o, <a<land0 <b < B, <c < 1
foralln € N.

Our second modification Ishikawa iteration processes for two asymptotically nonexpansive semigroups. Let C be a closed
bounded convex subset of a Hilbert space H, 7 = {T(t) : 0 <t < oo} and .¥ = {S(t) : 0 <t < oo} be two asymptotically
nonexpansive semigroups on C such that # = F(7) NF(7) # #and let xg € C.For C; = C and x; = P¢, X, defined {x,} as
follows way:

1 [
Yo = anX; + (1 — an)?/ T(t)z,dt,
0

n
1 Sn

Zp = Buxn + (1 — lgn); f S(t)x,dt, (1.8)
n JO

Crs1 =1z € Gy 2 llyn — 2l < %0 — 217 + 64},

Xnr1 = Pcn+1X0, neN,

where f, = (1— a)[ T — 1) + (1 — B)E2(32 — D)](diam C)? — 0asn — oo(heret, = 1 [" LTdt and, = L [;" Lidr),
0<aop<a<landO0O<b<p;, <c<1foralln e NU{0}andt, - 00,s, — oo.
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We shall prove that both iteration (1.7) and (1.8) converges strongly to a common fixed point of two asymptotically
nonexpansive mappings of S and T, and asymptotically nonexpansive semigroups, 7 and .7, respectively.

2. Preliminaries
In this section, we collect some lemmas which will be used in the proofs for the main result in next section.

Lemma 2.1. There holds the identity in a Hilbert space H:
A% + (1= 2ylI* = AlIxI* 4+ (1= DIyl — A0 = llx — y|?
forallx,y € Hand A € [0, 1].

Lemma 2.2 ([4]). Let T be an asymptotically nonexpansive mapping defined on a bounded closed convex subset C of a Hilbert
space H. If {x,} is a sequence in C such that x, — x and Tx, — x, — O, thenz € F(T).

Lemma 2.3 ([6]). Let H be a real Hilbert space. Given a closed convex subset C of H and points x,y,z € H. Given also a real
number a € R. The set
D:i={veC:lly—vl® < [x—v|*+(z,v) +a}

is convex and closed.

Lemma 2.4 ([3]). Let C be a nonempty bounded closed convex subset of a Hilbert space H and 3 = {T(t) : 0 <t < oo} be an
asymptotically nonexpansive semigroups on C. If {x,} is a sequence in C satisfying the properties

(a) x, — z; and

(b) limsup;_, o limsup,,_, o [IT(£)xn — Xa [l = 0O,

then z € F(S).

Lemma 2.5 ([3]). Let C be a nonempty bounded closed convex subset of a Hilbert space Hand I = {T(t) : 0 < t < oo} be an
asymptotically nonexpansive semigroups on C. Then it holds that

1 [t 1 [t
7/ T (u)xdu — T(s) <7 / T(u)xdu) H =0.
t 0 t 0

lim sup lim sup sup
5—00 t—o00 xeC

3. Main results

In this section, we prove strong convergence theorems of a common fixed point for two asymptotically nonexpansive
mappings and asymptotically nonexpansive semigroups, respectively.

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H. Let S, T : C — C be two
asymptotically nonexpansive mappings with sequence {s,} and {t,} respectively, and F = F(S) N F(T) # @. Let xo € C and {x,}
be a sequence generated by (1.7). Then {x,} converges strongly to zy = Prxo.

Proof. Putting t,, = sup{t, : n > 1} < oo and s, = sup{s, : n > 1} < oco. We first show by induction that F C C, for all
n € N.For F C C; is obvious. Suppose that F C C; for some k € N. Letu € F C C. Then, we have
Iy — ull® = llewxe + (1 — ) Tz — ul|?
llo (e — w) + (1 — ) (TF 2 — w) |12
arllxic = ull® + (1 — @) IT 2 — ull> — (1 — e llxic — T 212
allxic — ull® + (1 — ) 1T 2 — ul|?

ke — ull® + (1 — )tz — ull>. (3.1)

A

IA

Similarly, we note that
lze — ull® = |Bexc + (1 — B)S*xe — ull®
=[x —u) + (1 = B (S % — w1
= Bellxi — ull® + (1 = BOIIS % — ull* — Be(1 — B % — S“xel1?
< Bellx — ull® + (1 = Bosgllxe — ull> — Be(1 — B lIxi — S“xi1?
< llxe — ull* + (1= Bo(sp — Dllxe — ulfl. (32)
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From (3.1) and (3.2), we have
Iy — ull® < onllxe — ull®> + (1 — e te{llxe — ull* + (1 = B (sg — Dllxi — ull*]
allxe — ull® + (1 — )t lxe — ull* + (1 — )7 (1 — B (sp — Dllxe — ull®
= lxi — ull® = lIxe — ull® + oellxe — ull®> + (1 — a7 llxe — ull> + (1 — e (1 = B(sp — Dllxe — ul®
= [lx — ull® + (1 — ) (tf — Dllxe — ull®> + (1 — )t (1 — B (sp — Dllxe — ull®
X — ull® + (1 — e [(tf — 1) + 67 (1 = B (s; — DIlIxe — ul®
% — ull®> + (1 — e [(tf — 1) + 7 (1 — ) (s; — D](diam C)?
X — ull* + 6.

IA

IA

It follows that u € Gy, and F C Cyy1. Hence F C G, for all n € N. Next, we show that C, is closed and convex for all n € N.
It obvious that C; = C is closed and convex. Suppose that Cy is closed and convex for some k € N. Let {z,}_ | € Cy1 C G
with z,, — z asm — 0. Since C; is closed and z,, € C,1, we have z € C; and ||yx — Zmll? < ||zm — Xk||> + 6. Then

2 2
e —zII” = llyk — zm + zm — 2|l
2 2
e — zmll” + llzm — 2II° + 2k — Zm, Zm — 2)
2 2
lzm — xill” + Ok + llzm — zI|* + 2llyx — Zmllzm — z]I.

A

Taking m — oo,
Iy — zI% < llz = xcl® + 6k

Then z € C1 and hence Cy,4 is closed. Let x, y € Cy1q C Cy withz = ax + (1 — o)y where o € [0, 1]. Since Cy is convex,

z € G Thus, we have [lyx — x|I> < [lx — x[|* 4 6 and [lyx — y[I* < [ly — xel|* + 6k. Hence
Iy —zI” = llyx — (@x+ (1 — ) |1?

e — % 4+ (1 — ) —»II?

allye — I + (1 =)y = yI* — (1 = )| — %) — G — DI

a([lx = xll* 4 6 + (1 — ) (lly — x> + 6) — a(1 — ) [ly — x|1?

allx = x> + (1 =)y — xell> — (1 — o) [ — %) — @ — )1 + 6k

llee (e — %) + (1 = @) (i — YII* + 6

= [Ixe — z|I* + k.

A

It follows that z € C,1 and hence Gy is closed and convex. Therefore C, is closed and convex for all n € N. This implies
that {x,} is well-defined. Since x, = Pc, Xy, it follows that

(XO_Xn’Xn_.W ZO (33)
forally € F C C, and Vn € N. So, for u € F, we have

0 < (X0 — Xn, Xy — U) = —{(Xy — X0, Xn — Xo) + (X0 — X5, X0 — U)
2
< =% — XollI” + X0 — Xaullllxo — ull.

This implies that

X0 = Xall* < llXo — Xall X0 — ull
and hence

lXo — xnll < llxo —u| forallu e F and n € N. (3.4)
From x, = P¢,xo and X, 41 = P, ;X0 € Cyy1 C Gy, we also have

(X0 — Xn, Xn — Xpy1) >0 foralln e N. (3.5)

So, for x,11 € Cy, we have, forn € N

0 < (Xo — Xn, Xn — Xpr1) = —{Xn — X0, Xp — Xo) + (Xo — Xn, Xo — Xnt1)
2
< —llxn — X0lI” + lxo — XalllIX0 — Xn+1ll-
This implies that
2
IXo — xull* < lIxo — XullllX0 — Xny-1l
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and hence
IXo — Xall < lixo — Xpt1ll foralln € N. (3.6)
Since {||xo — X, ||} is bounded, lim,_, , ||x, — Xo|| exists. Next, we show that ||x, — x,+1]| = 0. In fact, from (3.5), we have
X0 = Xnp1llI” = ([0 — x0) + (X0 — Xn 1) [1?
= [1xa — %oll> + 2(%n — X0, X0 — Xny1) + X0 — X i1
X0 — Xoll* = 2(Xo — Xn, X0 — Xn) — 2(Xo — Xn, Xa — Xn11) + [IXo — Xng1 ||

2 2 2
< [1%n — XollI® = 2[1Xn — XolI” + X0 — Xn41]]
2 2
= —|l%n — Xoll” + lIXo — Xn+1 /.
Since lim;,_, o, ||X, — Xol|| exists, we have that lim,_,  [|X, — X4+1]| = 0. We now claim that lim, o [|TX, — x,]| = 0 =
limy_, o0 |ISX2 — X»|. Indeed, by definition of y,, we have
lyn — xall = llotnn — (1 — on) "2 — X1l = (1 — o) [ T"2 — X4l
it follows that
IT"zy, — xall = lyn — xall < Uyn = Xn1 I + X1 — Xall

1—a, T 1—ay

Since X,41 € Co, Y0 — Xnga > < %2 — Xp4q|l> + 6 — Oasn — oo, this implies that ||T"z, — x;|| — 0asn — oo.
We now show that [|S"x, — x,|| — 0. Let {||S™x,, — X, ||} be any subsequence of {[|S"x, — x,]|}. Since {x,, } is bounded,
there exists a subsequence {x,,,(j} of {xy,} such that lim;_, ||x,.,kj — ul| = limsup,_ X, — ull := a. We note that
Nk.

ng. s . P .
X, = ull < 1%y = T"92o | + 1T 20 — ull < 1Xny, — T 92, [l + Kny, 2o, — ul. Vj = 1. This implies that
a = liminf ||x,, — u|l <liminf|z, —u]. (3.7)
j—o0 ] Jj—o0 J
By (3.2), we note that

1
lzn, = ull = lIxn, = ull+ (1 = B )55, = D) xn, — ul

and hence
limsup ||z, — ull < limsup ||x, —ull :=a. (3.8)
j—o0 7 j—o0 J
Therefore

lim ||z, —ull = a= lim |x,, —ul.
Jj—o00 J j—o0 J

Furthermore by (3.2) again, we observe that
Brig (1= BuIS™xmg = X * <l — ull® = lizg — ull® + (1 = Boy ) (53, — Dlixa — ull*

— 0 asj— oo.

This implies that lim;_, ||S"kfxnkj = Xy, || = 0 and hence
lim ||S"xp, — x,]| = 0. (3.9)
]J—>00

Next, we note that

%0 = T"nll < llxn — T"znll + [IT"20 — T"%nll < lIxn — T"zall + knllzn — Xn . (3.10)
Since

Iz — xnll = l1Baxn + (1 — Bu)S"%n — Xull = (1 = B)IS"Xn — xull — 0 asn — oo,
and limy,_, o, [|T"z;, — X, || = 0, we have

lim [|x, — T"%|| = O. (3.11)
n—oo

It follows that
ITxa — T xall 4+ 1T %0 — T X1 |+ 1T Xng1 — Xt | + 1Xns1 — Xall
toollXn — T™xnll + ||Tn+lxn+1 — Xn1 Il + (1 =+ too) X0 — Xppa |l

— 0 asn— oo. (3.12)

”Txn - Xn” =<
=
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Similarly, we have
ISx;, — xp|| = 00 asn — oo. (3.13)

By (3.12) and (3.13), Lemma 2.2 and the boundedness of {x,}, we have #§ # w,,(x,) C F. Since zy = Prxg, 29 € F C C, and
Xn = Pc,Xo by the definition of P, we obtain

IXo — Xull = lIxo — Pc,Xoll < llXo — zoll foralln > 0. (3.14)
Let w € wy (x,), by weak lower semi continuous of the norm, we have

lw—xoll < lirr}]infllxn —xoll < llzo — Xoll. (3.15)

Similarly, for zg = Prxg and w € w,,(x;) C F, it follows that
llxo — zoll = llXo — PrXoll < [IXo — w|l, forw € F. (3.16)
From (3.15) and (3.16), this implies that zy = w thus w,, (x,) = {zp} and then x,;, — zp, and we note that

2 2

X — zoll® = lIXn — X0 + X0 — 20|

1% — xolI> + 2(Xa — X0, X0 — Z0) + [IX0 — Zol|®
2 2

lzo — Xoll* — 2{xo — Xn, Xo — Z0) + |IXo — Zol|

IA I

2l1zo — XolI? — 2{Xo — Xn, Xo — 20) — 0 asn — oo.
Hence, x,, — zg = Prxg. This completes the proof. O

If S = T, then Theorem 3.1 reduces to the following corollary:

Corollary 3.2. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H. Let T : C — C be an
asymptotically nonexpansive mapping with sequence {t,}. Assume that F(T) # ¥ and let xo € H. For C; = C and x; = Pc, o,
define a sequence {x,} of C as follows:

Yn = opXy + (1 — O5n)TnX117
Cir1 =1{z € Gy : |lyn _ZHZ =< |Ixn _2”2 + 6}
Xny1 = Pcmxo, neN

where 6, = (1 — an)(tg — 1)(diam C)?> — Oasn — ooand0 < «, < a < 1foralln € N. Then {x,} converges strongly to
Zo = P}:(T)Xo.

By the same argument as in the proof of Theorem 3.1, we obtain the following theorem.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H. Let S, T : C — H be two
nonexpansive mappings and F = F(S)NF(T) # { and let Xy € H. For C; = C and X, = P, Xo, define a sequence {x,} as follows:

Yn = opXn + (1 — o) Tz,

Zy = Buxn + (1 — Bn)Sxn,

Cit1={z € G llyn — zll < llIxn —zll},
Xny1 = PanXo, neN

where0 <o, <a<1land0 <b < B, <c < 1foralln € N. Then {x,} converges strongly to zy = PgXo.

If S = T, then Theorem 3.3 reduces to Theorem 1.1.

Now, we present the strong convergence theorem of two asymptotically nonexpansive semigroups on C in a Hilbert
space.

Suppose that 7 = {T(t) : 0 <t < oo}and .¥ = {S(t) : 0 < t < oo} are two asymptotically nonexpansive
semigroups defined on a nonempty closed convex bounded subset C of a Hilbert space H. Recall that we use LtT and
Lf to denote the Lipschitzian constant of the mapping T(t) and S(t), respectively. In the rest of this section, we put
Lo = sup{LtT, Lf : 0 <t < oo} and we use Fix(7) and Fix(#) to denote the common fixed point set of 7 and .7,
respectively. Furthermore we use .# := Fix(.7) N Fix(*) to denote the set of common fixed points of two asymptotically
nonexpansive semigroups 7 and .. Note that the boundedness of C implies that Fix(7) and Fix(.#) are nonempty (see
[12]) and we assume throughout in this theorem that the set of two common fixed point F in nonempty.



1132 I. Inchan, S. Plubtieng / Nonlinear Analysis: Hybrid Systems 2 (2008) 1125-1135

Theorem 3.4. Let H be a Hilbert space and let C be a nonempty closed bounded convex subsetof H.Let 7 = {T(t) : 0 <t < o0}
and .7 = {S(t) : 0 <t < oo} be two asymptotically nonexpansive semigroups on C such that # = F(7) N F(.¥) # @ and let
Xo € C.Let C; = C, X1 = Pc, X and {x,} be a sequence defined by

y

=

1 [t
= anX; + (1 — an)?/ T(t)z,dt,
0

n

V4

=

= Buxn + (1 — ;Bn)l /s" S(t)x,dt,
Sn Jo

Cor1 =1z € Gy —2I1” < lIxa — 21> + 61}

Xnr1 = Pcn+1X0, neN,
where 6, = (1 — ap)[(T2 — 1) 4+ (1 — BT2( — 1)](diam C)2 — 0 asn — oo(hereT, = é U LTdt and’s, = i SrLidb),
0<ap,<a<land0 <b < B, <c < 1foralne NU({0}andt, - oo,s, — oo. Then {x,} converges strongly to
Zp = PgX().

Proof. First observe that .# C C, foralln € N. For .# C C = (; is obvious. Suppose that .# C C for some k € N. Let
z € Z# C (.. Then we have

1 (% g
vk — zII> = (e —2) + (1 — o) (; f T(t)zdt — 2)
k JO
1 79 2
< onllxe —z) + (1 — o) ‘t / T(t)zdt —z
k Jo
1 [ 2
< onllxe —z)* + (1 — o) (7 / IT(t)z — ledr>
k JO
1 [k 2
< onllxe —z)* + (1 — o) <*/ L] llze — ledt>
tk Jo
1[4 2
2 T 2
< ogllxk — 2|7 + (1 — o) <—f L dt) llzi — z|
tk Jo
< % —zI* + (1 = ) (Trllze — 211> — lIxe — zI1%). (3.17)

By Lemma 2.1, we have

2 2

1 Sk
‘f Sxdt —z|| — B(1 = Br)
Sk Jo
2

1 Sk
< Ballxe —zII> + (1 = Bo) (i/‘ IS(®O)xi — ledt> = B(1 = Bi)
0

lzx =zl = Bellxe — 211 + (1 = Bo)

1 [
Xk — — / S(t)x,dt
Sk Jo

2

1 [%

X — */ S(t)xdt
k Jo

2

1 [
X — */ S(t)xdt
0

1 Sk 2
sﬂwa—nﬁ+a—ﬂu<;f ﬁm>Hm—ﬂV—m0—ﬂu
k JO k
< % —zI> + (1 = B (= Dllxe — zII*. (3.18)
Substituting (3.18) in (3.17) yields,
Iy — zII? < lIxe — 2012 + (1 — ) (Fallixe — 2l + (1= B2 = Dllxe — 20121 — lIxe — zI1)
< %=zl 4+ (1 — ) (T2 = 1) + (1 — a) (1 = BITA(FE — D]lIxe — 2|
< %=z + [(1 — ) (T2 = 1) + (1 — ) (1 — BE2(F — 1)](diam C)?
< llxx — zII* + 6.

It follows that z € C, 1. Hence . C C, for all n € N. Again, by using the same argument in the proof of Theorem 3.1, we
have C, is closed and convex for alln € N and

1% — Xn41/l — 0. (3.19)
We now claim that

limsup lim sup ||T(r)x, — x,|| = 0 = lim sup lim sup ||S(r)x, — x,]|.
r—o00 n—oo

r—o00 n—o00
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Indeed, by definition of y, and x,,1 C C, we have

”.VH - xn”

1 [
— / T(t)z,dt — x,
0

n

1—a,

1
T (lyn = X1l + [Xn1 = XalD)

T 1—oa,
< 1 (2||x,.,+1 — Xpe1ll + ﬁ) — 0 asn — oo. (3.20)
.
We now show that lim sup,_, ., limsup,_, ., |S(")x, — x,]| = 0. Let {||i [ S ()X, dt — xn,(||} be any subsequence of

{ ||é 05” S(t)x,dt — x| } Since {xp,} is bounded, there is a subsequence {xnkj} of {x,, } such that

lim [|x,, — z|| = limsup ||x,, — z|| := a.
j—o0 J

k— o0

We observe that

1 [t 1 [t
IXn, — 2zl < |[Xn,, — — T(t)zq, dt|| + | — T(t)zq, dt —z
V] vl tn. Jo vl e Jo j
J J
1 [t 1 [
< xnkj — t—/ T(t)znkjdt + t—/ ||T(t)z,,,(j — z||dt
nkj 0 ij 0
[nk]_ ~
= |Xn, — — T(t)an_dt + tn”an. —z|.
G t”kj 0 G j

This implies that a = liminf;_, ||Xnkj —z|| < liminfi_, ||Zm<j — z||. By (3.18) we note that ||anj —z|| < ||Xn;<j —z|+ (1 —

1
Bu)(32 — 1)? |lxy, — 2| and hence

limsup ||z, —z| <li
i 00 j j

sup ||x,,kj -zl =a.
j— — 00

Therefore lim;_, o ||anj —z|| = a=1limj, « ”X“kj — z||. Furthermore, by (3.18) again, we observe that

1 [ 2 2 2 ~ 2
ﬁnk}.(l - ﬂnkj)HXnkj i S(t)xnkjdt” =< ”Xnk]. —z|I” - ||anj —z|I*+ (- ﬂnkj)(Snkj - 1)||Xnkj -z

ng.
K

— 0 asj — oo.

Sny,,
This implies that lim;_, o ”X”kj — $ fo kj s(t)x,,,(j dt|| = 0 and hence
K

lim

n—oo

1 [
— / S(t)x,dt — x,
0

Sn

=0 (321)

Forall 0 < r < oo, we note that

IS(M)x, — x| < HS(r)xn —S(r) <Sl /Sn S(t)xndt> H + HS(r) <Sl /S" S(t)xndt> — Sl/sn S(t)xndtH
n Jo n Jo nJo

A

1 [
+ —/ S(t)x,dt — x,,
Sn Jo
1 [ 1 [ 1 [
< (Lo + 1 —/ S()xpdt — x, +HS(r) (/ S(t)x,,dt)——/ S(t)xpdt
Sn Jo Sn Jo Sn Jo
= (Lo + DA + B (1), (3.22)

where A = Hé Jo S(D)xadt — X, || and B3(r) = HS(r) (é o S(t)xndt) - i o S(t)xndtH. By (3.21) and Lemma 2.5, we

have lim,_, o A5 = 0 = lim sup,_, o, lim sup,,_, . B (r). Moreover, we observe that
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1 tn 1 th 1 th 1 tn
Xn — 7/ T()x,dt|| < |[x, — 7/ T(t)z,dt| + */‘ T(t)z,dt — 7/ T (t)x,dt
n Jo tn 0 tn 0 tn 0
1 th 1 th
< o= [(Tond) + L [CiT0 - Tl
tn 0 tn 0
1 [ ~
= ||Xn — */ T(t)z,dt| + tyllzg — Xall.
th 0

Since ||z, — x|l = (1 — ,Bn)||$ OS” S(t)x,dt — x,|| = 0and (3.20) we obtain

lim

n—oo

1 [
Xn — t—/ T(t)x,dt|| = 0. (3.23)
0

n

We can deduce that forall 0 <r < oo,

th th tn
‘T(r)x,, —T(r) <tl/ T(t)xndt) H + HT(r) (tl/ T(t)xndt) — tl/ T (t)x,dt
nJo n Jo n Jo

IT()xn — Xl <

1 [
+ —/ T(t)x,dt — x,
th 0
1 [ 1 [ 1 [
< L+ 1) —/ T(t)x,dt — x, —I—HT(r) (—/ T(t)xndt>——/ T(t)x,dt
ta Jo ta Jo ta Jo

= (Lo + DA 4 BL(r).
By (3.23) and Lemma 2.5, we have

lim Ag = 0 = lim sup lim sup Bg(r). (3.24)

n—00 r—-oo  n—00

From (3.22) and (3.24), we obtain

limsup lim sup ||T(r)x, — x,|| = 0 = limsup lim sup ||S(r)x, — x,||.

r—-oo n—oo r—0o0 n—oo

We note by Lemma 2.5 that every weak limit point of {x,} isa member of .#. From x,, — zg = P &xo, we have xo—X,, — Xo—2o
from H satisfies the Kadec-Klee property, it follows that

Xo — Xn — Xo — Z0.
So, we have
Xn — zoll = X2 — X0 — (20 — Xo)|| > 0 asn — oo.
Hence x, — Zzo. This complete the proof. O
If. ¥ = 7,then S(t)x, = x, foralln € Nand for all t > 0. Hence é fos” S(w)x,du = x,,z, = x, foralln € Nand

therefore Theorem 3.3 reduces to the following corollary.

Corollary 3.5. Let H be a Hilbert space and let C be a nonempty closed bounded convex subsetof H.Let 7 = {T(t) : 0 < t < oo}
and be an asymptotically nonexpansive semigroup on C such that F(7) # ) and let xo € H. For C; = C and x; = P, Xo, define
a sequence {x,} of C as follows:

1 [
Vo = a4+ (1 — )~ / T(Oxdt,
tn 0

. 2 2.9
i1 ={z € G llyn —zlI° = lIxn — z|I” + 6n}
Xnr1 = PC,H]XO’ neN

where 8, = (1 — an)(?i — 1)(diamC)> — Oasn — oo(here’t, = ifot” LTdt,0 < oy < a < 1foralln € NU {0} and
t, — 00, s, — o0. Then {x,} converges strongly to zo = Pr()Xo.

By the same argument as in the proof of Theorem 3.4, we obtain the following theorem.

Theorem 3.6. Let H be a Hilbert space and let C be a nonempty closed bounded convex subsetof H.Let 7 = {T(t) : 0 <t < 00}
and .7 = {S(t) : 0 <t < oo} be two nonexpansive semigroups on C such that & = F(7) NF() # @ and let X, € H. Let
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Cy = C, X1 = P, xo define a sequence {x,} as follows:
1 [
Yn = OnXp + (1 - O5n)* / T(f)ant,
tn 0

1 [
20 = B+ (1= B+ / S(Oxdt,
Sn 0

G ={zeG:llyn—2zl < lIxn —zll},
Xnt1 = PC,H]Xo, neN

where0 < oy <a < 1and0 <b < B, <c < 1foralln € Nandt, — o0,s, — oo. Then {x,} converges strongly to
Zo = PrXo.

If S = T, then Theorem 3.6 reduces to Theorem 1.2.
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1. Introduction

Let H be a real Hilbert space, C a nonempty closed convex subset of H and T : C — C a mapping. Recall that T is
nonexpansive if |[Tx — Ty|| < ||x — y|| forallx, y € C. A point x € C is a fixed point of T provided Tx = x. Denote by F(T) the
set of fixed points of T; that is, F(T) = {x € C : Tx = x}. We know that a Hilbert space H satisfies Opial’s condition [1], that
is, for any sequence {x,} C H with x, — x, the inequality

liminf||x, — x|| < liminf||x, — y||
n—oo n—oo

holds for every y € H with y # x.
Recall that amapping T : C — C is said to be a strict pseudo-contractive mapping [2] if there eXists a constant0 < k < 1
such that

ITx — TylI> < lIx —ylI> + kI — T)x — I — Tyl*, (1.1)

for allx,y € C.(If (1.1) holds, we also say that T is a k-strict pseudo-contraction.)

It is known that if T is a O-strict pseudo-contractive mapping, T is a nonexpansive mapping.

In this paper we will consider an iteration method of modified Mann for asymptotically k-strict pseudo-contractive
mapping. We say that T : C — C is an asymptotically k-strict pseudo-contractive mapping if there exists a constant
0 < k < 1 satisfying

IT" — T"|I> < (1 + yu)llx — ylI> + kIl T — TMx — (I — Thyll?, (12)
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forallx,y € C and for all n € N where 3, > 0 for all n such that lim,_, ., ¥, = 0. We see that if k = 0, then T is an
asymptotically nonexpansive mapping. By Goebel and Kirk [3], T is an asymptotically nonexpansive mapping if there exists
a sequence {y,} of nonnegative numbers with lim,_, », ¥, = 0 and such that

IT" — T[> < (1 + ya)llx — ylI?, (1.3)

forallx, y € C and all integersn > 1.

Fixed point iteration processes for nonexpansive mappings and asymptotically nonexpansive mappings in Hilbert spaces
and Banach spaces including Mann and Ishikawa iteration processes have been studied extensively by many authors to solve
nonlinear operator equations as well as variational inequalities: see [4-7]. However, Mann and [shikawa iteration processes
have only weak convergence even in Hilbert space: see [8,7].

Our iteration method for finding a fixed point of an asymptotically k-strict pseudo-contractive mapping T is the modified
Mann'’s iteration method studied in [9-12] which generates a sequence {x,,} via

Xpi1 = nXn + (1 —an)T"x,, n >0, (1.4)

where the initial guess xo € C is arbitrary and the sequence {o;,}12 lies in the interval (0, 1).
In 2007, Takahashi, Takeuchi and Kubota [7] introduced the modification of the Mann iteration method for a family of
nonexpansive mappings {T,}. Let xo € H. For C; = C and u; = P¢, Xo, define a sequence {u,} of C as follows:

Yn = oty + (1 — o) Ty,
Cry1 =1{z € Gyt llyn —zll < llun — zlI}, (1.5)
Upy1 = Pcn+1X0, neN,

where 0 < o, < a < 1forall n € N. Then we prove that the sequence {u,} converges strongly to zy = PrXo.

In 2008, Inchan [13], introduced the modified Mann iteration processes for an asymptotically nonexpansive mapping.
Let C be a closed bounded convex subset of a Hilbert space H, T be an asymptotically nonexpansive mapping of C into itself
and let xy € C.For C; = C and X1 = P, (Xo), define {x,} as follows:

Yn = opXy + (1 - Oln)Tan,
Cor1 ={z € Gyt llyn — zII* < llxa — 2|1> + 64}, (1.6)
Xn+1 = Pcn+1X0, neN,

where 6, = (1 — an)(kﬁ — 1)(diamC)?> — O0asn — ooand 0 < &, < a < 1foralln e N. Then he proves that {x,}
converges strongly to zo = Pr(r)Xo.

Inspired and motivated by these facts, it is the purpose of this paper to introduce the modified Mann iteration processes
for an asymptotically k-strict pseudo-contractive mapping by the idea in (1.6). Let C be a closed convex subset of a Hilbert
space H, T be an asymptotically k-strict pseudo-contractive mapping of C into itself and let x, € C. For (; = C and
X1 = Pc, (o), define {x,} as follows:

Yn = anXy + (1 — an)T" Xy,
Ci={ze€C:llyn— Z”Z =< %, — 2”2 + [k — on(1 — o) ]llxp — T"Xn” + 6}, (1.7)
Xnt1 = Pg, X0, nEN,

where 6, = (diam C)?(1 — a,)yy — 0, (n — 00).
We shall prove that the iteration generated by (1.7) converges strongly to zo = Prr)Xo.

2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-, -) and let C be a closed convex subset of H. For every
point x € H, there exists a unique nearest point in C, denoted by Pcx, such that

Ix —Pex|| < llx—yl|l, forallyeC.

Pc is called the metric projection of H onto C. It is well known that P¢ is a nonexpansive mapping of H onto C.
We collect some lemmas which will be used in the proof of the main result.

Lemma 2.1 ([14]). The following identities hold in a Hilbert space H:
@) Ix+y1* = IxI> + yI* +2(x, y), Vx,y € H.
(i) 1A% + (1 = DylI> = Xl + (1 = D ylI> = 21 = V)lIx — y||* forall x,y € H and 4 € [0, 1].

Lemma 2.2 ([15]). Let T be an asymptotically k-strict pseudo-contractive mapping defined on a bounded closed convex subset C
of a Hilbert space H. Assume that {x,} is a sequence in C with the properties

(i) X, — z and

(ii) Tx, — x, — 0.
Then (I — T)z = 0.



382 I. Inchan, K. Nammanee / Nonlinear Analysis: Hybrid Systems 3 (2009) 380-385

Lemma 2.3 ([16]). Let C be a closed convex subset of a real Hilbert space H. Givenx € H andy € C, theny = Pcx if and only if
the following inequality holds

x—y,y—z)>0, VzeC.

Lemma 2.4 ([15]). Assume that C is a closed convex subset of a Hilbert space H and let T : C — C be an asymptotically k-strict
pseudo-contraction. Then for each n > 1, T" satisfies the Lipschitz condition:
IT"% — TY|| < Lullx =yl

forallx,y € C, where L, = 1m0k W

3. Main results

In this section, we prove strong convergence theorems by hybrid methods for asymptotically k-strict pseudo-contractive
mappings in Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be an asymptotically k-strict
pseudo-contractive mapping of C into itself such that F(T) # @ and let xo € C. For C; = C and x; = Pc,Xo, assume that
the control sequence {o, )52 ; is chosen such that limsup,,_, ,, &, < 1 — k. Then {x,} generated by (1.7) converges strongly to
Zp = PF(T)X().

Proof. We first show that F(T) C C, for alln € N, by induction. For any z € F(T) we have z € C = C; hence F(T) C C;. Let
F(T) C Gy for each m € N. Then we have, foru € F(T) C Cy

1Ym — ) = lletmXm + (1 — &) T"x — ul®

= llomXm —u) + (1 — o) (T X — Ll)||2

A | Xm — u”2 + (1= ap) I T"%m — qu —am(1 — o) |Xm — mem”2
A | Xm — u”2 + (1 — o) [(1 + ym) [1Xm — u||2 + KllXm — mem||2] —am(1 — o) |Xm — Tme”2
A+ A = am)yYm) |1Xm — u”2 + [k — am(1 — o) l|Xm — Tme”2
< x%m — u“z + [k — am(1 — o) 1|Xm — mem”2 + (1 — o) Y| Xm — Ll||2
< lxm — ull? + [k — m(1 = o)X — T"% | + 6.

A

It follows that u € Cy,4q and F(T) C Cpyq, hence F(T) C C, for all n € N. Next, we show that G, is closed and convex for
all n € N. It obviously follows that C; = C is closed and convex. Suppose that Cp, is closed and convex for each m € N. Let
zj € Cyy1 C G Withzj — z.Since Gy is closed, z € G and [|ym — Zi[1* < lI2j — Xm 1> + [k — ctm (1 — &)1 |Xm — T X [|* + O
Then
Iym —2z1* = Iym — 2+ 2 — 2|
= llym — zl* + Iz — 2> + 2(ym — 7, 2 — 2)
12 = Xmll? + [k = etm(1 = e&m)1llxm — T™%ml1? + O + l12) — 211 + 2llym — ZllIZ; — 2II.

IA

Taking j — oo,
Iym — 21> < 1z = xmll* + [k — @m(1 — a1 Xm — T™%m)|* + Opn.

Hence z € Cpyq. Letx,y € Cpyq C Cp withz = ax + (1 — o)y where o € [0, 1]. Since G, is convex, z € Cp and
||ym—x||2 = ||X_Xm||2+[k_am(1_am)]||xm_Tme||2+9m» lym —J’I|2 = ||y_xm||2+[k_am(]_am)]||xm_Tme||2+9mv
we have

lym = 2I? = lym — (@x+ (1 =)

= lla@m — X + (1 =) Gm — W

allym — xlI1> + A = ) lym —yI> — (1 = )| (n — %) — Gm — VI
a([Ix = xpll* + [k — am(1 — am)][1Xm — T"%nl|* + 6m)
+ (1= a)([ly = xal® + [k = am(1 = am)]xm — "X [1> + O) — (1 — ) ly — x||?
allx = x> + (1 = )ly = xnl* — (1 = )|t — %) — & — )|
+ [k — @ (1 — @) [1%m — T™ % 1> + O
= lla®m — %) + (1 — )X = Y)I” + [k — am(1 = am)][xXm — T 1> + O
= [|%m — z|1* + [k — am(1 — ) Xm — T™ x> + G-

A
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Then z € Gy, it follows that G4 is closed and convex. Hence C, is closed and convex for all n € N. This implies that {x,}
is well defined. From x, = P, Xo, we have
(Xo — Xn, X —y) >0, forally € G,.
Since F(T) C C,, we have
(Xo — Xp,x, —u) >0 forallue F(T)andn € N. (3.1)
So, for u € F(T), we have

0 < (xo — Xp, Xn — U) = (X0 — X, Xy — Xo +Xo — U)
= _<Xn_XO’Xn _XO>+<XO_XH»XO_U)

< —lxn — %ol1* + lIxo — Xull[IX0 — ull.
This implies that
lIxo = %all* < [IX0 — Xallllxo — ul],
hence
lXo — xn|l < |lxo —u|| forallu € F(T)andn € N. (3.2)

From x, = Pc,%o and X1 = Pc,, X0 € Cyp1 C Gy, We also have
(X0 — Xn, Xn — Xpp1) > 0 foralln € N. (3.3)
So, for x,.1 € Cy, we have, forn € N

0 < (Xo — Xp, Xn — Xng1) = (X0 — Xn, Xp — Xo + X0 — Xn41)
= —(X; — X0, Xn — Xo) + (X0 — Xn, Xo — Xn41)

2
— X0 = XollI* + lIXo — XnllIXo — Xn411-

IA

This implies that
X0 = %all* < [IX0 — XallllXo — Xn111l,
hence
IXo — xull < lixo — Xu41ll foralln € N. (3.4)

From (3.2) we have {x,} is bounded, lim,_, , ||X;, — Xo|| exists. Next, we show that ||x;, — x,+1|| — 0. In fact, from (3.3) we
have
1%, — Xn+l||2 = [|(Xa — X0) + (x0 — Xn+1)||2
= llxn — Xoll* + 2(xn — X0, Xo — Xn41) + X0 — Xns1I?
= X0 — Xoll* + 2(Xa — X0, X0 — Xn + Xn — Xng1) + X0 — Xpp1 ||
%0 — Xoll* — 2(Xo — Xn, X0 — Xn) — 2(Xo — Xn, Xn — Xnt1) + X0 — Xni1”
X0 — %0 l1* = 2[lxa — XoI” + X0 — Xn41[®

2 2
=0 = XollI” + lIXo — X4 [l

IA I

Since lim,,_, o || X, — Xo|| exists, we have that

lim [|x; — xpq1]| = 0. (3.5)
n—oo
On the other hand, x,,11 € C,41 C C, implies that

1yn = %n1l1? < 11x0 = Xag1[I? + [k — an(1 = an)1l[x0 — T"%al|* + 6r, (3.6)
By the definition of y,, we have
[yn = %all = llotnxn + (1 — ctn) T"Xp — Xl
= (1 —an)lIT % — Xn .
From (3.6), we have
(1= an)*[IT"%n = Xall* = 1yn — Xall?

2
= |lyn — Xn+1 + Xpp1 — Xnll
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< Y0 = X112 + 1Xne1 — Xall® + 21¥n — Xa1 [ 1Xns1 — X
< %0 — X1 lI” + [k — ot (1 — o) Ixa — T"%nll® + O + X1 — Xnll* + 201¥n — Xns 1]l |Xns1 — Xl
= [k — ota(1 — &)1 l1%n — T"%all* + 2l1xns1 — Xall (X1 — Xall + [V — Xas1]l) + On.

It follows that
(1= a)® = (k= an(1 = @) IXn = T [1* < 201%n1 = Xall(Xa1 = Xall + 1Y — Xng1ll) + 6n.
Hence
(1 —k—a)IT"0 — Xl < 2[%p+1 — Xall ([ Xn 1 — Xnll 4 Y0 — Xns1 ) + O (3.7)

From lim sup,,_, o, &n < 1 — k, we can choose € > 0 such that o, < 1 — k — € for large enough n. From (3.5) and (3.7), we
have

lm [T, — x|l = O. (3.8)
n—oo

Next, we show that limy,_, » ||TX; — X5|| = 0. From Lemma 2.4, we have
ITx0 = Xall < [ Tx0 — T X0l 4+ 1T %0 — T %o |+ 1T X1 — Xt |+ 1Xas1 — Xall
< Lillxn — Tl + 1T Xni1 — Xpga | + (1 + Lok ) X0 — X |1 (3.9)
From (3.5) and (3.8), we have
lim ||Tx, — x,|| = 0. (3.10)
n—00

By (3.9), Lemma 2.2 and boundedness of {x,} we obtain ¢ # w,,(x,) C F(T). By the fact that ||x, — Xo|| < ||zo — Xo|| for all
n > 0 where zo = Py (Xo) and the weak lower semi-continuity of the norm, we have

A

X0 — Zoll < lIxo — wll < liminf{|xo — X,|l
n—oo

IA

lim sup [|xo — X, Il < llXo — 2ol

n—oo
forall w € w,(x,). However, since w,,(x,) C F(T), we must have w = z, for all w € w,,(x,). Thus w,, (x,) = {zo} and then
Xn — zo. Hence, x, — 2o = Prr)(Xo) by
X0 — Zoll> = [lxa — XolI” + 2(Xn — X0, X0 — 20) + Ilx0 — 20|
2(llz0 — xoll® + (Xn — X0, X0 — 20)) — 0 asn — oo.

IA

This completes the proof. O

Using this Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be a k-strict pseudo-contractive
mapping of C into itself for some 0 < k < 1 such that F(T) # ¥ and let xy € C. For C; = C and x; = P¢, X, define {x,} as
follows;

Yn = anXy + (1 — ay)Txy,
Cop1 = {2 € Go: lyn —2II” < 1% — 2017}, (3.11)
Xn+1 = Pc,, (X0,

foralln € N, where {a,} C [«, B] for some o, B € [k, 1). Then {x,} generated by (3.11) converges strongly to zo = Prr)Xo.

Corollary 3.3 ([13]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be an asymptotically
nonexpansive mapping of C into itself such that F(T) # @ and let xo € C. For C; = C and x; = P, Xo, define {x,} as follows;

Yn = OnXp + (1 - Oln)Tana
Gt = {2 € o 2 lyn — 2II* < llxn — 2I1° + 64}, (3.12)
Xn+1 =PC,1+1XO» neN,

where 6, = (1 — an)(kﬁ — 1)(diam C)> — Oasn — ooand 0 < a, < a < 1foralln € N. Then {x,} generated by (3.12)
converges strongly to zo = Pr(r)Xo.
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Corollary 3.4 ([7, Theorem4.1]). Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let T be a nonexpansive
mapping of C into H such that F(T) # @ and let xy € H. For C; = C and u; = P, Xo, define a sequence {u,} of C as follows:

Yn = olp + (1 — o) Ty,
Copr={z€Cllyn—zll < llun —2z|I}, (3.13)
Upyr1 = PC,H_lev ne Na

where 0 < o, < a < 1foralln € N. Then {u,} converges strongly to zo = PrXo.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Recall that a mapping T : C — H is said
to be k-strictly pseudo-contractive if there exists a constant k € (0, 1) such that

ITx = Tyll* < llx = yII> + kIl = T)x — (I = Ty|I>, Vx,y € C. (1.1)

Note that the class of k-strictly pseudo-contractive includes strictly the class of nonexpansive mappings which are mappings
T on C such that

ITx = Tyll < llx—yll. Vx,y eC. (1.2)

This is, T is nonexpansive if and only if T is O-strictly pseudo-contractive. The mapping T is also said to be pseudo-contractive
ifk = 1and T is said to be strongly pseudo-contractive if there exists a positive constant A € (0, 1) such that T—AI is pseudo-
contractive. Clearly, the class of k-strictly pseudo-contractive mappings falls into the one between classes of nonexpansive
mappings and pseudo-contractive mappings. We remark also that the class of strongly pseudo-contractive mappings is
independent of the class of k-strictly pseudo-contractive mappings (see [1-3]).

It is clear that, in a real Hilbert space H, (1.1) is equivalent to

(Tx =Ty, x —y) < |lx = yII* - 1T_kna —Dx—(I=Tyl* VxyeC. (13)
The mapping T is pseudo-contractive if and only if

(Tx—Ty,x—y) < |x—ylI>, Vx,yeC. (1.4)
T is strongly pseudo-contractive if and only if there exists a positive constant A € (0, 1) such that

(Tx—Ty,x—y) < (1= Vlx—yl*, Vx,yeC. (1.5)
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In 2002, Xu [4] studied the following iterative process by the viscosity approximation defined by

X0 € K, (1 6)

Xn+1 = onf (Xp) + (1 — ay)Tx,, VYn >0, )
where the sequence {«,} of parameters satisfies appropriate conditions, and then proved that the sequence {x,,} converges
strongly to a fixed point q of T, which is the unique solution of the following variational inequality:

(U—=f)g,.p—q) <0, VpeF(T). (1.7)
Very recently, Marino and Xu [5] introduced and considered the following iterative algorithm:
X0 € K, (] 8)
Xnt1 = onyf(Xp) + (I — apA)Txy, Vn >0, )

where the sequence {a;,} of parameters satisfies appropriate conditions and A is a strongly positive bounded linear operator
with coefficienty > 0and0 < y < g Then they proved that the sequence {x,} converges strongly to a fixed point q of T,
which is the unique solution of the following variational inequality:

(A—vf)g,q—x) <0, VxeF(T). (1.9)

Moreover, Cho, Kang and Qin [6] extended and improved the result of Marino and Xu [5] (see also [2,7-14]) and introduced
a general iterative algorithm:

X €K, (1.10)
Xni1 = oY f(%n) + (I — apA)PiSx,, Vn>1 )

where S : C — H is a mapping defined by Sx = kx+ (1 —k)Tx, {«;,} of parameters satisfies appropriate conditions, and A is a
strongly positive bounded linear operator with coefficienty > 0and0 < y < g Then, they proved the strong convergence
theorems for T being a k-strictly pseudo-contractive mapping in Hilbert spaces.

In this paper, motivated by Cho et al. [6], we introduce a new iterative scheme generated by

x1 €C, (1.11)
Xnt1 = oV f (%) + Buxy + (1 — Bp)l — cyA)PcSxy, ’

where S : C — H is a mapping defined by Sx = kx + (1 — k)Txand T : C — H is a k-strictly pseudo-contractive mapping,
{an}, {Bn} C (0, 1). We will prove in Section 3 that if the sequences {«,} and {8,} of parameters satisfies appropriate
conditions, then the sequence {x,} generated by (1.11) converges strongly to the solution of variational inequality (1.9).

2. Preliminary

In this section, we collect some lemmas which will be used in the proof for the main result in the next section.

Lemma 2.1. Let H be a real Hilbert space. Then for any x, y € H we have

(i) Ix+yl? < lIxI? +2¢y, x +y)

(i) X+ Y17 > 12 + 207, 0
1

)
(i) [x£Y|? = [XI2£20 ) + P )
(iv) lloe+ (1 = Y2 = ellxli£ + (1= Oyl = (1 = O llx = y|1%. Ve € [0. 1)

Lemma 2.2 ([12]). Let {a,} be a sequence of nonnegative real numbers, satisfying the property
nt1 < (1= yn)ay+by, n>0,

where {y,} C (0, 1), and {b,} be a sequence in R such that

(i) Y202 vn = 00;
(ii) limsup, o 2 < 00r 3202, [ba| < o0.

Then lim,,_, o a, = 0.

Lemma 2.3 ([15]). Let C be a closed convex subset of a real Hilbert space H. Givenx € Handy € C, theny = Pcx if and only if
there holds the inequality

x—y,y—2z)>0, VzeC.

Lemma 2.4 ([5]). Let H be a Hilbert space, C be a nonempty closed convex subset of H, f : H — H be a contraction with

coefficient 0 < o < 1, and A be a strongly positive linear bounded operator with coefficient 7 > 0. Then, for 0 < y < g

X=y, (A—yHx—AA—yfy) = ¥ —ya)lx—yl?. xyeH.
That is, A — yf is strongly monotone with coefficient y — y«.
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Lemma 2.5 ([5]). Assume that A is a strongly positive linear bounded operator on a Hilbert space H with coefficient 7 > 0 and
0 < p < [|A|~". Then ||l — pA|| < 1— p¥.

Lemma 2.6 ([16]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {8,} be a sequence in [0, 1] with
0 < liminf,, o By < limsup,_, ., Bn < 1. Suppose x,11 = (1 — Bn)yn + Bnxn for all integers n > 0 and lim sup,,_, o (|¥n+1 —
Ynll = xn+1 — Xal) < 0. Then limy_.oq |lyn — Xall = 0.

Lemma 2.7 ([14]). Let H be a Hilbert space, and C be a closed convex subset of H. If T is a k-strictly pseudo-contractive mapping
on C, then the fixed point set F(T) is closed convex, so that the projection Prry is well defined.

Lemma 2.8 ([14]). Let H be a Hilbert space, and C be a closed convex subset of H. Let T : C — H be a k-strictly pseudo-
contractive mapping with F(T) # (. Then F(PcT) = F(T).

Lemma 2.9 ([14]). Let H be a Hilbert space, and C be a closed convex subset of H. Let T : C — H be a k-strictly pseudo-
contractive mapping. Define a mapping S : C — H by Sx = Ax+ (1 —A)Txforallx € C. Then, as A € [k, 1), S is a nonexpansive
mapping such that F(S) = F(T).

Lemma 2.10 ([5]). Let H be a Hilbert space, and C be a nonempty closed convex subset of H. Let A be a strongly positive linear

bounded self-adjoint operator on H with coefficient 7 > 0. Assume that 0 < y < g Let T : C — C be a nonexpansive mapping
with fixed point x; of contraction C 3 x > tyf(x) + (1 — tA)Tx. Then {x,} converges strongly to fixed point X of T ast — 0,
which solves the following variational inequality:

((yf —AX,z—%) <0, VzeF(T).

Let u be a continuous linear functional on I*° and s = (ao, ay, ...) € [°°. We write u,(a,) instead of . (s). We call u a Banach
limit if p satisfies ||| = wa(1) = 1and py(anr1) = wua(ay) for all (ag, aq, ...) € I°°.If u is a Banach limit, then we have
the following:

(i) foralln > 1, a, < ¢, implies p,(a,) < pn(cy),

(ii) pn(@ner) = un(ay) for any fixed positive integer r,
(iii) liminf,_ « ap < un(a,) < limsup,_, ., a, foralls = (ap, a;, ...) € I*.

Lemma 2.11 ([13]). Let a € R be a real number and a sequence {a,} C I*° satisfying the condition u,(a,) < a for all Banach
limits p. If lim sup,,_, o, (an+1 — @) < O, thenlimsup,_, ., a, < a.

Lemma 2.12 ([17]). Let H be a Hilbert space, and C be a nonempty closed convex subset of H. For any integer N > 1, assume
that, foreach 1 < i < N, T; : C — H be k;-strictly pseudo-contractive mappings for some 0 < k; < 1. Assume that
{m}f’:l is a positive sequence such that Zf’zl n; = 1. Then ZfV:] n;iT; is a non-self-k-strictly pseudo-contractive mapping with
k=max{k;: 1 <i<N}.

Lemma 2.13 ([17]). Let {T,—}f’zl and {ni}f’zl be given as in Lemma 2.12. Suppose that {Ti}{"z1 has a common fixed point in C. Then
F(iy miT) = N2 F(T).

3. Main results

In this section, first we show that a mapping S : C — H defined by Sx = kx + (1 — k)Tx is a nonexpansive mapping,
where C is a nonempty closed convex subset of a real Hilbert space Hand T : C — H is a k-strictly pseudo contractive
mapping with a fixed point for some 0 < k < 1.Letx,y € C; then from Lemma 2.1(iv) we have

Sx — SylI> = [lkx + (1 — k) Tx — (ky + (1 — K)Ty)|I?
= [lk(x —y) + (1 — k) (Tx — Ty)||?
= klx —yI* + A = ITx = TylI> — k(1 = k)| (x — y)x — (Tx — Ty)||?
= klx =yl + A = (lx = yII> + kI — T)x — I = T)y|*) — k(1 = b)[|(x — y)x — (Tx — Ty)||?
= llx = ylI> + (1 = k(I = T)x — I = Tyl*) — k(1 = k)| = T)x — (I = T)y||?
< llx —yl*.
Hence ||Sx — Sy|| < ||x — y||. Then S is a nonexpansive mapping and we have that P¢S is also nonexpansive, where Pc is a
metrics projection on C. For any j € N, define a mapping S; : C — C by Six = }.yf(x) + I — }A)PCSX. Let us show that S; is
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a contraction: let x, y € C; we have

‘ Lreo + <I - 1A) Pesx — <1.yf(y) 4 (1 - 1.A> PCSy) H
] ] ] J

1 1_
JTVO[”X -yl + (1 - ;V) [[PcSx — PcSy||

1S — Syl

IA

A

1 1_
=< nyallx—yll + (1 - ]fy) lIx =

IA

1
(1 - ;.(7 - ya)) (Ix = yID.

Hence, S; is a contraction. By Banach’s contraction principle there exists a unique fixed point u; € C such that

1 1
U = ]ﬂ’f(uj) + (1 - ]*A> PcSu;. (3.1)
Next, we prove the main results.

Theorem 3.1. Let H be a Hilbert space, C be a nonempty closed convex subset of H such that C £ C C C,andletT : C - H
be a k-strictly pseudo-contractive mapping with a fixed point for some 0 < k < 1. Let A be a strongly positive bounded linear

operator on C with coefficient y > 0 and f : C — C be a contraction with the contractive constant (0 < « < 1) such that

0 < y < L.Let {x,} be the sequence generated by

x1 €C, (3.2)
Xnp1 = oV f (Xn) + BnXn + (1 — B — ayA)PcSxy, ’
where S : C — H is a mapping defined by Sx = kx + (1 — k)Tx. If the control sequence {«y}, {B:} C (0, 1) satisfying
(i) limp 00 0 = 0, limy00 B =0,
(ii) 3.2 an = 00,
(iii) Zﬁil |1 — ap] < 00, Er?i1|,3n+l — Bl < 0.
Then {x,} converges strongly to a fixed point p of T, which solves the following solution of variational inequality (1.9).

Proof. Note that from the condition lim,_, o, &, = 0, we may assume, without loss of generality, that o, < (1 — 8,)||A]| .
Since A is a strongly positive bounded linear operator on H,
lAll = sup{[{Ax, x)| : x € H, ||x|| = 1}.
Observe that
(1= Bl — anA)x, x) = 1 — By — an(Ax, X)
> 1— By — oAl
> 0;
that is to say, (1 — B,)I — «,A is positive. It follows that
(1 = Bl — anAll = sup{{((1 — B)] — anA)x, x) : x € H, |Ix|| = 1}
sup{1 — B, — an(Ax,x) : x € H, |Ix|| = 1}
<1-8i—ayy.
We now observe that {x,} is bounded. Indeed, pick any p € F(T); we have

141 — Pl = llanyf xn) + Buxn + (1 — Bu)l — atnA)PcSxn — pl|
lloen (v f (%) — Ap) + Bn(xn — p) + ((1 = Bu)l — ctnA) (PcSxn — p) ||
onllyf (xn) — Apll + BullXn — pll + 1((1 = B)] — ctaA) || |PcSxn — Pl
anllyf(xn) — yf®) + vf(0) — Apll + Bullxa — Pl + (1 = Bn — cn¥) lI%n — D
anya|lXn — pll + anllyf () — Apll + Bullxn — pll + (1 = B — V) l|xn — Pl
anyalxn — pll + anllyf () — Apll + Bullxn — pll + (1 = Bn — V) l|xn — Pl
(1 —oan(y —ya)llxn — pll + anllyf () — Apll
lyf(p) — Apll

¥ —ya)

IANIA TN IA

= (1 —an(¥ —ya)llxn —pll + can(y — ya)
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It follows from induction that

n >0,

lvf(p) — Apll
7 —va) }
and hence {x,} is bounded. We also obtain that {f (x,)} and {PcSx,} are bounded. From (3.1), we have, for any n, j € N,
xn+1 — PcSujll = llanyf (%) + Baxn + ((1 — Bp)I — atnA)PcSxn — PcSuj]|
llotn (¥ f (%) — APcSuy) + Br(xn — PeSuy) + ((1 = Bn)l — atnA) (PcSxn — PcSuy) ||
anllyf (xn) — APcSuj|l + BullXn — PeSujll + (1 — Bn — on V) 1PcSxa — PcSu|
onllyf (xn) — APcSuj|l + Bullxn — PeSujll + (1 — Bn — cn¥) lIxn — ]
an([17f (%n) — APCSU} | — 7 %0 — 1)) + BallXn — PeSujll + (1= Bo)ll%n —
n + Bullxn — PcSujll + (1 — Ba)llxn — ;|
where 6, = a,(|lyf (xn) — APcSujll — V1IXa — y;ll), and from lim,_, o oy = 0, we have §, — 0asn — oo. It follows that
[Xn41 = PeSujll® = (8n + Bullxa — PcSujll + (1 — Ba) %0 — ujll)°
= (Bullxa — PcSujll + (1 = Bu) X0 — j1)* + 2(BallXa — PeSujll + (1 = Ba) %0 — u;1)85 + 57
= Bilxn — PeSusl1* + (1= B)? %0 — ujll* + 28 (1 = Bu)llxn — PeSujll1%n — wjll + o

where o, = 2(Bnllxn — PcSujll + (1 — B l1%n — ujD8, + 6,2, — 0asn — oo, and hence

X, —pll < maX{lel -l

IAIA

%041 — PeSujl® < By l1%n — PeSujll? + (1= )10 — wl1® + Bu(1 = Ba) (X0 — PeSuil1® + [0 — 51%) + 0
= Ballx, — PCsuj”2 + (1= B)llxn — uj||2 + on.
For any Banach limit x and 8, — 0, we have
MnllXn — PCsuj||2 = pnllXnt1 — PCSUJ||2 < UnllXn — uj||2- (3.3)

Since uj — x, = }.(yf(uj) + (I — A)PcSuj — X,) + (1 — jl.)(PcSuj — x,); thus we have

1 1
(1 - ]*) (%n — PcSuy) = (xp — ;) + ]f(Vf(Uj) + (I — A)PcSu; — xp).

It follows from Lemma 2.1(ii) that

1\2 5
1-— i lIX; — PcSul|

2

1
(X0 — ) + JT(Vf(uj) + (I — A)PcSu; — Xn)

%

2
ll%n — ull* + Jﬂ(yf(uf) + (I — A)PcSuj — xu), Xp — 1)
2
= |I%, — j]* + ]T(yf(uj) + (I = A)PcSuj — uj — (X, — Uj), Xy — U)
, 2 2
= |Ix; — ul|* + ;.(yf(uj) + (I — A)PcSuj — uj, X, — uj) — ;.(xn — Uj, X, — Uj)

2 2
= |Ix, — j]* + }<yf(uj) + (I — A)PcSuj — uj, Xp — uj) — 7||x,, — uj|?

2 2
= (1 - }) %2 — wjl|* + }<yf(uj) + (I — A)PcSuj — uj, Xy — ;). (3.4)

So, by (3.3) and (3.4), we have

1\? 5 1\? 5
1—;. lxn — uj||” > 1—7 [|PcSu; — Xy ||

2 2
> (1 - }> %0 — w* + 7 ) + (= APeSty — . 3y — )
and hence

1 2
j3||Xn —uy|* > ]T(Vf(uj) + (I — A)PcSuj — uj, X — U)).
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2
qunllxn — 11> = pa(yf (W) + (I = A)PcSty — j, Xy — ).

From Lemmas 2.8 and 2.10, u; — p € F(T) = F(PcS) as j — oo, we get

n{yf(p) — Ap, X, — p) <0,

where p is the solution of variational inequality (1.9). Since {x,}, {f (x,)} and {PcSx,} are bounded, we choose

M = sup{[If (xn) Il + lIXall + [IPcSXall + IAPcSXy ]| - n € N}

On the other hand,

IXn12 — Xppall =

IA

IA

=

llotn+17f Rnt1) + Brt1xnr + (1 — Bup)] — o 1A)PcSxniq

— (otn17f (%n) + Bnxn + ((1 = B)] — anA)PcSxn) ||

lotn1Vf Rnp1) — Cn1Vf (xn) + 1V f (xn) — anyf (Xn) + Bnr1Xn+1 — Bnr1Xn

+ Bur1Xn — Bnxn + (1 — Buy)] — anp1A)PcSxnp1 — (1 — Bur)] — anp1A)PcSxy
+ (1 = Bt DI — otn1A)PcSxn — (1 — Bn)l — anA)PcSxa ||

1Y X1 — Xnll + lonpr — anl 1V G | + Bus1llXnr1 — Xnll + 1Bnsr1 — Balllxnll
+ (1 = Bry1 — anp1 V) IPcSXnt1 — PcSxall

+ (1 = Brr)] — an1A) — (1 — Bl — onA) ||| PcSxa |

Anr1Y X1 — Xnll + |1 — anl VS Gl + Bor1llXnr1 — Xall + [Brr — BulllXall
+ (1= Br1 — a1V X1 — Xnll + 1Bnr1 — BlllPcSxnll + lotns1 — anl|APcSxy ||
(1= on1(V — ya) Xnt1 — xnll + lent1 — an|lyM + | Brp1 — BnlM

+ Bnt1 — BnlM + |1 — an|M.

From (ii), (iii) and Lemma 2.2, we have

lim [|Xp41 — Xq[| = 0.
n—oo

Next, we show that lim,,_, o, ||X, — PcSx,|| = 0. We consider

IXn — PcSxall < [1Xn — Xng1ll + [Xnp-1 — PcSxall
< %0 = Xn1 | + oallyf a — AP) || + BullXn — PcSxall.

From o, — 0, B8, — 0 and (3.6), it follows that lim,,_, o ||X; — PcSx,|| = O.

Next, we show that

lim sup(yf(p) — Ap, X, — p) <0,

n—oo

where p € F(T), where p is the solution of variational inequality (1.9). From (3.6), we have

lim sup |(yf(p) —

Ap, Xny1 — p) — (vf(p) — Ap, X — p)| = 0.

Hence it follows from (3.5) and (3.7) and Lemma 2.11 that

lim sup(yf(p) — Ap, X, —p) <0,
n—00

and from lim,_, o ||X, — PcSx,|| = 0, we have

lim sup(yf(p) — Ap, PcSxp — p) = limsup(yf(p) — Ap, (PcSXn — Xn) + (Xn — D))
n—00 n—00

= limsup(yf(p) — Ap, X, —p) < 0.
—00

Finally, we prove that x, — p as n — oo. We note that

X441 = PII* = latnyf (%) + Buxa + (1 = Bu)l — anA)PcSx, — plI?
= llotn (¥ f (Xn) = AP) + Ba(Xa — ) + (1 = B)] — ctaA) (PcSXy — P)II?
= 1B — p) + ((1 = B)] — ctnA)(PcSxn — )1 + 3 1y (xn) — Ap|)?
+2(Bn(Xn — p) + (1 = Bu)I — nA) (PcSxn — p), atn(yf (Xn) — Ap))

< (Bullxa = pll + (1 = By — V) IPcSxn — PN + 2Bnan (%n — b, (¥ (a) — AD)) + 3|1y f (%n) — Ap|?

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



L. Inchan / Computers and Mathematics with Applications 58 (2009) 1397-1407 1403

+2(1 — Bo)an((PcSxy — p), (vf (xa) — Ap)) — 207 (A(PcSxn — D). (¥f (%n) — Ap))

< (Bullxa =PIl + (1 = o — cwP)llxa — PID® + 2Bpeny X0 — Pl + 2Bnctn (xa — p, (¥ (p) — AP))

+2(1 = B)an((PcSxn — ). (vf (Xn) — AP)) — 203 (A(PcSxn — P), (¥f (xa) — AP)) + apllvSf (xn) — Ap|?

< (1= )’ %0 — pII* + 2Bneney %0 — pII* + 2Bnetn (X0 — . (¥f (0) — Ap))

+2(1 = B)etn{(PcSxa — P), (vf (Xa) — AP)) + 307 M

=1 =2y —ya)an)xn — p”2 + (Oln?)zM + 2Bnanay [|Xn — p”2 + 2800t (X0 — p, (vf (p) — Ap))

+2(1 = B ((PeSxa — p), (vf (%2) — AP)) + 302M

= (1=27 — ya)an) % — plI*> + aal2Ba (%0 — p. (vf (p) — Ap))

+2(1 = Bu)((PcSxa — p), (7f (%a) — AP)) + 3aaM + 0t 7*M]

= (1= yu)l|xa — plI* + by
where y, = 2(¥ — y &)y and by = &[22 (Xn =P, (¥ (p) = AP)) +2(1 = B) (PcSXn — ), (Vf (Xn) —AP)) +32aM + 7 M].
From Z;’; a, = 00, (3.8) and (3.9), we have X °,y, = oo and limsup,_, ., f/—: < 0. By Lemma 2.2, we have that the
sequence {x,} converges strongly to a fixed point p of T, which is the solution of variational inequality (1.9). This completes
the proof. O

If B, = 0, in Theorem 3.1, we obtain the following corollary.

Corollary 3.2 ([6]). Let H be a Hilbert space, C be a nonempty closed convex subset of H such that C+C C C,andletT : C — H
be a k-strictly pseudo-contractive mapping with a fixed point for some 0 < k < 1. Let A be strongly positive bounded linear
operator on C with coefficient 7 > 0 and f : C — C be a contraction with the contractive constant (0 < « < 1) such that

O<y< g Let {x,} be the sequence generated by

{"1 €C, (3.10)

Xnt1 = oV f (Xp) + (I — 0z A)PcSX,,
where S : C — H is a mapping defined by Sx = kx + (1 — k)Tx. If the control sequence {a,} C (0, 1) satisfying
(1) limn—>oo a, =0,
(i) Yopey otn = 00,
(iii) 3,2 lotns1 — | < 0.

Then {x,} converges strongly to a fixed point p of T, which solves the following solution of variational inequality (1.9). O

Theorem 3.3. Let H be a Hilbert space, C be a nonempty closed convex subset of H such that C+£C C C,andT : C — Hbea
k-strictly pseudo-contractive mapping with a fixed point for some 0 < k < 1. Let A be strongly positive bounded linear operator

on C with coefficient 7 > 0 and f : C — C be a contraction with the contractive constant (0 < o < 1) suchthat0 < y < g
Let {x,} be the sequence generated by

X1 € C,
Xnt1 = oV f (Xn) + Buxn + (1 — B — anA)PcSxy,

where S : C — H is a mapping defined by Sx = kx + (1 — k)Tx. If the control sequence {c,}, {8,} C (0, 1) satisfying

(3.11)

(i) limy_ oo 0ty = 0,
(i) Y opey otn = 00,
(iii) Zﬁi] |otnp1 — apl < 00, Z,ﬁl | Byt — Bul < 00,
(iv) 0 < liminf,, o By < limsup,_, . Bn < 1.
Then {x,} converges strongly to a fixed point p of T, which solves the following solution of variational inequality (1.9).

Proof. In the proof of Theorem 3.1, we have that {x,} is bounded. We also obtain that {f (x,)} and {PcSx,} are bounded. Next,
we show that [|x,41 — X,|| — 0. Define the sequence z, = “”Vf(X”H((]]__’?S”n)l_a”A)PCSX”. such that X, 1 = Buxn + (1 — Bu)za,
n > 0. Observe that from the definition of z, we obtain

g 1Vf Xng1) + (1 = Bug 1) — an 1A)PcSXn i _ anyf (xn) + (1 = B)l — anA)PcSxy

V4 —Zn =
e 1= Bnt 1—pBn
. o1V f (Xns1) _ cn1Vf ) | a1y f (Xn) _ anyf(xn)
1- ,Bn+l 1- ,3n+1 1- ,3n+1 1-— ,Bn

(1 = B — anp1APcSXnp1 (1 = By )] — a1 APcSXn | (1 = Boy )] — an1A)PcSxn

+
1- ﬂn+1 1-— ,3n+1 1-— ,Bn+1
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_ ((1 = B — ayA)PcSxy ((1 = Bl — apA)PcSxy _ ((1 = B — ayA)PcSx,

1— Bnt 1— But 1— By
X — f(x X 1— I— A
_ 1y (FQnen) = f(xa)) + (@ _an)(yf( 1)) n ((1 = Bry1)] — ant )(PCSXn+1 ~ Pesxy)
1= Bnt 1= Bas 1= B
1— I — apA) — (1 — I — oA
n [((1 = Bny1) nt14) — (1 — Bp) nA)] (PeSx,)
1-— /3n+1
+ (1= Bl A)( ! ! )(PSX)
— —o — c .
T =B 18 "
Thus,
X —X X 1-— — Y
s — g < ConvelR =l I Gl (= B =) o
1-— :3n+1 1— ,3n+1 1— ,3n+1
1-— I —opqA) — (1 — I — oA
A= Bl =) = (A= Bl =0 oo
1— ,8n+1 1— ,8n+1
1 A1y |otnt1 — ol (1= Bnr1 — ant1y)
— PcSx < —F—|x —X M X — X
1_[3n||| cSxqll) < 1= Bons X541 all + 1= Bons yM + 1— B | P nll
n [Bnr1 — Bul + lany1 — anl¥] |AP:Sxa || + <(1 — Bn — ony) ‘ |Bnt1 — Bl ||PCSX,1||>
1- ,Bn—H (1 - ,Bn+1)(‘1 - ﬂn)
Opnp1y o |Qtny1 — ol An1Y
= ———||Xp41 — X —vyM Xne1 — Xnll — ———— |Xne1 — X
1= Bons %541 all + 1= Boe YM + || X041 nll 1= Bons X541 nll
n [Bnr1 — Bul + langr — an|V]M 4 <(1 — By — )| [Bnt1 — Bul M)
1-— ﬂn—H (1 - ﬂn+l)(1 - ,Bn)
where M = sup{||f (x,) || + ||[PcSxn|l + ||APcSXn|| + ||Xn+1 — Xa|| : n € N}. It follows that
1Zns1 = 2all = [Xnss — Xall < |othy1 — ol yM + [1Bns1 — Bul + lany1 — O‘nh’]M
1= Bur 1= Bnt1

+ ((1—/311—%)/)’(1 |,3n+1_/3n| M)

= Bnr)(1 = Bn)

Since Y12 |otn1 — ol < 00, Y pey |Bnt1 — Bul < 00, we have

lim sup(l|zn1 — zZnll — Xn41 — Xall) < 0. (3.12)

n—-oo

From 0 < liminf,_, o B, < limsup,_, . Bn < 1,(3.12) and Lemma 2.6, we have

lim [1zx — Xall = O. (3.13)
n—oo
We consider
X1 — Xpll = 1(1 = Br)zn — Buxn — Xall
= (1 - ﬂn)”zn - Xn”

then

lim ||[Xp41 — X[l = lim (1 — Bp)llza — xall = 0.

n—oo n—oo
Next, we show that lim,,_, , ||X;, — PcSx,|| = 0. We note that

IXn — PcSxnll < [1Xn — Xng1ll + [Xnp-1 — PcSxall

< 10 — Xnt1ll + anllyf (%a) — APcSxnll + BullXn — PcSxall, (3.14)

and hence

(1= Bu)llxn — PcSxull < l1Xn — Xnt1ll + anllyf (%n) — APcSxq |l
From o, — 0and lim,,_, o ||X341 — Xn || = 0, it follows that lim,_, oo ||X;, — PcSX, || = 0. From (3.1), we have, for any n, j € N,

Xn1 — PeSujll = llanyf () + Bnxn + ((1 — o)l — otnA)PcSxn — PcSuj||
= llon(yf (Xn) — APcSU) + Bn(xXn — PcSuy) 4 (1 = Bu)l — tnA) (PcSxn — PeSuy) |
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onllyf (xn) — APcSujll + Bullxn — PeSujll + (1 — Bn — an¥)|IPcSxn — PcSuj|
anllyf (xn) — APcSujl| + Bullxn — PeSusll + (1 — By — ) llxn — ujl

on([lyf (xn) — APcSUjll — V11xn — ti1) + Bullxn — PcSujll + (1 — Ba)llxn — il
Sn + Ballxn — PeSujll + (1 — Bo) lIxn — ujl

where 6, = a,(|lyf (xq) — APcSujll — V1Ixn — uj|). From limp_, o, oy = 0, we have §, — 0asn — oo. It follows that

IAIA

X041 = PS> = (8 + Ballxa — PeSull 4+ (1 = o) %0 — 15])?
= (Bullxa — PcSujll + (1 = Bu) X0 — j1D* + 2(BallXe — PeSujll + (1 = Ba) %n — j1)8n + 55
= B2lxa — PcSuj® 4+ (1 = Ba)?l1%n — ujl|* + 284 (1 — Bu)l1xa — PcSujl 1%, — ujll + o
where 0, = 2(Bnll%s — PcSuj|l + (1 — Bo)ll%n — u;])8y + 82 — 0asn — oo, and hence
X041 — PeSujl1® < B ll%n — PeSujll* + (1= B)* 10 — w1
+ B2 (1 = Bu) ([1X0 — PeSujl1® + [0 — 5]1%) + 0
= Ballxa — PeSuyl* + (1 = Bu) X — w11* + 0. (3.15)
From (3.25), we have
%0 — PeSujll* = 1| = Xn+1) + (a1 — PeSup)|1®
= |IXns1 — PcSujll* + 2{Xns1 — PcStj, Xn — Xni1) + X0 — Xnp1[I”
%41 = PeSujl1® 4 2[xas1 — PeSujll X0 — Xng1ll + 11X0 — Xoga |,

< Bullxa — PcSuj|l> 4+ (1 = Bu)llxn — will* + 0w + 2/|xns1 — PeSujll 1% — Xni1ll + X0 — Xnpa I

A

and hence
(1= Bu)llxa — PcSujll* < (1= Bo)llxn — uill* + 0w + 21Xns1 — PeSujll1xn — Xng1 | + X0 — Xap11I°.

For any Banach limit « and o, — 0, ||X5+1 — X, || — 0O, we have
fanll%n — PeSUi|1® < panllxn — w1, (3.16)
Since uj — x, = Jl,(yf(uj) + (I — A)PcSuj — x,) + (1 — })(PcSuj — Xp), we have
1 1
1= = ) Gon = PeSt) = (o — 1) + = (rf () + (1 = APSty = %),

It follows from Lemma 2.1(ii) that

1\? 1
(1 - ]f) %, — PcSu;ll* = || (xa — uj) + ]f(yf(u;) + (I — A)PcSu; — x,) |12

2
> 1% — ujll* + ;.((yf(uj) + (I — APcSU; — Xa), Xp — Uj)
2
= ||%, — uj]* + JT()/f(Uj) + (I — A)PcSuj — uj — (Xp — Uj), Xy — U;)
, 2 2
= |Ix; — ujl|* + ]f(yf(uj) + (I — A)PcSuj — uj, x, — uj) — 7<Xn — Uj, Xp — Uj)
2 2 2 2
= [l% — ull* + ;.(yf(uj) + (I — A)PcSu; — wj, X — Uj) — ]f.nxn —
2 , 2
= (177 ) 1o =l + S rF ) + 0 = APeSty = g, 30 — ). (317)

So, by (3.16) and (3.17), we have

1\2 5 1\2 5
1—;. lxn — ui||” > 1—7 [|PcSu; — Xy ||

2 2
> (1 - j) %2 — w* + ;(Vf(uj) + (I — A)PcSu; — uj, Xp — uj)
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and hence

| N

1
FHXH — | = = (yf (W) + (I — APcSu; — uj, %, — uj).

(.

This implies that

jfunllxn — 11 = pa(yf (W) + (I = A)PcSuy — j, Xy — ).
From Lemmas 2.8 and 2.10, u; — p € F(T) = F(PcS) as j — oo, we get

tn(Yf(p) — Ap, Xn —p) =0, (3.18)
where p is the solution of variational inequality (1.9). Next, we show that

lim sup(yf(p) — Ap, x, — p) <O,

n—oQo

where p € F(T), where p is the solution of variational inequality (1.9). From lim,_, » || X,+1 — X || = 0, we have

limsup [{yf(p) — Ap, Xp+1 — p) — (vf(p) —Ap, xn — p)| = 0. (3.19)
n—oo
Hence it follows from (3.18) and (3.19) and Lemma 2.11 that
limsup(yf(p) —Ap,x» —p) =0, (3.20)
n—oo

and from (3.14), we have
limsup(yf(p) — Ap, PcSxn, — p) = limsup(yf(p) — Ap, (PcSxn — Xn) + (X — P))
n— oo n—oo
= limsup(yf(p) — Ap,x, — p) < 0. (3.21)
n—oo

By the same argument as used in Theorem 3.1, we have that the sequence {x,} converges strongly to a fixed point p of T,
which is the solution of variational inequality (1.9). This completes the proof. O

Theorem 3.4. Let H be a Hilbert space, C be a nonempty closed convex subset of H such that C =C C C,and T; : C — H be
a k;-strictly pseudo-contractive mapping with a fixed point for some 0 < k; < 1 and ﬂ,N: 1 F(Ty) # 0. Let A be strongly positive
bounded linear operator on C with coefficient y > 0and f : C — C be a contraction with the contractive constant (0 < « < 1)
suchthat0 < y < g Let {x,} be the sequence generated by

x1 €C, (3.22)
Xnt1 = oV f (Xp) + Buxy + (1 — Bl — cyA)PcSxy,

where S : C — H is a mapping defined by Sx = kx + (1 — k)Ei’\’zln,-T,-x and k = max{k; : i = 1,2, ..., N}. If the control
sequence {a,}, {Bn} C (0, 1) satisfying
(l) limn—>oo ap = 0, limn—>oo lgn =0,
(i) Yopo;an = 00,
(i) Y002y lanst — ol < 00, Y02, Bt — Bal < 00,
N

Then {x,} converges strongly to a common fixed point p of {T;};_,, which solves the following solution of the variational
inequalities:

(A—yfp,p—x) <0, V¥xenl F(T. (323)

Proof. Define amappingT : C — HbyTx = Zf’zl n;T;x. By Lemmas 2.12 and 2.13, we conclude that : C — H is a k—strictly
pseudo-contractive mapping with k = max{k; : i=1,2,...,N}and F(T) = F(Z,'.V:] niT;) = 01”:1 F(T;). From Theorem 3.1,
we can obtain desired conclusion easily. This completes the proof. O

If B, = 0, Theorem 3.4 reduces to the following corollary.

Corollary 3.5 ([6]). Let H be a Hilbert space, K be a nonempty closed convex subset of H suchthat K+ K C K,andT; : K — H
be a k;-strictly pseudo-contractive mapping with a fixed point for some 0 < k; < 1 and ﬂ{": 1 F(Ty) # 0. Let A be strongly positive
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bounded linear operator on K with coefficient y > Oandf : K — K be a contraction with the contractive constant (0 < a < 1)
suchthat0 <y < g Let {x,} be the sequence generated by

3.24
Xni1 = oV f (Xn) + (I — oyA)PcSXy, (3.24)

{xl ek,
where S : K — H is a mapping defined by Sx = kx + (1 — k) Zf’zl niTix and k = max{k; : i = 1,2, ..., N}. If the control
sequence {ay}, {Bn} C (0, 1) satisfying

(i) limy_, oo 0ty = 0,
(i) Yoy otn = 00,
(iii) Y oy |1 — ol < 00,
N

then {x,} converges strongly to a common fixed point p of {T;};_;, which solves the following solution of the variational
inequalities:

N
((A=yf)p,p—x) < 0,¥x € [ |F(T).
i=1

From the proof of Theorem 3.3, we can obtain the following theorem.

Theorem 3.6. Let H be a Hilbert space, C a nonempty closed convex subset of H such that C £ C C C,andT; : C — H bea
k;-strictly pseudo-contractive mapping with a fixed point for some 0 < k; < 1 and ﬂf’: 1 F(Ty) # 0. Let A be strongly positive
bounded linear operator on C with coefficient y > 0 andf : C — C be a contraction with the contractive constant (0 < a < 1)
suchthat0 <y < g Let {x,} be the sequence generated by

x1€C,
{xn+1 — atayf (%) + B + (1 = Bl — auA)PcSxe, (325)

where S : C — H is a mapping defined by Sx = kx + (1 — k) ZL niTixand k = max{k; : i = 1,2, ..., N}. If the control
sequence {ay}, {Bn} C (0, 1) satisfying
(1) limy o0 0ty = 0,
(i) Yopeq on = 00,
(ifi) Y2y lotnsr — | < 00, 302 [Bns1 — Pal < 00,
(iv) 0 < liminfy o0 Bn < limsup,_, o Bn < 1.

Then {x,} converges strongly to a common fixed point p of {T; f’: 1» which solves the following solution of variational inequalities

(3.23).
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