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Abstract 

The purposes of this research are to create new knowledge of fixed point theorem and 

construct several new iterative approximation methods for approximating the fixed point of 

nonexpansive mappings, and to solve many mathematical problems in Hilbert . We introduce the 

proof of new convergence theorems of a new iterative approximation method for finding the common 

element of the set of common fixed points of nonexpansive mappings, the set solutions of the 

variational inequality problems for nonlinear mappings and the set of solutions of equilibrium 

problems in Hilbert space. Therefore, by using the previous result, an iterative algorithm for the 

solution of a optimization problems was obtained. 
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บทคัดยอ 

จุดประสงคของงานวิจัยน้ี คือ การสรางองคความรูใหมของทฤษฏีบทจุดตรึง และการสรางวธิกีาร

ประมาณคาแบบทําซํ้าชนิดใหมตางๆ เพื่อใชในการประมาณคาจุดตรึงของการสงแบบไมขยาย และเพื่อแกไข

ปญหาตางๆ ทางคณิตศาสตรในปริภูมิฮิลเบิรต เรานําเสนอวธิกีารพสิจูนทฤษฏีบทการลูเขาของวิธีการ

ประมาณคาแบบทําซํ้าแบบใหมสําหรับใชเพื่อการหาสมาชิกรวมของเซตของจุดตรึงของการสงแบบไมขยาย  

เซตคําตอบของอสมการเชิงแปรผันสําหรับการสงแบบไมเชิงเสน และเซตคําตอบของปญหาเชิงดุลยภาพ ใน

ปริภูมิฮิลเบิรต ดังน้ันโดยการใชผลลัพธท่ีไดมากอนหนาน้ีและข้ันตอนวิธีการแบบทําซํ้าทําใหไดคําตอบของ

ปญหาคาเหมาะสมท่ีสุด 

 

คําสําคัญ : วธิกีารประมาณคาแบบทําซํ้า / ปญหาอสมการเชิงแปรผัน/ปญหาเชิงดุลยภาพ/ การสงแบบไม 

ขยาย / ปญหาคาเหมาะสมท่ีสุด 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



บทท่ี 1 

บทนํา (Introduction) 
 

การศึกษาเกี่ยวกบัทฤษฎีการประมาณจุดตรึงและการประยุกตในปริภมูบิานาค มีผลงานเกีย่วของ

อยางมากมาย นับตั้งแต  Mann [18] (1953) ไดนิยามการหาสูตรของเมตริกโดยวิธีทําซํ้า ซ่ึงวิธีทําซํ้าแบบ

มานนไดมีการศึกษาเพิ่มเติมโดย Dotson [8] (1970) และ Senter และ Dotson [33] (1974) นอกจากการ

ประมาณจุดตรึงของ การสงแบบไมขยาย (nonexpansive) แลววธิกีารทําซํ้าแบบมานนยงัมีประโยชนในการ

ประมาณจุดตรึงของการสงแบบไมเปนเชิงเสนอื่นๆ เชน การสงแบบการหดเทียมอยางเขม (strongly 

pseudo-contractive)  ตอมาจะพบวาลําดับท่ีเกิดจากการทําซํ้าแบบมานนจะลูเข าสูจุดตรึงในกรณีท่ี T เปน

การสงลิฟชิททและการหดเทียมอยางเขม อยางไรก็ตามถา T เปนการสงแบบการหดเทียมแลวลําดับท่ีเกิด

จากวิธีทําซํ้าของมานนอาจจะไมลูเขาสูจุดตรึงของ T ดังน้ันจึงเปนไปไดท่ีจะประมาณจุดตรึงของ T ดวยลําดับ

ท่ีเกิดจากการทําซํ้าแบบอื่นๆ  

 วิธกีารทําซํ้าแบบ อิชิคาวา จึงไดถูกนําเสนอโดย Ishikawa [11] (1974) เพื่อประมาณหาจุดตรึง

สําหรับการสงแบบลิฟชิทท การหดตัวเทียม ท้ังน้ีเพราะวาในกรณีท่ี T เปนแคการสงหดเทียมวิธีทําซํ้าแบบ

มานนไมสามารถทําใหลําดับท่ีเกิดข้ึนลูเขาไปยังจุดตรึงของ T ได  

 ตอมา Schu [28] (1991) ไดปรับการทําซํ้าของมานนเพื่อประมาณจุดตรึงของการสงแบบไมขยายเชิง

เสนกํากับ (asymptotically nonexpansive) และปรับปรุงวิธีการทําซํ้าของอิชิคาวาเพื่อประมาณจุดตรึงของ

การสงแบบการหดเทียมเชิงเสนกํากับ จากท่ีกลาวมาขางตอนจะพบวาลําดับท่ีเกิดจากการทําซํ้าขอ งมานนจะ

ลูเขาสูจุดตรึงของการสง T อยางออน ในปริภูมิฮิลเบิรตดวย 

สาํหรับการศกึษาเกีย่วกบัอสมการแปรผนั (variational inequality) เร่ิมข้ึนในป  ค.ศ. 1964 โดย G. 

Stampacchia [32] และหลังจากน้ันเปนตนมาไดมีผลงานวิจัยท่ีเกี่ยวของกับหัวขอดังกลาวอยางมากมาย โดย

มีการพัฒนาการศึกษาท้ังเกี่ยวกับทฤษฎีบทและวิธีการเชิงตัวเลข (numerical method) เพื่อใหไดผลท่ีดีข้ึน 

ในท่ีน้ีจะกลาวถึงเฉพาะผลงานวิจัยท่ีสําคัญๆและปญหาท่ีผูดําเนินการวิจัยสนใจ ดังน้ี  

ให  H  เปนปริภูมิฮิลเบิรตโดยท่ี  ,⋅ ⋅  และ ⋅  แทนผลคณูภายใน (inner product) และ นอรม 

(norm) บน  H  ตามลําดับ  สําหรับสับเซตยอยปดท่ีไมเปนเซตวาง K  ของปริภูมิฮิลเบิรต H   ให  

:T K H→  เปนการสงแบบไมขยาย  (nonexpansive mapping)  และจะใชสัญลักษณ KP  แทน การฉาย 

(projection) ของ H  ไปยังเซตนูน K   

ในป 1964  G. Stampacchia [32] ไดศึกษาเกี่ยวกับการการหาคําตอบของอสมการซ่ึงเปน

แบบจําลองท่ีสามารถนําประยุกตใชไดในหลายๆแขนงวิชาท้ังวิทยาศาสตรบริสุทธิ์และวิทยาศาสตรประยุกต 

น่ันคอืหาสมาชิก u K∈  ซ่ึงทําให 

, 0Tu v u− ≥        สําหรับทุกๆ    v K∈ -------------------------------- (V) 

ซ่ึงอสมการดังกลาวเรียกวา อสมการแปรผัน (Variational inequalities)  และสมาชิก u K∈  จะ

เรียกวา คาํตอบของอสมการแปรผนั (V) โดย และไดแสดงความสัมพันธวา “ *u K∈  จะเปนคาํตอบของ

อสมการ (V)  ก็ตอเม่ือ *u  สอดคลองความสัมพันธ * * *[ ]Ku P u Tuρ= −   เม่ือ 0ρ >  เปนจํานวนจริง “ ซ่ึง



จากความสัมพันธดังกลาวขางตนจะเห็นวาคําตอบของอสมการแปรผัน (V) มีความสัมพันธกับการศึกษา

เกีย่วกบัการฉาย (projection) และจุดตรึง (fixed point) ของตัวดําเนินการ  ตัวอยางเชน Noor [24] ไดศึกษา 

วเิคราะห การกระทําซํ้าสามข้ันตอน (three-step iteration) เพื่อท่ีจะใชหาคําตอบใหกับ อสมการการแปรผัน  

สําหรับการสงแบบไมเปนเชิงเสนตางๆ กันออกไป ซ่ึง Noor [24] กไ็ดคนพบวา การกระทําซํ้าสามข้ันตอนน้ัน 

สามารถท่ีจะใชแกอสมการไดดกีวา การกระทําซํ้าสองข้ันตอน และ การกระทําซํ้าหน่ึงข้ันตอน นอกจากน้ัน

แลวคําตอบของอสมการแปรผัน  ยังเปนท่ีมาของการมีจุดตรึงของการสงแบบไมขยาย  เชน ในป 2004   Xu  

[42]  ไดแสดงวิธีการประมาณคาความหนืดสาํหรับการสงแบบไมขยายของการทําซํ้า 

Txxfx nnnn )1()(1 αα −+=+ เม่ือ 1≥n  และ )1,0(}{ ⊂nα  ลูเขาไปยังจุดตรึงของ T ตอมาในป Yao,  Liou 

และ C. Yao [44] ไดเสนอ Extragradient Methods  }{},{ nn yx  โดย   

nnnCn AxxPy λ−= (  

)(1 nnnCnnnnn AyxSPxux λγβα −++=+  

เม่ือ  }{},{},{ nnn γβα เปนลําดับใน [0, 1]  สําหรับเพื่อหาจุดตรึงรวมของเซตของจุดตรึงสําหรับการสงแบบ

ไมเปนเชิงเสนและสําหรับเซตของอสมการแปรผัน  สําหรับการสงทางเดียว ในป 2007 Yao และ Noor [45] 

ไดประมาณผลเฉลยของ การกระทําซํ้าแบบหนืดสาํหรับอสมการแปรผนั      ( New viscosity iterative 

methods for Variational inequality )  

xTxxfx
nrnnnnnn γβα ++=+ )(1  

สาํหรับ Cxf C ∈∏∈ 0, , }{},{},{ nnn γβα  เปนลําดับใน (0, 1) และ }{ nr  ไมมีขอบเขต แลว  }{ nx ลูเขาไป

ยังผลเฉลยของสมการแปรผัน   

สําหรับการศึกษาเกี่ยวกับปญหาความเหมาะสมแบบคอนเวกซ (The convex feasibility problem 

(CFP))   น่ันคอื สาํหรับปริภมูบิานาค E และ NCCC ,...,, 21  ท่ีเปนเซตของจุดตรึงของการสงแบบไม

ขยาย NTTT ,...,, 21  ตามลําดับ แลว ปญหาความเปนไปไดแบบคอนเวกซ (The convex feasibility 

problem (CFP))   คือ ถามี Ex∈  ซ่ึงทําให  

i

N

i

Cx 
1=

∈  

เม่ือ 1≥N   ไดเร่ิมมีการศึกษาข้ึนในป ค.ศ. 1967  โดย  ฮาลเพิล (Halpern)  ตอมาในป  1977  Lions [10] 

ไดพสิจูนวา กระบวนการทําซํ้า }{ nx สาํหรับการสงแบบไมขยาย NTTT ,...,, 21   กําหนดโดย  

nnnnn xTyx 1111 )1( ++++ −+= λλ       (1) 

เม่ือ Ex ∈0  และ Ey∈  เปนสมาชิกใดๆ และ Nkk TT mod=  สาํหรับ Nk ≥  และ 0lim 2
1

1 =
−

+

+

∞→
n

nn

n λ
λλ

  แลว 
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CHAPTER 2

PRELIMINARIES

In this chapter, we give some defnitions, notations, and some useful results that will be used
in the later chapters.

2.1 Basic results.

Definition 2.1.1. Let X be a linear space over the field K, where K denoted for either R or C. A
function ‖ · ‖ : X → R is said to be a norm on X if it satisfies the following conditions:

(i) ‖x‖ ≥ 0 , ∀x ∈ X;

(ii) ‖x‖ = 0 ⇔ x = 0;

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X;

(iv) ‖αx‖ = |α|‖x‖, ∀x ∈ X and ∀α ∈ K.

Definition 2.1.2. Let X be a linear space over the field K. A function 〈·, ·〉 : X ×X → K that assigns
each ordered pair (x, y) of vectors in X to a scalar 〈x, y〉 is said to be an inner product on X if it
satisfies the following conditions:

(i) 〈x, x〉 ≥ 0, ∀ x ∈ X and < x, x >= 0 ⇔ x = 0;

(ii) 〈x, y〉 = 〈y, x〉, ∀ x, y ∈ X;

(iii) 〈αx, y〉 = α〈x, y〉, ∀ x, y ∈ X and ∀α ∈ K;

(iv) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉, ∀ x, y, z ∈ X .

Definition 2.1.3. A sequence {xn} in a normed space X is said to be strongly

convergent ( or convergent in norm ) if there exists x ∈ X such that

lim
n→∞

‖xn − x‖ = 0 denoted by xn → x.

Definition 2.1.4. A sequence {xn} in a normed space X is said to be weakly

convergent if there exists an element x ∈ X such that

lim
n→∞

f(xn) = f(x),

for all f ∈ X∗ where X∗ is the dual space. Denoted by xn ⇀ x or ω − lim
n→∞

xn = x.
It is clear that strong convergence implies weak convergence. And in a finite dimension normed space,
weak convergence implies strong convergence.

Definition 2.1.5. A norm space X is said to be a complete norm space if every Cauchy sequence in
X is a convergent sequence in X .

Definition 2.1.6. A complete norm linear space over the field IK is called a Banach space over K.
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Definition 2.1.7. A subset C of a linear space X over the field IK is convex if for any x, y ∈ C

implies
M = {z ∈ X : z = αx + (1− α)y, 0 < α < 1} ⊂ C.

(M is called closed segment with boundary point x, y) or a subset C of X is convex if every
x, y ∈ C the segment joining x and y is contained in C.

Definition 2.1.8. A subset M of X is said to be weakly compact if every sequence {xn} in M

contains a subsequence converging weakly to some point in M .

Theorem 2.1.9. Let {xn} be a sequence in extended real numbers and let b = lim sup
n→∞

xn. Then

(1) r > b ⇒ xn < r ultimately;

(2) r < b ⇒ xn > r frequently.

Ultimately means from some index onward ; frequently means for infinitely many indices.

Theorem 2.1.10. Let {xn} be a sequence in extended real numbers and let c = lim inf
n→∞ xn. Then

(1) r < c ⇒ xn > r ultimately;

(2) r > c ⇒ xn < r frequently.

Definition 2.1.11. Let X be a Banach space and let C be a nonempty subset of X. A mapping
T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

Definition 2.1.12. Let X be a Banach space and let C be a nonempty subset of X. A mapping
T : C → C is said to be asymptotically nonexpansive if, for each n ≥ 1, there exists a sequence
of positive real numbers {kn} with kn → 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ C.

Definition 2.1.13. Let X be a Banach space and let C be a nonempty subset of X. A mapping
T : C → C is said to be asymptotically quasi−nonexpansive mapping if there exists un ∈ [0, +∞),

with limn→∞ un = 0, such that

‖Tnx− p‖ ≤ (1 + un)‖x− p‖,

for all x ∈ C and for all p ∈ F (T ), and n ∈ N.

Definition 2.1.14. Let X be a Banach space and let C be a nonempty subset of X. A mapping
T : C → C is said to be asymptotically nonexpansive type if TN is continuous for some integer
N ≥ 1 and

lim sup
n→∞

[sup{‖Tnx− Tny‖ − ‖x− y‖ : y ∈ C}] ≤ 0 for each x ∈ C.
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Definition 2.1.15. Let X be a Banach space and let C be a nonempty subset of X. A mapping
T : C → C. A mapping T is called an asymptotically nonexpansive

mapping in the intermediate sense provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0.

Definition 2.1.16. Let C be a nonempty subset of a real normed space X . Let P : X → C be a
nonexpansive retraction of X onto K i.e.,

‖Px− Py‖ ≤ ‖x− y‖

for all x, y ∈ X and Px = x for all x ∈ C, then C is said to be nonexpansive retract.

Definition 2.1.17. Let C be a nonempty subset of a real normed space X . Let P : X →
C be a nonexpansive retraction of X onto C. A nonself-mapping T : C → X is called an
asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞
such that for every n ∈ N,

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖ for every x, y ∈ C.

T is said to be uniformly L− Lipschitzian if there exists a constant L > 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖ for every x, y ∈ C.

Definition 2.1.18. Let C be a nonempty subset of a real Banach space X . A mapping T : C → X is
called asymptotically nonexpansive in the intermediate sense nonself −mapping provided T is
uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T (PT )n−1x− T (PT )n−1y‖ − ‖x− y‖) ≤ 0,

where P is a nonexpansive retraction of X onto C.

Definition 2.1.19. A mapping T : C → H is said to be k-strictly pseudo-contractive if there exists a
constant k ∈ (0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C. (2.1.1)

Definition 2.1.20. A mapping T : C → C is an asymptotically k-strict pseudo-contractive mapping if
there exists a constant 0 ≤ k < 1 satisfying

‖Tnx− Tny‖2 ≤ kn‖x− y‖2 + k‖(I − Tn)x− (I − Tn)y‖2, (2.1.2)

for all x, y ∈ C and for all n ∈ N where γn ≥ 0 for all n such that limn→∞ kn = 1.

Definition 2.1.21. Let X be a Banach space. An element x ∈ X is said to be a fixed point of a
mapping T : X → X if Tx = x.

Definition 2.1.22. A mapping f : C → C is demiclosed at y if for each {xn} ⊂ C with xn ⇀ x and
f(xn) → y, then f(x) = y .
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Definition 2.1.23. Let M be the set a mapping f : M → R is weak lower semi− continuous if

f(x) ≤ lim inf
n→∞

f(xn) whenever xn ⇀ x in M.

Recall also that a one-parameter family T = {T (t) : 0 ≤ t < ∞} of self-mappings of a nonempty
closed convex subset C of a Hilbert space H is said to be a (continuous) Lipschitian semigroup on
C (see, e. g., [41]) if the following conditions are satisfied:

(i) T (0)x = x, x ∈ C,

(ii) T (t + s)x = T (t)T (s)x, t, s ≥ 0, x ∈ C,

(iii) for each x ∈ C, the map t 7→ T (t)x is continuous on [0,∞),

(iv) there exists a bounded measurable function L : (0,∞) → [0,∞) such that, for each t > 0,

‖T (t)x− T (t)y‖ ≤ Lt‖x− y‖, x, y ∈ C.

A Lipschitzian semigroup T is called nonexpansive (or a contraction

semigroup) if Lt = 1 for all t > 0, and asymptotically nonexpansive if lim supt→∞ Lt ≤ 1,
respectively. We use F (T ) to denote the common fixed point set of the semigroup; that is Fix(T ) =

{x ∈ C : T (t)x = x, t > 0}.

2.2 Useful lemmas.

Lemma 2.2.1. Let H be a real Hilbert space. Then for any x, y ∈ H we have

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉

(ii) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, x〉

(iii) ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2

(iv) ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, ∀t ∈ [0, 1].

Lemma 2.2.2. [40] Let {an} be a sequence of nonnegative real numbers, satisfying the property,

an+1 ≤ (1− γn)an + bn, n ≥ 0,

where {γn} ⊂ (0, 1), and {bn} is a sequence in R such that:

i) Σ∞
n=1γn = ∞;

ii) lim supn→∞
bn
γn
≤ 0 or Σ∞

n=1|bn| < ∞.

Then limn→∞ an = 0.

Lemma 2.2.3. [27] Let C be a closed convex subset of a real Hilbert space H . Given x ∈ H and
y ∈ C. Then y = PCx if and only if there holds the inequality

〈x− y, y − z〉 ≥ 0, ∀z ∈ C.
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Lemma 2.2.4. [20] Let H be a Hilbert space, C be a nonempty closed convex subset of H , and
f : H → H be a contraction with coefficient 0 < α < 1, and A be a strongly positive linear bounded
operator with coefficient γ > 0. Then, for 0 < γ < γ

α ,

〈x− y, (A− γf)x−A(A− γf)y〉 ≥ (γ − γα)‖x− y‖2, x, y ∈ H.

That is, A− γf is strongly monotone with coefficient γ − γα.

Lemma 2.2.5. [20] Assume A is a strongly positive linear bounded operator on a Hilbert space H with
coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ.

Lemma 2.2.6. [31] Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be a
sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1− βn)yn + βnxn

for all integers n ≥ 0 and lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) ≤ 0. Then, limn→∞ ‖yn−xn‖ = 0.

Lemma 2.2.7. [47] Let H be a Hilbert space, C be a closed convex subset of H . If T is a k-strictly
pseudo-contractive mapping on C, then the fixed point set F (T ) is closed convex, so that the projection
PF (T ) is well defined.

Lemma 2.2.8. [47] Let H be a Hilbert space, C be a closed convex subset of H . Let T : C → H be
a k-strictly pseudo-contractive mapping with F (T ) 6= ∅. Then F (PCT ) = F (T ).

Lemma 2.2.9. [47] Let H be a Hilbert space, C be a closed convex subset of H . Let T : C → H be
a k-strictly pseudo-contractive mapping. Define a mapping S : C → H by Sx = λx + (1 − λ)Tx for
all x ∈ C. Then, as λ ∈ [k, 1), S is a nonexpansive mapping such that F (S) = F (T ).

Lemma 2.2.10. [20] Let H be a Hilbert space, C a nonempty closed convex subset of H . Let A

be a strongly positive linear bounded self-adjoint operator on H with coefficient γ > 0. Assume
that 0 < γ < γ

α . Let T : C → C be a nonexpansive mapping with fixed point xt of contraction
C 3 x 7→ tγf(x) + (1− tA)Tx. Then {xt} converges strongly to fixed point x̃ of T as t → 0, which
solves the following variational inequality:

〈(γf −A)x̃, z − x̃〉 ≤ 0, ∀z ∈ F (T ).

Let µ be a continuous linear functional on l∞ and s = (a0, a1, ...) ∈ l∞. We write µn(an)

instead of µ(s). We call µ a Banach limit if µ satisfies ‖µ‖ = µn(1) = 1 and µn(an+1) = µn(an) for
all (a0, a1, ...) ∈ l∞. If µ is a Banach limit, then we have the following:

(i) for all n ≥ 1, an ≤ cn implies µn(an) ≤ µn(cn),

(ii) µn(an+r) = µn(an) for any fixed positive integer r,

(iii) lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an for all s = (a0, a1, ...) ∈ l∞.

Lemma 2.2.11. [42] Let a ∈ R be a real number and a sequence {an} ⊂ l∞ satisfying the condition
µn(an) ≤ a for all Banach limits µ. If lim supn→∞(an+1 − an) ≤ 0, then lim supn→∞ an ≤ a.
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Lemma 2.2.12. [46] Let H be a Hilbert space, C a nonempty closed convex subset of H . For any
integer N ≥ 1, assume that, for each 1 ≤ i ≤ N , Ti : C → H be ki-strictly pseudo-contractive
mappings for some 0 ≤ ki < 1. Assume that {ηi}N

i=1 is a positive sequence such that ΣN
i=1ηi = 1.

Then ΣN
i=1ηiTi is a non-self-k-strictly pseudo-contractive mapping with k = max{ki : 1 ≤ i ≤ N}.

Lemma 2.2.13. [46] Let {Ti}N
i=1 and {ηi}N

i=1 be given as in Lemma 2.2.12. Suppose that {Ti}N
i=1 has

a common fixed point in C. Then F (ΣN
i=1ηiTi) = ∩∞i=1F (Ti).

Lemma 2.2.14. [14] Let T be an asymptotically k-strictly pseudo-contractive mapping defined on a
bounded closed convex subset C of a Hilbert space H . Assume that {xn} is a sequence in C with the
properties

(i) xn ⇀ z and

(ii) Txn − xn → 0.

Then (I − T )z = 0.

Lemma 2.2.15. [27] Let C be a closed convex subset of a real Hilbert space H . Given x ∈ H and
y ∈ C. Then y = PCx if and only if there holds the inequality

〈x− y, y − z〉 ≥ 0, ∀z ∈ C.

Lemma 2.2.16. [14] Assume that C is a closed convex subset of a Hilbert space H and let T : C → C

be an asymptotically k-strictly pseudo-contraction. Then for each n ≥ 1, Tn satisfies the Lipschitz
condition:

‖Tnx− T y‖ ≤ Ln‖x− y‖

for all x, y ∈ C, where Ln = k+
√

1+γn(1−k)

1−k .

Lemma 2.2.17. [13] Let C be a nonempty bounded closed convex subset of a Hilbert spaces H and
= = {T (t) : 0 ≤ t < ∞} be an asymptotically nonexpansive semigroup on C. If {xn} is a sequence in
C satisfying the properties

a) xn ⇀ z; and

b) lim supt→∞ lim supn→∞ ‖T (t)xn − xn‖ = 0,

then z ∈ F (=).

Lemma 2.2.18. [13] Let C be a nonempty bounded closed convex subset of a Hilbert space H and
= = {T (t) : 0 ≤ t < ∞} be an asymptotically nonexpansive semigroup on C. Then it holds that

lim sup
s→∞

lim sup
t→∞

sup
x∈C

∥∥∥∥1
t

∫ t

0
T (u)xdu− T (s)

(
1
t

∫ t

0
T (u)xdu

)∥∥∥∥ = 0.



CHAPTER 3

MAIN RESULTS

3.1 Strong convergence theorems for modified Mann for iteration method for asymptotically non-
expansive mapping

In this section, we prove strong convergence theorems by hybrid methods for asymptotically nonex-
pansive mappings in Hilbert spaces. Let C be a closed bounded convex subset of a Hilbert space H ,
T be an asymptotically nonexpansive mapping of C into itself and let x0 ∈ C. For C1 = C and
x1 = PC1(x0), define {xn} as follows way:

yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},

xn+1 = PCn+1x0, n ∈ N,

(3.1.1)

where θn = (1− αn)(k2
n − 1)(diamC)2 → 0 as n →∞ and 0 ≤ αn ≤ a < 1 for all n ∈ N.

Theorem 3.1.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H . Let T
be an asymptotically nonexpansive mapping of C into itself such that F (T ) 6= ∅ and let x0 ∈ C. For
C1 = C and x1 = PC1x0, Then {xn} generated by (3.1.1) converges strongly to z0 = PF (T )x0.

Proof. We first show that F (T ) ⊂ Cn for all n ∈ N, by induction. For any z ∈ F (T ) we have
z ∈ C = C1 hence F (T ) ⊂ C1. Let F (T ) ⊂ Ck for some k ∈ N. Then we have, for u ∈ F (T ) ⊂ Ck

‖yk − u‖2 = ‖αkxk + (1− αk)T kxk − u‖2

= ‖αk(xk − u) + (1− αk)(T kxk − u)‖2

= αk‖xk − u‖2 + (1− αk)‖T kxk − u‖2 − αk(1− αk)‖xk − T kxk‖2

≤ αk‖xk − u‖2 + (1− αk)‖T kxk − u‖2

≤ αk‖xk − u‖2 + (1− αk)k2
k‖xk − u‖2

= ‖xk − u‖2 + (αk + (1− αk)k2
k − 1)‖xk − u‖2

= ‖xk − u‖2 + (1− αk)(k2
k − 1)‖xk − u‖2

≤ ‖xk − u‖2 + (1− αk)(k2
k − 1)(diamC)2

= ‖xk − u‖2 + θk with θk → 0.

It follows that u ∈ Ck+1 and F (T ) ⊂ Ck+1, hence F (T ) ⊂ Cn for all n ∈ N. Next, we show that Cn

is closed and convex for all n ∈ N. It follows obvious that C1 = C is closed and convex. Suppose
that Ck is closed and convex for some k ∈ N. Let zm ∈ Ck+1 ⊂ Ck with zm → z. Since Ck is closed,
z ∈ Ck and ‖yk − zm‖2 ≤ ‖zm − xk‖2 + θk. Then

‖yk − z‖2 = ‖yk − zm + zm − z‖2
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= ‖yk − zm‖2 + ‖zm − z‖2 + 2〈yk − zm, zm − z〉

≤ ‖zm − xk‖2 + θk + ‖zm − z‖2 + 2‖yk − zm‖‖zm − z‖.

Taking m →∞,
‖yk − z‖2 ≤ ‖z − xk‖2 + θk.

Hence z ∈ Ck+1. Let x, y ∈ Ck+1 ⊂ Ck with z = αx + (1−α)y where α ∈ [0, 1]. Since Ck is convex,
z ∈ Ck and ‖yk − x‖2 ≤ ‖x− xk‖2 + θk, ‖yk − y‖2 ≤ ‖y − xk‖2 + θk, we have

‖yk − z‖2 = ‖yk − (αx + (1− α)y)‖2

= ‖α(yk − x) + (1− α)(yk − y)‖2

= α‖yk − x‖2 + (1− α)‖yk − y‖2 − α(1− α)‖(yk − x)− (yk − y)‖2

≤ α(‖x− xk‖2 + θk) + (1− α)(‖y − xk‖2 + θk)− α(1− α)‖y − x‖2

= α‖x− xk‖2 + (1− α)‖y − xk‖2 − α(1− α)‖(xk − x)− (xk − y)‖2 + θk

= ‖α(xk − x) + (1− α)(xk − y)‖2 + θk

= ‖xk − z‖2 + θk.

Then z ∈ Ck+1, it follows that Ck+1 is closed and convex. Hence Cn is closed and convex for all
n ∈ N. This implies that {xn} is well-defined. From xn = PCnx0, we have

〈x0 − xn, xn − y〉 ≥ 0, for all y ∈ Cn.

Since F (T ) ⊂ Cn, we have

〈x0 − xn, xn − u〉 ≥ 0 for all u ∈ F (T ) and n ∈ N. (3.1.2)

So, for u ∈ F (T ), we have

0 ≤ 〈x0 − xn, xn − u〉

= 〈x0 − xn, xn − x0 + x0 − u〉

= −〈xn − x0, xn − x0〉+ 〈x0 − xn, x0 − u〉

≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − u‖

This implies that
‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − u‖

hence
‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈ F (T ) and n ∈ N. (3.1.3)

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we also have

〈x0 − xn, xn − xn+1〉 ≥ 0 for all n ∈ N. (3.1.4)

So, for xn+1 ∈ Cn, we have, for n ∈ N
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0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −〈xn − x0, xn − x0〉+ 〈x0 − xn, x0 − xn+1〉

≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − xn+1‖

This implies that
‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − xn+1‖

hence
‖x0 − xn‖ ≤ ‖x0 − xn+1‖ for all n ∈ N. (3.1.5)

From (3.3.3) we have {xn} is bounded, limn→∞ ‖xn−x0‖ exists. Next, we show that ‖xn−xn+1‖ → 0.
In fact, from (3.3.4) we have

‖xn − xn+1‖2 = ‖(xn − x0) + (x0 − xn+1)‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉+ ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉+ ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈x0 − xn, x0 − xn〉 − 2〈x0 − xn, xn − xn+1〉+ ‖x0 − xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + ‖x0 − xn+1‖2.

Since limn→∞ ‖xn − x0‖ exists, we have that limn→∞ ‖xn − xn+1‖ = 0. On the other hand, xn+1 ∈
Cn+1 ⊂ Cn implies that

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn, (3.1.6)

which implies that
‖yn − xn+1‖ ≤ ‖xn − xn+1‖+

√
θn.

Further, we have

‖yn − xn‖ = ‖αnxn + (1− αn)Tnxn − xn‖

= (1− αn)‖Tnxn − xn‖.

From (3.3.7), we have

‖Tnxn − xn‖ = 1
(1−αn)‖yn − xn‖

≤ 1
(1−a)‖yn − xn‖

= 1
(1−a)‖yn − xn+1 + xn+1 − xn‖

≤ 1
(1−a)‖yn − xn+1‖+ 1

(1−a)‖xn+1 − xn‖

≤ 1
(1−a)(‖xn − xn+1‖+

√
θn) + 1

(1−a)‖xn+1 − xn‖

= 2
(1−a)‖xn − xn+1‖+ 1

(1−a)

√
θn.
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Hence
‖Tnxn − xn‖ ≤

2
(1− a)

‖xn − xn+1‖+
1

(1− a)

√
θn → 0.

Putting
k∞ = sup{kn : n ≥ 1} < ∞,

we deduce that

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn − Tn+1xn+1‖+ ‖Tn+1xn+1 − xn+1‖

+‖xn+1 − xn‖

≤ k∞‖xn − Tnxn‖+ ‖Tn+1xn+1 − xn+1‖+ (1 + k∞)‖xn − xn+1‖ → 0. (3.1.7)

By (3.3.10), Lemma 2.2.14 and boundedness of {xn} we obtain ∅ 6= ωw(xn) ⊂ F (T ). By the fact that
‖xn − x0‖ ≤ ‖z0− x0‖ for all n ≥ 0 where z0 = PF (T )(x0) and the weak lower semi-continuity of the
norm, we have

‖x0 − z0‖ ≤ ‖x0 − w‖ ≤ lim infn→∞ ‖x0 − xn‖

≤ lim supn→∞ ‖x0 − xn‖ ≤ ‖x0 − z0‖,

for all w ∈ ωw(xn). However, since ωw(xn) ⊂ F (T ), we must have w = z0 for all w ∈ ωw(xn). Thus
ωw(xn) = {z0} and then xn ⇀ z0. Hence, xn → z0 = PF (T )(x0) by

‖xn − z0‖2 = ‖xn − x0‖2 + 2〈xn − x0, x0 − z0〉+ ‖x0 − z0‖2

≤ 2(‖z0 − x0‖2 + 〈xn − x0, x0 − z0〉) → 0 as n →∞.
This complete the proof. �

Now, we present the strong convergence theorem of asymptotically nonexpansive semigroups on
C in a Hilbert space.

Suppose that T = {T (t) : 0 ≤ t < ∞} is an asymptotically nonexpansive semigroup defined on
a nonempty closed convex bounded subset C of a Hilbert space H . Recall that we use LT

t to denote the
Lipschitzian constant of the mapping T (t). In the rest of this section, we put L∞ = sup{LT

t } and we
use Fix(T ) to denote the fixed point set of T . Furthermore, we use F := Fix(T ) to denote the set of
fixed points of asymptotically nonexpansive semigroups. Note that the boundedness of C implies that
Fix(T ) is nonempty (see [40]) and we assume throughout in this theorem that the set of fixed point F
is nonempty. Let C be a closed bounded convex subset of a Hilbert space H , T = {T (t) : 0 ≤ t < ∞}
be asymptotically nonexpansive semigroup of self mappings of a nonempty closed convex sunset C of
a Hilbert space such that F 6= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0, defined {xn} as
follows way:

yn = αnxn + (1− αn) 1
λn

∫ λn

0 T (s)xnds,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n}, (1.8)

xn+1 = PCn+1x0, n ∈ N

(3.1.8)
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where θ̃n = (1 − αn)
[(

1
tn

∫ tn
0 Lsds

)2
− 1

]
(diamC)2 → 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for all

n ∈ N and λn →∞.

Theorem 3.1.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H . Let
T = {T (t) : 0 ≤ t < ∞} be a one-parameter asymptotically nonexpansive of C into itself such that
F := Fix(T ) 6= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0. Then {xn} generated by (3.1.8)
converges strongly to z0 = PFx0.

Proof. First, we observe that F (=) ⊂ Cn for all n ∈ N. Since F (=) ⊂ C = C1. Let F (=) ⊂ Ck for
some k ∈ N. For all z ∈ F (=) ⊂ Ck we have

‖yk − z‖2 =
∥∥∥αkxk + (1− αk) 1

λk

∫ λk

0 T (s)xkds− z
∥∥∥2

=
∥∥∥αk(xk − z) + (1− αk)( 1

λk

∫ λk

0 T (s)xkds− z)
∥∥∥2

≤ αk‖xk − z‖2 + (1− αk)
∥∥∥ 1

λk

∫ λk

0 T (s)xkds− z
∥∥∥2

≤ αk‖xk − z‖2 + (1− αk)
(

1
λk

∫ λk

0 ‖T (s)xk − z‖ds
)2

≤ αk‖xk − z‖2 + (1− αk)
(

1
λk

∫ λk

0 Ls‖xk − z‖ds
)2

≤ αk‖xk − z‖2 + (1− αk)
(

1
λk

∫ λk

0 Lsds
)2
‖xk − z‖2

≤ ‖xk − z‖2 + (1− αk)
(

1
λk

∫ λk

0 Lsds
)2

(diamC)2

= ‖xk − z‖2 + θ̃k

So, z ∈ Ck+1. Hence F (=) ⊂ Cn for all n ∈ N. By the same argument as in the proof of Theorem
3.1, Cn is closed and convex, {xn} is well-defined. Also, similar to the proof of Theorem 3.1, we can
show that

‖xn − xn+1‖ → 0. (3.1.9)

We can deduce that for all 0 ≤ t < ∞,

‖T (t)xn − xn‖ =
∥∥∥T (t)xn − T (t)

(
1

λn

∫ λn

0 T (s)xnds
)∥∥∥

+
∥∥∥T (t)

(
1

λn

∫ λn

0 T (s)xnds
)
− 1

λn

∫ λn

0 T (s)xnds
∥∥∥

+
∥∥∥ 1

λn

∫ λn

0 T (s)xnds− xn

∥∥∥
≤ (L∞ + 1)

∥∥∥ 1
λn

∫ λn

0 T (s)xnds− xn

∥∥∥
+

∥∥∥T (t)
(

1
λn

∫ λn

0 T (s)xnds
)
− 1

λn

∫ λn

0 T (s)xnds
∥∥∥

:= (L∞ + 1)An + Bn(t), (8)

where An :=
∥∥∥ 1

λn

∫ λn

0 T (s)xnds− xn

∥∥∥ and
Bn :=

∥∥∥T (t)
(

1
λn

∫ λn

0 T (s)xnds
)
− 1

λn

∫ λn

0 T (s)xnds
∥∥∥.
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We claim that

(i) limn→∞An = 0; and

(ii) lim supt→∞ lim supn→∞Bn(t) = 0.

By Lemma 2.2.17, we have that (ii) is true, while (i) is verified by the following argument. By the
definition of yn we have

An =
∥∥∥ 1

λn

∫ λn

0 T (s)xnds− xn

∥∥∥
= 1

1−αn
‖yn − xn‖

≤ 1
1−a‖yn − xn‖

≤ 1
1−a(‖yn − xn+1‖+ ‖xn+1 − xn‖). (9)

Since xn+1 ∈ Cn+1 ⊂ Cn, we have

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θ̃n

which in turn implies that

‖yn − xn+1‖ ≤ ‖xn − xn+1‖+
√

θ̃n.

It follows from (9) that

An ≤
1

1− a

(
2‖xn+1 − xn‖+

√
θ̃n

)
→ 0.

We thus conclude from (8) that

lim sup
t→∞

lim sup
n→∞

‖T (t)xn − xn‖ = 0.

We note that by Lemma 2.2.17 that every weak limit point of {xn} is a number of F (=). Repeating
the last of the proof of Theorem 2.2 [14], we can prove that ωw(xn) = {PF (=)}. Hence {xn} weakly
converges to PF (=), and therefore the convergence is strong. This complete the proof.

3.2 Strong convergence theorems of hybrid method for two asymptotically nonexpansive mappings

Let C be a closed bounded convex subset of a Hilbert space H , S and T be two asymptotically
nonexpansive mappings of C into H and let x0 ∈ H . For C1 = C and x1 = PC1x0, define {xn} as
follows way: 

yn = αnxn + (1− αn)Tnzn,

zn = βnxn + (1− βn)Snxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},

xn+1 = PCn+1x0, n ∈ N

(3.2.1)

where θn = (1 − αn)[(t2n − 1) + (1 − βn)t2n(s2
n − 1)](diamC)2 → 0 as n → ∞ and 0 ≤ αn ≤ a < 1

and 0 < b ≤ βn ≤ c < 1 for all n ∈ N.
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Theorem 3.2.1. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of
H . Let S, T : C → H be two asymptotically nonexpansive mappings with sequence {sn} and {tn}
respectively, and F = F (S) ∩ F (T ) 6= ∅. Let x0 ∈ H and {xn} be a sequence generated by (3.2.1).
Then {xn} converges strongly to z0 = PF x0.

Proof. Putting t∞ = sup{tn : n ≥ 1} < ∞ and s∞ = sup{sn : n ≥ 1} < ∞. We first show by
induction that F ⊂ Cn for all n ∈ N. For F ⊂ C1 is obvious. Suppose that F ⊂ Ck for some k ∈ N.
Let u ∈ F ⊂ Ck. Then, we have

‖yk − u‖2 = ‖αkxk + (1− αk)T kzk − u‖2

= ‖αk(xk − u) + (1− αk)(T kzk − u)‖2

= αk‖xk − u‖2 + (1− αk)‖T kzk − u‖2 − αk(1− αk)‖xk − T kzk‖2

≤ αk‖xk − u‖2 + (1− αk)‖T kzk − u‖2

≤ αk‖xk − u‖2 + (1− αk)t2k‖zk − u‖2. (3.1)
Similarly, we note that

‖zk − u‖2 = ‖βkxk + (1− βk)Skxk − u‖2

= ‖βk(xk − u) + (1− βk)(Skxk − u)‖2

= βk‖xk − u‖2 + (1− βk)‖Skxk − u‖2 − βk(1− βk)‖xk − Skxk‖2

≤ βk‖xk − u‖2 + (1− βk)s2
k‖xk − u‖2 − βk(1− βk)‖xk − Skxk‖2

≤ ‖xk − u‖2 + (1− βk)(s2
k − 1)‖xk − u‖2. (3.2)

From (3.1) and (3.2), we have

‖yk − u‖2 ≤ αk‖xk − u‖2 + (1− αk)t2k[‖xk − u‖2 + (1− βk)(s2
k − 1)‖xk − u‖2]

≤ αk‖xk − u‖2 + (1− αk)t2k‖xk − u‖2 + (1− αk)t2k(1− βk)(s2
k − 1)‖xk − u‖2

= ‖xk−u‖2−‖xk−u‖2 +αk‖xk−u‖2 + (1−αk)t2k‖xk−u‖2 + (1−αk)t2k(1−βk)(s2
k−

1)‖xk − u‖2

= ‖xk − u‖2 + (1− αk)(t2k − 1)‖xk − u‖2 + (1− αk)t2k(1− βk)(s2
k − 1)‖xk − u‖2

= ‖xk − u‖2 + (1− αk)[(t2k − 1) + t2k(1− βk)(s2
k − 1)]‖xk − u‖2

≤ ‖xk − u‖2 + (1− αk)[(t2k − 1) + t2k(1− βk)(s2
k − 1)](diamC)2

= ‖xk − u‖2 + θk

It follows that u ∈ Ck+1 and F ⊂ Ck+1. Hence F ⊂ Cn for all n ∈ N. Next, we show that Cn is
closed and convex for all n ∈ N. It obvious that C1 = C is closed and convex. Suppose that Ck is
closed and convex for some k ∈ N. Let {zm}∞m=1 ⊆ Ck+1 ⊂ Ck with zm → z as m → ∞. Since Ck

is closed and zm ∈ Ck+1, we have z ∈ Ck and ‖yk − zm‖2 ≤ ‖zm − xk‖2 + θk. Then

‖yk − z‖2 = ‖yk − zm + zm − z‖2
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= ‖yk − zm‖2 + ‖zm − z‖2 + 2〈yk − zm, zm − z〉

≤ ‖zm − xk‖2 + θk + ‖zm − z‖2 + 2‖yk − zm‖‖zm − z‖.

Taking m →∞,
‖yk − z‖2 ≤ ‖z − xk‖2 + θk.

Then z ∈ Ck+1 and hence Ck+1 is closed. Let x, y ∈ Ck+1 ⊂ Ck with z = αx + (1 − α)y

where α ∈ [0, 1]. Since Ck is convex, z ∈ Ck. Thus, we have ‖yk − x‖2 ≤ ‖x − xk‖2 + θk and
‖yk − y‖2 ≤ ‖y − xk‖2 + θk. Hence

‖yk − z‖2 = ‖yk − (αx + (1− α)y)‖2

= ‖α(yk − x) + (1− α)(yk − y)‖2

= α‖yk − x‖2 + (1− α)‖yk − y‖2 − α(1− α)‖(yk − x)− (yk − x)‖2

≤ α(‖x− xk‖2 + θk) + (1− α)(‖y − xk‖2 + θk)− α(1− α)‖y − x‖2

= α‖x− xk‖2 + (1− α)‖y − xk‖2 − α(1− α)‖(xk − x)− (xk − y)‖2 + θk

= ‖α(xk − x) + (1− α)(xk − y)‖2 + θk

= ‖xk − z‖2 + θk.

It follows that z ∈ Ck+1 and hence Ck+1 is closed and convex. Therefore Cn is closed and convex for
all n ∈ N. This implies that {xn} is well-defined. Since xn = PCnx0, it follows that

〈x0 − xn, xn − y〉 ≥ 0 (3.3)

for all y ∈ F ⊂ Cn and ∀n ∈ N. So, for u ∈ F , we have

0 ≤ 〈x0 − xn, xn − u〉 = −〈xn − x0, xn − x0〉+ 〈x0 − xn, x0 − u〉

≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − u‖.

This implies that
‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − u‖

and hence
‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈ F and n ∈ N. (3.4)

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we also have

〈x0 − xn, xn − xn+1〉 ≥ 0 for all n ∈ N. (3.5)

So, for xn+1 ∈ Cn, we have, for n ∈ N

0 ≤ 〈x0 − xn, xn − xn+1〉 = −〈xn − x0, xn − x0〉+ 〈x0 − xn, x0 − xn+1〉

≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − xn+1‖.

This implies that
‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − xn+1‖
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and hence
‖x0 − xn‖ ≤ ‖x0 − xn+1‖ for all n ∈ N. (3.6)

Since {‖x0 − xn‖} is bounded, limn→∞ ‖xn − x0‖ exists. Next, we show that ‖xn − xn+1‖ → 0. In
fact, from (3.5), we have

‖xn − xn+1‖2 = ‖(xn − x0) + (x0 − xn+1)‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉+ ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈x0 − xn, x0 − xn〉 − 2〈x0 − xn, xn − xn+1〉+ ‖x0 − xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + ‖x0 − xn+1‖2.

Since limn→∞ ‖xn − x0‖ exists, we have that limn→∞ ‖xn − xn+1‖ = 0. We now claim that
limn→∞ ‖Txn − xn‖ = 0 = limn→∞ ‖Sxn − xn‖. Indeed, by definition of yn, we have

‖yn − xn‖ = ‖αnxn − (1− αn)Tnzn − xn‖ = (1− αn)‖Tnzn − xn‖,
it follows that

‖Tnzn − xn‖ = 1
1−αn

‖yn − xn‖ ≤ 1
1−αn

(‖yn − xn+1‖+ ‖xn+1 − xn‖.
Since xn+1 ∈ Cn, ‖yn−xn+1‖2 ≤ ‖xn−xn+1‖2 +θn → 0 as n →∞, this implies that ‖Tnzn−xn‖ →
0 as n → ∞. We now show that ‖Snxn − xn‖ → 0. Let {‖Snkxnk

− xnk
‖} be any subsequence

of {‖Snxn − xn‖}. Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} such that

limj→∞ ‖xnkj
− u‖ = lim supk→∞ ‖xnk

− u‖ := a. We note that ‖xnkj
− u‖ ≤ ‖xnkj

− T
nkj znkj

‖ +

‖Tnkj znkj
− u‖ ≤ ‖xnkj

− T
nkj znkj

‖+ knkj
‖znkj

− u‖,∀j ≥ 1. This implies that

a = lim inf
j→∞

‖xnkj
− u‖ ≤ lim inf

j→∞
‖znkj

− u‖. (3.7)

By (3.2), we note that

‖znkj
− u‖ ≤ ‖xnkj

− u‖+ ((1− βnkj
)(s2

nkj
− 1))

1
2 ‖xnkj

− u‖

and hence
lim sup

j→∞
‖znkj

− u‖ ≤ lim sup
j→∞

‖xnkj
− u‖ := a. (3.8)

Therefore
lim

j→∞
‖znkj

− u‖ = a = lim
j→∞

‖xnkj
− u‖.

Furthermore by (3.2) again, we observe that

βnkj
(1− βnkj

)‖Snkj xnkj
− xnkj

‖2 ≤ ‖xnkj
− u‖2 − ‖znkj

− u‖2

+(1− βnkj
)(s2

nkj
− 1)‖xnkj

− u‖2

→ 0 as j →∞.

This implies that limj→∞ ‖Snkj xnkj
− xnkj

‖ = 0 and hence

lim
j→∞

‖Snxn − xn‖ = 0. (3.9)
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Next, we note that

‖xn − Tnxn‖ ≤ ‖xn − Tnzn‖+ ‖Tnzn − Tnxn‖ ≤ ‖xn − Tnzn‖+ kn‖zn − xn‖. (3.10)

Since

‖zn − xn‖ = ‖βnxn + (1− βn)Snxn − xn‖ = (1− βn)‖Snxn − xn‖ → 0 as n →∞,

and limn→∞ ‖Tnzn − xn‖ = 0, we have

lim
n→∞

‖xn − Tnxn‖ = 0. (3.11)

It follows that

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn − Tn+1xn+1‖+ ‖Tn+1xn+1 − xn+1‖

+‖xn+1 − xn‖

≤ t∞‖xn − Tnxn‖+ ‖Tn+1xn+1 − xn+1‖+ (1 + t∞)‖xn − xn+1‖

→ 0 as n →∞. (3.12)
Similarly, we have

‖Sxn − xn‖ → 0 as n →∞. (3.13)

By (3.12), (3.13), Lemma 2.2 and the boundedness of {xn}, we have ∅ 6= ωw(xn) ⊂ F . Since
z0 = PF x0, z0 ∈ F ⊂ Cn and xn = PCnx0 by the definition of P , we obtain

‖x0 − xn‖ = ‖x0 − PCnx0‖ ≤ ‖x0 − z0‖ for all n ≥ 0. (3.14)

Let w ∈ ωw(xn), by weak lower semi continuous of the norm, we have

‖w − x0‖ ≤ lim inf
n

‖xn − x0‖ ≤ ‖z0 − x0‖. (3.15)

Similarly, for z0 = PF x0 and w ∈ ωw(xn) ⊂ F , it follows that

‖x0 − z0‖ = ‖x0 − PF x0‖ ≤ ‖x0 − w‖, for w ∈ F. (3.16)

From (3.15) and (3.16), this implies that z0 = w thus ωw(xn) = {z0} and then xn ⇀ z0, and we note
that

‖xn − z0‖2 = ‖xn − x0 + x0 − z0‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − z0〉+ ‖x0 − z0‖2

≤ ‖z0 − x0‖2 − 2〈x0 − xn, x0 − z0〉+ ‖x0 − z0‖2

= 2‖z0 − x0‖2 − 2〈x0 − xn, x0 − z0〉 → 0 as n →∞.

Hence, xn → z0 = PF x0. This complete the proof. 2

If S ≡ T , then Theorem 3.1 reduces to corollary.
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Corollary 3.2.2. [39] Let H be a Hilbert space and let C be a nonempty bounded closed convex subset
of H . Let T : C → C be an asymptotically nonexpansive mapping with sequence {tn}. Assume that
F (T ) 6= ∅ and let x0 ∈ H . For C1 = C and x1 = PC1x0, define a sequence {xn} of C as follows:

yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn}
xn+1 = PCn+1x0, n ∈ N

where θn = (1−αn)(t2n− 1)(diamC)2 → 0 as n →∞ and 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {xn}
converges strongly to z0 = PF (T )x0.

By the same as argument in the proof of Theorem 3.1, we obtain the following theorem.

Theorem 3.2.3. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of
H . Let S, T : C → H be two nonexpansive mappings and F = F (S)∩F (T ) 6= ∅ and let x0 ∈ H . For
C1 = C and x1 = PC1x0, define a sequence {xn} as follows:

yn = αnxn + (1− αn)Tzn,

zn = βnxn + (1− βn)Sxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N

where 0 ≤ αn ≤ a < 1 and 0 < b ≤ βn ≤ c < 1 for all n ∈ N. Then {xn} converges strongly to
z0 = PF x0.

If S = T , then Theorem 3.3 reduces to Theorem 1.1. totically nonexpansive semigroup on C in
a Hilbert spaces.

Suppose that T = {T (t) : 0 ≤ t < ∞} and S = {S(t) : 0 ≤ t < ∞} are two asymptotically
nonexpansive semigroups defined on a nonempty closed convex bounded subset C of a Hilbert space
H . Recall that we use LT

t and LS
t to denote the Lipschitzian constant of the mapping T (t) and S(t),

respectively. In the rest of this section, we put L∞ = sup{LT
t , LS

t : 0 < t < ∞} and we use Fix(T )

and Fix(S) to denote the common fixed point set of T and S, respectively. Furthermore we use
F := Fix(T ) ∩ Fix(S) to denote the set of common fixed points of two asymptotically nonexpansive
semigroups T and S. Note that the boundedness of C implies that Fix(T ) and Fix(S) are nonempty
(see [40]) and we assume throughout in this theorem that the set of two common fixed point F in
nonempty.

Theorem 3.2.4. Let H be a Hilbert space and let C be a nonempty closed bounded convex subset of
H . Let T = {T (t) : 0 ≤ t < ∞} and S = {S(t) : 0 ≤ t < ∞} be two asymptotically nonexpansive
semigroups on C such that F = F (T ) ∩ F (S) 6= ∅ and let x0 ∈ H . Let C1 = C, x1 = PC1x0 and
{xn} be a sequence defined by

yn = αnxn + (1− αn) 1
tn

∫ tn
0 T (t)zndt,

zn = βnxn + (1− βn) 1
sn

∫ sn

0 S(t)xndt,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n}
xn+1 = PCn+1x0, n ∈ N,
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where θ̃n = (1−αn)[(t̃2n−1)+(1−βn)t̃2n(s̃2
n−1)](diamC)2 → 0 as n →∞ (here t̃n = 1

tn

∫ tn
0 LT

t dt and s̃n =
1
sn

∫ sn

0 LS
t dt), 0 ≤ αn ≤ a < 1 and 0 < b ≤ βn ≤ c < 1 for all n ∈ N ∪ {0} and tn → ∞, sn → ∞.

Then {xn} converges strongly to z0 = PFx0.

Proof. First observe that F ⊂ Cn for all n ∈ N. For F ⊂ C = C1 is obvious. Suppose that F ⊂ Ck

for some k ∈ N. Let z ∈ F ⊂ Ck. Then we have

‖yk − z‖2 =
∥∥∥αk(xk − z) + (1− αk)( 1

tk

∫ tk
0 T (t)zkdt− z)

∥∥∥2

≤ αk‖xk − z‖2 + (1− αk)
∥∥∥ 1

tk

∫ tk
0 T (t)zkdt− z

∥∥∥2

≤ αk‖xk − z‖2 + (1− αk)
(

1
tk

∫ tk
0 ‖T (t)zk − z‖dt

)2

≤ αk‖xk − z‖2 + (1− αk)
(

1
tk

∫ tk
0 LT

t ‖zk − z‖dt
)2

≤ αk‖xk − z‖2 + (1− αk)
(

1
tk

∫ tk
0 LT

t dt
)2
‖zk − z‖2

≤ ‖xk − z‖2 + (1− αk)(t̃2n‖zk − z‖2 − ‖xk − z‖2). (3.17)
By Lemma 2.1, we have

‖zk − z‖2 = βk‖xk − z‖2 + (1− βk)‖ 1
sk

∫ sk

0 S(t)xkdt− z‖2

−βk(1− βk)‖xk − 1
sk

∫ sk

0 S(t)xkdt‖2

≤ βn‖xk − z‖2 + (1− βk)( 1
sk

∫ sk

0 ‖S(t)xk − z‖dt)2

−βk(1− βk)‖xk − 1
sk

∫ sk

0 S(t)xkdt‖2

≤ βn‖xk − z‖2 + (1− βk)( 1
sk

∫ sk

0  LS
t dt)2‖xk − z‖2

−βk(1− βk)‖xk − 1
sk

∫ sk

0 S(t)xkdt‖2

≤ ‖xk − z‖2 + (1− βk)(s̃2
k − 1)‖xk − z‖2. (3.18)

Substituting (3.18) in (3.17) yields,

‖yk − z‖2 ≤ ‖xk − z‖2 + (1− αk)(t̃2n[‖xk − z‖2

+(1− βk)(s̃2
k − 1)‖xk − z‖2]− ‖xk − z‖2)

≤ ‖xk − z‖2 + [(1− αk)(t̃2n − 1) + (1− αk)(1− βk)t̃2k(s̃2
k − 1)]‖xk − z‖2

≤ ‖xk − z‖2 + [(1− αk)(t̃2n − 1) + (1− αk)(1− βk)t̃2k(s̃2
k − 1)](diamC)2

≤ ‖xk − z‖2 + θ̃2
k.

It follows that z ∈ Ck+1. Hence F ⊂ Cn for all n ∈ N. Again, by using the same argument in the
proof of Theorem 3.1, we have Cn is closed and convex for all n ∈ N and

‖xn − xn+1‖ → 0. (3.19)
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We now claim that

lim sup
r→∞

lim sup
n→∞

‖T (r)xn − xn‖ = 0 = lim sup
r→∞

lim sup
n→∞

‖S(r)xn − xn‖.

Indeed, by definition of yn and xn+1 ⊂ Cn we have∥∥∥ 1
tn

∫ tn
0 T (t)zndt− xn

∥∥∥ = 1
1−αn

‖yn − xn‖

≤ 1
1−αn

(‖yn − xn+1‖+ ‖xn+1 − xn‖)

≤ 1
1−αn

(2‖xn+1 − xn+1‖+
√

θ̃n) → 0 as n →∞. (3.20)

We now show that lim supr→∞ lim supn→∞ ‖S(r)xn − xn‖ = 0.

Let
{
‖ 1

snk

∫ snk
0 S(t)xnk

dt− xnk
‖
}
be any subsequence of

{
‖ 1

sn

∫ sn

0 S(t)xndt− xn‖
}
. Since {xnk

} is
bounded, there is a subsequence {xnkj

} of {xnk
} such that

lim
j→∞

‖xnkj
− z‖ = lim sup

k→∞
‖xnk

− z‖ := a.

We observe that

‖xnkj
− z‖ ≤

∥∥∥∥xnkj
− 1

tnkj

∫ tnkj

0 T (t)znkj
dt

∥∥∥∥ +
∥∥∥∥ 1

tnkj

∫ tnkj

0 T (t)znkj
dt− z

∥∥∥∥
≤

∥∥∥∥xnkj
− 1

tnkj

∫ tnkj

0 T (t)znkj
dt

∥∥∥∥ + 1
tnkj

∫ tnkj

0 ‖T (t)znkj
− z‖dt

≤
∥∥∥∥xnkj

− 1
tnkj

∫ tnkj

0 T (t)znkj
dt

∥∥∥∥ + t̃n‖znkj
− z‖.

This implies that a = lim infj→∞ ‖xnkj
− z‖ ≤ lim infj→∞ ‖znkj

− z‖. By (3.18) we note that
‖znkj

− z‖ ≤ ‖xnkj
− z‖+ ((1− βnkj

)(s̃2
n − 1))

1
2 ‖xnkj

− z‖ and hence

lim sup
j→∞

‖znkj
− z‖ ≤ lim sup

j→∞
‖xnkj

− z‖ = a.

Therefore limj→∞ ‖znkj
− z‖ = a = limj→∞ ‖xnkj

− z‖. Furthermore, by (3.18) again, we observe that

βnkj
(1− βnkj

)‖xnkj
− 1

snkj

∫ snkj

0 S(t)xnkj
dt‖2 ≤ ‖xnkj

− z‖2 − ‖znkj
− z‖2

+(1− βnkj
)(s̃2

nkj
− 1)‖xnkj

− z‖2

→ 0 as j →∞.
This implies that limj→∞ ‖xnkj

− 1
snkj

∫ snkj

0 S(t)xnkj
dt‖ = 0 and hence

lim
n→∞

‖ 1
sn

∫ sn

0
S(t)xndt− xn‖ = 0. (3.21)

For all 0 ≤ r < ∞, we note that

‖S(r)xn − xn‖ ≤
∥∥∥S(r)xn − S(r)( 1

sn

∫ sn

0 S(t)xndt)
∥∥∥ +

∥∥∥ 1
sn

∫ sn

0 S(t)xndt− xn

∥∥∥
+

∥∥∥S(r)( 1
sn

∫ sn

0 S(t)xndt)− 1
sn

∫ sn

0 S(t)xndt
∥∥∥

≤ (L∞ + 1)
∥∥∥ 1

sn

∫ sn

0 S(t)xndt− xn

∥∥∥
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+
∥∥∥S(r)( 1

sn

∫ sn

0 S(t)xndt)− 1
sn

∫ sn

0 S(t)xndt
∥∥∥

:= (L∞ + 1)AS
n + BS

n (r), (3.22)

where AS
n :=

∥∥∥ 1
sn

∫ sn

0 S(t)xndt− xn

∥∥∥ and
BS

n (r) :=
∥∥∥S(r)( 1

sn

∫ sn

0 S(t)xndt)− 1
sn

∫ sn

0 S(t)xndt
∥∥∥. By (3.21) and Lemma 2.5, we have limn→∞AS

n =

0 = lim supr→∞ lim supn→∞BS
n (r). Moreover, we observe that∥∥∥xn − 1

tn

∫ tn
0 T (t)xndt

∥∥∥ ≤ ∥∥∥xn − 1
tn

∫ tn
0 T (t)zndt

∥∥∥
+

∥∥∥ 1
tn

∫ tn
0 T (t)zndt− 1

tn

∫ tn
0 T (t)xndt

∥∥∥
≤

∥∥∥xn − 1
tn

∫ tn
0 T (t)zndt

∥∥∥ + 1
tn

∫ tn
0 ‖T (t)zn − Ttxn‖dt

≤
∥∥∥xn − 1

tn

∫ tn
0 T (t)zndt

∥∥∥ + t̃n‖zn − xn‖.
Since ‖zn − xn‖ = (1− βn)‖ 1

sn

∫ sn

0 S(t)xndt− xn‖ → 0 and (3.20) we obtain

lim
n→∞

∥∥∥∥xn −
1
tn

∫ tn

0
T (t)xndt

∥∥∥∥ = 0. (3.23)

We can deduce that for all 0 ≤ r < ∞,

‖T (r)xn − xn‖ ≤
∥∥∥T (r)xn − T (r)

(
1
tn

∫ tn
0 T (t)xndt

)∥∥∥ +
∥∥∥ 1

tn

∫ tn
0 T (t)xndt− xn

∥∥∥
+

∥∥∥T (r)
(

1
tn

∫ tn
0 T (t)xndt

)
− 1

tn

∫ tn
0 T (t)xndt

∥∥∥
≤ (L∞ + 1)

∥∥∥ 1
tn

∫ tn
0 T (t)xndt− xn

∥∥∥
+

∥∥∥T (r)
(

1
tn

∫ tn
0 T (t)xndt

)
− 1

tn

∫ tn
0 T (t)xndt

∥∥∥
:= (L∞ + 1)AT

n + BT
n (r).

By (3.23) and Lemma 2.5, we have

lim
n→∞

AT
n = 0 = lim sup

r→∞
lim sup

n→∞
BT

n (r). (3.24)

From (3.22) and (3.24), we obtain

lim sup
r→∞

lim sup
n→∞

‖T (r)xn − xn‖ = 0 = lim sup
r→∞

lim sup
n→∞

‖S(r)xn − xn‖.

We note by Lemma 2.5 that every weak limit point of {xn} is a member of F . From xn ⇀ z0 = PFx0,
we have x0 − xn ⇀ x0 − z0 from H satisfies the Kadec-Klee property, it follows that

x0 − xn → x0 − z0.

So, we have
‖xn − z0‖ = ‖xn − x0 − (z0 − x0)‖ → 0 as n →∞.

Hence xn → z0. This complete the proof. 2

If S ≡ T , then S(t)xn = xn for all n ∈ N and for all t > 0. Hence 1
sn

∫ sn

0 S(u)xndu =

xn, zn = xn for all n ∈ N and therefore theorem 3.3 reduces to the following corollary.
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Corollary 3.2.5. [39] Let H be a Hilbert space and let C be a nonempty closed bounded convex subset
of H . Let T = {T (t) : 0 ≤ t < ∞} and be an asymptotically nonexpansive semigroup on C such that
F (T ) 6= ∅ and let x0 ∈ H . For C1 = C and x1 = PC1x0, define a sequence {xn} of C as follows:

yn = αnxn + (1− αn) 1
tn

∫ tn
0 T (t)xndt,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n}
xn+1 = PCn+1x0, n ∈ N

where θ̃n = (1− αn)(t̃2n − 1)(diamC)2 → 0 as n → ∞ (here t̃n = 1
tn

∫ tn
0 LT

t dt, 0 ≤ αn ≤ a < 1 for
all n ∈ N ∪ {0} and tn →∞, sn →∞. Then {xn} converges strongly to z0 = PF (T )x0.

By the same as argument in the proof of Theorem 3.4, we obtain the following theorem.

Theorem 3.2.6. Let H be a Hilbert space and let C be a nonempty closed bounded convex subset of
H . Let T = {T (t) : 0 ≤ t < ∞} and S = {S(t) : 0 ≤ t < ∞} be two nonexpansive semigroups on C

such that F = F (T ) ∩ F (S) 6= ∅ and let x0 ∈ H . Let C1 = C, x1 = PC1x0 define a sequence {xn}
as follows: 

yn = αnxn + (1− αn) 1
tn

∫ tn
0 T (t)zndt,

zn = βnxn + (1− βn) 1
sn

∫ sn

0 S(t)xndt,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N

where 0 ≤ αn ≤ a < 1 and 0 < b ≤ βn ≤ c < 1 for all n ∈ N and tn → ∞, sn → ∞. Then {xn}
converges strongly to z0 = PF x0.

If S = T , then Theorem 3.6 reduces to Theorem 1.2.

3.3 Strong convergence theorems of hybrid method for asymptotically k-strictly pseudo-contractive
mapping

In this section, we prove strong convergence theorems by hybrid methods for asymptotically
k-strict pseudo-contractive mappings in Hilbert spaces.

Theorem 3.3.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H . Let T
be an asymptotically k-strictly pseudo-contractive mapping of C into itself such that F (T ) 6= ∅ and let
x0 ∈ C. For C1 = C and x1 = PC1x0, define {xn} as follows way:

yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + [k − αn(1− αn)]‖xn − Tnxn‖+ θn},

xn+1 = PCn+1x0, n ∈ N,

(3.3.1)

where θn = (diamC)2(1−αn)γn → 0, (n →∞). Assume that the control sequence {αn}∞n=1 is chosen
so that lim supn→∞ αn < 1− k. Then {xn} generated by (3.3.1) converges strongly to z0 = PF (T )x0.
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Proof. We first show that F (T ) ⊂ Cn for all n ∈ N, by induction. For any z ∈ F (T ) we have
z ∈ C = C1 hence F (T ) ⊂ C1. Let F (T ) ⊂ Cm for each m ∈ N. Then we have, for u ∈ F (T ) ⊂ Cm

‖ym − u‖2 = ‖αmxm + (1− αm)Tmxm − u‖2

= ‖αm(xm − u) + (1− αm)(Tmxm − u)‖2

= αm‖xm − u‖2 + (1− αm)‖Tmxm − u‖2 − αm(1− αm)‖xm − Tmxm‖2

≤ αm‖xm−u‖2 + (1−αm)[(1 +γm)‖xm−u‖2 +k‖xm−Tmxm‖2]−αm(1−αm)‖xm−
Tmxm‖2

= (1 + (1− αm)γm)‖xm − u‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2

≤ ‖xm − u‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + (1− αm)γm‖xm − u‖2

≤ ‖xm − u‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm.

It follows that u ∈ Cm+1 and F (T ) ⊂ Cm+1, hence F (T ) ⊂ Cn for all n ∈ N. Next, we show that Cn

is closed and convex for all n ∈ N. It follows obvious that C1 = C is closed and convex. Suppose that
Cm is closed and convex for each m ∈ N. Let zj ∈ Cm+1 ⊂ Cm with zj → z. Since Cm is closed,
z ∈ Cm and ‖ym − zj‖2 ≤ ‖zj − xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm. Then

‖ym − z‖2 = ‖ym − zj + zj − z‖2

= ‖ym − zj‖2 + ‖zj − z‖2 + 2〈ym − zj , zj − z〉

≤ ‖zj−xm‖2 +[k−αm(1−αm)]‖xm−Tmxm‖2 +θm +‖zj−z‖2 +2‖ym−zj‖‖zj−z‖.

Taking j →∞,

‖ym − z‖2 ≤ ‖z − xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm.

Hence z ∈ Cm+1. Let x, y ∈ Cm+1 ⊂ Cm with z = αx + (1 − α)y where α ∈ [0, 1]. Since Cm is
convex, z ∈ Cm and ‖ym − x‖2 ≤ ‖x− xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm, ‖ym − y‖2 ≤
‖y − xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm, we have

‖ym − z‖2 = ‖ym − (αx + (1− α)y)‖2

= ‖α(ym − x) + (1− α)(ym − y)‖2

= α‖ym − x‖2 + (1− α)‖ym − y‖2 − α(1− α)‖(ym − x)− (ym − y)‖2

≤ α(‖x− xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm)

+(1− α)(‖y − xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm)− α(1− α)‖y − x‖2

= α‖x− xm‖2 + (1− α)‖y − xm‖2 − α(1− α)‖(xm − x)− (xm − y)‖2

+[k − αm(1− αm)]‖xm − Tmxm‖2 + θm

= ‖α(xm − x) + (1− α)(xm − y)‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm

= ‖xm − z‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm.
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Then z ∈ Cm+1, it follows that Cm+1 is closed and convex. Hence Cn is closed and convex for all
n ∈ N. This implies that {xn} is well-defined. From xn = PCnx0, we have

〈x0 − xn, xn − y〉 ≥ 0, for all y ∈ Cn.

Since F (T ) ⊂ Cn, we have

〈x0 − xn, xn − u〉 ≥ 0 for all u ∈ F (T ) and n ∈ N. (3.3.2)

So, for u ∈ F (T ), we have

0 ≤ 〈x0 − xn, xn − u〉 = 〈x0 − xn, xn − x0 + x0 − u〉

= −〈xn − x0, xn − x0〉+ 〈x0 − xn, x0 − u〉

≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − u‖.

This implies that
‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − u‖,

hence
‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈ F (T ) and n ∈ N. (3.3.3)

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we also have

〈x0 − xn, xn − xn+1〉 ≥ 0 for all n ∈ N. (3.3.4)

So, for xn+1 ∈ Cn, we have, for n ∈ N

0 ≤ 〈x0 − xn, xn − xn+1〉 = 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −〈xn − x0, xn − x0〉+ 〈x0 − xn, x0 − xn+1〉

≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − xn+1‖.

This implies that
‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − xn+1‖,

hence
‖x0 − xn‖ ≤ ‖x0 − xn+1‖ for all n ∈ N. (3.3.5)

From (3.3.3) we have {xn} is bounded, limn→∞ ‖xn−x0‖ exists. Next, we show that ‖xn−xn+1‖ → 0.
In fact, from (3.3.4) we have

‖xn − xn+1‖2 = ‖(xn − x0) + (x0 − xn+1)‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉+ ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉+ ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈x0 − xn, x0 − xn〉 − 2〈x0 − xn, xn − xn+1〉+ ‖x0 − xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2
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= −‖xn − x0‖2 + ‖x0 − xn+1‖2.

Since limn→∞ ‖xn − x0‖ exists, we have that

lim
n→∞

‖xn − xn+1‖ = 0. (3.3.6)

On the other hand, xn+1 ∈ Cn+1 ⊂ Cn implies that

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + [k − αn(1− αn)]‖xn − Tnxn‖2 + θn, (3.3.7)

By the definition of yn, we have

‖yn − xn‖ = ‖αnxn + (1− αn)Tnxn − xn‖

= (1− αn)‖Tnxn − xn‖.

From (3.3.7), we have

(1− αn)2‖Tnxn − xn‖2 = ‖yn − xn‖2

= ‖yn − xn+1 + xn+1 − xn‖2

≤ ‖yn − xn+1‖2 + ‖xn+1 − xn‖2 + 2‖yn − xn+1‖‖xn+1 − xn‖

≤ ‖xn − xn+1‖2 + [k − αn(1− αn)]‖xn − Tnxn‖2 + θn + ‖xn+1 − xn‖2

+2‖yn − xn+1‖‖xn+1 − xn‖

= [k − αn(1− αn)]‖xn − Tnxn‖2 + 2‖xn+1 − xn‖(‖xn+1 − xn‖+ ‖yn − xn+1‖) + θn.

It follows that

((1−αn)2− (k−αn(1−αn)))‖xn−Tnxn‖2 ≤ 2‖xn+1−xn‖(‖xn+1−xn‖+‖yn−xn+1‖)+θn.

Hence

(1− k − αn)‖Tnxn − xn‖ ≤ 2‖xn+1 − xn‖(‖xn+1 − xn‖+ ‖yn − xn+1‖) + θn. (3.3.8)

From lim supn→∞ αn < 1 − k, we can chosen ε > 0 such that αn ≤ 1 − k − ε for large enough n.
From (3.4.4) and (3.3.8), we have

lim
n→∞

‖Tnxn − xn‖ = 0. (3.3.9)

Next, we show that limn→∞ ‖Txn − xn‖ = 0. From Lemma 2.2.16, we have

‖Txn−xn‖ ≤ ‖Txn−Tn+1xn‖+‖Tn+1xn−Tn+1xn+1‖+‖Tn+1xn+1−xn+1‖+‖xn+1−xn‖

≤ L1‖xn − Tnxn‖+ ‖Tn+1xn+1 − xn+1‖+ (1 + Ln+1)‖xn − xn+1‖. (3.3.10)

From (3.4.4) and (3.4.6), we have
lim

n→∞
‖Txn − xn‖ = 0. (3.3.11)

By (3.3.10), Lemma 2.2.14 and boundedness of {xn} we obtain ∅ 6= ωw(xn) ⊂ F (T ). By the fact that
‖xn − x0‖ ≤ ‖z0− x0‖ for all n ≥ 0 where z0 = PF (T )(x0) and the weak lower semi-continuity of the
norm, we have
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‖x0 − z0‖ ≤ ‖x0 − w‖ ≤ lim infn→∞ ‖x0 − xn‖

≤ lim supn→∞ ‖x0 − xn‖ ≤ ‖x0 − z0‖,

for all w ∈ ωw(xn). However, since ωw(xn) ⊂ F (T ), we must have w = z0 for all w ∈ ωw(xn). Thus
ωw(xn) = {z0} and then xn ⇀ z0. Hence, xn → z0 = PF (T )(x0) by

‖xn − z0‖2 = ‖xn − x0‖2 + 2〈xn − x0, x0 − z0〉+ ‖x0 − z0‖2

≤ 2(‖z0 − x0‖2 + 〈xn − x0, x0 − z0〉) → 0 as n →∞.
This complete the proof. 2

Using this Theorem 3.4.1, we have the following corollaries.

Corollary 3.3.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H . Let
T be k-strictly pseudo-contractive mapping of C into itself for some 0 ≤ k < 1 such that F (T ) 6= ∅
and let x0 ∈ C. For C1 = C and x1 = PC1x0, defined {xn} as follows;

yn = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2},

xn+1 = PCn+1x0,

(3.3.12)

for all n ∈ N, where {αn} ⊂ [α, β] for some α, β ∈ [k, 1). Then {xn} generated by (3.4.9) converges
strongly to z0 = PF (T )x0.

Corollary 3.3.3. [12] Let H be a Hilbert space and let C be a nonempty closed convex subset of H .
Let T be an asymptotically nonexpansive mapping of C into itself such that F (T ) 6= ∅ and let x0 ∈ C.
For C1 = C and x1 = PC1x0, defined {xn} as follows;

yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},

xn+1 = PCn+1x0, n ∈ N,

(3.3.13)

where θn = (1 − αn)(k2
n − 1)(diamC)2 → 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for all n ∈ N. Then

{xn} generated by (3.4.8) converges strongly to z0 = PF (T )x0.

Corollary 3.3.4. ([39] Theorem 4.1) Let H be a Hilbert space and C be a nonempty closed convex
subset of H . Let T be a nonexpansive mapping of C into H such that F (T ) 6= ∅ and let x0 ∈ H . For
C1 = C and u1 = PC1x0, define a sequence {un} of C as follows:

yn = αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},

un+1 = PCn+1x0, n ∈ N,

(3.3.14)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {un} converges strongly to z0 = PF (T )x0.
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3.4 Strong convergence theorems for a new iterative method of k-strictly pseudo-contractive map-
pings

In this section, first we show that a mapping S : C → H defined by Sx = kx + (1 − k)Tx is
a nonexpansive mapping, where C a nonempty closed convex subset of a real Hilbert space H and
T : C → H be a k-strictly pseudo contractive mapping with a fixed point for some 0 ≤ k < 1. Let
x, y ∈ C and from Lemma 2.2.1 (iv), we have

‖Sx− Sy‖2 = ‖kx + (1− k)Tx− (ky + (1− k)Ty)‖2

= ‖k(x− y) + (1− k)(Tx− Ty)‖2

= k‖x− y‖2 + (1− k)‖Tx− Ty‖2 − k(1− k)‖(x− y)x− (Tx− Ty)‖2

= k‖x−y‖2+(1−k)(‖x−y‖2+k‖(I−T )x−(I−T )y‖2)−k(1−k)‖(x−y)x−(Tx−Ty)‖2

= ‖x− y‖2 + (1− k)k‖(I − T )x− (I − T )y‖2)− k(1− k)‖(I − T )x− (I − T )y‖2

≤ ‖x− y‖2.

Hence ‖Sx − Sy‖ ≤ ‖x − y‖. Then S is a nonexpansive mapping and we have PCS is also
nonexpansive where PC is a metrics projection on C. For any j ∈ N, defined a mapping Sj : C → C

by Sjx = 1
j γf(x) + (I − 1

j A)PCSx. Let us show that Sj is contraction, let x, y ∈ C, we have

‖Sjx− Sjy‖ = ‖1
j γf(x) + (I − 1

j A)PCSx− (1
j γf(y) + (I − 1

j A)PCSy)‖

≤ 1
j γα‖x− y‖+ (1− 1

j γ)‖PCSx− PCSy‖

≤ 1
j γα‖x− y‖+ (1− 1

j γ)‖x− y‖

≤ (1− 1
j (γ − γα))(‖x− y‖.

Hence, Sj is a contraction. By Banach’s contraction principle there exists a unique fixed point
uj ∈ C such that

uj =
1
j
γf(uj) + (1− 1

j
A)PCSuj . (3.4.1)

Next, we prove the main results.

Theorem 3.4.1. Let H be a Hilbert space, C a nonempty closed convex subset of H such that
C ± C ⊂ C and T : C → H be a k-strictly pseudo-contractive mapping with a fixed point for some
0 ≤ k < 1. Let A be strongly positive bounded linear operator on C with coefficient γ > 0 and
f : C → C be a contraction with the contractive constant (0 < α < 1) such that 0 < γ < γ

α . Let {xn}
be sequence generated by;x1 ∈ C,

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)PCSxn,
(3.4.2)

where S : C → H is a mapping defined by Sx = kx+(1−k)Tx. If the control sequence {αn}, {βn} ⊂
(0, 1) satisfying
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(i) limn→∞ αn = 0, limn→∞ βn = 0,

(ii) Σ∞
n=1αn = ∞,

(iii) Σ∞
n=1|αn+1 − αn| < ∞, Σ∞

n=1|βn+1 − βn| < ∞.

Then {xn} converge strongly to a fixed point p of T , which solves the following solution of the
variational inequalities (3.3.1).

Proof. Note that from the condition limn→∞ αn = 0, we may assume, without loss of generality, that
αn ≤ (1− βn)‖A‖−1. Since A is a strongly positive bounded linear operator on H , then

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}.

Observe that

〈((1− βn)I − αnA)x, x〉 = 1− βn − αn〈Ax, x〉

≥ 1− βn − αn‖A‖

≥ 0,

that is to say (1− βn)I − αnA is positive. It follows that

‖(1− βn)I − αnA‖ = sup{〈((1− βn)I − αnA)x, x〉 : x ∈ H, ‖x‖ = 1}

= sup{1− βn − αn〈Ax, x〉 : x ∈ H, ‖x‖ = 1}

≤ 1− βn − αnγ.

We now observe that {xn} is bounded. Indeed pick any p ∈ F (T ) ∩ EP (F ), we have

‖xn+1 − p‖ = ‖αnγf(xn) + βnxn + ((1− βn)I − αnA)PCSxn − p‖

= ‖αn(γf(xn)−Ap) + βn(xn − p) + ((1− βn)I − αnA)(PCSxn − p)‖

≤ αn‖γf(xn)−Ap‖+ βn‖xn − p‖+ ‖((1− βn)I − αnA)‖‖PCSxn − p‖

≤ αn‖γf(xn)− γf(p) + γf(p)−Ap‖+ βn‖xn − p‖+ (1− βn − αnγ)‖‖xn − p‖

≤ αnγα‖xn − p‖+ αn‖γf(p)−Ap‖+ βn‖xn − p‖+ (1− βn − αnγ)‖‖xn − p‖

≤ αnγα‖xn − p‖+ αn‖γf(p)−Ap‖+ βn‖xn − p‖+ (1− βn − αnγ)‖‖xn − p‖

= (1− αn(γ − γα))‖xn − p‖+ αn‖γf(p)−Ap‖

= (1− αn(γ − γα))‖xn − p‖+ αn(γ − γα)‖γf(p)−Ap‖
(γ−γα) .

It follows from induction that

‖xn − p‖ ≤ max{‖x1 − p‖, ‖γf(p)−Ap‖
(γ − γα)

}, n ≥ 0,

and hence {xn} is bounded. We also obtain that {f(xn)} and {PCSxn} are bounded. From (3.4.1),
we have for any n, j ∈ N



31

‖xn+1 − PCSuj‖ = ‖αnγf(xn) + βnxn + ((1− βn)I − αnA)PCSxn − PCSuj‖

= ‖αn(γf(xn)−APCSuj) + βn(xn − PCSuj)

+((1− βn)I − αnA)(PCSxn − PCSuj)‖

≤ αn‖γf(xn)−APCSuj‖+βn‖xn−PCSuj‖+(1−βn−αnγ)‖PCSxn−PCSuj‖

≤ αn‖γf(xn)−APCSuj‖+ βn‖xn − PCSuj‖+ (1− βn − αnγ)‖xn − uj‖

= αn(‖γf(xn)−APCSuj‖−γ‖xn−uj‖)+βn‖xn−PCSuj‖+(1−βn)‖xn−uj‖

= δn + βn‖xn − PCSuj‖+ (1− βn)‖xn − uj‖

where δn = αn(‖γf(xn)−APCSuj‖−γ‖xn−uj‖), from limn→∞ αn = 0, we have δn → 0 as n →∞.
It follows that

‖xn+1 − PCSuj‖2 = (δn + βn‖xn − PCSuj‖+ (1− βn)‖xn − uj‖)2

= (βn‖xn−PCSuj‖+(1−βn)‖xn−uj‖)2+2(βn‖xn−PCSuj‖+(1−βn)‖xn−uj‖)δn+δ2
n

= β2
n‖xn−PCSuj‖2 + (1− βn)2‖xn−uj‖2 + 2βn(1− βn)‖xn−PCSuj‖‖xn−uj‖+ σn

where σn = 2(βn‖xn − PCSuj‖+ (1− βn)‖xn − uj‖)δn + δ2
n → 0 as n →∞, and hence

‖xn+1 − PCSuj‖2 ≤ β2
n‖xn − PCSuj‖2 + (1− βn)2‖xn − uj‖2 + βn(1− βn)(‖xn − PCSuj‖2

+‖xn − uj‖2) + σn

= βn‖xn − PCSuj‖2 + (1− βn)‖xn − uj‖2 + σn.

For any Banach limit µ and βn → 0, we have

µn‖xn − PCSuj‖2 = µn‖xn+1 − PCSuj‖2 ≤ µn‖xn − uj‖2. (3.4.3)

Since uj − xn = 1
j (γf(uj) + (I −A)PCSuj − xn) + (1− 1

j )(PCSuj − xn), thus we have

(1− 1
j

)(xn − PCSuj) = (xn − uj) +
1
j

(γf(uj) + (I −A)PCSuj − xn).

It follows from Lemma 2.2.1 (ii), that

(1− 1
j )2‖xn − PCSuj‖2 = ‖(xn − uj) + 1

j (γf(uj) + (I −A)PCSuj − xn)‖2

≥ ‖xn − uj‖2 + 2
j 〈(γf(uj) + (I −A)PCSuj − xn), xn − uj〉

= ‖xn − uj‖2 + 2
j 〈γfuj) + (I −A)PCSuj − uj − (xn − uj), xn − uj〉

= ‖xn−uj‖2+ 2
j 〈γf(uj)+(I−A)PCSuj−uj , xn−uj〉− 2

j 〈xn−uj , xn−uj〉

= ‖xn − uj‖2 + 2
j 〈γf(uj) + (I −A)PCSuj − uj , xn − uj〉 − 2

j ‖xn − uj‖2

= (1− 2
j

)‖xn−uj‖2 +
2
j
〈γf(uj)+(I−A)PCSuj−uj , xn−uj〉. (3.4.4)

So by (3.4.3) and (3.4.4), we have



32

(1− 1
j )2‖xn − uj‖2 ≥ (1− 1

j )2‖PCSuj − xn‖2

≥ (1− 2
j )‖xn − uj‖2 + 2

j 〈γf(uj) + (I −A)PCSuj − uj , xn − uj〉

and hence

1
j2 ‖xn − uj‖2 ≥ 2

j 〈γf(uj) + (I −A)PCSuj − uj , xn − uj〉.

This implies that

2
j µn‖xn − uj‖2 ≥ µn〈γf(uj) + (I −A)PCSuj − uj , xn − uj〉.

From Lemma 2.2.8 and 2.2.10, uj → p ∈ F (T ) = F (PCS) as j →∞, we get

µn〈γf(p)−Ap, xn − p〉 ≤ 0, (3.4.5)

and p which the solution of variational inequality (3.3.1). Since, {xn}, {f(xn)} and {PCSxn} are
bounded, we choose

M = sup{‖f(xn)‖+ ‖xn‖+ ‖PCSxn‖+ ‖APCSxn‖ : n ∈ N}.

On the other hand,

‖xn+2 − xn+1‖ = ‖αn+1γf(xn+1) + βn+1xn+1 + ((1− βn+1)I − αn+1A)PCSxn+1

−(αn+1γf(xn) + βnxn + ((1− βn)I − αnA)PCSxn)‖

= ‖αn+1γf(xn+1)−αn+1γf(xn)+αn+1γf(xn)−αnγf(xn)+βn+1xn+1−βn+1xn

+βn+1xn−βnxn+((1−βn+1)I−αn+1A)PCSxn+1−((1−βn+1)I−αn+1A)PCSxn

+((1− βn+1)I − αn+1A)PCSxn − ((1− βn)I − αnA)PCSxn‖

≤ αn+1γα‖xn+1−xn‖+|αn+1−αn|‖γf(xn)‖+βn+1‖xn+1−xn‖+|βn+1−βn|‖xn‖

+(1− βn+1 − αn+1γ)‖PCSxn+1 − PCSxn‖

+|[((1− βn+1)I − αn+1A)− ((1− βn)I − αnA)]‖PCSxn‖

≤ αn+1γα‖xn+1−xn‖+|αn+1−αn|‖γf(xn)‖+βn+1‖xn+1−xn‖+|βn+1−βn|‖xn‖

+(1−βn+1−αn+1γ)‖xn+1−xn‖+[|βn+1−βn|)‖PCSxn‖+|αn+1−αn|‖APCSxn‖

≤ (1− αn+1(γ − γα))‖xn+1 − xn‖+ |αn+1 − αn|γM + |βn+1 − βn|M

+[|βn+1 − βn|)M + |αn+1 − αn|M.

From (ii), (iii) and Lemma 2.2.2, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.4.6)

Next, we show that limn→∞ ‖xn − PCSxn‖ = 0. We consider

‖xn − PCSxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − PCSxn‖

≤ ‖xn − xn+1‖+ αn‖γf(xn −Ap‖+ βn‖xn − PCSxn‖.
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From, αn → 0, βn → 0 and (3.4.6), it follows that limn→∞ ‖xn − PCSxn‖ = 0.

Next, we show that

lim supn→∞〈γf(p)−Ap, xn − p〉 ≤ 0,

where p ∈ F (T ), which p the solution of variational inequality (??). From (3.4.6), we have

lim sup
n→∞

|〈γf(p)−Ap, xn+1 − p〉 − 〈γf(p)−Ap, xn − p〉| = 0. (3.4.7)

Hence it follows from (3.4.5), (3.4.7) and Lemma 2.2.11 that

lim sup
n→∞

〈γf(p)−Ap, xn − p〉 ≤ 0, (3.4.8)

and from limn→∞ ‖xn − PCSxn‖ = 0, we have

lim supn→∞〈γf(p)−Ap, PCSxn − p〉 = lim supn→∞〈γf(p)−Ap, (PCSxn − xn) + (xn − p)〉

= lim sup
→∞

〈γf(p)−Ap, xn − p〉 ≤ 0. (3.4.9)

Finally, we prove that xn → p as n →∞, we note that

‖xn+1 − p‖2 = ‖αnγf(xn) + βnxn + ((1− βn)I − αnA)PCSxn − p‖2

= ‖αn(γf(xn)−Ap) + βn(xn − p) + ((1− βn)I − αnA)(PCSxn − p)‖2

= ‖βn(xn − p) + ((1− βn)I − αnA)(PCSxn − p)‖2 + α2
n‖γf(xn)−Ap‖2

+2〈βn(xn − p) + ((1− βn)I − αnA)(PCSxn − p), αn(γf(xn)−Ap)〉

≤ (βn‖xn − p‖+ (1− βn − αnγ)‖PCSxn − p‖)2 + 2βnαn〈xn − p, (γf(xn)−Ap)〉

+α2
n‖γf(xn)−Ap‖2

+2(1− βn)αn〈(PCSxn − p), (γf(xn)−Ap)〉 − 2α2
n〈A(PCSxn − p), (γf(xn)−Ap)〉

≤ (βn‖xn−p‖+(1−βn−αnγ)‖xn−p‖)2+2βnαnαγ‖xn−p‖2+2βnαn〈xn−p, γf(p)−Ap)〉

+2(1− βn)αn〈(PCSxn − p), (γf(xn)−Ap)〉 − 2α2
n〈A(PCSxn − p), (γf(xn)−Ap)〉

+α2
n‖γf(xn)−Ap‖2

≤ (1− αnγ)2‖xn − p‖2 + 2βnαnαγ‖xn − p‖2 + 2βnαn〈xn − p, γf(p)−Ap)〉

+2(1− βn)αn〈(PCSxn − p), (γf(xn)−Ap)〉+ 3α2
nM

= (1− 2(γ − γα)αn)‖xn − p‖2 + (αnγ)2M + 2βnαnαγ‖xn − p‖2

+2βnαn〈xn − p, γf(p)−Ap)〉

+2(1− βn)αn〈(PCSxn − p), (γf(xn)−Ap)〉+ 3α2
nM

= (1− 2(γ − γα)αn)‖xn − p‖2 + αn[2βn〈xn − p, γf(p)−Ap)〉

+2(1− βn)〈(PCSxn − p), (γf(xn)−Ap)〉+ 3αnM + αnγ2M ]
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=: (1− γn)‖xn − p‖2 + bn

where γn = 2(γ− γα)αn and bn = αn[2βn〈xn− p, γf(p)−Ap)〉+ 2(1− βn)〈(PCSxn− p), (γf(xn)−
Ap)〉 + 3αnM + αnγ2M ]. From Σ∞

n=1αn = ∞, (3.4.8), (3.4.9), we have Σ∞
n=1γn = ∞ and

lim supn→∞
bn
γn
≤ 0. by Lemma 2.2.2, we have a sequence {xn} converges strongly to a fixed point p

of T which the solution of variational inequality (3.3.1). This completes the proof. 2

If βn ≡ 0, in Theorem 3.4.1, we obtain the following corollary.

Corollary 3.4.2. [46] Let H be a Hilbert space, C a nonempty closed convex subset of H such that
C ± C ⊂ C and T : C → H be a k-strictly pseudo-contractive mapping with a fixed point for some
0 ≤ k < 1. Let A be strongly positive bounded linear operator on C with coefficient γ > 0 and
f : C → C be a contraction with the contractive constant (0 < α < 1) such that 0 < γ < γ

α . Let {xn}
be sequence generated by; x1 ∈ C,

xn+1 = αnγf(xn) + (I − αnA)PCSxn,
(3.4.10)

where S : C → H is a mapping defined by Sx = kx+(1−k)Tx. If the control sequence {αn} ⊂ (0, 1)

satisfying

(i) limn→∞ αn = 0,

(ii) Σ∞
n=1αn = ∞,

(iii) Σ∞
n=1|αn+1 − αn| < ∞.

Then {xn} converge strongly to a fixed point p of T , which solves the following solution of the
variational inequalities (3.3.1).

2

Theorem 3.4.3. Let H be a Hilbert space, C a nonempty closed convex subset of H such that
C ± C ⊂ C and T : C → H be a k-strictly pseudo-contractive mapping with a fixed point for some
0 ≤ k < 1. Let A be strongly positive bounded linear operator on C with coefficient γ > 0 and
f : C → C be a contraction with the contractive constant (0 < α < 1) such that 0 < γ < γ

α . Let {xn}
be sequence generated by;x1 ∈ C,

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)PCSxn,
(3.4.11)

where S : C → H is a mapping defined by Sx = kx+(1−k)Tx. If the control sequence {αn}, {βn} ⊂
(0, 1) satisfying

(i) limn→∞ αn = 0,

(ii) Σ∞
n=1αn = ∞,

(iii) Σ∞
n=1|αn+1 − αn| < ∞, Σ∞

n=1|βn+1 − βn| < ∞,
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(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converge strongly to a fixed point p of T , which solves the following solution of the
variational inequalities (3.3.1).

Proof. In the proof of theorem 3.4.1 we have, {xn} is bounded. We also obtain that {f(xn)}
and {PCSxn} are bounded. Next, we show that ‖xn+1 − xn‖ → 0. Define the sequence zn =
αnγf(xn)+((1−βn)I−αnA)PCSxn

1−βn
, such that xn+1 = βnxn + (1 − βn)zn, n ≥ 0. Observe that from the

definition of zn we obtain

zn+1 − zn = αn+1γf(xn+1)+((1−βn+1)I−αn+1A)PCSxn+1

1−βn+1
− αnγf(xn)+((1−βn)I−αnA)PCSxn

1−βn

= αn+1γf(xn+1)
1−βn+1

− αn+1γf(xn)
1−βn+1

+ αn+1γf(xn)
1−βn+1

− αnγf(xn)
1−βn

+ ((1−βn+1)I−αn+1A)PCSxn+1

1−βn+1
− ((1−βn+1)I−αn+1A)PCSxn

1−βn+1
+ ((1−βn+1)I−αn+1A)PCSxn

1−βn+1

− ((1−βn)I−αnA)PCSxn

1−βn+1
+ ((1−βn)I−αnA)PCSxn

1−βn+1
− ((1−βn)I−αnA)PCSxn

1−βn

= αn+1γα(xn+1−xn)
1−βn+1

+ (αn+1 − αn)‖γf(xn+1)‖
1−βn+1

+ ((1−βn+1)I−αn+1A)
1−βn+1

(PCSxn+1 − PCSxn)

+[((1− βn+1)I − αn+1A)− ((1− βn)I − αnA)](PCSxn)

+((1− βn)I − αnA)( 1
1−βn+1

− 1
1−βn

)(PCSxn).

Thus,

‖zn+1−zn‖ ≤ |αn+1γα‖xn+1−xn‖
1−βn+1

+ |αn+1−αn|‖γf(xn+1)‖
1−βn+1

+ (1−βn+1−αn+1γ)
1−βn+1

‖PCSxn+1−PCSxn‖

+[(1− βn+1 − αn+1γ)− (1− βn − αnγ)]‖PCSxn‖+ ((1− βn − αnγ)| 1
1−βn+1

− 1
1−βn

|‖PCSxn‖

≤ αn+1γα
1−βn+1

‖xn+1 − xn‖+ |αn+1−αn|
1−βn+1

γM + (1−βn+1−αn+1γ)
1−βn+1

‖xn+1 − xn‖

+[|βn+1−βn|+ |αn+1−αn|γ]‖APCSxn‖+((1−βn−αnγ)| |βn+1−βn|
(1−βn+1)(1−βn)‖PCSxn‖

= αn+1γα
1−βn+1

‖xn+1 − xn‖+ |αn+1−αn|
1−βn+1

γM + ‖xn+1 − xn‖ − αn+1γ
1−βn+1

‖xn+1 − xn‖

+[|βn+1 − βn|+ |αn+1 − αn|γ]M + ((1− βn − αnγ)| |βn+1−βn|
(1−βn+1)(1−βn)M

where M = sup{‖f(xn)‖+ ‖PCSxn‖+ ‖APCSxn‖+ ‖xn+1 − xn‖ : n ∈ N}. It follows that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ | |αn+1−αn|
1−βn+1

γM + [|βn+1 − βn| + |αn+1 − αn|γ]M + ((1 − βn −
αnγ)| |βn+1−βn|

(1−βn+1)(1−βn)M.

Since Σ∞
n=1|αn+1 − αn| < ∞, Σ∞

n=1|βn+1 − βn| < ∞, we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.4.12)

From 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, (3.4.12) and Lemma 2.2.6, we have

lim
n→∞

‖zn − xn‖ = 0. (3.4.13)

We consider
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‖xn+1 − xn‖ = ‖(1− βn)zn − βnxn − xn‖

= (1− βn)‖zn − xn‖

then
lim

n→∞
‖xn+1 − xn‖ = lim

n→∞
(1− βn)‖zn − xn‖ = 0

Next, we show that limn→∞ ‖xn − PCSxn‖ = 0. We note that

‖xn − PCSxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − PCSxn‖

≤ ‖xn − xn+1‖+ αn‖γf(xn)−APCSxn‖+ βn‖xn − PCSxn‖, (3.4.14)

and hence

(1− βn)‖xn − PCSxn‖ ≤ ‖xn − xn+1‖+ αn‖γf(xn)−APCSxn‖,

from αn → 0 and limn→∞ ‖xn+1−xn‖ = 0, it follows that limn→∞ ‖xn−PCSxn‖ = 0. From (3.4.1),
we have for any n, j ∈ N

‖xn+1 − PCSuj‖ = ‖αnγf(xn) + βnxn + ((1− βn)I − αnA)PCSxn − PCSuj‖

= ‖αn(γf(xn)−APCSuj) + βn(xn − PCSuj) + ((1− βn)I − αnA)(PCSxn −
PCSuj)‖

≤ αn‖γf(xn)−APCSuj‖+βn‖xn−PCSuj‖+(1−βn−αnγ)‖PCSxn−PCSuj‖

≤ αn‖γf(xn)−APCSuj‖+ βn‖xn − PCSuj‖+ (1− βn − αnγ)‖xn − uj‖

= αn(‖γf(xn)−APCSuj‖−γ‖xn−uj‖)+βn‖xn−PCSuj‖+(1−βn)‖xn−uj‖

= δn + βn‖xn − PCSuj‖+ (1− βn)‖xn − uj‖

where δn = αn(‖γf(xn)−APCSuj‖−γ‖xn−uj‖), from limn→∞ αn = 0, we have δn → 0 as n →∞.
It follows that

‖xn+1 − PCSuj‖2 = (δn + βn‖xn − PCSuj‖+ (1− βn)‖xn − uj‖)2

= (βn‖xn−PCSuj‖+(1−βn)‖xn−uj‖)2+2(βn‖xn−PCSuj‖+(1−βn)‖xn−
uj‖)δn + δ2

n

= β2
n‖xn−PCSuj‖2 + (1−βn)2‖xn−uj‖2 + 2βn(1−βn)‖xn−PCSuj‖‖xn−

uj‖+ σn

where σn = 2(βn‖xn − PCSuj‖+ (1− βn)‖xn − uj‖)δn + δ2
n → 0 as n →∞, and hence

‖xn+1 − PCSuj‖2 ≤ β2
n‖xn − PCSuj‖2 + (1− βn)2‖xn − uj‖2

+βn(1− βn)(‖xn − PCSuj‖2 + ‖xn − uj‖2) + σn

= βn‖xn − PCSuj‖2 + (1− βn)‖xn − uj‖2 + σn. (3.4.15)

From (3.4.25), we have
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‖xn − PCSuj‖2 = ‖(xn − xn+1) + (xn+1 − PCSuj)‖2

= ‖xn+1 − PCSuj‖2 + 2〈xn+1 − PCSuj , xn − xn+1〉+ ‖xn − xn+1‖2

= ‖xn+1 − PCSuj‖2 + 2‖xn+1 − PCSuj‖‖xn − xn+1‖+ ‖xn − xn+1‖2,

≤ βn‖xn−PCSuj‖2 +(1−βn)‖xn−uj‖2 +σn +2‖xn+1−PCSuj‖‖xn−xn+1‖+

‖xn − xn+1‖2

and hence

(1−βn)‖xn−PCSuj‖2 ≤ (1−βn)‖xn−uj‖2+σn+2‖xn+1−PCSuj‖‖xn−xn+1‖+‖xn−xn+1‖2.

For any Banach limit µ and σn → 0, ‖xn+1 − xn‖ → 0, we have

µn‖xn − PCSuj‖2 ≤ µn‖xn − uj‖2. (3.4.16)

Since uj − xn = 1
j (γf(uj) + (I −A)PCSuj − xn) + (1− 1

j )(PCSuj − xn), thus we have

(1− 1
j

)(xn − PCSuj) = (xn − uj) +
1
j

(γf(uj) + (I −A)PCSuj − xn).

It follows from Lemma 2.2.1 (ii), that

(1− 1
j )2‖xn − PCSuj‖2 = ‖(xn − uj) + 1

j (γf(uj) + (I −A)PCSuj − xn)‖2

≥ ‖xn − uj‖2 + 2
j 〈(γf(uj) + (I −A)PCSuj − xn), xn − uj〉

= ‖xn − uj‖2 + 2
j 〈γfuj) + (I −A)PCSuj − uj − (xn − uj), xn − uj〉

= ‖xn−uj‖2+ 2
j 〈γf(uj)+(I−A)PCSuj−uj , xn−uj〉− 2

j 〈xn−uj , xn−uj〉

= ‖xn − uj‖2 + 2
j 〈γf(uj) + (I −A)PCSuj − uj , xn − uj〉 − 2

j ‖xn − uj‖2

= (1− 2
j

)‖xn−uj‖2+
2
j
〈γf(uj)+(I−A)PCSuj−uj , xn−uj〉. (3.4.17)

So by (3.4.23) and (3.4.17), we have

(1− 1
j )2‖xn − uj‖2 ≥ (1− 1

j )2‖PCSuj − xn‖2

≥ (1− 2
j )‖xn − uj‖2 + 2

j 〈γf(uj) + (I −A)PCSuj − uj , xn − uj〉

and hence

1
j2 ‖xn − uj‖2 ≥ 2

j 〈γf(uj) + (I −A)PCSuj − uj , xn − uj〉.

This implies that

2
j µn‖xn − uj‖2 ≥ µn〈γf(uj) + (I −A)PCSuj − uj , xn − uj〉.

From Lemma 2.2.8 and Lemma 2.2.10, uk → p ∈ F (T ) = F (PCS) as j →∞, we get

µn〈γf(p)−Ap, xn − p〉 ≤ 0, (3.4.18)

and p which the solution of variational inequality (3.3.1). Next, we show that
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lim supn→∞〈γf(p)−Ap, xn − p〉 ≤ 0,

where p ∈ F (T ), which p the solution of variational inequality (3.3.1). From limn→∞ ‖xn+1−xn‖ = 0,
we have

lim sup
n→∞

|〈γf(p)−Ap, xn+1 − p〉 − 〈γf(p)−Ap, xn − p〉| = 0. (3.4.19)

Hence it follows from (3.4.18), (3.4.19) and Lemma 2.2.11 that

lim sup
n→∞

〈γf(p)−Ap, xn − p〉 ≤ 0, (3.4.20)

and from (3.4.14), we have

lim supn→∞〈γf(p)−Ap, PCSxn − p〉 = lim supn→∞〈γf(p)−Ap, (PCSxn − xn) + (xn − p)〉

= lim sup
n→∞

〈γf(p)−Ap, xn − p〉 ≤ 0. (3.4.21)

By the same argument of final in Theorem 3.4.1, we have a sequence {xn} converges strongly to a
fixed point p of T which the solution of variational inequality (3.3.1). This completes the proof. 2

Theorem 3.4.4. Let H be a Hilbert space, C a nonempty closed convex subset of H such that
C ± C ⊂ C and Ti : C → H be a ki-strictly pseudo-contractive mapping with a fixed point for some
0 ≤ ki < 1 and ∩N

i=1F (Ti) 6= ∅. Let A be strongly positive bounded linear operator on C with
coefficient γ > 0 and f : C → C be a contraction with the contractive constant (0 < α < 1) such that
0 < γ < γ

α . Let {xn} be sequence generated by;x1 ∈ C,

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)PCSxn,
(3.4.22)

where S : C → H is a mapping defined by Sx = kx + (1 − k)ΣN
i=1ηiTix and k = max{ki : i =

1, 2, ..., N}. If the control sequence {αn}, {βn} ⊂ (0, 1) satisfying

(i) limn→∞ αn = 0, limn→∞ βn = 0,

(ii) Σ∞
n=1αn = ∞,

(iii) Σ∞
n=1|αn+1 − αn| < ∞, Σ∞

n=1|βn+1 − βn| < ∞.

Then {xn} converge strongly to a common fixed point p of {Ti}N
i=1, which solves the following

solution of the variational inequalities:

〈(A− γf)p, p− x〉 ≤ 0, ∀x ∈ ∩N
i=1F (Ti). (3.4.23)

Proof. Define a mapping T : C → H by Tx = ΣN
i=1ηiTix. By Lemma 2.2.12 and 2.2.13, we conclude

that : C → H is a k−strictly pseudo-contractive mapping with k = max{ki : i = 1, 2, ..., N} and
F (T ) = F (ΣN

i=1ηiTi) = ∩N
i=1F (Ti). From Theorem 3.4.1, we can obtain desired conclusion easily.

This completes the proof. 2

If βn ≡ 0, Theorem 3.4.4 reduced to the following corollary.
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Corollary 3.4.5. [46] Let H be a Hilbert space, K a nonempty closed convex subset of H such that
K ± K ⊂ K and Ti : K → H be a ki-strictly pseudo-contractive mapping with a fixed point for
some 0 ≤ ki < 1 and ∩N

i=1F (Ti) 6= ∅. Let A be strongly positive bounded linear operator on K with
coefficient γ > 0 and f : K → K be a contraction with the contractive constant (0 < α < 1) such that
0 < γ < γ

α . Let {xn} be sequence generated by;x1 ∈ K,

xn+1 = αnγf(xn) + (I − αnA)PCSxn,
(3.4.24)

where S : K → H is a mapping defined by Sx = kx + (1 − k)ΣN
i=1ηiTix and k = max{ki : i =

1, 2, ..., N}. If the control sequence {αn}, {βn} ⊂ (0, 1) satisfying

(i) limn→∞ αn = 0,

(ii) Σ∞
n=1αn = ∞,

(iii) Σ∞
n=1|αn+1 − αn| < ∞,

then {xn} converge strongly to a common fixed point p of {Ti}N
i=1, which solves the following

solution of the variational inequalities:

〈(A− γf)p, p− x〉 ≤ 0, ∀x ∈ ∩N
i=1F (Ti).

From the proved of Theorem 3.4.3, we can obtain the following Theorem.

Theorem 3.4.6. Let H be a Hilbert space, C a nonempty closed convex subset of H such that
C ± C ⊂ C and Ti : C → H be a ki-strictly pseudo-contractive mapping with a fixed point for some
0 ≤ ki < 1 and ∩N

i=1F (Ti) 6= ∅. Let A be strongly positive bounded linear operator on C with
coefficient γ > 0 and f : C → C be a contraction with the contractive constant (0 < α < 1) such that
0 < γ < γ

α . Let {xn} be sequence generated by;x1 ∈ C,

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)PCSxn,
(3.4.25)

where S : C → H is a mapping defined by Sx = kx + (1 − k)ΣN
i=1ηiTix and k = max{ki : i =

1, 2, ..., N}. If the control sequence {αn}, {βn} ⊂ (0, 1) satisfying

(i) limn→∞ αn = 0,

(ii) Σ∞
n=1αn = ∞,

(iii) Σ∞
n=1|αn+1 − αn| < ∞, Σ∞

n=1|βn+1 − βn| < ∞,

(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converge strongly to a common fixed point p of {Ti}N
i=1, which solves the following

solution of the variational inequalities (3.4.23).
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Abstract

In this paper, we introduce the iterative sequence for an asymp-
totically nonexpansive mapping and an asymptotically nonexpansive
semigroup. Then we prove that such a sequence converges strongly to
PF (T )x0 and PFx0, respectively. This main theorem concern result of
Takahashi, Takeuchi and Kubota [ Strong convergence theorems by hy-
brid methods for families of nonexpansive mappings in Hilbert space, J.
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1 Introduction

Let X be a real Banach Space, C a nonempty closed convex subset of X
and T : C → C a mapping. Recall that T is nonexpansive if ‖Tx − Ty‖ ≤
‖x − y‖ for all x, y ∈ C, and T is asymptotically nonexpansive [1] if there
exists a sequence {kn} with kn ≥ 1 for all n and limn→∞ kn = 1 and such that
‖T nx−T ny‖ ≤ kn‖x− y‖ for all n ≥ 1 and x, y ∈ C. A point x ∈ C is a fixed
point of T provided Tx = x. Denote by Fix(T ) the set of fixed points of T ;
that is, Fix(T ) = {x ∈ C : Tx = x}. We know that a Hilbert space H satisfies
Opial’s condition [8], that is, for any sequence {xn} ⊂ H with xn ⇀ x, the
inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖
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holds for every y ∈ H with y �= x. We also know that H has Kadec-Klee
property, that is, xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x. Infact, from

‖xn − x‖2 = ‖xn‖2 − 2〈xn, x〉 + ‖x‖2,

we get that a Hilbert space has the Kadec-Klee property.
Recall also that a one-parameter family T = {T (t) : 0 ≤ t < ∞} of self-

mappings of a nonempty closed convex subset C of a Hilbert space H is said to
be a (continuous) Lipschitian semigroup on C (see, e. g., [12]) if the following
conditions are satisfied:

(i) T (0)x = x, x ∈ C,
(ii) T (t + s)x = T (t)T (s)x, t, s ≥ 0, x ∈ C,
(iii) for each x ∈ C, the map t �→ T (t)x is continuous on [0,∞),
(iv) there exists a bounded measurable function L : (0,∞) → [0,∞) such

that, for each t > 0,

‖T (t)x − T (t)y‖ ≤ Lt‖x − y‖, x, y ∈ C.

A Lipschitzian semigroup T is called nonexpansive (or a contraction
semigroup) if Lt = 1 for all t > 0, and asymptotically nonexpansive if
lim supt→∞ Lt ≤ 1, respectively. We use F (T ) to denote the common fixed
point set of the semigroup; that is Fix(T ) = {x ∈ C : T (t)x = x, t > 0}.

Fixed point iteration processes for nonexpansive mappings and asymptot-
ically nonexpansive mappings in Hilbert spaces and Banach spaces including
Mann and Ishikawa iteration processes have been studied extensively by many
authors to solve nonlinear operator equations as well as variational inequali-
ties: see [2, 5, 9, 10]. However, Mann and Ishikawa iterations processes have
only weak convergence even in Hilbert space: see [3, 10].

In 2003, Nakajo and Takahashi [7] introduced the following modification of
the Mann iteration method for a nonexpansive mapping T of C into itself in
a Hilbert space H :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily ,
yn = αnxn + (1 − αn)Txn,
Cn = {v ∈ C : ‖yn − v‖ ≤ ‖xn − v‖}, (1.1)
Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

where PK denotes the metric projection from H onto a closed convex subset
K of H . They proved that if the sequence {αn} is bounded above from one,
then {xn} defined by (1.1) converges strongly to PF ix(T )(x0). Moreover they
introduced and studied an iteration process of a nonexpansive semigroup T =
{T (t) : 0 ≤ t < ∞} of self mappings of a nonempty closed convex subset C of
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a Hilbert space H :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily ,
yn = αnxn + (1 − αn) 1

tn

∫ tn
0 T (u)xndu,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖}, (1.2)
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0).

Recently, Kim and Xu [3] adapted the iteration (1.1) to an asymptotically
nonexpansive mappings T of C into itself in a Hilbert space H :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily ,
yn = αnxn + (1 − αn)T nxn,
Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + θn}, (1.3)
Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

where θn = (1 − αn)(k2
n − 1)(diamC)2 → 0 as n → ∞. They prove

that if αn ≤ a for all n and for some 0 < a < 1, then the sequence {xn}
generated by (1.3) converges strongly to PF ix(T )(x0). They also modified an
iterative method (1.2) to the case of an asymptotically nonexpansive semigroup
T = {T (t) : 0 ≤ t < ∞} of self mappings of a nonempty closed convex sunset
C of a Hilbert space H :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily ,
yn = αnxn + (1 − αn) 1

tn

∫ tn
0 T (u)xndu,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn}, (1.4)
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

where θn = (1 − αn)
[
( 1

tn

∫ tn
0 Ludu)2 − 1

]
(diamC)2 → 0 as n → ∞.

In 2007, Takahashi, Takeuchi and Kubota [10] introduced the modification
Mann iteration method for a family of nonexpansive mappings {Tn} and non-
expansive semigroup 
 = {T (t) : 0 ≤ t < ∞} in a Hilbert space H . They
prove the following theorem;

Theorem 1.1 ([10] Theorem 4.1) Let H be a Hilbert space and C be a
nonempty closed convex subset of H. Let T be a nonexpansive mapping of C
into H such that F (T ) �= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0,
define a sequence {un} of C as follows:⎧⎪⎨

⎪⎩
yn = αnun + (1 − αn)Tun,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖}, (1.5)
un+1 = PCn+1x0, n ∈ N,

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {un} converges strongly to
z0 = PF (T )x0.



1138 Issara Inchan

Theorem 1.2 ([10] Theorem 4.4) Let H be a Hilbert space and C be a
nonempty closed convex subset of H. Let T = {T (s) : 0 ≤ s < ∞} be a one-
parameter nonexpansive semigroup on C such that F (T ) �= ∅ and let x0 ∈ H.
For C1 = C and u1 = PC1x0 define a sequence {un} of C as follows:

⎧⎪⎨
⎪⎩

yn = αnun + (1 − αn) 1
λn

∫ λn
0 T (s)unds,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖}, (1.6)
un+1 = PCn+1x0, n ∈ N,

where 0 ≤ αn ≤ a < 1, 0 < λn < ∞ for all n ∈ N and λn → ∞. Then {un}
converges strongly to z0 = PF (T )x0.

Inspired and motivated by these fact, it is the purpose of this paper to
introduce the modified Ishikawa iteration processes for an asymptotically non-
expansive mapping by idear in (1.5). Let C be a closed bounded convex subset
of a Hilbert space H , T be an asymptotically nonexpansive mapping of C into
itself and let x0 ∈ C. For C1 = C and x1 = PC1(x0), define {xn} as follows
way:

⎧⎪⎨
⎪⎩

yn = αnxn + (1 − αn)T nxn,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn}, (1.7)
xn+1 = PCn+1x0, n ∈ N,

where θn = (1 − αn)(k2
n − 1)(diamC)2 → 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for

all n ∈ N.

The second purpose of this paper is to study the modified Ishikawa iteration
process for an asymptotically nonexpansive semigroup. Let C be a closed
bounded convex subset of a Hilbert space H , T = {T (t) : 0 ≤ t < ∞} be
asymptotically nonexpansive semigroup of self mappings of a nonempty closed
convex sunset C of a Hilbert space such that F �= ∅ and let x0 ∈ C. For
C1 = C and x1 = PC1x0, defined {xn} as follows way:

⎧⎪⎨
⎪⎩

yn = αnxn + (1 − αn) 1
λn

∫ λn
0 T (s)xnds,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n}, (1.8)
xn+1 = PCn+1x0, n ∈ N

where θ̃n = (1 − αn)
[(

1
tn

∫ tn
0 Lsds

)2
− 1

]
(diamC)2 → 0 as n → ∞ and 0 ≤

αn ≤ a < 1 for all n ∈ N and λn → ∞.

We shall prove that both iteration processes (1.7) and (1.8) converge strongly
to a fixed point of T and a common fixed point of T , respectively, provided
the sequence {αn} is bounded from above.
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2 Preliminary

In this section, we collect some lemmas which will be used in the proof
for the main result in next section.

Lemma 2.1 There holds the identity in a Hilbert space H:

‖λx + (1 − λ)y‖2 = λ‖x||2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2

for all x, y ∈ H and λ ∈ [0, 1].

Lemma 2.2 [4] Let T be an asymptotically nonexpansive mapping defined
on a bounded closed convex subset C of a Hilbert space H. Assume that {xn}
is a sequence in C with the properties

(i) xn ⇀ z and

(ii) Txn − xn → 0.

Then z ∈ Fix(T ).

Lemma 2.3 [3] Let C be a nonempty bounded closed convex subset of a
Hilbert spaces H and 
 = {T (t) : 0 ≤ t < ∞} be an asymptotically nonexpan-
sive semigroup on C. If {xn} is a sequence in C satisfying the properties

a) xn ⇀ z; and

b) lim supt→∞ lim supn→∞ ‖T (t)xn − xn‖ = 0,

then z ∈ F (
).

Lemma 2.4 [3] Let C be a nonempty bounded closed convex subset of a
Hilbert space H and 
 = {T (t) : 0 ≤ t < ∞} be an asymptotically nonexpan-
sive semigroup on C. Then it holds that

lim sup
s→∞

lim sup
t→∞

sup
x∈C

∥∥∥∥1

t

∫ t

0
T (u)xdu − T (s)

(
1

t

∫ t

0
T (u)xdu

)∥∥∥∥ = 0.

3 Main Results

In this section, we prove strong convergence theorems by hybrid meth-
ods for asymptotically nonexpansive mappings in Hilbert spaces.

Theorem 3.1 Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let T be an asymptotically nonexpansive mapping of C
into itself such that F (T ) �= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0,
Then {xn} generated by (1.7) converges strongly to z0 = PF (T )x0.
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Proof. We first show that F (T ) ⊂ Cn for all n ∈ N, by induction. For any
z ∈ F (T ) we have z ∈ C = C1 hence F (T ) ⊂ C1. Let F (T ) ⊂ Ck for some
k ∈ N. Then we have, for u ∈ F (T ) ⊂ Ck

‖yk − u‖2 = ‖αkxk + (1 − αk)T
kxk − u‖2

= ‖αk(xk − u) + (1 − αk)(T
kxk − u)‖2

= αk‖xk − u‖2 + (1 − αk)‖T kxk − u‖2 − αk(1 − αk)‖xk − T kxk‖2

≤ αk‖xk − u‖2 + (1 − αk)‖T kxk − u‖2

≤ αk‖xk − u‖2 + (1 − αk)k
2
k‖xk − u‖2

= ‖xk − u‖2 + (αk + (1 − αk)k
2
k − 1)‖xk − u‖2

= ‖xk − u‖2 + (1 − αk)(k
2
k − 1)‖xk − u‖2

≤ ‖xk − u‖2 + (1 − αk)(k
2
k − 1)(diamC)2

= ‖xk − u‖2 + θk with θk → 0.
It follows that u ∈ Ck+1 and F (T ) ⊂ Ck+1, hence F (T ) ⊂ Cn for all n ∈ N.
Next, we show that Cn is closed and convex for all n ∈ N. It follows obvious
that C1 = C is closed and convex. Suppose that Ck is closed and convex for
some k ∈ N. Let zm ∈ Ck+1 ⊂ Ck with zm → z. Since Ck is closed, z ∈ Ck

and ‖yk − zm‖2 ≤ ‖zm − xk‖2 + θk. Then
‖yk − z‖2 = ‖yk − zm + zm − z‖2

= ‖yk − zm‖2 + ‖zm − z‖2 + 2〈yk − zm, zm − z〉
≤ ‖zm − xk‖2 + θk + ‖zm − z‖2 + 2‖yk − zm‖‖zm − z‖.

Taking m → ∞,
‖yk − z‖2 ≤ ‖z − xk‖2 + θk.

Hence z ∈ Ck+1. Let x, y ∈ Ck+1 ⊂ Ck with z = αx+(1−α)y where α ∈ [0, 1].
Since Ck is convex, z ∈ Ck and ‖yk − x‖2 ≤ ‖x − xk‖2 + θk, ‖yk − y‖2 ≤
‖y − xk‖2 + θk, we have

‖yk − z‖2 = ‖yk − (αx + (1 − α)y)‖2

= ‖α(yk − x) + (1 − α)(yk − y)‖2

= α‖yk − x‖2 + (1 − α)‖yk − y‖2 − α(1 − α)‖(yk − x) − (yk − y)‖2

≤ α(‖x − xk‖2 + θk) + (1 − α)(‖y − xk‖2 + θk) − α(1 − α)‖y − x‖2

= α‖x−xk‖2 +(1−α)‖y−xk‖2−α(1−α)‖(xk −x)− (xk −y)‖2 +θk

= ‖α(xk − x) + (1 − α)(xk − y)‖2 + θk

= ‖xk − z‖2 + θk.
Then z ∈ Ck+1, it follows that Ck+1 is closed and convex. Hence Cn is closed
and convex for all n ∈ N. This implies that {xn} is well-defined. From
xn = PCnx0, we have

〈x0 − xn, xn − y〉 ≥ 0, for all y ∈ Cn.

Since F (T ) ⊂ Cn, we have

〈x0 − xn, xn − u〉 ≥ 0 for all u ∈ F (T ) and n ∈ N. (1)

So, for u ∈ F (T ), we have
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0 ≤ 〈x0 − xn, xn − u〉
= 〈x0 − xn, xn − x0 + x0 − u〉
= −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − u〉
≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − u‖

This implies that
‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − u‖

hence
‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈ F (T ) and n ∈ N. (2)

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we also have

〈x0 − xn, xn − xn+1〉 ≥ 0 for all n ∈ N. (3)

So, for xn+1 ∈ Cn, we have, for n ∈ N
0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − xn+1〉
≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − xn+1‖

This implies that

‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − xn+1‖

hence
‖x0 − xn‖ ≤ ‖x0 − xn+1‖ for all n ∈ N. (4)

From (2) we have {xn} is bounded, limn→∞ ‖xn − x0‖ exists. Next, we show
that ‖xn − xn+1‖ → 0. In fact, from (3) we have

‖xn − xn+1‖2 = ‖(xn − x0) + (x0 − xn+1)‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn−x0‖2−2〈x0−xn, x0−xn〉−2〈x0−xn, xn−xn+1〉+‖x0−xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + ‖x0 − xn+1‖2.
Since limn→∞ ‖xn − x0‖ exists, we have that limn→∞ ‖xn − xn+1‖ = 0. On the
other hand, xn+1 ∈ Cn+1 ⊂ Cn implies that

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn, (5)

which implies that

‖yn − xn+1‖ ≤ ‖xn − xn+1‖ +
√

θn.

Further, we have
‖yn − xn‖ = ‖αnxn + (1 − αn)T nxn − xn‖

= (1 − αn)‖T nxn − xn‖.
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From (5), we have
‖T nxn − xn‖ = 1

(1−αn)
‖yn − xn‖

≤ 1
(1−a)

‖yn − xn‖
= 1

(1−a)
‖yn − xn+1 + xn+1 − xn‖

≤ 1
(1−a)

‖yn − xn+1‖ + 1
(1−a)

‖xn+1 − xn‖
≤ 1

(1−a)
(‖xn − xn+1‖ +

√
θn) + 1

(1−a)
‖xn+1 − xn‖

= 2
(1−a)

‖xn − xn+1‖ + 1
(1−a)

√
θn.

Hence

‖T nxn − xn‖ ≤ 2

(1 − a)
‖xn − xn+1‖ +

1

(1 − a)

√
θn → 0.

Putting
k∞ = sup{kn : n ≥ 1} < ∞,

we deduce that
‖Txn − xn‖ ≤ ‖Txn − T n+1xn‖ + ‖T n+1xn − T n+1xn+1‖+ ‖T n+1xn+1 − xn+1‖

+‖xn+1 − xn‖

≤ k∞‖xn−T nxn‖+‖T n+1xn+1−xn+1‖+(1+k∞)‖xn−xn+1‖ → 0. (6)

By (6), Lemma 2.2 and boundedness of {xn} we obtain ∅ �= ωw(xn) ⊂ F (T ).
By the fact that ‖xn − x0‖ ≤ ‖z0 − x0‖ for all n ≥ 0 where z0 = PF (T )(x0) and
the weak lower semi-continuity of the norm, we have

‖x0 − z0‖ ≤ ‖x0 − w‖ ≤ lim infn→∞ ‖x0 − xn‖
≤ lim supn→∞ ‖x0 − xn‖ ≤ ‖x0 − z0‖,

for all w ∈ ωw(xn). However, since ωw(xn) ⊂ F (T ), we must have w = z0 for
all w ∈ ωw(xn). Thus ωw(xn) = {z0} and then xn ⇀ z0. Hence, xn → z0 =
PF (T )(x0) by

‖xn − z0‖2 = ‖xn − x0‖2 + 2〈xn − x0, x0 − z0〉 + ‖x0 − z0‖2

≤ 2(‖z0 − x0‖2 + 〈xn − x0, x0 − z0〉) → 0 as n → ∞.
This complete the proof. �

Now, we present the strong convergence theorem of asymptotically nonex-
pansive semigroups on C in a Hilbert space.

Suppose that T = {T (t) : 0 ≤ t < ∞} is an asymptotically nonexpansive
semigroup defined on a nonempty closed convex bounded subset C of a Hilbert
space H . Recall that we use LT

t to denote the Lipschitzian constant of the
mapping T (t). In the rest of this section, we put L∞ = sup{LT

t } and we use
Fix(T ) to denote the fixed point set of T . Furthermore, we use F := Fix(T )
to denote the set of fixed points of asymptotically nonexpansive semigroups.
Note that the boundedness of C implies that Fix(T ) is nonempty (see [11])
and we assume throughout in this theorem that the set of fixed point F is
nonempty.
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Theorem 3.2 Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let T = {T (t) : 0 ≤ t < ∞} be a one-parameter asymp-
totically nonexpansive of C into itself such that F := Fix(T ) �= ∅ and let
x0 ∈ C. For C1 = C and x1 = PC1x0. Then {xn} generated by (1.8) converges
strongly to z0 = PFx0.

Proof. First, we observe that F (
) ⊂ Cn for all n ∈ N. Since F (
) ⊂ C =
C1. Let F (
) ⊂ Ck for some k ∈ N. For all z ∈ F (
) ⊂ Ck we have

‖yk − z‖2 =
∥∥∥αkxk + (1 − αk)

1
λk

∫ λk
0 T (s)xkds − z

∥∥∥2

=
∥∥∥αk(xk − z) + (1 − αk)(

1
λk

∫ λk
0 T (s)xkds − z)

∥∥∥2

≤ αk‖xk − z‖2 + (1 − αk)
∥∥∥ 1

λk

∫ λk
0 T (s)xkds − z

∥∥∥2

≤ αk‖xk − z‖2 + (1 − αk)
(

1
λk

∫ λk
0 ‖T (s)xk − z‖ds

)2

≤ αk‖xk − z‖2 + (1 − αk)
(

1
λk

∫ λk
0 Ls‖xk − z‖ds

)2

≤ αk‖xk − z‖2 + (1 − αk)
(

1
λk

∫ λk
0 Lsds

)2
‖xk − z‖2

≤ ‖xk − z‖2 + (1 − αk)
(

1
λk

∫ λk
0 Lsds

)2
(diamC)2

= ‖xk − z‖2 + θ̃k

So, z ∈ Ck+1. Hence F (
) ⊂ Cn for all n ∈ N. By the same argument as in
the proof of Theorem 3.1, Cn is closed and convex, {xn} is well-defined. Also,
similar to the proof of Theorem 3.1, we can show that

‖xn − xn+1‖ → 0. (7)

We can deduce that for all 0 ≤ t < ∞,
‖T (t)xn − xn‖ =

∥∥∥T (t)xn − T (t)
(

1
λn

∫ λn
0 T (s)xnds

)∥∥∥
+

∥∥∥T (t)
(

1
λn

∫ λn
0 T (s)xnds

)
− 1

λn

∫ λn
0 T (s)xnds

∥∥∥
+

∥∥∥ 1
λn

∫ λn
0 T (s)xnds − xn

∥∥∥
≤ (L∞ + 1)

∥∥∥ 1
λn

∫ λn
0 T (s)xnds − xn

∥∥∥
+

∥∥∥T (t)
(

1
λn

∫ λn
0 T (s)xnds

)
− 1

λn

∫ λn
0 T (s)xnds

∥∥∥
:= (L∞ + 1)An + Bn(t), (8)

where An :=
∥∥∥ 1

λn

∫ λn
0 T (s)xnds − xn

∥∥∥ and

Bn :=
∥∥∥T (t)

(
1

λn

∫ λn
0 T (s)xnds

)
− 1

λn

∫ λn
0 T (s)xnds

∥∥∥.
We claim that

(i) limn→∞ An = 0; and
(ii) lim supt→∞ lim supn→∞ Bn(t) = 0.

By Lemma 2.3, we have that (ii) is true, while (i) is verified by the following
argument. By the definition of yn we have

An =
∥∥∥ 1

λn

∫ λn

0 T (s)xnds − xn

∥∥∥
= 1

1−αn
‖yn − xn‖
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≤ 1
1−a

‖yn − xn‖
≤ 1

1−a
(‖yn − xn+1‖ + ‖xn+1 − xn‖). (9)

Since xn+1 ∈ Cn+1 ⊂ Cn, we have

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θ̃n

which in turn implies that

‖yn − xn+1‖ ≤ ‖xn − xn+1‖ +
√

θ̃n.

It follows from (9) that

An ≤ 1

1 − a

(
2‖xn+1 − xn‖ +

√
θ̃n

)
→ 0.

We thus conclude from (8) that

lim sup
t→∞

lim sup
n→∞

‖T (t)xn − xn‖ = 0.

We note that by Lemma 2.3 that every weak limit point of {xn} is a number
of F (
). Repeating the last of the proof of Theorem 2.2 [4], we can prove that
ωw(xn) = {PF (�)}. Hence {xn} weakly converges to PF (�), and therefore the
convergence is strong. This complete the proof. �
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1. Introduction

Let X be a real Banach Space, C a nonempty closed convex subset of X and T : C → C a mapping. Recall that T is
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C , and T is asymptotically nonexpansive [1] if there exists a sequence
{kn} with kn ≥ 1 for all n and limn→∞ kn = 1 and such that ‖T nx − T ny‖ ≤ kn‖x − y‖ for all n ≥ 1 and x, y ∈ C . A point
x ∈ C is a fixed point of T provided Tx = x. Denote by Fix(T ) the set of fixed points of T ; that is, Fix(T ) = {x ∈ C : Tx = x}.
If S and T are two nonexpansive (asymptotically nonexpansive) mappings, then the point x ∈ Fix(S) ∩ Fix(T ) is called the
common fixed point of S and T .
Recall also that a one-parameter family T = {T (t) : 0 ≤ t <∞} of self-mappings of a nonempty closed convex subset

C of a Hilbert space H is said to be a (continuous) Lipschitian semigroup on C (see, e. g., [13]) if the following conditions are
satisfied:

(i) T (0)x = x, x ∈ C ,
(ii) T (t + s)x = T (t)T (s)x, t, s ≥ 0, x ∈ C ,
(iii) for each x ∈ C , the map t 7→ T (t)x is continuous on [0,∞),
(iv) there exists a bounded measurable function L : (0,∞) → [0,∞) such that, for each t > 0, ‖T (t)x − T (t)y‖ ≤

Lt‖x− y‖, x, y ∈ C .

A Lipschitzian semigroup T is called nonexpansive (or a contraction semigroup) if Lt = 1 for all t > 0, and asymptotically
nonexpansive if lim supt→∞ Lt ≤ 1, respectively. We use F(T ) to denote the common fixed point set of the semigroup; that
is Fix(T ) = {x ∈ C : T (t)x = x, t > 0}.

∗ Corresponding author. Tel.: +66 55261000; fax: +66 55261025.
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Fixed point iteration processes for nonexpansivemappings and asymptotically nonexpansivemappings in Hilbert spaces
and Banach spaces includingMann and Ishikawa iteration processes have been studied extensively bymany authors to solve
nonlinear operator equations as well as variational inequalities: see [2,5,8,10,11]. However, Mann and Ishikawa iterations
processes have only weak convergence even in Hilbert space: see [3,11].
In 2003,Nakajo andTakahashi [7] introduced the followingmodification of theMann iterationmethod for a nonexpansive

mapping T in a Hilbert space H:
x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {v ∈ C : ‖yn − v‖ ≤ ‖xn − v‖},
Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.1)

where PK denotes the metric projection from H onto a closed convex subset K of H . They proved that if the sequence {αn} is
bounded above from one, then {xn} defined by (1.1) converges strongly to PFix(T )(x0). Moreover they introduced and studied
an iteration process of a nonexpansive semigroup T = {T (t) : 0 ≤ t <∞} in a Hilbert space H:

x0 ∈ C chosen arbitrarily ,

yn = αnxn + (1− αn)
1
tn

∫ tn

0
T (u)xndu,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0).

(1.2)

Recently, Kim and Xu [3] adapted the iteration (1.1) to asymptotically nonexpansive mappings in Hilbert space H:
x0 ∈ C chosen arbitrarily ,
yn = αnxn + (1− αn)T nxn,
Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + θn},
Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.3)

where θn = (1− αn)(k2n − 1)(diam C)
2
→ 0 as n→∞. They proved that if αn ≤ a for all n and for some 0 < a < 1, then

the sequence {xn} generated by (1.3) converges strongly to PFix(T )(x0). They also modified an iterative method (1.2) to the
case of an asymptotically nonexpansive semigroup T = {T (t) : 0 ≤ t <∞} in Hilbert space H:

x0 ∈ C chosen arbitrarily ,

yn = αnxn + (1− αn)
1
tn

∫ tn

0
T (u)xndu,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0).

(1.4)

where θn = (1− αn)
[(

1
tn

∫ tn
0 Ludu

)2
− 1

]
(diam C)2 → 0 as n→∞.

In 2007, Plubtieng and Ungchitrakool [9], introduced the modified Ishikawa iteration processes for two asymptotically
nonexpansive mappings S and T , and two asymptotically nonexpansive semigroups T = {T (t) : 0 ≤ t < ∞} and
S = {S(t) : 0 ≤ t <∞}, with C a closed convex bounded subset of a Hilbert space H:

x0 ∈ C chosen arbitrarily ,
yn = αnxn + (1− αn)T nzn,
zn = βnxn + (1− βn)Snxn
Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + θn},
Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0,
xn+1 = PCn∩Qnx0,

(1.5)

where θn = (1− αn)[(t2n − 1)+ (1− βn)t
2
n (s
2
n − 1)](diam C)

2
→ 0 as n→∞ (here {tn} and {sn} are two sequences from

T and S, respectively.) and
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x0 ∈ C chosen arbitrarily ,

yn = αnxn + (1− αn)
1
tn

∫ tn

0
T (u)zndu,

zn = βnxn + (1− βn)
1
sn

∫ sn

0
S(u)xndu,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0,
xn+1 = PCn∩Qnx0,

(1.6)

where θ̃n = (1− αn)[ t̃
2
n − 1)+ (1− βn)̃t

2
n ( s̃

2
n − 1)](diam C)

2
→ 0 as n→∞(here t̃n = 1

tn

∫ tn
0 L

T
t dt and s̃n =

1
sn

∫ sn
0 L

S
t dt).

They also proved that both iterations (1.5) and (1.6) converge strongly to a common fixed point of two asymptotically
nonexpansive mappings S and T , and two asymptotically nonexpansive semigroups T andS , respectively.
Very recently, Takahashi, Takeuchi and Kubota [11] proved the following strong convergence theorems by using the new

hybrid method for nonexpansive mappings and nonexpansive semigroups in Hilbert spaces.

Theorem 1.1. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C
into H such that F(T ) 6= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0, define a sequence {un} of C as follows:

yn = αnun + (1− αn)Tun,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {un} converges strongly to z0 = PF(T )x0.

Theorem 1.2. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let T = {T (s) : 0 ≤ s < ∞} be a
one-parameter nonexpansive semigroup on C such that F(T ) 6= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0 define a sequence
{un} of C as follows: space H:

yn = αnun + (1− αn)
1
λn

∫ λn

0
T (s)unds,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N

where and 0 ≤ αn ≤ a < 1, 0 < λn <∞ for all n ∈ N and λn →∞. Then {un} converges strongly to z0 = PF(T )x0.

Inspired and motivated by these facts, it is the purpose of this paper to introduce the modified Ishikawa iteration
processes for two asymptotically nonexpansive mappings by in idea in (1.3). Let C be a closed bounded convex subset of
a Hilbert space H , S and T be two asymptotically nonexpansive mappings of C into itself and let x0 ∈ C . For C1 = C and
x1 = PC1x0, define {xn} as follows way:

yn = αnxn + (1− αn)T nzn,
zn = βnxn + (1− βn)Snxn,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
xn+1 = PCn+1x0, n ∈ N

(1.7)

where θn = (1−αn)[(t2n −1)+ (1−βn)t
2
n (s
2
n−1)](diam C)

2
→ 0 as n→∞ and 0 ≤ αn ≤ a < 1 and 0 < b ≤ βn ≤ c < 1

for all n ∈ N.
Our secondmodification Ishikawa iteration processes for two asymptotically nonexpansive semigroups. Let C be a closed

bounded convex subset of a Hilbert space H , T = {T (t) : 0 ≤ t <∞} andS = {S(t) : 0 ≤ t <∞} be two asymptotically
nonexpansive semigroups on C such thatF = F(T )∩ F(S ) 6= ∅ and let x0 ∈ C . For C1 = C and x1 = PC1x0, defined {xn} as
follows way:

yn = αnxn + (1− αn)
1
tn

∫ tn

0
T (t)zndt,

zn = βnxn + (1− βn)
1
sn

∫ sn

0
S(t)xndt,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n},
xn+1 = PCn+1x0, n ∈ N,

(1.8)

where θ̃n = (1− αn)[ t̃
2
n − 1)+ (1− βn)̃t

2
n ( s̃

2
n − 1)](diam C)

2
→ 0 as n→∞(here t̃n = 1

tn

∫ tn
0 L

T
t dt and s̃n =

1
sn

∫ sn
0 L

S
t dt),

0 ≤ αn ≤ a < 1 and 0 < b ≤ βn ≤ c < 1 for all n ∈ N ∪ {0} and tn →∞, sn →∞.
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We shall prove that both iteration (1.7) and (1.8) converges strongly to a common fixed point of two asymptotically
nonexpansive mappings of S and T , and asymptotically nonexpansive semigroups, T andS , respectively.

2. Preliminaries

In this section, we collect some lemmas which will be used in the proofs for the main result in next section.

Lemma 2.1. There holds the identity in a Hilbert space H:

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1].

Lemma 2.2 ([4]). Let T be an asymptotically nonexpansive mapping defined on a bounded closed convex subset C of a Hilbert
space H. If {xn} is a sequence in C such that xn ⇀ x and Txn − xn → 0, then z ∈ F(T ).

Lemma 2.3 ([6]). Let H be a real Hilbert space. Given a closed convex subset C of H and points x, y, z ∈ H. Given also a real
number a ∈ R. The set

D := {v ∈ C : ‖y− v‖2 ≤ ‖x− v‖2 + 〈z, v〉 + a}

is convex and closed.

Lemma 2.4 ([3]). Let C be a nonempty bounded closed convex subset of a Hilbert space H and = = {T (t) : 0 ≤ t <∞} be an
asymptotically nonexpansive semigroups on C. If {xn} is a sequence in C satisfying the properties

(a) xn ⇀ z; and
(b) lim supt→∞ lim supn→∞ ‖T (t)xn − xn‖ = 0,

then z ∈ F(=).

Lemma 2.5 ([3]). Let C be a nonempty bounded closed convex subset of a Hilbert space H and = = {T (t) : 0 ≤ t < ∞} be an
asymptotically nonexpansive semigroups on C. Then it holds that

lim sup
s→∞

lim sup
t→∞

sup
x∈C

∥∥∥∥1t
∫ t

0
T (u)xdu− T (s)

(
1
t

∫ t

0
T (u)xdu

)∥∥∥∥ = 0.
3. Main results

In this section, we prove strong convergence theorems of a common fixed point for two asymptotically nonexpansive
mappings and asymptotically nonexpansive semigroups, respectively.

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H. Let S, T : C → C be two
asymptotically nonexpansive mappings with sequence {sn} and {tn} respectively, and F = F(S) ∩ F(T ) 6= ∅. Let x0 ∈ C and {xn}
be a sequence generated by (1.7). Then {xn} converges strongly to z0 = PFx0.

Proof. Putting t∞ = sup{tn : n ≥ 1} <∞ and s∞ = sup{sn : n ≥ 1} <∞. We first show by induction that F ⊂ Cn for all
n ∈ N. For F ⊂ C1 is obvious. Suppose that F ⊂ Ck for some k ∈ N. Let u ∈ F ⊂ Ck. Then, we have

‖yk − u‖2 = ‖αkxk + (1− αk)T kzk − u‖2

= ‖αk(xk − u)+ (1− αk)(T kzk − u)‖2

= αk‖xk − u‖2 + (1− αk)‖T kzk − u‖2 − αk(1− αk)‖xk − T kzk‖2

≤ αk‖xk − u‖2 + (1− αk)‖T kzk − u‖2

≤ αk‖xk − u‖2 + (1− αk)t2k ‖zk − u‖
2. (3.1)

Similarly, we note that

‖zk − u‖2 = ‖βkxk + (1− βk)Skxk − u‖2

= ‖βk(xk − u)+ (1− βk)(Skxk − u)‖2

= βk‖xk − u‖2 + (1− βk)‖Skxk − u‖2 − βk(1− βk)‖xk − Skxk‖2

≤ βk‖xk − u‖2 + (1− βk)s2k‖xk − u‖
2
− βk(1− βk)‖xk − Skxk‖2

≤ ‖xk − u‖2 + (1− βk)(s2k − 1)‖xk − u‖
2. (3.2)



I. Inchan, S. Plubtieng / Nonlinear Analysis: Hybrid Systems 2 (2008) 1125–1135 1129

From (3.1) and (3.2), we have

‖yk − u‖2 ≤ αk‖xk − u‖2 + (1− αk)t2k [‖xk − u‖
2
+ (1− βk)(s2k − 1)‖xk − u‖

2
]

≤ αk‖xk − u‖2 + (1− αk)t2k ‖xk − u‖
2
+ (1− αk)t2k (1− βk)(s

2
k − 1)‖xk − u‖

2

= ‖xk − u‖2 − ‖xk − u‖2 + αk‖xk − u‖2 + (1− αk)t2k ‖xk − u‖
2
+ (1− αk)t2k (1− βk)(s

2
k − 1)‖xk − u‖

2

= ‖xk − u‖2 + (1− αk)(t2k − 1)‖xk − u‖
2
+ (1− αk)t2k (1− βk)(s

2
k − 1)‖xk − u‖

2

= ‖xk − u‖2 + (1− αk)[(t2k − 1)+ t
2
k (1− βk)(s

2
k − 1)]‖xk − u‖

2

≤ ‖xk − u‖2 + (1− αk)[(t2k − 1)+ t
2
k (1− βk)(s

2
k − 1)](diam C)

2

= ‖xk − u‖2 + θk.

It follows that u ∈ Ck+1 and F ⊂ Ck+1. Hence F ⊂ Cn for all n ∈ N. Next, we show that Cn is closed and convex for all n ∈ N.
It obvious that C1 = C is closed and convex. Suppose that Ck is closed and convex for some k ∈ N. Let {zm}∞m=1 ⊆ Ck+1 ⊂ Ck
with zm → z asm→∞. Since Ck is closed and zm ∈ Ck+1, we have z ∈ Ck and ‖yk − zm‖2 ≤ ‖zm − xk‖2 + θk. Then

‖yk − z‖2 = ‖yk − zm + zm − z‖2

= ‖yk − zm‖2 + ‖zm − z‖2 + 2〈yk − zm, zm − z〉
≤ ‖zm − xk‖2 + θk + ‖zm − z‖2 + 2‖yk − zm‖‖zm − z‖.

Takingm→∞,

‖yk − z‖2 ≤ ‖z − xk‖2 + θk.

Then z ∈ Ck+1 and hence Ck+1 is closed. Let x, y ∈ Ck+1 ⊂ Ck with z = αx+ (1− α)y where α ∈ [0, 1]. Since Ck is convex,
z ∈ Ck. Thus, we have ‖yk − x‖2 ≤ ‖x− xk‖2 + θk and ‖yk − y‖2 ≤ ‖y− xk‖2 + θk. Hence

‖yk − z‖2 = ‖yk − (αx+ (1− α)y)‖2

= ‖α(yk − x)+ (1− α)(yk − y)‖2

= α‖yk − x‖2 + (1− α)‖yk − y‖2 − α(1− α)‖(yk − x)− (yk − x)‖2

≤ α(‖x− xk‖2 + θk)+ (1− α)(‖y− xk‖2 + θk)− α(1− α)‖y− x‖2

= α‖x− xk‖2 + (1− α)‖y− xk‖2 − α(1− α)‖(xk − x)− (xk − y)‖2 + θk
= ‖α(xk − x)+ (1− α)(xk − y)‖2 + θk
= ‖xk − z‖2 + θk.

It follows that z ∈ Ck+1 and hence Ck+1 is closed and convex. Therefore Cn is closed and convex for all n ∈ N. This implies
that {xn} is well-defined. Since xn = PCnx0, it follows that

〈x0 − xn, xn − y〉 ≥ 0 (3.3)

for all y ∈ F ⊂ Cn and ∀n ∈ N. So, for u ∈ F , we have

0 ≤ 〈x0 − xn, xn − u〉 = −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − u〉
≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − u‖.

This implies that

‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − u‖

and hence

‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈ F and n ∈ N. (3.4)

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we also have

〈x0 − xn, xn − xn+1〉 ≥ 0 for all n ∈ N. (3.5)

So, for xn+1 ∈ Cn, we have, for n ∈ N

0 ≤ 〈x0 − xn, xn − xn+1〉 = −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − xn+1〉
≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − xn+1‖.

This implies that

‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − xn+1‖
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and hence

‖x0 − xn‖ ≤ ‖x0 − xn+1‖ for all n ∈ N. (3.6)

Since {‖x0 − xn‖} is bounded, limn→∞ ‖xn − x0‖ exists. Next, we show that ‖xn − xn+1‖ → 0. In fact, from (3.5), we have

‖xn − xn+1‖2 = ‖(xn − x0)+ (x0 − xn+1)‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈x0 − xn, x0 − xn〉 − 2〈x0 − xn, xn − xn+1〉 + ‖x0 − xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + ‖x0 − xn+1‖2.

Since limn→∞ ‖xn − x0‖ exists, we have that limn→∞ ‖xn − xn+1‖ = 0. We now claim that limn→∞ ‖Txn − xn‖ = 0 =
limn→∞ ‖Sxn − xn‖. Indeed, by definition of yn, we have

‖yn − xn‖ = ‖αnxn − (1− αn)T nzn − xn‖ = (1− αn)‖T nzn − xn‖,

it follows that

‖T nzn − xn‖ =
1

1− αn
‖yn − xn‖ ≤

1
1− αn

(‖yn − xn+1‖ + ‖xn+1 − xn‖.

Since xn+1 ∈ Cn, ‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn → 0 as n → ∞, this implies that ‖T nzn − xn‖ → 0 as n → ∞.
We now show that ‖Snxn − xn‖ → 0. Let {‖Snkxnk − xnk‖} be any subsequence of {‖S

nxn − xn‖}. Since {xnk} is bounded,
there exists a subsequence {xnkj } of {xnk} such that limj→∞ ‖xnkj − u‖ = lim supk→∞ ‖xnk − u‖ := a. We note that

‖xnkj − u‖ ≤ ‖xnkj − T
nkj znkj ‖ + ‖T

nkj znkj − u‖ ≤ ‖xnkj − T
nkj znkj ‖ + knkj ‖znkj − u‖,∀j ≥ 1. This implies that

a = lim inf
j→∞

‖xnkj − u‖ ≤ lim infj→∞
‖znkj − u‖. (3.7)

By (3.2), we note that

‖znkj − u‖ ≤ ‖xnkj − u‖ + ((1− βnkj )(s
2
nkj
− 1))

1
2 ‖xnkj − u‖

and hence

lim sup
j→∞

‖znkj − u‖ ≤ lim supj→∞
‖xnkj − u‖ := a. (3.8)

Therefore

lim
j→∞
‖znkj − u‖ = a = limj→∞

‖xnkj − u‖.

Furthermore by (3.2) again, we observe that

βnkj
(1− βnkj )‖S

nkj xnkj − xnkj ‖
2
≤ ‖xnkj − u‖

2
− ‖znkj − u‖

2
+ (1− βnkj )(s

2
nkj
− 1)‖xnkj − u‖

2

→ 0 as j→∞.

This implies that limj→∞ ‖S
nkj xnkj − xnkj ‖ = 0 and hence

lim
j→∞
‖Snxn − xn‖ = 0. (3.9)

Next, we note that

‖xn − T nxn‖ ≤ ‖xn − T nzn‖ + ‖T nzn − T nxn‖ ≤ ‖xn − T nzn‖ + kn‖zn − xn‖. (3.10)

Since

‖zn − xn‖ = ‖βnxn + (1− βn)Snxn − xn‖ = (1− βn)‖Snxn − xn‖ → 0 as n→∞,

and limn→∞ ‖T nzn − xn‖ = 0, we have

lim
n→∞
‖xn − T nxn‖ = 0. (3.11)

It follows that

‖Txn − xn‖ ≤ ‖Txn − T n+1xn‖ + ‖T n+1xn − T n+1xn+1‖ + ‖T n+1xn+1 − xn+1‖ + ‖xn+1 − xn‖
≤ t∞‖xn − T nxn‖ + ‖T n+1xn+1 − xn+1‖ + (1+ t∞)‖xn − xn+1‖
→ 0 as n→∞. (3.12)
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Similarly, we have

‖Sxn − xn‖ → ∞ as n→∞. (3.13)

By (3.12) and (3.13), Lemma 2.2 and the boundedness of {xn}, we have ∅ 6= ωw(xn) ⊂ F . Since z0 = PFx0, z0 ∈ F ⊂ Cn and
xn = PCnx0 by the definition of P , we obtain

‖x0 − xn‖ = ‖x0 − PCnx0‖ ≤ ‖x0 − z0‖ for all n ≥ 0. (3.14)

Letw ∈ ωw(xn), by weak lower semi continuous of the norm, we have

‖w − x0‖ ≤ lim inf
n
‖xn − x0‖ ≤ ‖z0 − x0‖. (3.15)

Similarly, for z0 = PFx0 andw ∈ ωw(xn) ⊂ F , it follows that

‖x0 − z0‖ = ‖x0 − PFx0‖ ≤ ‖x0 − w‖, forw ∈ F . (3.16)

From (3.15) and (3.16), this implies that z0 = w thus ωw(xn) = {z0} and then xn ⇀ z0, and we note that

‖xn − z0‖2 = ‖xn − x0 + x0 − z0‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − z0〉 + ‖x0 − z0‖2

≤ ‖z0 − x0‖2 − 2〈x0 − xn, x0 − z0〉 + ‖x0 − z0‖2

= 2‖z0 − x0‖2 − 2〈x0 − xn, x0 − z0〉 → 0 as n→∞.

Hence, xn → z0 = PFx0. This completes the proof. �

If S ≡ T , then Theorem 3.1 reduces to the following corollary:

Corollary 3.2. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H. Let T : C → C be an
asymptotically nonexpansive mapping with sequence {tn}. Assume that F(T ) 6= ∅ and let x0 ∈ H. For C1 = C and x1 = PC1x0,
define a sequence {xn} of C as follows:

yn = αnxn + (1− αn)T nxn,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn}
xn+1 = PCn+1x0, n ∈ N

where θn = (1 − αn)(t2n − 1)(diam C)
2
→ 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {xn} converges strongly to

z0 = PF(T )x0.

By the same argument as in the proof of Theorem 3.1, we obtain the following theorem.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H. Let S, T : C → H be two
nonexpansive mappings and F = F(S)∩ F(T ) 6= ∅ and let x0 ∈ H. For C1 = C and x1 = PC1x0, define a sequence {xn} as follows:

yn = αnxn + (1− αn)Tzn,
zn = βnxn + (1− βn)Sxn,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N

where 0 ≤ αn ≤ a < 1 and 0 < b ≤ βn ≤ c < 1 for all n ∈ N. Then {xn} converges strongly to z0 = PFx0.

If S = T , then Theorem 3.3 reduces to Theorem 1.1.
Now, we present the strong convergence theorem of two asymptotically nonexpansive semigroups on C in a Hilbert

space.
Suppose that T = {T (t) : 0 ≤ t < ∞} and S = {S(t) : 0 ≤ t < ∞} are two asymptotically nonexpansive

semigroups defined on a nonempty closed convex bounded subset C of a Hilbert space H . Recall that we use LTt and
LSt to denote the Lipschitzian constant of the mapping T (t) and S(t), respectively. In the rest of this section, we put
L∞ = sup{LTt , L

S
t : 0 < t < ∞} and we use Fix(T ) and Fix(S ) to denote the common fixed point set of T and S ,

respectively. Furthermore we use F := Fix(T ) ∩ Fix(S ) to denote the set of common fixed points of two asymptotically
nonexpansive semigroups T and S . Note that the boundedness of C implies that Fix(T ) and Fix(S ) are nonempty (see
[12]) and we assume throughout in this theorem that the set of two common fixed point F in nonempty.
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Theorem 3.4. Let H be aHilbert space and let C be a nonempty closed bounded convex subset of H. Let T = {T (t) : 0 ≤ t <∞}
and S = {S(t) : 0 ≤ t <∞} be two asymptotically nonexpansive semigroups on C such that F = F(T ) ∩ F(S ) 6= ∅ and let
x0 ∈ C. Let C1 = C, x1 = PC1x0 and {xn} be a sequence defined by

yn = αnxn + (1− αn)
1
tn

∫ tn

0
T (t)zndt,

zn = βnxn + (1− βn)
1
sn

∫ sn

0
S(t)xndt,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n}
xn+1 = PCn+1x0, n ∈ N,

where θ̃n = (1− αn)[( t̃
2
n − 1)+ (1− βn)̃t

2
n ( s̃

2
n − 1)](diam C)

2
→ 0 as n→∞(here t̃n = 1

tn

∫ tn
0 L

T
t dt and s̃n =

1
sn

∫ sn
0 L

S
t dt),

0 ≤ αn ≤ a < 1 and 0 < b ≤ βn ≤ c < 1 for all n ∈ N ∪ {0} and tn → ∞, sn → ∞. Then {xn} converges strongly to
z0 = PFx0.

Proof. First observe that F ⊂ Cn for all n ∈ N. For F ⊂ C = C1 is obvious. Suppose that F ⊂ Ck for some k ∈ N. Let
z ∈ F ⊂ Ck. Then we have

‖yk − z‖2 =
∥∥∥∥αk(xk − z)+ (1− αk)( 1tk

∫ tk

0
T (t)zkdt − z

)∥∥∥∥2
≤ αk‖xk − z‖2 + (1− αk)

∥∥∥∥ 1tk
∫ tk

0
T (t)zkdt − z

∥∥∥∥2
≤ αk‖xk − z‖2 + (1− αk)

(
1
tk

∫ tk

0
‖T (t)zk − z‖dt

)2
≤ αk‖xk − z‖2 + (1− αk)

(
1
tk

∫ tk

0
LTt ‖zk − z‖dt

)2
≤ αk‖xk − z‖2 + (1− αk)

(
1
tk

∫ tk

0
LTt dt

)2
‖zk − z‖2

≤ ‖xk − z‖2 + (1− αk)( t̃
2
n‖zk − z‖

2
− ‖xk − z‖2). (3.17)

By Lemma 2.1, we have

‖zk − z‖2 = βk‖xk − z‖2 + (1− βk)
∥∥∥∥ 1sk

∫ sk

0
S(t)xkdt − z

∥∥∥∥2 − βk(1− βk) ∥∥∥∥xk − 1sk
∫ sk

0
S(t)xkdt

∥∥∥∥2
≤ βn‖xk − z‖2 + (1− βk)

(
1
sk

∫ sk

0
‖S(t)xk − z‖dt

)2
− βk(1− βk)

∥∥∥∥xk − 1sk
∫ sk

0
S(t)xkdt

∥∥∥∥2
≤ βn‖xk − z‖2 + (1− βk)

(
1
sk

∫ sk

0
ŁSt dt

)2
‖xk − z‖2 − βk(1− βk)

∥∥∥∥xk − 1sk
∫ sk

0
S(t)xkdt

∥∥∥∥2
≤ ‖xk − z‖2 + (1− βk)( s̃2k − 1)‖xk − z‖

2. (3.18)

Substituting (3.18) in (3.17) yields,

‖yk − z‖2 ≤ ‖xk − z‖2 + (1− αk)( t̃
2
n[‖xk − z‖

2
+ (1− βk)( s̃2k − 1)‖xk − z‖

2
] − ‖xk − z‖2)

≤ ‖xk − z‖2 + [(1− αk)( t̃
2
n − 1)+ (1− αk)(1− βk)̃t

2
k ( s̃

2
k − 1)]‖xk − z‖

2

≤ ‖xk − z‖2 + [(1− αk)( t̃
2
n − 1)+ (1− αk)(1− βk)̃t

2
k ( s̃

2
k − 1)](diam C)

2

≤ ‖xk − z‖2 + θ̃2k .

It follows that z ∈ Ck+1. Hence F ⊂ Cn for all n ∈ N. Again, by using the same argument in the proof of Theorem 3.1, we
have Cn is closed and convex for all n ∈ N and

‖xn − xn+1‖ → 0. (3.19)

We now claim that

lim sup
r→∞

lim sup
n→∞

‖T (r)xn − xn‖ = 0 = lim sup
r→∞

lim sup
n→∞

‖S(r)xn − xn‖.
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Indeed, by definition of yn and xn+1 ⊂ Cn we have∥∥∥∥ 1tn
∫ tn

0
T (t)zndt − xn

∥∥∥∥ = 1
1− αn

‖yn − xn‖

≤
1

1− αn
(‖yn − xn+1‖ + ‖xn+1 − xn‖)

≤
1

1− αn

(
2‖xn+1 − xn+1‖ +

√
θ̃n

)
→ 0 as n→∞. (3.20)

We now show that lim supr→∞ lim supn→∞ ‖S(r)xn − xn‖ = 0. Let
{
‖
1
snk

∫ snk
0 S(t)xnkdt − xnk‖

}
be any subsequence of{

‖
1
sn

∫ sn
0 S(t)xndt − xn‖

}
. Since {xnk} is bounded, there is a subsequence {xnkj } of {xnk} such that

lim
j→∞
‖xnkj − z‖ = lim supk→∞

‖xnk − z‖ := a.

We observe that

‖xnkj − z‖ ≤

∥∥∥∥∥xnkj − 1
tnkj

∫ tnkj

0
T (t)znkj dt

∥∥∥∥∥+
∥∥∥∥∥ 1tnkj

∫ tnkj

0
T (t)znkj dt − z

∥∥∥∥∥
≤

∥∥∥∥∥xnkj − 1
tnkj

∫ tnkj

0
T (t)znkj dt

∥∥∥∥∥+ 1
tnkj

∫ tnkj

0
‖T (t)znkj − z‖dt

≤

∥∥∥∥∥xnkj − 1
tnkj

∫ tnkj

0
T (t)znkj dt

∥∥∥∥∥+ t̃n‖znkj − z‖.
This implies that a = lim infj→∞ ‖xnkj − z‖ ≤ lim infj→∞ ‖znkj − z‖. By (3.18) we note that ‖znkj − z‖ ≤ ‖xnkj − z‖ + ((1−

βnkj
)( s̃2n − 1))

1
2 ‖xnkj − z‖ and hence

lim sup
j→∞

‖znkj − z‖ ≤ lim supj→∞
‖xnkj − z‖ = a.

Therefore limj→∞ ‖znkj − z‖ = a = limj→∞ ‖xnkj − z‖. Furthermore, by (3.18) again, we observe that

βnkj
(1− βnkj )‖xnkj −

1
snkj

∫ snkj

0
S(t)xnkj dt‖

2
≤ ‖xnkj − z‖

2
− ‖znkj − z‖

2
+ (1− βnkj )( s̃

2
nkj
− 1)‖xnkj − z‖

2

→ 0 as j→∞.

This implies that limj→∞ ‖xnkj −
1
snkj

∫ snkj
0 S(t)xnkj dt‖ = 0 and hence

lim
n→∞

∥∥∥∥ 1sn
∫ sn

0
S(t)xndt − xn

∥∥∥∥ = 0. (3.21)

For all 0 ≤ r <∞, we note that

‖S(r)xn − xn‖ ≤
∥∥∥∥S(r)xn − S(r)( 1sn

∫ sn

0
S(t)xndt

)∥∥∥∥+ ∥∥∥∥S(r)( 1sn
∫ sn

0
S(t)xndt

)
−
1
sn

∫ sn

0
S(t)xndt

∥∥∥∥
+

∥∥∥∥ 1sn
∫ sn

0
S(t)xndt − xn

∥∥∥∥
≤ (L∞ + 1)

∥∥∥∥ 1sn
∫ sn

0
S(t)xndt − xn

∥∥∥∥+ ∥∥∥∥S(r)( 1sn
∫ sn

0
S(t)xndt

)
−
1
sn

∫ sn

0
S(t)xndt

∥∥∥∥
:= (L∞ + 1)ASn + B

S
n(r), (3.22)

where ASn :=
∥∥∥ 1sn ∫ sn0 S(t)xndt − xn∥∥∥ and BSn(r) := ∥∥∥S(r) ( 1sn ∫ sn0 S(t)xndt)− 1

sn

∫ sn
0 S(t)xndt

∥∥∥. By (3.21) and Lemma 2.5, we
have limn→∞ ASn = 0 = lim supr→∞ lim supn→∞ B

S
n(r). Moreover, we observe that
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∫ tn

0
T (t)xndt

∥∥∥∥ ≤ ∥∥∥∥xn − 1tn
∫ tn

0
T (t)zndt

∥∥∥∥+ ∥∥∥∥ 1tn
∫ tn

0
T (t)zndt −

1
tn

∫ tn

0
T (t)xndt

∥∥∥∥
≤

∥∥∥∥xn − 1tn
∫ tn

0
T (t)zndt

∥∥∥∥+ 1tn
∫ tn

0
‖T (t)zn − Ttxn‖dt

≤

∥∥∥∥xn − 1tn
∫ tn

0
T (t)zndt

∥∥∥∥+ t̃n‖zn − xn‖.
Since ‖zn − xn‖ = (1− βn)‖ 1sn

∫ sn
0 S(t)xndt − xn‖ → 0 and (3.20) we obtain

lim
n→∞

∥∥∥∥xn − 1tn
∫ tn

0
T (t)xndt

∥∥∥∥ = 0. (3.23)

We can deduce that for all 0 ≤ r <∞,

‖T (r)xn − xn‖ ≤
∥∥∥∥T (r)xn − T (r)( 1tn

∫ tn

0
T (t)xndt

)∥∥∥∥+ ∥∥∥∥T (r)( 1tn
∫ tn

0
T (t)xndt

)
−
1
tn

∫ tn

0
T (t)xndt

∥∥∥∥
+

∥∥∥∥ 1tn
∫ tn

0
T (t)xndt − xn

∥∥∥∥
≤ (L∞ + 1)

∥∥∥∥ 1tn
∫ tn

0
T (t)xndt − xn

∥∥∥∥+ ∥∥∥∥T (r)( 1tn
∫ tn

0
T (t)xndt

)
−
1
tn

∫ tn

0
T (t)xndt

∥∥∥∥
:= (L∞ + 1)ATn + B

T
n(r).

By (3.23) and Lemma 2.5, we have

lim
n→∞

ATn = 0 = lim sup
r→∞

lim sup
n→∞

BTn(r). (3.24)

From (3.22) and (3.24), we obtain

lim sup
r→∞

lim sup
n→∞

‖T (r)xn − xn‖ = 0 = lim sup
r→∞

lim sup
n→∞

‖S(r)xn − xn‖.

Wenote by Lemma2.5 that everyweak limit point of {xn} is amember ofF . From xn ⇀ z0 = PFx0, we have x0−xn ⇀ x0−z0
from H satisfies the Kadec–Klee property, it follows that

x0 − xn → x0 − z0.

So, we have

‖xn − z0‖ = ‖xn − x0 − (z0 − x0)‖ → 0 as n→∞.

Hence xn → z0. This complete the proof. �

If S ≡ T , then S(t)xn = xn for all n ∈ N and for all t > 0. Hence 1
sn

∫ sn
0 S(u)xndu = xn, zn = xn for all n ∈ N and

therefore Theorem 3.3 reduces to the following corollary.

Corollary 3.5. Let H be aHilbert space and let C be a nonempty closed bounded convex subset of H. Let T = {T (t) : 0 ≤ t <∞}
and be an asymptotically nonexpansive semigroup on C such that F(T ) 6= ∅ and let x0 ∈ H. For C1 = C and x1 = PC1x0, define
a sequence {xn} of C as follows:

yn = αnxn + (1− αn)
1
tn

∫ tn

0
T (t)xndt,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n}
xn+1 = PCn+1x0, n ∈ N

where θ̃n = (1 − αn)( t̃
2
n − 1)(diam C)

2
→ 0 as n → ∞(here t̃n = 1

tn

∫ tn
0 L

T
t dt, 0 ≤ αn ≤ a < 1 for all n ∈ N ∪ {0} and

tn →∞, sn →∞. Then {xn} converges strongly to z0 = PF(T )x0.

By the same argument as in the proof of Theorem 3.4, we obtain the following theorem.

Theorem 3.6. Let H be aHilbert space and let C be a nonempty closed bounded convex subset of H. Let T = {T (t) : 0 ≤ t <∞}
and S = {S(t) : 0 ≤ t < ∞} be two nonexpansive semigroups on C such that F = F(T ) ∩ F(S ) 6= ∅ and let x0 ∈ H. Let
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C1 = C, x1 = PC1x0 define a sequence {xn} as follows:

yn = αnxn + (1− αn)
1
tn

∫ tn

0
T (t)zndt,

zn = βnxn + (1− βn)
1
sn

∫ sn

0
S(t)xndt,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N

where 0 ≤ αn ≤ a < 1 and 0 < b ≤ βn ≤ c < 1 for all n ∈ N and tn → ∞, sn → ∞. Then {xn} converges strongly to
z0 = PFx0.

If S = T , then Theorem 3.6 reduces to Theorem 1.2.
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many others.
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1. Introduction

Let H be a real Hilbert space, C a nonempty closed convex subset of H and T : C → C a mapping. Recall that T is
nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C . A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T ) the
set of fixed points of T ; that is, F(T ) = {x ∈ C : Tx = x}. We know that a Hilbert space H satisfies Opial’s condition [1], that
is, for any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.
Recall that amapping T : C → C is said to be a strict pseudo-contractivemapping [2] if there exists a constant 0 ≤ k < 1

such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, (1.1)

for all x, y ∈ C . (If (1.1) holds, we also say that T is a k-strict pseudo-contraction.)
It is known that if T is a 0-strict pseudo-contractive mapping, T is a nonexpansive mapping.
In this paper we will consider an iteration method of modified Mann for asymptotically k-strict pseudo-contractive

mapping. We say that T : C → C is an asymptotically k-strict pseudo-contractive mapping if there exists a constant
0 ≤ k < 1 satisfying

‖T nx− T ny‖2 ≤ (1+ γn)‖x− y‖2 + k‖(I − T n)x− (I − T n)y‖2, (1.2)

∗ Corresponding author.
E-mail addresses: peissara@uru.ac.th (I. Inchan), kamonratn@nu.ac.th (K. Nammanee).
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for all x, y ∈ C and for all n ∈ N where γn ≥ 0 for all n such that limn→∞ γn = 0. We see that if k = 0, then T is an
asymptotically nonexpansive mapping. By Goebel and Kirk [3], T is an asymptotically nonexpansive mapping if there exists
a sequence {γn} of nonnegative numbers with limn→∞ γn = 0 and such that

‖T nx− T ny‖2 ≤ (1+ γn)‖x− y‖2, (1.3)

for all x, y ∈ C and all integers n ≥ 1.
Fixed point iteration processes for nonexpansivemappings and asymptotically nonexpansivemappings in Hilbert spaces

and Banach spaces includingMann and Ishikawa iteration processes have been studied extensively bymany authors to solve
nonlinear operator equations as well as variational inequalities: see [4–7]. However, Mann and Ishikawa iteration processes
have only weak convergence even in Hilbert space: see [8,7].
Our iterationmethod for finding a fixed point of an asymptotically k-strict pseudo-contractivemapping T is themodified

Mann’s iteration method studied in [9–12] which generates a sequence {xn} via

xn+1 = αnxn + (1− αn)T nxn, n ≥ 0, (1.4)

where the initial guess x0 ∈ C is arbitrary and the sequence {αn}∞n=0 lies in the interval (0, 1).
In 2007, Takahashi, Takeuchi and Kubota [7] introduced the modification of the Mann iteration method for a family of

nonexpansive mappings {Tn}. Let x0 ∈ H . For C1 = C and u1 = PC1x0, define a sequence {un} of C as follows:{yn = αnun + (1− αn)Tnun,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

(1.5)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then we prove that the sequence {un} converges strongly to z0 = PF(T )x0.
In 2008, Inchan [13], introduced the modified Mann iteration processes for an asymptotically nonexpansive mapping.

Let C be a closed bounded convex subset of a Hilbert space H , T be an asymptotically nonexpansive mapping of C into itself
and let x0 ∈ C . For C1 = C and x1 = PC1(x0), define {xn} as follows:yn = αnxn + (1− αn)T

nxn,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
xn+1 = PCn+1x0, n ∈ N,

(1.6)

where θn = (1 − αn)(k2n − 1)(diam C)
2
→ 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for all n ∈ N. Then he proves that {xn}

converges strongly to z0 = PF(T )x0.
Inspired and motivated by these facts, it is the purpose of this paper to introduce the modified Mann iteration processes

for an asymptotically k-strict pseudo-contractive mapping by the idea in (1.6). Let C be a closed convex subset of a Hilbert
space H , T be an asymptotically k-strict pseudo-contractive mapping of C into itself and let x0 ∈ C . For C1 = C and
x1 = PC1(x0), define {xn} as follows:yn = αnxn + (1− αn)T

nxn,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + [k− αn(1− αn)]‖xn − T nxn‖ + θn},
xn+1 = PCn+1x0, n ∈ N,

(1.7)

where θn = (diam C)2(1− αn)γn → 0, (n→∞).
We shall prove that the iteration generated by (1.7) converges strongly to z0 = PF(T )x0.

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and let C be a closed convex subset of H . For every
point x ∈ H , there exists a unique nearest point in C , denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, for all y ∈ C .

PC is called the metric projection of H onto C . It is well known that PC is a nonexpansive mapping of H onto C .
We collect some lemmas which will be used in the proof of the main result.

Lemma 2.1 ([14]). The following identities hold in a Hilbert space H:
(i) ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉,∀x, y ∈ H.
(ii) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2 for all x, y ∈ H and λ ∈ [0, 1].

Lemma 2.2 ([15]). Let T be an asymptotically k-strict pseudo-contractive mapping defined on a bounded closed convex subset C
of a Hilbert space H. Assume that {xn} is a sequence in C with the properties
(i) xn ⇀ z and
(ii) Txn − xn → 0.

Then (I − T )z = 0.
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Lemma 2.3 ([16]). Let C be a closed convex subset of a real Hilbert space H. Given x ∈ H and y ∈ C, then y = PCx if and only if
the following inequality holds

〈x− y, y− z〉 ≥ 0, ∀z ∈ C .

Lemma 2.4 ([15]). Assume that C is a closed convex subset of a Hilbert space H and let T : C → C be an asymptotically k-strict
pseudo-contraction. Then for each n ≥ 1, T n satisfies the Lipschitz condition:

‖T nx− T y‖ ≤ Ln‖x− y‖

for all x, y ∈ C, where Ln =
k+
√
1+γn(1−k)
1−k .

3. Main results

In this section, we prove strong convergence theorems by hybridmethods for asymptotically k-strict pseudo-contractive
mappings in Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be an asymptotically k-strict
pseudo-contractive mapping of C into itself such that F(T ) 6= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0, assume that
the control sequence {αn}∞n=1 is chosen such that lim supn→∞ αn < 1 − k. Then {xn} generated by (1.7) converges strongly to
z0 = PF(T )x0.

Proof. We first show that F(T ) ⊂ Cn for all n ∈ N, by induction. For any z ∈ F(T )we have z ∈ C = C1 hence F(T ) ⊂ C1. Let
F(T ) ⊂ Cm for eachm ∈ N. Then we have, for u ∈ F(T ) ⊂ Cm

‖ym − u‖2 = ‖αmxm + (1− αm)Tmxm − u‖2

= ‖αm(xm − u)+ (1− αm)(Tmxm − u)‖2

= αm‖xm − u‖2 + (1− αm)‖Tmxm − u‖2 − αm(1− αm)‖xm − Tmxm‖2

≤ αm‖xm − u‖2 + (1− αm)[(1+ γm)‖xm − u‖2 + k‖xm − Tmxm‖2] − αm(1− αm)‖xm − Tmxm‖2

= (1+ (1− αm)γm)‖xm − u‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2

≤ ‖xm − u‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2 + (1− αm)γm‖xm − u‖2

≤ ‖xm − u‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2 + θm.

It follows that u ∈ Cm+1 and F(T ) ⊂ Cm+1, hence F(T ) ⊂ Cn for all n ∈ N. Next, we show that Cn is closed and convex for
all n ∈ N. It obviously follows that C1 = C is closed and convex. Suppose that Cm is closed and convex for each m ∈ N. Let
zj ∈ Cm+1 ⊂ Cm with zj → z. Since Cm is closed, z ∈ Cm and ‖ym− zj‖2 ≤ ‖zj− xm‖2+[k−αm(1−αm)]‖xm− Tmxm‖2+ θm.
Then

‖ym − z‖2 = ‖ym − zj + zj − z‖2

= ‖ym − zj‖2 + ‖zj − z‖2 + 2〈ym − zj, zj − z〉

≤ ‖zj − xm‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2 + θm + ‖zj − z‖2 + 2‖ym − zj‖‖zj − z‖.

Taking j→∞,

‖ym − z‖2 ≤ ‖z − xm‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2 + θm.

Hence z ∈ Cm+1. Let x, y ∈ Cm+1 ⊂ Cm with z = αx + (1 − α)y where α ∈ [0, 1]. Since Cm is convex, z ∈ Cm and
‖ym−x‖2 ≤ ‖x−xm‖2+[k−αm(1−αm)]‖xm−Tmxm‖2+θm, ‖ym−y‖2 ≤ ‖y−xm‖2+[k−αm(1−αm)]‖xm−Tmxm‖2+θm,
we have

‖ym − z‖2 = ‖ym − (αx+ (1− α)y)‖2

= ‖α(ym − x)+ (1− α)(ym − y)‖2

= α‖ym − x‖2 + (1− α)‖ym − y‖2 − α(1− α)‖(ym − x)− (ym − y)‖2

≤ α(‖x− xm‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2 + θm)
+ (1− α)(‖y− xm‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2 + θm)− α(1− α)‖y− x‖2

= α‖x− xm‖2 + (1− α)‖y− xm‖2 − α(1− α)‖(xm − x)− (xm − y)‖2

+ [k− αm(1− αm)]‖xm − Tmxm‖2 + θm
= ‖α(xm − x)+ (1− α)(xm − y)‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2 + θm
= ‖xm − z‖2 + [k− αm(1− αm)]‖xm − Tmxm‖2 + θm.
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Then z ∈ Cm+1, it follows that Cm+1 is closed and convex. Hence Cn is closed and convex for all n ∈ N. This implies that {xn}
is well defined. From xn = PCnx0, we have

〈x0 − xn, xn − y〉 ≥ 0, for all y ∈ Cn.

Since F(T ) ⊂ Cn, we have

〈x0 − xn, xn − u〉 ≥ 0 for all u ∈ F(T ) and n ∈ N. (3.1)

So, for u ∈ F(T ), we have

0 ≤ 〈x0 − xn, xn − u〉 = 〈x0 − xn, xn − x0 + x0 − u〉
= −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − u〉
≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − u‖.

This implies that

‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − u‖,

hence

‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈ F(T ) and n ∈ N. (3.2)

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we also have

〈x0 − xn, xn − xn+1〉 ≥ 0 for all n ∈ N. (3.3)

So, for xn+1 ∈ Cn, we have, for n ∈ N

0 ≤ 〈x0 − xn, xn − xn+1〉 = 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − xn+1〉
≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − xn+1‖.

This implies that

‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − xn+1‖,

hence

‖x0 − xn‖ ≤ ‖x0 − xn+1‖ for all n ∈ N. (3.4)

From (3.2) we have {xn} is bounded, limn→∞ ‖xn − x0‖ exists. Next, we show that ‖xn − xn+1‖ → 0. In fact, from (3.3) we
have

‖xn − xn+1‖2 = ‖(xn − x0)+ (x0 − xn+1)‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈x0 − xn, x0 − xn〉 − 2〈x0 − xn, xn − xn+1〉 + ‖x0 − xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + ‖x0 − xn+1‖2.

Since limn→∞ ‖xn − x0‖ exists, we have that

lim
n→∞
‖xn − xn+1‖ = 0. (3.5)

On the other hand, xn+1 ∈ Cn+1 ⊂ Cn implies that

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + [k− αn(1− αn)]‖xn − T nxn‖2 + θn, (3.6)

By the definition of yn, we have

‖yn − xn‖ = ‖αnxn + (1− αn)T nxn − xn‖
= (1− αn)‖T nxn − xn‖.

From (3.6), we have

(1− αn)2‖T nxn − xn‖2 = ‖yn − xn‖2

= ‖yn − xn+1 + xn+1 − xn‖2
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≤ ‖yn − xn+1‖2 + ‖xn+1 − xn‖2 + 2‖yn − xn+1‖‖xn+1 − xn‖
≤ ‖xn − xn+1‖2 + [k− αn(1− αn)]‖xn − T nxn‖2 + θn + ‖xn+1 − xn‖2 + 2‖yn − xn+1‖‖xn+1 − xn‖
= [k− αn(1− αn)]‖xn − T nxn‖2 + 2‖xn+1 − xn‖(‖xn+1 − xn‖ + ‖yn − xn+1‖)+ θn.

It follows that

((1− αn)2 − (k− αn(1− αn)))‖xn − T nxn‖2 ≤ 2‖xn+1 − xn‖(‖xn+1 − xn‖ + ‖yn − xn+1‖)+ θn.

Hence

(1− k− αn)‖T nxn − xn‖ ≤ 2‖xn+1 − xn‖(‖xn+1 − xn‖ + ‖yn − xn+1‖)+ θn. (3.7)

From lim supn→∞ αn < 1 − k, we can choose ε > 0 such that αn ≤ 1 − k − ε for large enough n. From (3.5) and (3.7), we
have

lim
n→∞
‖T nxn − xn‖ = 0. (3.8)

Next, we show that limn→∞ ‖Txn − xn‖ = 0. From Lemma 2.4, we have

‖Txn − xn‖ ≤ ‖Txn − T n+1xn‖ + ‖T n+1xn − T n+1xn+1‖ + ‖T n+1xn+1 − xn+1‖ + ‖xn+1 − xn‖

≤ L1‖xn − T nxn‖ + ‖T n+1xn+1 − xn+1‖ + (1+ Ln+1)‖xn − xn+1‖. (3.9)

From (3.5) and (3.8), we have

lim
n→∞
‖Txn − xn‖ = 0. (3.10)

By (3.9), Lemma 2.2 and boundedness of {xn} we obtain ∅ 6= ωw(xn) ⊂ F(T ). By the fact that ‖xn − x0‖ ≤ ‖z0 − x0‖ for all
n ≥ 0 where z0 = PF(T )(x0) and the weak lower semi-continuity of the norm, we have

‖x0 − z0‖ ≤ ‖x0 − w‖ ≤ lim inf
n→∞

‖x0 − xn‖

≤ lim sup
n→∞

‖x0 − xn‖ ≤ ‖x0 − z0‖,

for allw ∈ ωw(xn). However, since ωw(xn) ⊂ F(T ), we must havew = z0 for allw ∈ ωw(xn). Thus ωw(xn) = {z0} and then
xn ⇀ z0. Hence, xn → z0 = PF(T )(x0) by

‖xn − z0‖2 = ‖xn − x0‖2 + 2〈xn − x0, x0 − z0〉 + ‖x0 − z0‖2

≤ 2(‖z0 − x0‖2 + 〈xn − x0, x0 − z0〉)→ 0 as n→∞.

This completes the proof. �

Using this Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be a k-strict pseudo-contractive
mapping of C into itself for some 0 ≤ k < 1 such that F(T ) 6= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0, define {xn} as
follows;yn = αnxn + (1− αn)Txn,Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2},

xn+1 = PCn+1x0,
(3.11)

for all n ∈ N, where {αn} ⊂ [α, β] for some α, β ∈ [k, 1). Then {xn} generated by (3.11) converges strongly to z0 = PF(T )x0.

Corollary 3.3 ([13]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be an asymptotically
nonexpansive mapping of C into itself such that F(T ) 6= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0, define {xn} as follows;yn = αnxn + (1− αn)T

nxn,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
xn+1 = PCn+1x0, n ∈ N,

(3.12)

where θn = (1 − αn)(k2n − 1)(diam C)
2
→ 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {xn} generated by (3.12)

converges strongly to z0 = PF(T )x0.
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Corollary 3.4 ([7, Theorem4.1]). Let H be aHilbert space and C be a nonempty closed convex subset of H. Let T be a nonexpansive
mapping of C into H such that F(T ) 6= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0, define a sequence {un} of C as follows:{yn = αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

(3.13)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {un} converges strongly to z0 = PF(T )x0.
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In this paper, we introduce a new iterative method of a k-strictly pseudo-contractive
mapping for some 0 ≤ k < 1 and prove that the sequence {xn} converges strongly to a fixed
point of T , which solves a variational inequality related to the linear operator A. Our results
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[Some results on k-strictly pseudo-contractive mappings in Hilbert spaces, Nonlinear Anal.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Recall that a mapping T : C → H is said
to be k-strictly pseudo-contractive if there exists a constant k ∈ (0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C . (1.1)

Note that the class of k-strictly pseudo-contractive includes strictly the class of nonexpansivemappingswhich aremappings
T on C such that

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C . (1.2)

This is, T is nonexpansive if and only if T is 0-strictly pseudo-contractive. Themapping T is also said to be pseudo-contractive
if k = 1 and T is said to be strongly pseudo-contractive if there exists a positive constantλ ∈ (0, 1) such that T−λI is pseudo-
contractive. Clearly, the class of k-strictly pseudo-contractive mappings falls into the one between classes of nonexpansive
mappings and pseudo-contractive mappings. We remark also that the class of strongly pseudo-contractive mappings is
independent of the class of k-strictly pseudo-contractive mappings (see [1–3]).
It is clear that, in a real Hilbert space H , (1.1) is equivalent to

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 −
1− k
2
‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C . (1.3)

The mapping T is pseudo-contractive if and only if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2, ∀x, y ∈ C . (1.4)

T is strongly pseudo-contractive if and only if there exists a positive constant λ ∈ (0, 1) such that

〈Tx− Ty, x− y〉 ≤ (1− λ)‖x− y‖2, ∀x, y ∈ C . (1.5)
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In 2002, Xu [4] studied the following iterative process by the viscosity approximation defined by{
x0 ∈ K ,
xn+1 = αnf (xn)+ (1− αn)Txn, ∀n ≥ 0,

(1.6)

where the sequence {αn} of parameters satisfies appropriate conditions, and then proved that the sequence {xn} converges
strongly to a fixed point q of T , which is the unique solution of the following variational inequality:

〈(I − f )q, p− q〉 ≤ 0, ∀p ∈ F(T ). (1.7)
Very recently, Marino and Xu [5] introduced and considered the following iterative algorithm:{

x0 ∈ K ,
xn+1 = αnγ f (xn)+ (I − αnA)Txn, ∀n ≥ 0,

(1.8)

where the sequence {αn} of parameters satisfies appropriate conditions and A is a strongly positive bounded linear operator
with coefficient γ > 0 and 0 < γ <

γ

α
. Then they proved that the sequence {xn} converges strongly to a fixed point q of T ,

which is the unique solution of the following variational inequality:
〈(A− γ f )q, q− x〉 ≤ 0, ∀x ∈ F(T ). (1.9)

Moreover, Cho, Kang and Qin [6] extended and improved the result of Marino and Xu [5] (see also [2,7–14]) and introduced
a general iterative algorithm:{

x1 ∈ K ,
xn+1 = αnγ f (xn)+ (I − αnA)PK Sxn, ∀n ≥ 1

(1.10)

where S : C → H is a mapping defined by Sx = kx+(1−k)Tx, {αn} of parameters satisfies appropriate conditions, and A is a
strongly positive bounded linear operator with coefficient γ > 0 and 0 < γ <

γ

α
. Then, they proved the strong convergence

theorems for T being a k-strictly pseudo-contractive mapping in Hilbert spaces.
In this paper, motivated by Cho et al. [6], we introduce a new iterative scheme generated by{

x1 ∈ C,
xn+1 = αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn,

(1.11)

where S : C → H is a mapping defined by Sx = kx+ (1− k)Tx and T : C → H is a k-strictly pseudo-contractive mapping,
{αn}, {βn} ⊂ (0, 1). We will prove in Section 3 that if the sequences {αn} and {βn} of parameters satisfies appropriate
conditions, then the sequence {xn} generated by (1.11) converges strongly to the solution of variational inequality (1.9).

2. Preliminary

In this section, we collect some lemmas which will be used in the proof for the main result in the next section.

Lemma 2.1. Let H be a real Hilbert space. Then for any x, y ∈ H we have
(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉
(ii) ‖x+ y‖2 ≥ ‖x‖2 + 2〈y, x〉
(iii) ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2
(iv) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,∀t ∈ [0, 1].

Lemma 2.2 ([12]). Let {an} be a sequence of nonnegative real numbers, satisfying the property

an+1 ≤ (1− γn)an + bn, n ≥ 0,

where {γn} ⊂ (0, 1), and {bn} be a sequence in R such that
(i)
∑
∞

n=1 γn = ∞;
(ii) lim supn→∞

bn
γn
≤ 0 or

∑
∞

n=1 |bn| <∞.

Then limn→∞ an = 0.

Lemma 2.3 ([15]). Let C be a closed convex subset of a real Hilbert space H. Given x ∈ H and y ∈ C, then y = PCx if and only if
there holds the inequality

〈x− y, y− z〉 ≥ 0, ∀z ∈ C .

Lemma 2.4 ([5]). Let H be a Hilbert space, C be a nonempty closed convex subset of H, f : H → H be a contraction with
coefficient 0 < α < 1, and A be a strongly positive linear bounded operator with coefficient γ > 0. Then, for 0 < γ <

γ

α
,

〈x− y, (A− γ f )x− A(A− γ f )y〉 ≥ (γ − γα)‖x− y‖2, x, y ∈ H.

That is, A− γ f is strongly monotone with coefficient γ − γα.
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Lemma 2.5 ([5]). Assume that A is a strongly positive linear bounded operator on a Hilbert space H with coefficient γ > 0 and
0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ .

Lemma 2.6 ([16]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be a sequence in [0, 1] with
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1− βn)yn+ βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1−
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.7 ([14]). Let H be a Hilbert space, and C be a closed convex subset of H. If T is a k-strictly pseudo-contractive mapping
on C, then the fixed point set F(T ) is closed convex, so that the projection PF(T ) is well defined.

Lemma 2.8 ([14]). Let H be a Hilbert space, and C be a closed convex subset of H. Let T : C → H be a k-strictly pseudo-
contractive mapping with F(T ) 6= ∅. Then F(PCT ) = F(T ).

Lemma 2.9 ([14]). Let H be a Hilbert space, and C be a closed convex subset of H. Let T : C → H be a k-strictly pseudo-
contractive mapping. Define a mapping S : C → H by Sx = λx+ (1−λ)Tx for all x ∈ C. Then, as λ ∈ [k, 1), S is a nonexpansive
mapping such that F(S) = F(T ).

Lemma 2.10 ([5]). Let H be a Hilbert space, and C be a nonempty closed convex subset of H. Let A be a strongly positive linear
bounded self-adjoint operator on H with coefficient γ > 0. Assume that 0 < γ <

γ

α
. Let T : C → C be a nonexpansive mapping

with fixed point xt of contraction C 3 x 7→ tγ f (x) + (1 − tA)Tx. Then {xt} converges strongly to fixed point x̃ of T as t → 0,
which solves the following variational inequality:

〈(γ f − A)̃x, z − x̃〉 ≤ 0, ∀z ∈ F(T ).

Letµ be a continuous linear functional on l∞ and s = (a0, a1, . . .) ∈ l∞. Wewriteµn(an) instead ofµ(s). We callµ a Banach
limit if µ satisfies ‖µ‖ = µn(1) = 1 and µn(an+1) = µn(an) for all (a0, a1, . . .) ∈ l∞. If µ is a Banach limit, then we have
the following:

(i) for all n ≥ 1, an ≤ cn implies µn(an) ≤ µn(cn),
(ii) µn(an+r) = µn(an) for any fixed positive integer r ,
(iii) lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an for all s = (a0, a1, . . .) ∈ l∞.

Lemma 2.11 ([13]). Let a ∈ R be a real number and a sequence {an} ⊂ l∞ satisfying the condition µn(an) ≤ a for all Banach
limits µ. If lim supn→∞(an+1 − an) ≤ 0, then lim supn→∞ an ≤ a.

Lemma 2.12 ([17]). Let H be a Hilbert space, and C be a nonempty closed convex subset of H. For any integer N ≥ 1, assume
that, for each 1 ≤ i ≤ N, Ti : C → H be ki-strictly pseudo-contractive mappings for some 0 ≤ ki < 1. Assume that
{ηi}

N
i=1 is a positive sequence such that

∑N
i=1 ηi = 1. Then

∑N
i=1 ηiTi is a non-self-k-strictly pseudo-contractive mapping with

k = max{ki : 1 ≤ i ≤ N}.

Lemma 2.13 ([17]). Let {Ti}Ni=1 and {ηi}
N
i=1 be given as in Lemma 2.12. Suppose that {Ti}

N
i=1 has a common fixed point in C. Then

F(
∑N
i=1 ηiTi) = ∩

∞

i=1 F(Ti).

3. Main results

In this section, first we show that a mapping S : C → H defined by Sx = kx + (1 − k)Tx is a nonexpansive mapping,
where C is a nonempty closed convex subset of a real Hilbert space H and T : C → H is a k-strictly pseudo contractive
mapping with a fixed point for some 0 ≤ k < 1. Let x, y ∈ C; then from Lemma 2.1(iv) we have

‖Sx− Sy‖2 = ‖kx+ (1− k)Tx− (ky+ (1− k)Ty)‖2

= ‖k(x− y)+ (1− k)(Tx− Ty)‖2

= k‖x− y‖2 + (1− k)‖Tx− Ty‖2 − k(1− k)‖(x− y)x− (Tx− Ty)‖2

= k‖x− y‖2 + (1− k)(‖x− y‖2 + k‖(I − T )x− (I − T )y‖2)− k(1− k)‖(x− y)x− (Tx− Ty)‖2

= ‖x− y‖2 + (1− k)k(‖(I − T )x− (I − T )y‖2)− k(1− k)‖(I − T )x− (I − T )y‖2

≤ ‖x− y‖2.

Hence ‖Sx − Sy‖ ≤ ‖x − y‖. Then S is a nonexpansive mapping and we have that PCS is also nonexpansive, where PC is a
metrics projection on C . For any j ∈ N, define a mapping Sj : C → C by Sjx = 1

j γ f (x)+ (I −
1
j A)PCSx. Let us show that Sj is
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a contraction: let x, y ∈ C; we have

‖Sjx− Sjy‖ =
∥∥∥∥1j γ f (x)+

(
I −
1
j
A
)
PCSx−

(
1
j
γ f (y)+

(
I −
1
j
A
)
PCSy

)∥∥∥∥
≤
1
j
γα‖x− y‖ +

(
1−

1
j
γ

)
‖PCSx− PCSy‖

≤
1
j
γα‖x− y‖ +

(
1−

1
j
γ

)
‖x− y‖

≤

(
1−

1
j
(γ − γα)

)
(‖x− y‖).

Hence, Sj is a contraction. By Banach’s contraction principle there exists a unique fixed point uj ∈ C such that

uj =
1
j
γ f (uj)+

(
1−

1
j
A
)
PCSuj. (3.1)

Next, we prove the main results.

Theorem 3.1. Let H be a Hilbert space, C be a nonempty closed convex subset of H such that C ± C ⊂ C, and let T : C → H
be a k-strictly pseudo-contractive mapping with a fixed point for some 0 ≤ k < 1. Let A be a strongly positive bounded linear
operator on C with coefficient γ > 0 and f : C → C be a contraction with the contractive constant (0 < α < 1) such that
0 < γ <

γ

α
. Let {xn} be the sequence generated by{

x1 ∈ C,
xn+1 = αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn,

(3.2)

where S : C → H is a mapping defined by Sx = kx+ (1− k)Tx. If the control sequence {αn}, {βn} ⊂ (0, 1) satisfying

(i) limn→∞ αn = 0, limn→∞ βn = 0,
(ii)

∑
∞

n=1 αn = ∞,
(iii)

∑
∞

n=1 |αn+1 − αn| <∞,Σ
∞

n=1|βn+1 − βn| <∞.

Then {xn} converges strongly to a fixed point p of T , which solves the following solution of variational inequality (1.9).

Proof. Note that from the condition limn→∞ αn = 0, we may assume, without loss of generality, that αn ≤ (1− βn)‖A‖−1.
Since A is a strongly positive bounded linear operator on H ,

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}.

Observe that

〈((1− βn)I − αnA)x, x〉 = 1− βn − αn〈Ax, x〉
≥ 1− βn − αn‖A‖
≥ 0;

that is to say, (1− βn)I − αnA is positive. It follows that

‖(1− βn)I − αnA‖ = sup{〈((1− βn)I − αnA)x, x〉 : x ∈ H, ‖x‖ = 1}
= sup{1− βn − αn〈Ax, x〉 : x ∈ H, ‖x‖ = 1}
≤ 1− βn − αnγ .

We now observe that {xn} is bounded. Indeed, pick any p ∈ F(T ); we have

‖xn+1 − p‖ = ‖αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn − p‖
= ‖αn(γ f (xn)− Ap)+ βn(xn − p)+ ((1− βn)I − αnA)(PCSxn − p)‖
≤ αn‖γ f (xn)− Ap‖ + βn‖xn − p‖ + ‖((1− βn)I − αnA)‖‖PCSxn − p‖
≤ αn‖γ f (xn)− γ f (p)+ γ f (p)− Ap‖ + βn‖xn − p‖ + (1− βn − αnγ )‖xn − p‖
≤ αnγα‖xn − p‖ + αn‖γ f (p)− Ap‖ + βn‖xn − p‖ + (1− βn − αnγ )‖xn − p‖
≤ αnγα‖xn − p‖ + αn‖γ f (p)− Ap‖ + βn‖xn − p‖ + (1− βn − αnγ )‖xn − p‖
= (1− αn(γ − γα))‖xn − p‖ + αn‖γ f (p)− Ap‖

= (1− αn(γ − γα))‖xn − p‖ + αn(γ − γα)
‖γ f (p)− Ap‖
(γ − γα)

.
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It follows from induction that

‖xn − p‖ ≤ max
{
‖x1 − p‖,

‖γ f (p)− Ap‖
(γ − γα)

}
, n ≥ 0,

and hence {xn} is bounded. We also obtain that {f (xn)} and {PCSxn} are bounded. From (3.1), we have, for any n, j ∈ N,

‖xn+1 − PCSuj‖ = ‖αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn − PCSuj‖
= ‖αn(γ f (xn)− APCSuj)+ βn(xn − PCSuj)+ ((1− βn)I − αnA)(PCSxn − PCSuj)‖
≤ αn‖γ f (xn)− APCSuj‖ + βn‖xn − PCSuj‖ + (1− βn − αnγ )‖PCSxn − PCSuj‖
≤ αn‖γ f (xn)− APCSuj‖ + βn‖xn − PCSuj‖ + (1− βn − αnγ )‖xn − uj‖
= αn(‖γ f (xn)− APCSuj‖ − γ ‖xn − uj‖)+ βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖
= δn + βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖

where δn = αn(‖γ f (xn)− APCSuj‖ − γ ‖xn − uj‖), and from limn→∞ αn = 0, we have δn → 0 as n→∞. It follows that

‖xn+1 − PCSuj‖2 = (δn + βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖)2

= (βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖)2 + 2(βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖)δn + δ2n
= β2n‖xn − PCSuj‖

2
+ (1− βn)2‖xn − uj‖2 + 2βn(1− βn)‖xn − PCSuj‖‖xn − uj‖ + σn

where σn = 2(βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖)δn + δ2n → 0 as n→∞, and hence

‖xn+1 − PCSuj‖2 ≤ β2n‖xn − PCSuj‖
2
+ (1− βn)2‖xn − uj‖2 + βn(1− βn)(‖xn − PCSuj‖2 + ‖xn − uj‖2)+ σn

= βn‖xn − PCSuj‖2 + (1− βn)‖xn − uj‖2 + σn.

For any Banach limit µ and βn → 0, we have

µn‖xn − PCSuj‖2 = µn‖xn+1 − PCSuj‖2 ≤ µn‖xn − uj‖2. (3.3)

Since uj − xn = 1
j (γ f (uj)+ (I − A)PCSuj − xn)+ (1−

1
j )(PCSuj − xn); thus we have(

1−
1
j

)
(xn − PCSuj) = (xn − uj)+

1
j
(γ f (uj)+ (I − A)PCSuj − xn).

It follows from Lemma 2.1(ii) that(
1−

1
j

)2
‖xn − PCSuj‖2 =

∥∥∥∥(xn − uj)+ 1j (γ f (uj)+ (I − A)PCSuj − xn)
∥∥∥∥2

≥ ‖xn − uj‖2 +
2
j
〈(γ f (uj)+ (I − A)PCSuj − xn), xn − uj〉

= ‖xn − uj‖2 +
2
j
〈γ f (uj)+ (I − A)PCSuj − uj − (xn − uj), xn − uj〉

= ‖xn − uj‖2 +
2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉 −

2
j
〈xn − uj, xn − uj〉

= ‖xn − uj‖2 +
2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉 −

2
j
‖xn − uj‖2

=

(
1−

2
j

)
‖xn − uj‖2 +

2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉. (3.4)

So, by (3.3) and (3.4), we have(
1−

1
j

)2
‖xn − uj‖2 ≥

(
1−

1
j

)2
‖PCSuj − xn‖2

≥

(
1−

2
j

)
‖xn − uj‖2 +

2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉

and hence
1
j2
‖xn − uj‖2 ≥

2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉.
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This implies that

2
j
µn‖xn − uj‖2 ≥ µn〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉.

From Lemmas 2.8 and 2.10, uj → p ∈ F(T ) = F(PCS) as j→∞, we get

µn〈γ f (p)− Ap, xn − p〉 ≤ 0, (3.5)

where p is the solution of variational inequality (1.9). Since {xn}, {f (xn)} and {PCSxn} are bounded, we choose

M = sup{‖f (xn)‖ + ‖xn‖ + ‖PCSxn‖ + ‖APCSxn‖ : n ∈ N}.

On the other hand,

‖xn+2 − xn+1‖ = ‖αn+1γ f (xn+1)+ βn+1xn+1 + ((1− βn+1)I − αn+1A)PCSxn+1
− (αn+1γ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn)‖

= ‖αn+1γ f (xn+1)− αn+1γ f (xn)+ αn+1γ f (xn)− αnγ f (xn)+ βn+1xn+1 − βn+1xn
+βn+1xn − βnxn + ((1− βn+1)I − αn+1A)PCSxn+1 − ((1− βn+1)I − αn+1A)PCSxn
+ ((1− βn+1)I − αn+1A)PCSxn − ((1− βn)I − αnA)PCSxn‖

≤ αn+1γα‖xn+1 − xn‖ + |αn+1 − αn|‖γ f (xn)‖ + βn+1‖xn+1 − xn‖ + |βn+1 − βn|‖xn‖
+ (1− βn+1 − αn+1γ )‖PCSxn+1 − PCSxn‖
+‖((1− βn+1)I − αn+1A)− ((1− βn)I − αnA)‖‖PCSxn‖

≤ αn+1γα‖xn+1 − xn‖ + |αn+1 − αn|‖γ f (xn)‖ + βn+1‖xn+1 − xn‖ + |βn+1 − βn|‖xn‖
+ (1− βn+1 − αn+1γ )‖xn+1 − xn‖ + |βn+1 − βn|‖PCSxn‖ + |αn+1 − αn|‖APCSxn‖

≤ (1− αn+1(γ − γα))‖xn+1 − xn‖ + |αn+1 − αn|γM + |βn+1 − βn|M
+ |βn+1 − βn|M + |αn+1 − αn|M.

From (ii), (iii) and Lemma 2.2, we have

lim
n→∞
‖xn+1 − xn‖ = 0. (3.6)

Next, we show that limn→∞ ‖xn − PCSxn‖ = 0. We consider

‖xn − PCSxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − PCSxn‖
≤ ‖xn − xn+1‖ + αn‖γ f (xn − Ap)‖ + βn‖xn − PCSxn‖.

From αn → 0, βn → 0 and (3.6), it follows that limn→∞ ‖xn − PCSxn‖ = 0.
Next, we show that

lim sup
n→∞

〈γ f (p)− Ap, xn − p〉 ≤ 0,

where p ∈ F(T ), where p is the solution of variational inequality (1.9). From (3.6), we have

lim sup
n→∞

|〈γ f (p)− Ap, xn+1 − p〉 − 〈γ f (p)− Ap, xn − p〉| = 0. (3.7)

Hence it follows from (3.5) and (3.7) and Lemma 2.11 that

lim sup
n→∞

〈γ f (p)− Ap, xn − p〉 ≤ 0, (3.8)

and from limn→∞ ‖xn − PCSxn‖ = 0, we have

lim sup
n→∞

〈γ f (p)− Ap, PCSxn − p〉 = lim sup
n→∞

〈γ f (p)− Ap, (PCSxn − xn)+ (xn − p)〉

= lim sup
→∞

〈γ f (p)− Ap, xn − p〉 ≤ 0. (3.9)

Finally, we prove that xn → p as n→∞. We note that

‖xn+1 − p‖2 = ‖αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn − p‖2

= ‖αn(γ f (xn)− Ap)+ βn(xn − p)+ ((1− βn)I − αnA)(PCSxn − p)‖2

= ‖βn(xn − p)+ ((1− βn)I − αnA)(PCSxn − p)‖2 + α2n‖γ f (xn)− Ap‖
2

+ 2〈βn(xn − p)+ ((1− βn)I − αnA)(PCSxn − p), αn(γ f (xn)− Ap)〉
≤ (βn‖xn − p‖ + (1− βn − αnγ )‖PCSxn − p‖)2 + 2βnαn〈xn − p, (γ f (xn)− Ap)〉 + α2n‖γ f (xn)− Ap‖

2
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+ 2(1− βn)αn〈(PCSxn − p), (γ f (xn)− Ap)〉 − 2α2n〈A(PCSxn − p), (γ f (xn)− Ap)〉

≤ (βn‖xn − p‖ + (1− βn − αnγ )‖xn − p‖)2 + 2βnαnαγ ‖xn − p‖2 + 2βnαn〈xn − p, (γ f (p)− Ap)〉
+ 2(1− βn)αn〈(PCSxn − p), (γ f (xn)− Ap)〉 − 2α2n〈A(PCSxn − p), (γ f (xn)− Ap)〉 + α

2
n‖γ f (xn)− Ap‖

2

≤ (1− αnγ )2‖xn − p‖2 + 2βnαnαγ ‖xn − p‖2 + 2βnαn〈xn − p, (γ f (p)− Ap)〉
+ 2(1− βn)αn〈(PCSxn − p), (γ f (xn)− Ap)〉 + 3α2nM

= (1− 2(γ − γα)αn)‖xn − p‖2 + (αnγ )2M + 2βnαnαγ ‖xn − p‖2 + 2βnαn〈xn − p, (γ f (p)− Ap)〉
+ 2(1− βn)αn〈(PCSxn − p), (γ f (xn)− Ap)〉 + 3α2nM

= (1− 2(γ − γα)αn)‖xn − p‖2 + αn[2βn〈xn − p, (γ f (p)− Ap)〉
+ 2(1− βn)〈(PCSxn − p), (γ f (xn)− Ap)〉 + 3αnM + αnγ 2M]
=: (1− γn)‖xn − p‖2 + bn

where γn = 2(γ −γα)αn and bn = αn[2βn〈xn−p, (γ f (p)−Ap)〉+2(1−βn)〈(PCSxn−p), (γ f (xn)−Ap)〉+3αnM+αnγ 2M].
From

∑
∞

n=1 αn = ∞, (3.8) and (3.9), we have Σ
∞

n=1γn = ∞ and lim supn→∞
bn
γn
≤ 0. By Lemma 2.2, we have that the

sequence {xn} converges strongly to a fixed point p of T , which is the solution of variational inequality (1.9). This completes
the proof. �

If βn ≡ 0, in Theorem 3.1, we obtain the following corollary.

Corollary 3.2 ([6]). Let H be a Hilbert space, C be a nonempty closed convex subset of H such that C±C ⊂ C, and let T : C → H
be a k-strictly pseudo-contractive mapping with a fixed point for some 0 ≤ k < 1. Let A be strongly positive bounded linear
operator on C with coefficient γ > 0 and f : C → C be a contraction with the contractive constant (0 < α < 1) such that
0 < γ <

γ

α
. Let {xn} be the sequence generated by{

x1 ∈ C,
xn+1 = αnγ f (xn)+ (I − αnA)PCSxn,

(3.10)

where S : C → H is a mapping defined by Sx = kx+ (1− k)Tx. If the control sequence {αn} ⊂ (0, 1) satisfying

(i) limn→∞ αn = 0,
(ii)

∑
∞

n=1 αn = ∞,
(iii)

∑
∞

n=1 |αn+1 − αn| <∞.

Then {xn} converges strongly to a fixed point p of T , which solves the following solution of variational inequality (1.9). �

Theorem 3.3. Let H be a Hilbert space, C be a nonempty closed convex subset of H such that C ± C ⊂ C, and T : C → H be a
k-strictly pseudo-contractive mapping with a fixed point for some 0 ≤ k < 1. Let A be strongly positive bounded linear operator
on C with coefficient γ > 0 and f : C → C be a contraction with the contractive constant (0 < α < 1) such that 0 < γ <

γ

α
.

Let {xn} be the sequence generated by{
x1 ∈ C,
xn+1 = αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn,

(3.11)

where S : C → H is a mapping defined by Sx = kx+ (1− k)Tx. If the control sequence {αn}, {βn} ⊂ (0, 1) satisfying

(i) limn→∞ αn = 0,
(ii)

∑
∞

n=1 αn = ∞,
(iii)

∑
∞

n=1 |αn+1 − αn| <∞,
∑
∞

n=1 |βn+1 − βn| <∞,
(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converges strongly to a fixed point p of T , which solves the following solution of variational inequality (1.9).

Proof. In the proof of Theorem 3.1, we have that {xn} is bounded.We also obtain that {f (xn)} and {PCSxn} are bounded. Next,
we show that ‖xn+1 − xn‖ → 0. Define the sequence zn =

αnγ f (xn)+((1−βn)I−αnA)PC Sxn
1−βn

, such that xn+1 = βnxn + (1 − βn)zn,
n ≥ 0. Observe that from the definition of zn we obtain

zn+1 − zn =
αn+1γ f (xn+1)+ ((1− βn+1)I − αn+1A)PCSxn+1

1− βn+1
−
αnγ f (xn)+ ((1− βn)I − αnA)PCSxn

1− βn

=
αn+1γ f (xn+1)
1− βn+1

−
αn+1γ f (xn)
1− βn+1

+
αn+1γ f (xn)
1− βn+1

−
αnγ f (xn)
1− βn

+
((1− βn+1)I − αn+1A)PCSxn+1

1− βn+1
−
((1− βn+1)I − αn+1A)PCSxn

1− βn+1
+
((1− βn+1)I − αn+1A)PCSxn

1− βn+1
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−
((1− βn)I − αnA)PCSxn

1− βn+1
+
((1− βn)I − αnA)PCSxn

1− βn+1
−
((1− βn)I − αnA)PCSxn

1− βn

=
αn+1γ (f (xn+1)− f (xn))

1− βn+1
+ (αn+1 − αn)

(γ f (xn+1))
1− βn+1

+
((1− βn+1)I − αn+1A)

1− βn+1
(PCSxn+1 − PCSxn)

+
[((1− βn+1)I − αn+1A)− ((1− βn)I − αnA)]

1− βn+1
(PCSxn)

+ ((1− βn)I − αnA)
(

1
1− βn+1

−
1

1− βn

)
(PCSxn).

Thus,

‖zn+1 − zn‖ ≤
αn+1γα‖xn+1 − xn‖

1− βn+1
+ |αn+1 − αn|

‖γ f (xn+1)‖
1− βn+1

+
(1− βn+1 − αn+1γ )

1− βn+1
‖PCSxn+1 − PCSxn‖

+
‖((1− βn+1)I − αn+1A)− ((1− βn)I − αnA)‖

1− βn+1
‖PCSxn‖ + ((1− βn − αnγ )|

1
1− βn+1

−
1

1− βn
|‖PCSxn‖) ≤

αn+1γα

1− βn+1
‖xn+1 − xn‖ +

|αn+1 − αn|

1− βn+1
γM +

(1− βn+1 − αn+1γ )
1− βn+1

‖xn+1 − xn‖

+
[|βn+1 − βn| + |αn+1 − αn|γ ]

1− βn+1
‖APCSxn‖ +

(
(1− βn − αnγ )

∣∣∣∣ |βn+1 − βn|

(1− βn+1)(1− βn)
‖PCSxn‖

)
=
αn+1γα

1− βn+1
‖xn+1 − xn‖ +

|αn+1 − αn|

1− βn+1
γM + ‖xn+1 − xn‖ −

αn+1γ

1− βn+1
‖xn+1 − xn‖

+
[|βn+1 − βn| + |αn+1 − αn|γ ]

1− βn+1
M +

(
(1− βn − αnγ )|

|βn+1 − βn|

(1− βn+1)(1− βn)
M
)

whereM = sup{‖f (xn)‖ + ‖PCSxn‖ + ‖APCSxn‖ + ‖xn+1 − xn‖ : n ∈ N}. It follows that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
∣∣∣∣ |αn+1 − αn|1− βn+1

γM +
[|βn+1 − βn| + |αn+1 − αn|γ ]

1− βn+1
M

+

(
(1− βn − αnγ )

∣∣∣∣ |βn+1 − βn|

(1− βn+1)(1− βn)
M
)
.

Since
∑
∞

n=1 |αn+1 − αn| <∞,
∑
∞

n=1 |βn+1 − βn| <∞, we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.12)

From 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, (3.12) and Lemma 2.6, we have

lim
n→∞
‖zn − xn‖ = 0. (3.13)

We consider

‖xn+1 − xn‖ = ‖(1− βn)zn − βnxn − xn‖
= (1− βn)‖zn − xn‖

then

lim
n→∞
‖xn+1 − xn‖ = lim

n→∞
(1− βn)‖zn − xn‖ = 0.

Next, we show that limn→∞ ‖xn − PCSxn‖ = 0. We note that

‖xn − PCSxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − PCSxn‖

≤ ‖xn − xn+1‖ + αn‖γ f (xn)− APCSxn‖ + βn‖xn − PCSxn‖, (3.14)

and hence

(1− βn)‖xn − PCSxn‖ ≤ ‖xn − xn+1‖ + αn‖γ f (xn)− APCSxn‖.

From αn → 0 and limn→∞ ‖xn+1 − xn‖ = 0, it follows that limn→∞ ‖xn − PCSxn‖ = 0. From (3.1), we have, for any n, j ∈ N,

‖xn+1 − PCSuj‖ = ‖αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn − PCSuj‖
= ‖αn(γ f (xn)− APCSuj)+ βn(xn − PCSuj)+ ((1− βn)I − αnA)(PCSxn − PCSuj)‖
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≤ αn‖γ f (xn)− APCSuj‖ + βn‖xn − PCSuj‖ + (1− βn − αnγ )‖PCSxn − PCSuj‖
≤ αn‖γ f (xn)− APCSuj‖ + βn‖xn − PCSuj‖ + (1− βn − αnγ )‖xn − uj‖
= αn(‖γ f (xn)− APCSuj‖ − γ ‖xn − uj‖)+ βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖
= δn + βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖

where δn = αn(‖γ f (xn)− APCSuj‖ − γ ‖xn − uj‖). From limn→∞ αn = 0, we have δn → 0 as n→∞. It follows that

‖xn+1 − PCSuj‖2 = (δn + βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖)2

= (βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖)2 + 2(βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖)δn + δ2n
= β2n‖xn − PCSuj‖

2
+ (1− βn)2‖xn − uj‖2 + 2βn(1− βn)‖xn − PCSuj‖‖xn − uj‖ + σn

where σn = 2(βn‖xn − PCSuj‖ + (1− βn)‖xn − uj‖)δn + δ2n → 0 as n→∞, and hence

‖xn+1 − PCSuj‖2 ≤ β2n‖xn − PCSuj‖
2
+ (1− βn)2‖xn − uj‖2

+βn(1− βn)(‖xn − PCSuj‖2 + ‖xn − uj‖2)+ σn

= βn‖xn − PCSuj‖2 + (1− βn)‖xn − uj‖2 + σn. (3.15)

From (3.25), we have

‖xn − PCSuj‖2 = ‖(xn − xn+1)+ (xn+1 − PCSuj)‖2

= ‖xn+1 − PCSuj‖2 + 2〈xn+1 − PCSuj, xn − xn+1〉 + ‖xn − xn+1‖2

= ‖xn+1 − PCSuj‖2 + 2‖xn+1 − PCSuj‖‖xn − xn+1‖ + ‖xn − xn+1‖2,

≤ βn‖xn − PCSuj‖2 + (1− βn)‖xn − uj‖2 + σn + 2‖xn+1 − PCSuj‖‖xn − xn+1‖ + ‖xn − xn+1‖2

and hence

(1− βn)‖xn − PCSuj‖2 ≤ (1− βn)‖xn − uj‖2 + σn + 2‖xn+1 − PCSuj‖‖xn − xn+1‖ + ‖xn − xn+1‖2.

For any Banach limit µ and σn → 0, ‖xn+1 − xn‖ → 0, we have

µn‖xn − PCSuj‖2 ≤ µn‖xn − uj‖2. (3.16)

Since uj − xn = 1
j (γ f (uj)+ (I − A)PCSuj − xn)+ (1−

1
j )(PCSuj − xn), we have(

1−
1
j

)
(xn − PCSuj) = (xn − uj)+

1
j
(γ f (uj)+ (I − A)PCSuj − xn).

It follows from Lemma 2.1(ii) that(
1−

1
j

)2
‖xn − PCSuj‖2 = ‖(xn − uj)+

1
j
(γ f (uj)+ (I − A)PCSuj − xn)‖2

≥ ‖xn − uj‖2 +
2
j
〈(γ f (uj)+ (I − A)PCSuj − xn), xn − uj〉

= ‖xn − uj‖2 +
2
j
〈γ f (uj)+ (I − A)PCSuj − uj − (xn − uj), xn − uj〉

= ‖xn − uj‖2 +
2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉 −

2
j
〈xn − uj, xn − uj〉

= ‖xn − uj‖2 +
2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉 −

2
j
‖xn − uj‖2

=

(
1−

2
j

)
‖xn − uj‖2 +

2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉. (3.17)

So, by (3.16) and (3.17), we have(
1−

1
j

)2
‖xn − uj‖2 ≥

(
1−

1
j

)2
‖PCSuj − xn‖2

≥

(
1−

2
j

)
‖xn − uj‖2 +

2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉
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and hence

1
j2
‖xn − uj‖2 ≥

2
j
〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉.

This implies that

2
j
µn‖xn − uj‖2 ≥ µn〈γ f (uj)+ (I − A)PCSuj − uj, xn − uj〉.

From Lemmas 2.8 and 2.10, uj → p ∈ F(T ) = F(PCS) as j→∞, we get

µn〈γ f (p)− Ap, xn − p〉 ≤ 0, (3.18)

where p is the solution of variational inequality (1.9). Next, we show that

lim sup
n→∞

〈γ f (p)− Ap, xn − p〉 ≤ 0,

where p ∈ F(T ), where p is the solution of variational inequality (1.9). From limn→∞ ‖xn+1 − xn‖ = 0, we have

lim sup
n→∞

|〈γ f (p)− Ap, xn+1 − p〉 − 〈γ f (p)− Ap, xn − p〉| = 0. (3.19)

Hence it follows from (3.18) and (3.19) and Lemma 2.11 that

lim sup
n→∞

〈γ f (p)− Ap, xn − p〉 ≤ 0, (3.20)

and from (3.14), we have

lim sup
n→∞

〈γ f (p)− Ap, PCSxn − p〉 = lim sup
n→∞

〈γ f (p)− Ap, (PCSxn − xn)+ (xn − p)〉

= lim sup
n→∞

〈γ f (p)− Ap, xn − p〉 ≤ 0. (3.21)

By the same argument as used in Theorem 3.1, we have that the sequence {xn} converges strongly to a fixed point p of T ,
which is the solution of variational inequality (1.9). This completes the proof. �

Theorem 3.4. Let H be a Hilbert space, C be a nonempty closed convex subset of H such that C ± C ⊂ C, and Ti : C → H be
a ki-strictly pseudo-contractive mapping with a fixed point for some 0 ≤ ki < 1 and ∩Ni=1 F(Ti) 6= ∅. Let A be strongly positive
bounded linear operator on C with coefficient γ > 0 and f : C → C be a contraction with the contractive constant (0 < α < 1)
such that 0 < γ <

γ

α
. Let {xn} be the sequence generated by{

x1 ∈ C,
xn+1 = αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn,

(3.22)

where S : C → H is a mapping defined by Sx = kx + (1 − k)ΣNi=1ηiTix and k = max{ki : i = 1, 2, . . . ,N}. If the control
sequence {αn}, {βn} ⊂ (0, 1) satisfying

(i) limn→∞ αn = 0, limn→∞ βn = 0,
(ii)

∑
∞

n=1 αn = ∞,
(iii)

∑
∞

n=1 |αn+1 − αn| <∞,
∑
∞

n=1 |βn+1 − βn| <∞.

Then {xn} converges strongly to a common fixed point p of {Ti}Ni=1, which solves the following solution of the variational
inequalities:

〈(A− γ f )p, p− x〉 ≤ 0, ∀x ∈ ∩Ni=1 F(Ti). (3.23)

Proof. Define amapping T : C → H by Tx =
∑N
i=1 ηiTix. By Lemmas 2.12 and 2.13, we conclude that : C → H is a k−strictly

pseudo-contractive mapping with k = max{ki : i = 1, 2, . . . ,N} and F(T ) = F(
∑N
i=1 ηiTi) = ∩

N
i=1 F(Ti). From Theorem 3.1,

we can obtain desired conclusion easily. This completes the proof. �

If βn ≡ 0, Theorem 3.4 reduces to the following corollary.

Corollary 3.5 ([6]). Let H be a Hilbert space, K be a nonempty closed convex subset of H such that K ± K ⊂ K , and Ti : K → H
be a ki-strictly pseudo-contractive mapping with a fixed point for some 0 ≤ ki < 1 and∩Ni=1 F(Ti) 6= ∅. Let A be strongly positive
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bounded linear operator on K with coefficient γ > 0 and f : K → K be a contraction with the contractive constant (0 < α < 1)
such that 0 < γ <

γ

α
. Let {xn} be the sequence generated by{

x1 ∈ K ,
xn+1 = αnγ f (xn)+ (I − αnA)PCSxn,

(3.24)

where S : K → H is a mapping defined by Sx = kx + (1 − k)
∑N
i=1 ηiTix and k = max{ki : i = 1, 2, . . . ,N}. If the control

sequence {αn}, {βn} ⊂ (0, 1) satisfying
(i) limn→∞ αn = 0,
(ii)

∑
∞

n=1 αn = ∞,
(iii)

∑
∞

n=1 |αn+1 − αn| <∞,

then {xn} converges strongly to a common fixed point p of {Ti}Ni=1, which solves the following solution of the variational
inequalities:

〈(A− γ f )p, p− x〉 ≤ 0,∀x ∈
N⋂
i=1

F(Ti).

From the proof of Theorem 3.3, we can obtain the following theorem.

Theorem 3.6. Let H be a Hilbert space, C a nonempty closed convex subset of H such that C ± C ⊂ C, and Ti : C → H be a
ki-strictly pseudo-contractive mapping with a fixed point for some 0 ≤ ki < 1 and ∩Ni=1 F(Ti) 6= ∅. Let A be strongly positive
bounded linear operator on C with coefficient γ > 0 and f : C → C be a contraction with the contractive constant (0 < α < 1)
such that 0 < γ <

γ

α
. Let {xn} be the sequence generated by{

x1 ∈ C,
xn+1 = αnγ f (xn)+ βnxn + ((1− βn)I − αnA)PCSxn,

(3.25)

where S : C → H is a mapping defined by Sx = kx + (1 − k)
∑N
i=1 ηiTix and k = max{ki : i = 1, 2, . . . ,N}. If the control

sequence {αn}, {βn} ⊂ (0, 1) satisfying
(i) limn→∞ αn = 0,
(ii)

∑
∞

n=1 αn = ∞,
(iii)

∑
∞

n=1 |αn+1 − αn| <∞,
∑
∞

n=1 |βn+1 − βn| <∞,
(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then {xn} converges strongly to a common fixed point p of {Ti}Ni=1, which solves the following solution of variational inequalities
(3.23).
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