

Abstract

Project Code : MRG5180028

Project Title : Influence of Zirconia Addition on Microstructure and Mechanical Properties of Porcelain Ceramic-Nanocomposites

Investigator : Dr. Attavit Pisanusorn
 Department of Prosthodontics, Faculty of Dentistry
 Chiang Mai University Maung Chiangmai

E-mail Address : attavitp@gmail.com

Project Period : 2 years (15 May 2008 – 14 May 2010)

Abstract:

The effects of ZrO_2 -reinforced on the mechanical properties and crystallization behavior of leucite (KAlSi_2O_6) in dental ceramic with the short time - one step sintering and/or tempering firing procedure were investigated. Dense dental ceramic/20 wt.% ZrO_2 composites were prepared by sintering pressurelessly at $1060\text{--}1140^\circ\text{C}$ for 25-40 min and/or tempering at 1040°C for 0-90 min. Microscope investigation and X-ray diffraction revealed the important role played by the m-ZrO_2 phase and the formation of nanocomposite structures of dental ceramic reinforced with crystalline leucite phase. Leucite crystals were initiated and grown up from the surface of ZrO_2 particles and acted as the bridge between them. Mean flexural strength and toughness of the materials can reach values of 154.6-192.8 MPa and $2.03\text{--}2.50 \text{ MPa}\cdot\text{m}^{1/2}$, respectively, which are higher than the dental ceramic (83.4 MPa, $1.01 \text{ MPa}\cdot\text{m}^{1/2}$) alone, with the significant statistical difference ($p < 0.001$). The optimum sintering and/or tempering condition could be better conciliated with the nanocomposite structures formation and can improve the strength of the composite at high temperatures and suitable dwell times.

Keywords : Zirconia; Dental ceramic; Sintering; Nanocomposites; Mechanical properties