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Abstract

The purposes of this research are to create new knowledge of fixed point theorem and
construct several new iterative approximation methods for approximating the fixed point of
nonexpansive mappings, and to solve many mathematical problems in Hilbert spaces and Banach
spaces. We introduce the proof of new convergence theorems of a new iterative approximation
method for finding the common element of the set of common fixed points of nonexpansive
mappings, the set solutions of the variational inequality problems for nonlinear mappings and the
set of solutions of equilibrium problems in Hilbert space and Banach spaces. Therefore, by using

the previous result, an iterative algorithm for the solution of a optimization problems was obtained.
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CHAPTER 2

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results that will be used in the later

chapters.

2.1 Basic results

Throughout this thesis, we let R stand for the set of all real numbers and N the set of all natural numbers.

Definition 2.1. Let X be a nonempty set. A mapping d : X x X — R, satisfying the following condition
for all x,y and z in X:

(M1) d(z,y) =0 <= x =y;

(M2) d(z,y) = d(y,z);

(M2) d(z,y) < d(x,z) + d(z,y).

The function d assigns to each pair (z,y) of element of X a nonnegative real number d(z,y), which
does not on the order of the elements; d(x,y) is called the distance between z and y. The set X together

with a metric, denoted by (X, d), is called a metric space. The conditions (M1)-(M3) are usually called the

metric arioms.

Definition 2.2. Let X be a linear space over the field K (R or C). A function

|-l : X — R is said to be a norm on X if it satisfies the following conditions:
(N1) ||z]| > 0,Vz € X;
(N2) ||z]| =0 < 2 =0;
(N3) lz +yll < llell + llyll, Yo,y € X;

(N4) ||azx|| = |af||z]], Vze X andVa e K.

From this norm we can define a metric, induced by the norm || - ||, by

d(@,y) = llz —yl, (z,y € X).
A linear space X equipped with the norm || - || is called a normed linear space.
Definition 2.3. Let (X, || - ||) be a normed space.

(1) A sequence {x,} C X is said to converge strongly in X if there exists x € X such that lm ||z,—
n——o0
z|| = 0. That is, if for any € > 0 there exists a positive integer N such that ||z, — z|| < €,Yn > N. We often

write lim x, =z or x, — x to mean that = is the limit of the sequence {x,}.

n—-mao0
(2) A sequence {x,} C X is said to be a Cauchy sequence if for any € > 0 there exists a positive
integer N such that ||z, — x| < €,¥ m,n > N. That is, {x,} is a Cauchy sequence in X if and only if

|€m — Tnl| — 0 as m,n — oo.

Definition 2.4. A normed space X is called complete if every Cauchy sequence in X converges to an element
in X.
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Definition 2.5. A complete normed linear space over field K is called a Banach space over K.
Definition 2.6. Let F and X be linear spaces over the field K.

(1) A mapping T : F — X s called a linear operator if T(z+y) = Tx+Ty and T (ax) = oTz,Va,y €
F, and Vo € K.

(2) A mapping T : F — K is called a linear functional on F if T is a linear operator.

Definition 2.7. A sequence {x,} in a normed spaces is said to converge weakly to some vector x if
lim,, .o f(z,) = f(x) holds for every continuous linear functional f. We often write x,, — x to mean

that {x,} converges weakly to x.

Definition 2.8. Let F' and X be normed spaces over the field K and T : X — F a linear operator. T is
said to be bounded on X if there exists a real number M > 0 such that ||T(x)|| < M||z||,Vz € X.

Definition 2.9. Sequence {x,}22, in a normed linear space X is said to be a bounded sequence if there
exists M > 0 such that ||z, || < M,Vn € N.

Definition 2.10. Let F and X be normed spaces over the field K, T : F — X an operator and ¢ € F.
We say that T is continuous at ¢ if for every e > 0 there exists 6 > 0 such that | T(z) — T(c)|| < € whenever

le—c|| <é and x € F. If T is continuous at each x € F, then T is said to be continuous on F.

Definition 2.11. Let X and Y be normed spaces. The mapping T : X — Y is said to be completely
continuous if T(C) is a compact subset of Y for every bounded subset C' of X.

Definition 2.12. A subset C' of a normed linear space X is said to be convex subset in X if \e+(1—N)y € C
for each x,y € C and for each scalar \ € [0,1].

Definition 2.13. The real-value function of two variables (-,-) : X x X — R is called inner product on a

real vector space X if for any x,y,z € X and o, 3 € R the following conditions are satisfied:
(11) {azx + By, z) = alx, 2) + By, 2);
(IQ) <x,y> = (y,x);

(13) (xz,x) > 0 for each v € X and (x,z) = 0 if and only if x = 0. A real inner product space is a

real vector space equipped with an inner product.

Definition 2.14. A Hilbert spaces is an inner product space which is complete under the norm induced

by its inner product.

An inner product on X defines a norm on X given by ||z|| = v/(z, z).

Lemma 2.15. [51](The Schwarz inequality)

If © and y are any two vector in an inner product space X, then
()] < ]
Lemma 2.16. [52] Let H be a real Hilbert space. Then the following inequalities hold:
(i) lz+yl? + llz =yl = 2l + 2[ly|1%,
(ii) |z +yl? < ll=l” + 2(y, = + v),
(iii)|x + ylI* > [|=]* + 2{y, =),

(iv) Az + (1= Nyl? = Alz[* + (1 = Vlly[* = A1 = V]z —yl*, YAe[0,1].
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Definition 2.17. A sequence of points x,, in a Hilbert space H is said to converge weakly to a point x in
H if lim,—oo(Tn,y) = (z,y) for all y € H. The notation x, — x is sometimes used to denote this kind of

convergence.

Definition 2.18. The metric (or nearest point) projection from H onto C is the mapping Pc : H — C
which assigns to each point x € C the unique point Pcx € C satisfying the property

— Pz = inf ||z — y|| = d(z,C
lz — Poz|| = inf llo —yl = d(z, )

Lemma 2.19. [52] Let C be a closed convex subset of a real Hilbert space H. Given x € H and y € C.
Then

(i) 2= Pox <= (z —z,y—x) >0, VYyeC,

(ii) | Pox — Peyl| < [le —yll, Va,y € H,

(iii) || Pox — Poy||* < (Pcx — Poy,x —y), Va,y € H,
(iv) (x — Pox,y — Pox) <0, Ve Hyedl],

(v) & = yl? > |lv = Pea|® + ly — Pox|?, Vze H,yeC.

2.2 The Classical of Fixed Point Theory

Definition 2.20. An element x € C is said to be a fixed point of a mapping S : C — C proved Sz = x.
The set of all fixed points of S is denoted by F(S) = {x € C : Sx = x}.

Definition 2.21. Let H be a Hilbert space and let C' a nonempty bounded convex subset of H. A mapping

S : C — C is called nonexpansive on C' if
Sz =Syl < [lz—yll, Va,yeC.

Lemma 2.22. [52] Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H.
Let S be a nonexpansive mapping of C into itself. Then, F(S) # (.

Definition 2.23. Let H be a Hilbert space and let C' a nonempty bounded convex subset of H. A mapping

f:C — C is called a contraction on C if there exists a constant o € [0,1) such that

If(x) = f(y)] < allx—y|, Vr,yeC.

Theorem 2.24. [52] (The Banach Contraction Principle)
Let X be a complete metric space and f a contraction of X into itself. Then f has a unique fized point, in

the sense that f(u) = u for some u € X.

Let (X, d) be a metric space, C C X a closed subset of X and S : C — C a selfmap possessing at
least one fixed point p € F(S). For a given xy € X, we consider the sequence of iterates {x,, }52, determined

by the successive iterative method
Tpy1 = Sy = S"xg, VYn>0. (2.1)
We are interested in obtaining(additional) conditions on S, C' and X, as general as possible, and
which should guarantee the (strong) convergence of the {z,}52, to a fixed point of S in X.

As we already mentioned, the sequence defined by (2.1) is known as the sequence of successive

approximations or, simply, Picard iteration.
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2.3 Some Nonlinear Mappings

Definition 2.25. A mapping S : C — C is called strictly pseudo-contractive if there exists a constant
0 <k <1 such that

1Sz — Syl < lla = ylI* + k(I = S)a — (I = S)yl*, Va,yeC.
Remark 2.26. If k =0, then S is nonezrpansive.
In this case, we say that S : C — C is a k-strictly pseudo-contraction.
Putting B=1—S. Then, we have
I = B)a — (I = B)yl* < |z — yl|* + k| Bz — By||*, Va,yeC.
Observe that
I(I = B)x = (I = B)y|* = llo = yl|* + | B — By||* - 2(z —y, Bx = By), Va,y€C.
Hence, we obtain
(x —y, Bx — By) > %HBQ’J - By|? Vz,yeC.
Then, B is %—mverse—strongly monotone mapping.

Lemma 2.27. [32] Assume that C is a closed convex subset of Hilbert space H, and let S : C' — C be a
self-mapping of C

(i) If S is a k-strict pseudo-contraction, then S satisfies the Lipscchitz condition

1
1Sz — Sy|| <~

k
Cle -yl Veyed,

(ii) If S is a k-strict pseudo-contraction, then the mapping I —S is demiclosed(at 0). That is, if {xn}
is a sequence in C' such that x,, — & and (I — S)x, — 0, then(I — S)Z = 0.

(iii) If S is a k-strict pseudo-contraction, then the fized point set F(S) of S is closed and convex so
that the projection Pp(gy is well defined.

Lemma 2.28. [69] Let C be a nonempty closed convex subset of a real Hilbert space H and let S : C — C
be a k-strict pseudo-contraction mapping with a fized point. Then F(S) is closed and convex. Define Sy :
C — C by Sy =kx+ (1 —k)Sz for each x € C. Then Sy is nonexpansive such that F(Sy) = F(S).

Let C be a subset of a Banach space E and let {T},} be a family of mappings from C into E. For a
subset B of C, we say that

(a) ({T}, B) satisfies condition AKTT if

Zsup{||Tn+1z —Tyz|| : 2 € B} < o0.
n=1

b) ({T,,}, B) satisfies condition *AKTT if

(

e}
Z sup{||JTp+12 — JTnz| : 2 € B} < 0.

n=1
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For more information, see Aoyama et al. [3].

Lemma 2.29. (Aoyama et al. [3, Lemma 3.2]). Let C' be a nonempty closed convex subset of E. Suppose
that 02 sup{(||Tnt12 — Tpz||) : 2 € C} < 0. Then, for each y € C,{T,y} converges strongly to some
point of C'. Moreover, let T' be a mapping of C' into itself defined by

Ty = nh_)n;o T,y forall yeC.

Then limy, o0 sup{||Tz — Tnz| : z € C} = 0.

Inspired by Lemma 2.29, Nilsrakoo and Saejung [36] proved the following results.

Lemma 2.30. (Nilsrakoo and Saejung [36]). Let E be a reflexive and strictly convex Banach space whose
norm is Fréchet differentiable, let C be a nonempty subset of a Banach space E and let {T,,} be a sequence
of mappings from C into E. Let B be a subset of C with ({T,,}, B) satisfies condition *AKTT, then there
erists a mapping T : B — E such that

Tz = lim Tpx, foral z€B

and limsup,, . {||[JTz — JT,z||: 2 € B} =0.

Lemma 2.31. (Nilsrakoo and Saejung [36]). Let E be a reflexive and strictly convexr Banach space whose
norm is Fréchet differentiable, let C be a nonempty subset of Banach space E and let {T,} be a sequence of
mappings from C into E. Suppose that for each bounded subset B of C, the ordered pair ({T,}, B) satisfies
either condition AKTT or condition *AKTT. Then there exists a mapping T : B — E such that

Tx = lim Tpx, forall ze€C.

Lemma 2.32. (Kamimura and Takahashi [25]). Let E be a uniformly conver and smooth real Banach
space and let {x,},{yn} be two sequences of E. If ¢(xyn,yn) — 0 and either {x,} or {y,} is bounded, then

[2n = ynll — 0.
Lemma 2.33. (Alber [2]). Let C be a nonempty closed convex subset of a smooth real Banach space E and
x € E. Then, xg = lcx if and only if

(xo —y, Jo — Jxo) > 0, Yy € C. (2.2)

Lemma 2.34. (Alber [2]). Let E be a reflexive, strictly convex, and smooth real Banach space, let C be a

nonempty closed convex subset of E and let x € E. Then

Lemma 2.35. (Matsushita and Takahashi [30]). Let E be a strictly convex and smooth real Banach space,
let C' be a closed convex subset of E, and let T be a hemi-relatively nonexpansive mapping from C into itself.
Then F(T) is closed and convezx.

Lemma 2.36. (Cho et al. [9]). Let X be a uniformly conver Banach space and B,(0) be a closed ball of
X. Then there exists a continuous strictly increasing convex function g : [0,00) — [0, 00) with g(0) = 0 such
that

IAe + py + 521> < Al2ll® + pllyl® + 1207 = Aug(llz = y])

for all z,y,z € B.(0) and A\, pi,y € [0,1] with A+ u+ v = 1.
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Lemma 2.37. (Kamimura and Takahashi [25]). Let E be a uniformly convex and smooth Banach space and
let r > 0. Then there exists a continuous, strictly increasing, and convex function g : [0,2r] — [0,00) such
that g(0) =0 and

g(llz = yl) < o(z,y),

forallz,y € B, ={z€ E:|z|| <r}.

We make use of the following mapping V studied in Alber [2]:
V(z,z*) = [l2|* - 2(z, a*) + [|lz*]%, (2.4)
for all x € E and z* € E*, that is, V(z,2*) = ¢(z, J - (z*)) and V(x, J(y)) = ¢(z, ).

Lemma 2.38. (Kohsaka and Takahashi [27, Lemma 3.2]). Let E be a reflexive, strictly convex and smooth
Banach space and let V be as in (2.4). Then

V(z, o) +2(J7Ha") — 2,y") < Ve, 2* +y7),

forallx € E and x*,y* € E*.

2.4  Variational inequality problem

Definition 2.39. Let B : C' — H be a nonlinear mapping. The variational inequality problem is to find
x € C such that
(Bx,y—x) >0, YyeCdC. (2.5)

We denote by VI(C, B) the set of solutions of the variational inequality problem, that is,
VI(C,B)={z € C:(Bx,y—2x) >0, VyeC}. (2.6)

Lemma 2.40. [52] Let H be Hilbert space, let C' be a nonempty closed convex subset of H and let B be a
mapping of C into H. Let w € C. Then, for A >0,

u € VI(C,B) <= u = Pc(u— A\Bu),
where Po is the metric projection of H onto C'.

Remark 2.41. [t is clear from Lemma 2.40 that the variational inequality and fized point problem are equiv-
alent. This alternative equivalent formulation has played a significant role in the studies of the variational

iequalities and related optimization problems.
Definition 2.42. Let B : C — H be a nonlinear mapping. Then, B is called
(1) monotone if (Bx — By,z —y) >0, Va,y € C,
(2) v-strongly monotone if there ezists a positive real number v such that
(Bx — By,x —y) 2 v||lz —y|I*, Va,yeC,

for constant v > 0. This implies that | Bx — By|| > v||z — y||, that is, A is v-expansive and when v =1, it is

expansive.

(3) L-Lipschitz continuous if there exists a positive real number L such that

|Be — Byl < Lz —y|, Va,yeC,
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(4) &-inverse-strongly monotone if there exists a positive real number £ such that
(Bx — By,x —y) > u||Bx — By|*, Vx,yeC.
Clearly, every -inverse-strongly monotone map B is %-Lipschitz continuous,
(5) relaxed (u,v)-cocoercive, if there exists a positive real number u,v such that
(Bz — By,z —y) > (~u)||Bx — By||> + v||lz —y|*, Va,yeC,

foru =0, A is v-strongly monotone. This class of maps is more general that the class of strongly monotone
maps. It is easy to see that we have the following implication: v-strongly monotonicity implying relazed

(u, v)-cocoercivity.

Lemma 2.43. [52] Let H be a Hilbert space and let C be a nonempty bounded closed convexr subset of. Let
&> 0 and let B: C — B be &-inverse strongly monotone. Then, VI(C, B) # 0.

Definition 2.44. A set-valued mapping T : H — 2" s called monotone if for all x,y € H, f € Tz and
g €Ty imply (x —y, f—g) > 0.

Definition 2.45. A monotone mapping T : H — 2 is maximal if the graph of G(T) of T is not properly

contained in the graph of any other monotone mapping.

Remark 2.46. It is known that a monotone mapping T is mazimal if and only if for (z,f) € H x H,
(x —y, f—g) >0 for every (y,9) € G(T) implies f € Tx.

Lemma 2.47. [45] Let B be a monotone mapping of C into H and let Ncw; be the normal cone to C' at
wy € C, i.e.,
New; ={w € H : (wy —wq,w) >0, VYwyeC}

and define a mapping T on C by

Bwy + Nowy, wi € C;
T’U)l =
@, w1 ¢ C.

Then, T is the mazimal monotone and 0 € Twy if and only if wy € VI(C, B).

2.5 Equilibrium Problems
Definition 2.48. Let F be a bifunction of C x C into R, where R is the set of real numbers. The equilibrium
problem for F': C' x C — R is to find x € C' such that
F(z,y) >0, VyeC. (2.7)
The set of solutions of (2.7) is denoted by EP(F), that is,
EP(F)={zeC:F(x,y) >0, VyeC}.

Given a mapping B : C — H, let F(x,y) = (Bx,y — z) for all x,y € C. Then, z € EP(F) if and
only if (Bz,y —z) >0 for ally € C, i.e., z is a solution of the variational inequality.

Let § = {Fk }xea be a family of bifunctions from C x C' into R, where R is the set of real numbers. The
system of equilibrium problems for & = {F}; } rca is to determine common equilibrium points for & = {Fj }rea
such that

Fi(z,y) >0, VkeA VyeC, (2.8)
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where A is an arbitrary index set. The set of solutions of (2.8) is denoted by SEP(S), that is,
SEP(S)={ze€C:Fy(z,y) >0, VkeA VyeC }. (2.9)

If A is a singleton, then the problem (2.8) is reduced to the problem (2.7).

Definition 2.49. For solving the equilibrium problem, let us assume that the bifunction F satisfies the

following conditions (see [4]):

(A1) F(xz,x) =0 for allz € C;

(A2) F is monotone, i.e., F'(z,y) + F(y,z) <0 for any z,y € C;

(A3) F is upper-hemicontinuous, i.e., for each x,y,z € C,

limsup F(tz + (1 —t)z,y) < F(x,y);

t—0
(A4) F(x,-) is convex and lower semicontinuous for each x € C.

Definition 2.50. Let B : C' — H be a nonlinear mapping and F be a bifunction of C x C into R. The

generalized equilibrium problem is to find x € C such that
F(z,y)+ (Bz,y—x) >0, VyeCl. (2.10)
The set of solution of (2.10) is denoted by GEP(F, B), that is,
GEP(F,B)={z€C: F(z,y) + (Bz,y—x) >0, VyeC}.

In the case of B = 0 (:the zero mapping), then the problem (2.10) is reduced to the problem (2.7).
In the case of F =0, the problem (2.10) is reduced to the classical variational inequality problem (2.5).
Definition 2.51. The domain of the function ¢ : C — R U {+o0} is the set

domp = {z € C: p(x) < +00}.

Let ¢ : C — R be a real-valued function and F : C x C' — R be an equilibrium bifunction, i.e., F(z,z) =0

for each © € C. The mixed equilibrium problem which is to find x € C such that
Fz,y) +¢(y) —¢(x) 20, VyeC. (2.11)
The set of solution of (2.11) is denoted by M EP(F, ), that is,

MEP(F,p)={z € C: F(z,y)+¢(y) —p(x) >0, VyeC}.

In particular, if ¢ = 0, this problem reduces to the equilibrium problems (2.7).

Definition 2.52. For solving the mized equilibrium problem, let us give the following assumptions for the
bifunction F, the function ¢ and the set C':

(A1)-(A4) (in Definition 2.49);
(A5) for each y € C,x — F(z,y) is weakly upper semicontinuous;

(B1) for each x € H and r > 0, there exist a bounded subset D, C C and y, € C such that for any

z€C\ D,
Floyys) + 9(3) = 9(2) + (g = 52— ) <0, (212)

(B2) C is a bounded set.
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Definition 2.53. Let ¢ : C' — RU{+4o00} be a proper extended real-valued function and let F' be a bifunction
of C' x C into R such that C N domp # (), where R is the set of real numbers and domp = {x € C : p(x) <
+o0}.

The generalized mixed equilibrium problem for finding x € C' such that

F(z,y) + (Bx,y —x) + ¢(y) — p(x) 20, VyeC. (2.13)
The set of solutions of (2.13) is denoted by GMEP(F, , B), that is,

GMEP(F7(p,B) = {SCECZF(:L'7y)+<Bx,y_;I;>
+oy) —p(x) 20, VyeC}.

We see that z is a solution of a problem (2.13) implies that € domy = {z € C : p(z) < +oo}. If
B = 0, the problem (2.13) is reduced into the mized equilibrium problem. If ¢ = 0, the problem (2.13) is
reduced into the generalized equilibrium problem. If B = 0 and ¢ = 0, the problem (2.13) is reduced into
the equilibrium problem. If F = 0 and ¢ = 0, the problem (2.13) is reduced into the variational inequality

problem.

The generalized mixed equilibrium problems include fixed point problems, variational inequality prob-
lems, optimization problems, Nash equilibrium problems and the equilibrium problem as special cases.
Numerous problems in physics, optimization and economics reduce to find a solution of (2.13). In 1997,
Combettes and Hirstoaga [10] introduced an iterative scheme of finding the best approximation to initial
data when EP(F’) is nonempty and proved a strong convergence theorem. Many authors have proposed some
useful methods for solving the GMEP(F, ¢, B), GEP(F, B), MEP(F, ) and EP(F); see, for instance [7],
[10], [12], [16], [18], [19], [20], [21], [22], [23], [24], [29], [37], [44], [49], [54], [55], [58], [65].

Definition 2.54. Let A be a strongly positive linear bounded operator on H if there is a constant 7 > 0
with property
(Az,z) > 7||z||?, Vz € H.
Lemma 2.55. [32]. Let C' be a nonempty closed convexr subset of H and let f be a contraction of H into
itself with a € (0,1), and A be a strongly positive linear bounded operator on H with coefficient ¥ > 0. Then
, for 0 < v < g,
(z=p,(A=fe—(A=1N)y) 2 G- aylz—yl? wyeH.

That is, A —~f is strongly monotone with coefficient v — ay.

Lemma 2.56. [32]. Assume A be a strongly positive linear bounded operator on H with coefficient ¥ > 0
and 0 < p < ||A||7t. Then ||I — pA| <1 - py.

Lemma 2.57. [1]. Let C be a closed convex subset of H. Let {x,} be a bounded sequence in H. Assume
that

(i) The weak w-limit set wy,(zy,) C C,
(i) For each z € C, lim,,__, ||xn — 2| exzists. Then, {x,} is weakly convergent to a point in C.

Lemma 2.58. [38]. Fach Hilbert space H satisfies Opial’s condition, i.e., for any sequence {x,} C H

with T, — x, the inequality liminf, o ||z, — x| < liminf, . ||zn —y||, holds for each y € H with y # x.

Lemma 2.59. [52]. Fach Hilbert space H, satisfies the Kadec-Klee property, that is, for any sequence

{xn} with x, — = and ||z,|| — ||z|| together imply ||z, — x| — 0.
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Lemma 2.60. [50] Let {x,} and {y,} be bounded sequences in a Banach space X and let {8, } be a sequence
in [0,1] with 0 < liminf, o B, <limsup,,_, . Bn < 1. Suppose Xn11 = (1 — Bn)yn + Bntn for all integers

n >0 and limsup,,_, (|yn+1 — Ynll — [|[Tn+1 — a||) < 0. Then, lim,— o0 ||yn — 24| = 0.

Lemma 2.61. [13](Demiclosedness Principle)

Let H be a Hilbert space, C a closed convexr subset of H, and S : C — C a nonexpansive mapping with
F(S) #£ 0. If {z,} is a sequence in C weakly converging to x € C and if {(I — S)zn} converges strongly to
y, then (I — S)x =y.

Lemma 2.62. [60] Assume {a,} is a sequence of nonnegative real numbers such that

Gn41 S (1 - an)an + (Sna n Z ]-v

)

where {om } is a sequence in (0,1) and {5,} is a sequence in R such that Y7, oy, = 00, limsup,, 2= <0

or 32°° 6,] < 0o. Then, lim, o0 ay = 0.

Lemma 2.63. [39] Let (H,(.,.)) be an inner product space. Then, for all x,y,z € H and «, 3,7 € [0,1]
with a + B+ v =1, we have

lacw + By +v2l* = allll* + Bllyl* + Yz1? — aplle — ylI* — arlle — 2> = Bylly — =]1*.



CHAPTER 3

MAIN RESULTS

3.1 Equilibrium Problems in Hilbert spaces
3.1.1 Weak Convergence Theorems

In this section, we prove a weak convergence theorem for finding a common element of the set of solutions of
an equilibrium problem, the set of solutions of a variational inequality problem and the set of fixed points of

a nonexpansive mapping in a real Hilbert space. Before proving our theorem, we need the following lemmas.

Lemma 3.1. [4] Let C be a nonempty closed convex subset of H and let F be a bifunction of C x C into R
satisfying (A1)-(A4). Letr >0 and x € H. Then, there exists z € C such that

1
F(z,y)—&—;(y—z,z—@ZO, Yy € C. (3.1)

Lemma 3.2. [10] Let F : C x C — R satisfies (A1)-(A4). For r > 0 and © € H, define a mapping
T.: H— C as follows:

1
Tr(x):{zEC:F(z,y)—i—;(y—z,z—@20, Yy e C}

for all z € H. Then, the following hold:

1. T, is single-valued;
2. T, is firmly nonexpansive, i.e., for any x,y € H,

||TT.%‘ - Try”2 < <Trx —Try,x —y);

3. F(T,) = EP(F);
4. EP(F) is closed and convex.

Lemma 3.3. [53] Let H be a real Hilbert space, let {c,} be a sequence of real numbers such that 0 < a <
an <b<1 foralln=0,1,2,.., and let {v,} and {w,} be sequences of H such that limsup,__, . ||va] < e,
limsup,, . |lws] < ¢ and lim,, . ||anvn+ (1 —an)wy|| = ¢, for some ¢ >0, thenlim, o || v, —wy,|| =
0.

Lemma 3.4. [53] Let H be a real Hilbert space and let C' be a nonempty closed convex subset of H. Let
{z,} be a sequence in H. Suppose that, for all u € C,

[€ns1 = ull < fln —uf

for everyn =0,1,2,.... Then, the sequence {Pc(x,)} converges strongly to some z € C, where Pe stands

for the metric projection of H onto C.

Now, we show the following weak convergence theorem which solves the problem of finding a common
element of the set of solutions of an equilibrium problem, the set of solutions of a variational inequality

problem and the set of fixed points of a nonexpansive mapping in a real Hilbert space.
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Theorem 3.5. Let C' be a nonempty closed convex subset of a real Hilbert space H. Let F' be a bifunction
from C x C — R satisfying (A1)-(A4), let A be a monotone, k-Lipschitz continuous mapping of C into
H and let S be a nonexpansive mapping of C into itself such that F(S)NVI(C,A) N EP(F) # 0. Suppose
1 =u€C and {x,},{yn} and {u,} are given by

1
un € C such that F(un,y) + —(y — Un, un — xp) > 0, Vy € C,
Tn

Yn = PC(Un — )\nAun), (32)

Tnt1 = STy + (1 — apn)Po(tn — MnAy,), Vn €N,

where {A\,} C [a,b] for some a,b € (0,1), {an} C [c,d] for some ¢,d € (0,1) and {r,} C (0,00)
satisfies liminf,, oo r, > 0. Then, {x,} converges weakly to p € F(S)NVI(C,A) N EP(F), where

p = lim, .o Pp(s)nvi(c,A)nEP(F)Tn-

Proof. By Lemma 3.26, {z,},{yn} and {u,} are well-defined. We divide the proof into five steps.
Step 1. We claim that {z,} is bounded.

Indeed, let z* € F(S)NVI(C,A) N EP(F) and let {7, } be a sequence of mappings defined as in

Lemma 3.2. Then, 2* = Po(z* — A\, Az*) = T, «* and u,, = T, z,. So, we have
lun = 2*|* = | Ty, 20 = T, 2™[|* < flon — 27| (3-3)

Put v, = Po(un — Ay Ayy,). Then, from Lemma 2.19 (v) and the monotonicity of A, we have

IN

lvn — 2™ [un = AnAyp — 2" * = lJun — Ao Ayp — va?

= lun — 2" = Jlun — vall* + 270 (Ayn, 2 — v5)

= H“n_x*”Q_ ||un_vn||2
2, ((Ayn — Az™, 2" — yn) + (A2", 2" = yn) + (AYn, Yy — vn))

< g = 2| = llun = vall® + 200 ( Ay, Y — vn)

= lun = 2 = lun = yall* = 2{un = Yo, yn = va) = lyn — val®
+2X (AYn, Yn — Un)

= lun = 2| = un = ynll* = llyn — vall?

+2(un, — A AYn — Yns Un — Yn)-
Moreover, since y, = Po(un — ApAuy,) and Lemma 2.19 (iv), we have
(U, — A Aty — Y, Uy — Yn) < 0. (3.4)
Since A is k-Lipschitz continuous, from (3.4) we obtain that

<un - )\nAyn — Yn,Un — yn>
= <un — MAu, — Yny,Un — yn> + <>\nAUn - )\nAyna Un — yn>

< Akllun = ynllllon — yall-



Thus, we have

lon =212 < Nun =[P — llun = yall* = llyn — vall?
T2kl un = ynlllvn — yall
S ||Unfl’*||27 ||un7yn||27 ||ynfvn||2

+/\ik2||un - yn||2 + ||U’ﬂ - yn||2
= — 22 + (A2 = 1) —
< g — 22,
and hence
v — 2" < flup — ¥ < [Jzn — 2.

Thus, by (3.3) and (3.5), we can calculate

|41 — 272

lan (Szp — 2*) + (1 = ) (vn — )|

< S — 2|+ (1 an)|v — "

< anllzn = 1P + (1= an){llun = 7 + 282 = Dlfun — a2}

< nllzn =P + (= an)llzn = P + (= @) (A2 = 1) = gl
= Jlan =22 + (1= an) 2K = 1) [un = g

< =

Since the sequence {||z,, — z*||} is a bounded and nonincreasing sequence, there exists
c= lim |z, —z"|
n—oo

and hence {x,} is bounded. Consequently, the sets {u, } and {v,} are also bounded.
Step 2. We claim that lim,,_ o |[Szy — 24| = 0.
Indeed, let z* € F(S)NVI(C,A) N EP(F). Then, we obtain that

lun —2*> = |T,xn — T, z*|?
< (T, xn =T a2y —2") = (up — 2%, 2, — ™)
1
= §(Hun—$*||2+||xn—$*||2— 20 — unll?).

Therefore, |Ju, — 2*||? < ||zn — 2*||? — ||Z0n — un||?. Thus, we can calculate

Jonsr = 2" 2 = lan(Sza —2*) + (1 = an)(vn — ")
< anllSm = @2+ (1= an) o — 27
< anllen =22+ (1= an)un - 2
< allon = a2+ (1= an){llzn = 22 = o, — uall?}

lzn = 2*[* = (1 = an)l|ln — unl?,

and hence

[€n1 = 2|12 < lzn — 2|1 = (1 = an)llun — 24|
Since 0 < ¢ < a,, < d < 1, it follows that

(1 =d)||zn — un||2 < (I—an)lzn — unH2

lzn = 2*|* = 241 — 2™

21

(3.5)

(3.7)

(3.8)
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From (3.8) and (3.9), we have

lim ||z, —uy,| = 0. (3.10)
Since liminf,,__,, r, > 0, we obtain
lim H n Ul o, (3.11)
n—so00 Tn

From (3.7), we also have
lns1 = 2% )* < flan = 272 + (1 = 0n) ALK = Dlun — yall*.

It follows that

(1= an)(X = Xk [un = yall < llzn — 27|17 = lonrs — 27|

So, we have

1 %112 * (|2
o =0l < =gz o = IF = s = 27IP). (312)
Hence,
lm |ju, — yn|l = 0. (3.13)
n——ao0
From (3.10) and (3.13), we also have
[zn — ynll < llzn — unll + [lun —ynll — 0 as n— oo. (3.14)
Note that
[yn = vnll® = [ Po(un = AnAun) = Po(un — AnAyn)||®
< (un = AnAuy) = (un — /\nAyn)H2
= A?L”Aun - Ayn||2 < /\ikQHUH - yn||2 < lun — ynH2
Hence,
lim ||y, — vn|| = 0.
From

2n = vall < ll2n = ynll + lyn — onl,

we also have

lim ||z, —v,| = 0.
—00

Since ||Sz,, — 2*|| < ||zn — 2*||, from (3.6) and (3.8) we have

limsup ||Sz, —z*|| < ¢ and limsup |jv, — 2" <.

n——oo n——o0

Furthermore, we have

lm [Ja,(Sz, —2") + (1 — an) (v, —2")|| = lim ||zp11 — 27| =c

By Lemma 3.3, we obtain
|Sz,, — v, = 0.

lim |
n——ao0
Also, we have

1S2n — zul| < |STn — vall + |lvn — 20

Therefore, we get

lim ||Sz, — x,|| = 0.
n—oo

Step 3. We claim that, for a subsequence {x,,} of {z,} such that z,,, — p, p € VI(C,A)NEP(F)NF(S).
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Since {z,} is bounded, there exists a subsequence {z,,} of {z,} which converges weakly to some
p € H. We first prove p € EP(F). Since u,, = T} x,, we have
1
F(unay)+7<y_unvun_xn>207 VyEC

n

From (A2), we also have

1
<y — Un, Up — xn> > F(yaun)
Tn

and hence
Uy, — T
<y - unw M> Z F(y7uni)-
T,

From (3.10), we get u,, — p. Moreover, we have p € C. In fact, if C is closed and convex, then C is weakly
closed. Therefore, from {z,,} C C, we obtain p € C. From (3.11) and (A4), it follows that 0 > F(y,p) for
allye C.Fort with0<t<landyeC,lety =ty+ (1—t)p. Fromy € C and p € C, we have y, € C
and hence F'(y;,p) < 0. So, by (A1) and (A4) we have

0= F(yt,y:) < tF(ys,y) + (L= ) F(ys,p) < tF(yt,y)

and hence 0 < F(y;,y). From (A3), we have 0 < F(p,y) for all y € C and hence p € EP(F). Next,
we prove that p € F(S). Let z* € F(S)NVI(C,A) N EP(F). From the demiclosedness (Lemma 2.61)
of I — S, we know that x,, — p and lim, o ||Sz, — 2,|| = 0 mean p € F(S). Finally, we show that
p € VI(C, A). By using the same argument in the proof of Theorem 3.5, we can get p € VI(C, A). So, we
have p € VI(C,A)NEP(F)N F(S).

Step 4. We claim that x,, — p as n — oco. Let {x,,} be another subsequence of {z,} such that x,, — p'.
Then, we have p’ € F(S)NVI(C, A)N EP(F). We may show that p = p’. Assume that p # p’. From Opial’s
condition, we get p = p’. This implies that

x, =p€F(S)NVI(C,A)NEP(F).
Step 5. Finally, we prove p = lim, oo Pr(s)nvi(c,A)nEP(F)Tn-
Let z, = Pp(s)nvi(c,anEp(F)Zn and z € F(S)NVI(C,A) N EP(F). Then, we have from (3.6)

[Zns1 =2l = llan(Szn —2) + (1 — o) [Po(un — M Ayn) — 2]||

IN

anllSzn — 2| + (1 = an)|lvn — 2|

IA

anllzn — 2| + (1 = an)l|zn — 2|

[2n = 2|-

By Lemma 3.4, we obtain that {z,} converges strongly to some py € F(S)NVI(C, A)N EP(F). Since (p —
Zn, Zn—Tn) > 0, we have (p—po, po—p) > 0, and hence p = pg. So, we have that p = lim,, .o Pr(s)nvi(c,A)nEP(F)Tn-

This completes the proof. O

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction
from C x C — R satisfying (A1)-(A4) and let A be a monotone, k-Lipschitz continuous mapping of C into
H such that VI(C,A)NEP(F) # 0. Suppose x1 =u € C and {xn},{yn} and {u,} are given by
1
un € C such that F(un,y) + —(y — tn, un — ) >0, Yy € C,
T

Yn = PC’(un - AnAun)>

Tna1 = Ty + (1 — apn)Po(un — ApAy,), Vn €N,
where {\,} C [a,b] for some a,b € (0,1), {on} C [e,d] for some ¢,d € (0,1) and {rn,} C (0,00) satisfies
liminf,, .o rn, > 0. Then, {x,} converges weakly top € VI(C, A)NEP(F), where p = lim,,_.oc Py 1(c,A)nEP(F)Tn-
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Proof. Putting S = I , by Theorem 3.5, we obtain the desired result. O

3.1.2 Strong Convergence Theorems

In this section, we show a strong convergence theorem which solves the problem of finding a common element
of the set of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium problem and the
set of solutions of a variational inequality problem for a monotone, k-Lipschitz continuous mapping in a

Hilbert space by using the hybrid extragradient method.

Theorem 3.7. Let C be a nonempty closed convexr subset of a real Hilbert space H. Let F' be a bifunction
from C x C into R satisfying (A1)-(A4) and let A be a monotone, k-Lipschitz continuous mapping of C into
H. Let S be a nonexpansive mapping from C into itself such that F(S)NVI(C,A)NEP(F) # 0. Let {z,},
{yn}, {wn} and {u,} be sequences generated by xo € C and

1
un € C such that F(un,y) + —(y — Un, un — ) > 0, Yy € C,
r

n

Yn = PC(Un - /\nAun)a
Wy, = ap STy + (1 - an)PC(Un - /\nAyn)a
Cn={2€C:|lwn — 2| < |lzn — 2|},

Qn=1{2€C:{x, — 2,20 — x,) > 0},

Tn+1 = Po,ng, %0, Vn €N,

where {\,} C [a,b] for some a,b € (0,1), {on} C [e,d] for some ¢,d € (0,1) and {rn,} C (0,00) satisfies

liminf, o7y, > 0. Then, {x,} converges strongly to Pp(synv1(c,A)nEP(F)T0-

Proof. We first show that the sequence {z,} is well-defined. From the definitions of C, and @Q,, it is
obvious that C), is closed and @, is closed and convex for each n € N U {0}. Since C,, = {z € C :
|lwn — 2 ||* + 2(wpn, — Tp, 2, — 2) < 0}, we deduce that C,, is convex for all n € NU {0}. So, C,, N Q,, is
closed and convex for any n € NU {0}. Let «* € F(S)NVI(C,A) N EP(F), and let {T,, } be a sequence of

mappings defined as in Lemma 3.2. Then, * = Po(z* — A\, Az*) = T, 2" and u,, = T, x,. So, we have
un — %[ = |T7, 20 — T 2™ < [lzn — 2. (3.15)

Put v, = Po(un — ApAyy,). From Lemma 2.19 (v) and the monotonicity of A, we have

IN

lon —2*|1? l[un = AnAyp — 2" * = llun — Ao Ayp — va?
= lun = 21 = lun — val|* + 220 (Ayn, & — vn)
= lun =2 = lun — va|?
+2Xn ((Ayn — Az™, 2" — yp) + (A", 2" = yn) + (AYn, Yn — )
< lun =212 = flun = vall* + 220 (Ayn, Yo — vn)
= lun = 2*[* = ln = ynll® = 2(un = Yn, Y0 — vn) = g0 — val?
+2X0, (AYn, Yn — Un)
= llun = 2*[” = lun = ynl® = llyn — vall?
+2{up, — A AYn — Yn, Un — Yn)-

Moreover, from y,, = Po(un — AnAuy,) and Lemma 2.19 (iv), we have

(U, — A Aty — Yny Uy — Yn) < 0. (3.16)
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Since A is k-Lipschitz continuous, from (3.16) we obtain that

<un — MAYn = Yn, Vn — yn>
= <un — MAu, — Yn, Un — yn> + <>‘nAun - )\nAyna Up — yn>
< O‘nAun — A AYn, U — yn> < )‘nkHun - yn”llvn - ynH

So, we have

lon —2*[I> < flun — 2" = [Jun = yall® = llyn — vall®
2Nk lun = ynllllvn — ynll
< un = 22 = fun = ynl® = l[yn — vnl?
ALK un = Yl + o — ynl?
= |lup —2** + O3k = 1) Jun — yall® (3.17)
< un — 27,
and hence
[vn — ™| < (Jup — 2| < (|25 — 27| (3.18)
Thus, from (3.17) we have
[wn, — 2*||?

lan (Szzp — 2*) + (1 = ) (vn — )|

< an|Szn — 2P + (1 — o) llon, — 2*|?
< ol — 22 4+ (1= )l — 2 2 O 1) — 32}
< apllr, - x*HQ + (1 = ay)|lzn — x*HQ + (1 - O‘n)O‘ik2 = D)f|un — yn”2

lzn = 2* [ + (1 = an) ARE? = Dllun = yal® < [lon — 2% (3.19)
So, we have x* € (), and hence
FS)NVI(C,A)Nn EP(F)c C,, foralln € NU{0}. (3.20)
Next, we show that
F(S)NVI(C,A)NEP(F) c C,NQ, forallneNUJ{0} (3.21)
We prove this by induction. For n = 0, we have F(S)NVI(C,A)NEP(F) C Cy and Qo = C. So, we get
F(S)NVI(C,A)NEP(F) C CyN Q.

Suppose that F(S)NVI(C,A)NEP(F) C Cy N Qy for k € NU{0}. Then, there exists a unique element
ZTip+1 € Cp N Qg such that xx1 = Po,ng,%0. Therefore, for each z € Cp N Qy, we also have

(Tpy1 — 2,00 — Tp41) > 0.
Since F(S)NVI(C,A)NEP(F) C C, NQy, for any z € F(S)NVI(C,A) N EP(F) we obtain
(Tht1 — 2,20 — Tht1) = 0
and hence z € Q1. It follows that F(S)NVI(C,A) N EP(F) C Qk+1. This together with (3.20) gives

F(S)NVI(C,A)NEP(F) C Cri1 N Qpyr.
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This implies that {x,} is well-defined. From Lemma 3.26, the sequence {u,,} is also well-defined.

Since F'(S) N VI(C,A) N EP(F) is a nonempty closed convex subset of H, there exists a unique
Z' e F(S)NVI(C,A) N EP(F) such that

2" = Pr(s)nvi(c,A)nEP(F)L0-
From z,,11 = Pc,nqg, o, we obtain
|Znt1 — xol| < ||z —z0|| forall z € C,,NQ, and all n € NU {0}.
Since 2’ € F(S)NVI(C,A)N EP(F) C C,, N Q,,, we have
|Tni1 — zol| < ||z — 20| for all n € NU{0}. (3.22)

Therefore, {z,,} is bounded. From (3.18) and (3.19), {u,}, {vn} and {w,} are also bounded. Since z,, =
FPg, zo and x, 11 € Qp, we have

[0 = 2all < llzo = 2piall

for every n € NU{0}. Hence, the sequence {||zo—x]| } is bounded and nondecreasing. So, lim,, . ||zo—zx||

exists. Since x,, = Py, ©o, Tnt+1 € @y and H# € @, we have

2
T + anrl

To — B)

lwo = zal? <

2

Hl(wo — ) + %(!EO — Tpy1)

1 1 1
§||$0 —zn|]* + §H330 — Tppa|? - ZHxn — |

So, we obtain
;| <31 12 = 3llzo = wal
—||Tpn — T < —l|lzo — zn — —|lzo — xn|.
1 +1 5110 +1 510
Since lim,, . |0 — @x|| exists, this implies that
lim ||z, — 241 = 0. (3.23)
From z,,41 € C,,, we have
[z — wall < llzn = Zpga | + l2n41 — wall < 2)zn — Tpaall-
By (3.23), we obtain
lim ||z, —wy| =0. (3.24)
Next, let z* € F(S)NVI(C,A) N EP(F). Then, as in the proof of Theorem 3.5, we obtain that

[wn = 2*[” < fln — 2| = (1 = an)[lun — 2>

Since 0 < ¢ < a,, < d < 1, it follows that

A= dllzn —ual® < 1= on)zn —un]?
= o — 2| = llwn — 27|
= (lzn =27 + lwn = 2" [)(len = 27| = [lwn — "))
< lzn = wall([len = 27| + [wn = 27]).



Since {z,} and {w,} are bounded, from (3.24) we have that

lim ||z, —uy| = 0.
n——-o0
Since liminf,,_ ., 7, > 0, we obtain
. Ty — Un
lim =0.
n—-o00 Tn

For 2* € F(S)NVI(C,A) N EP(F), from (3.19) we obtain
lwn = 2| < lon = 2" [* + (1 = an) A0k = 1)lJun = yall*.

Therefore, we have

[
1 " *
1 * * * *
= e e = 1+ o =) = 271 = o = 2°1)
1

<

(1= an)(1 — A2k2) 2 — wall(|n — 2% + Jwn — 27|)).

So, by (3.24) we obtain
lim |jup, —yn|l = 0.

Since ||zn — ynll < |2 — nl| + ||tn — yn|, from (3.25) and (3.26), we also have

lim ||, —yn|| = 0.
n——-o0

From ||vn, — yn|l < ||un — ynl| and (3.26), we obtain

nh_r{loo [vn = ynll = 0.

From (3.26) and (3.28), we also have
lim |Ju, —v,|| = 0.

From (3.27) and (3.28), we also have
lim ||z, —v,| = 0.

From (3.24) and (3.30), we also have
lim |Jw, —v,| = 0.

Since ap, (ST — ) = an (v — 2,) + (W, —v,) and 0 < ¢ < a,, < d < 1, it follows that

cl|Sxn —xnl] < an||STn — zh||
< anllon — o + [wn — o
From (3.30) and (3.31), we obtain
lim ||Sz, —z,| = 0.

27

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

Since {z,} is bounded, there exists a subsequence {z,,} of {z,,} which converges weakly to z. From (3.25),

we obtain also that u,, — z. Since {u,,} C C and C is closed and convex, C' is weakly closed and hence

z € C. We will show that z € EP(F). Since u,, = T, ,, we have

1
F(upn,y) + 7<y—un,un —x,) >0, VYyel.

n
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From (A2), we also have
1
Y = un un = 2) 2 Fy, un)

and hence

Tn

<y o, Yn ”6> > Fly,un).

From *==%» — 0, u,, — z and (A4), we have
0> F(y,2), VYyeC.

For t with 0 <t <1landy € C,let y =ty+ (1 —t)z. Since y € C and z € C, we have y; € C and hence
F(yt,z) <0. So, by (Al) and (A4), we have

0= F(yt,yt) < tF(ys,y) + (L =) F(ys, 2) < tF(ye, )

and hence 0 < F(y;,y). From (A3), we have 0 < F(z,y) for all y € C and hence z € EP(F). Let
us show that z € F(S). Assume z ¢ F(S). From Opial’s condition (Lemma 2.58) and (3.32), we have
z € F(S). On the other hand, as in the proof of Theorem 3.5, we obtain z € VI(C,A). So, we have
z€ F(S)NVI(C,A)NEP(F).

Finally, we show that z,, — 2/, where 2’ = Pps)nvi(c,a)ep(r)To. From z,, — z, the lower

semicontinuity of the norm and (3.22), we have that
12" = ol < |z = wo| < liminf ||z, — wo| < limsup ||z, —zoll < [|2" — 2ol
i—00 i—s00

Thus, we obtain lim; . ||zn, — 2ol = ||z — zo|| = ||z’ — x0]|. Using the Kadec-Klee property (Lemma 2.59)
of H, we obtain that

. /
lim z,, =2=2".
71— 00 :

Since {zy,} is an arbitrary weakly convergent subsequence of {x,}, we can conclude that {z,} converges

strongly to 2’, where 2’ = Pp(1yavi(c,a)nEP(F)T0- O

Corollary 3.8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction
from C x C into R satisfying (A1)-(A4) and let A be a monotone, k-Lipschitz continuous mapping of C into
H such that VI(C,A)NEP(F) # 0. Let {x,} and {u,} be sequences generated by xo € C' and let

1
un, € C such that F(un,y) + —(y — Un, Un — Tpn) > 0, Yy € C,

n

Yn = PC(un - )\nAun);
Wy, = ATy + (1 — ap) Po(un — A Ayn),
Cn={2€C:|lwn — 2| < lzn — 2|},

Qn={z€C:{xy,—z,x0—xz,) >0},

Tny1 = Po,ng,.To, Yn €N,

where {\,} C [a,b] for some a,b € (0,1), {on} C [c,d] for some c,d € (0,1) and {rn,} C (0,00) satisfies

liminf,, o7, > 0. Then, {x,} converges strongly to Py r(c,a)nEp(F)To-
Proof. Putting S = I, by Theorem 3.7 we obtain the desired result. O

We first prove that the following Lemmas.
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Lemma 3.9. Let H be a real Hilbert space, let C' be a nonempty closed convex subset of H and let A : C' —

H be a-inverse-strongly monotone. If 0 < A\, < 2«, then I — M\, A is a nonezxpansive mapping in H.
Proof. See [16, 20] O

Now, we prove the following main Theorem.

Theorem 3.10. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F' be a bifunction
from C x C — R satisfying (A1)-(A4) and A : C — H be an a-inverse-strongly monotone mapping. Let
f:C — C be a contraction with coefficient k (0 < k < 1) and S be a nonexpansive mappings of C into
itself such that F(S)NVI(C,A)NEP(F) # 0. Suppose x1 € C and {z,}, {yn} and {u,} are given by

F(unay)+%<y_umun_$n>zov Vy € C,
Yn = Bnf(xn) + (1 = Bn)SPo(un — AnAuy), (3.33)
Tnt+l = Qnln + (1 - an)yTH vn > 17

where {an}, {Bn} are two sequence in [0,1] and {\,} is a sequence in [0,2a]. If {an}, {Bn} and {M\,}

are chosen so that A, € [a,b] for some a,b with 0 < a < A\, < b < 2« and {r,} C (0,00) satisfying the

conditions:
(C1) lim,,— o0 By, =0 and >0~ By, = 00,
(C2) 0 < liminf, ., o, <limsup,_, . a, <1,
(C3) 2211 [Ant1 — An| < 00 and 2211 |Bnt1 — Bl < 00,

(C4) liminf,, oo ry >0 and Y07 |rpy1 — ra] < 0.

n=1

Then, {zn} and {uy} converge strongly to q € F(S)NVI(C, A)NEP(F), where ¢ = Pr(s)nvi(c,anepF)f(Q)-

Proof. See [16]. O

3.1.3 An Infinite Family of Nonexpansive Mappings

In this section, we prove the strong convergence theorem of an iterative algorithm based on extragradient
method which solves the problem of finding a common element of the set of fixed point of an infinite family of
nonexpansive mappings, the set of solution of a equilibrium problems and the set of solution of a variational

inequality problem for a inverse-strongly monotone mapping in a real Hilbert space.

Definition 3.11. [8]. Let {T,,}32, be an infinite family of nonexpansive mappings of C into itself and let
{pn} be a sequence of nonnegative numbers in [0,1]. For each n > 1, define a mapping W,, of C into itself
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as follows:

Un,n+1 - I,
Un,n == ﬂnTnUn,n+1 + (]- - /ln)I,

Un,n—l = ﬂn—lTn—lUn,n + (1 - ,Ufn—l)lv

(3.34)

Uni = TUnpe1 + (1 — pp)l,

Unik—1 = pk—1Tp—1Unk + (1 — pr—1)I,
Uno = pToUys+ (1—p)l,

Wp=Un1 = mTiU,2+ (1 —p)l

Such a mappings W,, is nonexpansive from C' to C' and it is called the W -mapping generated by Ty, T5, ..., T,
and M1y 25 -ens oy -

For each n, k € N, let the mapping U, be defined by (3.34). Then we can have the following crucial
conclusions concerning W,,. You can find them in [46]. Now we only need the following similar version in

Hilbert spaces.

Lemma 3.12. [46]. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Ty, Ts, ... be
nonezpansive mappings of C into itself such that N2 F(T,,) is nonempty, let pi1, fia, ... be real numbers such

that 0 < pp, <b <1 for everyn > 1. Then, for every x € C and k € N, the limit lim,, .o Uy, px exists.

Using Lemma 3.12, one can define a mapping W of C' into itself as follows:

W= lim Wyr= lim U,z (3.35)

n—ao0 n——0oQ0

for every x € C. Such a W is called the W-mapping generated by T7,T5, ... and puq, pto, .... Throughout this

thesis, we will assume that 0 < p,, < b < 1 for every n > 1. Then, we have the following results.

Lemma 3.13. [46]. Let C' be a nonempty closed convex subset of a real Hilbert space H. Let Ty, Ts, ... be
nonezxpansive mappings of C into itself such that NS, F(T,,) is nonempty, let u1, po, ... be real numbers such
that 0 < pp, < b <1 for everyn > 1. Then, F(W) =N F(T,).

Lemma 3.14. [63]. If {z,} is a bounded sequence in C, then lim,, o |Wz, — Wyz,| = 0.

Theorem 3.15. Let C be a nonempty closed convex subset of a real Hilbert space H, let F' be a bifunction
from CxC toR satisfying (A1)-(A4), let {T,,} be an infinite family of nonexpansive of C into itself and let B
be an (-inverse-strongly monotone mapping of C into H such that © := N2, F(T,,)NEP(F)NVI(C, B) # 0.

Let f be a contraction of H into itself with « € (0,1) and let A be a strongly positive linear bounded operator
on H with coefficient ¥ >0 and 0 <y < L. Let {zn}, {yn}, {kn} and {u,} be sequences generated by

x1 = x € C chosen arbitrary,

F(un, y) + 5y = up,up —2,) >0, Wy eC,

Yn = Po(un — AnBuy), (3.36)
kn = apun + (1 — an)Po(un — A\nByy),

LTn+1 = en')/f(xn) + BnTn + ((1 - ﬁn)j - EnA)Wnkn, Vn > 1,
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where {Wy} is the sequence generated by (3.34)and {€,}, {an}, {On} are three sequences in (0,1) and {r,}

is a real sequence in (0,00) satisfy the following conditions:
(i) lim,, oo €, = 0,307 | €, = 00,
(ii) lim, oo, =0 and Y07 | ay, = 00,
(iii) 0 < iminf,, o B, <limsup,_ . Bn <1,
(i) liminf,, oo r, > 0 and lim,— o |Tpht1 — | = 0,

(v) {%"} C (1,1 =19) for some 7,6 € (0,1) and lim,,_,0c A, = 0.

Then, {x,} converges strongly to a point z € © which is the unique solution of the variational inequality
<(A v f)za — z> >0, Vo€ o. (3.37)

Equivalently, we have z = Po(I — A+ ~f)(z2).

Proof. From [16, 29] it follows that Pg(I — A + ~vf) is a contraction of H into itself. Therefore, by the

Banach Contraction Mapping Principle, which implies that there exists a unique element z € H such that
z2=Po(I — A+~f)(2).

We will divide the proof into five steps.

Step 1. We claim that {z,} is bounded. Indeed, pick any p € ©. From the definition of 7}, we note
that u,, =T, x,. If follows that

un = pll = | Tr, 20 — Trpll < llzn — p-
Since I — A\, B is nonexpansive and p = Po(p — A, Bp) from Lemma 2.40, we have

Hyn _p” = ”PC'(un - )\nBun) - PC(p - >\an)”
H(un - )‘nAun) - (p - )‘an)”

IN

IA

[un = pll < [lzn = pl-

Put v, = Po(up — ApByy). Since p € VI(C, B), we have p = Po(p — A\, Bp). Substituting = = u,, — A\, Ayp

and y = p in Lemma 2.19 (v), we can write

IN

lwn — AnByn *p”Q — Jun — AnByn — vn||2
= lun _p”2 — 20 (BYn, un —p> + )‘31||Byn“2
— l[ttn, = val|* + 220 (Byn, un — vn) — A% || By ||?

lvn — pII?

l|un — p”2 — [lun — UnHQ + 220 (BYn, P — Un)

[tn = p)I* = [[tn — vall® + 220 (Byn — Bp,p — )
+ 2)‘n<Bp7p - yn> + 2)\n<Byn7 Yn — Un>- (338)

Using the fact that B is S-inverse-strongly monotone mapping and p is a solution of the variational inequality
problem VI(C, B), we also have

(Byn — Bp,p—yn) <0 and (Bp,p—ys) <0. (3.39)



It follows from (3.38) and (3.39) that

lvn = pII?
< lun =2l = llun = val® + 220 (Byn, yn — vn)
= Jun = plI* = 1(un = yn) + W = v0) > + 20 (BYn, Yo — vn)
< lun =2l = llun = yall® = 1y = vall* = 2(wn — Yo, Yn — vn)

+2)\n<Byn7yn - Un>

= pII* = flun —

Ynl® = llyn — val®

+2<un - )\nByn —Yn,Un — yn>

Substituting « by w, — A, Bu, and y = v, in Lemma 2.19 (iv), we obtain

It follows that

(u

<un — A\ Bu, — Yn,Un — yn> < 0

n = A BYn — Yn,Vn — yn> = <un — A Buy — Y, v — yn>
+ <)‘nBun - )\nByna Un — yn>

S <)\nBun - )\nBmen - yn>

< nllBun — Bya||[|ve — ynll
A

< l”un_ynllen_ynH'

5

Substituting (3.41) into (3.40), we have

lvn — pII?

Setting k, = apu, + (1

IN

IN

IN

IAN Il

< lun *pH2 — flun — ynH2 —llyn — Un||2 +2(un — A BYn — Yn, Un —
A

< =l =t = gl = lm = vl + 2 1 = illlon = 3
2 2 2 )\EL 2

< =l =t = gl =l = v+ G5 =l + o~ 3
2 2 )‘2 2

=l =l = ot = gl + G lhn — 2

)\2
=l =l + (G5 = 1) hn = 9l
< Jun = pl? < flan = pI%

)y, we can calculate

[Zn+1 —pll

n (1 (20) = Ap) + Bl = ) + (1 = Bu)] = €0 4) Wk = p)|
(1= Bn — eaV)lkn — pll + Bullzn — pll + enllvf(zn) — Ap||

(1= B — eaN{anllun = pll + (1 = an) v, —pl }

+Bnllzn — pll + €nllvf(zn) — Ap||

(1= B — eV {nllzn — pll + (1 — an)llzn — pl }

+Bnllzn — pll + enllvf(2a) — Ap||

(1= B — en¥)lln — 2l + Bullwn — pll + enllvf(2n) — Apl|
1—en¥)llzn — pll + enylf(@n) — W) + €nllv.f(p) — Apll

(

(1 = exY)lwn — pll + enyallzn — pll + enllvf(p) — Apll

( Ivf(p) — Apl|
Fy—yo

1 — (7 —ya)en)|zn — pll + (¥ — ya)en
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(3.40)

(3.41)

(3.42)



By induction that

Y
lzn — p|| < max{”ml —p|,wp”}, n e N.
7 -«

Hence, {z,} is bounded, so are {u,}, {vn}, {Wnkn}, {f(zn)}, {Bun} and {yn}.

Step2. We claim that lim,,— o ||p+1 — zn] = 0.

Observing that u, =T, z, and up41 =1,

g1 Tnt1, We get

1
F(unvy)+r<y_unaun_mn>20 forally € H

n

and

F(upt1,y) + (Y = Unt1,Unt1 — Tpt1) >0 forall y € H.

Tn+1
Putting y = u,41 in (3.43) and y = u, in (3.44), we have

1
F(unvun+l) + 7<un+1 — Up, Up — -Tn> Z 0
n
and
1
F(“n—i—lz“n) + <un — Up+41, Un+1 — xn-‘rl) Z 0.
rnJrl

So, from (A2) we have
>0

Up — T, . Up4+1 — Tp+1 >

<un+1 — Unp,
Tn Tn+1

and hence

r
i(un-l—l - x?z+1)> Z 0

<un+1 — Up, Up — Un41 + Un+1 — Tp —
Tn+1
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(3.43)

(3.44)

Without loss of generality, let us assume that there exists a real number ¢ such that r, > ¢ > 0 for all n € N.

Then, we have

T
||un+l - 7-’411”2 § <un+1 — Up; Tp+1 — Tn + (1 - i >(un+1 - xn+l)>
Tn+1
r
< Bnss = wnl{lemes =l + 1= 7 s = g}
Tn41
and hence
[t —unl < llongr — @all + rng1 = Pallltn+1 — Tnga|
rn+1
My
S ||xn+l - an + 7|rn+l - Tn'a

where M7 = sup{||lu, — z,|| : n € N}. Note that

[vnt1 —vnll < [[Po(unt1 — Ans1BYnt1) — Po(un — A Byn)||
< tng 1 = A 1BYny1 — (Un — A By ||
= [[(un+1 — Anp1Bun+1) — (un — Apt1Buy)
+ Ant1(BUnt1 — Byni1 — Bun) + A Byy||
< (unt1 = Apg1Bungr) = (un — A1 Buy) ||
+ A1 ([ Bunsa || + [[Byntall + | Bun|l) + An || Byl
<

[tnt1 — wnl| + )‘n+1(||Bun+1|| + | BYnt1ll + ”Bun”) + Al Byn||

(3.45)



and

Setting

IN

IN

”knJrl - kn”

||an+1un+1 + (]- - anJrl)anrl — Qplp — (]- - an)vn”

loans1(tns1 — un) + (ng1 — an)tn + (1 = @ng1) (Vng1 — vn) + (@ — @ng1)vn ||

Antl[unt1 — Unll + (1 = ang1) Va1 — vnll + lan — ang|[Jun + vall

A1 |[Unt1 — Unl| + (1 — O‘n-i-l){Hun-i-l = Un|| + Ant1 (”Bun-i-lH + [ Byns1l

+11Bunll) + Al Byall } + lan = anallun + val
ltns1 = tnll + (1 = @ns ) A1 (1Bt 1 || + | Byl + [ Bun)

+ (1 = ans 1) Al BYynll + [an — angilllun + vn |

M,
1Znt1 = zall + == lrnar = ol + (1 = @np ) Anr (| Bnsa || + 1 Byna || + | Bun|)

+ (1 = an1) Al Bynll + lan — anga|[un + vnl-

b = Tn41 — ﬁnxn i 6n")/f(xn) + ((]— - ﬁn)I — EnA)Wnkn
T 1-8, 1-3, ’

we have z,41 = (1 — Bn)zn + Bntn, n > 1. It follows that

nt17f (@ni1) + (1= Brng) ] — en 1 A) Wy 1k

Zn4+l —Zn =

1- 6n+1
e f (@) + (1= Ba) — en ) Wik
1- ﬁn
— _Sndl __€n B
= T @) = T @)+ Waakugr = Wak
- _ G
€n .

= L (vf(@n41) = AWnyiknga) + (AWnky — v f(2n))
o B”‘f'l 1- ﬁn

+ Wn+1kn+1 - WnJrlkn + Wn+1kn - Wnkn

It follows from (3.46) and (3.47) that

lzn+1 = znll = [|2n41 — 2n|
En+1
< TEH(HW’JC(%H)H + [ AW, 1 kg |)
€
+1 _nﬂ (AW ke | + v f @n)ll) + W1kt = Whgakon |
FWagrkn = Waknll = [|#n41 — |
€n+1
< 125 (@)l + 1AW aka)
n
€n
15 (AW k| + 17 f (@n)ll) + [Fn1 — Enll
F I Wagrkn = Waknll = [|2n41 — |
€n
< 1_7;1“(”’7]((1'714»1)“ + [ AW, 11K |])
€n M1
15 AWkl + 17 f (@)l) + —lrnss = 7l

(1= ans) st (1Bunsall + | Bynsa | + 1B
+ (1 = 1) Al Byn [l + o — cnpa[[lun + vnl|
+ |Whgikn — Wik, ||
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(3.46)

(3.47)

(3.48)



Since T; and U, ; are nonexpansive, we have

HWn+1kn - Wnkn” = ||U1T1Un+1,2kn - ,ulTlUn,anH

IA

M1 HUn—H,an - Un,an ”

p || peToUns1 3kn — poToUsy, sky ||

< pap2l|Unsi,3kn — Un sknl|
S /141,U/2 Tt Mn||Un+1,n+1kn - Un,n+1an
<

M2 H i,
i=1
where My > 0 is a constant such that ||Up+1n+1kn — Unntiknl < Mo for all n > 0.

Combining (3.48) and (3.49), we have

€n+1
Iznt1 = 2nll = [[&nt1 —anll < %(IIW‘(%H)IH\IAWn+1kn+1|\)

ﬂn
+

ﬁn

+( = ant1)Ant1 (| Bnsa || + | Bynsall + | Bua )
+(1- an+1))‘ [ Bynll + o — g |llun + vl

+M2 H/L’Lv
=1

which implies that (noting that (i), (ii), (iii), (iv), (v) and 0 < p; < b < 1,Vi > 1)
limsup(||zn41 — 20| = |Zns1 — znl]) < 0.

Hence, by Lemma 2.60, we obtain

lim ||z, — x| = 0.
It follows that
nhl{loo [Znt1 — @nll = n&nm(l — Bn)llzn — anll = 0.

Applying (3.50) and (ii),(iv), (v) to (3.45) and (3.46), we obtain that

nlin [tunt1 — unl = nhjl |knt1 — knll = 0.
Since @41 = €xYf(Tn) + Bnn + (1 — Bn)] — €, A) Wk, we have
[0 = Wikl

< len = Tngall + lZngs — Wakall

= o = zppall + || f(@n) + Bnn + (1= Bu)] — € A) Wik, —

= Nzn — zpsall + ||en (vf (@n) = AWnkn) + Bn(z0 — Wiky)

< lwn = znall + en (v f (@)l + 1AWk + Bullzn — Wakn||
that is,

oo = Wokall < =5 on =zl + T (1 @)l + AWk ).
By (i), (iii) and (3.50) it follows that

lim Wypkn — x| = 0.

Step 3. We claim that the following statements hold:

(AW kel + v f () 1) + 7|Tn+1 = 7|
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(3.49)

(3.50)

(3.51)

(3.52)
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lim, oo |Jn, — kpnl| = 0 and lim, o ||z, — un|| = 0.

For any p € © :=N2, F(T,) N EP(F)NVI(C,B) and (3.42), we have

where

ke — pII?

IA

IN

IN

IN

IN

llevn (s = p) + (1 = ) (vn — p)|?

allitn = pI + (1 = o)l = pl?
)\2
anlie =l + (1 = )l =51+ (3 = 1) o = 0}
it =17 + 1 = ) (3 = 1) o =3P
o =17+ (1= ) (3 1) o 3P
Jnsr — Pl
(= BT = €0 A) Wik~ ) + B0 — ) + 0 () — Ap)||
1((1 = )T = €0 A) Wik = ) + B — D) + €217 f(n) — Apl?
+ 2Bn€n (@0 — p,vf(20) — Ap)
260 (1= B)T = en ) (W = ), (@) = Ap)
(1= B — eaDlWakn = pll + Bullen — pl]* + El17f (@) — Ap]?
+ 2Bn€n{Tn — p,7f(wn) — Ap)
+ 260 ( (1= Bu)] = €0 A) Wk = p), 7f(2) = Ap)
[(1= B = el = pll + Bullzn — pl]* + ca
(1= Bo = )2 lin = pII* + 5212 — pl|?
+2(1 = B — n¥)Bullkn — Plllzn — pll + cn
(1= B = €n7) 2l — pII> + B2 2 — I
+ (L= Bn = €M) Bn(Ikn — 2I* + llzn — plI*) +cn
(1~ €07)? — 201 — ) + B2) [ — I + B2z — I
+ (1= )8 = 52) (I =PI + o = I?) + e
(1= en)?kn = pl* = (1 = €a¥)Bullkn — plI* + (1 = €a¥)Bullzn — plI* +cn
(1= ea®)(1 = B = en®)llin — pII® + (1= e¥)Bullen — pII* + cn, (3.53)
en = ellvf(an) — Apl® + 28nen(n — p,vf (xn) — Ap)

260 { (1= )] = €0 ) (Wakn = p),7f (@) — Ap).

It follows from condition (i) that

lim ¢, =0. (3.54)

n——-m:ao90



By (3.53), and using (v), we have

a1 =PI
2 >\2 2

S (1 - enﬁ)(l - 671 - e'rﬂ/){lxn _pH + (1 - an)(ﬁig - 1) ”u" - y”” }

+ (1 — €27)Bnllzs _pH2 +cn
= (1= e llen —plP

A2 9
F =61 =B = )1 = an) (G5~ 1) lun — gall* +
A2 9
< o=l + (0= an) (G5 = 1)l — ynl” +cn
It follows that
2 )‘2 2
(= an)dlun =yl < (1= 00) (1= 55 ) hun =

< lan = pl? = llznsr = pl* +cn

< Men = znpall(lzn = pll + 201 = Pl + o
Since lim,,— ., ¢, = 0 and from (3.50), we obtain

lm |Ju, — ya|l = 0.
n——oo

Note that

kn — Un = (U — vy).

Since lim,, o a,, = 0, we have

Hm ||y — va|| = 0.
—00

From B is %—Lipschitz continuous, we obtain

lon = ynll = [IPo(un — AnByn) — Po(un — AnBuy)|
< Hun = AnByn) = (un — AnBua )|
= Al Bun — Bya||
< Zlen =l
then we get
tim_[Jo, — gl| = 0.

From
lun = Fnll < llun = yull + [1yn = vnll + lvn = k|l
Applying (3.55), (3.56) and (3.57), we have
nlinoo [t — Enl| = 0.
For any p € O, note that T, is firmly nonexpansive (Lemma 3.2), then we have

l|wn — pH2 = [T, o0 — Tm,pnz

IA

<Trnxn =T, pyTy — p>

(Un — P, T — D)

1
5 Ulwn =pI* + llen = pl* = llzn — uall?)

(lzn = pll = lznta = pID(lzn = Pl + 12041 = pI) + cn
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(3.55)

(3.56)

(3.57)

(3.58)



and hence
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lun = plI* < llon = plI* = 2 — un]l*.

This together with (3.53) gives

So, we obtain

IN

IA

IN

IA

IA

01— plI?

(1= en®)(1 = Bn = enPllbn — I + (1= €a7)Bnllzn = p|* + €n

(1= ea®)(1 = €07 = B {llkn = wa* + e = pI* + 20k, — = )}
+(1 = en¥)Bnllzn = plI* + cn

(1= en (1 = ¥ = Bk = wal* + (1 = €)1 = €07 = ) [ =
+2(1 = 7)1 = €7 = Bu)llkn — wallllun = pll + (1 = €)Balle — pl> + s
(1= e = w7 = Ba) b = a1

+ (1= a1 = 7 = B){ = pII® = 2 — a1}

+2(1 = e7)(1 = €7 = Bu)llkn = wallllun = pl + (1 = € 7)Balz = pI* +
(1= e = ¥ = Ba) b =

+(1 =)= = Bp)llzn = plI* = (1= 7)1 = €7 = Bn)|2n = un|?
+2(1 = 7)1 = €7 = Bu)llkn = wallllan = ol + (1 = €7 Bulle = pl> + s
(1= e llzn =PI = (1= ) (L = €07 = ) 2 —

+ (1= V(1 = ey = Bn)llkn — unll?

+2(1 = €)1 = €07 = B)llkn = wnllllun = o] + o

[1 = 2607 + (ea7)?] e = I = (1 = aD)(1 = ¥ = Bo) o — wa?
+(1—en¥)(1 = e = Bn)lln — )

+2(1 = 7)1 = €7 = Bu)llkn = wallllun — o] +

= Bl + (€072l =PI + (1 = €T (1 = € = Bu)llb — ua

— (1= )1 = &7 = B)llan — un?

+2(1 = D)L = &7 = Ba) Ik = unllllun = pll + o

(1= en¥)(1 = en¥ = Bn)l|2n — un||2

< lzn = plP = lleng — ol + (en¥)? |20 — plI?
+ (1= €)1 = en¥ = Bn)[lkn — un?
+2(1 = %) (1 — €n¥ = Bn)llkn — unlll|un — pll + cn
= ([l = pll = llznt1 — pID 20 — 2l + | Zns1 — 2l)
+ (en¥)?[lzn — plI* + (1 — V) (L — €0 — Ba) lkn — un |
+2(1 — €x¥)(1 — €y — Bn)llkn — unlllun — pll + cn
< Nan — zngall(lzn — pll + l2ns1 — pll) + (€n¥)? 20 — pl?

+ (1 =) = ey — Bu) | kn — un||2
+2(1 = €n7)(1 — €27 = Bn)|kn — tnllllun — pll + cn-

Using €, — 0, ¢, — 0 as n — o0, (3.50) and (3.58), we obtain

lim ||z, —uyl| =0 (3.59)
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Since liminf,, ., 7, > 0, we obtain

lim 22— = lim —|lzn — unl| = 0. (3.60)
—00 n n—-o0 ’[“n
Observe that
[Watn —un| < [Watin = Wakn || + [[Wnkn — 2ull + [0 — ua|
< lun = knll + [[Wakn — @ + [ — un].

Applying (3.52), (3.58) and (3.59) to the last inequality, we obtain
lim ||[Wyu, — uy| = 0. (3.61)
Let W be the mapping defined by (3.35). Since {u,} is bounded, applying Lemma 3.14 and (3.61), we have

Wy, —un|| < W — Woun|| + [|Whten, — up|| — 0 as n — oo. (3.62)

Step 4. We claim that lim supnﬁ)oo<(A —vf)z,z — :vn> < 0, where z is the unique solution of the
variational inequality ((A —~f)z,x —z) >0, Vz € ©.

Since z = Po(I — A + vf)(z) is a unique solution of the variational inequality (3.37). To show this
inequality, we choose a subsequence {uy,,} of {u,} such that

dim (A —7f)z, 2z — un,) =limsup((A — vf)z,z — un).

i—00 n—s00

Since {u,,} is bounded, there exists a subsequence {un]} of {up,} which converges weakly to w € C.
Without loss of generality, we can assume that u,, — w. From |Wu, — u,|| — 0, we obtain Wu,,, — w.
Next, we show that w € O, where © := N2, F(T,,) N EP(F)NVI(C,B). First, we show that w € EP(F).
It follow form Theorem 3.5, we obtain w € EP(F'). Next, we show that w € N2, F(T},,). By Lemma 3.13,
we have F(W) = NS, F(T,,). Assume w ¢ F(W). Since u,, — w and w # Wuw, it follows by the Opial’s
condition (Lemma 2.58) then w € F(W) = N2, F(T,). By the same argument as that in the proof of [43,
Theorem 2.1, p. 10-11], we can show that w € VI(C, B). Hence, w € ©. Since z = Po(I — A+ vf)(2), it

follows that

limsup<(Af’yf)z,zfa:n> = limsup<(Af’yf)z,zfun>
= hIIl <(A7’Yf)zazfunq>
= ((A=7f)z 2 —w) <0. (3.63)

It follows from the last inequality, (3.52) and (3.59) that

limsup(yf(z) — Az, Wpk, — z) <0. (3.64)

n——oo

Step 5. Finally, we show that {x,,} converges strongly to z = Po(I — A+ vf)(2).
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Indeed, from (3.36) , we have

|Zns1 — 2]
= lenyf (@n) + Batn + (1= B — en A) Wik, — 2|
= (@ = Bu) — enA)(Wyky )+ﬂn($n—Z)+en('yf(xn)—Az)||2
= (1= Bu) = end) (Wakn — 2) + Ba(wn — 2)|I° + € () — Az
+2Buen (2 — 2,7 (20) — Az)
20 { (1= Ba)] = €0 A) (Wakiy — 2),7f () — A2)

< (0= Ba = ea) [ Wakn = 2] + Bullon - z||}2 + |7 (@n) — Az|)?
+ 2ﬂnen7<xn —z, f(z,) — f(z)> + 2ﬂnen<xn —z,7f(z) — Az>
+ 2(1 - ﬂn)76n<W kn — Z, f(xn) - f(Z)> + 2(1 - ﬂn)€n<Wnkn - Zv’)/f(z) - AZ>
— 26%<A(Wnkn 2),vf(z Az>

< (1= B — e Wak = 21+ Bulln = 21 + €l f(an) — A2
+28nenVlzn — 2ll|Lf (@) = FE)I + 2Bnen(mn — 2,7/ (2) — A2)
+2(1 = Bn)ven||Whkn — z|\||f(xn) —f)|+2(1 - ﬁn)en<Wnk —z,vf(z Az>
=22 (A(Wyky, — 2),vf(2) — AzZ),

< [0 Bu = eAllza - 2l + Bullan — 2]+ Elf(an) - A2

+ 2Bnenval|lzn, — 2||> + 2Bnen(zn — 2,7f(2) — Az)
+2(1 = Bu)venallzn — zH? +2(1 = Bo)en(Waky — 2,7f(2) — Az)
— 262 (A(Wikn — 2),7f(2) — Az)

(3.65)
= (= &) + 2uenra + 21 = Bayena] an — 2|2 + 7 f (wa) — Az
+ 2ﬁnen<xn - Z,’)/f(Z) - AZ> + 2(1 - ﬂn)6n<Wnkn - Z,’Yf(Z) - AZ>
_2631<A(Wnkn _2)7’Yf( _AZ>
< [1-20 - a)en]lon — 21 + PR lan — 2l + e llvf (zn) — A2l
+ Qﬁn€n<xn - Z,’)’f(Z) - AZ> + 2 1- ﬂn 6n<Wnkn - Za’Yf(Z) - AZ>
+26 | A(Wnkn — 2)[[ll7f(2) — Az]|
= [1 -2(y - O"Y)en] s — 2] + en{en [:YQHxn — 2| + |7 f(zn) — Az
+ 2 AWnkn — 2)[l[l7f(2) — AZ||} + 2Bz — 2,7f(2) — Az)
+2(1 = Bo){(Wiky — 2,7f(2 Az>}
Since {z,}, {f(zn)} and {W,k,} are bounded, we can take a constant M > 0 such that
Vo llwn = 207 + 1vf (@n) — Az]|* + 2| AWakn — 2)[|l7(2) — Az|| < M,
for all n > 0. It then follows that
|ent1 — zH2 < [1 —2(y - a’y)en] llzn — 2||* + €nom, (3.66)

where
on =260 (xn — 2,7f(2) — Az) +2(1 = B, ){Wykn — 2,7f(2) — Az) + €, M.
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Using (i), (3.63) and (3.64), we get limsup,, ., 0, < 0. Applying Lemma 2.62 to (3.66), we conclude that

T, — 2z in norm. Finally, noticing
lun — 2| = |Tr,2n — T 2l < flzn — 2]
We also conclude that u,, — z in norm. This completes the proof. O

Corollary 3.16. Let C be nonempty closed convex subset of a real Hilbert space H, let {T,,} be an infinitely
many nonexpansive of C into itself and let B be an [-inverse-strongly monotone mapping of C into H such
that © := N2, F(T,)NVI(C,B) #0. Let f be a contraction of H into itself with o € (0,1) and let A be a
strongly positive linear bounded operator on H with coefficient ¥ > 0 and 0 < v < g Let {xn}, {yn}, and
{kn} be sequences generated by

x1 = € C chosen arbitrary,

Yn = Po(wn — AnBy),

kn = anzn + (1 — an)Po(z, — A\nByn),

Tpi1 = eV f(20) 4 Butn + (1 = B — en AWk, ¥n > 1,

where {W,} is the sequences generated by (5.54) and {€,}, {an} , {Bn} are three sequences in (0,1) satisfy

the following conditions:
(i) lim, oo €, =0 and >_°7 | €, = 0,
(ii) lim, oo iy, = 0 and 3.7 | a, = 00,
(iii) 0 < liminf,, o B, <limsup,_ . Bn <1,
(iv) {’\F“} C (1,1 =19) for some 7,6 € (0,1) and lim,,_,oc A,, = 0.
Then, {x,} converges strongly to a point z € © which is the unique solution of the variational inequality

<(A—7f)z,x—z> >0, Vz € 0.

Equivalently, we have z = Po(I — A+ vf)(2).

Proof. Put F(x,y) = 0 for all z,y € C and r, = 1 for all n € N in Theorem 3.15. Then, we have

Uy, = Poxy, = x,. So, by Theorem 3.15, we can conclude the desired conclusion easily. O

3.1.4 A Finite Family of Nonexpansive Mappings

In this section, we show a strong convergence theorem of an iterative algorithm based on shrinking relaxed
extragradient method which solves the problem of finding a common element of the set of fixed point of a
finite family of nonexpansive mappings, the set of solution of a generalized equilibrium problems and the
set of solution of a variational inequality problem for a inverse-strongly monotone mapping in a real Hilbert

space.
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Definition 3.17. [26] Let {T;} Y., be a finite family of nonexpansive mappings of C into itself and sequence
i 3N in [0,1], define the mapping K,, : C — C' as follows:

Un,l = )\n,lTl + (]- - )\n,l)Ia
Un2 = Mo2ToUp1+ (11— X 2)Un,
Un,3 = /\7L,3T3Un,2 + (1 - /\n,3)Un,27
Upno1 = Ano1In—1Upn_a+ (1= A no1)Un no2,
K, = Uyn=MNINUsn-1+ (1 =Xy n)UnnN-1, (3.67)

Definition 3.18. [26] Let C' be a nonempty convex subset of real Banach space. Let {T;}Y.| be a finite
family of nonexpanzive mappings of C into itself, and let \1, ..., \n be real numbers such that 0 < \; <1 for
everyt =1,...,N. Define a mapping K : C — C as follows:

Uy = M1 —|—(1—>\1)I,
Uy = MDU+(1—X)Ui,
Us = XT3U2 + (1 — A3)Us,
Uv—1 = ANv-1In-1Un—2+ (1 = An—1)Un—2,
K = Uny=ANTNUn_1+ (1 — )\N)UNfl' (368)

Such a mapping K is called the K-mapping generated by 11, ...., Ty and A1, ..., An-

Lemma 3.19. [26] Let C be a nonempty closed conver subset of a strictly conver Banach space. Let {T;}N
be a finite family of nonexpanzive mappings of C into itself with ﬂfvzl F(T;) # 0 and let A\, ..., \n be real
numbers such that 0 < A\; <1 for everyi=1,.... N —1 and 0 < Ay < 1. Let K be the K-mapping generated
by T1, ... Ty and Ay, ..., A\n. Then, F(K) =, F(T;).

Lemma 3.20. [26] Let C be a nonempty closed convex subset of Banach space. Let {T;}Y., be a finite family
of nonexpanzive mappings of C into itself and {\n;}., sequences in [0,1] such that \,; — X\i, as n —
oo, (i=1,2,...,N). Moreover, for everyn € N, let K and K,, be the K-mappings generated by Ty, Ts, ..., Tn
and A1, A2, .., AN, and T, Ty, ..., Ty and Ay 1, An2, ..., A\n, N respectively. Then, for every x € C, we have
lim, o0 | Kpnz — Kz|| = 0.

Remark 3.21. Replacing © with x — rAx € H in (3.1), then there exists z € C, such that
1
F(Z,y)+<AJ?,y—Z>+;<y—Z,Z—$>ZO, vyec

Theorem 3.22. Let C be a nonempty closed convex subset of a real Hilbert space H, let F' be a bifunction
from C x C to R satisfying (A1)-(A4), let {T;} | a finite family of nonexpansive mappings from H into itself,
let A be an B-inverse-strongly monotone mapping of C into H and let B be a &-inverse-strongly monotone

mapping of C into H such that Q = NN, F(T;) NGEP(F,A)NVI(C,B) # 0. Let {zn}, {yn}, {vn}, {2}
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and {u,} be sequences generated by xo € H, C1 = C, 1 = Po,x0, u, € C and let

1
F(unvy) + <Axn7y_un> + 7<y_unaun _xn> 2 07 Vil/ S C”

n

Yn = PC(un - 6nBun)7
Up = €EpTy + (1 - En)PC(yn - )\nByn)v (369)
Zn = QpXy + (]- - an)KnUTm

Cny1 ={z € Cp: |2 — 2l < flzn — 21},

Tny1 = Pc, . 70, Yn €N,
where {K,,} is the sequence generated by (3.67)and {ay,} C (0,1) satisfy the following conditions:
(i) {en} C [0, €] for some e with 0 < e <1 and lim, o a, =0,
(i) {0n}, {\n} Cla,b] for some a,b with 0 < a < b < 2¢,
(iii) {rn} C [c,d] for some ¢,d with 0 < ¢ < d < 283. Then, {x,} and {u,} converge strongly to

Pﬂf\’zlF(Ti)ﬁGE‘P(F,A)ﬂVI(C,B)xO'

Proof. In the light of the definition of the resolvent, w, can be rewritten as u, = T} (2, — rnAzy,). Let
p € Q:=nY,F(T;)) NGEP(F,A) N VI(C, B) and using the fact {T}, } be a sequence of mappings defined
as in Lemma 3.2, A be an S-inverse-strongly monotone and that p = T, (p — r, Ap), where {r,} C [c,d] for

some ¢, d with 0 < ¢ < d < 203, we can write

lun = pl* = Ty, (20 — rpAzn) = T, (p — ra Ap)|?
< @ = radzy) — (p — raAp)|?
= |(zn —p) — ru(Az, — Ap)|?
= Jlan —pl? = 2rp{z, —p, Az, — Ap) +r2|| Az, — Ap||?
< len = pl* = 2raB)| Az, — Ap||? + ri|| Az, — Apl|®
= @n = pl* + ra(rn — 26)|| Az, — Apl|® (3.70)
< lan —pl%.

Next, we will divide the proof into six steps.

Step 1. We show that {z,} is well-defined and C,, is closed and convex for any n € N.

From the assumption, we see that C; = C'is closed and convex. Suppose that CY is closed and convex

for some k > 1. Next, we show that C41 is closed and convex for some k. for any p € C, we obtain

2k = pll < llzx — pll

is equivalent to
2 — 21]|? + 2{zx — 21, 71 — p) < 0. (3.71)

Thus, Cgy1 is closed and convex. Then, C,, is closed and Convex for any n € N. This implies that {z,} is
well-defined.
Step 2. We show that Q c C,, for each n > 1.

From the assumption, we see that 2 C C' = C;. Suppose €2 C C}, for some k > 1. For any p € Q C Cy,
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we have
lyr —pll = ||Po(ur — 0rBuy) — Po(p — 6, Bp)|
< |ug — 0xBug) — (p — 61 Bp)||
< N = dkB)ur — (I = 6 B)p||
< luk = pll < [l —pl|
and
loe —pll = llex(wx —p) + (1 — ) (Po(yx — A\ Byx) — p)ll
< ekllze —pll + (1 —ex)llyx — pll
< ekllze —pll + (1 —ex)l|lzk — pll = ||z — pl|-
Thus, we have
lze —pll = llon(ze —p) + (1 — ar)(Kpve —p)||
< aglleg —pll + (1 — ag)llox — p|
< agllze = pll + (1 = ar)llzk — pll = [|ox — pl|-

It follows that p € Ck41. This implies that Q C C), for each n > 1.
Step 3. We show that lim,, o [|Znt1 — Zn| = 0 and lim, o ||z — 25| = 0.
From z,, = Pc,x0, we have

<$07$n;zn7y> ZO

for each y € C),. Using Q2 C C,,, we also have
(xo — Tp,xp —p) >0, VpeQ and nelN
So, for p € Q, we have

0 < (xo—Tn,Tn—D)

(xo — Tpy Ty — 20 + 0 — D)

—<.’E0 — Tn,To — xn> + <(E0 — Tn,To _p>

IN

~llwo = zall® + llzo — za 2o — pll.
This implies that
lzo — znll < |lzo —pll, Y€ and neN.

From z,, = Pc,xo, and xp+1 = Pe, 20 € Crt1 C Cy, we obtain

n+1
(o — Ty T, — Tpg1) > 0. (3.72)

From (3.72), we have, for n € N,

0 < (xo—on,Tn — Tnt1)
= (To—Tn,Tn — To+ T — Tpi1)
= —(To — Tn,To — Tp) + (To — Tn, To — Tpy1)
< —llzo — zall® + llzo — zalllzo — Zngall



It follows that

20 = 2all < llzo = Zna -

Thus the sequence {||z, — zo||} is a bounded and nondecreasing sequence,

80 lim,, o ||zn — x| exists, and then there exists m such that

Indeed, from (3.72) we get

<

lzn — mn+1||2

lim,, oo ||n — zo]| = m.

lzn — xo + z0 — In+1H2

#n — @0l|* + 2(zp — 0,20 — Tnt1) + lTo — Tnpa|?

|Zn — zol|® + 2(xn — T0, To — T + Tn, — Tpt1) + ||T0 — T ||

llzn — z0l|* = 2(xn — T0, Tn — 20) + 2(Tp — 20, Tr, — Trg1) + ||To — Zni1]?

—||zn = 2ol + 2(2p — B0, T — Tnt1) + |0 — Tnya]]?

~llzn = zoll* + llzo — zn41]*.

From (3.73), we obtain

Since z,41 = Po

n+1

[zn = 2ull < 20 = Tngall + lTn+1 = 2ull < 2[20 — zaga .

By (3.74), we obtain

Step 4. We show that lim, o ||Kn¢n — énl| =0, where ¢, = Po(yn — A\ Byn)-

lim, o ||Tn — Tny1]] = 0.

g € Cpq1 C C,, we have

lim, oo ||@n — 2n|| = 0.
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(3.73)

(3.74)

(3.75)

Since B is a £-inverse-strongly monotone by the assumptions imposed on {\, } for any p € Q, we have

lén — pl?

ININ N

IN

Similarly, we can prove

Observe that

yn — pI?

Iz = pII®

<

IN

IN

lzn = plI* + (80 — 26) | Bun — Bpl|*.

”O‘n(xn _p) =+ (1 - an)(Knvn - p)||2
|z, — pl* + (1 — an) | Knvn — pl|
an Ty, _pH2 +(1—

1P (yn = AnByn) — Pe(p — A Bp)|?
[(gn — AnByn) — (p — XuBp)||?

[(yn = p) = An(Byn — Bp)||®

[gn = pII*> = 2Xn(yn — p, Byn — Bp) + A%|| By, — Bp||?
|2 = plI* = 2X\n (yn — P, Byn — Bp) + \2||Byn — Bp|®
20 = plI* + An(An — 26)[|Byn — Bpl|*.

an)lvn _p”2

(3.76)

(3.77)
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and
Jon — ol
< ealln = pl2+ (1= €)llén — ol
< enllon = bl + (1= en){llzn = pI2 + Aa(hn — 26) 1 Byn — Ball*}

|zn — p||2 + (1 = ) An (A — 28)|| By — BpHQ. (3.78)

Substituting (3.78) into (3.77), and using condition (i) and (ii), we have

Iz — plI®
< anllzn = pl* + (1 = an)|v. —pl?
< anllon = ol + (1 = @) {llen = pI* + (1 = €)An(An = 26| By — Bp|*}
= lan = pl? + (1 = )1 = )X (Mn = 26)[| Byn — Bpl*.
It follows that
(1= an)(1 = e)a(2 = b)|| By, — Bp|*
< (1= an)(1 = €)An(26 = N[ Byn — Bp|)?
< llan = pl* = llzn — 2l
= ([len = pll = llzn = pID([l2n = pll + 120 = pl)
< ll#n = zall(lzn = Pl + [120 = pI)-
Since lim,, oo ||Zn — 2x|| = 0, we obtain
lim ||By, — Bpl|| = 0. (3.79)
By Lemma 2.19 (iii), we also have
lon = pI° = 1Pc(yn = AByn) = Po(p = MuBp)|®

|Po(I = A\uB)y, — Po(I — A\, B)pl|?

< ((I=NBJyw = (I = MB)p, 6 —p)

= {10 = MBn = (= 2B + 16— I
~ I = AB)yn = (I = 2B)p = (60~ )|I*}

< 5{lvn =8l + 160 = Bl = (v = 60) — Ma(Byn — BoI?}

< {lwn =l + 16w — ol ~ v — 6
A2 Byn — Bp|I* + 2\n(yn — du, Byn — B) },

which yields that
6 = I < len = Bl =l = 60l + 27l — 6l 1 By — B (3.50)

Similarly, we have

lyn = pI* < llzn = pII* = llun = yall* + 28n]|un — yull| Bun — Bp. (3.81)



Using (3.78) again and (3.80), we have

fon = I
< eallon =PI + (1 =€)l — ol
< calln =l + (1 = en){ 170 = BlI* = lyn = &ul* + 2Xnllg — 6l By — Bl }

||$n - pH2 - (1 - en)”yn - ¢nH2 + 2(1 - En))‘nnyn - ¢n||||Byn - Bp”

Substituting (3.82) into (3.77), and using condition (i), we have

A

lon =PI < aullen = pl + (1= an)lvn = plf?

anllzn = pI + (1= an){ = pI* = (1 = e)llyn = éull
+2(1 = )l — Sull By — Bol }

o = Bl = (1 = an)(L = €)llgm = 6ull®

+2(1 = an)(1 = e)Aallyn — énl| By — Bl

IN

It follows that

(1= an)(1 = e)llyn — oul®

< (1*O‘n)(1*€n)”yn*¢n“2
< an = pl* = llzn = ol +2(1 — @) (1 = €x) Anllyn — énlll| Byn — Bp|
< lzn = zall(lzn = pll + [[2n = pI) +2(1 — an) (1 — ) Anllyn — @nll| Byn — Bpll-

Applying ||z, — zn|| — 0 and || By, — Bp|| — 0 as n — oo to the last inequality, we get
lim |lyn — ¢l = 0.
n—-mao90

Note that

IN

€nllTn *pH2 + (1 —€n)lPn *pH2

< enllwn —pl* + (1 = €a)llyn — pII*.

lv = pl®

A

Substituting (3.76) into (3.85), we have

[on = pI* < enllzn —pl* + (1 = en) lyn — I
eallen = plI2 + (1 = en){llzn = pII* + 80 (8 — 26)| Bun — Bp|*}
o = Bl + (1= €0)0u(60 — 26) [ Bun — Bl

IN

Substituting (3.86) into (3.77), and using condition (i) and (ii), we have

N

lzn =l < omllzn = plI* + (1 = an)llon — p|I?

IN

anllen = pll? + (1 = an){ n - Il
(1 =€) (0 — 26)]| Bun — Bpl|*}
zn —p||2 + (1 = an)(1 = €,)0n (0, — 28)|| Buy, — Bp||2.

It follows that

(1= an)(1 = e)a(26 = b)l|Bun — Bpl* < (1= 0n)(1 — €)0n(26 — 6,) || Bun — Bp|*
<l = pl* = [l = pI?
< len = znll(lzn = pll + [[2n — pl)-

47

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
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Since lim,,— o ||y, — 2»|| = 0, we obtain
lim ||Bu, — Bp| =0. (3.87)

Using (3.85) again and (3.81), we have

vn — ]2
< enllzn =l + (1 = en)lym — pII?
< enlln =2+ (1 =€) {llzn = Pl = lltn = yall® + 200 1wn = yull| Bun — Byl }

|zn — pH2 — (1 =en)flun — ynH2 +2(1 = €,)0n|un — ynlll| Bun — Bp||. (3.88)

Substituting (3.88) into (3.77), and using condition (i) and (ii), we have

A

lon =pI? < anllzn = pll? + (1 = @n)lvn - pl*
allzn = I+ (1 = @) {n = pI* = (1 = €0)n =

IN

+2(1 = €)0n [~ yull| Bun — Byl }
o =PI = (1 = an)(1 = ea) un = a1
+2(1 — an)(1 = €n)0n|lun — ynl| | Bun — Bpl|.

It follows that

(1= an)(1 = €)]lun — yal?

< (=) (1 = €)lun — yall?
< zn _pH2 — |lzn — p||2 +2(1 — an)(1 = €,)0n||un — yull|| Bun — Bp||
< 2w = zall(lzn = pll + |20 = pll) + 2(1 — an)(1 — €n)dnllun — ynulll|Bun — Bp].

Applying ||z, — 2z,|| — 0 and ||Bu,, — Bp|| — 0 as n — oo to the last inequality, we get

lim |Jup, —yn|l = 0. (3.89)
From (3.84) and (3.89), we have
lm |ju, — ¢l = 0. (3.90)
n—oo

Using (3.85) again and (3.70), we have

lon=pl? < eallon = I + (1 = ea) lyn — I
< ealln = I+ (1= en)un — I
< eallon = ol + (1= e){llzn = plI? + 7 — 28) | A — Ap|1*}

= zn = pl* + (1 = en)ra(ra — 26)[| Az, — Ap|. (3.91)

Substituting (3.91) into (3.77), and using condition (i) and (ii), we have

len = o)
< aullon =l + (1= an) v — p|?
< anllzn = pl? + (1 = an){llon = pI? + (1 = ea)ra(rn — 28) | Aza — Apl*}

|zn — pH2 + (1= an)(1 = €n)rn(rn — 28) | Azn — ApHQ.
It follows that

(1= an)(1 = e)e(28 = d)|Azn — Ap|* < (1= an)(1 = €n)rn (B — )| Azn — Apl|?

IA

zn _pH2 = |lzn —p||2

IA

[0 = 2nll(lzn = pll + 20 = pII)-



Since lim,,— o ||y, — 2»|| = 0, we obtain

lim |[Az, — Ap| =0.

n

On the other hand, in the light of Lemma 3.2 T, is firmly nonexpansive, so we have

lun =plI* = Tr, (0 — rnAzy) = T, (p — 72 Ap)||®
< Ty, (xp —rnAzy) —Tp, (p — 70 Ap), un — D)
= (xn — Az, — (p— rnAp), uy — p)
= (i@~ rad) — 0~ ruA)? + Jun — o
~@n = raAza) = (0 = raAp) = (w0 — DI}
1

IN

5{len =PI+ llun = I =l = wn = 7 (Az, — Ap)]?}
= 2l =l + lan — I 2 —
+2r, (T — Up, Az, — Ap) — 12| Az, — Ap||2}.
So, we obtain

[[un —p||2 < zn _pH2 — |lzn — unH2 + 2rpl|Tn — un| | Az — Apl|.

Using (3.85) again and (3.93), we have

o — pl?
< enllzn —plI? + (1= en)llyn — plI?
< enllwn —pl? + (1= €n)llun — pl|?
< enllon = bl + (1= e){llzn = pI2 = o = unll? + 2rallzn — ualll| Az, — Ap|}

lzn = pI* = (1 = )|z — unl® + 21 = en)rnl|zn — un || Az, — Apl|.

Therefore, from (3.77) and (3.94), we arrive at

lzn —pl? < anllzn —pl* + (1 = an)|lvn — pl
an Ty, —p||2 +(1 - an){Hxn —p||2 — (1 —en)llzn — unH2

IN

+2(1 = e)rullan — wnll| Az, — Apll}

zn *pHQ —(1=an)(l —en)|zn — un”z

+2(1 = an)(1 = €p)rnllTn — unll[|Azn — Ap]|.
It follows that and condition (i), we have

(1—an)(1— e)Hxn - un||2

< (=) = €)|zn — unl®

< lzn =2l = llzn = plI* + 201 = an) (1 = en)rallzn — unlll| Az, — Ap|

< lwn = zall(lzn = pll + 1120 = pl) + 201 = an) (1 — en)rallzn — unll| Az, — Apl|.
Since limy,— oo ||Tn — 2n|| = 0, lim,,—, o ||Azy, — Ap|| = 0 implies that

lim, oo ||@n — unl| = 0.
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(3.92)

(3.93)

(3.94)

(3.95)
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From (3.89) and (3.95), we have

lim ||z, —ya| = 0. (3.96)
From (3.84) and (3.96), we have
lim ||z, — ¢n|| =0. (3.97)

By (3.69), we have

2n — Kpv, = O‘n(xn - Knvn)

and
Un — ¢n = €n(xn - (bn)

Since ay, — 0 and ||, — ¢p|| — 0 as n — oo, we also have

n@m Iz, — Kpvpll =0 (3.98)
and
lim v, — ¢nll = 0. (3.99)
n—soo
From (3.84) and (3.99), we have
lim[lvn = yal = 0. (3.100)

On the other hand, we observe that

IN

|2n = 2nl| + |20 — Knvn|| + || Knvn — Knén||

N

< lon =zl + 120 — Knon |l + [lon = ¢all.
Applying (3.75), (3.98) and (3.99), we have
lim ||z, — K,én| = 0. (3.101)

n—oo

Furthermore, by the triangular inequality we also have
[EKndn = onll < | Kndn — 2all + [lzn — unll + [[un — ¢l

Applying (3.90), (3.95) and (3.101), we obtain

i ([ — dul = 0. (3.102)
Let K be the mapping defined by (3.68). Since {¢,} is bounded, applying Lemma 3.20 and (3.102), we have

Step 5. We show that there exists a subsequence {¢,,} of {¢,} which converges weakly to z, where
zen),F(T,))NGEP(F,A)nVI(C,B).

Since {¢,, } is bounded, there exists a subsequence {¢y, } of {¢, } which converges weakly to z. Without
loss of generality, we can assume that ¢,, — z. Since ¢,, C C and C' is closed and convex, C is weakly

closed and hence z € C. From || K¢, — ¢| — 0, we obtain K¢,, — z.
Next, we show that 2 € NIY., F(T;) NGEP(F,A)NVI(C, B).
(a) First, we prove that z € VI(C, B).
In fact, let T be the maximal monotone mapping defined:

Bv+ Nov, veC,
Tv =
0, vé¢C.
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Let (v,u) € G(T). Since v — Bv € Ncv and ¢, € C, we have
(v = ¢p,u— Bv) > 0.

On the other hand, from ¢, = Pe(yn — \nByn), we have <v — Oy O — (Yn — )\nByn)>2 0, and hence,

<v — On, d’")\zy" + Byn> > 0. Therefore, we have

<U - ¢7LNU> > <'U - ¢nia B'U>

Z <U_¢RZ?BU>_<U_¢’N,L7¢”£)\_ynl+Bynl>
— (v—6.Bv— By, — Lm Y _y">
An;
¢ni — Yn,
<U ¢ni3 )‘ni
> <U¢ni,B¢n,,-,Byni><U¢ni,w>-

A,

Since lim; o ||pn; — Yn;l| = 0, ¢, — 2z and B is Lipschitz continuous, we obtain that lim; . || B¢y, —

By,,|| =0 and ¢,, — z. From liminf, ., A, > 0, we obtain

lm (v — ¢p,,u) = (v —2z,u) > 0.

Since T is maximal monotone, we have z € 7710 and hence z € VI(C, B).

(b) Next, we prove that z € GEP(F, A).

Since u,, = 1), (¢, — rnAx,) for any y € C, we can write

1
F(un»y)+<Axnay_un>+7<y_un7un_mn> 207 VyEC

n

From (A2), we also have

1
<A$nuy - un> + 7<y — Up,Un — xn> 2 _F(un7y) 2 F(yvun)
T

n

Replacing n by n;, we have
(Azp,,y — up,) + <y—uni7w> > F(y, un,)- (3.103)

For any t with 0 < ¢t <1 and y € C, let o =ty + (1 —t)z. Since y € C and z € C, we have ¢, € C. So, from
(3.103) we have
<50t - unmAcpt> 2> <§0t - unmAcpt> - <Aan‘,7(pt - uni>
Up, — T,
- <(pt — Un,, nzrnz> =+ F((pt,um)
(pr = un,, Apy — Aun,) + (pr — Un,, Aun, — Azy,)

Up,; — T,
_<90t_umar> + F(pt,up,). (3.104)

v

Since A is Lipschitz continuous, from (3.95), we have || Au,, — Ax,,|| — 0 as i — 0.

Further, from the monotonicity of A, we get that

(ot — Un,, Apy — Auy,) > 0.
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It follows from (A4) and (3.104) that
(pr — 2, Apy) > F(py, 2). (3.105)
From (A1), (A4) and (3.105), we also have

0=F(pt,p1) < tF(p,y)+ (1 =) F(pr,2)
tF(pr,y) + (1 = t)(pr — 2, Apr)
tF (o, y) + (1= )ty — 2, Apr)

IN

and hence
F(pt,y) + (1 =)y — z, Ape) > 0.

Letting t — oo in the above inequality, we have, for each y € C,
F(z,y)+ (y — z,Az) > 0.
Thus, z € GEP(F, A).
(c) Now, we prove that z € F(K) = N, F(T}).

Assume z ¢ F(K). Since ||zp, — ¢n|| — 0 we know that ¢,, — z (i — o0) and z # Kz, it
follows from the Opial’s condition (Lemma 2.58), we get z € F(K) = ﬂivzl F(T;). The conclusion is
2NN, F(T;) NGEP(F,A)nVI(C,B).

Step 6. Finally, we show that x,, — 2z and u,, — 2z, where z = Pqx. Since () is nonempty closed
convex subset of H, there exists a unique 2z’ € Q such that 2/ = Pqxg. Since 2’ € Q C C), and z,, = P¢, xo,
we have

[0 — zn|l = [lzo — Pe, 2ol < [lzo — 2| (3.106)

for all n € N. From (3.106), {z,} is bounded, so wy,(z,) # 0. By the weak lower semi-continuity of the

norm, we have

llzo — 2|| < liminf; o ||zo — 2p, || < |20 — 27| (3.107)
However, Since z € wy,(z,) C Q, we have
lzo — 2| = [[lz0 — Pazo|| < [[zo — 2|

Using (3.106) and (3.107), we obtain 2z’ = z. Thus, wy(z,) = {#} and z,, = z. So, we have
lzo — 2’| < ||xo — 2|| < liminf, o ||zo — 2| < limsup,,__, ||zo — @] < ||z — 2.
Thus, we obtain that
lzo = 2l = lim |lzg — zn] = [lzo — 2.
n—-o0o

From z, — z, we obtain (zg — z,) — (20 — z). Using the Kadec-Klee property (Lemma 2.59) of H, we
obtain that

[en = 2| = [(zn = 20) = (z = @) — 0 as n— o0

and hence x,, — z in norm. Finally, noticing ||u, — z|| = ||Tr,, (zn, — ThAxy) — Tp (2 — rn, A2)|| < ||zn — 2]|.

We also conclude that u,, — z in norm. This completes the proof. O
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Corollary 3.23. Let C be a nonempty closed convex subset of a real Hilbert space H, let {T;}N., a finite
family of nonexpansive mappings from H into itself, let A be an (-inverse-strongly monotone mapping of
C into H and let B be a &-inverse-strongly monotone mapping of C into H such that Q := NN F(T;) N
VI(C,A)NVI(C,B) #0. Let {zn}, {yn}, {vn}, {zn} and {u,} be sequences generated by xg € H, C1 = C,
x1 = Po,xo and let

Uy, = Po(x, — rnAzx,),

Yn = Po(un — 6nBuy),

Uy = €p2n + (1 — €,) Po(Yn — AnBYyn),

Zn = Qpy + (1 — ap) Ko,

Cnyr =12 € Cn: |20 — 2| < [lzn — 2]},

Tny1 = Po,, w0, neEN,

where {K,,} is the sequence generated by (5.67)and {a,} C (0,1) satisfy the following conditions:

(i) {en} C [0,€] for some a with 0 < e <1 and lim,,—o o, =0,
(i1) {6n}, {An} C [a,b] for some a,b with 0 < a < b < 2€,

(i1i) {rn} C [c,d] for some ¢,d with 0 < ¢ < d < 20.

Then, {x,} and {u,} converge strongly to Py p(rynvie.anvie,s)To-

Proof. Put F(z,y) =0 for all z,y € C' in Theorem 3.22. From

1
<A$n,y - un> + *<Z/ — Un, Up — $n> >0,
Tn

we have

(Y = Up, Ty, — Up, — T Axy) >0, VyeC.

This implies that

un, = Po(z, — rnAxy,).

From the proof of Theorem 3.22, we can obtain the desired conclusion easily. O

3.1.5 Systems of equilibrium problems

In this section, we deal with the strong convergence of extragradient approximation method for finding a
common element of the set of solutions of the system equilibrium problems, the set of common fixed points
of an infinite family of nonexpansive mappings and the set of solutions of variational inequality for be a

monotone and (-Lipschitz continuous mapping in a real Hilbert space.

Theorem 3.24. Let C be a nonempty closed convex subset of a real Hilbert space H, let Fy,, k € {1,2,3,..., M}
be a bifunction from C x C to R satisfying (A1)-(A4), let {T,,} be an infinite family of nonexpansive mappings
of C into itself and let B be a monotone and (-Lipschitz continuous mapping of C into H such that

Y =02 F(T,) N (ML, SEP(Fy)) NVI(C, B) # 0.



54

Let f be a contraction of H into itself with « € (0,1) and let A be a strongly positive linear bounded operator
on H with coefficient ¥ >0 and 0 <y < L. Let {z,}, {yn} and {u,} be sequences generated by

x1 = x € C chosen arbitrary,
_ gFy gFM-1 jFM-—2 F F
Up = S e I an e e e s

Yn = PC(un - )\nBun)y
Tp+1 = Enryf(ann) + ﬂnxn + ((1 - ﬂn)l - 6nAA) WnPC(un - )\nByn)a Vn Z 13

(3.108)

where {W,,} is the sequence generated by (3.34) and {e,}, {Bn} are two sequences in (0,1), {A\,} C [a,b] C
(0, %) and {ren}, k€ {1,2,3,..., M} are a real sequence in (0,00) satisfy the following conditions:

(C1) limy,—oo €, =0 and Y7 €, = 00,

(C2) 0 < liminf, . Bn < limsup,_ . Bn <1,

(C8) liminf, oo Tkn > 0 and lim,— o0 [Tknt1 — Tken| = 0 for each k € {1,2,3,..., M},

(C4) ity A = 0.
Then, {x,} and {u,} converge strongly to a point z € T which is the unique solution of the variational
inequality
<(A—’yf)z,x—z> >0, Ve T. (3.109)

Equivalently, we have z = Py(I — A+ vf)(2).

Proof. See [18] O

Corollary 3.25. Let C be a nonempty closed convex subset of a real Hilbert space H, let Fy, k € {1,2,3,..., M}
be a bifunction from C x C to R satisfying (A1)-(A4) and let B be a monotone and (-Lipschitz continuous
mapping of C into H such that

Y := (ML, SEP(F},)) NVI(C, B) # 0.

Let f be a contraction of H into itself with o € (0,1) and let A be a strongly positive linear bounded operator
on H with coefficient ¥ > 0 and 0 < v < g Let {x,}, {yn} and {u,} be sequences generated by

x1 = x € C chosen arbitrary,

up = JEM Jhaen gz JE JE

Yn = Po(un — A\nBuy,),

Tn1 = VS (@0) + Bnn + (1 = Bu)I — €nA) Po(uy — Ay Byy), Yn > 1,

where {e,}, {Bn} are two sequences in (0,1), {\,} C [a,b] C (O, %) and {rpn} k €{1,2,3,..., M} are real
sequence in (0,00) satisfy the following conditions:

(C1) lim,,— oo €, =0 and Y " | €, = 00,

(C2) 0 < liminf, o B, <limsup,,_, . Bn <1,

(C3) liminf,,_ ook, >0 and lim,— o [Tk nt1 — Tkn] = 0,

(C4) Timy o0 A = 0.
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Then, {z,} and {u,} converge strongly to a point z € Y which is the unique solution of the variational
inequality
<(A—’yf)z,x - z> >0, VzeT.

Equivalently, we have z = Py(I — A+ ~vf)(2).

Proof. Put T,, = I for all n € N and for all z € C. Then W,, = I for all x € C. The conclusion follows from
Theorem 3.24. This completes the proof. O

3.2 Equilibrium Problems in Banach spaces

Lemma 3.26. (Blum and Oettli [4]). Let C be a closed convex subset of a uniformly smooth, strictly convex
and reflexive Banach space E and let © be a bifunction of C' x C into R satisfying (A1)-(A4). Letr > 0 and
x € E. Then, there exists z € C' such that

1
O(z,y) + ;(y—Z,JZ—J@ >0 forally € C.

Lemma 3.27. (Takahashi and Zembayashi [56]). Let C' be a closed convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E and let © be a bifunction from C'x C to R satisfying (A1)-(A4).
For allr >0 and z € E, define a mapping T, : E — C' as follows:

1
Tx={z€C:0(z,y)+ ;(y —z,Jz—Jx) >0, VyeC}, (3.110)

for all x € E. Then, the followings hold:

(1) T, is single-valued;
(2) T, is a firmly nonexpansive-type mapping, i.e., for all z,y € E,

(Trx — Try, JTrx — JTy) < (Trx — Ty, Jo — Jy);

3) F(T) = EP(©);
(4) EP(©) is closed and convex.

Lemma 3.28. (Takahashi and Zembayashi [56]). Let C' be a closed convexr subset of a smooth, strictly
convez, and reflexive Banach space E, let © be a bifunction from C x C to R satisfying (A1)-(A4) and let
r > 0. Then, forx € E and q € F(T}),

¢(q, Trw) + o(Tra, x) < §(q, 7).

Theorem 3.29. Let E a uniformly convex and uniformly smooth real Banach space, let C be a nonempty
and closed convexr subset of a E. Let © be a bifunction from C x C to R satisfying (Al)-(A4) and let
T,S:C — C are closed hemi-relatively nonexpansive mappings such that F := F(T) N F(S) N EP(O) # 0.

Let {x,} be a sequence generated by the following manner:

z0eC, Co=C

Yn = J HanJz, + (1 — ap)JSz,),

2n = J Y Budan + (1 — Bn)JTzy),

Uy € C such that ©(uy,,y) + i(y — Up, Jup, — Jyn) >0, VyeC,
Cni1={2€Cp:0(z,un) < d(z,2,)},

Tn+1 = HCn+1 (1’0)

(3.111)
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for every n € NU {0}, where J is the duality mapping on E. Assume that {a,} and {8,} are sequences in
[0,1] such that limsup,,__, . o < 1,lim,_ o B, = 1, liminf,, (1 —ay,)B,(1—5,) > 0 and {r,} C [a, o)
for some a > 0. If S is uniformly continuous, then {x,} converges strongly to Upxy, where Iy is the
generalized projection of E onto F := F(T)N F(S)N EP(O).

Proof. First, we show that C, ;1 is closed and convex for each n > 0. From the definition of C,, 1, it is

obvious that C), is closed. Therefore,
P(2,un) < bz, 20) & 2((2, Jxn) = 2(2, Jup)) < |lza]|® = [un]®.

It is easy to see that Cj 41 is convex. Then, for all n > 0, C,, is closed and convex. This shows that F' C C,,
for all n > 0. Let p € F. Putting u,, = T} y, for all n > 0. On the other hand, from Lemma 3.27, one has
T,, is hemi-relatively nonexpansive mapping. Next, we prove F' C C,, for alln > 0. F' C C = C is obvious.

Suppose F' C C} for some k € N. Then, for Vp € F' C C%, one has

op.uk) = o Troyw)

o(p, yk)

o(p, J " o Jwp + (1 — ) J Szk))

Il = 2(p, e Ty + (1 — ap) JSzk)

+HagJxg + (1 — ak)JSzkHQ (3.112)
IpII* = 20 (p, Jok) — 2(1 — o) (p, JSzk) + || T ||

+(1 — ag)||J S22

axd(p, xx) + (1 — aw)d(p, Sz)

axd(p, zx) + (1 — o) d(p, 2),

I IA

IN

IN

and then
o, 2e) = o, J (B + (1= Br)JTxy))

= |pl* = 2(p, BrJor + (1 — Br) J T )
+||Bk Tk + (1 — Bi)Txg ||
[Pl = 285 (p, Jog) — 2(1 = By) (w, JTwy) + Bellex?
+(1 = B Ty |
= Brllpll® = 2 (p, Jog) + [lzx]?) + (1 — Br)
(Ipll* = 2 (p, JTxy) + || Txx|?)
Brd(p; x1) + (1 — Br)d(p, Tx)
Brd(p, zx) + (1 — Br)d(p, xk)

= &(p,xx).
Substituting (3.113) into (3.112), we have

IN

(3.113)

IN

o(p, ur) akd(psr) + (1 — ag)d(p, xx)

¢(p,.17k),

that is p € Cp41. This implies that £ C C,, for all n > 0. From z,, = Il¢, o, we have

= (3.114)
- .

(xn — 2, Jxg — Jxy) >0, Vz € C, (3.115)

and
(X — p, Jrg — Ja,) >0, Vp € F. (3.116)

From Lemma 2.34, one has

d)(wna xO) = ¢(ch$0, xO) < ¢(pa CU()) - ¢(p7 l'n) < ¢(pa 1'0)
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for each p € F' C C), and n > 1. Then, the sequence {¢(zy,zo)} is bounded. Since z,, = II¢, xg, we have

¢(zn, x0) < ¢(Tnt1,70), Yn € NU{0}.

Therefore, {¢(zn,xo)} is nondecreasing. It follows that the limit of {¢(z,,xo)} exists. By the construction

of €y, one has that C,,, C C), and z,,, =Il¢,, 29 € C), for any positive integer m > n. It follows that

(b(xmz xn) = ¢(Z‘m, HC"I())
< ¢(xm,w0) — ¢(e, 0, o) (3.117)
= ¢($m75€0) *d)(.’tn,’lfo).

Letting m,n — oo in (3.117), one has ¢(z,, z,) — 0. It follows from Lemma 2.32, that x,, — 2, — 0
as m,n — oo. Hence, {z,} is a Cauchy sequence. Since E is a Banach space and C' is closed and convex,

one can assume that z,, — & € C' as n — oo. Since

H(Tnt1,Tn) = O(@ny1, e, x0) < O(Tnt1,20) — (e, x0, 20) = ¢(Tny1,%0) — ¢(Tn, To)

for all n € NU{0}, we have lim,, . oo d(xp+1, 2,) = 0. From Lemma 2.33, we get lim,, o ||Zn+1 — zn| = 0.

Since z,,41 = Il¢, %o € Cpy1, we have

(b(l'n—i-l;un) < ¢(In+17$n)7 VYn e NU {O}

Therefore, we also have

lim ¢(xp41,un) =0.

n—s-—oQ0
Since lim,—— oo d(Tp+1, Tn) = limy 00 d(Tpt1,un) = 0 and E' is uniformly convex and smooth. Previously,

we know from Lemma 2.32 that

lim ||zp41 — @n|| = Hm ||@n41 —unl =0.
n—-oo n——-:o0

So, we have

lim |z, —uy| =0.

—00
Since J is uniformly norm-to-norm continuous on bounded sets and lim, ||z, — uy,|| = 0, we have

lim ||Jz, — Juy| = 0.
n—m~aeo

Since E' is uniformly smooth Banach space, one knows that E* is a uniformly convex Banach apace. Let

7 = sup,enufor L Tnll, [T ll, [[S2znll}. From Lemma 2.36, we have

¢(p.zn) = dp, T (Budn + (1= B) I Ty))

1P = 2(p, Bpd xn + (1 = Bn) T Twn) + || Bz + (1 = o) STz, |

Ipll* = 26 (p, Jan) — 2(1 = Bp) (p, JT )

HBnllJwnll® + (1 = Bl JTanl® = Bn(1 = Bu)g(|Jon — JT2n)

B (P xn) + (1= Bn)d(p, Tn) = Bn(1 = Bn)g(|J2n — JT2n|)

= 0, xn) = (1= Bu)g([[Jzn — JTanl]), (3.118)

IA

and

¢(pa un) = ¢(pa Trnyn) < o(p, yn>
< and(p,xn) + (1 — an)o(p, zn). (3.119)
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Substituting (3.118) into (3.119), we have

¢(p, un) < an¢(p’ :L'n) + (1 - Oén)(d)(p, xn) - ﬂn(]- - ﬁn)g(”an - JT"EH”))
Qb(p» zn) - (1 - O‘n)ﬂn(l - ﬂn)g(”an - JTan) (3120)

IN

It follows that

On the other hand, we have

leall2 = | = 2 (p, T — Jus)
e — wall(lenll + laal) + 20pl 1 T20 — Jun.

¢(p’ xn) - ¢(p, un)

IN

It follows from ||z, — up|| — 0 and ||Jz,, — Ju,|| — 0 that

¢(p, n) — G(p,up) — 0 as n — oo. (3.121)
By assumption liminf,, (1 — a,)B,(1 — 8,) > 0 and by Lemma 2.37, we also get

g([Jxn — JTzn|) — 0 as n — oc.

From the property of g,

|Jzp — JTzy,]| — 0 as n — oc.

Since J~! is also uniformly norm-to-norm continuous on bounded sets, we see that
lim |z, — Tx,| =0.
n——aoo

Since T is a closed operator and z,, — Z, the Z is a fixed point of T. Since lim,_ .8, = 1 and {z,} is

bounded, we obtain

H(Tns1,2n) = S(@pi1, J H(Bndzn + (1= Bn)JTxy))
= ||xn+1||2 - 2<517n+1a/8n<]$n + (1 - 5n)JTnxn>
HBnTwy + (1 — Bn) I T, |
|lZni1ll® = 28n{wnit, Jon) — 2(1 — Bo){wnit, JTx,) (3.122)
+Bullznll? + (1 = Bo)l T2n?
= Bnd(@nt1,2n) + (1 = Bn)d(Tn1, Tn)
< ¢($n+17xn)'

IN

Since ¢(zp41,Tn) — 0 as n — 00, ¢(Tpt1,2,) — 0 as n — oo.

Since zp41 =g, 20 € Cpy1, from (3.112) and (3.113), we have

(b(xn-i-lvu’ﬂ) < ¢(l‘n+1a yn) < ¢(xn+1; mn)

for all n > 0. Thus,

&(Tpi1,yn) — 0,88 M — 00.

By using Lemma 2.32, we also have
lim ||2p11 — ynll = lim ||2p41 — 20|l = lm || 2pp1 — 25| = 0. (3.123)
n—oo n—oo n—oo

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim ||Jzp41 — Jynl| = lim [|[Jzpy1 — Jz,|| = lim || J2ne1 — J2,|| = 0. (3.124)

n—oo
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For each n € NU {0}, we observe that

[Jzp1 = Jynll = JTns1 — (and@n + (1 = an)JSz)||

= J|lan(Jepi1 — Jzn) + (1 — o) (Jzpy1 — JSzn)|]
(1 —ap)(Jxnt1 — JSzn) — an(Jxm — JTpi1)||
(I —an)llJznt1 — ISzn|| — anllJzn — JTpt1]|-

V

It follows that

[Jznt1 — ISzl < (Mzptr = Jynll + an || Jzn = J2ppa]).

1-oa,
By (3.124) and limsup,,_, . o, < 1, we obtain
lim ||Jzps1 — JSz,] = 0.
n—oo
Since J~! is uniformly norm-to-norm continuous on bounded sets, we have
lim |z,4+1 — Sza| = 0. (3.125)

Since

[2n = @nll < [l2n = Tngall + |Tns1 — n-

By (3.123), we obtain
lim |zn, —zn] = 0. (3.126)

By using the triangle inequality, we get
[n = Szall < oo — znal| + 2041 = Sznll + (1520 — Szal|.
Since, S is uniformly continuous, it follows from (3.123), (3.125) and (3.126) that lim,_, ||zn, — Szy| = 0.
Again using J is uniformly norm-to-norm continuous on bounded sets, we obtain
lim ||Jz, — JSz,| = 0.
n—soo

Since S is closed operator and x,, — Z, Z is a fixed point of S. Hence & € F(T) N F(S). Next, we show
z € EF(©) = F(T}). From u,, = T, y, and Lemma 3.28, we obtain

O(tn,Yn) = (T, Yn, Yn)
< (&, yn) — (&, Ty Yn)
< o2, 2,) — AT, Ty, yn)
= ¢(Z, xn) — O(T, un).

It follows from (3.121) that

Noticing that Lemma 2.32, we get

[un, —ynl]] = 0 as n — oo.

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain
lim ||Ju, — Jyn| = 0.
n—oo

From the (A2), we note that

Juy — Jyn 1
ly — a1 =Tl S L = Ty = —O(umsy) = O un), Wy € C.

n n
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By taking the limit as n — oo in above inequality and from (A4) and u,, — &, we have O(y, ) <0, Vy e C.
For 0 <t < 1and y € C, define y; = ty + (1 — ¢t)Z. Noticing that y,Z € C, we obtain y; € C' which yield
that ©(y:, Z) < 0. It follows from (A1) that

0=0(yt,yt) <tO(ys,y) + (1 —1)O(ys, T) < tO(ys, ).
That is, ©(y:,y) > 0.

Let ¢ | 0, from (A3), we obtain ©(Z,y) > 0, for Yy € C. This implies that £ € EP(©). This shows
that Z € F.

Finally, we prove & = Ilpzy. By taking limit in (3.115), one has
(Z—p,Jrg—Jp) >0, VpeF.
At this point, in view of Lemma 2.33, one sees that £ = IIpxzg. This completes the proof.

Theorem 3.30. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth
Banach space E. Let © be a bifunction from C x C to R satisfying (A1)-(44) and let T, S : C — C be two
closed relatively quasi-nonezpansive mappings such that F := F(T)N F(S) N EP(©) # 0. Let {z,} be a

sequence generated by the following manner:

xg € E  chosen arbitrarily,

C, =C,

z1 = e, zo,

Yn = J 0Ty + (1 — 0n)J 20),

2p = J Y anJxy + Bud Ty + Y Sty),

upn, € C such that O(uy,y) + %(y — Uy, JUuy — J2,) >0, VyeC,
Cni1={2€Cp:¢d(z,un) < d(z,2p)},

Tn4+1 = ch+1x0>

(3.127)

where J is the duality mapping on E. Assume that {a, }, {Bn} and {v.} are three sequences in [0, 1] satisfying

the restrictions:
(d) an+ Bn+vn =1;
(b) 0 <ay <1 foralln € NU{0} and limsup,,__, an < 1;
(¢) liminf,, o0 By > 0, iminf,, o apyn > 0;

(d) {rn} C [a,00) for some a > 0.
Then, {x,} converges strongly to I pxg.

Proof. First, we show that C,, is closed and convex for all n > 0. It is obvious that C; = C is closed and

convex. Suppose that Cf is closed and convex for some k € N. For z € C}, one obtains that

o(z,yk) < ¢z, k)

is equivalent to
2((z, Jay) — 20z, Jyr)) < llwwll® = uel®.

It is easy to see that Cy41 is closed and convex. Then, for all n > 0, C,, is closed and convex. This shows
that e, , xo is well-defined. Notice that u,, = T} z, for all n > 0.

n+1
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On the other hand, from Lemma 3.27, one has 7T, is relatively quasi-nonexpansive mapping. Next,
we prove F' C C, for all n > 0. F C C; = C is obvious. Suppose F' C C} for some k € N. Then, for
Yw € F C Cy, one has

o(w,ur) = éd(w, Ty, 21)

P(w, 2x)

= ¢(w, J HagJxy + BrJTxy + Y6 JST1))

|lw]|? — 20k (w, Jg) — 28k (w, JTx1) — 290 {w, JSz1)
+lawJzk + BrJ Tk + v J Sag|? (3.128)

|w]|? = 2ak (w, Jzk) — 2Bk (w, JTxL) — 29, {w, JSz))
+agl|Jzkl|? + Bl JTokl|* + il J Sz

apd(w, zk) + Prod(w, Txg) + ved(w, Szy)

P(w, zk),

IN

IN

IN

and then
d(w,yr) = o(w, J 1 (pJzr + (1 — k) 21))

|wl||? — 2 (w, . Jxs, + (1 — 01) T 21)
6k Jzr + (1 — 8%) T2 ||?
|wl]|? — 26k (w, Jog) — 2(1 — &) (w, Jzx) + O ||k ||?
+(1 = 0|22
Sk ([wll* = 2 (w, Jx) + [lox]?)

(1 = ) (Jwl? = 2 (w, Jzi) + ||24]|?)
Srp(w, zy) + (1 = 0r)p(w, z)
orp(w, zx) + (1 — Or)p(w, k)
P(w, zp),

which show that w € Cyy1. This implies that F' C C), for all n > 0. From «x,, = Il¢, 2, one see

IN

(3.129)

IN

(xn — 2, Jxg — Jxy) >0, Vz € C, (3.130)

and
(X —w,Jzg — Jrpn) >0, Yw € F. (3.131)

From Lemma 2.34, one has
(20, 20) = ¢(Ilc, ap, o) < G(w, x0) — ¢(w, ) < P(w, o)

for each w € F' C C), and z,, = Il¢, =, we have
¢(xna$) < d)(anrlax), Vn e NU {O}

Therefore, {¢(z,,x)} is nondecreasing. It follows that the limit of {¢(z,, o)} exists. By the construction

of C,,, one has that C,,, C C), and x,,, =Il¢, 2o € C, for any positive integer m > n. It follows that

¢(xm733n) = ¢(zmaHCn$0)
< (wm, 0) — ¢(Ilc, w0, 0) (3.132)
= ¢((Em,$0) _¢($naw0)~

Letting m,n — oo in (3.132), one has ¢(z,, z,) — 0. It follows from Lemma 2.32, that z,,, — 2, — 0
as m,n — oo. Hence, {z,} is a Cauchy sequence. Since F is a Banach space and C is closed and convex,

one can assume that x,, — p € C' as n — oo. Since

¢(xn+17xn) = ¢(mn+1a HCn) S ¢($n+1,l’) - ¢(chx,x) = ¢(xn+1,$) - ¢(.’£n,l’)
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for all n € NU {0}, we have lim,,_ oo ¢(zpt1,2,) = 0. From x,11 =g,z € Cp41, we have

n+1
A(Tng1,Un) < G(Tng1,T,), Yn € NU{0}.

Therefore, we also have

lim ¢(xn+laun) = 0.

n—-:oo
Since lim,, 0o d(Tp41, Tn) = im0 d(Tpt1, uy) = 0, E is uniformly convex and smooth and from Lemma
2.32, we have

lm ||zp41 — 2n|| = lm ||2p41 — unl = 0.
n—-oo n—-uo,o
So, we have
lim ||z, — u,|| = 0.

n—o0
Since J is uniformly norm-to-norm continuous on bounded sets and lim,, o ||zn — u,|| = 0, we have

lim || Jz, — Ju,| = 0.

n—-oo

Since FE is uniformly smooth Banach space, one knows that E* is a uniformly convex Banach space. Let

7 = sup,enuforUznll [T, [|Sznll}. From Lemma 2.36, we have

d)(w, un) = d)(waTrnzn) < ¢(w7 Zn)
d(w, J Y anJn + BTy + YnJSTy))
|wl]|? = 20, (w, J2,) — 28, (w, JTx,) — 27, (w, JSz,,)

< w||? = 2a (w, Jz,) — 28, (w, JT2) — 27, (w, JSzy,) (3.133)
FanllJznll? + Bull Tz p|? + vl JS2nl1* = anBug(|JTx — Jan|)

= apd(w, ) + Bnd(w, Txp) + ynd(w, Sxp) — anBug(||JTzn — Jxp)

< olw,xn) — anBug(|JTwy — Jzn ).

It follows that
anBng(|[JTxy — Jzu||) < d(w, zn) — (W, up).
On the other hand, one has

d(w, ) — plw,u,) = ”3771”2 - ||un||2 = 2(w, Jzy, — Juy)
20 — unl|(lznll + lunll) + 2wl Jzn — Jun||.

IN

It follows from ||x,, — u,|| — 0 and ||Jx,, — Juy,|| — 0 that
d(w, ) — d(w,u,) — 0 as n — oo. (3.134)

Observing that assumption liminf, . a, 8, > 0 and by Lemma 2.37, we also have

gllJxy — JTx,|| — 0 as n — oo.
It follows from the property of g that

|Jzy — JTzy|| — 0 as n — oo.
Since J 1! is also uniformly norm-to-norm continuous on bounded sets, we see that

nhjlm\|xn —Tz,| =0.

Similarly, one can obtain

lim |z, — Sz,| = 0.
n——-m:ao©Oo
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Next, we show p € EF(0) = F(T,). On the other hand, from (3.129), we arrive at

¢(u7yn) < ¢(ua mn)~ (3135)

From u,, =1, z, and Lemma 3.28, we obtain

¢(un, 2n) = ¢(Tr, 20, 2n)
< ¢(w,zn) — d(w, Ty, 2n)
< o(w, zn) — ¢(w, Ty, 2n)
= p(w, zn) — P(w, un).

It follows from (3.134) that

Noticing that Lemma 2.32, we get

lun, — znll = 0, asn — .

Since J is uniformly norm-to-norm continuous on bounded sets, one has
lim ||Ju, — Jz,| = 0.
n—oo

From the assumption 7, > a, one sees

lim 1 =zl _

n— 00 Tn

Noticing that w,, = T;._ z,, one obtains

1
f(unvy)+7<y_unajun_JZn>207 VyeC

Tn

From the (A2), we note that

Juy, — Jzp, 1
ly— a1 =Tl S L T = Tz} = —O(unsy) > Oy, un), Wy € C.

n n

By taking the limit as n — oo in above inequality and from (A4) and u,, — p, we obtain ©(y,p) <0, Vy¢€
C.For 0 <t<1andye€ C, define yy =ty + (1 — t)p. Noticing that y,p € C, we obtain y; € C which yield
that ©(y:,p) < 0. It follows from (A1) that

0 =0y, y:) <tO(ys,y) + (1 —1)O(ys, p) <tO(ys,y).
That is, ©(y:,y) > 0.

Let ¢ | 0, from (A3), we obtain O(p,y) > 0, for Vy € C. This implies that p € EP(©). This shows
that p € F.

Finally, we prove p = llpxg. By taking limit in (3.130), one has
(p—w,Jrg — Jp) >0, YweF.
At this point, in view of Lemma 2.33, one sees that p = IIpxg. This completes the proof. a

Corollary 3.31. (Qin et al. [44], Theorem 3.1) Let C be a nonempty and closed convex subset of a

uniformly convex and uniformly smooth Banach space E. Let © be a bifunction from C x C to R satisfying
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(A1)-(A4) and let T,S : C — C be two closed relatively quasi-nonerpansive mappings such that F :=
F(T)NF(S)NEP(O®) # 0. Let {x,} be a sequence generated by the following manner:

x9 € E  chosen arbitrarily,

C1 =0C,
Ty = HC'1330>
Yn = J HanJzy + BudTxy + Y0 JSxy), (3.136)

u, € C such that O(un,y) + %(y — Up, Jup — Jyn) >0, VyeC,

Cn+1 = {Z cCy: (b(zaun) < ¢(Z,1’n)},

l.nJrl = HC”+1(E07

where J is the duality mapping on E. Assume that {ca, }, {8n} and {v,} are three sequences in [0, 1] satisfying

the restrictions:

(@) an+Bn+1m =1
(b) 0 <ay <1 foralln € NU{0} and limsup,,__, an < 1;
(¢) liminf, e apfBy > 0, liminf, o apyn > 0;

(d) {rn} C [a,00) for some a > 0.
Then, {x,} converges strongly to M pxy.

Proof. Setting 6, = 0 for all n € NU{0}, then (3.127) reduced to (3.136) and putting u,, = T, y, for z € F,
we have ¢(z,upn) = ¢(2, T, yn) < &(2, Yn ). Therefore, the conclusion follows immediately from Theorem 3.30.
O

Corollary 3.32. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth
Banach space E. Let © be a bifunction from C x C to R satisfying (A1)-(A4) and let S : C — C be two
closed relatively quasi-nonexpansive mappings such that F := F(S) N EP(©) # 0. Let {z,} be a sequence

generated by the following manner:

xog € E  chosen arbitrarily,

Ci =C,
xr1 = Pclea
Yn = J HanJz, + (1 — an)JSzy), (3.137)

up, € C such that ©(uy,,y) + r%(y — Up, Jup — Jyn) >0, VyeC,
Cht1 = {Z €Cp: (b(zayn) < ¢(Zam7l)}7

Tn+l = PCn_HxOv

where J is the duality mapping on E, {a,}52 is a sequence in [0,1] such that liminf, . an(l —a,) >0

and {rp} C [a,00) for some a > 0. Then, {x,} converges strongly to Prxy.

Remark 3.33. Corollary 3.32 improves Theorem 3.1 of Takahashi and Zembayashi [56] in the following

SENSES!

(1) from relatively nonexpansive mappings to more general relatively quasi-

—

nonezrpansive mappings; that is, we relax the strong restriction: F(T) = F(T);

(2) the algorithm in Theorem 3.30 is also more general than the one given by Qin et al. [44] and Takahashi
and Zembayashi [57].
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Lemma 3.34. (Zhang [68]). Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Let A: C — E* be a continuous and monotone mapping, ¢ : C — R is convexr and lower
semi-continuous and © be a bifunction from C x C to R satisfying (A1)-(A4). Forr >0 and x € E, then
there exists u € C such that

1
O(u,y) + (Au,y —u) + o(y) — p(u) + ;(y —u, Ju—Jxy >0, VyeC.
Define a mapping K, : C — C as follows:

K (z) ={u € C:0(u,y) + (Au,y — u) + p(y) — p(u)
+ %(y o Ju—Ja) >0, VyeC) (3.138)

for all x € E. Then, the followings hold:

1. K, is single-valued;

2. K, is firmly nonexpansive, i.e., for all z,y € E, (K,x — Ky, JK,z — JK,y) < (K,x — K.y, Jx — Jy);
3. F(K,)=Q;

4. Q is closed and convex.

5. 6(p K2) + G(Kra2) < 6(p.2) Vp € F(K,), = € E.

Remark 3.35. (Zhang [68]). It follows from Lemma 3.27 that the mapping K, : C' — C defined by (3.138)

18 a relatively nonexpansive mapping. Thus, it is quasi-p-nonexpansive.

In this section, using the CQ hybrid method, we prove a strong convergence theorem for finding a
common element of the set of solutions of a mixed equilibrium problem, the set of solutions of the variational

inequality problem and the set of fixed points of quasi-¢-nonexpansive mappings in a Banach space.

Theorem 3.36. Let C be a nonempty closed convex subset of a uniformly conver and uniformly smooth
Banach space E. Let © be a bifunction from C x C to R satisfying (A1)-(A4) and let ¢ : C — R be a proper
lower semicontinuous and convex function, let A be an a-inverse-strongly monotone operator of C' into E*
and let T, S : C — C be closed quasi-¢-nonexpansive mappings such that F := F(T)NF(S)NVI(A4,C)nN
MEP(©,¢) # 0 and ||Ay|| < ||Ay — Aul| for ally € C and u € F. Let {x,} be a sequence generated by the

following manner:

zo=x € C,

wy, = o Y Jx, — M Azy),

2n = J Y (Budxn + YTy + 0pJ Swy,),

Yn = J HanJr, + (1 — an)J2,),

u, € C such that O(un,y) + ©(y) — e(uy) (3.139)
+ %(y — Up, Jup, — Jyn) >0, YyeC,

Cn={2€C:¢(z,un) < d(z,2,)},

Qn=1{2€C:{xy— 2z Jx— Jzr,) >0},

Tpy1 = e, ng,

for every n € NU {0}, where J is the duality mapping on E. Assume that {ay}, {Bn}, {1} and {6,} are

sequences in [0, 1] satisfying the restrictions:

(i) Umsup,,__,o on < 1;
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(i) Hminfp_ oo Buvyn > 0, iminf, e Bndy > 0;

(iv) {rn} C [a,0) for some a > 0;

(v) {x} C[b,c €(0,2a), for some b,c € N.

Then, {x,} converges strongly to p € F, where p = px.

Proof. We first show that C,, N @Q,, is closed and convex for each n > 0. It is obvious that C,, is closed and

Q. is closed and convex. Since

is equivalent to

P(z,un) < ¢(2,7n)

2(z, Jun) — 2z, Jrn) < |lun* = [lonl?,

C,, is convex. So, C,, N @, is closed and convex subset of E for all n € NU {0}.
Put v, = J~Y(Jx, — A\nAx,). We observe that u,, = K, y, for all n > 1 and let p € F, it follows from the

definition of quasi-¢-nonexpansive that

(p,un) =

N

IN

and then

o(p, K Yn)

o, Yn)

d(p, I HanJzy + (1 — an)Jzp)

IplI* = 2(p, anJzn + (1 = @) S zn) + lanJzn + (1 — ) J 2, |12

IplI* = 20 (p, Jn) = 2(1 = @ )(p, T 20) + anllzn]|* + (1 = an) ||zl

and(p, xn) + (1 — an)o(p, 2n), (3.140)

o(p,20) = O(p, T HBpJxn + YTy + 6, JSw,))

Ipl* = 280 (D, J2n) — 290 (p, JT0) — 26, (p, Jwa,,)
H|BnTTn + Y I T + 60 J Sw, ||
IpI* = 260 (p, J2n) = 29 (p, JTx) — 26, (p, J Stwy,)
+Bull Jxnl* + [T 20 [|? + 6| T Swnl|®
Bnd(p, Tn) + 1@ (p, Txn) + 6nd(p, Swy)
Bnd (D, Tn) + (s Tn) + 6nd(p, wn). (3.141)

IN

IN

From Lemma 2.34 and Lemma 2.38,

¢(pa wn)

IN N

¢(p, gvn)

$(p,vn) = &0, I (Jap — AnAzs))

V(p, Jxp — MAx, + MAxy,) — 2(J Y (Jx, — MAxy) — p, AnAxy,)

Vp, Jxyn) — 22 (vy — p, Azy,)

Oy Tn) — 2200 (T — D, ATp) + 2(Up, — Ty, =\ ATy ). (3.142)

Since p € VI(A,C) and A is a-inverse-strongly monotone, we have

=2\ (xp — p, Axy) = =2)\(xn, —p, Axy, — Ap) — 2)\, (x, — p, Ap)

< —2a\,| Az, — Ap|?, (3.143)
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and we obtain

200y — T, =M Azy) = 2(J N Jz, — MAz,) — 2, — N Azy,)

21T Tz — A Axy) — ||| An Ay ||

2| Jxn — A Az, — Jx, ||| A Azs ||

270 | A, |2

< 202 || Az, — Ap|*. (3.144)

A

Replacing (3.143) and (3.144) into (3.142), we get
(D, wn) < B(pyan) = 20 (e = Ap) || Az, — Ap|?
< P, zn)- (3.145)

From (3.140), (3.141) and (3.145), we have

(P, un) < d(p, ). (3.146)

Hence, we have p € C,,. This implies that
FcC,, ¥YneNU{0}. (3.147)

Next, we show by induction that F* C C,,NQ,, for all n € NU{0}. From Q¢ = C, we have F' C CyNQg. Suppose
that F' C Cy N Qs for some k € NU {0}. Then, there exists 211 € Cr N Q such that zp11 = Il ng, 2.

From the definition of 1, we have
(g1 — 2z, Jx — Japy1) > 0 for all z € Cp N Q. (3.148)

Since F' C Cj, N Q, we have
(k41 — p, Jxo — Jx)q1) >0, Vp EF, (3.149)

and hence p € Q1. So, we have
F C Qk11- (3.150)

Hence by (3.147) and (3.150) we obtain
F C Crt1 N Qpta-

Threrfore, we have that F' C C, N Qy, for all n € NU {0}. This means that {z,} is well-defined.
Using z,, = Ilg, x, from Lemma 2.30, one has
(xn, z) = ¢(llg,z, ) < ¢(p, ) — G(p, x,) < S(p, )

for each p € F C Q,, and x,, = IIg, x. Thus, ¢(x,,x) is bounded. Then, {z,}, {Sw,} and {Tz,} are
bounded.

Since zp4+1 =g, g,z € C,, NQ, and z, =Ilg, z, we have
¢(xn,x) < ¢(xn+1,l’), Vn € NU {0}

Therefore, {¢(x,,x)} is nondecreasing. It follows that the limit of {¢(x,,x)} exists. By the construction of
Qn, we have Q,,, C @, and z,,, =Ilg,,x € @, for any positive integer m > n. It follows that

AT, T0) ¢(xmvHan)
d(xm,x) — p(lg, z, x) (3.151)

(T, ) — ¢(Tn, T).

IN
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Letting m,n — oo in (3.151), we have ¢(z,,z,) — 0 as n — oo. It follows that, from Lemma 2.32,
|€m — xn|| — 0 as m,n — oo. Hence, {x,} is a Cauchy sequence. Since F is a Banach space and C is

closed and convex, one can assume that z,, — & € C' as n — oo. Since

¢(xn+17 xn) = ¢(‘rn+17 HQn-T) S ¢(xn+17 x) - ¢(Han7 .’E) = ¢($n+1, 1') - ¢($n7 .’IJ)

for all n € NU {0}, we have lim,,_ o ¢(2p41,2,) = 0. From 2,11 =I¢,ng,z € C,, we have

A(Tni1, Un) < d(Tnt1,2n), Vn € NU{0}.

Therefore, we also have

lim ¢($n+17 un) =0.
n——>00

Since F is uniformly convex and smooth, we have from Lemma 2.32 that

lim ||zp41 — @n|| = Hm ||@n41 —un| =0.
n—-ma0o n——oo
So, we have
lim |z, — uy|| =0.
n——-:uo9~0

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain
lim || Jz, — Ju,|| = 0.
n—:aoo

Since FE is uniformly smooth Banach spaces, one knows that E* is a uniformly convex Banach apace. Let

7 = sup,enugo} UTnll, [T |, [[Swy|[}. From Lemma 2.36 and (3.145), we have

¢(p, Zn) = ¢(p, Jfl(ﬂn‘]xn + YTy + 5n‘]5wn))
= |pI* = 260 (p, Jxn) — 29 (p, JTx0) — 26, (p, J Swn)
+Bndxn + YTy + 0pJ Swy|?
IplI* = 28 (p, J2n) — 270 (p, JTwn) — 20, (p, J Swn)
+Bnllznll® + Yl Tnll? + 6, Sw,|?
—BrYng(|JTzn — Jznll)
= Bnd(p,2n) + 1P, Tn) + 0nd(p, Swy)
=B ng(|[JTxn — Jau )
O(0,n) = B g ([|[JT2n — Jaul])
—2X (a0 — A6 || Az, — Apl|2.

IN

(3.152)

IN

Substituting (3.152) into (3.140), we have

(pyun) < and(p,an) + (1 — an)[o(p, 2n) = Buyng ([T Tz — Jan )
—2Xn (0 = X))ol Az — Apl|?]
< an¢(pa xn) + (1 - an)(yb(p? xn) (3153)
_(]- - an)ﬁn'}/ng(H‘]Txn - an”)
=22, (1 = ap) (a0 = A\p)dn || Az, — Ap||%.

Therefore, we have
(1 - an)ﬁn%zg(”']Txn - an”) < ¢(p7 In) - ¢(pa un)
On the other hand, we have

lznll? = lunl* = 2(p, J2n — Jun)
20 = wnl|([[zn]l + lunl]) + 2[lpll{|Jzn = Jun]].

(b(pa wn) - ¢(pa Un)

IN
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It follows from ||z, — up|| — 0 and || Jz,, — Ju,|| — 0 that

li_r)noo((b(pa mn) - ¢(p> up)) = 0. (3154)

Observing that assumption liminf, .. 3,7, > 0 and by Lemma 2.37, we also

n

lim g||Jz, — JTz,| = 0.
It follows from the property of g that
hm |Jzn — JTz,| = 0.

Since J~1! is also uniformly norm-to-norm continuous on bounded sets, we see that

lim ||z, — Tx,| = 0. (3.155)
Similarly, one can obtain
lim |z, — Swy| =0. (3.156)

By (3.153), we have
22 (e = An)on | Az — Apl|* < (p, ) — S0, un),
which yield that
nli_r}noo |Az, — Ap|| = 0. (3.157)
From Lemma 2.34, Lemma 2.38, and (3.144), we have

AT, wn) = d(wn, lovy) < @(xn,vn)
= ¢z, J T2y — M\ Ay))
= V(xn,Jz, — A\Azy,)
< V(xp, (Jan — ApAx,) + A\ Axy,)
—2(J 7Y Jxy — MAZy) — Ty, My Azy,)
= O(xn,zn) + 2(vy — T, \MAzy)
2{vy — Xy ApAxy)

< 2)\2||Az, — Ap|*.
From Lemma 2.32 and (3.157), we have
lim ||z, —wy,| =0. (3.158)

Since J is also uniformly norm-to-norm continuous on bounded sets, we see that

lim || Jx, — Jw,]|| = 0. (3.159)
n—so0
By (3.156) and (3.158), we obtain
nh;nm |Sw, — wy| = 0. (3.160)
From (3.158), we have
li_r)nOo 1Sz, — x,|| = 0.

Since S and T are closed operators and x,, — &, & is a common fixed point of S and T, i.e., & € F(T)NF(S).
Next, we show that & € MEP(0O,¢). Since u,, = K, y,. From Lemma 3.34, we have
¢ (tn, Yn) = O(Kr, Yn, yn)
< O(@,yn) — O, Ky, yn)
< @&, wn) — O(&, Kr, yn)
= o(&,20) — (&, un)
= llznll® = llual® = 2(&, Jzn — Jun)

< lzn = unll(lznll + llual) + 202[[J2n — Jun |-
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It follows from ||z, — up|| — 0 and || Jz,, — Ju,|| — 0 that
O(Un,yn) — 0 as n — oo.

and so
lim ||lu, —ynl| = 0. (3.161)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain
lim ||Ju, — Jyn| = 0. (3.162)
n——:o0

From (3.139) and (A2), we also have

1

go(y) - Qp(u") + 7<y — Up, JUp — Jyn> > @(y,un), vy € C.
Hence,

Juni — Jym

(P(y) - (P(uni) + <y — Un,;, > > ®(y7uni)7 Vy eC.

Tn.

i

From ||z, — uy| — 0, we get u,, — &. Since Junr;Jym — 0, it follows by (A4) and the weakly lower
semicontinuous of ¢ that

Oy, &) + (%) —p(y) <0, VyeC.
Fort with0 <t <1landye€ C,lety, =ty+ (1 —1t)u. Since y € C and & € C, we have y; € C and hence

O(yt, Z) + p(&) — p(y) < 0. So, from (A1), (A4) and the convexity of ¢, we have
0

O(ye, yt) + o(ye) — ¢(ye)

t0(ys, y) + (1 = )O(ys, u) + te(y) + (1 = He(y) — ¢(yt)

1O (yr:y) + ¢(y) — #(ye))-

Dividing by t, we get ©(y, y)+¢(y)—@(y:) > 0. From (A3) and the weakly lower semicontinuity of ¢, we have
O(z,y) + ¢(y) —¢(Z) > 0 for all y € C implies & € MEP(O, ¢). Next, we show that & € VI(A, C). Define
T C E x E* be as in Theorem 2.47. Thus by Theorem 2.47, T is maximal monotone and 7710 = VI(A4, C).
Let (v,w) € G(T'). Since w € Tv = Av + N¢(v), we get w — Av € N¢(v). From w,, € C, we have

<
<

(v — Wy, w — Av) > 0. (3.163)
On the other hand, since w,, = llcJ~(Jz,, — A, Az,). Then, by Lemma 2.33, we have
(v —wy, Jw, — (Jz, — ApAzy,)) > 0;

thus, 5 S
w — Azy) < 0. (3.164)

(v — wp,
It follows from (3.163) and (3.164) that

(v —wp,w) > (v—w,,Av)

Jx, — Jw,
> {0 = wp, Av) + (v — wp, 2 — Azy)
Jr, — Jw,
= (v—wp, Av— Az,) + (v —w,, ————
An
= (v —wp, Av — Awy,) + (v — wy, Aw, — Az,,)
Jz, — Jw,
+<'U —’U]n,T
Jx, — Jw,
> o gl -, T
lwn = znll (|20 — Jwy||
2 _M( ’

« b
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where M = sup,,>1{[[v — wy||}. From (3.158) and (3.159), we obtain (v — &, w) > 0. By the maximality of
T, we have # € T710 and hence & € VI(A,C). Hence, 2 € F:=VI(C,A)NT~10)N MEP(O, ).

Finally, we prove that £ = Ilpxg. From z, = Il¢, ng,*, we have
(Jr — Jxp,xp —2) >0, V2€C,,NQy.
Since F' C C,, N @y, we also have
(Jo — Jxp, 2 —p) 20, VpeF. (3.165)
By taking limit in (3.165), one has
(Jr—J&,2—p) >0, VpeF

At this point, in view of Lemma 2.33, one sees that & = IIpzy. This completes the proof.

3.3 Optimization Problems

Let H be a real Hilbert space and C' be a closed convex subset of H.

Now, we consider the following Optimization Problem:

1
min{M(Ax, ) 4 = |z —ul® - h(x)}, (3.166)
zeF 2 2

where F = n>,C,, C1,Cy, - are infinitely many closed convex subsets of H such that NS ,C,, # 0,
u € H, p > 01is a real number, A is a strongly positive linear bounded operator on H and h is a potential
function for vf (i.e., h'(z) = vf(x) for z € H).

For solving the mixed equilibrium problem for an equilibrium bifunction © : C' x C — R, let us
assume that © satisfies the following conditions:
(H1) © is monotone, i.e., O(z,y) + O(y,z) <0, Vz,y € C;
(H2) for each fixed y € C, x — O(z,y) is convex and upper semicontinuous;
(H3) for each z € C,y — O(z,y) is convex.

Definition 3.37. Letn: C x C — H, which is called Lipschitz continuous if there exists a constant § > 0
such that

In(z, y)|| < olle —yll, ve,yel.
Definition 3.38. Let K : C' — R be a differentiable functional on a convex set C', which is called:

(D1) n-convex [7] if
K(y) - K() > (K'(2),n(y.2) ), Va,y € C,

where K'(x) is the Fréchet derivative at x;

(D2) n-strongly convex [61] if there exists a constant o > 0 such that
o
K(y) = K@) = (K@), n(y,2)) = Zllz = yll%, Yo,y € C.

In particular, if n(z,y) =x —y for all x,y € C, then K is said to be strongly convez.
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Definition 3.39. Let C' be a nonempty closed convex subset of a real Hilbert space H, let ¢ : C — R be a
real-valued function and © : C x C — R be an equilibrium bifunction. Let r be a positive parameter. For a

given point x € C, the auziliary problem for mized equilibrium problem (2.11) consists of finding y € C such

that
1

6(y.2) + (=) — oly) + - (K'(y) — K'(x).n(z9)) 20, V= €C.

Definition 3.40. Let S, : C — C be the mapping such that for each x € C, S,.(x) is the solution set of

the auziliary problem the mized equilibrium problem (2.11), that is,

S,(x) = {yeo:e@,z)w(z)w(y)

—|—%<K’(y)—K'(x),77(z,y)>20, VzEE}, Ve eC.

Lemma 3.41. [7]. Let C be a nonempty closed convex subset of a real Hilbert space H and let ¢ be a
lower semicontinuous and convex functional from C to R. Let © be a bifunction from C x C to R satisfying
(H1)-(H3). Assume that

(i) n:C x C — H is Lipschitz continuous with constant X\ > 0 such that;
(a) n(z,y) +ny,z) =0, Vr,yeC,
(b) n(-,-) is affine in the first variable,
(¢) for each fized y € C, x — n(y,x) is sequentially continuous from the weak topology to the weak

topology;

(ii) K : E — R is n-strongly convex with constant o > 0 and its derivative

K’ is sequentially continuous from the weak topology to the strong topology;

(iii) for each x € C, there exist a bounded subset D, C E and z, € C such that for any y € \D,,
1 ! !
Oy, ) + ¢l(z2) = o(y) + - (K'(y) = K' (@), n(z0.9) ) < 0.

Then, there exists y € C such that
1
T

6(y.2) + (=) — oy) + - (K'(y) — K'(x).n(z9)) 20, V2 €C.

Lemma 3.42. [7]. Assume that © satisfies the same assumptions as Lemma 3.1 for r > 0 and x € C, the
mapping S, : C — C can be defined as follows:

1

5:(0) = € B:00n2) +9l2) — 9(0) + L(K'0) ~ K'@hn(z.) 20, v},

Then, the following hold:

(i) Sy is single-valued;

(i) (a) <K’(x1) - K’(xg),n(ul,u2)> > <K’(u1) - K’(ug),n(ul,u2)>, V(z1,22) € C x C, where u; =
ST(.IZ'), 7 = 1,2,‘

(b) S, is nonexpansive if K' is Lipschitz continuous with constant v > 0 such that o > \v;
(iii) F(S,) = MEP(O,9);

(iv) MEP(O,p) is closed and convex.
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Remark 3.43. From Lemma 3.42 in particular, whenever K(x) = “é”z and n(x,y) = x —y for each

(z,y) € C x C, then S, is firmly nonexpansive, that is,

10 (21) = Sr(@2)[[2 < (w1 = w2, Sy (21) = Sr(a2)).

Lemma 3.44. [64]. Let C be a nonempty closed convex subset of a real Hilbert space H, and g : C —
RU{oc} be a proper lower-semicontinuous differentiable convex function. If z is a solution to the minimization
problem
— inf
9(2) = inf g(x),
then

<g’($),x — z> >0, zedC.

In particular, if z solves problem Optimization Problem, then

<u+ [V — (I +pd))zz— z> <0.
We prove a strong convergence theorem of a new iterative method to compute the approximate solutions of
the mixed equilibrium problems and optimization problems in a real Hilbert space.
We first prove that the following Lemmas.

Lemma 3.45. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H and let

B : C — H be a relazed (m,v)-cocoercive and p-Lipschitz continuous. It 0 < 1, < 2(”;72”“2), v > mu?,
then I — 1, B is a nonezxpansive mapping in H.
Proof. See [20]. O

Now, we prove the following main Theorem.

Theorem 3.46. Let C' be a nonempty closed convex subset of a real Hilbert space H and let ¢ be a lower
semicontinuous and convex functional from C to R. Let © be a bifunction from C x C to R satisfying (H1)-
(H3), let {T,,} be an infinite family of nonexpansive mappings of C into itself and let B be a &-Lipschitz

continuous and relazed (m,v)-cocoercive map C into H such that
r:=n>,FT,)NMEP(©O,p)NVI(C,B) # .

Let 4 > 0, v > 0 and r > 0, which are three constants. Let f be a contraction of E into itself with « € (0,1)
and let A be a strongly positive linear bounded operator on H with coefficient ¥ > 0 and 0 < v < %
For given x1 € H arbitrarily and fized uw € H, suppose the {x,}, {yn} and {z,} are generated iteratively by
O(zn, ) + o(x) — o(zn) + %<K’(zn) — K'(zy),n(x, z”)> >0, Vzxedl,
Yn = QpZn + (1 - an)WnPC(Zn - )\nan)a (3167)
Tp4+1 = €n (u + fY.f(ann))"'ﬂnxn + ((1 - ﬂn)I - en(l + ,UA))WnPC(yn - TnByn)a

for all n € N, where W,, be the W-mapping defined by (5.34) and {e,}, {an} and {5,} are three sequences

in (0,1). Assume the following conditions are satisfied:

(C1) n:C x C — H is Lipschitz continuous with constant A > 0 such that;

(a) n(z,y) +n(y,z) =0, Vr,yeC
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(b) n(-,-) is affine in the first variable,
(¢) for each fized y € C, x — n(y,x) is sequentially continuous from the weak topology to the weak
topology;

(C2) K : C — R is n-strongly convex with constant o > 0 and its derivative K' is not only sequentially
continuous from the weak topology to the strong topology but also Lipschitz continuous with constant

v > 0 such that o > Av;

(C3) for each x € C, there exist a bounded subset D, C E and z, € C such that for any y € C\D,,

Oy, 22) + (20) — oy) + 1 (K'(5) — K'(@), n(z0,9) )< 0
(C4) limy, oo, = 0, lim,, oo €, =0 and >, €, = 00;
(C5) 0 < liminf,, . B, <limsup,,__, . Bn < 1;
(C6) limy oo [Ang1 — An| = limp oo |Tng1 — 7| = 0;

(C7) {m}, {\n} Cla,b] for some a,b with 0 <a <b< 2(1);72“52)

Then, {x,} and {z,} converge strongly to z € ' := NS, F(T,,) " MEP(O©,¢) NVI(C, B) provided that S,

is firmly nonexpansive, which solves the following Optimization Problem:

)M Lo e
1;1611{1{2(1436, x) + §||:v ul| h(x)} (3.168)

Proof. See [16]. O

Corollary 3.47. Let C be a nonempty closed convex subset of a real Hilbert space H, let {T,,} be an infinite
family of nonexpansive mappings of E into itself and let B be a &-Lipschitz continuous and relazed (m,v)-

cocoercive map C into H such that
:=nN2,F(T,)NVI(C,B) #0.

Let > 0 and v > 0, which are two constants. Let f be a contraction of C into itself with o € (0,1) and let

A+u)y

A be a strongly positive linear bounded operator on H with coefficient 5 > 0 and 0 < vy < . For given

x1 € H arbitrarily and fized uw € H, suppose the {x,,} and {y,} are generated iteratively by
Yn = nZpn + (1 — )Wy Po(x,, — A\ Bxy,),
Tn1 = €n(u+7fWozy)) + Buzy + (1= Bu)I — en(I + pA)) Wy Pe(yy — 70Byn)
for all n € N, where W,, be the W-mapping defined by (5.34) and {e,}, {an} and {5,} are three sequences
in (0,1). Assume the following conditions are satisfied:
(C1) im0 vy, = 0, lim,, oo €, =0 and > .~ | €, = o0;
(C2) 0 < liminf,, o By, <limsup,_ . Bn <1;
(C3) limy,— oo | Ant1 — An| = limy, o0 |Tng1 — 70| = 0;

(C4) {m}, {\}C [a,b] for some a,b with0 <a <b< 2(”_67?52)
Then, {x,} converge strongly to z € T' := NS, F(T,,) N VI(C, B), which solves the following Optimization
Problem:

ind Lie a2
%F{2<Ax,x>+2|x | h(m)}
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1. Introduction

Let C be a closed convex subset of a real Hilbert space H and let Pc be the metric projection of H onto C. A mapping
S : C — Cis said to be nonexpansive if

ISx — Syl < llx — yll, (1)

forallx, y € C. We denote by F(S) the set of fixed points of S. If C is bounded closed convex and S is a nonexpansive mapping
of C into itself, then F(S) is nonempty. A mapping A of C into H is called monotone if

(Au — Av,u — v) > 0, (2)
forall u, v € C. Ais called a-inverse-strongly-monotone if there exists a positive real number « such that
(Au — Av, u — v) > a||Au — Av|?, (3)

for all u, v € C.Itis obvious that any a-inverse-strongly-monotone mapping A is monotone and Lipschitz continuous.

The classical variational inequality problem is to find u € C such that (v — u, Au) > 0 for all v € C. We denoted by
VI(A, C) the set of solutions of this variational inequality problem. The variational inequality has been extensively studied
in the literature. See, e.g. [13,14] and the references therein.

Construction of fixed points of nonexpansive mapping is an important subject in the theory of nonexpansive mappings.
However, the sequence {S"x} 2 ; of iterates of the mapping S at a pointx € C may not converge even in weak topology. More
precisely, Mann’s iterated procedure is a sequence {x,,} which is generated in the following recursive way:

Xn+1 = OpXy + (1 - Oln)SXn, n= 07 (4)
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where the initial guess xq € C is chosen arbitrarily. However, we note that Mann'’s iterations have only weak convergence
even in a Hilbert space [6]. For finding an element of F(S) N VI(C, A) under the assumption that a set C C H is closed and
convex, a mapping S of C into itself is nonexpansive and a mapping A of C into H is «-inverse-strongly-monotone. Takahashi
and Toyoda [12] introduced the following iterative scheme:

X1 = Xy + (1 — ay)SPc(Xn — ApAxy), (5)

foreveryn € NU {0}, where xo = x € C, {«,} is a sequence in (0, 1) and {A,} is a sequence in (0, 2«). They showed that, if
F(S) NVI(C, A) # @, then such a sequence {x,} converges weakly to some z € F(S) N VI(C, A).
On the other hand, Aoyama et al. [ 1] introduced an iterative sequence {x,} of C defined by x; = x € C and

Xny1 = Xy + (1 — @y)SpX,, neN, (6)

where {«,} is a sequence in [0, 1], C is a closed convex subset of H and {S,} is a sequence of nonexpansive mappings of
C into itself with ﬂ;i] F(S;) # 0. They also proved that such a sequence converges strongly to a common fixed point of
nonexpansive mappings.

In this paper, we introduce the following iteration process of a-inverse-strongly-monotone mappings A of C into H and
a countable family of nonexpansive mappings {S,} of C into itself, where C is a closed convex subset of a Hilbert space H.
Letx; =x € Cand

X1 = Xy + (1 — @) SpPc (Xn — AnAxn), (7)

for alln € N, where {«,} is a sequence in (0, 1) and {A,} C (a, b) C (0, 2«). We will prove that if the sequences {«,} and
{An} of parameters satisfy the appropriate condition, then the sequence {x,,} generated by (7) converges weakly to the point
z € F(S) N VI(C, A). Moreover, we apply our result to the problem for finding a common element of the set of equilibrium
problems and the set of common fixed points of a countable family of nonexpansive mappings.

2. Preliminaries

Let H be a real Hilbert space. Then

Ix =yl = IxI1> = Iyl = 2(x =y, y) (8)
and
x4 (1= 2ylI? = AIxII* + (1 = DIyI? = 21 =) lIx = yII? (9)
forallx,y € Hand A € [0, 1]. It is also known that H satisfy
(1) the Opial condition [9], that is, for any sequence {x,} with x,, — x, the inequality
liminf||x, — x|| < liminf||x, — y||
n—oo n—oo
holds for everyy € H withy # x.
(2) the Kadec-Klee property [5,10], that is, for any sequence {x,} with x, — x and ||x,|| — ||x|| implies ||x, — x|| — O.

Let C be a closed convex subset of H. For every point x € H, there exists a unique nearest point in C, denoted by Pcx, such
that

lx — Pcx|| < |lx—y| forally € C.

Pc is called the metric projection of H onto C. It is well known that P¢ is a nonexpansive mapping of H onto C and satisfies

(X =y, Pcx = Pcy) = ||Pcx — Peyll? (10)
for every x, y € H. Moreover, Pcx is characterized by the following properties: Pcx € C and

(X — Pcx,y — Pcx) < 0, (11)

Ix = ylI* > lIx — Pex||® + |ly — Pex||® (12)

forallx e H,y € C.
In the context of the variational inequality problem, this implies that

ueVIA C) & u=Pc(u—ArAu), forallA > 0. (13)
We have that, forallu, v € C and A > 0,
10— 2A)u — (I = 2A)w|* = [[(u — v) — A(Au — Av)|?
= |lu—v|* = 2A{u — v, Au — Av) + A?|Au — Av||?
lu —vl|* + A(A — 2a)[|Au — Av||*. (14)
So, if A < 2«a, then I — AA is a nonexpansive mapping from C to H.

IA
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The following lemmas will be useful for proving the convergence result of this paper.

Lemma 1 ([1, Lemma 3.2]). Let C be a nonempty closed subset of a Banach space and let {T,} be a sequence of nonexpansive
oo

mappings of C into itself. Suppose that ) -, sup{||T,+1z — Tzl : 2 € C} < oo. Then, for eachy € C, {T,y} converges strongly
to some point of C. Moreover, let T be a mapping of C into itself defined by

Ty = lim T,y forally € C.
n—oo
Then limy,_, o, sup{||T,z — Tz|| : z € C} = 0.

Lemma 2 ([12, Lemma 3.1]). Let H be a real Hilbert space, let {c,,} be a sequence of real numbers suchthat0 <a <o, <b <1

foralln=0,1,2,...,andlet {v,} and {w,} be sequences of H such that
limsup |lvgll <c,  limsup [|wn| <c,
n—oo n—-oo
and
lim |loepvy + (1 — ap)wy|| =c, forsomec > 0.
n—oo
Then,
lim ||v, — wy] = 0.
n—oo

Lemma 3 ([12, Lemma 3.2]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let {x,} be a sequence in H such
that

lXne1 — ¥l < lxn —yl| forally € Candn € N.

Then the sequence {Pc(x,)} converges strongly to some point in C.

3. Weak convergence theorems

In this section, we prove some weak convergence theorems for monotone mappings and a countable family of
nonexpansive mappings.

Theorem 4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let « > 0 and let A be an a-inverse-
strongly-monotone mapping of C into H. Let {S,} be a sequence of nonexpansive mappings from C into itself such that
M, F(Sy) NVI(C, A) # . Let {x,} be a sequence in C defined by xo € C and

X1 = Xy + (1 — @) SpPc (xn — ApAxn),
foralln = 0,1,2,...,where0 < a < Ay <b < 20,0 <c<a, <d < 1and2§';1an(1 — o) = 00. Suppose
that Zﬁi] sup{||Sh+1z — Snz|| : z € B} < oo for any bounded subset B of C. Let S be a mapping of C into itself defined by

Sz = lim,,_, », Spz for all z € C and suppose that F(S) = ﬂsil F(S,). Then {x,} converges weakly to z € F(S) N VI(C, A), where
z = limp_, oo Prcs)nvicc,a)Xn-

Proof. Puty, = Pc(x, — AnAx,), foreveryn =0,1,2,....Letu € F(S) NVI(C, A).
Since I — A,A is nonexpansive and

u = Pc(u— AAu),

we have
”.Vn - u” = ”PC(Xn - )VnAXn) - PC(u - )\nAu)”
f ”(Xn - }\nAXn) - (u - )\nAu)”
< I = ApA)xy — (I — AzA)u||
< lIxq —ull
foreveryn =0, 1, 2, .. .. From (14), we note that
IXn41 — u||2 = llon (X — u) + (1 — 0t) (Spyn — u)||2

< ol — WII* + (1 — o) [ Suyn — w12
< dpllxq — ull> + (1 — ) lyn — ull?
< dpllxa — ull> + (1 — an){llxn — ull® + An(hn — 200)||Ax, — Aul?}
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X0 — u||2 + (1 —ap)rn(Ay — 20)[|AX, _Au||2
< 1% — ull* + (1 — d)a(b — 2a) ||Ax, — Aul|?
< llxg —ull?

for all n € N. This implies that
[ Xn41 — ull < [1%0 — ull (15)
forall n € N. Hence lim,,_, o ||X, — u|| exists and so Ax, — Au — 0. Then {x,} and {y,} are bounded. From (10), we have
lyn — ull® = IPc(Xn — AnAxn) — Pc(u — ApAu)||?
< (Yn — u, (Xn — AnAXn) — (U — ApAu))
= (1/2){llyn — ull® + (%0 — AnAxn) — (U — 1AW [* = [0 — W) — [(X0 — AnAXn) — (U — ApAW)][1%)
< (1/2){lIyn — ull® + 10 — ull®> = |(/n — Xn) + An(Axy — Aw) ||}
= (1/2){llyn — ull® + %0 — ull® = | — x)[I* = 240 (Vn — Xn, Axy — Au) — A2||Ax, — Aul|}.
So, we obtain

Iyn — ull® < 1% — ull® = [[yn — Xall® = 2An (V0 — Xn, Axy — Au) — A2[|Ax, — Aul?

and hence
Xns1 — ull® < anllxn — ull + (1 — &) [1Spyn — ull?
< aplXn — ull® + (1 — @) llyn — ull?
< = ull® = (1 = ) lyn — Xall* = 220 (1 — an) (Y — Xn, Axp — Aut) — A2(1 — o) [|Axy — Au)?
< xn = ull> = (1 = d)llyn — Xall* = 220(1 — &tn) Y — Xn, Axa — Au) — A2(1 — o) |Axy — Au>.
Since

: 2 . 2
lim [|x, —ull” = lim ||xpq — ul|
n—oo n—oo

and
Ax, — Au — 0,
we obtain
Yn — Xxp — 0. (16)

By the boundedness of {x,}, there exists a subsequence {x;,} of {x,} that converges weakly to z. Finally, we shall show that
ze€ F(S)NVI(C,A).

First, we show that z € VI(C, A). By the same argument as in the proof of Theorem 3.1 in [12, pp. 423-424], we note that
z € VI(C, A).
Next, we show that z € F(S). Let

u e F(S)NVI(C,A).
Since

[1Snyn — ull < llyn — ull < lIxa —ull,
we have

limsup ||S,yn — u]| <c,

n—oo

where
c= lim ||x, —u].
n—oo
Furthermore, we have
lim lon (%p — u) + (1 — o) (Spyn — W = lim Xy —ufl =c.
n— o0 n—oo
By Lemma 2, we have

lim ||SnJ/n - Xn” =0. (17)
n—oo
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Since {y,} is bounded, it follows that
oo
D AlISnz = Satazll 1 2 € {ya}} < o0.
n=1

By applying (16) and (17) and Lemma 1, we note that

1S — xnll < 11SXn — Synll + 11SYn — Su¥ull + IISnyn — Xall
< lIxn — yull + sup{||Snz — Sz|| : Z € {yn}} + [ISuyn — Xal| = O.

Hence lim,_, « |ISx, — xul| = 0. Since x,, — z, it follows by the demiclosedness principle of S that z € F(S). Hence
z e F(S)NVI(C,A).

We will prove that x, — z. Suppose that there exist {xmj} C {xp} and z’ # z such that Xm; — Z'. So, we have
Z' € F(S) NVI(C, A). From Opial’s condition, it follows that

lim ||x, — z|| lim [x;, — z|| < lim [|x,, — 2’|
n—oo 11— 00 1—00
= lim [lxp — 2] < lim |lxn, — 2]
]—>00 ]
= lim [|x, — z[,
n—oo
which leads to a contradiction. Hence x, — z € F(S) N VI(C, A). Finally we prove that lim,_,, z, = z, where z, =

Pes)nvicc.aXn for each n € N. By (15) and Lemma 3, there is zo € F(T) such that z, — z,. From z, = Pr(s)nvic.a)Xn and
z € F(S) NVI(C, A), we have

(Xn — zn,2p —2z) >0, foralln e N.

It follows from z, — zg and x, — z that
(z—20,20—2) >0

and then zg = z. This completes the proof. O

Setting S,, = S in Theorem 4, we immediately obtain the following result.

Corollary 5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let « > 0 and let A be an «-inverse-strongly-
monotone mapping of C into H. Let S be a nonexpansive mapping from C into itself such that F(S) N VI(C, A) # @. Let {x,} be a
sequence in C defined by x; = x € C and

Xnp1 = Xy + (1 — 0)SPe (X — ApAxy),

foralln=10,1,2,...,where0 <a< A, <b<2a, 0O<c<oa, <d< 1land Z;’; on(1 — ) = oo. Then {x,} converges
weakly to z € F(S) N VI(C, A), where z = limp_, o Pr(s)nvi(c.a)Xn-

By using the same argument presented in the proof of Theorem 4, we have the following theorem.

Theorem 6 ([8, Corollary 6]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let {S} be a sequence of
nonexpansive mappings from C into itself such that ﬂ;i 1 F(Sn) # @. Let {x,} be a sequence in C defined by x; = x € C and

Xny1 = Xy + (1 — @) SpXy,

forevery n € N, where {«,} is a sequence in (0, 1) and 2211 an(1 — ay) = oo. Suppose that Z;’i] sup{||Sp+1z — Spz|| 1 z €
B} < oo for any bounded subset B of C. Let S be a mapping of C into itself defined by Sz = lim,,_, o, Spz for all z € C and suppose
that F(S) = ﬂﬁ; F(Sy). Then {x,} converges weakly to z € F(S), where z = limy,_, o Pr(s)Xs-

Proof. Putting y, = x, in the proof of Theorem 4. Then, by using the same argument as in the proof of Theorem 4, we can
show that {x,} converges weakly to a point z € F(S), where z = limp_, o Prs5)X,. O

4. Applications

4.1. Equilibrium problems

Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction of C x C into R, where R is the
set of real numbers. The equilibrium problem for F : C x C — Ris to find x € C such that

F(x,y) >0 forally e C. (18)
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The set of solutions of (18) is denoted by EP(F). Numerous problems in physics, optimization, and economics can be reduced
to find a solution of (18). Some methods have been proposed to solve the equilibrium problem (see [2,4,7,11]). In 2005,
Combettes and Hirstoaga [3] introduced an iterative scheme of finding the best approximation to the initial data when
EP(F) is nonempty and they also proved a strong convergence theorem.

For solving the equilibrium problem, let us assume that the bifunction F satisfies the following conditions (see [2]):

(A1) F(x,x) = 0forallx € C;
(A2) F is monotone, i.e., F(x,y) + F(y,x) <Oforanyx,y € C;
(A3) F is upper-hemicontinuous, i.e., for each x, y, z € C,

limsupF(tz + (1 — t)x,y) < F(x,y);

t—0t

(A4) F(x, -) is convex and lower semicontinuous for each x € C.

By [2, Corollary 1] and [3, Lemma 2.12], we have the following lemma.

Lemma 7. Let C be a nonempty closed convex subset of a real Hilbert space H, let F be a bifunction from C x C into R
satisfying (A1)-(A4) and let r > 0 and x € H. Then there exists unique x* € C such that

1
F(x*,y) + ;O’—X*,X* —x)>0 forally e C.

Moreover, let T, be a mapping of H into C defined by
T, (x) = x*
forall x € H. Then, the following hold:
(i) T, is firmly nonexpansive, i.e., for any x,y € H,
ITox = Tyl < (Tex — Ty, x — y);

(ii) F(T;) = EP(F);
(iii) EP(F) is closed and convex.

Using [8, Theorem 16], we have the following lemma.

Lemma 8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from C x C into R
satisfying (A1)-(A4). Let {r,} be a sequence of positive integers and T, be the mapping defined as in Lemma 7. If liminf,_, oo 1y >
0 and Zgil |rhe1 — | < 00, then the following hold:

(i) Zﬁil sup{||Ty,,,z — Tr,z|| : z € B} < oo for any bounded subset B of C,
(i) E(T) = ﬂ;’il F(T;,) where T is a mapping defined by Tx = lim_, o T;,x forallx € C.

Using Theorem 4 and Lemma 8, we have the following theorem.

Theorem 9. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from C x C into R
satisfying (A1)-(A4). Let A be an «-inverse-strongly-monotone mapping of C into H such that VI(C, A) N EP(F) # @. Let
{x,,} and {u,} be sequences generated by x; € C and

Yn :PC(Xn 1_)\nAxn)

F(un, y) + r—(v— Up, Up —Yn) 20, VyeC,
n

Xnp1 = OpXp + (1 — ap)uy,

forall n € N, where {a,} is a sequence in [0, 1] and {X,} C [a,b] C (0,2a) satisfy Y oo |*nt1 — An| < o0, with
Yool on(1 — o) = oo and {r,} is a sequence in (0, o0) with liminf, o1, > 0and Y .2 |rpy1 — 1a| < o0. Then {x,}
converges weakly to w € VI(C, A) N EP(F). Moreover, w = lim_, o Pyi(c,a)nEpF)Xn-

Using Theorem 6 and Lemma 8, we have the following theorem.

Theorem 10 (Nilsrakoo and Saejung [8, Theorem 16]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let F
be a bifunction from C x C into R satisfying (A1)-(A4) with EP(F) #£ @. Let {x,} and {u,} be sequences generated by x; € C and

1

F(un,y) + r—<y— Up, Up —Xn) >0, VyeC,
n

Xnp1 = Xy + (1 — ap)uly,

foralln € N, where {a,} is a sequence in [0, 1] with Z;’il oy (1 — ay) = oo and {r,} is a sequence in (0, c0) with
liminf,_, o 1, > 0and Z;ozl |rny1 — 1n| < oo. Then {x,} converges weakly to w € EP(F). Moreover, w = limy_, oo Pep(r)Xn-
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4.2. Accretive operator

In this section, we consider the problem of finding a zero of an accretive operator. An operator T C H x H is said to be
accretive if for each (x1, y1) and (x», y») € T, there exists j € J(x; — Xx») such that (y, — y1,j) > 0. An accretive operator T is
m-accretive if R(I +rT) = H for eachr > 0. An accretive operator T is said to satisfy the range condition if D(T) C R +1T)
for all r > 0, where D(T) is the domain of T, I is the identity mapping on H, R(I + rT) is the range of I + 1T, and D(T) is
the closure of D(T). If T is an accretive operator which satisfies the range condition, then we can define, for eachr > 0, a
mapping J, : RU + rT) — D(T) by J, = (I + rT)~!, which is called the resolvent of T. We know that J, is nonexpansive and
F(J,) =T '0forallr > 0 (see [1]).

Lemma 11. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T C C x C be an accretive operator such that
T7'0 # @and D(T) C C C (,., RU+1T), and {r,} be asequencein (0, o). If inf{r, : n € N} > 0,and Yoo a1 —Tnl < 00,
then the following hold:

r>0

(i) Z,fil sup{llJi,;,Z — Jr.Zll : z € B} < oo for any bounded subset B of C,
(ii) F(S) = ﬂ;; F(J.,), where S is a mapping defined by Sx = lim_,  J;,x for allx € C.

Using Theorem 4 and Lemma 11, we have the following theorem.

Theorem 12. Let C be a nonempty closed convex subset of a real Hilbert space H. Let o > 0 and let A be an a-inverse-strongly-

monotone mapping of C into H. Let T C C x C be an accretive operator such that T~'0 # @ and D(T) C C C [),o RUI +1T).
Let {x,} be a sequence generated by x; = x € C and

r>0

Xpp1 = OpXp + 1- Ofn)]rnPC(Xn — AnfXy)

for alln € N, where {a,} is a sequence in [0, 1] and {r,} is a sequence in (0, c0) and {A,} C [a,b] C (0, 2«a) satisfy
> o IAnt1 — An| < oo. Suppose that S is a nonexpansive mapping defined by Sx = limy_ooJy,x for all x € C. If
limya, = 0,) 02 ap = 00, Y o lanp1 — ol < oo,inf{ry : n € N} > 0,and Y .2 |rny1 — ral < 00, then {x,}
converges weakly to z € T~1(0) N VI(C, A), where z = lim,,_, Pr—10)rvicc.a)Xn-

Proof. By Lemma 11, we have the following
FS) = [ FUr) =T7'(0) # 0.
n=1

Therefore, by Theorem 4, we obtain that {x,} converges weakly to z = lim—,  Pr-1)nvi(c.ayXn- U

4.3. Monotone mappings

A mapping T : C — C is called strictly pseudocontractive on C if there exists k with 0 < k < 1 such that
ITx = Tyll* < llx = yII* + kIl = T)x + (I = T)yl|>, forallx,y e C.

Ifk = 0, then T is nonexpansive. PutA = I —T,where T : C — C is a strictly pseudocontractive mapping with k. It is known
that, A is l%"—inverse—strongly—monotone and A=1(0) = F(T).

Now, using Theorem 4 we state a strong convergence theorem for a pair of nonexpansive mapping and strictly
pseudocontractive mapping as follows.

Theorem 13. Let C be a closed convex subset of a real Hilbert space H. Let {S,} be a sequence of nonexpansive mappings of C
into itself and let f be a contraction of H into itself. Let T be a strictly pseudocontractive mapping with constant k of C into itself
such that N>2 ; F(Sp) N VI(C, A) # @. Let {x,} be a sequence generated by x; = x € C and

Xnp1 = Xy + (1 — o) SpPc (1 — Ap)xn + AnTxy)

forall n € N, where {«,} is a sequence in [0, 1], {r,} is a sequence in (0, 00) and {}A,} C [a,b] C (0, 2x) satisfy
Z;i] [Ans1 — Anl < oo. Suppose that S is a nonexpansive mapping defined by Sz = lim,_, o Syz forall z € C. If
limyoy, = 0, 00, ap = 00, ) e |ony1 — | < oo,inf{r, : n € N} > 0,and Y ;2 [rat1 — In| < 00, then {x,}
converges weakly to z € F(S) N F(T), where z = limp_, o Pr(s)nFr(T)Xn-

Proof. Put A = I — T. Then A is 1T"‘-inverse-strongly—monotone. We have that F(T) is the solution set of VI(A, C)
i.e, F(T) = VI(A, C) and

Pc (X — MpAxp) = (1 — Ap)xp + A Txy.

Therefore, by Theorem 4, the conclusion follows. O
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1. Introduction

The theory of nonlinear analysis has emerged as a momentous mathematical discipline during the last 50 years. The fixed
point theorem, generally known as the Banach Contraction Mapping Principle, appeared in explicit form in Banach’s thesis in
1922 where it was used to establish the existence of a solution for an integral equation. Since then, because of its simplicity
and usefulness, it has become a very popular tool in solving existence problems in many branches of mathematical analysis.

In 1969, the Banach Contraction Mapping Principle was extended nicely to set-valued or multivalued mappings, a fact
first noticed by Nadler [1]. Sessa [2] introduced the concept of weakly commuting maps. Jungck [3] defined the notion
of compatible maps to generalize the concept of weak commutativity and showed that weakly commuting mappings
are compatible but the converse is not true [3]. In recent years, a number of fixed point theorems have been obtained
by various authors utilizing this notion. Jungck further weakens the notion of compatibility by introducing the notion of
weak compatibility and in [4] Jungck and Rhoades further extended weak compatibility to the setting of single-valued and
multivalued maps. In [5] Singh and Mishra also introduced the notion of (I, T)-commutativity for a hybrid pair of single-
valued and multivalued maps. In 2002, Aamri and El Moutawakil [6] defined the property (E.A.) for self-maps and obtained
some fixed point theorems for such mappings under strict contractive conditions. The class of maps satisfying property (E.A.)
contains the class of noncompatible maps. In 2003, Hussain and Khan [7] proved more general invariant approximation
results for 1-subcommuting maps. Recently, Kamran [8] defined the property “f is T-weakly commuting” as follows:

Definition 1.1 (/8]). Assume that (X, d) is a metric spaceandx € X.Letf : X — X and T : X — CB(X).The map f is said to
be T-weakly commuting at x € X if ffx € Tfx.

Theorem 1.2 (Theorem 3.10 [8]). Let f be a self-mapping of a metric space (X, d) and T be a map from X into CB(X) such that:
(i) f and T satisfy the property (E.A.).

* The second author was partially supported by the Thailand Research Fund and the Commission on Higher Education under Grant No. MRG5180034.
* Corresponding author. Tel.: +66 02 470 8998; fax: +66 02 428 4025.
E-mail addresses: poom_teun@hotmail.com (W. Sintunavarat), poom.kum@kmutt.ac.th (P. Kumam).
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(ii) Forallx £y e X

1 1
H(TX, Ty) < max {d(fxv fy)’ E[d(fx’ TX) + d(f:y, Ty)]v E[d(fxv Ty) + d(f:ya TX)]} . (1)

(iii) f is T-weakly commuting at v and ffv = fv for v € C(f, T).
If fX is a closed subset of X, then f and T have a common fixed point.

The aim of this work is to drop the assumption of “f is T-weakly commuting” in the above theorem, establish some new
coincidence and common fixed point theorems for hybrid strict contraction maps and derive an invariant approximation
result.

2. Preliminaries
Throughout the work, X denotes a metric space with metric d.

Definition 2.1. We denote by CB(X), the families of all nonempty bounded closed subsets of X. The Hausdorff metric induced
by d on CB(X) is given by

H(A, B) = max {sup d(a, B), sup d(b,A)}
aeA beB

for A, B € CB(X), where d(a, B) = inf{d(a, b) : b € B} is the distance froma to B C X.

Definition 2.2. Letf : X — Xand T : X — CB(X).

1. Apoint x € X is a fixed point of f (resp. T) iff x = fx (resp. x € Tx).
The set of all fixed points of f (resp. T) is denoted by F(f) (resp. F(T)).
2. A point x € X is a coincidence point of f and T iff fx € Tx.
The set of all coincidence points of f and T is denoted by C(f, T).
3. Apoint x € X is a common fixed point of f and T iff x = fx € Tx.
The set of all common fixed points of f and T is denoted by F(f, T).

Definition 2.3 ([6,8]). Let f be a self-mapping of a metric space (X, d) and T be a map from X into CB(X). We say that f and
T satisfy the property (E.A.) if there exists a sequence {x,} in X such that

lim fx, =t € A= lim Tx,, (2)

n—-oo n—oo

forsomet € X and A € CB(X).

For examples of the property (E.A.) see [6,8].

Definition 2.4 ([9]). The mapsf : X — X and T : X — CB(X) are said to be compatible if fTx € CB(X) for all x € X and
H(fIx,, Tfx,) — 0 whenever {x,} is a sequence in X such that Tx, — A € CB(X) and fx, — t € A.

Themapsf : X — Xand T : X — CB(X) are noncompatible if fTx € CB(X) for all x € X and there exists at least one
sequence {x,} in X such that Tx, — A € CB(X) and fx,, — t € Abutlim,_, ., H(fTx,, Tfx;) #* 0 or is nonexistent.

Remark 2.5. The noncompatible hybrid pair (f, T) satisfy the property (E.A.).
3. Main results
Theorem 3.1. Let f be self-mapping of a metric space (X, d) and T be a mapping from X into CB(X) such that the following

conditions are satisfied:

(i) f and T satisfy the property (E.A.) and (1) holds.
(ii) ffv =fvforv e C({,T).

If fX is a closed subset of X, then f and T have a common fixed point.
Proof. By virtue of (2) there exists a sequence {x,} in X, some t € X and A € CB(X) such that

lim fx, =t € A= lim Tx,.

n—oo n—oo
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Since fX is closed, we have lim,_, o, fx, = fx for some x € X. Thus t = fx € A. We claim that fx € Tx. If not, then condition
(1) implies

H(Tx,, Tx) < max :d(fxn,fx), %[d(fxn, Tx,) + d(fx, Tx)], %[d(fxn, Tx) + d(fx, Txn)]} .

Letting n — oo, we have
H(A, Tx) < max {d(fx,fx), %[d(fx, A) + d(fx, Tx)], %[d(fx, Tx) + d(fx, A)]}

1
= —d(fx, Tx).
> (x, Tx)
Since fx € A, it follows from the definition of the Hausdorff metric that
1
d(fx, Tx) < H(A, Tx) < Ed(fx, Tx),
which is a contradiction. Hence fx € Tx and C(f, T) # @. From this, and ffv = fv for some v € C(f, T), we let z := fv. This
implies that
z=fv=ffv=fz eTu.

We claim that v = z. Assume not; then condition (1) implies

H(Tv,Tz) < max {d(fv,fz), %[d(fv, Tv) +d(fz, Tz)], %[d(fv, Tz) + d(fz, Tv)]}
= max {d(fv,fz), %[d(fv, Tv) +d(fz, Tz)], %[d(fz, Tz) + d(fz, Tv)]}

1
= Ed(fz, Tz).
Since fv € Tv, it follows from the definition of the Hausdorff metric that
d(fz,Tz) <H(Tv, Tz) < %d(fz, 1z),
which is a contradiction. Hence v = z. Thusz = fz € Tz. O
Remark 3.2. Theorem 3.1 extends and improves the Banach Contraction Principle, Nadler’s Contraction Principle [1],

Theorem 3.10 of Kamran [8], and results of many authors.

Now we give an example to support our result.

Example 3.3. Let X = [0, 1] with the usual metric. Define f : X — X and T : X — CB(X) by fx = 5 and Tx = [0, ] for all
x € X. Then:

(1) f and T satisfy the property (E.A.) for the sequence x,, = % n=1,2,3,...and (1) holds.
(2) fo=f0for0 e C(f, T).

Thus the conditions (i) and (ii) of Theorem 3.1 are satisfied and 0 = f0 € TO, i.e., 0 is a common fixed point of f and T.

Remark 3.4. (i) If C(f, T) is singleton set, then the common fixed point of f and T is the limit of the sequence {x,} in X
satisfying

lim fx, =t € A= lim Tx,,

n—oo n—oo

forsomet € X and A € CB(X).
(ii) If C(f, T) is not a singleton set, then the common fixed pointof f and T isv € C(f, T) for ffv = fuv.

Corollary 3.5. Let T be a map from a metric space (X, d) into CB(X) such that the following conditions hold:
(i) There exists a sequence {x,} in X such that

lim x, € A= lim Tx,,

n—oo n—oo

for some A € CB(X).
(ii) Forallx £y e X
H(Tx, Ty) < max {d(x, y), %[d(x, Tx) + d(y, Ty)]1, %[d(x, Ty) + d(y, Tx)]} .

Then T has a fixed point.
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Proof. Letf : X — X be the identity mapping. It follows from Theorem 3.1 that T has a fixed point. O

Theorem 3.6. Let f be a self-mapping of a metric space (X, d) and T be a map from X into CB(X) such that the following conditions
hold:

(i) f and T satisfy the property (E.A.) and (1) holds.

(ii) ffv =fvforv e C(, T).

If TX is a closed subset of X and TX C fX, then f and T have a common fixed point.

Proof. By virtue of (2) there exists a sequence {x,} in X, some t € X and A € CB(X) such that

lim fx, =t € A= lim Tx,.
n—-oo

n—oo

Since TX is closed, we have lim,_, o, Tx, = Ta for some a € X. It follows from TX C fX thatt € Ta C TX C fX. Thus
t = fx € A. Now the results follow from Theorem 3.1. O

Since a noncompatible hybrid pair (f, T) satisfy the property (E.A.), we get the following results:

Corollary 3.7. Let f be aself-mapping of a metricspace (X, d) and T be a map from X into CB(X) such that the following conditions
hold:

(i) f and T are noncompatible and (1) holds.
(i) ffv =fvforv e C(f, T).

If fX is a closed subset of X, then f and T have a common fixed point.

Corollary 3.8. Let f be aself-mapping of a metric space (X, d) and T be amap from X into CB(X) such that the following conditions
hold:

(i) f and T are noncompatible and (1) holds.

(ii) ffv =fvforv e C(, T).

If TX is a closed subset of X and TX C fX, then f and T have a common fixed point.

Invariant approximation for non-commuting maps was considered for the first time by Shahzad [10,11]. Let M be a subset

of a normed space X and p € X. The set By;(p) := {x € M : ||x — p|| = d(p, M)} is called the set of best M-approximates to
p € X out of M.

Theorem 3.9. Let f be self-mapping of a normed space X and T be a map from X into CB(X) such that the following conditions
are satisfied:
(i) f and T satisfy the property (E.A.) and (1) holds on By (p).
(ii) ffv =fvforv e C(f, T) N By (p).
(iii) f(Bm(p)) = Bu(p)-
(iv) supyery [ly — pll < lIfx — pl| for all x € By (p).
If f(By(p)) is a closed subset of By (p), then F(f, T) N By (p) # @.
Proof. Let x € By(p) and z € Tx. Since f (B (p)) = Bm(p), so fx € By (p) for all x € By (p). It follows from the definition of
By (p) that ||fx — p|| = d(p, M). Since

|z —pll <suplly —pll < Ilfx —pll =d(p, M),
yelx

soz € By (p). Thus Tx C By (p) for all x € By (p). Since Tx is closed for all x € X, so Tx is closed for all x € By (p). Therefore

fley@ : Bu®) — Bu (@), Tlpy, ) : Bu(p) — CB(Bum(p)). Clearly, F(f s, ), Tlgy ) = F(I, T)NBu(p). Now the result follows
from Theorem 3.1 with X = By (p). O

Remark 3.10. Theorem 3.9 extends and improves theorems of Khan, Domlo and Hussain [12], and results of many authors.

Corollary 3.11. Let X be a normed space and T be a map from X into CB(X) such that the following conditions hold:
(i) There exists a sequence {x,} in By (p) such that

lim x, € A= lim Tx,,
n—oo n—oo

for some A € CB(By(p)).
(ii) Forallx #y € By(p)

H(Tx, Ty) < max {d(x, ¥), %[d(x, Tx) + d(y, Ty)], %[d(x, Ty) + d(y, Tx)]} .

(iii) supyere ly — pll < [Ix — pl| for all x € By (p).
Then F(T) N By (p) # @.

Proof. Take f as the identity mapping from X into X in Theorem 3.9 to get F(T) N By (p) # 4. O



W. Sintunavarat, P. Kumam / Applied Mathematics Letters 22 (2009) 1877-1881 1881
Acknowledgements

The authors would like to thank Professor Somyot Plubtieng and the Commission on Higher Education under project:
“Fixed point Theory in Banach spaces and Metric spaces”, Ministry of Education, Thailand. Moreover, the authors would like to
thank the referees for reading this work carefully, providing valuable suggestions and comments, and pointing out a major
error in the original version of this work.

References

[1] S.B.Nadler Jr., Multi-valued contraction mappings, Pacific ]. Math. 30 (1969) 475-488.
[2] S.Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. 32 (1982) 149-153.
[3] G.Jungck, Compatible mappings and common fixed points, Int. . Math. Math. Sci. 9 (1986) 771-779.
[4] G.Jungck, B.E. Rhoades, Fixed points for set-valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998) 227-238.
[5] S.L.Singh, S.N. Mishra, Coincidence and fixed points of non-self hybrid contractions, . Math. Anal. Appl. 256 (2001) 486-497.
[6] M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002) 181-188.
[7] N.Hussain, A.R. Khan, Common fixed point results in best approximation theory, Appl. Math. Lett. 16 (2003) 575-580.
[8] T.Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299 (2004) 235-241.
[9] H.Kaneko, S. Sessa, Fixed point theorems for compatible multivalued and single valued mappings, Int. J. Math. Math. Sci. 12 (1989) 257-262.
[10] N. Shahzad, A result on best approximation, Tamkang J. Math. 29 (1998) 223-226; corrections Tamkang J. Math. 30 (1999) 165.
[11] N. Shahzad, Invariant approximation and R-subweakly commuting maps, J. Math. Anal. Appl. 257 (2001) 39-45.
[12] A.R.Khan, A.A. Domlo, N. Hussain, Coincidence of Lipschitztype hybrid maps and invariant approximation, Numer. Funct. Anal Optim. 28 (9-10) (2007)
1165-1177.



BULLETIN of the Bull. Malays. Math. Sci. Soc. (2) 32(2) (2009), 173-185
MALAYSIAN MATHEMATICAL
SCIENCES SOCIETY
http://math.usm.my/bulletin

Weak Convergence Theorem by an Extragradient Method for
Variational Inequality, Equilibrium and Fixed Point Problems

1C. JamBooON, 2P. KumMAM AND 3U. W. HUMPHRIES

Department of Mathematics, Faculty of Science,
King Mongkut’s University of Technology Thonburi,
Bang-Mod, Bangkok 10140, Thailand
Lchaichanalll@hotmail.com, 2poom.kum@kmutt.ac.th, 3usa.wan@kmutt.ac.th

Abstract. In this paper, we introduce a new iterative scheme for finding the
common element of the set of: fixed points; equilibrium; and the variational
inequality problems for monotone and k-Lipschitz continuous mappings. The
iterative process is based on the so-called extragradient method. We show that
the sequence converges weakly to a common element of the above three sets
under some parameter controlling conditions. This main theorem extends a
recent result of Nadezhkiha and Takahashi [7].
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, and let C be
a closed convex subset of H. Let F' be a bifunction of C' x C' into R, where R is the
set of real numbers. The equilibrium problem for F': C' x C' — Ris to find z € C
such that

(1.1) F(z,y) >0, foral yeC.

The set of solutions of (1.1) is denoted by EP(F). Given a mapping T : C —
H, let F(z,y) = (Tx,y — z) for all z,y € C. Then z € EP(F) if and only if
(Tzyy — z) > 0 for all y € C, ie., z is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics reduce to find a solution
of (1.1). In 1997, Combettes and Hirstoaga [3] introduced an iterative scheme of
finding the best approximation to initial data when EP(F') is nonempty and proved
a strong convergence theorem. Let A : C — H be a mapping. The classical
variational inequality is denoted by VI(A, C), is to find 2* € C such that

(Az*,v —2™) >0,

Received: April 11, 2008; Revised: November 23, 2008.
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for all v € C. The variational inequality has been extensively studied in the literature.
See, e.g. [12, 14] and the references therein. A mapping A of C into H is called
monotone if

(Au — Av,u —v) >0,
for all u,v € C and A is called a-inverse-strongly monotone [2, 6] if there exists a
positive real number « such that

(Au — Av,u —v) > al|Au — Av|)?,

for all u,v € C. A mapping A of C into H is called k-Lipschitz continuous if there
exists a positive real number k such that

|Au — Av|| < k|lu —v|, forall w,veC.

It is obvious that any a-inverse-strongly monotone mapping A is monotone and
Lipschitz continuous. A mapping S of C' into itself is called nonexpansive if

[Su = Svf| < flu—wvl,

for all u,v € C. We denote the set of fixed points of S by F'(S). To find an element
of F(S)NVI(A,C), Takahashi and Toyoda [11] introduced the following iterative

scheme:
(1.2) Tnt1 = ATy + (1 — ap)SPo(z, — A\Axy,),

for every n = 0,1,2,..., where g = 2 € C, a, is a sequence in (0, 1), and )\, is a
sequence in (0, 2«). Recently, Nadezhkina and Takahashi [7] and Zeng and Yao [15]
proposed some new iterative schemes for finding elements in F(S)NVI(A,C).

In 1976, Korpelevic [5] introduced the following so-called extragradient method:

xog=x € C,
(13) Ty = PC'((En - )\Axn)v

for all n > 0, where A € (0, %), C'is a closed convex subset of R™ and A is a monotone
and k-Lipschitz continuous mapping of C' into R™. He proved that if VI(A,C) is
nonempty, then the sequences {z,} and {z,}, generated by (1.3), converge to the
same point z € VI(A, C). Recently, motivated by the idea of Korpelevics extragra-
dient method [5], Nadezhkina and Takahashi [7] introduced the following iterative
scheme for finding an element of F(S)NVI(A,C) and proved the following weak
convergence theorem.

Theorem 1.1. [7, Theorem 3.1] Let C' be a nonempty closed convex subset of a real
Hilbert space H. Let A be monotone and a k-Lipschitz continuous mapping of C into
H. Let S be a nonexpansive mapping from C into itself such that F(S)NVI(A,C) #
0. Let {xn} and {yn} be sequences in C defined as follows:

rg=z € C,

Tptl = QnTp + (1 - an)SPC(fn - )\nAyn)a Vn >0,
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where oy, C [c,d] for some c,d € (0,1) and A, C [a,b] for some a,b € (o,). Then
{zn} and {yn} converge weakly to the same point z € F(S)NVI(A,C) where z =
lim,, oo Pr(s)nvi(a,c)Tn-

In 2007, Plubtieng and Punpaeng [8] introduced a new iterative scheme for find-
ing a common element of the set of solutions of: an equilibrium; the variational
inequality; and the set of fixed points problems of a nonexpansive mapping in a
Hilbert space.

In this paper motivated by the iterative schemes considered in [7, 11], we will
introduce a new iterative process (3.1) which is different from the Plubtieng and
Punpaeng iterative schemes [8], the aim is to find a common element of the set of
solutions, the fixed points of a nonexpansive mapping, an equilibrium, and the varia-
tional inequality problems of a k-Lipschitz continous mapping in a real Hilbert space.
Then, we prove a weak convergence theorem, which is connected with Korpelevics
extragradient method [5] and Nadezhkina and Takahashi’s result [7].

2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-,-) and let C' be
a closed convex subset of H. For every point x € H, there exists a unique nearest
point in C, denoted by Pcx, such that

|z — Pox| < ||z —y|| forally e C.

Pc is called the metric projection of H onto C. It is well known that Po is a
nonexpansive mapping of H onto C' and satisfies

(2.1) (x —y, Pcx — Poy) > ||Pex — Pey|)?,

for every x,y € H. Moreover, Pox is characterized by the following properties:
Pox € C and

(2.2) (x — Pox,y — Pox) <0,

(2.3) lz = yl* > [lz — Pez|® + |ly — Poz||?,
for all x € H,y € C. It is easy to see that the following is true:
(2.4) u€eVI(A,C) < u= Po(u— Au),\ > 0.

It is also known that H satisfies the Opial condition; for any sequence {z,} with
x, — x, the inequality

(2.5) liminf ||z, — | < liminf ||z, —yl|,

holds for every y € H with y # z.
The following lemmas will be useful for proving the convergent result of this paper.

Lemma 2.1. [9] Let {x,} and {yn} be bounded sequences in a Banach space X and
let {Bn} be a sequence in [0,1] with 0 < liminf, .. 3, < limsup, . G, < L.
Suppose Tp11 = (1 — Bn)yn + Bnxn for all integers n > 0 and limsup,, ., . (||yn+1 —
yall = znss — #a]) < 0. Then, Tt oo [lgn — 0] = 0.
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Lemma 2.2. [4] (Demiclosedness Principle) Let H be a Hilbert space, C' a closed
convex subset of H, and T : C' — C a nonexpansive mapping with F(T) # 0. If
{z,} is a sequence in C' weakly converging to x € C and if {(I — T)z,} converges
strongly to y, then (I — T)x = y. Here, I is the identity operator of H.

For solving the equilibrium problem for a bifunction F : C x C — R, let us
assume that F' satisfies the following conditions:

(Al) F(xz,z) =0 for all z € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each z,y,z € C, lim;__o F(tz+ (1 — t)z,y) < F(x,y);

(A4) for each x € C,y — F(x,y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

Lemma 2.3. [1] Let C be a nonempty closed conver subset of H and let F be a
bifunction of C x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then, there
exists z € C' such that

1
F(Z’y)+;<y—Z,Z—x>ZOforallyEC.

The following lemma was also given in [3].

Lemma 2.4. [3] Assume that F : C x C — R satisfies (A1)-(A4). Forr >0 and
x € H, define a mapping T,, : H — C as follows:

Tr(x):{ZGC:F(z,y)—k%(y—z,z—@ >0,Yy € C},

for all z € H. Then, the following hold:
(1) T, is single-valued;
(2) T is firmly nonexpansive, i.e., for any v,y € H, |T,x — T,y||* < (Trx —
Ty, x —y);
(3) F(T,) = EP(F); and
(4) EP(F) is closed and convex.

3. Weak convergence theorems

In this section, we prove a weak convergence theorem for finding a common element
of the set of solutions for an equilibrium problem, the set variational inequality and
the set of fixed points of a nonexpansive mapping in a Hilbert space. Before proving
the theorem, we need the following lemmas.

Lemma 3.1. [11] Let H be a real Hilbert space, let {ay,} be a sequence of real
numbers such that 0 < a < a,, < b < 1 for alln = 0,1,2,...; and let {v,} and
{w,} be sequences of H such that limsup,,__,  ||va]] < ¢, limsup,,_, . ||wn] < ¢
and limy, o ||nvy, + (1 — ap)wy|| = ¢, for some ¢ >0,

then lim, o || v, — wy| = 0.

Lemma 3.2. [11] Let H be a real Hilbert space and let D be a nonempty closed
convez subset of H. Let {x,} be a sequence in H. Suppose that, for all u € D,

Znt1 —ull < [lon —ull,
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for every n = 0,1,2,..., then the sequence {Pp(x,)} converges strongly to some
z € D, where Pp stands for the metric projection of H onto D.

Now, we show the following weak convergence theorem, which solves the problem
of finding a common element of the set solutions of: an equilibrium; variational
inequality; and fixed point problems of a nonexpansive mapping in Hilbert spaces.

Theorem 3.1. Let C' be a closed convex subset of a real Hilbert space H. Let F
be a bifunction from C x C — R satisfying (A1)-(A4) and let A be a monotone

k-Lipschitz continuous mapping of C' into H and let S be a nonexpansive mapping
of C into itself such that F(S)NVI(A,C)NEP(F) # 0. Suppose x1 = u € C and

{zn}, {yn} and {u,} are given by

1
Tn+1l = OpTn + (1 - an)SPC(xn - )\nAyn)a
for all n € N, where {a,} C (a,b) C (0,1) and {\,} is a sequence in (0,1/k) and
{rn} C (0,00) satisfying the following conditions:
(i) liminf, . ory >0, Y00 |rns1 — ra| < o0, and
(ii) limp—oo A = 0, then {x,}, {yn} and {u,} converges weakly to the same
point p € F(S)NVI(A,C)NEP(F),
where p = limy, oo Pr(s)nvi(A,0)nEP(F)Tn-

Proof. We divide the proof into five steps.

Step 1. We claim that {x,,} is bounded. Indeed, let 2* € F(S)NVI(A,C)NEP(F)
and let {T; } be a sequence of mappings defined as in Lemma 2.4. Then z* =
Po(x* — M\yAx™) =T, «* and u,, = T, x,. Putting v, = Po(x, — A\ Ayy,), we note
that
(3.2) llun — x*HQ = |Tr,zn — Trnx*HQ < ||z, — 93*”2
From (2.3) and the monotonicity of A, we have

l[vn — x*”Q < lwn = AnAyn — x*HQ — lzn — AnAyn — Un||2
|zn — m*||2 — lzn — vn||2 + 22X (AYn, T° — vp)
[, — &1 = [l — o ?
+ 20, ((Ayn, — Ax™ 2" — yp) + (A2™, 2" — yn)) + (AYn, Yn — Un)
|Zn — $*||2 — lzn - Un||2 + 220 (AYns Yn — Vn)
|Zn — J3*||2 = |lzn — yn||2 = 2(Zn ~ Y, Yn — Vn) — lYn — Un”2
+ 2)\n<Ayn7 Yn — vn>
20 = 2** = 120 = yull® = llyn — vall®

+ 2(xp — M AYn — Yny U — Yn)-

Moreover, since y,, = Po(un — AnAuy) and from (2.2), we have

(33) <:En — M Az, — YnyUn — yn> <0.
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Where A is k-Lipschitz continuous, so that

<xn - )\nAyn — Yn,Un — yn> = <xn — MAz, — Yn, Un — yn>
+ <)\nAxn - )\nAyna Un — yn>

< (MAzn — X Ayn, v — Yn)
< allAzn — Ayl lvn — yall
< Akllzn = ynllllon — ynll-
Thus, we have
lon =27 < llzn = 2" = llzn = Yl = llyn — vall?

+ 20kl 20 — ynlllvn — yall

< ln =2 = llen = ynll® = llyn — vall?
+ Aikzﬂl‘n - ynH2 + [lon — yn||2
(3.4) = lon — 2" + ALk = Dllzn — yall?
<l — 2|2,
and we obtain
[Zns1 = 2*1* = [lan(zn —2%) + (1 = @) (Sv, — )2
< apllzn — 2|2+ (1= ayn)||Sv, — 2|2
< O‘nllxn_$*||2+(1_an)||vn_x*”2
< an||xn—x*||2+(1—an)||xn—x*||2
< lan — 2|

Since the sequence {||z*—x,||} is a bounded and nonincreasing sequence, lim,, . ||zo—
X, exists, that is there exists

(3.5) c= lim |x, —z*|.

n—oo

Hence {z,} is bounded. Consequently, the sets {u,} and {v,} are also bounded.

Step 2. We claim that lim, .. ||[Zn+1 — Zn|| = 0, lim,—. ||Zn — yu|| = 0 and
lim,, o ||Zn — up|| = 0. Indeed, since P¢ is a nonexpansive mapping, we obtain
Hyn+1 - yn” = ||PC(un+l - )‘n+1Aun+1) - PC(un - )‘nAun)”
< (unt1 = Anp1Aunyr) — (un — ApAuy) ||

[(nt1 = A1 Auni1) = (Un — App1Aun) + (A = Ang1) Au ||
[[(unt1 = un) = Ans1(Atns1 — Aup) — (A1 — An) Au |
[unt1 — unll + Ang1llAtngr — Aunll + (Ang1 — An)[[Aun |
[tunt1 = unll + EXnsiJtunt1 — unll + [Ans1 = Anll|Aunll,

by (ii), it follows that

IN A

(3.6) [Ynt1 = ynll < llungs — unll-

Hence, we observe that

[vnt1 —vnll = Po(®ny1 — At1AYnt1) — Po(on — A Ayn)||
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||($7l+1 - )\n+1Ayn+1) - (mn - )‘nAyn)”

[(@nt1 = Ant1AYns1) = (@0 — Ang14yn) + (An = A1) Ayl
”(zn-&-l - zn) - >‘n+1(Ayn+1 - Ayn) - ()‘n+1 - )‘n)Ayn”
[Zn+1 = Znll + A1 AYnt1 — Aynll + Ant1 = An) [ Ayl
Znt1 = Toll + EAng 1 l|Yna1 = Ynll + [ Ang1 — Anll| Ayl

[Zn+1 — Tnll + kAns1l[untr — unll + [Ant1 = An| | Ayn |-

VANVARRVAN

On the other hand, from u, = T;. x, and u, 1 =T, Tny1, We note that

1
(3.7) F(un,y) + —(y — tn,up —xy) >0 forally e C
and
1
(3.8) F(uny1,y) + (Y = Unt1,Uny1 — Tny1) > 0 for all y € C.

Tn+1
Substituting y = up+1 into (3.7) and y = u,, into (3.8), we have

F(un7un+1) + 7<un+1 — Up, Unp — xn) Z 0
T

n

and
F(un+17 un) +

<un — Up41, Unt+1 — xn+1> Z 0.
Tn+1

So, from (A2) we have

Up — T, Un+1 — Tn41
<un+1 — Unp, - 2 0
Tn rn+1

and hence

T'n

——(Unt1 — l”n+1)> > 0.

<un+1 — Up, Up — Up41 + Upt1 — Ty —
Tn+1

Without loss of generality, let us assume that there exists a real number ¢ such
that r,, > ¢ > 0 for all n € N. Then, we have

r
||un+1 - un||2 < <un+1 — Up, Tpt1 — Tp + (1 i > (Un—i-l - xn—',—1)>
Tn+1

T'n

A

< ot -l {||xn+1 el + \1 T T xn+1||}

n+1

and hence

||Un+1 - unH < Hxn-i-l - xn” + r |7"n+1 - Tn|||un+1 - xn—&-lH

n+1
L
(3.9) <zt — 2l + ;lrn+1 — Tl

where L = sup{||u, — z,|| : n € N}. Hence, we have

IN

V41 — vl lZnt1 — 2l + A1 Uns s — unll 4+ [Ans1 = Anl Ayl

IN

L
|lZnt1 — zall + X1 {l|Tns1 — 2ol + E|Tn+1 —ral}

+ [Ant1 = Anl | Ayl
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L
< oot = 2ol + Edaga[Tn1 — zall + ki)\n+1;|7“n+1 —Tn
(3.10) + [ Ant1 = Anll| Ayn||-
Let 41 = (1 — ap)2zn + @pxy,. Thus, we note that z, = Sv, and we have
(3.11) lzn+1 = 2ull = [[Svat1 — Svn|l < [|vagr — vnll-
Combining (3.10) and (3.11), we have

lznt1 = 2ol = [[Tns1 — zull < |lvngr — vnll = |Tn41 — 20l

L
S k)\n+1||xn+1 - anH + k)\n+1;|rn+l —Tn
+ |)‘n+1 - )‘n|||AynH'

This inequality together with (i) and (ii) imply that

limsup(||znt1 — 2n|l = [[Tnt1 — zal]) < 0.

n——oo

Hence, by Lemma 2.1, we obtain ||z, — z,|| — 0 as n — co. Consequently,
(3.12) lm ||zp41 — 2zl = lm (1 —ay)|lzn — 2. =0.
From (i), (ii), (3.9) and (3.10), we also have

[vnt1 = vnll — 0, [[uns1 — unl| — 0 and [|ynt1 — yul| — 0 as n — oo.
Consequently,

g1 — Tp = apTy + (1 — ap)Svy, — 2y = (1 — ) (Sv, — ),
and from (3.12) we also have
(3.13) im ||Svy, — x| = 0.
By (3.4), we obtain
lon =27 < Jlan — 2" + (O0F = Dllzn — yall?,

then, we also have

lan s + (1 — ) Sv, — 2|2

Han(xn —2") + (1 — an)S(v, — x*)”Q

1 — 2|

< e, — 2|2+ (1= ay)||Sv, — 2|2
< O‘nllxn_x*||2+(1_an)||vn_x*”2
< agllzn — 2P+ (1 = an){llzn — 2|
+ (A% = D)ln — yl*}
= lzn — 22+ (1 = an) ARk = Dlzn — yal,
and hence
[z = 2*[° < [lan — 2" |* + (1 = an) (A& = Dz — yal*.

It follows that

(1= an)(X =Xk lzn = yall < o = 2™ = [longs — 2%
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So we have

1
(314)  lzn —wnll <

(1 —an)(AN2k%—1)
Since {ay,} C (a,b) C (0,1), A, € (0,1/k) and

(lzn = 2* = Nzns1 — 2*[?).

limy, oo || Tpg1 — 2| = limy oo ||z, — 27| = ¢,
we obtain
tim_fa, — ] = 0.
We note that
Iyn —vall = [Pe(un — AnAun) — Po(zn — AuAy,)||

< (un = AnAun) = (2 — AnAyn) ||

< lun = 2ol + Al Au, — Ay, ||

< g — 2]l + EAn]|tn — ynl-

Since A, — 0(n — o0), we get

(3.15) [yn —onll < flun —2all.

From (3.15), we also have
lon —a*I> < Nzn =27 = llzn = yall* = llyn — val®
+ 2\kllzn = ynllllvn — yull
< lzn = x*HQ — lzn — yn||2 —lyn — Un”Q
+ [z — yn||2 + )‘ik2||vn - yn||2
= oo — 2|2 + (NGE* = 1)l|vn — yal®
= oo —2*[* + N0k = D)llun — zal?,

then, we also have

[Zni1 —2** < anllen — 2" + (1= an)|[Sv, — 2|2
< apllen — 2P+ (1= an)llo, — 27|
< apllr, — 37*”2 + (1 = an){l|zn — x*”Q + ()‘ik2 = Dflun — %“2}

lzn — (2 + (1 = an) ARK* = 1) |up — 2|,
and hence

st — @2 < llzn — 22 + (1= an) OZK2 = 1) un — 202
It follows that

(1= an)(X = Xk lzn —unll < lon — 2| = Jonsa — 2™,

So we have

1
(3.16)  ||@n — un|

S Gagoere = en
Since {a,} C (a,b) C (0,1), A, C (0, ) and

=@ |* = lznts — 27[?).

2

lim ||z, —2*? = lim ||z, — 2*|]® = ¢,
n—oo n—oo
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thus
lim ||z, —uy| = 0.
—00

Since liminf,, .. r, > 0, we obtain

lim |22 =o.
n—s00 Tn
From (3.15) we also have
lim |y, —vn] = 0.

From
Hxn - Un” < ||$n - ynll + ||yn - 'UnH

we also have

lim ||z, —v,] =0.
o
And
[Svn = vnll < [[Sva = Znll + (|20 — Ynll + lyn — vall
and hence

lim [|Sv, —v,| =0.
n——-uoo

Step 3. We claim that p € VI(A,C)N EP(F) N F(S).
First, we prove p € EP(F). Since {v,,} is bounded, there exists a subsequence
{'Umj} of {v,,} which converges weakly to p. Without loss of generality, we can
assume that v,, — p. From |Sv, — v,|| — 0, we obtain Sv,, — p. Let us show
p € EP(F). Since u,, = T, x,, we have
1
F<un7y)+7<y_un7un_xn>207 VyEC
Tn
From (A2), we also have
1
7<y = Up, Un — QCn> > F(yaun)
T'n

and hence
<y — Un,;, Hny = Ty > Z F(yaunz)
T,

From ||u, — z,|| — 0, ||zn — Sv,|| — 0, and ||Sv, — v,|| — 0, we get u,, — p.
Since % — 0, it follows by (A4) that 0 > F(y,p) for all y € C. For ¢t with
O<t§12;ndy€C, let y4 =ty + (1 — t)p. Since y € C and p € C, we have y; € C
and hence F'(y;,p) < 0. So, from (Al) and (A4) we have

0= F(yt,y:) <tF(ys,y) + (1 =) F(yt,p) < tF(ys,y)

and hence 0 < F(y:,y). From (A3), we have 0 < F(p,y) for all y € C and hence
p € EP(F).
Next, we prove that p € F(S). Let * € F(S)NVI(A,C)NEP(F). Since ||Sv,—x*|| <
v — 2*| < ||zn — 2*|, from (3.5), we have

lim sup ||Sv, — 2¥|| < e

n——uo0
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Furthermore, we have

lim [Jan(xn —2") + (1 — ap)(Svy, —2%)|| = lm ||zp4 — 2| =c.

n——-:uo0

By Lemma 3.1, we obtain
lim [|Sv, —z,| =0.
n—-uoo
Also, we have

[Szn — 2| [Szy — Svpl| + [|Svn — 24|

<
< lzn = vnll + [1Svn — 2.

Therefore, we get

lim ||Sz, — x| =0.
n—oo

From the demiclosedness (Lemma 2.2) of I — S, we know that x,, — p, and
lim, oo ||Szy — x,]] = 0. We obtain p € F(S). Finally, by the same argument
as in the proof of [7, Theorem 3.1, pp.197-198], we prove that p € VI(A, C). Hence
p e VI(A,C)NEP(F)NF(S).

Step 4. We claim that =, — p'(n — o).

Let {z,,} be another subsequence of {x,} such that z,, — p', then we have p’ €
VI(A,C)NEP(F)N F(S). We may show that p = p’. Assume that p # p’, from the
Opial condition, we get

lim ||z, —p|| = liminf|z,, —p| <liminf||z,, —p'||
— 00 n—-oo n—-aoo
= lim ||z, —p'| = liminf ||z,, — |
n—-o00 j—00
< liminf ||z, —pl|= lim [z, —p].
j—00 n—-00

This is a contradiction. So, we have p = p’. This implies that
x, = p€VIA,C)NEP(F)NF(S).

Step 5. Finally we prove p = lim, .o Pr(s)nvi(4,c)nEP(F)Tn-
Let z, = Pyr(a,c)nEP(F)NF(S)Tn, O that for all p € VI(A,C)NEP(F)NF(S), we
have

[ —pll = llan(zn —p) + (1 — n)[SPo(2n — Anyn) — |l
< len —pll-
By Lemma 3.2, we have that {z,} converges strongly to some pg € VI(A,C) N
EP(F)N F(S).
Since (p — zn, 2n, — Tn) > 0 then, we have (p — pg,po — p) > 0, and hence p = py =
lim,, o0 Pyr(a,c)nEP(F)NF(S)Tn- This completes the proof. 1

Using Theorem 3.1, we prove two corollaries in Hilbert spaces.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be monotone and a k-Lipschitz continuous mapping of C into H. Let S
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be a monexpansive mapping from C into itself such that F(S)NVI(A,C) # 0. Let
{zn} and {yn} be sequences in C defined as follows:

Tog =o€ C,
Tpt1 = anZy + (1 — ap)SPo(zn — A\Ayy,), Yn >0,

for alln € N, where {a,} C (a,b) C (0,1) and {\,} is a sequence in (0,1/k). Then
{zn} and {yn} converges weakly to the same point z € F(S)NVI(A,C) where z =
limy, 0 Pr(s)nvI(A,c)Tn-

Proof. Put F(x,y) =0 for all z,y € C and r,, = 1 for all n € N in Theorem 3.1.
Then, we have u,, = Pcx,, = Z,,. So, from Theorem 3.1 the sequence {x,,} generated
in Corollary 3.1 converges weakly to Pr(s)nvri(4,0)Tn- 1

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be monotone and a k-Lipschitz continuous mapping of C into H. Let S be
a nonexpansive mapping from C into itself such that VI(A,C) # (0. Let {x,} and
{yn} be sequences in C defined as follows:

zo=x € C,
(318) Yn = PC(J:n - /\nA:En)a
Tyl = QnZp + (1 - an)SPC(xn - )\nAyn)a Vn > 0,

for all n € N, where {a,} C (a,b) C (0,1) and {\,} is a sequence in (0,1/k).
Then {x,} and {yn} converges weakly to the same point z € VI(A,C) where z =
limy, o0 PVI(A,C)xn'

Acknowledgements. The authors would like to thank Professor Somyot Plubtieng
and the referees for reading this paper carefully, providing valuable suggestions and
comments, and pointing out a major error in the original version of this paper. More-
over, we would like to express our thanks to the Faculty of Science KMUTT Research
Fund for their financial support. The first author was supported by the Faculty of
Applied Liberal Arts RMUTR Research Fund and King Mongkut’s Diamond schol-
arship for fostering special academic skills. The second author was supported by the
Thailand Research Fund and the Commission on Higher Education under project
no. MRG5180034.

References

[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium prob-
lems, Math. Student 63 (1994), no. 1-4, 123-145.

[2] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in
Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.

[3] S.D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math.
Programming 78 (1997), no. 1, Ser. A, 29-41.

[4] K. Goebel and W. A. Kirk, Topics in Metric Fized Point Theory, Cambridge Univ. Press,
Cambridge, 1990.

[6] G. M. Korpelevi¢, An extragradient method for finding saddle points and for other problems,
Ekonom. i Mat. Metody 12 (1976), no. 4, 747-756.



[6]

[7]

(8]

[9

(10]
(11]

(12]

(13]

(14]

(15]

Weak Convergence Theorem by an Extragradient Method 185

F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and
convergence rates, Set-Valued Anal. 6 (1998), no. 4, 313-344.

N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for
nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), no. 1,
191-201.

S. Plubtieng and R. Punpaeng, A new iterative method for equilibrium problems and fixed
point problems of nonexpansive mappings and monotone mappings, Appl. Math. Comput. 197
(2008), no. 2, 548-558.

T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter
nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1,
227-239.

S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems
and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515.
W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and
monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428.

J.-C. Yao and O. Chadli, Pseudomonotone complementarity problems and variational inequal-
ities, in Handbook of generalized convezity and generalized monotonicity, (2005), 501-558,
Springer, New York.

Y. Yao and J.-C. Yao, On modified iterative method for nonexpansive mappings and monotone
mappings, Appl. Math. Comput. 186 (2007), no. 2, 1551-1558.

L. C. Zeng, S. Schaible and J. C. Yao, Iterative algorithm for generalized set-valued strongly
nonlinear mixed variational-like inequalities, J. Optim. Theory Appl. 124 (2005), no. 3, 725—
738.

L.-C. Zeng and J.-C. Yao, Strong convergence theorem by an extragradient method for fixed
point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), no. 5,
1293-1303.



Bulletin of the Iranian Mathematical Society Vol. XX No. X (200X), pp XX-XX.

A RELAXED EXTRAGRADIENT APPROXIMATION
METHOD OF TWO INVERSE-STRONGLY MONOTONE
MAPPINGS FOR A GENERAL SYSTEM OF
VARIATIONAL INEQUALITIES, FIXED POINT AND
EQUILIBRIUM PROBLEMS'

P. KUMAM*

Communicated by

ABSTRACT. We introduce and study an iterative sequence for find-
ing the common element of the set of fixed points of a nonexpan-
sive mapping, the set of solutions of an equilibrium problem and
the solutions of the general system of variational inequality for two
inverse-strongly monotone mappings. Under suitable conditions,
some strong convergence theorems for approximating a common el-
ement of the above three sets are obtained. Moreover, using the
above theorem, we also apply to finding solutions of a general sys-
tem of variational inequalities and a zero of a maximal monotone
operator in a real Hilbert space. As applications, at the end of paper
we utilize our results to study the zeros of the maximal monotone
and some convergence problem for strictly pseudocontractive map-
pings. Our results include the previous results as special cases ex-
tend and improve the results of Ceng et al. [4], Yao and Yao [18§]
and some others.

MSC(2000): Primary: 47J05; 47TH09;47H10; Secondary: 49J30
Keywords: Equilibrium problems; Fixed point; Variational inequality; relaxed extragradient
TThis research was financially supported by the Thailand Research Fund and the Commission
on Higher Education under grant no. MRG5180034.
Received:, Accepted:
*Corresponding author

(© 2008 Iranian Mathematical Society.



2 P. Kumam

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Recall that a mapping T of H into itself is called nonex-
pansive if ||Tz —Ty|| < ||z —y|| for all z,y € H. A point z € C'is a fixed
point of T provided Tx = x. Denote by F(T') the set of fixed points of
T; that is, F(T) = {x € C : Tx = z}. Let f be a bifunction of C x C
into R, where R is the set of real numbers. The equilibrium problem
for f:C x C — R is to find x € C such that

(1.1) f(z,y) >0foralyeC.

The set of solutions of (1.1) is denoted by EP(f). Given a mapping
T:C — H,let f(z,y) = (Tx,y — z) for all z,y € C. Then z € EP(f)
if and only if (Tz,y —2) > 0 for all y € C, ie., z is a solution of
the variational inequality. Numerous problems in physics, optimization,
and economics reduce to finding a solution of (1.1). In 1997 Combettes
and Hirstoaga [5] introduced an iterative scheme of finding the best
approximation to initial data when EP(f) is nonempty and proved a
strong convergence theorem.

Let A : C — H be a mapping. The classical variational inequality,
denoted by VI(A,C), is to find u € C such that

(1.2) (Au,v —u) >0

for all v € C. The variational inequality has been extensively studied in
the literature. See, e.g. [1][6][17] [19] [20] and the references therein. A
mapping A of C into H is called monotone if

(1.3) (Au — Av,u —v) >0,

for all u,v € C. A mapping A of C into H is called a-inverse-strongly-
monotone if there exists a positive real number « such that

(1.4) (Au — Av,u —v) > af Au — Av|?,

for all u,v € C. It is obvious that any « -inverse-strongly-monotone
mapping A is monotone and Lipschitz continuous. For finding an el-
ement of F(S)NVI(A,C), Takahashi and Toyoda [12] introduced the
following iterative scheme:

(1.5) Tnt1 = @y + (1 — an)SPo(zy, — MyAxy,)

for every n = 0,1,2, ..., where 290 = = € C,«, is a sequence in (0, 1),
and A, is a sequence in (0, 2cr). Recently, Nadezhkina and Takahashi [7]
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and Zeng and Yao [20] proposed some new iterative schemes for finding
elements in F'(S) N VI(A,C). In 1976, Korpelevich [2] introduced the
following so-called extragradient method:

ro=x € C,
(1.6) Tp = Po(xn — MAzy),
Tnt1 = Po(zy — M AZy)

for all n > 0, where A\, € (0, %), C is a closed convex subset of R™ and
A is a monotone and k-Lipschitz continuous mapping of C' in to R™ .
He proved that if VI(C, A) is nonempty, then the sequences {z,} and
{Zy}, generated by (1.6), converge to the same point z € VI(C, A).

Motivated by the idea of Korpelevichs extragradient method Zeng and
Yao [20] introduced a new extragradient method for finding an element of
F(S)NVI(C, A) and obtained the following strong convergence theorem
under some suitable conditions . Let {z,} and {y,} be sequences in C
defined as follows:

r1=u € C,
(1.7) Yn = PC(xn - AnAl'n)a
zn = apu + (1 — ap)SPo(xn — A\yAyy,), Yn >0,

Then the sequence {z,,} and {y,} converges strongly to the same point
Pr(s)nvi(c,a)zo proved that lim, o || Zn1+1—2y[ = 0. Later, Nadezhkina
and Takahashi [7] and Zeng and Yao [20] proposed some new iterative
schemes for finding elements in F(S) N VI(C,A). In the same year,
Yao and Yao [18] introduced the following iterative scheme: Let C' be a
closed convex subset of real Hilbert space H. Let A be an a— inverse-
strongly monotone mapping of C' into H and let S be a nonexpansive
mapping of C into itself such that F(S)NVI(C, A) # (). Suppose x1 =
u € C and {z,}, {yn} are given by (1.7) where {a,}, {Bn}, {7n} are three
sequences in [0, 1] and {\, } is a sequence in [0, 2a]. They proved that the
sequence {x, } defined by (1.7) converges strongly to common element of
the set of fixed points of a nonexpansive mapping and the set of solutions
of the variational inequality for a-inverse-strongly monotone mappings
under some parameter controlling conditions. After that, Plubtieng and
Punpaeng [9] introduced an iterative scheme:

FWnow) + 75U = Y, Yo — T0) >0, Vu € C;
(1'8) Yn = PC('rn - )\nAxn)
Tptl = QpU + ann + ’YnSPC(yn - AnAyn)a
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for approximating a common element of the set of fixed points of a non-
expansive mapping and the set of solutions of the equilibrium problem
and obtained a strong convergence theorem in a real Hilbert space.

Let C be a closed convex subset of real Hilbert space H. Let A, B :
C — H be two mappings. We consider the following problem of finding
(x*,y*) € C x C such that
(1.9) MNMy* +2* —y*,x —2") >0, VxeCl,

. (uBzx* +y* —x*,x —y*) >0, Vaxel,

which is called a general system of variational inequalities where A > 0
and p > 0 are two constants. In particular, if A = B, then problem
(1.9) reduces to finding (z*,y*) € C' x C such that

(1.10) MNMy*+2* —y*,x—2*) >0, VaeCl,

’ (WAzx* +y* —a*,z —y*) >0, Vrel,

which is defined by Verma [14] and Verma [15], and is called the new
system of variational inequalities. Further, if £* = y*, then problem
(1.10) reduces to the classical variational inequality VI(C, A).

Recently, Ceng et al. [4], introduced the following iterative scheme
by a relaxed extragradient method. Let the mappings A,B: C — H
be a-inverse-strongly monotone and (-inverse-strongly monotone, re-
spectively. Let S : C — C be a nonexpansive mapping and suppose
x1 =u € C and {z,} is generated by

(1 11) Yn = PC(xn - ,UB‘Tn)
Tptl = QpU + 5nxn + SPC’(Z/n - /\Ayn)a n>1,

where A € (0,2a), u € (0,20), and {a,}, {6}, {7} are three sequences
in [0,1] with ay, + By, + 9 = 1, Yn > 1. Then, they proved that the
iterative sequence {x,} converges strongly to some point zg € C.

In this paper, motivated and inspired by the above results, we will
introduce a new iterative scheme (3.1) below for finding a common el-
ement of the set of fixed points of a nonexpansive mapping, the set of
solutions of an equilibrium problem, and the solutions of a general sys-
tem of variational inequality problem for two inverse-strongly-monotone
mappings in a Hilbert space. Then we prove some strong convergence
theorems which are connected with Ceng et al. [4] Takahashi and Taka-
hashi’s result [13] and Zeng and Yao’s result [20]. Our results of this
paper extended and improved the corresponding results of Ceng et al.
[4], Plubtieng and Punpaeng [9], Su et al. [10] and many others.
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2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-, -)
and let C be a closed convex subset of H. Let H be a real Hilbert space.
Then

(2.1) lz—ylI* = [lz)* = lylI*> — 2(z — y,y)
and
(22) Az + 1= Nyl? = Alzl? + 1 = Vllyll> = A1 = Az —yl?

for all z,y € H and X € [0,1]. For every point € H, there exists a
unique nearest point in C', denoted by Pox, such that

|z — Pox| < |lx —y| forallyeC.
Pc is called the metric projection of H onto C. It is well known that Po
is a nonexpansive mapping of H onto C' and satisfies
(2.3) (x —y, Pox — Poy) > || Pox — Poy|?

for every z,y € H. Moreover, Pox is characterized by the following
properties: Pox € C and

(2.4) (x — Pox,y — Pox) <0,

(2.5) o =yl > |l — Poall? + |ly — Poal?

for all x € H,y € C. It is easy to see that the following is true:
(2.6) ueVI(C,A) & u= Pc(u— NAu),\ > 0.

The following lemmas will be useful for proving the convergence result
of this paper.

Lemma 2.1. (Osilike and Igbokwe [8]) Let (E,(.,.)) be an inner product
space. Then for all x,y,z € E and o, 3,7 € [0,1] with a + [+~ =1,
we have

laz+By+yz|* = allzl*+Bllyl*+v]2l*~abllz—yl* —arllz—2]*~Bylly—=]*.

Lemma 2.2. (Suzuki [11]) Let {z,} and {yn} be bounded sequences
in a Banach space X and let {B,} be a sequence in [0,1] with 0 <
liminfy, 00 B < limsup,,_,o, B < 1. Suppose xp41 = (1 - Bn)yn + Bnn
for all integers n > 0 and limsup,, o (||Yn+1 — Ynl| — [|Tn+1 — znl]) < 0.
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Lemma 2.3. (Goebel and Kirk [3]) Let H be a Hilbert space, C' a closed
conver subset of H, and T : C — C a nonexpansive mapping with
F(T) # 0. If {x,} is a sequence in C weakly converging to x € C' and
if {(I —T)x,} converges strongly to y, then (I —T)x =y.

Lemma 2.4. (Xu [16]). Assume {a,} is a sequence of nonnegative real
numbers such that

an+1 < (1 —ap)an +6p, n >0

where {ay, } is a sequence in (0,1) and {5, } is a sequence in R such that

(1) >opzy an = 00
(2) limsup,,_, i—’; <0 or > 07 |0 < o0.

n=1
Then lim,, o an = 0.

For solving the equilibrium problem for a bifunction f: C' x C' — R,
let us assume that F' satisfies the following conditions:
(Al) f(z,z) =0 for all z € C;
f is monotone, i.e., f(z,y) + F(y,xz) <0 for all z,y € C;
for each x,y,z € C, limy—o f(tz + (1 — t)z,y) < f(z,y);
for each z € C,y — f(x,y) is convex and lower semicontinuous.

— — —

(A2
(A3
(A4

The following lemma appears implicitly in [1]

Lemma 2.5. (Blum and Oettli [1]) Let C' be a nonempty closed convex
subset of H and let f be a bifunction of C x C into R satisfying (A1)-
(A4). Let r >0 and x € H. Then, there exists z € C' such that

1
f(z,y)—k;(y—z,z—a:) >0 forally € C.

The following lemma was also given in [5].

Lemma 2.6. (Combettes and Hirstoaga [5]) Assume that f : CxC — R
satisfies (A1)-(A4). Forr >0 and x € H, define a mapping T, : H — C
as follows:

T (x) :{ZGC:f(z,y)—F%(y—z,z—a:) >0,V € O}

for all z € H. Then, the following hold:
(1) T, is single- valued;
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(2) T, is firmly nonexpansive, i.e., for any x,y € H, ]\Tra:—TTy||2 <
<T7“55 - Ty, x — y);

(3) F(T) = EP(f);

(4) EP(f) is closed and convezx.

Lemma 2.7. (Ceng et al. [4, Lemma 2.1]) For given z*,y* € C x
C, (z*,y*) is a solution of problem (1.9) if and only if x* is a fized point
of the mapping G : C — C' defined by

G(z) = Po[Po(x — pBx) — AMAPc(x — pBx)], Vz e C,

where y* = Po(x* —puBx™) A, p are positive constants and A, B : C — H
are two mappings.

Remark 2.8. Let A: C — H be an a-inverse-strongly-monotone. For
each u,v € C and A > 0, we have

I(I = A)u — (I = A)o|? = [[(u =) = A(Au — Av)||?
= |ju—]® = 2\(u — v, Au — Av)
+22 || Au — Av||?
(2.7) < lu—v]]? + A\ = 20)||Au — Avl%.

So, if A < 2a, then I — AA is a nonexpansive mapping from C to H.

We note that the mapping G : C — C' is a nonexpansive mapping
provided A € (0,2«), 1 € (0,25).
Throughout this paper, the set of fixed points of the mapping G is denote
by €.

3. Main results

In this section, we introduce an iterative scheme by the relaxed ex-
tragradient approximation method for finding a common element of the
set of fixed points of a nonexpansive mapping, the set of solutions of an
equilibrium problem, and the solution set of the general system of vari-
ational inequality problem for two inverse-strongly monotone mappings
in a real Hilbert space. We prove that the iterative sequences converge
strongly to a common element of the above three sets.
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Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H.
Let f be a bifunction from C x C' — R satisfying (A1)-(A4) and A, B :
C — H be a and (-inverse-strongly monotone mappings, respectively.
Let S be a nonexpansive mapping of C into itself such that F/(S) NN
EP(f) # 0 and given x1 = uw € H arbitrarily. Then the sequences

{zn}, {yn} and {u,} are given by
f(unay)+%<y_umun_$n>207 Yy e C;
(31 yn= Po(un — pBuy,)
Tyl = apt + Bpxy + ’YnSPC(yn - )\Ayn)avn €N,

where X € (0,2a),p € (0,208) and {an}, {Bn}, {7} are three sequences
in [0,1] and {ry} C (0,00) satisfying the following conditions:

(i) an + Bp+vm =1,

(i) limp oo 0 = 0,> 07y = 00,

(iii) 0 < liminf, o By < limsup,,_,o On < 1,
(iv) liminf, oo 7y > 0,d 07 |1 — 1| < 0.

Then {x,} converges strongly to z € F(S)NQ N EP(f), where z =
Prs)nonep(pu and (z,y) is a solution of problem (1.9), where y =
Po(z — uBz).

Proof. Let z* € F(S)NQ N EP(f), and let {7} } be a sequence of
mappings defined as in Lemma 2.6 and w,, = T}, x,. Then z* = Sz*,
x* =T, x* and

x* = Po[Po(z* — uBx™) — NMAPo(x* — pBzx™)),

where put y* = Po(z* — uBz*) and v, = Po(yn — Myy). Then z* =
Po(y* — MAy*) and

Tntl = QU + BnZn + S Pouy.

For any n € N, we have

(3.2) [un — ™| = ([ Trpxn = Tr, 2" < [l — 2.
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Since P is nonexpansive and from remark 2.8, we obtain that I — AA
and I — puB are nonexpansive. Then, it follows that

|1 Pc(yn — AMyn) — Po(y* — My®)|)?

lvn — 2]

< (= AA)yy — (I = AA)y*|?
< lyn —y*II?
= ||Po(up — pBuy) — Po(z* — pBx*)|?
< |[(un — uBuy) = (z* — pBa")|?
< lun — 2|
< lon — $*||2
Thus, we also have
Jonss =@l = llant + Bozn + AnSvn — 7|
< anllu = 2% + Bullzn — 2% + Anllon — 27|
< an(llu =) + Bullen — 27| + llzn — 27|
< an([u—2) + (1 — an)llzn — =7
< max{lu — 2], [lzy — =[]}

Ju - 2|l

Therefore the sequence {z,} is bounded. Hence, we also that the sets
{un}, {vn} {Ayn}, {Bx,} and {Sv,} are bounded. Moreover, by non-
expansiveness of I — AA, I — uB and Pp, we get

lvnt1 —vnll = [|Po(Yns1 — Ayni1) — Po(yn — Myn) ||

< Nn1 = AMynta) = (Yo — AAyn) ||
< T = AA)yn — (I = AA)yn|
< lynt1 — yall
= ||Po(unt1 — pBuny1) — Po(un — pBuy)||
< (T = pBYunsr — (I — B

(3.3) < s —

On the other hand, from u; = T, x;, where j = n,n + 1, we have

(3.4) f(uj,y)+%<y—uj,uj—mj> >0 forally € C.

J
Putting y = u,41 and y = u, in (3.4), we get

1
f(unaun-l—l) + 7<un+1 — Up, Up — xn) Z 0
n
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and
1

T'n+1

f(un—f—la Un) + <Un — Un+1, Un+1 — $n+1> > 0.

From (A2) that

Up —Tpn  Unil — Tptl

<un+1 — Un, > >0

Tn T'n+1

and hence
Tn

<Un+1 — Up, Up — Un+1 + Unt1 — Tp — (un—i—l - mn—l—l)> > 0.

Tn+1

Since liminf,, .., r, > 0, without loss of generality, let us assume that
there exists a real number ¢ such that r, > ¢ > 0 for all n € N. Then,
we have

T'n

Hun+1 - unHQ < <un+1 — Up, Tnyl — Tn + (1 - )(Un+1 - $n+1)>

r
< ungr — un|{lTng1 — zal] + 11— - [[unt1 — Tny1ll}
T'n+1
and hence
1
[un+1 —unll < |lZn1 — 20l + P41 — rallltns1 — Toial]
Tn+1
L
(3'5) < H‘/EnJrl - ‘an + E|7‘n+1 - Tn|>

where L = sup{||u, — x,|| : n € N}. Substituting (3.5) into (3.3), we
obtain

L
(3.6) [vnt1 —onll < [[Zngr — 2ol + E’Tn—i—l — Tl

Let xp41 = (1 — Bn)zn + Bnxyn. Thus, we get

Y — Tn+1 — 6nxn _ QpU + fYnSPC(yn - )‘Ayn) _ QpU + ’Ynsvn
" 1- ﬂn 1- /Bn 1- /371
it follows that

41U + Yny15Unt1 U + YnSun

T A = 1- /Bn—i-l 1- ﬁn
An+1 Qnp Tn+1
= — U+ Svpe1 — Sv
(1_ﬁn+1 1_ﬁn) 1_ﬁn+1( n n)
+( Int n )Svy,.

1_/8n+1_1_/8n
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Combining (3.6) and (3.7), we obtain

2041 = 2nll = |Zn+1 — 24
< I el + 2 o = vl
HyZo = LSt e = 2l
< I 2l + T2
2 =
L St = e — 2
< I Bl + DSl + T2 =

From (ii), (iv) and (v) imply that

limsup(||zn+1 — 2nl| = [[Znt1 — 24l]) <O0.
n—oo

Thus, by Lemma 2.2, we have

(3.7) lim ||z, — x| =0.
n—oo
Consequently,
(3.8) lim ||zp+1 — 2n|| = lm (1 = 5,)]|zn — 20| = 0.
n—oo n—oo

By (iv), (v), (3.3) and (3.5), we also have

11

[vn41 = vnll = 0, [[unt1 — unll — 0 and [[ynt1 — yull — 0 as n — oo.

Since

Tptl — Tn = QpU + BpTp + 1Svn — Tp = an(u — zp) + Y (Svn
it follows from (ii) and (3.8) that

(3.9) nh_}H;O |zr, — Sv,|| = 0.

Since z* € F(S)NQ N EP(f), we observe that

1P (yn — AMyn) — Po(y™ — AAy”)||

1(Ygn = AAyn) = (y* — Ay

[[on — 27|

|(un, — ANAuy,) — (2% — MNAz™)||

[un — 7|

VAN VARRVANRVAN

(3.10)

1y = 47|l = [ Po(un — AMun) — Po(z™ — Az

- .’En),
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l|n — x*H2 = |7, 20 — Trnm*HZ <ATr,zn — Ty, x", 2y — %)
(up — ™, 2y — )
1
= Slllun - 2 + [Jon — 2|7 = [|zn — unl?)

then |[u, — 2*||? < [|zn — 2*||? — |20 — un||?. From (3.10), we have

|Zni1 — 2|2 = [lant + Ba@n + mSv, — 2*||
< anllu—2*|? + Bullzn — 27|17 + | Svn — 2|2
< anllu—2*|? + Bullzn — 27|* + nllon — 2¥|
< apllu — 2 + Bullzn — 2P + nllun — 2|
< agllu— 2+ Bullan — 2|

+yn(lzn — 2| = 2 — unl®)

anllu =¥ + (B + ) |20 — 2112 = WllTn — unll®

omllu = a2 + (1 = o) [lon — 2"|* = yallzn — unl®

(3.11) < apllu— 2P + lzn — 22— vallzn — unl?
and hence
Yo llTn — UnHQ < apllu - 1‘*||2 + |lzn — x*HQ — [|Znt1 — 33*”2
(3.12) < apllu — 2 + lzn — nga | (lzn — 2| + 201 — =)

by (ii) and (3.8) imply that
(3.13) lim ||z, — u,|| = 0.
n—oo

Since liminf,, .o 7, > 0, we have

(3.14) lim |2t
n—o00 r

. 1
| = lim —||z, —uy| = 0.
n n—oo TTL
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Again since oy, — 0 and (3.8) imply that ||u, — x| — 0 as n — oo.
From (3.2), (3.10) and Lemma 2.1, we get

01 —2*[|?

< apllu — 2 + Buallzn — 2| + nllvn — 27|
< anllu— 2?4 Ballzn — 217 + v {ll(yn — AMyn) — (y° — AAy")|1?}
< anllu— 2?4 Bullzn — 217 + v fllyn — v*II°
A = 20)|| Ay, — Ay* |}
= anllu— 2*|° + Bullen — 2|1 + nllun — 2*|?
A — 20) || Ay, — Ay*|?
= anllu—2** + (Bn + V) |lzn — 2|
+ A A — 20) || Ay, — Ay*|?
= anflu—2* + (1 — an)|lzn — 2| + 1 A(X — 20) | Ay, — Ay*||?
and

Zns1 — %2 < anllu— 22 + Bllzn — 2> + Yullvn — ¥
< anllu— 2 + Ballen — 2 + vallyn — 27|
< anllu = 2P + Bullen — ¥ + v dll(un — pBuy)
—(¢* — pBz*)|*}
< anHU_‘T*H2+ﬂonn_x*”Q‘i"Yn{Hun_m*HZ

iy — 20)]| Bun — B )
= apllu— &*|? + Bullzn — 2¥|° 4+ mllen — 27|
+ymp(p — 26)|| Bun, — Ba*||?
< anllu—a2*|? + |lzn — 2P + yup(p — 26)| Bun, — Bz*||*.

Hence, by (3.15) and (3.15), we obtain

YA (2a = A)[| Ay, — Ay*|)?
*H2

omllu — 2" + ||z — 2*|* = [|lzns1 — 27

anllu = 2|* + (len = 2*[| + llzns1 — ) (lzn — 2| = l2nr1 —2])

IN

anllu = 2*|* + (len — 2" || + lzns1 — 2 ll2n — znsl
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nt(26 — ) || Buy — Ba*||?
anllu—a*(* + [|an — 2*|* = eps — 27|
anllu— | + (|on — & + |2n1 — ) (l2n — 2*|| = [&n41 — 27]))

amllu = 2" + (lzn — 2" [ + 21 — 2" D]len — 2nsa |-

From (ii), (iii), (3.8), (3.15) and (3.15), respectively, we also have

(3.15)

|Ayn, — Ay™|| — 0 and ||Bu,, — Bz™|| — 0 as n — oo.

By (2.3), we obtain

Hyn -

yIP = IPe(un — pBun) - Po(e® — uBa®)?
< {(un — uBug) — (" — pBa),yn — )
= A — pBun) — (& — pB") | + o — o
—|[(un — pBup) = (z* — pBa*) — (yo — y*)|I*}
< gllhin =21+ lgn — " ~ [l — yn) — p(Bun — B

—(z* —y")|*}

1 *112 * (|12 * *
= Slllun = 271° + [y = 271° = [I(un — yn) = (2" = y7)

+2u{(un — yn) — (z* — y*), Bup, — Bz*) — (/|| Bup, — Bz*|*}

I

which implies that

Hyn -

Y12 < = 2" = [lun — ga) — (@ = )]
+20(un — ya) — (a" — "), Bu, — Ba®) — || Buy, — Ba" |
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Thus, we observe that

01 — 2|

< anflu—a|P + Ballen — 27| + ullvn — 277
< anllu— 2P + Ballen — " IP +nllyn — v
< agllu =2 + Ballen — 2|2
Fn{llun — 27 = | (un — yn) — (2" = y)|I?
+20((un — yn) — (" = y*), Bun — Ba™) — || Buy, — Bz*||*}
< agllu =" + Bl — 2|2
+mllzn — &% =l (wn = ya) = (" = y")II?
+29n | (un = yn) = (2" = y") || Bun — Ba*|| = yops?|| Bun — B>
< apllu =2+ (1= an)llen — 21 = Aall(un = yn) — (" =y

2l (un = yn) — (2 = y*) ||| Bun — Ba™||

it follows that

Yl (un = yn) = (= = )|

< anllu =2 + lzn — 2|7 ~ llzng — 27|
+ 29| (un = yn) = (2" = y")[l[| Bun — Ba™||
< anllu =2 + znts = 2all(lzn — 2| + lznsr — 27%)

(3.16) 29l (un = yn) = («" = y)l[| Bun — Ba™|.

From (ii), (3.15), (3.8) and ||Bu,, — Bz*|| — 0 as n — oo, we have

(3.17) |(un, — yn) — (2% — y*)|| — 0 as n — oo.
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We observe that

IN

IN

IN

IN

IN

From (3.9), (3.17) and ||Ay, — Ay*|| — 0,as n — oo, it follows that

We note that

| Svn — vy

1(Yn — vn) + (2% — y)|I?

(g — %) = [Po(yn — Muyn) — 2*]|1?

Hyn — My, — (?J* — My")

—[Pc(yn — Myn) — 2*] + A(Ay, — Ay*)|)?

Hyn — My, — (y* - )‘Ay*)HQ

—[[Pe(yn — AMyn) — Poly™ = My

+F2MAyy — Ay, (Yn — vn) + (27 —y"))

”yn — My, — (3/* - )\Ay*)Hz

—|SPe(yn — AMyn) — SPe(y” — AMy*)||?
+2M[Ayn — Ay [[[(yn — vn) + (2" = y")||

lyn — AMyn — (y* — MAY) |1 — [|Sv, — Sz*|?
+2M[Ayn — Ay |[[[(yn — vn) + (2" = y")||

lyn — Myn — (y* — NAy™) — Sv, — Sx™||

X([lyn — Ayn — (y* — AAY")|| + [|Sv,, — Sz™|)
+2M[Ayn — AY*[[[(yn — vn) + (2" = y")||

|2 — Svn + 2" —y" — (20 — yn) — AM(Ayn — Ay")||
X([lyn — AMyn — (y* — MY + [|Sva — Sz*)
+2M[Ayn — Ay*[[[(yn — vn) + (% =y

(g —vn) + (@" —y")I| = 0, (n — o).

< [1Svn = @nll + lzn = unll + [[(un = ya) = (2 =y

I (yn —vn) + (@ =y,

from above, we obtain

(3.18)

lim ||Sv, — vy,|| = 0.
n—oo

Next, we show that

lim sup(u — zp, x,, — 20) < 0,
n—oo
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where zo = Pp(s)nonep(r)u- To show this inequality, we choose a subse-
quence {vy, } of {v,} such that

lim sup(u — 2g, Svy, — 20) = lim (u — zp, Svp, — 20).
n—00 1—00

Since {vp, } is bounded, there exists a subsequence {Um-j} of {vy, } which
converges weakly to z. Without loss of generality, we can assume that
Up, — 2. From |Sv, — v, — 0, we obtain Sv,, — z. Let us show
z € EP(f). Since u,, = T, x,,, we have

1
f(unay) + 7<y — Up, Up — 1371) >0,y e C.

Tn

From (A2), it follow that

1
7<y — Un, Up — xn> > f(yyun)
T'n
and hence (y — up,, %) > f(y,up,). From ||u, — x| — 0, ]|z, —

Svp|| — 0, and ||Sv, — vy|| — 0, we get u,, — z. Since % — 0, it
follows by (A4) that 0 > f(y, z) for all y € C. For ¢t with 0 <t <1 and
y e C,let yy =ty+ (1 —t)z. Since y € C and z € C, we have y, € C
and hence f(y:,z) <0. So, from (A1) and (A4) we have 0 = f(y;, yt) <
£ (o) + (1 — 1) f (51, 2) < tF(yr) and hence 0 < (ys, y). From (A3),
we have f(z,y) >0, for all y € C and hence z € EP(f). By Opial’s
condition, we obtain z € F(S). Finally, by the same argument as that
in the proof of [4, Theorem 3.1, p. 384-385] , we can show that z € .
Hence z € F(S)NQ N EP(f). Now from (2.4), we have

limsup(u — 20, z, — 20) = limsup({u — zp, Sv, — 20)
n—oo n—oo
= lim (u — 20, Svn, — 20)
1—0Q

(3.19) = (u—20,2—20) <0.
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Finally, we show that z,, — 2o, where 20 = Pp(s)nvia,c)nepryu. We
observe that
”33n+1 — ZO||2 = <Oznu + Bny
+YnSUn — 20, Tny1 — 20)
= op(u — 20, Tny1 — 20) + Bu(Tn — 20, Tnt1 — 20)

+'7n<5vn — 20, Tn+l — ZO)

1
< iﬁn(Hxn - Z0H2 + | Tp1 — ZOHQ) + o (u — 20, Tnt1 — 20)
1
#3970 = 20l + 1701 = 20l
1
< 5{(1 — an)|len — 20)1* + |2nt1 — 20/}

‘|‘an<u — 20, Tnt1 — Z0>
which implies that
2041 = 20l < (1 = an)||zn = 20]1* + 200 (u = 20, Znt1 — 20)-

Finally by (3.19) and Lemma 2.4, we get that {z,} converges to zo,
where zo = Pr(s)nanep(f)u- This completes the proof. O

By Theorem 3.1, we obtain the following corollaries:

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C x C — R satisfying (A1)-(A4) and
A C — H be a-inverse-strongly monotone. Let S be a nonexpansive
mapping of C into itself such that F(S) N QN EP(f) # 0. Let f be
a contraction of H into itself and given xo € H arbitrarily. Suppose
x1=u € C and {z,},{yn} and {u,} are given by

f(unay)+%<y_umun_xn> > 0, Vy € C;
(3.20) y, = Po(un — Nuy)
Tpt+1 = Qpu + Brnn + 'YnSPC(yn - AAyn),Vn €N,

where A € (0,2a) and {an}, {Bn}, {7} are three sequences in [0,1]. If
{an}, {Bn}, {1} and X € [a,b] for some a,b with 0 < a < b < 2« and
{rn} C (0,00) satisfying the following conditions:

(1) an + Bn+ v =1,

(i) limy oo 0y = 0,30 @ty = 00,

(iii) 0 < liminf, o By < limsup,_,. Bn < 1,

(iv) Hminf, oo rn > 0,207 [rpg1 — ra] < 00,
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then {x,} converges strongly to u = Pp(s)nonep(f)U-

Proof. Put A = B and A = p for n € N in Theorem 3.1, we obtain
the desired easily. O

Setting Py = I, we obtain the following corollary:

Corollary 3.3. Let C be a closed convexr subset of a real Hilbert space
H. Let f be a bifunction from C x C — R satisfying (A1)-(A4) and
A C — H be a-inverse-strongly monotone. Let S be a nonexpansive
mapping of C into itself such that F(S)NVI(A,C)NEP(f) # (. Let f
be a contraction of H into itself and given xy € H arbitrarily. Suppose
z1=u € C and {z,},{yn} and {u,} are given by

f(unvy)+ 1<y_un7un_xn>207 Vyec;

Tptl = anun—|— BnZn + mSPo(un — AMuy,),Vn € N,
where A € (0,2a) and {an}, {Bn}, {7} are three sequences in [0,1]. If
{an}, {Bn}, {1} and X € [a,b] for some a,b with 0 < a < b < 2a and
{rn} C (0,00) satisfying the following conditions:

(i) O‘n“‘ﬁn"’%l = 1;

(i) limy ooy = 0,07 | @y = 00,

(iii) 0 < liminf, s By < limsup,, . On < 1,

(iv) Hminf, oo rn > 0,207 [rpg1 — ra| < 00,
then {x,} converges strongly to z € F(S)NVI(C,A) N EP(f), where
z = Pps)ynvi(c,AnEP(f)U-

(3.21)

Using Theorem 3.1, we obtain the following two corollaries in Hilbert
space:

Corollary 3.4. (Ceng et. al [4, Theorem 3.1]) Let C' be a closed convex
subset of a real Hilbert space H. Let A, B be aand B-inverse-strongly
monotone mappings of C' into H, respectively and let S be a nonexpan-
sive mapping of C into itself such that F(S)NQ # (. Suppose x1 = u € C
and {xn},{yn} are given by

Yn = Po(rn — pBzy)

Tntl = Qpl + ﬁnl'n + 'VnSPC(yn - )\Ayn)a
where X € (0,2a),p € (0,20) and {an},{Bn}, {1} are three sequences
in [0,1] and {r,} C (0,00) satisfying the following conditions:
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(i) Qp + P+ =1,
(i) limp oo 0 = 0,> 07y = 00,
(iii) 0 < liminf, oo By < limsup,,_,o On < 1,
then {z,} converges strongly to Pp(gnou and (z*,y*) is a solution of
problem (1.9), where y* = Po(x* — pBx*).

Proof. Put F(x,y) =0 for all z,y € C and r, = 1 for all n € N in
Theorem 3.1 . Then, we have u, = Pcx, = ©,. So, from Theorem 3.1
the sequence {z,} converges strongly to Pp(synqu. O

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H .
Let A be an a—inverse-strongly monotone mapping of C' into H and let S
be a nonexpansive mapping of C' into itself such that F(S)NVI(A,C) #
0. Suppose 1 =u € C and {x},{yn} are given by
yn = Po(x, — NAxy,)
Tn+l = QpU + BnTn + 'YnSPC(yn - )\Ayn)>
where A € [0,2a] and {an}, {Bn}, {1} are three sequences in [0,1] sat-
isfying
(i) limy oo 0y = 0,3 00 @y, = 00,
(iii) 0 < liminf, oo By < limsup,,_,o On < 1,
then {zy} converges strongly to Pp(g)nqu. Moreover, we also have (z*,y*)
is a solution of problem (1.10), where y* = Po(x* — NAx™).

Proof. Take A = B and A = g in Corollary 3.4, we can get the
desired conclusion easily. O

4. Applications

A mapping T : C — C is called strictly pseudocontractive on C' if
there exists k with 0 < k < 1 such that

| Tz — Ty||* < ||z —y||*> + k||(I = T)x + (I — T)y|?, for all 2,y € C.

If £ = 0, then T is nonexpansive. Put A =1 —T, where T : C — C
is a strictly pseudocontractive mapping with k. Then we have, for all
x,y € C,

I(Z = A)z — (I = Ayll* < llz — yll* + k| Az — Ay|*.
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On the other hand, we have
11— A)z — (I = A)yll? = o — yl? — 2(x — y, Az — Ay) + | Az — Ay|2.

Hence we have

1—k
(v =y, Az — Ay) > —— || Az — Ayl

Then, A is %— inverse strongly monotone.
Now, using Theorem 3.1, we state a strong convergence theorem for a

pair of nonexpansive mappings and strictly pseudocontractive mappings.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C x C — R satisfying (A1)-(A4) and let
S be a nonexpansive mappings of C' into itself and let T,V be strictly
pseudocontractive mapping with constant k of C into itself such that
F(S)NF(T)NEP(F) # (. Suppose x1 = u € C and {x,},{yn} and
{un} are given by

F(tn,y) + 7=y — tn, un — 2) > 0, Yy e C;
yn = (1 — p)uy + pVuy,
Tpt1 = apt + Bun + ¥S((1 = N yn + ANTYn),
for all n € N, where {an}, {Bn}, {1} are three sequences in [0,1], A €
[07 1- k] and p € [07 1 - l] If {an}7 {5n}7 {’Vn} {Tn} - (07 OO) satisfying
(i) n + B+ =1,
(i) limp oo 0 = 0,> 07 = 00,
(iii) 0 < liminf,, o B, < limsup,,_,., On < 1,
(iv) Hminf, oo rn > 0,207 [rpg1 — ra] < 00,

then {x,} converges strongly to z = Pr(s\nr(T)nEP(f)U-

Proof. Pt A=1—-T and B=1—-V. Then A is %—inverse—
strongly monotone and B is 1T_l—inverse—stromgly monotone. We have
that F(T) is the solution set of VI(A,C) and Qi.e., F(T) =VI(A,C) <
problem (1.9) < problem (1.10) (see cf. Ceng et al. [4, Theorem 4.1

pp. 388-389]) and
PC(un_:U’Bun) = (1_M)un+uvun and PC'(yn_)\Ayn) = (1_A)yn+)\Tyn-

Therefore, by Theorem 3.1, the conclusion follows. Il

Therefore, the conclusion follows immediately from Theorem 4.1.
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Corollary 4.2. (Ceng et al. [4, Corollary 3.3]) Let C be a closed convex
subset of a real Hilbert space H. Let S be a monexpansive mapping of
C' into itself and let T,V be strictly pseudocontractive mappings with
constant k of C into itself such that F(S)NF(T) # 0. Suppose x1 = u €
C and {x,} is given by

yn = (1 — p)ay, + Vo,
Tl = QpU + Bnn + 'Yns((l - /\)yn + )\Tyn)a
for all n € N, where {an},{0n}, {1} are three sequences in [0,1], X €
0,1 —k] and p € [0,1 —=1]. If {an},{Bn}, {m} satisfying the following
conditions:
(i) an+/8n+7n =1,
(i) limp oo ap = 0,> 07 ap = 00,
(iii) 0 < liminf, oo By < limsup,,_, o, On < 1,
then {x,,} converges strongly to x* = Prs)nou and (x*,y") is a solution
of problem (1.10), where y* = (1 — p)z* — pVa*).

Corollary 4.3. Let C be a closed convex subset of a real Hilbert space
H. Let S be a nonexpansive mapping of C into itself and let T be a
strictly pseudocontractive mapping with constant k of C' into itself such
that F(S)NF(T) # 0. Suppose x1 = u € C and {x,} is given by
Yn = (1 = Nz + A\Txpy
Tnt1 = At + By + Y S(1 = Nyn + ATyn),
for all n € N, where A\ € [0,1 — k] and {an},{Bn}, {7} are three se-
quences in [0,1] and satisfying
(i) Qn + B+ 0 =1,
(i) limp oo 0 = 0,> 07ty = 00,
(iii) 0 < liminf, o0 By < limsup,_ . Bn < 1,
then {z,} converges strongly to Pp(s)np(T)u-

The following three theorems are connected with the problem of ob-
taining of a common element of the sets of zeroes of a maximal monotone
operator and an a—inverse-strongly monotone operator.

Theorem 4.4. Let C be a nonempty closed convexr subset of H. Let f
be a bifunction from C x C to R satisfying (Al) — (A4) and let A be
an a—inverse-strongly monotone operator in H and B : H — 28 be q
mazimal monotone operator such that A=1(0)N B~1(0) N EP(f) #. Let
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JE be the resolvent of B for eachr > 0. Let {z,,} and {u,} be sequences
generated by x1 =u € H and

(4.1) Yn = (un — AMup)

Tpt+1 = QpU + Brnan + 'YnJrB(yn - )\Ayn)a

where {\} C [c,d] for some [c,d] C (0,2a), {an}, {Bn}, {7} and {ry}
satisfy the following conditions:

(1) an+ Bn+ 7 =1,
('lZ {an} C [07 1]7 Z;L.O:() an = 007 an - 0;

)
(iZZ) {Tn} C (07 OO); liminf,, o 7 > 0, Zzozl ‘rn-l—l - Tn’ < 00,
(1v) 0 < liminf, .~ Bn < limsup,,_,. On < 1.

Then, {z,} and {u,} converge strongly to z € A~1(0)NB~L(0)NEP(f),
where z = PA—l(O)ﬂB—l(O)EP(f)ml .

Proof. Since A7'0 = V(I, A) and F(JP) = B71(0). Putting Py = I
then, by Theorem 3.1, we obtain the desired result easily. O

Acknowledgments

The author would like to thank Professor Somyot Plubtieng for
drawing my attention to the subject and for many useful discussions. 1
would like to thank the Thailand Research Fund and the Commission on
Higher Education under the project no. MRG5180034. Finally, I would
like to thank the editor Professor Saeid Azam and the referees for
their careful reading and valuable suggestions to improve the writing of
this paper.

REFERENCES

[1] E. Blum and W. Oettli, From optimization and variational inequalities to equi-
librium problems, Math. Student. 63 (1994) 123-145.

[2] G.M. Korpelevich, The extragradient method for finding saddle points and other
problems, Matecon 12 (1976) 747-756.

[3] K. Goebel and W. A. Kirk, Topics on Metric Fixed-Point Theory, Cambridge
University Press, Cambridge. England, 1990.

[4] L.-C. Ceng, C.-Y. Wang and J.-C. Yao, Strong convergence theorems by a relaxed
extragradient method for a general system of variational inequalities, Math.
Meth. Oper. Res., 67 (2008) 375-390.

[5] Combettes, P. L. and Hirstoaga, S.A.: Equilibrium programming in Hilbert
spaces,J. Nonlinear Conver Anal. 6 (2005) 117-136.



24

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]
[15]
[16]

(17]

(18]

(19]

20]

P. Kumam

P. Kumam, Strong Convergence Theorems by an Extragradient Method for Solv-
ing Variational Inequalities and Equilibrium Problems in a Hilbert space, Turk.
J. Math, 33 (2009) 85-98.

N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragra-
dient method for nonexpansive mappings and monotone mappings, J. Optim.
Theory Appl. 128 (2006) 191-201.

M.O. Osilike and D. 1. Igbokwe, Weak and strong convergence theorems for fixed
points of pseudocontractions and solutions of monotone type operator equations,
Comp. Math. Appl. 40 (2000) 559-567.

S. Plubtieng and R. Punpaeng, A new iterative method for equilibrium problems
3 and fixed point problems of nonexpansive mappings and monotone mappings,
Appl. Math. Comput. 197 (2008) 548-558.

Y. Su, et al., An iterative method of solution for equilibrium and optimization
problems, Nonlinear Anal. 69 (2008) 2709-2719.

T. Suzuki, Strong convergence of Krasnoselskii and Manns type sequences for
one-parameter nonexpansive semigroups without Bochner integrals, J. Math.
Anal. and Appl. 305 (2005) 227-239.

W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive
mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003) 417-428.
S. Takahashi and W. Takahashi, Viscosity approximation methods for equilib-
rium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl.
311 (2007) 506-515.

RU. Verma, On a new system of nonlinear variational inequalities and associated
iterative algorithms, Math. Sci. Res. Hot-Line 3 (8) (1999) 65-68.

RU. Verma, Iterative algorithms and a new system of nonlinear variational in-
equalities. Adv. Nonlinear Var. Inequal. 3 (8) (2001) 117-124.

H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J.
Math. Anal. Appl. 298 (2004) 279-291.

J.-C. Yao and O. Chadli, Pseudomonotone complementarity problems and vari-
ational inequalities, In: Handbook of Generalized Convexity and Monotonicity
(Eds.: J.P. Crouzeix, N. Haddjissas and S. Schaible) Springer Netherlands (2005)
501-558.

Y. Yao and J.-C. Yao, On modified iterative method for nonexpansive mappings
and monotone mappings, Appl. Math. Comput. 186 (2007) 1551-1558.

Y. Yao, Y. C. Liou and J.-C. Yao, An Extragradient Method for Fixed Point
Problems and Variational Inequality Problems, J. Ineq. and Appl. Volume 2007
Article ID 38752, (2007) 12 pages doi:10.1155/2007/38752.

L.C. Zeng and J.-C. Yao, Strong convergence theorem by an extragradient
method for fixed point problems and variational inequality problems, Taiwanese
J. Math. 10 (2006) 1293-1303.

P. Kumam

Department of Mathematics, Faculty of Science, King Mongkut’s University of Tech-
nology Thonburi, Bang Mod, Thrungkru, Bangkok 10140.Thailand.

Email: poom.kum@kmutt.ac.th



Hindawi Publishing Corporation

Fixed Point Theory and Applications
Volume 2009, Article ID 374815, 32 pages
doi:10.1155/2009 /374815

Research Article

A Hybrid Extragradient Viscosity
Approximation Method for Solving Equilibrium
Problems and Fixed Point Problems of Infinitely
Many Nonexpansive Mappings

Chaichana Jaiboon and Poom Kumam

Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi,
Bangkok 10140, Thailand

Correspondence should be addressed to Poom Kumam, poom.kum@kmutt.ac.th
Received 25 December 2008; Accepted 4 May 2009
Recommended by Wataru Takahashi

We introduce a new hybrid extragradient viscosity approximation method for finding the common
element of the set of equilibrium problems, the set of solutions of fixed points of an infinitely
many nonexpansive mappings, and the set of solutions of the variational inequality problems for
p-inverse-strongly monotone mapping in Hilbert spaces. Then, we prove the strong convergence
of the proposed iterative scheme to the unique solution of variational inequality, which is the
optimality condition for a minimization problem. Results obtained in this paper improve the
previously known results in this area.

Copyright © 2009 C. Jaiboon and P. Kumam. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Recall
that a mapping T of H into itself is called nonexpansive (see [1]) if ||Tx — Ty| < ||x — vl
for all x,y € H. We denote by F(T) = {x € C : Tx = x} the set of fixed points of T. Recall
also that a self-mapping f : H — H is a contraction if there exists a constant a € (0,1) such
that | f(x) — f(y)|l < allx —y||, forall x,y € H. In addition, let B: C — H be a nonlinear
mapping. Let Pc be the projection of H onto C. The classical variational inequality which is
denoted by VI(C, B) is to find u € C such that

(Bu,v-u) >0, VveC. (1.1)
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For a given z € H, u € C satisfies the inequality

(u-z,v-u)>0, Yve(, (1.2)

if and only if u = Pcz. It is well known that Pc is a nonexpansive mapping of H onto C and
satisfies

(x -y, Pcx - Pcy) > || Pex - Pcy||2, Vx,y € H. (1.3)
Moreover, Pcx is characterized by the following properties: Pcx € C and forall x € H,y € C,

(x = Pcx,y — Pcx) <0, (1.4)

||x—y||2 > ||l = Pex|* + ||y—ch||2. (1.5)
It is easy to see that the following is true:
ueVI(C,B) = u=Pc(u-ABu), 1>0. (1.6)

One can see that the variational inequality (1.1) is equivalent to a fixed point problem.
The variational inequality has been extensively studied in literature; see, for instance, [2—
6]. This alternative equivalent formulation has played a significant role in the studies of the
variational inequalities and related optimization problems. Recall the following.

(1) A mapping B of C into H is called monotone if

(Bx-By,x-y)>0, Vx,yeC. (1.7)

(2) A mapping B is called f-strongly monotone (see [7, 8]) if there exists a constant
B > 0 such that

2, vx,yeC. (1.8)

(Bx-By,x-y) > p|lx-y|

(3) A mapping B is called k-Lipschitz continuous if there exists a positive real number
k such that

|Bx-Byl|| <k||x-y|, VxyeC. (1.9)

(4) A mapping B is called p-inverse-strongly monotone (see [7, 8]) if there exists a
constant > 0 such that

(Bx-By,x-vy) >p||Bx-By|’>, vx,yeC (1.10)
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Remark 1.1. 1t is obvious that any p-inverse-strongly monotone mapping B is monotone and
1/p-Lipschitz continuous.
(5) An operator A is strongly positive on H if there exists a constant y > 0 with the

property

(Ax,x) >¥|x|?, VxeH. (1.11)

(6) A set-valued mapping T : H — 2! is called monotone if for all x,y € H, f € Tx,
and g € Ty imply (x-y, f-g) > 0. A monotone mapping T : H — 2 is maximal if the graph
of G(T) of T is not properly contained in the graph of any other monotone mapping. It is
known that a monotone mapping T is maximal if and only if for (x, f) € HxH, (x-y, f-g) >
0 for every (v, g) € G(T) implies f € Tx. Let B be a monotone map of C into H, and let Ncv
be the normal cone to C at v € C, thatis, Ncv={w e H: (u—v,w) >0, forall u e C},.

To = (1.12)

Bv+ Ncv, ve C,
0, veg C.

Then T is the maximal monotone and 0 € Tv if and only if v € VI(C, B); see [9].
(7) Let F be a bifunction of C x C into R, where R is the set of real numbers. The
equilibrium problem for F : C x C — Ris to find x € C such that

F(x,y) >0, VyeC. (1.13)

The set of solutions of (1.13) is denoted by EP(F). Given a mapping T : C — H, let
F(x,y) = (Tx,y — x) for all x,y € C. Then, z € EP(F) if and only if (Tz,y —z) > 0
for all y € C. Numerous problems in physics, saddle point problem, fixed point problem,
variational inequality problems, optimization, and economics are reduced to find a solution
of (1.13). Some methods have been proposed to solve the equilibrium problem; see, for
instance, [10-16]. Recently, Combettes and Hirstoaga [17] introduced an iterative scheme
of finding the best approximation to the initial data when EP(F) is nonempty and proved a
strong convergence theorem.
In 1976, Korpelevich [18] introduced the following so-called extragradient method:

xo=x€C,
Yn = Pc(x, — ABxy,), (1.14)

Xn41 = Pc (xn - -)LB]/n)

for alln > 0, where A € (0,1/k),C is a closed convex subset of R”, and B is a monotone and
k-Lipschitz continuous mapping of C into R". He proved that if VI(C, B) is nonempty, then
the sequences {x,} and {y,}, generated by (1.14), converge to the same point z € VI(C, B).
For finding a common element of the set of fixed points of a nonexpansive mapping and
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the set of solution of variational inequalities for p-inverse-strongly monotone, Takahashi and
Toyoda [19] introduced the following iterative scheme:

xo € C chosen arbitrary,
(1.15)
Xp+1 = ApXp + (1 = a,)SPc(x,, — Ay,Bxy,), VYn>0,

where B is f-inverse-strongly monotone, {a,} is a sequence in (0, 1), and {\,} is a sequence
in (0,2p). They showed that if F(S)NVI(C, B) is nonempty, then the sequence {x,} generated
by (1.15) converges weakly to some z € F(S)NVI(C, B) . Recently, liduka and Takahashi [20]
proposed a new iterative scheme as follows:

xo =x € C chosen arbitrary,
(1.16)
Xni1 = apx + (1 —a,)SPc(x, — A\yBxy,), Yn >0,

where B is f-inverse-strongly monotone, {a,} is a sequence in (0, 1), and {\,} is a sequence
in (0,2p). They showed that if F(S)NVI(C, B) is nonempty, then the sequence {x,} generated
by (1.16) converges strongly to some z € F(S) N VI(C, B).

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [21-24] and the references therein. Convex
minimization problems have a great impact and influence in the development of almost all
branches of pure and applied sciences. A typical problem is to minimize a quadratic function
over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H:

.1
Ia?el({}E(Ax,x) - (x,b), (1.17)

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping
S on H, and b is a given point in H. Moreover, it is shown in [25] that the sequence {x;,}
defined by the scheme

Xni1 = €nY f(Xn) + (1 — €2A)Sxn (1.18)

converges strongly to z = Pri)(I — A + yf)(z). Recently, Plubtieng and Punpaeng [26]
proposed the following iterative algorithm:

F(un,y) + l(y —Up, Uy —Xy) >0, VYye€H,
Tn (1.19)

Xn1 = €Y f(Xn) + (I — €, A)Suy,.
They prove that if the sequences {€,} and {r,} of parameters satisfy appropriate condition,
then the sequences {x,} and {u,} both converge to the unique solution z of the variational

inequality

((A-yf)g,q9-p) 20, pe€F(S)NEP(F), (1.20)
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which is the optimality condition for the minimization problem

1
i - - 1.21
xeF(rSr)lrlﬁgP(F) 2 (Ax,x) = h(x), (1.21)

where h is a potential function for y f (i.e., h/(x) = y f(x) for x € H).

Furthermore, for finding approximate common fixed points of an infinite countable
family of nonexpansive mappings {T,} under very mild conditions on the parameters.
Wangkeeree [27] introduced an iterative scheme for finding a common element of the set of
solutions of the equilibrium problem (1.13) and the set of common fixed points of a countable
family of nonexpansive mappings on C. Starting with an arbitrary initial x; € C, define a
sequence {x,} recursively by

F(u,,y) + rl<y—un,un—xn> >0, VyecC,

n

Yn = Pc (un - )LnBun)r (122)
Xn+1 = anf(xn) + ﬁnxn + YnSnPC (un - -)LnByn)r Vn > 1/
where {a,}, {#.}, and { Yn} are sequences in (0,1). It is proved that under certain appropriate

condltlons 1mposed on {a,},{Pn}, {yn}, and {r,}, the sequence {x,} generated by (1.22)
strongly converges to the unique solution g € N2, F(S,) N VI(C,B) N EP(F), where p =
Pre FsonvicBnep(r) f (q) which extend and improve the result of Kumam [14].

Definition 1.2 (see [21]). Let {T,,} be a sequence of nonexpansive mappings of C into itself,
and let {y, | be a sequence of nonnegative numbers in [0,1]. For each n > 1, define a mapping
W,, of C into itself as follows:

un,n+1 = I/
un,n = ﬂnTnun,nJrl + (1 - ﬂn)I/
Upni = pn1Tpalyn + (1 - //ln—l)lr

Ui = Tl peer + (1= pic) I, (1.23)
Uni-1 = pr1TeaUppe + (1 - 1)1,

Upp = ool s + (1 - o)1,
W, = llnll = /41T1Un,2 + (1 - //11)1

Such a mapping W, is nonexpansive from C to C, and it is called the W-mapping generated
by Tl,Tz,. . .,Tn and Hi, K2,/ Un-
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On the other hand, Colao et al. [28] introduced and considered an iterative scheme for
finding a common element of the set of solutions of the equilibrium problem (1.13) and the
set of common fixed points of infinitely many nonexpansive mappings on C. Starting with an
arbitrary initial xg € C, define a sequence {x,} recursively by

F(un,y) + l(y—un,un -x,) >0, VyeH,
Tn (1.24)

Xns1 = €nY f (%) + Pxn + (1= P)I — € A) Wyty,

where {¢,} is a sequence in (0, 1). It is proved [28] that under certain appropriate conditions
imposed on {e,} and {r,}, the sequence {x,} generated by (1.24) strongly converges to z €
Ny, F(T,) N EP(F), where z is an equilibrium point for F and is the unique solution of the
variational inequality (1.20), that is, z = Pre F(T,)NEP(F) I-(A-7))=

In this paper, motivated by Wangkeeree [27], Plubtieng and Punpaeng [26], Marino
and Xu [25], and Colao, et al. [28], we introduce a new iterative scheme in a Hilbert space H
which is mixed by the iterative schemes of (1.18), (1.19), (1.22), and (1.24) as follows.

Let f be a contraction of H into itself, A a strongly positive bounded linear operator on
H with coefficient y > 0, and B a p-inverse-strongly monotone mapping of C into H; define
sequences {x,}, {y.}, {kn}, and {u,} recursively by

x1 =x € C chosen arbitrary,

1
F(ttn,y) + —(y =ty = 2%2) 20, Yy €C,

Yn = Pc(un, — A\yBuy,), (1.25)

kn = ayuy, + (1 - “n)PC (un - /\nByn)/
X1 = €nY f(Xn) + Buxn + (1= )] — €,A)Wyky, Vn>1,

where {W,,} is the sequence generated by (1.23), {e,}, {a,}, and {B,} C (0,1) and {r,} C
(0, o0) satisfying appropriate conditions. We prove that the sequences {x,}, {y.}, {k.} and
{un} generated by the above iterative scheme (1.25) converge strongly to a common element
of the set of solutions of the equilibrium problem (1.13), the set of common fixed points of
infinitely family nonexpansive mappings, and the set of solutions of variational inequality
(1.1) for a p-inverse-strongly monotone mapping in Hilbert spaces. The results obtained in
this paper improve and extend the recent ones announced by Wangkeeree [27], Plubtieng
and Punpaeng [26], Marino and Xu [25], Colao, et al. [28], and many others.

2. Preliminaries

We now recall some well-known concepts and results.

Let H be a real Hilbert space, whose inner product and norm are denoted by (-, -) and
Il - ||, respectively. We denote weak convergence and strong convergence by notations — and
—, respectively.
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A space H is said to satisfy Opial’s condition [29] if for each sequence {x,} in H which
converges weakly to point x € H, we have

liminf||x, — x|| < liminf||x, - y||, Vye€H, y#x. (2.1)
n—oo n—oo

Lemma 2.1 (see [25]). Let C be a nonempty closed convex subset of H, let f be a contraction of
H into itself with a € (0,1), and let A be a strongly positive linear bounded operator on H with
coefficient y > 0. Then , for 0 <y <¥/a,

(x-y, (A-y)x=(A-yf)y) > F-ap)|x-y|’, xyeH. (2.2)

That is, A -y f is strongly monotone with coefficient y — ya.

Lemma 2.2 (see [25]). Assume that A is a strongly positive linear bounded operator on H with
coefficient y > 0and 0 < p < A", Then ||I - pA| <1 -py.

For solving the equilibrium problem for a bifunction F : C x C — R, let us assume
that F satisfies the following conditions:

(A1) F(x,x) =0forall x € C;
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0Oforall x,y € C;
(A3) foreach x,y,z € C, limyoF(tz + (1 - t)x,y) < F(x,y);

(A4) for each x € C,y — F(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [30].

Lemma 2.3 (see [30]). Let C be a nonempty closed convex subset of H and let F be a bifunction of
C x Cinto R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € C such that

F(z,y)+%(y—z,z—x>20 Vy e C. (2.3)

The following lemma was also given in [17].

Lemma 2.4 (see [17]). Assume that F : C x C — R satisfies (A1)—(A4). For r > 0 and x € H,
define a mapping T, : H — C as follows:

Tr(x):{zeC:F(z,y)+%<y—z,z—x>20, VyEC} (2.4)

forall z € H. Then, the following holds:

(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,

| Trx - Try”2 <(Tyx-Ty,x-y); (2.5)
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(3) F(T;) = EP(F);
(4) EP(F) is closed and convex.

For each n,k € N, let the mapping U,k be defined by (1.23). Then we can have the
following crucial conclusions concerning W,,. You can find them in [31]. Now we only need
the following similar version in Hilbert spaces.

Lemma 2.5 (see [31]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T1,Ty,... be nonexpansive mappings of C into itself such that N F(T,) is nonempty, and let
U1, Ho, - .. be real numbers such that 0 < p, < b < 1 for every n > 1. Then, for every x € C and
k € N, the limit lim,, _, ,,U,, x exists.

Using Lemma 2.5, one can define a mapping W of C into itself as follows:

Wx = lim Wyx = lim U,,1x (2.6)

n— oo

for every x € C. Such a W is called the W-mapping generated by T;,T>,... and pi, pa, . . ..
Throughout this paper, we will assume that 0 < p, < b <1 for every n > 1. Then, we have the
following results.

Lemma 2.6 (see [31]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
Ty, T, ... be nonexpansive mappings of C into itself such that N F(T,) is nonempty, and let
Y1, M2, - . . be real numbers such that 0 < p,, <b <1 for every n > 1. Then, F(W) = N2>, F(T},).

Lemma 2.7 (see [32]). If {x,} is a bounded sequence in C, then lim,, _, o»||Wx,, — Wy x,|| = 0.

Lemma 2.8 (see [33]). Let {x,}and {z,} be bounded sequences in a Banach space X, and let {3, } be
a sequence in [0,1] with 0 < liminf,  f, <limsup, B, <1.Suppose x,1 = (1= Pn)zn + Prxy
for all integers n > 0 and limsup, . _ (|[Yn+1 = Znll = [|Xnr1 = xul]) < 0. Then, lim,, _, o5 ||z, — x| = 0.

Lemma 2.9 (see [34]). Assume that {a,} is a sequence of nonnegative real numbers such that

Ayl < (1 - ln)an +0, n2x>0, (27)

where {1,,} is a sequence in (0,1) and {o,} is a sequence in R such that
(1) X021 ln = o0
(2) limsup, | _0,/l, <00r 32 |0n| < 0.

Then lim,, _, ,a, = 0.

Lemma 2.10. Let H be a real Hilbert space. Then for all x,y € H,

@) [l + yl* < [lx]* + 2y, x + y);
@) llx +ylP* > %l +2(y, x).
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3. Main Results

In this section, we prove the strong convergence theorem for infinitely many nonexpansive
mappings in a real Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let F be a bifunction
from C x C to R satisfying (A1)—(A4), let {T,,} be an infinitely many nonexpansive of C into itself,
and let B be an p-inverse-strongly monotone mapping of C into H such that © = n% F(T,) N
EP(F)NVI(C,B) #0. Let f be a contraction of H into itself with a € (0,1), and let A be a strongly
positive linear bounded operator on H with coefficient y > 0 and 0 < y < y/a. Let {x,}, {yn},
{ky}, and {u,} be sequences generated by (1.25), where {W,,} is the sequence generated by (1.23),
{en), {an}, and {P,} are three sequences in (0,1), and {r,} is a real sequence in (0, oo) satisfying the
following conditions:
(1) imy,00€y =0, Dy €7 = 00;

(ii) limy oty = 0and 3774 ay = o0;

(iii) 0 < liminf, B, <limsup, , fBn, <1;

(iv) iminf, _ o7, > 0and lim,, _, o |rp1 — 70| = 0;

(v) {An/P} C (1,1 = 0) for some 7,6 € (0,1) and lim,, _, ., A, = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the variational
inequality

((A-yf)z,z-x)>0, VxeO. (3.1)

Equivalently, one has z = Po(I — A +yf)(2).

Proof. Note that from the condition (i), we may assume, without loss of generality, that ¢, <
1- ﬂn)llAll_1 for all n € N. From Lemma 2.2, we know thatif 0 < p < |A|I™, then ||I - pA| <
1-py. We will assume that ||[I-A|| < 1-Y. First, we show that I -\, B is nonexpansive. Indeed,
from the p-inverse-strongly monotone mapping definition on B and condition (v), we have

1T = 1:B)x = (I - LB)y|* = [|(x = y) = Au(Bx - By) |
= ||x - y||* - 2u(x - y, Bx - By) + A2||Bx - By||’
<l gl - 20plBx - Byl BB By (G2)

= [lx = ylI* + u (A - 26) || Bx - By |*

2
7

<llx-y

which implies that the mapping I — A,,B is nonexpansive. On the other hand, since A is a
strongly positive bounded linear operator on H, we have

[All = sup{[{Ax, x)| : x € H, ||x| = 1}. (3.3)
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Observe that
(=B -€e,A)x,x) =1 - B, — ex(Ax, x)
> 1= pn— el Al (3.4)

>0,
and this show that (1 - ,)I — €, A is positive. It follows that

[ (1= )T = enAl| = sup{|[(((1 - pu)] - enA)x, x)| : x € H, |Ix]| = 1}
=sup{1l-pf, —e.(Ax,x) : x € H, ||x|| = 1} (3.5)
Sl_ﬂn_eny-

Let Q = Po, where © :=n?, F(T,,) N EP(F) N VI(C, B). Note that f is a contraction of H into
itself with a € (0,1). Then, we have

[QU-A+yf)(x)-QU-A+y )W)l = [|[Po(T - A+Yyf)(x) - Po(I - A+Yf) ()|l
<(T-A+yf)x) -(I-A+y/) )]l
<= Allllx =yl + [l £ = FW)
<@=-Plx-yl +rallx-yl
= (1-y+ya)|x-yl
=(1-F-ra)llx-y

, VYx,yeH.
(3.6)

Since 0 < 1 - (y — ya) < 1, it follows that Q(I — A + yf) is a contraction of H into itself.
Therefore by the Banach Contraction Mapping Principle, which implies that there exists a
unique element z € H suchthatz=Q(UI - A+yf)(z) =Po(I - A+yf)(2).

We will divide the proof into five steps.

Step 1. We claim that {x,} is bounded. Indeed, pick any p € ©. From the definition of T;, we
note that u, = T, x,. If follows that

l[etn = Il = T, 200 = T p || <[]0 = I (3.7)

Since I — 1, B is nonexpansive and p = Pc(p — 1,Bp) from (1.6), we have

ly» - pll = | Pc(un = 1uBun) = Pc(p — \uBp) ||
< | (un = AnAun) = (p = XuBp) |
= | (T = A A)u, — (I - A,B)p|

(3.8)

< Jlun = pll < lloen = pl-
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Put v, = Pc(u, — A,Byy). Since p € VI(C, B), we have p = Pc(p — 1,Bp). Substituting x =
u, — Ay Ay, and y = p in (1.5), we can write
llon = pII* < llttn = 2uBy = PII” = |4 = 1uBys = 0a®
= |t = PII* = 204 (Byn, 1n = p) + A2 || Bya||”
— Nlttn = vall? + 220 ( By, 1t — v} — 12|| By ||”
(B = 02) = 23 B, oo
= [lttn = pII* = 1w = vall + 20 (Bys, p = 01)
= lltw = pII* = llta = vall* + 20 (Byyn — Bp, p — yu)
+ 20, (Bp,p — Yn) + 2X4u(BYn, Yn — Un).

Using the fact that B is p-inverse-strongly monotone mapping, and p is a solution of the
variational inequality problem VI(C, B), we also have

(Byn—Bp,p—yn) <0,  (Bp,p-yn) <O. (3.10)
It follows from (3.9) and (3.10) that

o = pII” < ||t =PI = lttn = 0ull® + 220 By, Y = 0)
= ”u‘ﬂ _PHZ - ”(un - yn) + (yn - Un)”z +2)tn<Byn,yn - Un>
<l = plI* = Nttn = yull* = |y = oa|? (3.11)
= 2(tn = Yn, Yn — On) + 200 (BYn, Y — Un)

= [l = PI* = lltn = yulI” = 1y = ©nll” + 2(14 = 2uBYs = Y, 00 = y).
Substituting x by u, — 1,,Bu, and y = v, in (1.4), we obtain

(tn — My Bty — Y, Uy — yn) < 0. (3.12)

It follows that

<un - )LnByTl - yn/vn - ]/n> = <un - ')LnBun - yn/vn - yn>
+ (AuBity = 1uBY, On = Yn)
< (AnBity = \BYn, Uy — Y (3.13)
< A | Butw = Byu[ [ = |

An
< — Un — Yn On — Yn||-
5 = ynllllon = yull
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Substituting (3.13) into (3.11), we have

lon =PI < lluw = pII* = llen = yall* = 1y = 2all” + 201t = 11BYn = Y, 00 = yu)

2 2 2 A
< |lwn =pII” = 1w = yull” = llyn = ol +2?||un—yn||||vn—yn||

)L2
<l = pII* = llttn = yul|* = 1|y = 0u]|* + ﬂ—ZH”n = vl + 2w = vl
3.14
2 ) A2 2 (14)
= |Jun = p|” = ||un = yull +E”un_y"”

2 A2 2
= |lun—p|l” + 7! |40 = |
<N =pl* < I - plI"

Setting k,, = a,u, + (1 — a,)v,, we can calculate

l[xne1 = pll = lea(y f (xn) = Ap) + Bu(xn = p) + (1 = fu)T = €nA) (Wakn = p) |
< (1= Pu—end)|[kn = pll + Pullxn =Pl + enlly f (xa) - Ap||
< (1= Pu = end) {an|lun —p|| + A = an) |on - p||}
+ Bullxn =Pl + nly f (xn) - Ap]|
< (1= Pu—end) {an]|xn = pl| + (1 = an)||xa - pl|}
+ Pullxn =Pl + enlly f (xn) - Ap|| (315)
= (1= Pu—end)lxn = pll + Bullxn = p| + nllyf (xn) - Ap||
= (1=ex))[lxn = pll + e[l f(xn) = F(P) || + enlly f (p) - Ap||
< (L-en))||lxn = pll + envallxn - pl| + eally f (p) - Ap||

lyf(p) - Ap||
S

=(1-F-ya)e.)||xn—pl+ T -ya)en - ya

By induction,

,M} neN. (3.16)

Xy — < maxjy ||x1 — —
e~ < max g L2

Hence, {x,} is bounded, so are {u,}, {v,}, {Wuk,}, {f(x4)}, (Bu,}, {ya}, and {By,}.

Step 2. We claim that lim,, , oo || X1 — x,|| = 0.
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Observing that u, = Ty, x, and u,1 = T,

o1 Xn+1, We get

F(un/y) + %(y — Uy, Uy — xn> >0 VYyeH (3.17)

1
F(upi,y) + ﬁ@/ = Ups1, Uns1 — Xps1) 20 Vy € H. (3.18)
n+
Putting y = 41 in (3.17) and y = u, in (3.18), we have

1
F(unz un+1) + _<un+1 — Up, Uy — xn> >0

"
! (3.19)
F(upar, up) + (Un — Uns1, Uns1 — Xpi1) 2 0.
T+l
So, from (A2) we have
<un+1 —u, Un = Xn  Unsl — xn+1> >0, (3.20)
n T+l
and hence
r
<un+1 —Up, Uy —Upy1 + Uyl — X — " nl (Up+1 — xn+1)> >0. (3.21)
n+

Without loss of generality, let us assume that there exists a real number ¢ such thatr, > ¢ >0
for all n € N. Then, we have

T
||un+1 - unllz < <un+1 —Up, Xn+1 — X t+ <1 - >(un+1 - xn+1)>

Tn+l
(3.22)
’
< fttgen - unn{nxm sl + |1 = s = el
Tn+l
and hence
||un+1 - un” < ||xn+1 - xn” + ot |rn+1 - rn|||un+1 - xn+l||
" (3.23)

M,
<HxXne1 = xa|| + T|rn+1 —Tul,
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where M; = sup{|lu, — x,| : n € N}. Note that

051 = Onll < || Pe(ni1 = A1 Byni1) = Pe(ttn — Ay By) ||
< |t = A1 Bynsr = (4 = Xy By) ||
= || (Uns1 = A1 Buysa) = (4 — A1 Buy,)
+ Aui1 (Butns1 — Byna1 — Buy) + L, By|
< || (tns1 = Aps1Bunsr) = (Un — Ap1 Buy) ||
+ Apit (I Buns || + || Bynat || + 11Bunll) + Al Byall
<t = ]l + Anst (1 Bitaa | + || Bymsa || + 1Bunll) + Aul|Bynll,
lkns1 = knll = ll@ns1ttner + (1 = @p41)Onse1 = antty — (1 = &) 04|
= |lans1 (Uns1 — tn) + (Ans1 — An) Uy
+ (1= an1) (Vns1 — Un) + (@ — 1) 04| (3.24)
< anit|uns1 — unll + (1 = an) [[One1 = Onll + [an — ana||[n + ovnl|
= apa1[|Uns1 = tnll + (1 = api1)
* {luns1 = tnll + Xns1 (1Bt | + || Bynsa || + [ Bunll)
+ Ml Byall} + |an = anan |l + vn|
= [t — tnll + (1 = 1) A1 (| Bt | + || Bynaa || + [|Buall)

+ (1= ap1) A || By + ltn — @ ||t + |
M,
<l = x| + Tlrnﬂ —Tul + (1= ape1)
X (||Bun+1|| + ”Bym—l“ + ”Bun”)

+ (1= ap1) A || By || + o — @i |||t + 0]

Setting

o o Xnn — Pnxn _ enyf(xn) + (1= Pp)I — €,A) Wk,

1-p, 1-pa

(3.25)
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we have x,.1 = (1 = Bn)zn + Puxn, n 2 1. It follows that

€n+1Yf(xn+1) + ((1 - ,ﬁn+1)I - €n+1A)Wn+1kn+1

Znl — Zn =

1- ﬁn+1

~ enyf(xn) + (1= o) — €,A) Wik,

1- ﬁn
S Yf(xnﬂ) Yf Xn) + Wi kpa — Wik,
=P 1- ﬂ (3.26)
€n €n+1
A nfn = A n+ kn+
+1_ﬁ" Wak 1_,5n+1 Wl !
€n
= ~1_ [;1 (Yf(anrl) AWn+1kn+1) + (AW kn Yf(xn))
+ Whiikne1 = Whakn + Wik, — Wik,
It follows from (3.24) and (3.26) that
€n+
1Zns1 = zall = 3041 — 20| < 1 _ﬁl . (”Yf(xn+1)” + ”AWn+1kn+1”)
€n
+ 1 _,6 (”AWnkn” + ”Yf(xn)”) + ||Wn+1kn+1 - Wn+1kn||
+ ||Wn+1kn - Wnkn” - ”xn+1 - xn”
€n
-1 aa (”Yf(xn+l)|| + ”AWn+1kn+1||)
- ﬁn+1
€n
+ 1 _ﬁ (”Awnkn” + ”Yf(xn)”) + ||kn+1 - kn”
(3.27)
+ ”Wn+1kn - Wnkn” - ”xn+1 - xn“
€n
ST g = (”Yf(xnﬂ ” + ||AWn+1kn+1||)

1= Pn

n M
5 (AWl + [ f Gl + = =

+ (1- an+1))‘n+1(“Bun+1” + ||Byn+1|| + ”BunH)
+ (1 - an+1))‘n”Byn” + |an - an+l|”un + vn”

+ [[Wasrkn — Wyky||.
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Since T; and U,,; are nonexpansive, we have

Waikn = Waka|l = || 1 Tilnsr pkn — pr Til 2k ||
< ullUnsi2kn = U ksl
= p1 || 2Tl 1 sk — p2 Toll 3k |
< uipo| Ui 3kn — Uy sk |

(3.28)
S U2 - ,un”un+1,n+1 ky, - un,n+1 kn”
n
S MZH#i/
i=1
where M, > 0 is a constant such that ||U+1,n+1kn — Uppr1knl|| < M for all n > 0.
Combining (3.27) and (3.28), we have
€
1Zns1 = znll = l|2%ne1 — x| < 1n—+1(”)’f(xn+1)” + ||AWn+1kn+1”)
- ﬂn+1
€ M
+ 1 . (”AWnan + ”Yf(xn)”) + _1|rn+l - rn|
- ,ﬁn C
+ (1= atne))Anot (|Butmaa || + || Bymoa || + || Buall) (3.29)
+ (1 - an+1))tn||Byn” + |an - an+1|||un + Un”
n
+ MzHlli,
i=1
which implies that (noting that (i), (ii), (iii), (iv), (v),and 0 < y; < b < 1,forall i > 1)
limsup(||zn+1 — Zall = |Xn+1 — xnl]) < 0. (3.30)
n—oo
Hence, by Lemma 2.8, we obtain
lim ||z, — x,]| = 0. (3.31)
n—oo

It follows that

nli_{lgonxnﬂ — x| = nlgl(}o(l - ﬁn)”zn — x| = 0. (3.32)
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Applying (3.32) and (ii), (iv), and (v) to (3.23) and (3.24), we obtain that

UM [|tins1 — ]| = 1im [[Kpa1 — knll = 0.
n—oo n—oo

Since X1 = €ny f(xn) + Puxn + (1 = Pn)I — €, A)W, k,,, we have

10 = Wikl < |lxn = xnsa [l + |01 = Wakal|
= [lxtn = Xt | + [leny £ (n) + Buxtn + ((1 = Bu) I — €2 A) Wik = Wik |
= ||l = Xpsa || + ||€n (Y f () = AWk + B (30 — Wik ||
< loen = et |l + €n(|ly f Cen) || + 1AWRKn 1) + Bullocn = Wakall,

that is

€
I = Waka| < =

< # (Il Fall + 1AW k).

||xn - xn+1|| +

By (i), (iii), and (3.32) it follows that

lim [|[Wky — 24| = 0.
n—oo

Step 3. We claim that the following statements hold:
(1) imy, = oo ||ty — kull = 0;
(ii) limy,— o ||y — Uyl = 0.

Forany p € © :=n>, F(T,,) N EP(F) N VI(C, B) and (3.14), we have

”kn _p”2 = ”‘xn(un -p)+ (1 —ay) (v, —P)”z

< aylltn = p||* + (1 - a)||on - p|®

;

<l =l 0= oI+ (G551 ) -
2 )‘121 2
=l - (551 ) el

)tz

<Jra—plP+a —an>(—2 —1)||un—yn||2.
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(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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Observe that
”xn+1 - P||2 = ” ((1- ﬁn)l - ey A) Wik, - P) + pn(xn - P) + en(Yf(xn) - AP)HZ
= [[((1 = B)T = €2 4) Wik = p) + Buxn = P ||” + 6|y (xn) = Ap||®

+ 2puen(xn —p, ¥ f (xn) - Ap)
+2en(((1 = u)I - €aA) (Wnkn —p), v f (xn) = Ap)

< [(1= Bu = e[ Wakn = p| + Bull 0 - pIIT°
+ &y f(xa) - Ap]?
+ 2puen(xn —p, ¥ f(xn) = Ap)
+2€n(((1 = )] — €nA) (Wakn = p), v f (xn) — Ap)
<[ = Bu - eaDlkn = pll + Bullxn = pII]* + cn
< (1= pu— )k~ pII* + Balza — (3.38)
+2(1 = = &) Ballln = pll[|0 = pll +
< (1= u—ea?)’[lkn = plI* + B llu - p I
+ (1= B = ea)u([lkn = pII* + [l = pII) + s
= [A-eP)’ - 201 - e)Bu + B2 K = > + B2 [l - I
+ (A =em)Bu—B2) (Ilkn = plI* + Il = *) +cn
= (1- &)’ [lkn - pII* - (1= eaT)ull = I’
+ (1= eaf)pulln—pl* + ca
= (1= ea?) (1= Bu — V) [lkn = pII* + (1 = ) Bull 0 = pI|* +
where

cn = €2y f () = Ap||” + 2Buen(xn — p, v (xn) - Ap)

+ 26, (((1 = )] — €nA) (Wikn = p), ¥ f(xn) = Ap).

(3.39)

It follows from condition (i) that

lim ¢, = 0. (3.40)

n—oo
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Substituting (3.37) into (3.38), and using (v), we have

_ _ A2
s —p < (1—€nY)(1—ﬂn—€nY){||xn I <1—an>( : —1) i —ynnz}

P
+ (1= en¥)Bullen = pI* + cn
= (1-e&)’[lxn—plI®
_ _ A2 2
+ (1= exy) (1= B~ €ay) (1 - atn) 7 ll4n = yn|” + cn

2
<ra-plP+a ‘”‘")<E . 1) 0=yl +

It follows that

A
(1= au)6]|un = yal|” < (1 - an)<1 - F) 4 = il

< |lxtn = p|I* = [|xne1 = p[|* + cn

= ([len =Pl = lxne =PI (ll2en = Pl + 2002 = PI1) + €

< lxn = 2wl ([|xn = pI| + 201 = pI|) + cn
Since lim,, _, ,,¢, = 0 and from (3.32), we obtain
tim [|us | = 0
Note that
kn —vn = oy (tn = 0p).
Since lim,, _, ,a,, = 0, we have

lim ||k, — || = 0.
n—oo
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(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
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As B is 1/ p-Lipschitz continuous, we obtain

[[0n = yull = [1Pc(n = 1aByn) = Pe(utn = LnBun) |

< || (un = XuByn) = (un = A Buy) ||

~ L[, - By o
< Hlw -l
then, we get
r}ijr;o||vn -Va| =0. (3.47)
from
et = keall < [l =yl + ||y = 0a| + Il = Kl (3.48)
Applying (3.43), (3.45), and (3.47), we have
nhf;,””" —ky|| =0. (3.49)
For any p € ©, note that T, is firmly nonexpansive (Lemma 2.4), then we have
i =plI* = 1T, 200 = T |
< (T, %n = T, p, Xu = p)
(3.50)

= (Un —p, Xn —p)

1
= 5 (Il =P+ 10 = P> = ln = ).,
and hence

it = pII* < Nl = pII* = ll2tn = 0l (3.51)
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which together with (3.38) gives

I = plI” < (1= eaF) (1= fu = ea?) [l kn = p[I” + (1 = &) Bullxa = p[|” +
= (1-enY) (1~ €y — )
(=10l + it =PI + 2K = s, 1~ )}
+ (1= ) Bulln = plI” + ca
< (1= 67) (1= eaF = ) lkn =
+(L-ed) (1= e = o) un - P’
+ 2(1 = €2¥) (1 = €n¥ = Pu) Ik = tll]|| 1 = p||
+ (1= ead)ullxn = plI* +cn
(1-eny) (1= €ny = ) lIkn — a]?
+ (1= ed) (1= ey = ) { %0 = pII* = llxeu = 0alP}
+ 2(1 - ex¥) (1= enY = Pu) ln = || — p|
+ (1= ex)Bullxn = pl|* +cn
(1-ex¥) (1 - eV = Pu) e — n®
+ (1-ed)(1-e¥ =) llxn -’
— (1 =€) (1= €V = Pu) 120 — unll®
+ 2(1 = €2y) (1 = €nY = Pu) Ik = tall|| e = p||
+ (L=ea)pallxn = pl* +cn
= (1= &)’ |xn = pII* = (1 - ) (1 = e = B) I = el
+ (1-ex¥) (1= €nT = Bu)llkn = 1a®
+ 2(1 = €n}) (1 = €nY = Bu) Ikn — nll||ttn = p|| + cn
= [1-2607 + (&) llen = pII
— (1= €x7) (1 = €Y = Bu) |0 — ual*
+ (1= en¥) (1= €n} = Bu) llkn — tn]?
+2(1 =€) (1 - &7 = Bu) llkn = ttnl [l un = p| + cn

IN

IN

2 —\ 2 2
< lxn =" + (€a¥)"[|xn — Pl
+ (1= en7) (1 = €¥ = Bu) llkn — ta]®

21
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= (1=en7) (1~ e = Bu) lxn — tall®

+ 2(1 =€) (1= €nT = Bu) Ik = all|[0n = p| + -

(3.52)
So
(1~ en?) (1= €nT = Pu)llxn — unl*
< [lxn = pII* = llxwes = pII* + (1) *lln ~ pII*
+ (1= eny) (1= €nY = Bu) llkn — tul|”
+ 2(1 = enY) (1= €aY = Bu) llkn = weull[|en = p|| + cn
= (lxen =Pl =l = PID Clln = Pl + [l = P
(3.53)
+ (@) [l =pI" + (1= &) (1= en¥ = B lon 0]
+ 2(1 = eny) (1 - €nY = Pu) llkn = wnll[|1en = p|| + cn
< Hlen = x| ([l = pl| + [l = pll) + (a7)*[l2n = pII°
+ (=€) (1= en¥ = Pu) llkn = un*
+ 2(1 - eny) (1 = enY = ) Ikn = wnll]|ten = p | + cn-
Using e, — 0,¢, — 0asn — oo, (3.32), and (3.49), we obtain
nhj%o”x" —uy,l| = 0. (3.54)
Since liminf, _, 7, > 0, we obtain
gim || 2= | = i Ly = ] = 0. (3.55)
n—ow| 1y, n— oty
Observe that
[Wattn = || < Wity = Wikl + [[Waky = xul| + |10 = unl
(3.56)

<Nlun = knll + [[Wakn = x| + [[30 — un||-
Applying (3.36), (3.49), and (3.54) to the last inequality, we obtain

lim |W,uy, — u,|| = 0. (3.57)
n— oo



Fixed Point Theory and Applications 23

Let W be the mapping defined by (2.6). Since {u,} is bounded, applying Lemma 2.7 and
(3.57), we have

IWuy, — uy|| < [|Wuy = Whuy|| + [Whty —uy|| = 0 asn — co. (3.58)

Step 4. We claim that limsup, , ((A -yf)z,z - x,) < 0, where z is the unique solution of
the variational inequality ((A-yf)z,z—-x) >0, forall x € ©.

Since z = Po(I — A + yf)(z) is a unique solution of the variational inequality (3.1), to
show this inequality, we choose a subsequence {u,,} of {u,} such that

1im<(A —Yf)z,z—uy,) =limsup((A—yf)z, z - uy). (3.59)

n—oo

Since {u,, } is bounded, there exists a subsequence {uni]_ } of {u,,} which converges weakly to

w € C. Without loss of generality, we can assume that u,, — w. From [|[Wu, — u,|| — 0, we
obtain Wu,, — w. Next, We show that w € ©, where © := N | F(T,,) NEP(F)NVI(C, B). First,
we show that w € EP(F). Since u,, = T,, x,, we have

F(un,y) + %(y — U, Up—Xn) >0, VyeC. (3.60)

If follows from (A2) that

rl(y = Up, Up — Xn) > —F(un,y) > F(y,un), (3.61)

and hence

<y — Uy, unir— Xn; > > F(y,uy,). (3.62)

n;

Since (U, — xy,)/1n, — 0and u,, — w, it follows by (A4) that F(y,w) < 0 for all y € H. For ¢
withO<t<landy € H,lety; =ty + (1 -t)w. Since y € H and w € H, we have y; € H and
hence F(y;, w) < 0. So, from (A1) and (A4) we have

0=F(ye,yi) <tF(yi,y) + (1 -HF (v, w) <tF(yey), (3.63)

and hence F(y;, y) > 0. From (A3), we have F(w,y) > 0 for all y € H and hence w € EP(F).
Next, we show that w € N, F(T,). By Lemma 2.6, we have F(W) = n%, F(T,).
Assume w ¢ F(W). Since u,,, — w and w # Ww, it follows by the Opial’s condition that

lim inf||uy,, — w|| < liminf||u,, - Ww||
1— 00 1— 00
< liminf{uy, Wity || + Wiy, - W] (3.69)

< lim infllu,, — wll,
1— 00
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which derives a contradiction. Thus, we have w € F(W) = N>, F(T;). By the same argument
as that in the proof of [35, Theorem 2.1, Pages 10-11], we can show that w € VI(C, B). Hence
w € 0. Since z = Po(I - A +yf)(2), it follows that

limsup((A-yf)z,z-x,) =limsup((A-yf)z, z - u)

n— oo n—oo

= lim((A—yf)z,z—uni> (3.65)

- ((A=7H)zz-w) <0,
It follows from the last inequality, (3.36), and (3.54) that

limsup(yf(z) - Az, W,k, — z) <0. (3.66)

n— oo

Step 5. Finally, we show that {x,}and {u,} converge strongly to z = Po(I-A+y f)(z). Indeed,
from (1.25) , we have

[Tt

= [leny f (n) + Buxn + (1 = Pu)] — €4 AYWoiky — z]|?

= [[(1 = Bu)T = enA) Wik = 2) + Pu(tn — 2) + €n(y f (2n) = Az) ||

= (1 = B)T = ea &) (Wakn = 2) + uen = 2) || + €2l f () — Az
+ 2Pnen(xn —z,7f(xn) — Az)
+ 2e,( ((1 - ﬁ,,)I - enA) Wik, = 2),vf(xn) — Az)

< [(1 = Pu = eaP) Wik = 2l + Bulln = 2l]* + €2]| £ (xa) — Az]|*
+ 2Pneny(xn — 2, f(xn) = f(2)) + 2Pnen(xn — 2, ¥ f(2) — Az)
+ 2(1 - ﬁn)yen<Wnkn -z, f(xp) = f(2)) + 2(1 - ﬁn)en(Wnkn -z,7f(z) - Az)
- 26,21<A(Wnk,, -2z),yf(z) - Az)

< [ = Bu = D Wakn = 2 + Bullxn - 2l]* + €2|[y f (x) - Az
+ 2Bnenyllxn = 2|||| f(xn) = f(2)|| + 2nen(xn = 2,y f(2) — Az)
+ 2(1= Bu)yenlWakn = z|[[| f (xa) = £ (@) || +2(1 = Bu)en(Wakn - 2,y f (2) - Az)
- 2e2(A(Wyk, - 2),7f(2) - Az)
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< (1= Bu = exDllxn = 2l + Bullva = 2I1]* + €Iy £ (xn) - Az’
+ 2Bnenya| X — z||* + 2Bnen(xn — 2,y (z) — Az)
+ 2(1=Bu)yenalxn — z|* +2(1 = Bn) € Wikn — 2,7 f(z) — Az)
- 2e2(A(Wyk, - 2),yf(z) - AzZ)
= [(1 - &) + 2Buenya+2(1 - Bu)yena]lxn - 27 + elllyf (xn) - Az
+ 2Bnen(xn—2,7f(2) — Az) + 2(1 = B en(Woky — 2,7 f () — Az)
- 2e2(A(Wyk, — 2),7f(2) - Az)
< [1-2(F - ay)en] llxn - I + ¥ elllxn - 21 + €2l y f (xa) - Az
+ 2Bnen(xn—2,7f(2) = AZ) +2(1 = B en(Woky — 2,7 f (2) - Az)
+ 26| AWk, - 2)[|||yf (2) - Az]|
= [1-2(F - ay)ea] lxn - zIP +ex
x{en[FPllxn = 2l + Iy f () - Az
+ 2| AWk, — 2)|l||yf(2) = Az||] + 280 (%0 — 2, Y (2) - Az)
+ 2(1=Ba) (Wakn - 2,y f(2) - Az)).

(3.67)
Since {x,}, {f(x,)}, and {W,k,} are bounded, we can take a constant M > 0 such that
Plicn =217 + [y f () = Az||* + 2l AWakn = 2|y f(2) - Az <M (3.68)
for all n > 0. It then follows that
lltne1 — 2I* < [1=2(F — ay)en] %0 — 2II* + €400, (3.69)
where
On =2Pn(xn — 2,7 f(2) = Az) + 2(1 = Bu) (Wyky, — 2,7 f () — Az) + €, M. (3.70)

Using (i), (3.65), and (3.66), we get limsup, , o, < 0. Applying Lemma 2.9 to (3.69), we
conclude that x, — z in norm. Finally, noticing

lltn — 2l = 1T, xn = Tr, 2|l < llxn — 2|, (3.71)

we also conclude that #, — z in norm. This completes the proof. O
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Corollary 3.2 ([28, Theorem 3.1]). Let C be nonempty closed convex subset of a real Hilbert space
H, let F be a bifunction from C x C to R satisfying (A1)—-(A4), and let {T,} be an infinitely many
nonexpansive of C into itself such that © := N2 F(T,) N EP(F) #0. Let f be a contraction of H into
itself with a € (0,1), and let A be a strongly positive linear bounded operator on H with coefficient
Y >0and 0 <y <y/a.Let {x,} and {u,} are the sequences generated by

x1=x € C chosen arbitrary,
1
Fun,y) + = (Y =tn, tn = xn) 20, VyeC, (3.72)
X1 = €Y f(x0) + Pxn + (1= P)I - €uA) Wy, Yn>1,
where {W,,} is the sequence generated by (1.23), p € (0,1), {€,} is a sequences in (0,1), and {r,} is

a real sequence in (0, oo) satisfying the following conditions:

(i) lim,, , o€, = 0;

(ii) lim inf,, _ o1, > 0 and im,, _, oo |1y01 — 7| = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the
variational inequality

((A-yf)z,z—x) >0, VxeO. (3.73)

Equivalently, one has z = Po(I - A +yf)(2).

Proof. Put B =0, {f,} =, and {a,} = 0 in Theorem 3.1., then y,, = k, = u,,. The conclusion of
Corollary 3.2 can obtain the desired result easily. O

Corollary 3.3. Let C be nonempty closed convex subset of a real Hilbert space H, let F be a bifunction
from C x C to R satisfying (A1)-(A4) and let B be an p-inverse-strongly monotone mapping of C into
H such that © := EP(F) N VI(C, B) #0. Let f be a contraction of H into itself with a € (0,1) and
let A be a strongly positive linear bounded operator on H with coefficient’y > 0and 0 <y <y/a. Let
{xn}, {yn}, {kn}, and {u,} be sequences generated by

x1 =x € C chosen arbitrary,

F(un,y) + rl(y—un,un—xn) >0, VyecC,

Yn = Pc(un — \yBuy,), (3.74)

kn = OplUy + (1 - ‘xn)PC(un - )LnB]/n)r

Xn+l = €an(xn) +ﬂnxn + ((1 _ﬂn)I - €nA)kn, Vn > 1,
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where {€,}, {an}, and {P,} are three sequences in (0,1), and {r,} is a real sequence in (0, co)
satisfying the following conditions:
(1) imy, o€y = 0and >0 €, = o0;
(ii) limy, oy, = 0and X774 ay = o0;
(iii) 0 < liminf, , f, <limsup, | B, <1;
(iv) iminf, _, o7, > 0 and lim,, _, oo |1y41 — 7| = 0;
(v) {Xa/P} C (7,1 = 0) for some 7,6 € (0,1) and lim,, _, , A, = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the variational
inequality

((A-yf)z,z-x)>0, VxeO. (3.75)

Equivalently, one has z = Po(I — A +yf)(2).

Proof. Put T,,x = x for all n € N and for all x € C. Then W,,x = x for all x € C. The conclusion
follows from Theorem 3.1. O

Corollary 3.4. Let C be nonempty closed convex subset of a real Hilbert space H, let {T,} be an
infinitely many nonexpansive of C into itself, and let B be a B-inverse-strongly monotone mapping
of C into H such that © := N7 F(T,,) N VI(C, B) #0. Let f be a contraction of H into itself with
a € (0,1) and let A be a strongly positive linear bounded operator on H with coefficient y > 0 and
0 <y <Yy/a.Let {x,}, {yn}, and {k,} be sequences generated by

x1 =x € C chosen arbitrary,
Yn = Pc (xn - )Lann)r
(3.76)
ky = apx, + (1 - an)PC(xn - )‘nB]/n)/
X1 = €Y [ (%) + Puxn + (1= )] — €, A) Wk, Yn2>1,
where {W,,} is the sequences generated by (1.23), and {e,}, {an} , {Pn} are three sequences in (0, 1)
satisfying the following conditions:
(i) imy o€y = 0and 3771 €y = 00;
(ii) limy oty = 0and 377, ay = o0;
(iii) 0 < liminf, _ B, <limsup, , fn, <1;
(iv) {A4/P} C (7,1 = 0) for some T,6 € (0,1) and lim,, _, ,A,, = 0.
Then, {x,} converges strongly to a point z € © which is the unique solution of the variational
inequality

((A-yf)z,z-x)>0, VxeO. (3.77)

Equivalently, one has z = Po(I — A +yf)(2).
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Proof. Put F(x,y) = 0forall x,y € C and r,, = 1 for all n € N in Theorem 3.1. Then, we have
u, = Pcx, = x,. So, by Theorem 3.1, we can conclude the desired conclusion easily. ]

If A=ILy=1andy, =1-e€, - f, in Theorem 3.1, then we can obtain the following
result immediately.

Corollary 3.5. Let C be nonempty closed convex subset of a real Hilbert space H, let F be a bifunction
from CxC to R satisfying (A1)—(A4), let {T,,} be an infinitely many nonexpansive of C into itself, and
let B be an p-inverse-strongly monotone mapping of C into H such that © := N2>, F(T,) N EP(F) N
VI(C,B)#0. Let f be a contraction of H into itself with & € (0,1). Let {x,}, {yn}, {kn}, and {u,}
be sequences generated by

x1=x € C chosen arbitrary,

F(un,y) + Tl(y—un,un—xn> >0, VyeC,

Yn = Pc(un — XyBuy), (3.78)

k, = anu, + (1 - “n)PC (un - )tnByn)/
Xn+l = enf(xn) + ﬁnxn + Yanknr Vn>1,

where {W,,} is the sequences generated by (1.23), {€,}, {an}, and {p,} are three sequences in (0, 1)
and {r,} is a real sequence in (0, oo) satisfying the following conditions:

@) entPntrm=1
(ii) limy, o€, = 0and >, 1 €, = o0;
(iif) limy, oty = 0and 377 a, = oo;
(iv) 0 <liminf, . f, <limsup, , B, <1;
(v) iminf, _, o7, > 0 and lim,, _, oo |41 — 70| =0,

(vi) {Ay/B} C (7,1 =0) for some 7,6 € (0,1) and lim,, _, ;. A,, = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the
variational inequality

(z-f(z),z-x)>0, VxeO. (3.79)

Equivalently, one has z = Pof(z).
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Corollary 3.6. Let C be nonempty closed convex subset of a real Hilbert space H, let F be a bifunction
from C x C to R satisfying (A1)—(A4) and let {T,,} be an infinite family of nonexpansive of C into
itself such that © := N2 F(T,) N EP(F) #0. Let f be a contraction of H into itself with a € (0,1).
Let {x,} and {u,} be sequences generated by

x1 =x € C chosen arbitrary,
F(un/y) + %(y_”nxun—xﬂ 20/ V]/EC, (380)

Xn+l = enf(xn) + ,ﬁnxn + Yanunz Vn>1,

where {€,}, {an}, and {P,} are three sequences in (0,1), and {r,} is a real sequence in (0, co)
satisfying the following conditions:
(@) entPu+yn=1
(ii) lim, o€, = 0and >,77; €, = o0;
(iii) 0 < liminf, B, <limsup, , fn <1;
(iv) liminf, _, o1y > 0 and limy, _, o |ry41 — 7| = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the variational
inequality

((A-yf)z,z-x)>0, VxeO. (3.81)

Equivalently, one has z = Po(I — A +yf)(2).

Proof. Put B = 0 and {a,} = 0 in Corollary 3.5. then y, = k, = u,. The conclusion of
Corollary 3.6 can obtain the desired result easily. O

4. Application for Optimization Problem

In this section, we shall utilize the results presented in the paper to study the following
optimization problem:

min h(x),
(4.1)
xeC.

where h(x) is a convex and lower semicontinuous functional defined on a closed subset C of
a Hilbert space H. We denote by T the set of solution of (4.1). Let F be a bifunction from CxC
to R defined by F(x,y) = h(y) — h(x). We consider the following equilibrium problem, that
is, to find x € C such that

F(x,y) >0, VYyeC. (4.2)
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It is obvious that EP(F) = T, where EP(F) denotes the set of solution of equilibrium problem
(4.2). In addition, it is easy to see that F(x, y) satisfies the conditions (A1)—(A4) in Section 1.
Therefore, from the Corollary 3.6, we know the following iterative sequence {x,} defined by

x1 € C chosen arbitrary,

1
h(y) - h(uy,) + r—(y—un,un—xn> >0, VyeC (4.3)
Xn+l = €nf(xn) + ﬂnxn + YnlUn,

where {e,}, {B.}, and {y,} are three sequences in (0,1), and {r,} is a real sequence in (0, oo)
satisfying the following conditions:

(i) en"‘ﬂn"‘}’n =1;
(ii) limy o€y =0 and 3,77, €, = co;
(iii) 0 < liminf, , f, <limsup, | B, <1;
(iv) liminf, 1, > 0 and lim,, , o, |ry41 — 7| = 0.
Then, {x,} converges strongly to a point z = Pr f(z) of optimization problem (4.1).

In special case, we pick f(x) =0forallx e Hand §, =0,r,=1,¢e, =1/2foralln €N,
then x,,.1 = 1/2u,, and from (4.3) we obtain a special iterative scheme

h(y) — h(u,) + <y = Up, Uy — 1u,171> >0, VyeC, n>2,
2 (4.4)

h(y) - h(u) + (y — w1, u1 —x1) 20, VyeC.

Then, {u,} converges strongly to a solution z = Pr0 of optimization problem (4.1). In fact, the
z is the minimum norm point on the T.

Therefore, we consider a special from of optimization problem (4.1) which is as
follows: (i.e., is taking h(x) = ||x||)

min ||x||, 45)
x €C. .

In fact, the solution of optimization problem (4.4) is named the minimum norm point
on the closed convex set C. From iterative algorithm (4.4) we obtain the following iterative
algorithm (4.5), and {u,} is defined by

Il =l + (v = o= 50 ) 20, V€€, m22
(4.6)

”y” = |l ]| + (y—ul,ul —X1> >0, VyeC

for any initial guess x; € H. Then, {u,} converges strongly to a minimum norm point on the
closed convex set C.
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Strong Convergence Theorems by an Extragradient Method for
Solving Variational Inequalities and Equilibrium Problems in a
Hilbert Space*

Poom Kumam

Abstract
In this paper, we introduce an iterative process for finding the common element of the set of fixed points
of a nonexpansive mapping, the set of solutions of an equilibrium problem and the set of solutions of the
variational inequality for monotone, Lipschitz-continuous mappings. The iterative process is based on the
so-called extragradient method. We show that the sequence converges strongly to a common element of the
above three sets under some parametric controlling conditions. This main theorem extends a recent result of
Yao, Liou and Yao [Y. Yao, Y. C. Liou and J.-C. Yao, “An Extragradient Method for Fixed Point Problems
and Variational Inequality Problems,” Journal of Inequalities and Applications Volume 2007, Article ID
38752, 12 pages doi:10.1155/2007/38752] and many others.

Key Words: Nonexpansive mapping; Equilibrium problem; Fixed point; Lipschitz-continuous mappings;

Variational inequality; Extragradient method.

1. Introduction

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of H. Recall that a mapping

T of H into itself is called nonexpansive if || Tz — Ty|| < |z — y|| for all z,y € H. Let F be a bifunction of

C x C into R, where R is the set of real numbers. The equilibrium problem for F' : C' x C — R is to find
x € C such that

F(z,y) > 0for ally € C. (1.1)

The set of solutions of (1.1) is denoted by EP(F'). Given a mapping T': C — H, let F(z,y) = (Tx,y—x) for
all z,y € C'. Then z € EP(F) if and only if (Tz,y—2) >0 for all y € C, i.e., z is a solution of the variational

inequality. Numerous problems in physics, optimization, and economics reduce to find a solution of (1.1). In

2000 Mathematics Subject Classification: 47J05, 47J25, 47TH09, 47H10.
*This research was partialy supported by the Thailand Research Fund and the Commission on Higher Education under Grant
No. MRG5180034.
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1997 Combettes and Hirstoaga [2] introduced an iterative scheme of finding the best approximation to initial
data when EP(F) is nonempty and proved a strong convergence theorem.

Let A: C — H be a mapping. The classical variational inequality, denoted by VI(A,C), is to find
x* € C such that (Az*,v —2*) > 0 for all v € C. The variational inequality has been extensively studied in
the literature. See, e.g. [12, 15] and the references therein. A mapping A of C into H is called monotone if

(Au — Av,u —v) >0, (1.2)

for all u,v € C. A is called k-Lipschitz-continuous if there exists a positive constant k such that for all u,v € C

[|[Au — Av|| < E|lu—v]. (1.3)

We denote by F(S) the set of fixed points of S. For finding an element of F(S) NV I(A,C), Takahashi and
Toyoda [9] introduced the iterative scheme

Tnt1 = @nZpn + (1 — @) SPo(x, — A Azy) (1.4)

for every n =0,1,2, ..., where g = x € C, «,, is a sequence in (0, 1), and )\, is a sequence in (0, 2«). Recently,
Nadezhkina and Takahashi [6] and Zeng and Yao [16] proposed some new iterative schemes for finding elements
in F(S)NVI(A,C).

The algorithm suggested by Takahashi and Toyoda [9] is based on two well-known types of methods,
namely, on the projection-type methods for solving variational inequality problems and so-called hybrid or
outer-approximation methods for solving fixed point problems. The idea of “hybrid” or “outer-approximation”
types of methods was originally introduced by Haugazeau in 1968; see [3] for more details.

In 1976, Korpelevich [4] introduced the following so-called extragradient method:
rog=1x € C,
ZTn = Po(z, — M Axy), (1.5)

Tn+1 = Po(xn — A\ AT,)

for all n > 0, where A, € (0, %),C is a closed convex subset of R™ and A is a monotone and k-Lipschitz
continuous mapping of C' in to R™ . He proved that if VI(C, A) is nonempty, then the sequences {x,} and
{Z,}, generated by (1.5), converge to the same point z € VI(C, A).

Motivated by the idea of Korpelevichs extragradient method Zeng and Yao [16] introduced a new
extragradient method for finding an element of F(S) N VI(C, A) and proved the following strong convergence

theorem.

Theorem 1.1 ([16, Theorem 3.1]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A be monotone and k-Lipschitz-continous mapping of C into H. Let S be a nonexpansive mappings from C

into itself such that F(S)NVI(C,A) # 0. Let {x,} and {yn} be sequences in C defined as follows:
o= € C,

Zn = QpZo + (]- - an)SPC(xn - )\nAyn); VYn > 0,
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where {\n} and {a,} satisfy the conditions

(i) Ak C (0,1 —0) for some § € (0,1);

(”) ap C (0’ 1)) Zzozl oy =00, lim, o o, =0,

Then the sequence {x,} and {y.} converges strongly to the same point Pp(synvi(c,a)To provied that

limn—wo H'rn—i-l - 'r”H =0.

In 2007, Yao, Liou and Yao [14] introduced the following iterative scheme: Let C' be a closed convex subset
of real Hilbert space H. Let A be a monotone k-Lipschitz-continous mapping of C' into H and let S be a
nonexpansive mapping of C' into itself such that F(S) NVI(A,C) # 0. Suppose z1 = v € C and {z,}, {yn}

are given by

(1.7)
Tp+1 = QpU + ann + rYnSPC (xn - )\nAyn)a

{ Yn = PC(xn - )\nAxn)
where {an}, {6n}, {7} are three sequences in [0,1]. They proved that the sequence {z,} defined by (1.7)
converges strongly to common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of the variational inequality for a monotone k-Lipschitz-continous mapping under some parameters

controlling conditions.

Recently, Takahashi and Takahashi [10] introduced an iterative scheme:

F(ynau)+L<U_ymyn_xn>ZOa Yu € C;

Tn

Tn4+1 = anf(xn) + (1 — OZn)Tyn, n>1

for approximatiing a common element of the set of fixed points of a non-self nonexpansive mapping and the set
of solutions of the equilibrium problem and obtained a strong convergence theorem in a real Hilbert space.
In this paper, motivated and inspired by the above results, we introduce a new iterative scheme by the

extragradient method as follows: For 1 = u € C' and {z,}, {yn} and {u,} are given by

F(Umy)JrL@*umun*xHZO, Yy € C;

Tn

Tn+1 = anu+ﬂnxn +7nSPC(:Cn - )\nAyn); n Z 15

for finding a common element of the set of fixed points of a nonexpansive mapping, the set of solutions of an
equilibrium problem, and the solution set of the variational inequality problem for a monotone k-Lipschitz-
continous mapping in a real Hilbert space. Moreover, we obtain a strong convergence theorem which is connected
with Yao, Liou and Yao’s result [14], Takahashi and Tada’s result [9] and Zeng and Yao’s result [16].
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2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-,-) and let C' be a closed convex
subset of H. Let H be a real Hilbert space. Then

lz =yl = llzl1* = llyll* - 2(e — ) (2.1)

and
Az + (1= NylI* = A|2]* + (1= VlylI* = A1 = N)[Jz — y]? (2.2)

for all z,y € H and X € [0,1]. For every point = € H, there exists a unique nearest point in C', denoted by
Pcx, such that
|z — Pex| < ||z —y|| forallyeC.

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive mapping of H
onto C and satisfies

(@ =y, Pcw — Pey) > || Pox — Peyl|? (2.3)

for every x,y € H. Moreover, Pox is characterized by the following properties: Pox € C' and
(x — Pex,y — Pex) <0, (2.4)
lz = ylI* > [lz — Pox||* + |ly — Pox||? (2.5)
forall x € H,y € C. It is easy to see that the following is true:
ueVI(A,C) e u=Po(u— Nu), > 0. (2.6)
We also have that, for all u,v € C and \ > 0,

I(Z = AA)u— (I =AA)p[* = [[(u—v) — MAu - Av)|?
= Jlu—2|* = 2\ u — v, Au — Av) + \?| Au — Av||?
|u —v||* + A\ — 20) || Au — Av||. (2.7)

IN

So, if A < 2q, then I — AA is a nonexpansive mapping from C to H .

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (See Osilike and Igbokwe [7].) Let (E,(.,.)) be an inner product space. Then for all xz,y,z € E
and a, 8,7y € [0,1] with o + B+ =1, we have

lazw + By +v2|* = allz|® + Bllyl* +vll2I* = abllz — ylI* — aylle — 2[* = Bylly — 2|

Lemma 2.2 (See Suzuki [8]) Let {x,} and {y,} be bounded sequences in a Banach space X and let {5,} be
a sequence in [0,1] with 0 < liminf,, . B, < limsup, . B < 1. Suppose zp11 = (1 — Bn)yn + Bnxn for

all integers n > 0 and limsup,,_, o (|ynt1 — Ynll — l|Tn+1 — Zall) < 0. Then, lim,— o0 ||yn — 2| = 0.
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Lemma 2.3 (Demiclosedness Principle; cf. Goebel and Kirk [5].) Let H be a Hilbert space, C a closed
convez subset of H, and T : C — C a nonezpansive mapping with F(T) # 0. If {z,} is a sequence in C
weakly converging to x € C and if {(I —T)x,} converges strongly to y, then (I —T)x =y.

Lemma 2.4 (See Xu [11]). Assume {a,} is a sequence of nonnegative real numbers such that
ant1 < (1 —ap)an + 6ny, n >0,
where {an} is a sequence in (0,1) and {d,} is a sequence in R such that:
(1) 30y an = 00,
(2) limsup,, ., i—’; <0 or 307, 10, < oo
Then lim,,_ .o a,, = 0.

For solving the equilibrium problem for a bifunction F : C' x C' — R, let us assume that F satisfies
the following conditions:

(Al) F(z,z)=0 forall z € C;

(A2) F is monotone, i.e., F(z,y)+ F(y,z) <0 forall z,y € C;
(A3) for each z,y,z € C, limy_,o F(tz+ (1 — t)z,y) < F(x,y);

(A4) for each = € C,y+— F(z,y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

Lemma 2.5 (See Blum and Oettli [1]) Let C' be a nonempty closed convex subset of H and let F be a bifunction
of C x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then, there exists z € C such that

1
F(z,y) + —(y—2z,2—x) >0 forally € C.
r

The following lemma was also given in [2].

Lemma 2.6 (See Combettes and Hirstoaga [2].) Assume that F : C x C — R satisfies (A1)-(A4). For r >0
and z € H, define a mapping T, : H — C' as follows:

1
L(z)={z€C: Flzy + _(y—22-2) 20,y e C}
for all z € H. Then, the following hold:
1. T, 1is single- valued;

2. T, is firmly nonexpansive, i.e., for any x,y € H, ||Trx — Try||?> < (Trx — Try,  — y);

3. F(T,) = EP(F);

4. EP(F) is closed and conver.
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3. Main Results

In this section, we introduce an iterative process by the extragradient method for finding a common
element of the set of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium problem,
and the solution set of the variational inequality problem for a monotone k-Lipschitz-continous mapping in a
real Hilbert space. We prove that the iterative sequences converges strongly to a common element of the above

three sets.

Theorem 3.1 Let C' be a closed convexr subset of a real Hilbert space H. Let F be a bifunction from
C x C — R satisfying (A1)-(A4) and let A be a monotone k-Lipschitz continuous mapping of C into
H and let S be a nonexpansive mapping of C into itself such that F(S)NVI(A,C)N EP(F) # 0. Suppose
z1=u€C and {zn}, {yn} and {u,} are given by

F(un7y)+%<y_un7un_$n> >0, VyEC;

n

Tp+1 = QU + ann + ’YnSPC(xn - )\nAyn)a

for all n € N, where {an},{Bn}, {7} are three sequences in [0,1], {\,} C [a,b] for some a,b € (0, %) and
{rn} C (0,00) satisfying the following conditions:

(i) o+ Bn+vm =1,
(ii) lim, oo oy = 0,07 | vy = 00,
(iii) 0 <liminf, . B, <limsup,,_ . Bn <1,
(iv) lminf, ooy > 0,507 | |[rpi1 — 7] < o0,
(v) lim, o0 (Ant1 — An) = 0.

Then {x,} converges strongly to Pp(s)nvi(a,c)nEP(F)U-

Proof. For all z,y € C, we note that

I(I = M)z — (I = X A)yl? = Iz —y) — Aa(Az — Ay)|?
= o=yl =2 (x -y, Az — Ay) + A7 Az — Ay|]?
<l —yl? + ARz =yl = (1 ARE) [l — ), (3.2)
which implies that
(2 = M) = (1= M AYyl] < (L Ak = ] (33)

Let z* € F(S)NVI(A,C)N EP(F), and let {T,, } be a sequence of mappings defined as in Lemma 2.6 and
up =T, @y . Then z* = Po(a* — N\, Az*) =T, «*. Put v, = Po(xy, — A\ Ay, ). For any n € N, we get

|un —2*|| = | T, 20 — Tp 2™ || < [Jon — 27
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From (2.5) and the monotonicity of A, we have

IN

lvn — 2| lzn = AnAyn — 2*(|* = llzn — Ao Ayn — va®

lwn = 2*[|* = lzn — vnll* + 2An (Ayn, v — vn)

lzn = 2|1 = llon — vnll® + 200 ((Ayn — Au, 2% = yn) + (A, 2% = yn)) + (Ayn, Yo — vn)

*H2

- Hxn - UnH2 + 2)\n<Ayn7yn - Un>

IA
Bl
3
!
8

- Hxn - ynH2 - 2<$n —Yn,Yn — 'Un> - Hyn - 'Un||2 + 2)\n<Ayn7yn - Un>

[
Bl
S
!
8

- Hxn - ynH2 - Hyn - UnH2 + 2<xn - )\nAyn — Yn,Un — yn>

[
Bl
3
!
8

Since A is k-Lipschitz-continuous, it follows that
(@0 = A Al = Yns U = ) = (@0 = AnATa = Yy U = Ya) + (A A = An Ay, v = )
< AnAZn — M Ay, Un — Yn)
< Akl = Yl lvn — yal|-
Thus, we have

[|vn — x*HQ < lwn — x*HQ — [|zn — ynH2 — |lyn — UnH2 + 20kl 20 — yollllvn — ynll

< lon — x*HQ — [|zn — ynH2 — lyn — UnH2 + AikQ(Hxn - yn||2 + [Jvn — yn||2)
= lzn —2*? + Q2K = Dllan — yal® + A2E = Dlyn — on? (3.4)
<l — 2|

Then, we have also

|Znt1 — 2| = |lanu + Boxn + Y0 Sv, — 2|
< apllu— 2| + Bullen — ¥ + Yallvn — 27
< apllu—2|| 4+ Bullzn — ¥ + mllzn — 27
< apflu—2| 4+ (1 - an)llzn — 27|
< max{[lu— 2", [xo — z*[|}

Therefore {x,} is bounded. Consequently, the sets {u,} and {v,} are also bounded. Moreover, we

observe that

H'UnJrl - UnH = HPC(anrl - )\n+1Ayn+1) - PC(:Cn - AnAyn)H

IN

[(@n+1 = Ant1AYns1) — (@0 — AnAyn) ||

[(Znt1 = 2n) = Ant1(AYn+1 — Ayn) — Ant1 — An) Ay |

[Zn+1 = Znll + Ant1kl[Ynt1 — Ynll + [Angr — Al Aynl|

S lznsr = @nll + Angrkllunsr — unll + [Ans1 = Anll[ Aynl|- (3.5)

IN

On the other hand, from w, =T}, z, and u,41 =1}, T, 11, We have

1
F(un,y) + T—(y — Up,Up — Ty >0 forally e C (3.6)

n
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and
1

Tn+1

F(un+t1,y) + (Y — Un+1, Unt1 — Tny1) > 0 for all y € C. (3.7)

Putting y = up41 in (3.6) and y = u, in (3.7), we obtain

1
F(“n,“n—i—l) + T_<U/n+1 — Un, Un — $n> >0

n

and

1
F(un+17un) + —<un — Up+1, Un4+1 — xn+1> Z 0
Tn+1

Tt follows from (A2) that

Up — T u — X
n n o n+1 n+1>>0

<un+1 — Unp,
Tn Tn+1

and hence
Tn

<un+1 — Up, Up — Un41 + Un+1 — Tp — (un—i-l - xn+1)> Z 0.

Tn+1

Since liminf, ., > 0, without loss of generality, let us assume that there exists a real number ¢ such that
r, > c¢> 0 for all n € N. Then, we have

r
|tny1 — unH2 < (Ung1 = Uny Tpgr — T+ (1= = )(Unt1 — Tny1))
Tn+1
r
< ltngr = tnll{llEnts — 2ol + 11 = ——=lltny1 — Zppall}
Tn+1
and hence
HunJrl - UHH S Hxn+l - xn” + |Tn+1 - Tn|Hun+1 - $n+1||
Tn+1
L
< Hanrl - an + E|Tn+1 - Tn|7 (38)

where L = sup{||u, — z,]|| : n € N}. Substituting (3.8) into (3.5), we have

L
[vn+1 = vnll < [[Zng1 — zall + EAap i {l|Tnt1 — 2zl + E|Tn+1 = 7ul} + A = Angr|[| Ayl
L
< (T + k) |[@nsr — 2l + k)‘n+1z|7"n+l = 1ol + [ An = Anga[[[Ayn |- (3.9)
Let p41 = (1 — Bn)zn + Bnxn. Thus, we get

o Tn1 — ﬂnxn apu + ’YnSPC (‘rn - )\nAyn) anpu + ’Ynsvn

S R 1- 5, T 18,
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and hence we have

O 1% + Yng1SUnt1 O + Y SVy

it T = 1- Bn—i—l a 1- 6n
Ui 1U+ Vi 15Vn41 Onp 1%+ Ynp1SUn | Onp1U 4+ Yng15Un  Qntl+ Y0 Svp
1- Bn—i-l 1- 6n+1 1- 671—}-1 1- 6n
(077NN} (079} Yn+1 Yn+1 Yn
= — u+ Svp41 — Sv,) + — Sv,,. 3.10
(1_6n+1 1_671) l_ﬁn—i-l( e n) (1_671—}—1 1_6n) " ( )

Combining (3.9) and (3.10), we obtain

(077NN} Qp, Tn+1
Zn — Zn|| — [|Tn — Tn < - ul| + Un, — Un
o = zull = s =l € 2 = S+ 2 s — ]
Yn+1 Tn
+ - Svn — ||Tn — Tn
T2 210 = i = 2
Qpt1 (0 7% Tn+1
< — ull + 14+ M1k ner — zn
o — 2l + T2 (1 Ao =
Tn+1 L Tn+1
7—)\n+1k}|7’n+1 - Tn| + — |)‘n - )\n+1|||Ayn||
(1= PBny1) ¢ 1= Bt
Yn+1 Tn
+ — Svnl|l = |Tne1 — zn
2 — 210 = s =
<m0y S, )+ DA T Gy
1 - Bn—i-l 1 - Bn 1 - Bn—&-l
Tn+1 L
+———{ A1k =|rnt1 — | + A0 — g1 || Aynll}-
1- 6n+1 c
This together with (ii), (iv) and (v) imply that
lim sup(||zn41 — 2nl| = [|[Tns1 — za||) < 0.
Hence, by Lemma 2.2, we have
lim ||z, — x,| = 0. (3.11)
Consequently,
lim |[zp41 —xn|| = lim (1 —6y)|zn — 2al = 0. (3.12)

From (iv), (v), (3.5) and (3.8), we also have |[v,11 — vp| — 0, ||[unt1 — un|| — 0 and ||yn+1 — ynl| — 0 as

n — 00. Since
Tntl — Tn = Qut + BnZn + Y0 SUn — Ty = (v — ) + Yo (Svn, — ),

it follows by (ii) and (3.12) that
lim ||z, — Sv,| =0. (3.13)
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PC(Un — AMAuy) — Po(z, — )‘nAyn)H
(un — ApAuy) — (n — AnAyn)||

[un = @nll + An || Aun — Ay, ||
[tn — @l + Ankllun — yull

Hun - ana

since A, < 1, hence we also have

lym —val® <

From this and by (3.4)

IN

lvn — 2|

IN

<
So, from this, we get

e

(| VAN VAN

IN

it follows that

(1= AoE) [wn — unl®

lun — @ % (3.14)
and (3.14) we obtain when n > N that

lzn = 2% [ + ARE? = Dllzn = yall* + 05 = 1)llyn — vall?
lzn = @[ + (ARE = Dllyn — vall?

lzn = 2% [ + A0E = Dllun — 2.

lamte + Bun + 4 Svn — 2%[1* < anllu— 2| + Ballon — 2™ + 70 [ Sva — 27|
anllu = a** + Ballzn — 2% + Ynllvn — 27|

anllu =2 + Bullzn — 21 + yuf{llen — 2" + ALK = Dlfun — 22}
anllu—2** + (1 = o) 2 — 2™ + 9 (WK = D) Jun — 20

anllu— 2™ + o — 2| + (AL = 1)|lun — 2n]|?,

IN

anllu =" + llan — 2*[|* = ||lzns — 2"

IN

anllu— 2" + zns1 = @nll(l2n — 27| = 2n4 —27]).

Since o, — 0, {A\} C [a,b] € (0, 1) and ||@p41 — | — 0, imply that

Since liminf, . 7, > 0, we get

By (3.4), we note that
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lim ||z, —uy,| = 0. (3.15)
. Ly — Un . 1
lim [[——[= lim —lz, —u,l = 0. (3.16)
n——o0 Tn n—:oo 'rn
o — a2 < e — a2 4 (2K — D)l — g (3.17)
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Thus, from Lemma 2.1 and (3.17), we get

[zt — 2% < anllu—2"|1* + Ballzn — ™)1 + 30| Svn — ||
< apllu— x*HQ + Bullzn — 33*H2 + Y llvn — 33*”2
|2 |2 |2 272 2
< anllu =277+ Bullon — 277 + wdllon — 277+ (AE7 = D)llzn — yall”}
< anllu =2+ o — 2P+ (N = Dllzn —yall®.
(3.18)
Therefore, we have
=2k 20 =yl < anllu—2"* + zn — 2| = 2ps1 — 2"
= apllu—a*|* + [|zns1 — zall(|lzn — 2| + 01 — 2*[])- (3.19)
Since ay, — 0 and ||, — Zp41]] — 0 as n — oo, we obtain
lim ||z, —yn|| = 0. (3.20)
We note that
[vn —ynll = [[Po(@n — AnAYn) — Po(un — AnAuy)||
< l(@n — AnAyn) — (un — AnAuy)||
< lzn = unll + AnllAun) — Ay, ||
< lzn = unll + Ankllun — yall
< lzn = unll + Ank{llun — ol + |20 — ynll}
< (4 Mk)llun = znll + Ankllzn —
since (3.15) and (3.20), we have
lim |jvp, —ynl| =0. (3.21)
Since
[1Svn = vall < [[Svn = 2all + (|20 = ynll + lyn — vall,
and hence
lim [|Sv, —vy| = 0. (3.22)

Next, we show that

lim sup{u — 2o, n — 20) < 0,

n——oo

where 2o = Pr(s)nvia,c)nep(r)(u). To show this inequality, we choose a subsequence {v,,} of {v,} such that

lim sup{u — zg, Sv, — 20) = lim (u — 20, Svn, — 20)-

n—-so00 t—00
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Since {v,,} is bounded, there exists a subsequence {Umj} of {vn,} which converges weakly to z. Without

loss of generality, we can assume that v,, — z. From |Sv, — v,|| — 0, we obtain Sv,, — z. Let us show
z € EP(F). Since uy, = T, x,, we have

1
F(Umy) + _<y — Up, Up — 33n> >0,vyeC.

n

From (A2), we also have

1
7‘_<y — Un, Up _$n> > F(y,un)
n
and hence
Uy, — Ty,
<y — Un,, - nl> Z F(yaunm)

ni

—Tn,

From |lup, — zn| — 0, |zn — Sv, || — 0, and ||Sv,, — vn|| — 0, we get u,, — z. Since 2L

—L — 0, it

follows by (A4) that 0 > F(y,z) for all y € C. For t with 0 <¢ <1 and y € C, let y; =ty + (1 — t)z. Since
y € C and z € C, we have y; € C' and hence F(y;,z) <0. So, from (A1) and (A4) we have

0= F(yt,ye) <tF(ye,y) + (1 =) F(yt, 2) < tF(ys,y)

and hence 0 < F(y;,y). From (A3), we have 0 < F(z,y) for all y € C and hence z € EP(F). By the opial’s
condition, we obtain z € F(S). Finally, by the same argument as that in the proof of [9, Theorem 3.1, p.
197-198] , we can show that z € VI(A,C). Hence z € F(S)NVI(A,C)NEP(F).

Now from (2.4), we have

lim sup(u — 20, zn, — 20) = limsup(u — 29, Sv, — 20) = lim (u — 20, Sv,, — 20)
n—->00 n—so0 i—00
= (u—2zp,2— 20) <0. (3.23)
Therefore,
Hanrl - ZOH2 = <anu + ﬂnxn + ’YnS'Un — 20, Tn+4+1 — ZO>

= U — 20, Tnt1 — 20) + Bn(Tn — 20, Tnt1 — 20) + VW (SVn — 20, Tnt1 — 20)

1 1
< 5@1(\\% — 201* + [|Zn+1 — 20l°) + an{u — 20, Tny1 — 20) + §’Yn(||vn = 20|* + [|&n+1 — 20[|%)
< 15 (lzn = 20[1* + |Zn+1 — 20[1*) + an{u — - >+l (lzn — 20l* + || —2|1)
= 5bn n 0 n+1 — 20 QU — 20, Tn41 — 20 2% Tn — 20 Tn4+1 — 20

1
= 5(1 — ) (|l2n — 20/1* + |Zn+1 — 20[°) + an{u — 20, Tng1 — 20)

1
< 5{(1 — ap)||@n — 20[|* + [|Tns1 — 20]1°} + o (u — 20, Tns1 — 20)

which implies that

|Znt1 — 20l1* < (1 — an)||@n — 20]|* + 200 {u — 20, Tpi1 — 20)-
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Finally by (3.23) and Lemma 2.4, we get that {x,} converges to zg, where 2o = Pr(s)nvr(a,c)nep(r)(u). This
completes the proof. |

Using Theorem 3.1, we can prove the following result.

Theorem 3.2 (Yao Liou and Yao [14, Theorem 3.1]) Let C be a closed convex subset of a real Hilbert space
H. Let A be a monotone k-Lipschitz-continuous mapping of C' into H and let S be a nonexpansive mapping
of C into itself such that F(S)NVI(A,C) # 0. For fized w € H and give xo € H arbitrary, let the sequence
{zn},{yn} be generated by

Tp+1 = QU + ﬁnxn + rYnSPC (xn - )\nAyn)a

where {on}, {Bn}, {1} are three sequences in [0,1] and {\,} is a sequence in [0,1]. If {an}, {Bn}, {71} and
{An} are chosen so that A, € [a,b] for some a,b with 0 < a<b< + and

(i) n+Bp+mm=1,

(ii) lim, oo o = 0,07 | vy = 00,
(iii) 0 <liminf, . B, <limsup,,_ . Bn <1,
(iv) limp, oo (Ant1 — An) =0,

then {x,} converges strongly to Pp(s)nvr(a,c)Zo-

Proof. Put F(x,y) =0 for all z,y € C and r, =1 for all n € N in Theorem 3.1 .
Then, we have u,, = Pox,, = . So, from Theorem 3.1 the sequence {z,} generated in Theorem 3.2 converges

strongly to Pr(s)nvri(a,c)u. -

Remark 3.3 In Theorem 3.2, we also obtain Yao et al.’s theorem [14].
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The purpose of this paper is to introduce a new hybrid projection method for finding a common
element of the set of common fixed points of two relatively quasi-nonexpansive mappings, the
set of the variational inequality for an a-inverse-strongly monotone, and the set of solutions of
the generalized equilibrium problem in the framework of a real Banach space. We obtain a strong
convergence theorem for the sequences generated by this process in a 2-uniformly convex and
uniformly smooth Banach space. Base on this result, we also get some new and interesting results.
The results in this paper generalize, extend, and unify some well-known strong convergence
results in the literature.

1. Introduction

Let E be a real Banach space, E* the dual space of E. A Banach space E is said to be
strictly convex if ||(x + y)/2|| < 1 for all x,y € E, with ||x| = ||yl = 1 and x#y. Let
U = {x € E : ||x|| = 1} be the unit sphere of E. Then a Banach space E is said to be smooth if
the limit

g I 1] =l

1.1
t—0 t ( )

exists for each x,y € U. It is also said to be uniformly smooth if the limit is attained uniformly
for x,y € U. Let E be a Banach space. The modulus of convexity of E is the function
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6:[0,2] — [0,1] defined by

X+
6(¢) :inf{l— HTyH x,y€E, xll=|y||=1 |lx-y| > s}. (1.2)

A Banach space E is uniformly convex if and only if 6(¢) > 0 for all € € (0,2]. Let p be a
fixed real number with p > 2. A Banach space E is said to be p-uniformly convex if there exists
a constant ¢ > 0 such that 6(g) > ce” for all € € [0,2]; see [1, 2] for more details. Observe
that every p-uniform convex is uniformly convex. One should note that no Banach space is
p-uniform convex for 1 < p < 2. It is well known that a Hilbert space is 2-uniformly convex,
uniformly smooth. For each p > 1, the generalized duality mapping J, : E — 2E" is defined by

Jp) = {x" € B (%) = IdlP, ) = el (1.3)

for all x € E. In particular, /] = J, is called the normalized duality mapping. If E is a Hilbert
space, then | = I, where I is the identity mapping. It is also known that if E is uniformly
smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

Let E be a real Banach space with norm || - || and E* denotes the dual space of E.
Consider the functional defined by

$(x,y) = IIxI* = 2(x, Jy) + |y ¥x,y €E. (1.4)

Observe that, in a Hilbert space H, (1.4) reduces to ¢(x,y) = ||x - y||2, x,y € H. The
generalized projection Ilc : E — C is a map that assigns to an arbitrary point x € E, the
minimum point of the functional ¢(x,y), that is, ITcx = x, where x is the solution to the
minimization problem

P, x) = inf p(y, x); (1.5)

existence and uniqueness of the mapping Ilc follow from the properties of the functional
¢(x, y) and strict monotonicity of the mapping ] (see, e.g., [3-7]). In Hilbert spaces, I'lc = Pc.
It is obvious from the definition of function ¢ that

(Nl = 1=1)* < (v, x) < (lyll + lIxl1)?, Vx,y € E. (1.6)

Remark 1.1. 1f E is a reflexive, strictly convex, and smooth Banach space, then for x,y € E,
¢(x,y) = 0if and only if x = y. It is sufficient to show that if ¢(x,y) = 0, then x = y. From
(2.13), we have ||x|| = ||y||. This implies that (x, Jy) = ||x||* = ||Jy||*. From the definition of J,
one has Jx = Jy. Therefore, we have x = y; see [5, 7] for more details.

Next, we give some examples which are closed relatively quasi-nonexpansive (see

[8])-

Example 1.2. LetIlc be the generalized projection from a smooth, strictly convex and reflexive
Banach space E onto a nonempty closed and convex subset C of E. Then, I¢ is a closed
relatively quasi-nonexpansive mapping from E onto C with F(I1¢) = C.
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Let E be a real Banach space and let C be a nonempty closed and convex subset of E,
and A : C — E* be a mapping. The classical variational inequality problem for a mapping A is
to find x* € C such that

(Ax*,y-x*)>0, VyeC. (1.7)

The set of solutions of (1.4) is denoted by VI(A, C). Recall that A is called

(i) monotone if

(Ax-Ay,x-y) >0, VYx,yeC, (1.8)

(ii) an a-inverse-strongly monotone if there exists a constant & > 0 such that

(Ax - Ay,x-y) > allx-y|>, VxyeC (1.9)

Such a problem is connected with the convex minimization problem, the complementary
problem, and the problem of finding a point x* € E satisfying Ax* = 0.

Let f be a bifunction from C x C to R, where R denotes the set of real numbers. The
equilibrium problem (for short, EP) is to find x* € C such that

f(x*,y) >0, VyeC. (1.10)

The set of solutions of (1.10) is denoted by EP(f). Given a mapping T : C — E*, let
f(x,y) = (Tx,y — x) for all x,y € C. Then x* € EP(f) if and only if (Tx*,y — x*) > 0 for all
y € C; that is, x* is a solution of the variational inequality. Numerous problems in physics,
optimization, and economics reduce to find a solution of (1.10). Some methods have been
proposed to solve the equilibrium problem; see, for instance, [9-11].

Let C be a closed convex subset of E; a mapping T : C — C is said to be nonexpansive
if

|Tx-Ty| < ||x-y], V¥YxyeC. (1.11)

A point x € C is a fixed point of T provided that Tx = x. Denote by F(T) the set of
fixed points of T; thatis, F(T) = {x € C : Tx = x}. Recall that a point p in C is said to be an
asymptotic fixed point of T [12] if C contains a sequence {x,} which converges weakly to p such

that lim,, _, o, ||x, — Tx,|| = 0. The set of asymptotic fixed points of T will be denoted by ﬁ?)

—

A mapping T from C into itself is said to be relatively nonexpansive [13-15] if F(T) = F(T)
and ¢(p, Tx) < ¢(p,x) for all x € C and p € F(T). The asymptotic behavior of a relatively
nonexpansive mapping was studied in [16-18]. T is said to be ¢-nonexpansive, if ¢(Tx, Ty) <
¢(x,y) for x,y € C. T is said to be relatively quasi-nonexpansive if F(T)#@ and ¢(p,Tx) <
¢(p,x) for x € C and p € F(T). A mapping T in a Banach space E is closed if x, — x and
Tx, — y,thenTx = y.
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Remark 1.3. The class of relatively quasi-nonexpansive mappings is more general than the
class of relatively nonexpansive mappings [16-19] which requires the strong restriction

—

F(T) = F(T).

In Hilbert spaces H, liduka et al. [20] proved that the sequence {x,} defined by: x; =
x € Cand

Xni1 = Pe(xn — M Axy), (1.12)

where Pc is the metric projection of H onto C, and {1\, } is a sequence of positive real numbers,
and converges weakly to some element of VI(A,C).

It is well know that if C is a nonempty closed and convex subset of a Hilbert space H
and Pc : H — C is the metric projection of H onto C, then Pc is nonexpansive. This fact
actually characterizes Hilbert spaces and consequently, it is not available in more general
Banach spaces. In this connection, Alber [4] recently introduced a generalized projection
mapping I'lc in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

In 2008, Iiduka and Takahashi [21] introduced the following iterative scheme for
finding a solution of the variational inequality problem for inverse-strongly monotone A in a
2-uniformly convex and uniformly smooth Banach space E: x; = x € C and

Xn+l = HC]_l (]xn - )‘nAxn) (113)

foreveryn=1,2,3,..., where I'lc is the generalized metric projection from E onto C, ] is the
duality mapping from E into E*, and {1, } is a sequence of positive real numbers. They proved
that the sequence {x,} generated by (1.13) converges weakly to some element of VI(A, C).

Matsushita and Takahashi [22] introduced the following iteration: a sequence {x;,}
defined by

Xn+l = HC]_l (anJxn+ (1= ay)JTxy,), (1.14)

where the initial guess element xy € C is arbitrary, {a,} is a real sequence in [0,1], T is a
relatively nonexpansive mapping, and I'lc denotes the generalized projection from E onto a
closed convex subset C of E. They proved that the sequence {x,} converges weakly to a fixed
point of T.
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In 2005, Matsushita and Takahashi [19] proposed the following hybrid iteration
method (it is also called the CQ method) with generalized projection for relatively
nonexpansive mapping T in a Banach space E:

xo € C chosen arbitrarily,
Yn = ]_1 (anJxn+ (1= ay)JTxy,),

Co=(z€C:p(z, ) < dlzx), (1.15)
Qn=1{zeC:(xy,—z Jxo—- Jx,) >0},

Xn+1 = | | X0-

CH nQn

They proved that {x,} converges strongly to ITr)xo, where I'lf(ry is the generalized
projection from C onto F(T).

Recently, Takahashi and Zembayashi [23] proposed the following modification of
iteration (1.15) for a relatively nonexpansive mapping;:

xo=x€C,
Yn = ]_1 (anJxy + (1 -a,)JSxy),

u, € C such that f(u,,y) + rl(y — Uy, Jun— Jya) 20, VyeC,
" (1.16)
H,={ze€C: ¢(z,uy) < P(z,xn)},

W,={zeC:{(xy,—2z Jx-Jx,) >0},

xn+1 = I | x/

H,nW,

where ] is the duality mapping on E. Then, {x,} converges strongly to ITr(s)nep(f)x, Where
ITr(synep(f) is the generalized projection of E onto F(S) N EP(f). Also, Takahashi and
Zembayashi [24] proved the following iteration for a relatively nonexpansive mapping;:

Yn = ]_1 (anJxy + (1 - ay)JSxy),

u, € C such that f(u,,y) + %(y — U, Jun— Jyn) >0, VyeC,
! (1.17)
Cun1 ={z€Cp:Pp(z,un) <P(z,x,)},

xn+1 = x/
Cn+1
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where ] is the duality mapping on E. Then, {x,} converges strongly to ITr(s)ngp(f)x, Where
ITF(s)nEp(f) is the generalized projection of E onto F(S) N EP(f). Qin and Su [25] proved the
following iteration for relatively nonexpansive mappings T in a Banach space E:

xo€C, chosen arbitrarily,
Yn=J ] xn + (1 - ay)JTz,),
zn =] (BuJxn + (1= Bn) JTxn),
Co={veC:¢(v,yn) <andp(v,xn) + (1 - an)p(v,zn)},
Qu={veC:(Jxo—Jxnxn—v) 20},

Xn+l = | | xO/

CVanﬂ

(1.18)

the sequence {x,} generated by (1.18) converges strongly to ITr)xo.
In 2009, Wei et al. [26] proved the following iteration for two relatively nonexpansive
mappings in a Banach space E:

xo € C,
Jzn = anJxn + (1 = an) JTxy,
Jun = (Buxn + (1= Pn)JSzn),
H, = {v € C: ¢(v,u,) < (0, %) + (1= B)d(0, 24) < (0, %)},
Wy ={z€C:(z-xn Jxo—Jxu) <0},

(1.19)

Xn+1 = QH, W, X0;

if {a,} and {f,} are sequences in [0,1) such that a, < 1 - 6; and p, < 1 - 6, for some
61,6, € (0,1), then {x,} generated by (1.19) converges strongly to a point QFr)nr(s)Xo, where
the mapping Qc of E onto C is the generalized projection. Very recently, Cholamjiak [27]
proved the following iteration:

Zy = Hcfl(]xn -\ Axy),
Yn = ]_1 (an]xn + ﬂn]Txn + Yn]szn)/
1
u, € C such that f(u,,y) + Z(y —Up, Jun— Jya) 20, YyeC, (1.20)

Chi1 = {Z €Cu:P(z,un) < ¢(z,xn)},

xn+1 = x()/
C

n+l

where ] is the duality mapping on E. Assume that a,,, f,, and y, are sequences in [0, 1]. Then
{xn} converges strongly to g = IIrxo, where F := F(T) N F(S) NEP(f) N VI(A,C).
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Motivated and inspired by liduka and Takahashi [21], Takahashi and Zembayashi [23,
24], Wei et al. [26], Cholamjiak [27], and Kumam and Wattanawitoon [28], we introduce
a new hybrid projection iterative scheme which is difference from the algorithm (1.20) of
Cholamjiak in [27, Theorem 3.1] for two relatively quasi-nonexpansive mappings in a Banach
space. For an initial point xg € E with x; = Il¢,xp and C; = C, define a sequence {x,} as
follows:

wy, =T ] (Jxp — MAXy,),
Zn = ]_1 (ﬂn]xn + (1 - ﬂn)]Twn)/

Yn = ]_l (anJxn+ (1= 0ay)]Szy),

u, € C such that f(u,,y) + rl(y —tty, Jun - Jyn) 20, VyeC, (1.21)

Cunn ={z€Cpn:P(z,up) <and(z,x,) + (1 — an)P(2,20) < P(z,x0) },

Xp1 = [ [x0, ¥n>1,
C

n+l

where ] is the duality mapping on E. Then, we prove that under certain appropriate
conditions on the parameters, the sequences {x,} and {u,} generated by (1.21) converge

strongly to ITr(s)nr(r)nEP(f)nvI(A,C)-

The results presented in this paper improve and extend the corresponding results
announced by Iiduka and Takahashi [21], Wei et al. [26], Kumam and Wattanawitoon [28],
and many other authors in the literature.

2. Preliminaries

We also need the following lemmas for the proof of our main results.

Lemma 2.1 (Beauzamy [29] and Xu [30]). If E is a 2-uniformly convex Banach space, then, for all
x,y € E we have

2
=yl < ZlJx =Tyl (2.1)

where ] is the normalized duality mapping of Eand 0 < ¢ < 1.
The best constant 1/¢ in the Lemma is called the p-uniformly convex constant of E.

Lemma 2.2 (Beauzamy [29] and Zilinescu [31]). If E is a p-uniformly convex Banach space and
p is a given real number with p > 2, then for all x,y € E, ] € J,(x), and ], € J,(y),

7, (2.2)

cP
=y Jx=Jy)2 gl -y

where ], is the generalized duality mapping of E and 1/ c is the p-uniformly convexity constant of E.



8 Abstract and Applied Analysis

Lemma 2.3 (Kamimura and Takahashi [6]). Let E be a uniformly convex and smooth Banach space
and let {x,} and {y,} be two sequences of E. If ¢(xn, y») — 0 and either {x,} or {y,} is bounded,
then ||xn = ynll — 0.

Lemma 2.4 (Alber [4]). Let C be a nonempty closed and convex subset of a smooth Banach space E
and x € E. Then, xo = Ilcx if and only if

(xo-y,Jx-Jx0) 20, VyeC. (2.3)

Lemma 2.5 (Alber [4]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed and convex subset of E, and let x € E. Then

¢(y,ex) + ¢p(ex, x) < p(y,x), VYyeC. (24)

Lemma 2.6 (Qin et al. [8]). Let E be a uniformly convex and smooth Banach space, let C be a closed
and convex subset of E, and let T be a closed relatively quasi-nonexpansive mapping from C into itself.
Then F(T) is a closed and convex subset of C.

For solving the equilibrium problem for a bifunction f : CxC — R, let us assume that
f satisfies the following conditions:

(Al) f(x,x) =0forall x € C;
(A2) f is monotone, thatis, f(x,y) + f(y,x) <Oforall x,y € C;
(A3) foreach x,y,z€ C,

ltilrgf(tz +(1-t)x,y) < f(xy); (2.5)

(A4) for each x € C, y — f(x,y) is convex and lower semi-continuous.

Lemma 2.7 (Blum and Oettli [9]). Let C be a closed and convex subset of a smooth, strictly convex
and reflexive Banach space E, let f be a bifunction from C x C to R satisfying (A1)—(A4), and let
r > 0and x € E. Then, there exists z € C such that

f(zfy)+%<y—z,]z—]x>zo, Yy eC. (2.6)

Lemma 2.8 (Combettes and Hirstoaga [10]). Let C be a closed and convex subset of a uniformly
smooth, strictly convex and reflexive Banach space E and let f be a bifunction from C x C to R
satisfying (A1)—(A4). For r > 0 and x € E, define a mapping T, : E — C as follows:

Trx:{zeC:f(z,y)+%<y—z,]z—]x>20, VyEC}, (2.7)
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forall x € C. Then the following holds:
(1) T, is single-valued;
(2) T, is a firmly nonexpansive-type mapping, for all x,y € E,

(Tyx-Tyy, JTyx - JT,y) < (Trx - T,y, Jx - Jy); (2.8)
(3) F(Ty) = EP(f);
(4) EP(f) is closed and convex.

Lemma 2.9 (Takahashi and Zembayashi [24]). Let C be a closed and convex subset of a smooth,
strictly convex, and reflexive Banach space E, let f be a bifunction from C x C to R satisfying (Al)—
(A4), and let r > 0. Then, for x € E and q € F(T,),

$(q,Trx) + $(Trx, x) < $(q,x). (2.9)

Let E be a reflexive, strictly convex, and smooth Banach space and ] the duality
mapping from E into E*. Then 7! is also single value, one-to-one, surjective, and it is the
duality mapping from E* into E. We make use of the following mapping V studied in Alber
[4]:

Vi(x,x") = el = 2(x, x7) + [l (2.10)
for all x € E and x* € E*, thatis, V(x,x*) = ¢(x, ] 1(x*)).

Lemma 2.10 (Alber [4]). Let E be a reflexive, strictly convex, and smooth Banach space and let V
be as in (2.10) . Then

V(x,x*) + 2<]’1(x*) -Xx, y*> SV (x,x*+y") (2.11)

forall x € E and x*,y* € E*.
Let A be an inverse-strongly monotone of C into E* which is said to be hemicontinuous
if for all x,y € C, the mapping F of [0,1] into E*, defined by F(f) = A(tx + (1 - t)y), is

continuous with respect to the weak* topology of E*. We define by N¢(v)the normal cone for
C ata point v € C; that is,

Nc(@) ={x*€E*: (v-y,x*) >0, Vy € C}. (2.12)

Theorem 2.11 (Rockafellar [32]). Let C be a nonempty, closed and convex subset of a Banach space
E, and A a monotone, hemicontinuous mapping of C into E*. Let T C E x E* be a mapping defined as
follows:

To =

{Av +Nc(v), veC;
(2.13)

0, otherwise.

Then T is maximal monotone and T~10 = VI(A, C).
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3. Main Results

In this section, we establish a new hybrid iterative scheme for finding a common element of
the set of solutions of an equilibrium problems, the common fixed point set of two relatively
quasi-nonexpansive mappings, and the solution set of variational inequalities for a-inverse
strongly monotone in a 2-uniformly convex and uniformly smooth Banach space.

Theorem 3.1. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C x C to R satisfying (A1)—(A4) and let A be
an a-inverse-strongly monotone mapping of C into E* satisfying ||Ay|| < ||Ay — Au||, forall y € C
and u € VI(A,C) #0. Let T,S : C — C be closed relatively quasi-nonexpansive mappings such that
Q:= F(T)NF(S)NEP(f) N VI(A, C) #0. For an initial point xy € E with x1 = I1c,x9 and C, = C,
we define the sequence {x,} as follows:

wy, =T ] (Jxp — MAXy,),
Zn = ]_1 (ﬂn]xn + (1 - ﬂn)]Twn)/

Yn = ]_l (anJxn + (1 - 0ay)]Szy),

uy € C such that f(u,,y) + %(y — U, Jun—Jya) 20, VYyeC, 3.1)

Conn ={z€Cpn:P(z,up) <and(z,x,) + (1 — ) P(z,20) < P(z,x0)},
Xyl = on, Vn>1,
Chs1

where | is the duality mapping on E, {a,} and {p,} are sequences in [0,1] such that a, <1 -6
and B, < 1= 6y, for some 61,6, € (0,1), {rn} C (0,2a) and {A,} C [a,b] for some a,b with
0 < a<b< c*a/2, where1/c is the 2-uniformly convexity constant of E. Then {x,} converges
strongly to p € Q, where p = Igxy.

Proof. We have several steps to prove this theorem as follows:

Step 1. We show that C,,,1 is closed and convex.
Clearly C; = C is closed and convex. Suppose that C, is closed and convex for each
n € N. Since for any z € C,, we know that

$(z,un) < P(2, %) (3.2)
is equivalent to
2z, Jatn = Jun) < [l = Il (33)

S0, Cp41 is closed and convex. Then, by induction, C,, is closed and convex for all n > 1.
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Step 2. We show that {x,} is well defined.

Putu, =T,,y, for all n > 0. On the other hand, from Lemma 2.8 one has T, is relatively
quasi-nonexpansive mappings and € ¢ C; = C. Supposing Q C Ci for k € N, by the convexity
of || - ||?, for each q € Q C Cx, we have

$(q,u) = (a4, Tryr)
< (4, yx)
= ¢(a. )7 @ xi+ (1 - a0)JSz0))
= l9II” - 2(q, s Jxic + (1 = ax) TSz ) + law Sk + (1 — ) TSz |2 (3.4)
< |1glI” - 2ax(q, Jxx) =21 = ai)(q, JSz) + axllxell® + (1 - i) | Sz |I®
= akp(q,x1) + (1 - ax)p(q, Szk)
< axp(q,xx) + (1 - ar)p(q, z«),

and so

$(0,2) = $(a, )7 (Bxe+ (1= pe) ITwr))
= 911> - 244, BT xi + (1 - Bi) JTwi) + || Bef xic + (1 = i) J T ||
< [1411” - 2Be(q, Txe) = 2(1 = fi) (g, TTwi) + Pl TelP + (1 - p) | Taon > )
= prdp(q,x) + (1 - i) p(q, Twy)
< Prg(q,xc) + (1 - Pr) (g, wk).

For all g € Q, we know from Lemma 2.10, that

$(a,w00) = $(,1c) ™ Uxi - 1 Axy))

<$(a. 7 U~ LeAxy) )

=V (q, Jxi — McAxy)

(3.6)
< V(q, Uk = AeAxi) + LeAxi) = 2(J7 (Txk = ieAxi) = g, deAx )
=V(q Jxx) - 2J\k<]’1(]xk — \kAxi) — g, Axk>

= gb(q,xk) - 2J\,k<Xk - q,Axk) + 2<]_1(]xk - )LkAxk) — Xk, _.)LkAxk>.
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Since g € VI(A, C) and from A being an a-inverse-strongly monotone, we get

2k (xk = g, Axi) = =2X(xk — q, Axi — Aq) — 20 (xx — 9, Aq)
< 2N (xk — q, Axi — Aq) (3.7)

= 2ali || Axy - Aq]>.
From Lemma 2.1 and A being an a-inverse-strongly monotone, we obtain
2(J7M i = MAxi) = x, =M A ) = 2(T 7 Uk = eAxi) = J 7 (), ~ A )
< 2|77 ek = MeAxi) = T )| I A
< 3777 Ok = ) - 17 ) eAx)
= %Illxk — MeAxy = Jxp|[[|[ A Axe]| (3.8)
= SlhAx?
S THIE
< S Ax - gl
C
Substituting (3.7) and (3.8) into (3.6), we have
B 08) < $(a %) - 20| Axic - Ag + S22 Axi - Ag]
= ¢(q,xx) +2)Lk<C2—2)Lk —a>||Axk—Aq||2 (3.9)
<¢(q,xx).

Replacing (3.9) into (3.5), we get

$(4,zk) < ¢(q, xk)- (3.10)
Substituting (3.10) into (3.4), we also have

¢(q,ux) < axd(q, xx) + (1 - ax)p(q, xx),

(3.11)
= ¢(q, xx)-

This shows that g € Ci,1 and hence, Q C Cy.1. Hence, Q € C,, for all n > 1. This implies
that the sequence {x,} is well defined.
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Step 3. We show that lim,, _, . (x,, x0) exists and {x,} is bounded.
From x, =Ilc, xp and x,41 = Ilc,,, x0, we have

n+l1

P(xn, x0) < P(xp11,%0), Yn2>1, (3.12)

and from Lemma 2.5, we have

P (xn, x0) = ¢(Ic, (x0), x0)
< ¢(p.x0) - p(p, xn) (3.13)
<¢p(p,x0), VpeQ.
From (3.12) and (3.13), then {¢(x,, xo)} are nondecreasing and bounded. So, we obtain that

limy, —, . (xp, x0) exists. In particular, by (1.6), the sequence {(||x,|| - lx0]1)?} is bounded. This
implies that {x,} is also bounded.

Step 4. We show that {x,} is a Cauchy sequence in C.
Since x,, = I'l¢c, x¢ € C,, C Cy, for m > n, by Lemma 2.5, we have

(nb(xmr Xp) = (,b(xm/ Ic, x0)
< ¢ (xm, x0) — p(Ilc, X0, x0) (3.14)
= ¢(xm, x0) — P (2, X0).

Taking m,n — oo, we have ¢(x,,, x,) — 0. We have lim,,_, . (xpn41,x0) = 0. From
Lemma 2.3, we get lim,, _, oo||x,41 — X0|| = 0. Thus {x,} is a Cauchy sequence.

Step 5. We cliam that || Ju, — Jx,|| — 0,asn — oo.

By the completeness of E, the closedness of C and {x,} is a Cauchy sequence (from
Step 4); we can assume that there exists p € C such that {x,} — pasn — oo.

By definition of I'lc, xo, we have

§b(xn+1/ xn) = §b(xn+1/ HC,, xO)
< ¢(xns1, x0) — p(Ic,x0, X0) (3.15)

= P(xns1,X0) — P(xn, X0).
Since lim,, —, (x5, x0) exists, we get
T (e, ) = 0. (3.16)
It follow form Lemma 2.3, that

Jim 12641 = x| = 0. (3.17)
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Since x,,11 =I¢c, . xo € C,y1 C Cp, and from the definition of C,,,1, we have

n+l

P(xns1, Un) < P(Xns1,xn), Yn2>1 (3.18)

and so
T (1, ) = 0. (3.19)

Hence
Jim [|x41 = ]| = 0. (3.20)

By using the triangle inequality, we obtain

||un - xn” = ||un — Xp+1 + Xp+1 — xn”

(3.21)
< lun = Xt |l + 1241 = 2l
By (3.17), (3.20), we get
Him [juy — x| = 0. (3.22)
Since J is uniformly norm-to-norm continuous on bounded subsets of E, we have
i [|Juy = Jxa|| = 0. (3.23)

Step 6. Show that x,, — p € EP(f).
Applying (3.4) and (3.11), we get ¢(p, y») < ¢(p, x,). From Lemma 2.9 and u,, = T, y,,,
we observe that

¢ (un, yn) = (Tr,Yn, Yn)
<¢(pyn) = ¢(p, Tr,yn)
<P xn) = $(p, Tr,yn)
= ¢(p,xn) = ¢(p,un) (3.24)
= IpII* = 2(p, Jxa) + Ixall® = (IIPII* = 2(p, Jan) + l10al”)
= 1xall® = lleeall? = 2(p, Txn = Jutn)

< lloen = unll(lxn + nl)) + 2{[p |11 262 = Jull-
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From (3.22), (3.23) and Lemma 2.3, we get
lim [Ju, ~ y| = 0. (3.25)
Since J is uniformly norm-to-norm continuous, we obtain

Tim || Jun = Jya|| = 0. (3.26)

From r, > 0, we have || Ju, — Jyul|/r» — 0asn — oo and

1
f(uny) + Z(y — U, Jun = Jyn) 20, VyeC. (3.27)
By (A2), that
n - n 1
Iy 0 Ly
>~ f(uny) (3.28)

2 f(y,un), VyeC

and u, — p, weget f(y,p) <0Oforally € C.For0 <t <1, define y; = ty + (1 - t)p. Then
y; € C which implies that f(y;, p) < 0. From (A1), we obtain that

0=f(yuy) <tf(yoy) + A=t f(yup) <tf(yry)- (3.29)

Thus f(y:, y) > 0. From (A3), we have f(p,y) > 0 for all y € C. Hence p € EP(f).

Step 7. We show that x, — p € F(T) N F(S).
From definition of C,,, we have

anP(2,2n) + (1= ) P(2,20) < P(2,X0) & ¢(2,20) < P(2, %) (3.30)

Since x,41 = Ic . xp € Cpy1, we have

n+l

¢(xn+1/ Zn) < ¢(xn+1/ xn)- (331)
It follows from (3.16) that
Jim ¢ (xn11,2n) =0, (3.32)

again from Lemma 2.3, we get

lim o1 = 2| = 0. (3.33)
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By using the triangle inequality, we get
20 = 2nll < |20 = Xnsa | + (041 = Xnl-

Again by (3.17) and (3.33), we also have

lim ||z, — x| = 0.

n—oo
Since J is uniformly norm-to-norm continuous, we obtain

Jim [|]zy = Jxa| = 0.
Since
Y= 2nll < N1y = teall + lln = 2all + ll20 =z,

from (3.22), (3.25), and (3.35), we have

lim ||y, — z,|| = 0.

n—oo
Since J is uniformly norm-to-norm continuous, we also have

sim [Ty T2 = 0.

From (3.1), we get

”]]/n _]Zn” = lan(Jxn = Jzn) + (1 = an)(JSzn = Jzu) ||
= |1 —an)(JSzn = Jzn) — an(Jzn — Jxu) |
> (1= an)|lJSzn = Jzall = anllJzn = Jxull;

it follows that
(I =an)llJSzn = Jzall < ”]yn - ]Zn” +aul|Jzn = Jxull,

and hence

1JSzn = Jzall <

1-

1
o (”]y" _]Zn” +au|lJzn - ]xn”)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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Since a,, < 1 - 6; for some 61 € (0,1), (3.36), and (3.39), one has lim,,_, .|| JSz, — Jz,|| = 0.
Since ]! is uniformly norm-to-norm continuous, we get

Jlim [|Szy, = zu]| = 0. (3.43)

Since

1Sx, = x|l < 11Sxn = Sznll + 1Sz0 = Zall + |20 — x|

(3.44)
< xen = zall + 1Szn = znll + 120 = xall,
from (3.35) and (3.43), we obtain
lim [|Sxy = xa]| = 0. (3.45)
Since S is closed and x,, — p, we have p € F(S).
On the other hand, we note that
(g, xn) — P(q,un) = ”xn”2 - ||”n||2 = 2(q, Jxn = Jun
(0%~ ( ) -
< lxn = unl| (120 + uall) + 2||q|| 1Jxn = Jun||.
It follows from ||x,, — u,|| — 0and ||Jx, — Ju,|| — O, that
$(q,xn) - $(q,un) — 0. (3.47)
Furthermore, from (3.4) and (3.5),
¢(q,un) < $(4, Yn)
< an(q,xn) + (1= an)$(q, 2n)
< an(q,xn) + (1= an) [Bu(q, 2%n) + (1= fn) $(q, 0n)]
= an®(q,%n) + (1= an)Pup(q,xn) + (1 = an) (1= fu)P(q,wn)
< and(q,%n) + (1= an) P (4, xn) + (1= an) (1= fn)
(3.48)

0@ %) 200 (= Z0 ) 14w - AqlP|
= au(q, %) + (1= @)Pu(q, %) + (1= ) (1= ) (4, %)
~ (1= a,)(1- )24, <1x - %An) | Ax, - Aq|)”

2
7

= $(@%) = (1= a) (1= p)24 (0= S4u ) [ Ax, - Ag
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and hence

61622a<0c— i_;l) [ Axn = Agl < (1 - ) (1= B) 24 <zx— %A) | Ax, - Ag|”

(3.49)
< ¢ xn) = §(q,un).
From (3.47) and (3.49), we have
||Ax, — Ag|| — oO. (3.50)
From Lemma 2.5, Lemma 2.10, and (3.8), we compute
$ (X, w0a) = ¢ (%0, Tl T ™ (T = A Ax,))
< ¢ (xn I Utn = AnAx))
=V (xn, Jxtn = AnAxn)
<V (X, (0 = AnAXn) + Ay AX) = 2(J7 U = 1 Aa) = X, An A )
= 9w, ) + 2( T 0 = AnAx) = 2~y Ay ) (3.51)
= 277 Uxn = L An) = X0, ~An A )
<) ax, - gl
< 22, - AqlP.
Applying Lemmas 2.3 and (3.50), we obtain that
ll2¢n = wn|| — 0. (3.52)
Again since J is uniformly norm-to-norm continuous on bounded set, we have
1Jxn = Jwnl| — 0. (3.53)
Since
zn = wnll < llzn = xnll + llxn = wall, (3.54)

by (3.35) and (3.52), we have

Jim ||z, - wy|| =0, (3.55)
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and hence

lim ||z, = Jewy[| = 0. (3.56)

From (3.1) we obtain that

1 zn — Jwn| = ”ﬂn]xn + (1 - ,Bn)]Twn - ]wn”

(3.57)
> (1= Pu)lJTwn = Jwnull = PullJwn = Txull,
and hence
(1= )l Twn = Jwnll < 1Jzn = Jwall + Pull Jwn = Jxall, (3.58)
so
T30, = Juonl| € =512 = Jeoll + Bl 0~ Tl (359)
By (3.53), (3.56) and condition 3, < 1 — 6, for some 6, € (0,1), we obtain
lJTwy - Jwn|| — 0. (3.60)
Since J! is uniformly norm-to-norm continuous on bounded set, we obtain
|Tw, — w,| — 0. (3.61)

Since x, — wy, then ||Tx, — x,|| — 0. Thus by the closedness of T and x, — p, we get
p € F(T).Hencep € F(T) N F(S).

Step 8. We show that x, — p € VI(A4, C).
Define T C E x E* by Theorem 2.11; T is maximal monotone and T~10 = VI(A, C). Let

(v,w) € G(T). Since w € Tv = Av + N¢c(v), we get w — Av € N¢(v).
From w,, € C, we have

(v —-w,,w—-Av) >0. (3.62)

On the other hand, since w,, = IlcJ ' (Jx, — A, Ax,), then by Lemma 2.4, we have

(v = wn, Jw, = (Jxn — LnAxy)) 20, (3.63)

and hence

<v — Wy, M - Axn> <0. (3.64)
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It follows from (3.62) and (3.64), that

(v —wy,w) > (v-—wy,, Av)

> (v -—w,, Av) + <v - wn,w —Axn>

=(v—-w,, Av - Ax,) + <v—wn,M>
Jxn = Jwy

- > (3.65)

= (v —wy, Av — Awy) + (v — Wy, Aw, — Ax,) + <v—wn,

lwy — x| _ ””]xn_]wn”
a

”U_ Wn

g Nwn = xull 11X = Jwnl|
M( + )

a a

2 —|lv - w,|

v

Where M = sup, ., [|[v — wy||. Taking the limit as n — oo and (3.53), we obtain (v - p,w) > 0.
By the maximality of T, we have p € T~10; that is, p € VI(A, C).

Step 9. We show that p = Ilgxy.
From x, = Il¢c,xo, we have (Jxo— Jx,, x, —z) >0, Vz € C,. Since Q C C,, we also have

(Jxo = Jxu,xa—y) >0, VyeQ. (3.66)

By taking limit n — oo, we obtain that

(Jxo—Jpp-y) >0, VyeQ. (3.67)

By Lemma 2.4, we can conclude that p = Iloxp and x, — p asn — oo. This completes the
proof. O

Setting S =T in Theorem 3.1., so, we obtain the following corollary.

Corollary 3.2. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C x C to R satisfying (Al)—(A4) and let A be
an a-inverse-strongly monotone mapping of C into E* satisfying ||Ay|| < ||Ay — Aul|, forall y € C
and u € VI(A,C)#0. Let T : C — C be closed relatively quasi-nonexpansive mappings such that
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Q := F(T) nEP(f) N VI(A, C) #0. For an initial point xy € E with x1 = I1c,xo and C1 = C, define
a sequence {x,} as follows:

wy, =T ] (Jxn — MAXy,),
zn = ] (BuJxn + (1= Bn) JTwy),

Yn = ]_1 (anJxn+ (1= 0a,)]Tzy),

1 (3.68)
uy, € C such that f(u,,y) + r—(y— Un, Jn — Jyn) 20, VyeC,

Conn ={z€Cpn:P(z,up) <and(z,x,) + (1 — an)P(z,20) < P(z,x4) },

Xn4l = | |xo, Vn>1,
Cn+1

where | is the duality mapping on E. Assume that {a,} and {p,} are sequences in [0,1] such that
a, <1061 and B, <1 - 06y, for some 61,6, € (0,1), {r,} C (0,2a), and {A,} C [a,b] for some a, b
with 0 < a < b < c*a/2, where 1/ c is the 2-uniformly convexity constant of E. Then {x,} converges
strongly to p € Q, where p = Igxy.

If A =0 in Theorem 3.1, then we obtain the following corollary.

Corollary 3.3. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from CxC to R satisfying (A1)—(A4). LetT,S:C — C
is closed relatively quasi-nonexpansive mappings such that Q := F(T) N F(S) N EP(f) #0. For an
initial point xo € E with x1 = Il¢c,xg and Cy = C, define a sequence {x,} as follows:

zn = J (BT xn + (1= B) JTwy),

Yn = ]_l (anJxn+ (1 - ay)]Szy),
1
u, € C such that f(u,,y) + a(y —Un, Jun = Jyn) 20, VyeC, (3.69)

Cu = {Z €Cy: ¢(Z/un) < (Xn(i)(z, xn) + (1 - lxn)(,b(Z, Zy) < ¢(z,xn)},

Xp41 = | |x0, Vn>1,
Cn+1

where | is the duality mapping on E. Assume that {a,} and {p,} are sequences in [0,1] such that
a, <1-61and B, < 1-06,, for some 61,6, € (0,1) and {r,} C (0,2a). Then {x,} converges strongly
top € Q, where p = Ioxy.
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4. Application
4.1. Complementarity Problem

Let K be a nonempty, closed and convex cone E, A a mapping of K into E*. We define its polar
in E* to be the set

K*={y* € E": (x,y*) >0, Vx € K}. 4.1)
Then the element u € K is called a solution of the complementarity problem if
Au € K*,{u, Au) = 0. (4.2)

The set of solutions of the complementarity problem is denoted by C(K, A).

Theorem 4.1. Let K be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from K x K to R satisfying (A1)—(A4) and let A be
an a-inverse-strongly monotone of E into E* satisfying ||Ay| < ||Ay — Aul|, for all y € K and
ue C(K,A)#0. Let T,S : K — K be closed relatively quasi-nonexpansive mappings and Q :=
F(T) N F(S) NEP(f) N C(K, A) #0. For an initial point xy € E with x; = Ik, and Ky = K, we
define the sequence {x,} as follows:

Wy = HK]*l(]xn - M Axy),
Zn = ]_1 (ﬁn]xn + (1 - ﬂn)]Twn)/

Yn = ]_1 (an]xn + (1 —a,)]Szy),

u, € C such that f(u,,y) + %(y — Uy, Jun—Jya) 20, Vy €K, (4.3)

Cui1 = {2 €Cn: P(z,un) < and(z,xn) + (1 — ) P(z,2n) < P(z, %)},

Xn+1 = | |x0/ vn 2 ]-/
Cn+1

where | is the duality mapping on E, {a,} and {p,} are sequences in [0,1] such that a, <1 - 64
and B, < 1 - 6y, for some 61,6, € (0,1), {r,} C (0,2a), and {\,} C [a,b] for some a,b with
0 < a<b < ca/2, where 1/c is the 2-uniformly convexity constant of E. Then {x,} converges
strongly to p € Q, where p = Igxy.

Proof. As in the proof of Takahashi in [7, Lemma 7.11], we get that VI(K, A) = C(K, A). So,
we obtain the result. O

4.2. Approximation of a Zero of a Maximal Monotone Operator

Let B be a multivalued mapping from E to E* with domain D(B) = {z € E : Az#(} and range
R(B) =U{Bz: z € D(B)}. A mapping B is said to be a monotone operator if (x1—x, y1-y2) >0
for each x; € D(B) and y; € Ax;,i = 1,2. A monotone operator B is said to be maximal if
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its graph G(B) = {(x,y) : y € Ax} is not property contained in the graph of any other
monotone operator. We know that if B is a maximal monotone operator, then B™(0) is closed
and convex. Let E be a reflexive, strictly convex, and smooth Banach space, and let B be a
monotone operator from E to E*, we know that B is maximal if and only if R(J + ¥B) = E* for
allr > 0. Let J, : E — D(B)be defined by J, = (J + rB)flfand such a J, is called the resolvent
of B . We know that J, is a relatively nonexpansive (closed relatively quasi-nonexpansive for
example; see [8]), and B~1(0) = F(J,) for all r > 0 (see [7, 33-35] for more details).

Theorem 4.2. Let C be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C x C to R satisfying (Al)—(A4) and let A
be a-inverse-strongly monotone of E into E* satisfying ||Ay| < ||Ay — Au||, forall y € C and
u € VI(A,C) #0. Let B be a maximal monotone operator of E into E* and let ], be a resolvent of B
and a closed mapping such that Q := B71(0) N F(S) N EP(f) N VI(A,C) #0. For an initial point
xo € E with x1 =1l¢, and Cy = C, we define the sequence {x,} as follows:

wy =T ] (Jx, — A Axy),
Zn = ]_1 (,ﬁn]xn + (1 - ﬂn)]]rwn)/
Yn = J N anJxn + (1= ) ] Szn),
u, € C such that f(u,,y) + %(y — U, Jun — Jya) 20, VYyeC, (4.4)

Conn ={z€Cpn:P(z,un) <and(z,x,) + (1 — an)P(z,20) < P(z,x0) },
Xn+1 = HxOI Vn>1,
Cn+1

where | is the duality mapping on E, {a,} and {p,} are sequences in [0,1] such that a, <1 - 64
and B, < 1 - 6y, for some 61,6, € (0,1), {r,} C (0,2a) and {A,} C [a,b] for some a,b with
0 < a<b < c*a/2, where 1/c is the 2-uniformly convexity constant of E. Then {x,} converges
strongly to p € Q, where p = Ilgxy.

Proof. Since J, is a closed relatively nonexpansive mapping and B0 = F(J,). So, we obtain
the result. O

Corollary 4.3. Let C be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C x C to R satisfying (Al)—(A4) and let A
be a-inverse-strongly monotone of E into E* satisfying ||Ay| < ||Ay — Aul|, forall y € C and
u € VI(A,C) #0. Let B be a maximal monotone operator of E into E* and let ], be a resolvent of B
and closed such that Q := B™1(0) N EP(f) N VI(A, C) #0. For an initial point xo € E with x; = T,
and Cy = C, we define the sequence {x,} as follows:

wy =] ™ (Jtn = AnAxy),
zn =] (Bulxn + (1= Bu) ] Jrwn),
Yn =] ] xn+ (1= )] Jr2zn),
u, € C  such that f(u,,y) + %(y — Uy, Jun = Jya) 20, YyeC, (4.5)

Conn ={z€Cpn: P(z,up) <and(z,x,) + (1 — an)P(z,20) < P(z,x4)},

Xpil = | |x0, Vn>1,
Cn+1
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where | is the duality mapping on E, {a,} and {p,} are sequences in [0,1] such that a, <1 - 64
and B, < 1 - 06y, for some 61,6, € (0,1), {r,} C (0,2a) and {A,} C [a,b] for some a,b with
0 < a<b < c*a/2, where 1/c is the 2-uniformly convexity constant of E. Then {x,} converges
strongly to p € Q, where p = Ilgxy.

Acknowledgments

The authors would like to thank the referee for the valuable suggestions on the manuscript.
Siwaporn Saewan would like to thank the Office of the Higher Education Commission,
Thailand for supporting by grant fund under the program Strategic Scholarships for Frontier
Research Network for the Join Ph.D. Program Thai Doctoral degree for this research.
Moreover, Poom Kumam was supported by the Thailand Research Fund and the Commission
on Higher Education (MRG5180034).

References

[1] K. Ball, E. A. Carlen, and E. H. Lieb, “Sharp uniform convexity and smoothness inequalities for trace
norms,” Inventiones Mathematicae, vol. 115, no. 3, pp. 463-482, 1994.

[2] Y. Takahashi, K. Hashimoto, and M. Kato, “On sharp uniform convexity, smoothness, and strong type,
cotype inequalities,” Journal of Nonlinear and Convex Analysis, vol. 3, no. 2, pp. 267-281, 2002.

[3] Y. I. Alber and S. Reich, “An iterative method for solving a class of nonlinear operator equations in
Banach spaces,” Panamerican Mathematical Journal, vol. 4, no. 2, pp. 39-54, 1994.

[4] Y. I. Alber, “Metric and generalized projection operators in Banach spaces: properties and
applications,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol.
178 of Lecture Notes in Pure and Applied Mathematics, pp. 15-50, Marcel Dekker, New York, NY, USA,
1996.

[5] 1. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of
Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

[6] S. Kamimura and W. Takahashi, “Strong convergence of a proximal-type algorithm in a Banach
space,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 938-945, 2002.

[7] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000, Fixed
Point Theory and Its Application.

[8] X. Qin, Y. J. Cho, and S. M. Kang, “Convergence theorems of common elements for equilibrium
problems and fixed point problems in Banach spaces,” Journal of Computational and Applied
Mathematics, vol. 225, no. 1, pp. 20-30, 2009.

[9] E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The
Mathematics Student, vol. 63, no. 1-4, pp. 123-145, 1994.

[10] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of
Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117-136, 2005.

[11] A. Moudafi, “Second-order differential proximal methods for equilibrium problems,” Journal of
Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 18, 7 pages, 2003.

[12] S. Reich, “A weak convergence theorem for the alternating method with Bregman distances,” in
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol. 178 of Lecture Notes
in Pure and Applied Mathematics, pp. 313-318, Marcel Dekker, New York, NY, USA, 1996.

[13] W. Nilsrakoo and S. Saejung, “Strong convergence to common fixed points of countable relatively
quasi-nonexpansive mappings,” Fixed Point Theory and Applications, vol. 2008, Article ID 312454, 19
pages, 2008.

[14] Y.Su, D. Wang, and M. Shang, “Strong convergence of monotone hybrid algorithm for hemi-relatively
nonexpansive mappings,” Fixed Point Theory and Applications, vol. 2008, Article ID 284613, 8 pages,
2008.

[15] H. Zegeye and N. Shahzad, “Strong convergence theorems for monotone mappings and relatively
weak nonexpansive mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 7, pp.
2707-2716, 2009.



Abstract and Applied Analysis 25

[16] D.Butnariu, S. Reich, and A. J. Zaslavski, “Asymptotic behavior of relatively nonexpansive operators
in Banach spaces,” Journal of Applied Analysis, vol. 7, no. 2, pp. 151-174, 2001.

[17] D. Butnariu, S. Reich, and A. J. Zaslavski, “Weak convergence of orbits of nonlinear operators in
reflexive Banach spaces,” Numerical Functional Analysis and Optimization, vol. 24, no. 5-6, pp. 489-508,
2003.

[18] Y. Censor and S. Reich, “Iterations of paracontractions and firmly nonexpansive operators with
applications to feasibility and optimization,” Optimization, vol. 37, no. 4, pp. 323-339, 1996.

[19] S. Matsushita and W. Takahashi, “A strong convergence theorem for relatively nonexpansive
mappings in a Banach space,” Journal of Approximation Theory, vol. 134, no. 2, pp. 257-266, 2005.

[20] H. Iiduka, W. Takahashi, and M. Toyoda, “Approximation of solutions of variational inequalities for
monotone mappings,” Panamerican Mathematical Journal, vol. 14, no. 2, pp. 49-61, 2004.

[21] H.Iiduka and W. Takahashi, “Weak convergence of a projection algorithm for variational inequalities
in a Banach space,” Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 668-679, 2008.

[22] S.Matsushita and W. Takahashi, “Weak and strong convergence theorems for relatively nonexpansive
mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2004, no. 1, pp. 37-47, 2004.

[23] W. Takahashi and K. Zembayashi, “Strong and weak convergence theorems for equilibrium problems
and relatively nonexpansive mappings in Banach spaces,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 70, no. 1, pp. 45-57, 2009.

[24] W. Takahashi and K. Zembayashi, “Strong convergence theorem by a new hybrid method for
equilibrium problems and relatively nonexpansive mappings,” Fixed Point Theory and Applications,
vol. 2008, Article ID 528476, 11 pages, 2008.

[25] X. Qin and Y. Su, “Strong convergence theorems for relatively nonexpansive mappings in a Banach
space,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 6, pp. 1958-1965, 2007.

[26] L. Wei, Y. J. Cho, and H. Zhou, “A strong convergence theorem for common fixed points of two
relatively nonexpansive mappings and its applications,” Journal of Applied Mathematics and Computing,
vol. 29, no. 1-2, pp. 95-103, 2009.

[27] P. Cholamjiak, “A hybrid iterative scheme for equilibrium problems, variational inequality problems,
and fixed point problems in Banach spaces,” Fixed Point Theory and Applications, vol. 2009, Article ID
719360, 18 pages, 2009.

[28] P. Kumam and K. Wattanawitoon, “Convergence theorems of a hybrid algorithm for equilibrium
problems,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 4, pp. 386-394, 2009.

[29] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland, Amsterdam, The
Netherlands, 2nd edition, 1995.

[30] H. K. Xu, “Inequalities in Banach spaces with applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 16, no. 12, pp. 1127-1138, 1991.

[31] C. Zilinescu, “On uniformly convex functions,” Journal of Mathematical Analysis and Applications, vol.
95, no. 2, pp. 344-374, 1983.

[32] R. T. Rockafellar, “On the maximality of sums of nonlinear monotone operators,” Transactions of the
American Mathematical Society, vol. 149, pp. 75-88, 1970.

[33] E Kohsaka and W. Takahashi, “Strong convergence of an iterative sequence for maximal monotone
operators in a Banach space,” Abstract and Applied Analysis, no. 3, pp. 239-249, 2004.

[34] S. Plubtieng and W. Sriprad, “An extragradient method and proximal point algorithm for inverse
strongly monotone operators and maximal monotone operators in Banach spaces,” Fixed Point Theory
and Applications, vol. 2009, Article ID 591874, 16 pages, 2009.

[35] S. Plubtieng and W. Sriprad, “Strong and weak convergence of modified Mann iteration for new
resolvents of maximal monotone operators in Banach spaces,” Abstract and Applied Analysis, vol. 2009,
Article ID 795432, 20 pages, 2009.



Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 59, Mumber 4, February 2010 ISSN 0898-1221

FISEVIER

with ap‘iﬁlications

Editor-in-Chief: Ervin Y. Rodin
Associate Editor-in-Chief; Massoud Amin

NOW focluded in your subscription:

ELECTRONIC
ACCESS

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright



Computers and Mathematics with Applications 59 (2010) 1473-1483

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Strong convergence of the modified Ishikawa iterative method for
infinitely many nonexpansive mappings in Banach spaces”

Phayap Katchang, Poom Kumam *
Department of Mathematics, Faculty of Science, King Mongkut'’s University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand

ARTICLE INFO ABSTRACT

Article history: In this paper, we introduce a new modified Ishikawa iterative process for computing fixed
Received 4 April 2009 points of an infinite family nonexpansive mapping in the framework of Banach spaces.
Received in revised form 12 January 2010 Then, we establish the strong convergence theorem of the proposed iterative scheme under

Accepted 13 January 2010 some mild conditions which solves a variational inequality. The results obtained in this

paper extend and improve on the recent results of Qin et al. [Strong convergence theorems

i\(lf){lvz%?r;sive mapping for an infinite family of nonexpansive mappings in Banach spaces, Journal of Computational
Fixed point and Applied Mathematics 230 (1) (2009) 121-127], Cho et al. [Approximation of common
Strong convergence fixed points of an infinite family of nonexpansive mappings in Banach spaces, Computers
Infinite family and Mathematics with Applications 56 (2008) 2058-2064] and many others.

Banach space © 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Inrecent years, the existence of fixed points for finitely or infinitely many nonexpansive mappings has been considered by
many authors (see also [ 1-8]). The well-known convex feasibility problem reduces to finding a point in the intersection of the
fixed point sets of a family of nonexpansive mappings (see [9,10]). The problem of finding an optimal point that minimizes
a given cost function over a common set of fixed points of a family of nonexpansive mappings is of wide interdisciplinary
interest and practical importance; see, e.g.,[9,11,12]. A simple algorithmic solution to the problem of minimizing a quadratic
function over a common set of fixed points of a family of nonexpansive mappings is of extreme value in many applications
including set theoretic signal estimation (see [13,12]). It is an interesting topic for investigating the approximation of fixed
points of a family of nonexpansive mappings.

Let E be a real Banach space, C be a closed convex subset of E and T : C — C be a nonlinear mapping. We use F(T) to
denote the set of fixed points of T, that is, F(T) = {x € C : Tx = x}. A mapping T is called nonexpansive if

ITx =Tyl < llx—yll, Vx,yeC. (1.1)

One classical way to study nonexpansive mappings is to use contractions to approximate a nonexpansive mapping [ 14-16].
More precisely, take t € (0, 1) and define a contraction T; : C — C by

Tex=tu+ (1 —-1t)Tx, VxeC, (1.2)

where u € C is a fixed point. Banach’s contraction mapping principle guarantees that T; has a unique fixed point x; in C. It is
unclear, in general, what the behavior of x; is as t — 0, even if T has a fixed point. However, in the case of T having a fixed
point, Browder [14] proved that if E is a Hilbert space, then x; converges strongly to a fixed point of T. Reich [15] extended
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Browder’s result to the setting of Banach spaces and proved that if E is a uniformly smooth Banach space, then x; converges
strongly to a fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from C onto F(T). Xu [16]
proved that Reich’s results hold in reflexive Banach spaces which have a weakly continuous duality mapping.

Recall that a self-mapping f : C — C is a contraction on C if there exists a constant o € (0, 1) and x, y € C such that

If ) =fFWIl < allx =yl (1.3)

We use IT¢ to denote the collection of all contractions on C. That is, ITc = {f|f : C — C a contraction}. Note that each
f € I¢ has a unique fixed point in C. Throughout the paper we assume that F(T) # @. Given a real number t € (0, 1) and a

contraction f € I1¢, define another mapping T{ :C — Chy
thx =tfx)+(1—-t)Tx, xeC.

For simplicity we will write T; for T{ provided no confusion occurs.
It is not hard to see that T; is a contraction on C. Indeed, for x, y € C we have

ITex — Teyll = it x) —f) + (A1 = O(Tx = Tyl
<oatlx=yl+ A =0lx—yl
=0 —-t(d—-a)lx—yl
= lIx =yl
Letx;, == x’; € C be the unique fixed point of T;. Thus x; is the unique solution of the fixed point equation
xe = tf (x¢) + (1 — O)Tx,.
Let A be a strongly positive bounded linear operator on the Hilbert space H [17] if there exists a constant y > 0 with the
property
(Ax, x) > y|Ix||*>, VxeH. (1.4)

A typical problem is that of minimizing a quadratic function over the set of the fixed points of a nonexpansive mapping on
areal Hilbert space H:

1
min —(Ax, x) — (x, b), (1.5)
X€F(S) 2
where S is a nonexpansive mapping and b is a given point in H.
In this paper, we consider the mapping W, defined by

Un,n+1 =1,
Un,n = )\nTnUn,n+1 + (1 - )Ln)Iy
Un,n—l = )\n—1Tn—1Un,n + (1 - )\n—l)l,

Unk = AMTUn g1 + (1 = 21, (1.6)
Unk—1 = AM—1Ti—1Une + (1 — A1),

Unz = AU 3 4+ (1 = A,
Wy =Up1 = AMTiUpo + (1 = A9,

where Tq, Ty, ... is an infinite family of nonexpansive mappings of C into itself and A1, A,, ... are real numbers such that
0 <A, <1foreveryn e N.

Recently, Qin et al. [6] proved that the sequences {x,} converge strongly to a common fixed point of the infinite family
nonexpansive mappings in Banach spaces under certain appropriate assumptions on the sequences «, and f,. Let the
sequences {x,} be generated by

Yn = Bnxn + (1 — Bn)Wixn, (1.7)

{xo =x € C chosen arbitrarily,
Xnp1 = apt + (1 —ap)yn, Vn>0.

Cho et al. [1] also modified the iterative algorithm (1.7) to have strong convergence by using the viscosity approximation
method. They considered the following iterative algorithm:

Yo = Buxn + (1 — B) Wik, (1.8)

{xo = x € C chosen arbitrarily,
Xpp1 = opf (Xp) + (1 — ap)yn, VYn > 0.
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On the other hand, Shang et al. [18] introduced the following new iterative algorithms for a nonexpansive mapping in
Hilbert spaces; let the sequences {x,} be generated by

X9 = x € C chosen arbitrarily,

Zn = YnXn + (1 - Vn)Txm

Yn = BuXn + (1 = By)Tz,,

Xnp1 = anyf(x) + (I — anA)yn, Vn=>0.

They proved that the sequence {x,} converges strongly to a fixed point of T under some mild assumptions.
In this paper, motivated by (1.7)-(1.9), we extend the algorithm (1.9) to an infinite family of nonexpansive mappings in
Banach spaces and introduce a composite iterative algorithm as follows:

X9 = x € C chosen arbitrarily,

Zn = YnXn + (1 — Yo) Wixy,

Yn = lgnxn + (1 - IBH)ann’

Xn1 = oV f(Xp) + (I — 0A)yn, Yn >0,

where W, is defined by (1.6), f is a contraction and A is a strongly positive linear bounded self-adjoint operator. Then, we
prove that the sequence {x,} generated by (1.10) converges strongly to a common fixed point.
Next, we consider some special cases of the iterative scheme. If {3;,} = 1for alln > 0in (1.10), then (1.10) reduces to

(1.10)

Yn = BnXn + (1 — Bn) Wik, (1.11)
Xny1 = onYf (X)) + (I — yA)yn, VYn > 0.

If {ys} =y = 1foralln > 0and A = I (the identity mapping) in (1.10), then (1.10) reduces to (1.8) of Cho et al. [1]. If
f(x,) =uforalln € Nin (1.8), then (1.8) reduces to (1.7) of Qin et al. [6]. If {8,} = 0 and {y,,} = 1foralln > 0in(1.10),
then (1.10) reduces to

{xo =x € C chosen arbitrarily,

Xo = x € C chosen arbitrarily, (1.12)

Xnp1 = oy f(xn) + (I — 0pAYWix,, Vn > 0. ’
If{y,} =y =1and {B,} =0foralln > 0and A = I in (1.10), then (1.10) reduces to

Xo = x € C chosen arbitrarily, (1.13)

Xpp1 = opf (Xp) + (1 — o) Wix,, VN > 0. )

Our results presented in this paper introduce the composite iterative scheme for approximating a fixed point of an infinite
family nonexpansive mapping. We also establish the strong convergence of the composite iterative sequences {x,} defined
by (1.10), which solves a variational inequality. With an appropriate setting, we obtain the corresponding results due to Qin
et al. [6], Cho et al. [1] and many others.

2. Preliminaries

Recall thatwelet U = {x € E : ||x|| = 1}. ABanach space E is said to be uniformly convex if, for any € € (0, 2], there exists
aé > Osuchthat, foranyx,y € U, ||x — y|| > € implies || ’% I < 1—8.Itis known that a uniformly convex Banach space

is reflexive and strictly convex (see also [19]). A Banach space E is said to be smooth if the limit lim;_,o ”"”y—t”_”"” exists for
all x, y € U.Itis also said to be uniformly smooth if the limit is attained uniformly for x, y € U.

Let E* be the dual space of E.Let ¢ : [0, 00) := RT — R be a continuous strictly increasing function such that ¢(0) = 0
and ¢(t) — oo ast — oo. This function g is called a gauge function. The duality mapping J, : E — E* associated with a
gauge function ¢ is defined by

Jo®) = {f* € E* : (. f7) = lIxlledllxD, If* = ¢(lIxID},  Vx € E,

where (., .) denotes the generalized duality pairing. In the case where ¢(t) = t, we write J for J, and call J the normalized
duality mapping.

In a smooth Banach space, we define an operator A as strongly positive [20] if there exists a constant ¥ > 0 with the
property

(Ax.J(0) = 71, llal — bA|| = ”Shlp1 [{(al —DbA)x,J(x))| a€[0,1],be[-1,1],
xll<

where I is the identity mapping and ] is the normalized duality mapping.

If C and D are nonempty subsets of a Banach space E such that C is a nonempty closed convex and D C C, then a mapping
Q : C — Dissunny [21,22] provided that Q (x+t(x — Q(x))) = Q(x) forallx € C andt > 0 wheneverx+t(x —Q(x)) € C.
A mapping Q : C — C is called a retraction if Q> = Q. If a mapping Q : C — C is a retraction, then Qz = z for all z is in the
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range of Q. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C
onto D. A sunny nonexpansive retraction is a sunny retraction which is also nonexpansive. Sunny nonexpansive retractions
play an important role in our argument. They are characterized as follows [21,22]: if E is a smooth Banach space, then
Q : C — Dis a sunny nonexpansive retraction if and only if the following inequality holds:

(x—Qx,J(y—Qx)) <0, VxeC,yeD. (2.1)

Following Browder [23], we say that a Banach space E has a weakly continuous duality mapping if there exists a gauge ¢
for which the duality mapping J, (x) is single-valued and weak-to-weak sequentially continuous (i.e., if {x,} is a sequence
in E weakly convergent to a point x, then the sequence J,(x) converges weakly to J,). It is known that I’ has a weakly
continuous duality mapping with a gauge function ¢(t) = tP~!forall 1 < p < o0o. Set ®(t) = fot (t)dt, Vt > 0; then
Jo(x) = 0D (|Ix]]), Vx € E, where d denotes the sub-differential in the sense of convex analysis.

We need the following lemmas for proving our main results.

Lemma 2.1 ([24]). Assume {a,} is a sequence of nonnegative real numbers such that

Qan41 = (1 - O[n)an + 5n7 n= Oa

where {a,} is a sequence in (0, 1) and {5, } is a sequence in R such that:
(1) Y2 o =00;
(2) limsup, o 22 < 00r 302, [8,] < o0.

Then lim,,_, »c a, = 0.

Lemma 2.2 ([7]). Let C be a nonempty closed and convex subset of a strictly convex Banach space E. Let T, T, ... be
nonexpansive mappings of C into itself such that ﬂ;’il F(T,) # @ and let Ay, A3, ... bereal numbers such that 0 < A, <b < 1
forany n > 1. Then, for every x € C and k € N, the limit lim,_, », Uy X exists.

Remark 2.1 (See [4, Remark 3.2]). It can be found from Lemma 2.2 that if D is a nonempty bounded subset of C, then for
€ > 0 there exists ngp > k such that for all n > ny,

sup || Unkx — Upx|| < €.
xeD

Remark 2.2 (See [4, Remark 3.3]). Using Lemma 2.2, we define a mapping W : C — C as follows:

Wx = lim Wyx = lim Up qx

n—oo n—oo
for all x € C. Such a W is called the W-mapping generated by Ty, T, ... and Aq, A5, . ... Since W, is nonexpansive, then
W : C — Cis also nonexpansive. Indeed, observe that for each x, y € C,

[Wx = Wyll = lim [Wax — Wyl < llx =yl

If {x,} is a bounded sequence in C, then we put D = {x, : n > 0}. Hence, it is clear from Remark 2.1 that for an arbitrary
€ > 0 there exists Ng > 1 such that for all n > N,

[Wixn — Waxn || = [[Up,1%0 — UrXn |l < sup [[Up,1x — Urx|| < €.
xeD

This implies that

lim [[Wyx, — W] = O.
n—oo

Lemma 2.3 ([7]). Let C be a nonempty closed and convex subset of a strictly convex Banach space E. Let T{,T,, ... be
nonexpansive mappings of C into itself such that ﬂﬁ; F(T,) # @ and let Aq, A3, ... bereal numbers such that 0 < A, <b < 1
foranyn > 1. Then F(W) = (o=, F(Ty).

In 2006, Xu [16] proved that, if E is a reflexive Banach space and has a weakly continuous duality, then there is a sunny
nonexpansive retraction from C onto F(T) and it can be constructed as follows.

Lemma 2.4 ([6, Lemma 1.3.]). Let E be a reflexive Banach space that has a weakly continuous duality map J,(x) with gauge ¢.
Let C be a closed convex subset of E and let T : C — C be a nonexpansive mapping. Fixu € Candt € (0, 1). Let x; € C be
the unique solution in C of Eq. (1.2). Then T has a fixed point if and only if {x,} remains bounded ast — 0%, and in this case, {x;}
converges as t — 07 strongly to a fixed point of T.
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Under the condition of Lemma 2.4, we define a mapping Q : C — F(T) by
Q(u) := lirr(l)xt YueC.
t—
From Xu ([16], Theorem 3.2), we know that Q is the sunny nonexpansive retraction from C onto F(T).
Lemma 2.5 ([25]). Let E be a uniformly smooth Banach space, C be a closed convex subset of E, T : C — C be a nonexpansive
mapping with F(T) # @ and let us have f € Ic. Then the sequence {x;} defined by
xe = tf (x¢) + (1 — O)Tx,
converges strongly to a point in F(T). Suppose we define a mapping Q : Il — F(T) by
Q) = lirr(l)xt, Vf € .
t—
Then Q (f) solves the following variational inequality:

(I=HQ).JQFf)—p)) =0, Vfelc,pekFT). (2.2)
In particular, iff = u € C is a constant, then (2.2) is reduced to the sunny nonexpansive retraction of Reich [15] from C onto
F(T),

QW) —u,JQw) —p)) =0, ueC,peFT). (2.3)

Lemma 2.6 ([26]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {8,} be a sequence in [0, 1] with
0 < liminf,— o By, < limsup,_, ., Bn < 1.Suppose xp+1 = (1 — By)yn + BuXy for all integers n > 0 and lim sup,,_, o, ([¥n+1 —
Yull = IXn+1 — xnll) < O. Then, lim,_, » ||yn — xa|| = O.
Lemma 2.7 ([27,6]). Assume that a Banach space E has a weakly continuous duality mapping J, with gauge ¢.
(i) Forallx,y € E, the following inequality holds:
Q(llx+yl) = @dlxID + ¥, Jp(x +y)).
In particular, forallx,y € E,
Ix+y1? < IXI* + 20, Jx +¥)).
(ii) Assume that a sequence {x,} in E converges weakly to a point x € E.
Then the following identity holds:

limsup @(||x, — y|) = limsup @(||lx, —x|)) + @(lly —x|), Vx,y €E.

n—oo n—oo

Lemma 2.8 ([20]). Assume that A is a strong positive linear bounded operator on a smooth Banach space E with coefficient y > 0
and 0 < p < ||A|| =Y. Then ||I — pA|| < 1 — p7.

3. Main results

Let E be a Banach space, C a closed convex subset of E, A a strongly positive linear bounded self-adjoint operator with
coefficienty > 0,and T : C — C a nonexpansive mapping with F(T) # . As previously, let I1¢ be the set of all contractions
onC.Fort € (0, 1) and f € I, letx, € C be the unique fixed point of the contraction x — tyf(x) + (I — tA)Tx on C; that is

Xe = tyf(xe) + (I — tA)Tx,.

In this section, we prove a strong convergence theorem.

Theorem 3.1. Let C be a nonempty closed and convex subset of a reflexive, smooth and strictly convex Banach space E which also
has a weakly continuous duality map ], (x) with the gauge ¢. Let T1, T,, . . . be a nonexpansive mapping from C into itself such
that (o=, F(Ty) # ¥, and let Ay, A2, ... be real numbers. Let A be a strongly positive linear bounded self-adjoint operator with

coefficient y > 0 and let f be a contraction of C into itself with coefficient « € (0, 1). Assume that 0 < y < g the initial guess
Xo € C is chosen arbitrarily and the given sequences {«,}, {B:} and {y,} are in (0, 1), the following conditions are satisfied:

(i) 200y an = 00; limy, 0 0ty = 0;
(i) {00 B = 0;
(iii) limy— o0 [Yns1 — ¥al = 0.
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Then the sequence {x,} generated by (1.10) converges strongly to x* € ﬂﬁi 1 F(Ty), where x* = Q(f) and Q is a unique sunny
nonexpansive retraction from Ilc onto ﬂ,f';l F(T,). If we defineQ : I1c — ﬂ;’; F(T,) by
Q(f) = limxta f € HCa
t—0

then Q (f) solves the variational inequality

((vf = AQ().J,(p— Q) 0. Vf e Mc.pe( |F(Ty). (3.1)

n=1

In particular, if f = u € C is a constant, then (3.1) is reduced to the sunny nonexpansive retraction from Ilc onto ﬂ,j“;l F(T,),

(yu—AQ(),J,(p — Q) <0, ueC,pe( |FTy). (32)
n=1

Proof. Since o, — 0asn — oo, we may assume, with out loss of generality, that o, < (1 — 8,)||A||~" for all n. From
Lemma 2.8, we know thatif0 < p < ||A||~!, then ||I — pA|| < 1— py.First we show that {x,} is bounded. Letp € ﬂﬁ; F(Ty,).
By the definition of {z,}, {y,} and {x,}, we have

”ann + (1 - yn)ann - p”

< Vallxn — pll + (1 = ¥2) [Waxs — pl|
< VallXn —pll + (1 = yu) X2 — Pl
=[x, —pll,

zn = pll

and from this, we have

yn =PIl = 1 BnXn + (1 — Bp)Wyz, — pl|
< Bullxn — pll + (1 = B)[|Wazn — pli
< Bullxn — pll + (1 = Bu)llza — plI
< Bullxn — pll + (1 — Bu) lIxa — pl|
= [|xa — pll.
It follows that

X041 — pll = llomyf (xn) + (I — anA)yyn — pll
llon (vf (%) — Ap) + (I — anA) (Y — D)l

< anllyfx) —Apll + (1 — an?)llyn — pll
< anllyfxn) — yf(p) + vf(P) —Apll + (1 — an?) %0 — Pl
< any If xn) = fFDI + anllyf () — Apll + (1 — an¥) lxa — P
< anya|ixp — pll + anllyf () — Apll + (1 — any) lIXn — Pl
_ _ Ilvf () — Apll
= (1 —on(y —ya)lxn —pll + on(y — Va)ﬁ-
By induction on n, we obtain ||x;, — p|| < max{||xo — pl||, W} for everyn > 0 and xy € C; then {x,} is bounded. So,

{Vn), {20}, (Wnx,}, and {f (x,)} are also bounded.
Next, we claim that ||x,4+1 — X,|| = 0asn — oo. Since T,, and U,, , are nonexpansive, from (1.6), we have

Whi1xn — Wikl = |A1T1Unp1,2X%0 — AT1U; 25 ||

< Al|Ung1,2X0 — Up 2Xy ||

= Al|A2ToUnp1,3%0 — AT Uy 3%, ||
< MA2l|Ung1,3%0 — Up 3%, ||

IA

AA - ApllUnp1 n1Xn — Un pp1Xa |

n
My [ ]
i=1

IA
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where My > 01is an appropriate constant such that ||Upy1.nt+1Xn — Unnt1Xnll < Mj for all n > 0. Similarly, we also have
Witz — Whzyll < M, ]_[:7:1 Aj, where M, > 0 such that ||Upy1 n+12n — Upntaznll < M, for all n > 0. It follows that
1zor1 — zoll = 1 (Var1Xne1 + (1 = Vo) WapiXagr1) — (VaXn + (1 — ) Wi, ||
< (= Yar ) IWhiaXne1 — WapaXall + [Vas1 — YalllXn — WaaXall + Vo [1Xap1 — Xall
+ (1 = y) (Whgaxy — Wik, ||
(1 = Yar D %1 — Xnll + Va1 — YalllWahiaxn — Xoll + Va1 1Xne1 — xall
+ (1 = Y [Whi1xn — Waxa ||
141 — Xpll + V1 — ValllWnp1xn — Xl + (1 — v ([Whp1Xq — Wixa|
X1 — Xnll + Va1 — VallWag1Xa — Xall + WX, — Wikl

A

IA

IA

n
Xng1 = Xall + [Vas1 = Vol Wat12a — Xall + M ] | 4.

i=1

IA

Observe that, on putting I, = ’% we have
Xnp1 = (1 = Bl + Baxn, Vn > 0. (3.3)

Now, we have

Xni2 — Bnr1Xne1 Xyl — BnXn
M1 — Ll = -
1-— ,Bn+l 1— ,311
_ @1 vf Gng) + I — an1A)Ynir — BopaXns1r @y () + (I — anA)yn — BXn
1- ,Bn—H 1-— ,Bn
. U1 (Vf Kng1) — AVnt1) Y1 — Bar1Xns1 _ an(yf (X,) — Ayn) _ Yn — BnXn
l_ﬂn+1 1_,Bn+1 1_,3n 1_,311
X —A Xn) — A
_ An1(Vf (Xng1) Ynt1)  Wo1Znss — o (yf (%) Vi) Wz,
1-— ,8,1+1 1-— lgn
< ———Ivfxng1) — AVngall + 1AV, — v ) | + Wiy 121 — Wzl
1-— ,Bn—H ,Bn
= ——[¥f (Xng1) — AVns1ll + 1Ay, — vf DIl + Wit1zZnp1 — Wigazn + Wiz — Waz,||
1— .Bn—H ﬂn
< ———IYf&nt1) — Aynsall + lAyn — vf (xa) |
1-— .3n+1 ﬂn

+ ||Wn+1Zn+1 - Wn+1Zn” + ||Wn+1Zn - W Zn”

< ———I7f 1) — Aynall + lAyn — ¥f &) |l + 1zns1 — Zall + [[Whai12n — Waza ||
1- ,Bn—H 1-— ,Bn

X A
=71z ,Bn—H ———IVf K1) — AVngall + 1= ,Bn

n n
+ %1 = Xall + [Ve1 = VallWagaXo — Xl + My [ [ + Mo ] T
i=1 i=1

[Ayn — v f (o) |

=71z .Bn—H ——IVf Knt1) — AVl + —— 1= ﬂn AV, — yf (x|l

n
+ Xns1 = Xall + [Var1 = Val Wasaxa — all + M [ [ 2,
i=1

where M = M; + M,. Therefore, we have

IVf Xng1) — Ayniall + Ayn — vf o)l

Xall < —F
_]_ﬁn+ 1_,3n

+ |Vn+1 - Vn|||Wn+1xn — Xp|l + Ml—[)»i.

i=1

ns1 = Il = X1 —

From the conditions (i), (ii), (iii),and 0 < A, < b < 1, we obtain

lim sup(|[lt1 — bl = [1Xn41 — Xall) < 0.

n—-oo
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It follows from Lemma 2.6, that lim,_, » ||I, — X,|| = 0. Noting (3.3), we see that

X041 — Xnll = (1 = B lln — Xall — O

as n — oo. Therefore, we have

lim [[xp+1 — Xa|| = 0. (34)
n—-oo

Observing that
X041 — Yl = llomyf ) + I — azA)yn — Yall

anllyf (xn) — Ayall,

and the condition (i), we get
lim [|xy1+1 — yall = 0. (3.5)
n—-oo

On the other hand, we have
lyn = xnll < I1%0 — Xag1ll + X041 — Yall-

Combining (3.4) with (3.5), we have
lim ||y, — xs|| = 0. (3.6)
n—oo

Consider
lyn — Waznll = ||BnXn + (1 — B)Whnzy — Wizyll = Ballxn — Whzal|
and
lze — xull = llyuxn + (1 — yu) Waxn — Xl
= “ann + ann - Vanxn - Xn”
= ”(ann — Xp) — Vn(ann - Xn)”
= (1 = yu) Wixn — X5) ||
= (1= y) IWaxn — X1l
It follows that
[Waxn — Xall < X0 — Ynll + lyn — Waznll + |Whzn — Waxa||
1% — ynll + Ballxn — Wazall + [1zn — Xall
= |Ixn — Yull + BullXn — Waznll + (1 — y) [Waxn — X4l

This implies that
YallWaxn — Xall < [1X0 — Yl + BullXn — Wazall.
From the condition (ii) and (3.6), we get

lim ||Wyx, — x,|| = 0.
n—oo

On the other hand, we obtain
”Wxn - Xn” = ”Wxn - ann” + ”ann - Xn”-
From Remark 2.2 (see also Remark 3.3 of [28]), we have that ||Wx,, — Wyx,|| — 0asn — oo. It follows that

lim ||Wx, —x,|| = 0. (3.7)
n—oo

Next, we prove that

lim sup(yf (x,) —AQ(f),Jo (xn — Q(f))) = 0. (3.8)

n—oo

By Lemma 2.5, we have the sunny nonexpansive retraction Q : I1c — ﬂsoz 1 F(Ty). Take a subsequence {x,,} of {x;} such
that

lim sup(yf (x,) —AQ(f), Jp (xn — Q())) = limsup(yf (xn) — AQ(f), Jp (Xn, — Q). (3.9)

n— 00 k— 00
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Since E is reflexive, we may assume that x,, — X for some x € C. Since J, is weakly continuous, from Lemma 2.7, we have

lim sup @ (||xn, — x||) = limsup @ (||x,, — X||) + @(|lx — X||), Vx €E.
k— 00 k— o0

Put
g(x) = limsup @ (||x,, — x|), Vx € E.
k—o00

It follows that
gx)=g® + @(x—x|), VxeE.
From (3.7), we have

g(WX) = limsup & ([|x,, — WX|)) = lim sup & (|| Wx,, — WXI|)

k— o0 k— o0

< limsup @ (||xp, — x[|) = g(X). (3.10)

k—o00
On the other hand, we note that
g(Wx) = limsup @ (||x,, — x||) + @([Wx —x||) = g(x) + @(|[Wx — X|)). (3.11)

k— 00

Combining (3.10) with (3.11), we obtain
P(|Wx —X|) < 0.

Hence Wx = xand x € F(W). Thatis,x € ﬂ;’il F(T,).Hence, by (3.9) and the sunny nonexpansive retraction from /7 onto
Mo, F(Ty), we get

lim sup(yf (xn) —AQ (). Jo (X0 — Q(f))) = (¥f(xn) —AQ(f).Jo (X — Q())) = 0. (3.12)

n—oo

Therefore, we obtain that (3.8) holds.
Finally, we prove that x, — Q(f) asn — oo. Now from Lemma 2.7, we have

D (Ixn41 — QO = @(lanyf (xn) + I — atnA)yn — QAN
= D (lanyf(xn) + (1 = 8p)yn — anAyn + 6n(yn — Q) — (1 = 80)Q () + nAQ(f) — nAQ(H)I)
= @ (lanyf(xn) + (1 = 8n) — nA)Yn + 6n(Yn — Q) — (1 = &) — nA)Q(f) — nAQA)I)
= @(II((1 = 8] — anA)(Yn — Q) + 8n(Yn — QUN] + ot (¥f (xn) —AQ(UNID
= @11 =8I — anA) (Yo — Q) + 8aYn — QUNID + an(yf (xn) — AQF), Jyp ¥nt1 — Q)
= @((1 =8 —anP)Iyn — QO + Snllyn — QUOID + an(vf (xn) — AQF), Jp (Xn1 — Q)
= @((1 = 8p — anP)llyn — QU + Snllyn — QO + an(yf (xn) — AQ(), Jo X1 — Q(F)))
= 1= 0ny)P(lyn — QU + on(yf ) — AQ(), Jp Xn1 — Q(N)))
= (A =)@ (llxn — QA + 0on, (3.13)

where o, = an(yf (xn) — AQ(f), Jo(Xnr1 — Q(f))). By (3.12) and (i), using Lemma 2.1, we see that @ (|lx, — Q(f)]|) — Oas
n — oo. This implies that ||x, — Q(f)|| — 0asn — oo. This completes the proof. O

Corollary 3.2. Let C be a nonempty closed convex subset of a reflexive, smooth and strictly convex Banach space E which also
has a weakly continuous duality map ], (x) with the gauge . Let T1, T», . . . be a nonexpansive mapping from C into itself such
that ﬂgil F(T,) # ¥, and let A1, A,, . .. be real numbers. Let A be a strongly positive linear bounded self-adjoint operator with

coefficient y > 0 and let f be a contraction of C into itself with coefficient a € (0, 1). Assume that 0 < y < L, the initial

guess xo € C is chosen arbitrarily and the given sequences {«,} and {8,} are in (0, 1). Let {x,} be the composite iterative process

defined by

Xo = x € C chosen arbitrarily,
Yn = BnXn + (1 — Bn) Wik, (3.14)
Xn+1 = O‘n)/f(xn) + (I — asA)y,, VYn=>0.

The following conditions are satisfied:

(i) Zzio oy, = 00; and lim,_, oo 0ty = 0;
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Then the composite process {x,} converges strongly to x* € ﬂ;’; F(T,), where x* = Q(f) and Q : I — ﬂ;’ii F(T,) is the
unique sunny nonexpansive retraction from C onto ﬂ;’; F(Ty,).

Proof. Taking {y,} = 1in(1.10), we can reach the desired conclusion easily. O

Corollary 3.3 ([5, Theorem 3.2,]). Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space
E which also has a weakly continuous duality map J,(x) with the gauge ¢. Let T1, T, ... be a nonexpansive mapping from C
into itself such that ("~ F(T,) # @, and let A1, A, ... be real numbers. Let f be a contraction of C into itself with coefficient
o € (0, 1). The initial guess xo € C is chosen arbitrarily and the given sequences {«,} and {8,} are in (0, 1). Let {x,} be the
composite iterative process defined by

Xo = x € C chosen arbitrarily,
Yn = Bnxn + (1 — Bn)Wixn, (3.15)
Xnp1 = onf (Xp) + (1 —op)yn, Vn>0.

The following conditions are satisfied:

(i) Zsio oy, = 00; and lim,_, o ay = O;
(ii) limy o0 B = 0O;

Then the composite process {x,} converges strongly to x* € ﬂﬁil F(T,), where x* = Q(f) and Q : Il — ﬂ;’il F(T,) is the
unique sunny nonexpansive retraction from C onto ﬂ;’; F(Ty).

Proof. Taking y = 1and A = I in (3.14), we can reach the desired conclusion easily. O

Corollary 3.4 ([6, Theorem 2.1,]). Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space E
which also has a weakly continuous duality map J,(x) with the gauge . Let T,, T,, . . . be a nonexpansive mapping from C into
itself such that ﬂ;’; F(T,) # 0, and let Aq, A3, . .. be real numbers. The initial guess xo € C is chosen arbitrarily and the given
sequences {o,} and {B,} arein (0, 1). Let {x,} be the composite iterative process defined by

Xo = u € C chosen arbitrarily,
Yn = BnXn + (1 — Bn) Wik, (3.16)
Xnp1 = ot + (1 —ap)yn, Vn>0.

The following conditions are satisfied:

(i) Yoo, an = 00; and limy_ o0 0ty = 0;

(i) limp_, o0 B = 0;

Then the composite process {x,} converges strongly to x* € ﬂ;; F(T,), where x* = Q(u)andQ : C — ﬂ,fl";l F(T,) is the
unique sunny nonexpansive retraction from C onto ﬂ;’; F(Ty,).

Proof. Taking f(x) = u € C forallx € C in (3.15), we can reach the desired conclusion easily. O
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We introduce a new iterative scheme for finding the common element of the set of solutions of the
generalized equilibrium problems, the set of fixed points of an infinite family of nonexpansive
mappings, and the set of solutions of the variational inequality problems for a relaxed (u,v)-
cocoercive and ¢-Lipschitz continuous mapping in a real Hilbert space. Then, we prove the strong
convergence of a common element of the above three sets under some suitable conditions. Our
result can be considered as an improvement and refinement of the previously known results.

1. Introduction

Variational inequalities introduced by Stampacchia [1] in the early sixties have had a great
impact and influence in the development of almost all branches of pure and applied sciences.
It is well known that the variational inequalities are equivalent to the fixed point problems.
This alternative equivalent formulation has been used to suggest and analyze in variational
inequalities. In particular, the solution of the variational inequalities can be computed using
the iterative projection methods. It is well known that the convergence of a projection method
requires the operator to be strongly monotone and Lipschitz continuous. Gabay [2] has
shown that the convergence of a projection method can be proved for cocoercive operators.
Note that cocoercivity is a weaker condition than strong monotonicity.

Equilibrium problem theory provides a novel and unified treatment of a wide class of
problems which arise in economics, finance, image reconstruction, ecology, transportation,
network, elasticity, and optimization which has been extended and generalized in many
directions using novel and innovative technique; see [3, 4]. Related to the equilibrium
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problems, we also have the problem of finding the fixed points of the nonexpansive
mappings. It is natural to construct a unified approach for these problems. In this direction,
several authors have introduced some iterative schemes for finding a common element of
a set of the solutions of the equilibrium problems and a set of the fixed points of infinitely
(finitely) many nonexpansive mappings; see [5-7] and the references therein. In this paper,
we suggest and analyze a new iterative method for finding a common element of a set of the
solutions of generalized equilibrium problems and a set of fixed points of an infinite family
of nonexpansive mappings and the set solution of the variational inequality problems for a
relaxed (u, v)-cocoercive mapping in a real Hilbert space.

Let H be a real Hilbert space and let E be a nonempty closed convex subset of H and
Pt is the metric projection of H onto E. Recall that a mapping f : E — E is contraction on E if
there exists a constant a € (0, 1) such that || f(x) - f(y)|| < a||x—-y]|| forall x, y € E. A mapping
S of E into itself is called nonexpansive if ||Sx — Sy|| < ||x — y|| for all x,y € E. We denote
by F(S) the set of fixed points of S, thatis, F(S) = {x € E : Sx = x}. If E C H is nonempty,
bounded, closed, and convex and S is a nonexpansive mapping of E into itself, then F(S) is
nonempty; see, for example, [8]. We recalled some definitions as follows.

Definition 1.1. Let B : E — H be a mapping. Then one has the following.

(1) Bis called monotone if (Bx — By, x —y) >0, forall x,y € E.

(2) B is called v-strongly monotone if there exists a positive real number v such that

(Bx - By, x - y) Zv“x—y”Z, Vx,y € E. (1.1)

(3) Bis called ¢-Lipschitz continuous if there exists a positive real number ¢ such that

|Bx - By|| <¢é||x-vyl|, Vxy€E. (12)

(4) B is called n-inverse-strongly monotone, [9, 10] if there exists a positive real number
7 such that

(Bx - By,x-vy) >1||Bx-By|>, Vx,y€E. (1.3)

If 7 = 1, we say that B is firmly nonexpansive. It is obvious that any 5-inverse-
strongly monotone mapping B is monotone and (1/1)-Lipschitz continuous.

(5) Bis called relaxed (u, v)-cocoercive if there exists a positive real number u, v such that

(Bx-By,x-vy) > (—u)”Bx—By”2 +o||x -y 2 Vx,y € E. (1.4)

For u = 0, B is v-strongly monotone. This class of maps is more general than
the class of strongly monotone maps. It is easy to see that we have the following
implication: v-strongly monotonicity = relaxed (u, v)-cocoercivity.
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(6) A set-valued mapping T : H — 2H is called monotone if for all x,y € H, f € Tx and
g € Ty imply (x-vy, f —g) > 0. A monotone mapping T : H — 2! is maximal if the
graph of G(T) of T is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal if and only if for
(x,fe HxH,{(x-y,f-g)>0forevery (y,g) € G(T) implies f € Tx.

Let B be a monotone mapping of E into H and let Ngw,; be the normal cone to E at
w; € E, that is,

Nrwy={weH: (d-w,w) >0, Vo€ E}. (1.5)

Define

Bw, + Nrw,, if wy € E,
Tw, = (1.6)

@, if wﬁEE

Then T is the maximal monotone and 0 € Tw; if and only if w; € VI(E, B); see [11, 12]

In addition, let D : E — H be a inverse-strongly monotone mapping. Let F be a
bifunction of E x E into R, where R is the set of real numbers. The generalized equilibrium
problem for F : E x E — Ris to find x € E such that

F(x,y)+(Dx,y-x)>0, VYyekE. (1.7)
The set of such x € E is denoted by EP(F, D), that is,
EP(F,D) = {x€E:F(x,y) +(Dx,y-x) >0, Vy € E}. (1.8)
Special Cases
(I) If D = 0 (:the zero mapping), then the problem (1.7) is reduced to the equilibrium problem:
Find x € E such that F(x,y) >0, Vy€E. (1.9)
The set of solutions of (1.9) is denoted by EP(F), that is,
EP(F) = {x€E:F(x,y) >0, Yy € E}. (1.10)
(II) If F =0, the problem (1.7) is reduced to the variational inequality problem:
Find x € E such that (Dx,y -x) >0, Vy€E. (1.11)

The set of solutions of (1.11) is denoted by VI(E, D), that is,

VI(E,D) = {x € E: (Dx,y-x) >0, Vy € E}. (1.12)
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The generalized equilibrium problem (1.7) is very general in the sense that it includes,
as special case, some optimization, variational inequalities, minimax problems, the Nash
equilibrium problem in noncooperative games, economics, and others (see, e.g., [4, 13]).
Some methods have been proposed to solve the equilibrium problem and the generalized
equilibrium problem; see, for instance, [5, 14-28]. Recently, Combettes and Hirstoaga [29]
introduced an iterative scheme of finding the best approximation to the initial data when
EP(F) is nonempty and proved a strong convergence theorem. Very recently, Moudafi [24]
introduced an itertive method for finding an element of EP(F, D) N F(S), where D : E — H
is an inverse-strongly monotone mapping and then proved a weak convergence theorem.

For finding a common element of the set of fixed points of a nonexpansive mapping
and the set of solutions of variational inequality problem for an 7-inverse-strongly monotone,
Takahashi and Toyoda [30] introduced the following iterative scheme:

xo € E chosen arbitrary,
(1.13)
Xp+1 = ApXy + (1 — a,)SPe(x, — T,Bx,), Vn >0,

where B is an 7-inverse-strongly monotone mapping, {a,} is a sequence in (0, 1), and {7}
is a sequence in (0,27). They showed that if F(S) N VI(E, B) is nonempty, then the sequence
{xn} generated by (1.13) converges weakly to some z € F(S) N VI(E, B). On the other hand,
Shang et al. [31] introduced a new iterative process for finding a common element of the set of
fixed points of a nonexpansive mapping and the set of solutions of the variational inequality
problem for a relaxed (u,v)-cocoercive mapping in a real Hilbert space. Let S : E — E
be a nonexpansive mapping. Starting with arbitrary initial x; € E, defined sequences {x,}
recursively by

Xn1 = A f (Xn) + Ppuxn + ¥SPE(I = 74B)x,, Vn>1. (1.14)

They proved that under certain appropriate conditions imposed on {ay}, {fn}, {y»}, and {7,},
the sequence {x,} converges strongly to z € F(S) N VI(E, B), where z = Pr(s)nvi(,) f (2).

In 2008, S. Takahashi and W. Takahashi [27] introduced the following iterative scheme
for finding an element of F(S) N EF(F, D) under some mild conditions. Let E be a nonempty
closed convex subset of a real Hilbert space H. Let D be an 7-inverse-strongly monotone
mapping of E into H and let S be a nonexpansive mapping of E into itself such that F(S) N
EP(F,D) #0. Suppose x1 = 0 € E and let {u,}, {y»}, and {x,} by sequences generated by

F(un,y) + (Dxp,y — uy) + %(y—un,un -x,) >0, YyeC,

Yn = X0 + (1 - an)un/ (115)

Xn+1 = pnxn + (1 - ﬂn)synr

where {a,} C [0,1], {B.} C [0,1], and {r,} C [0,27] satisfy some parameters controlling
conditions. They proved that the sequence {x,} defined by (1.15) converges strongly to a
common element of F(S) N EF(F, D).

On the other hand, iterative methods for nonexpansive mappings have recently
been applied to solve convex minimization problems; see, for example, [32-35] and the
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references therein. Convex minimization problems have a great impact and influence in the
development of almost all branches of pure and applied sciences.

A typical problem is to minimize a quadratic function over the set of the fixed points
a nonexpansive mapping in a real Hilbert space H:

x€E

min{%(/\x,x) - (x,b)}, (1.16)

where E is the fixed point set of a nonexpansive mapping S on H and b is a given point in H.
Assume that A is a strongly positive bounded linear operator on H; that is, there exists a constant
¥ > 0 such that

(Ax,x) >¥lx|I>, VxeH. (1.17)

In 2006, Marino and Xu [36] considered the following iterative method:

Xn41 = €nY f(xn) + (1 —€,A)Sx,, VYn>0. (1.18)

They proved that if the sequence {e,} of parameters satisfies appropriate conditions, then
the sequence {x,} generated by (1.18) converges strongly to the unique of the variational
inequality

((A-yf)z,x-z) >0, VxeF(S), (1.19)

which is the optimality condition for the minimization problem

ngIl:i(I'Sl){ %(Ax,x) — h(x) }, (1.20)

where h is a potential function for y f (i.e., W' (x) = yf(x) for x € H).
In 2008, Qin et al. [26] proposed the following iterative algorithm:

F(un,y) + l(y —Up, Up—Xn) >0, VYyeH,
n (1.21)

Xn+1 = €Y f(xn) + (I — €,A)SPE(I — 7, B)uy,

where A is a strongly positive linear bounded operator and B is a relaxed cocoercive mapping
of E into H. They prove that if the sequences {e,}, {7,}, and {r,} of parameters satisfy
appropriate condition, then the sequences {x,} and {u,} both converge to the unique solution
z of the variational inequality

((A-yf)z,x—-z) >0, Vxe F(S)nVI(E,B) NEP(F), (1.22)
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which is the optimality condition for the minimization problem

. 1
xEF(S)ﬁ\l;ﬂlEr,lB)ﬁEP(F){ 2 {Ax, x) = h(x) }, (1.23)

where h is a potential function for y f (i.e., ' (x) = yf(x) for x € H).

Furthermore, for finding approximate common fixed points of an infinite family of
nonexpansive mappings {T,} under very mild conditions on the parameters, we need the
following definition.

Definition 1.2 (see [37]). Let {T,},-, be a sequence of nonexpansive mappings of E into itself
and let {u,},-; be a sequence of nonnegative numbers in [0,1]. For each n > 1, define a
mapping W, of E into itself as follows:
un,n+1 = I/
un,n = //lnTnun,nH + (1 - ,un)I/
un,nfl = ,unflTn—lun,n + (1 - ,unfl)I/

Uk = Tl + (1= px) I, (1.24)

Up 1 = pe-1 T U + (1= pr) 1,

Uyp = ool s + (1 - o)1,
Wn = Uml = ‘ulTlLI,,,z + (1 —//11)1.

Such a mappings W, is called the W-mapping generated by Ty, Ty, ..., T, and p1, pa, . . ., pn. It
is obvious that W, is nonexpansive, and if x = T,,x, then x = U, x = W,,x.

On the other hand, Yao et al. [38] introduced and considered an iterative scheme for
finding a common element of the set of solutions of the equilibrium problem and the set of
common fixed points of an infinite family of nonexpansive mappings on E. Starting with an
arbitrary initial x; € H, define sequences {x,} and {u,} recursively by

F(un,y) + l(y —Up, Uy —Xy) >0, VYye€H,
n (1.25)

Xni1 = €nY f(Xn) + Puxn + (1= Bn)] — €, A) Wy, Vn>1,

where {¢,} is a sequence in (0, 1). It is proved [38] that under certain appropriate conditions
imposed on {e,} and {r,}, the sequence {x,} generated by (1.25) converges strongly to
z = Pn=, rr,)nepr) (I — A + y f)z. Very recently, Qin et al. [6] introduced an iterative scheme
for finding a common fixed points of a finite family of nonexpansive mappings, the set of
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solutions of the variational inequality problem for a relaxed cocoercive mapping, and the set
of solutions of the equilibrium problems in a real Hilbert space. Starting with an arbitrary
initial x; € H, define sequences {x,} and {u,} recursively by

F(un,y) + l(y — Uy, Uy —Xy) >0, VyeH,
Tn (1.26)

Xn+1 = €Y f (Woxpn) + (I — €,A)W, Pe(I = T,B)u,, Vn2>1,

where B is a relaxed (u, v)-cocoercive mapping and A is a strongly positive linear bounded
operator. They proved that under certain appropriate conditions imposed on {e,}, {7,}, and
{rn}, the sequences {x,} and {u,} generated by (1.26) converge strongly to some point z €
Ny F(Tw) NEP(F) N VI(E, B), which is a unique solution of the variation inequality:

((A-yf)z,x—2z)>0, Vxe ﬁF(Tn) NEP(F) N VI(E, B) (1.27)

n=1

and is also the optimality for some minimization problems.

In this paper, motivated by iterative schemes considered in (1.15), (1.25), and (1.26)
we will introduce a new iterative process (3.4) below for finding a common element of the
set of fixed points of an infinite family of nonexpansive mappings, the set of solutions of the
generalized equilibrium problem, and the set of solutions of variational inequality problem
for a relaxed (u, v)-cocoercive mapping in a real Hilbert space. The results obtained in this
paper improve and extend the recent ones announced by Yao et al. [38], S. Takahashi and W.
Takahashi [27], and Qin et al. [6] and many others.

2. Preliminaries

Let H be a real Hilbert space with inner product (:,-) and norm || - ||. Let E be a nonempty
closed convex subset of H. We denote weak convergence and strong convergence by
notations — and —, respectively. Recall that the (nearest point) projection Pg from H to
E assigns each x € H the unique point in Prx € E satisfying the property

e = Peac| = min|lx - y]]. 2.1)

The following characterizes the projection Pg.
We need some facts tools in a real Hilbert space H which are listed as follows.

Lemma 2.1. Foranyx € H, z € E,
z=Ppx &= (x-z,z-y)>0, VyeE. (2.2)
It is well known that Pg is a firmly nonexpansive mapping of H onto E and satisfies

|| Pex - P;gy”2 <(Pgx-Pgy,x-y), Vx,y€H. (2.3)
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Moreover, Pex is characterized by the following properties: Pex € E and forall x € H,y € E,

(x = Pgx,y — Ppx) <0. (2.4)

Lemma 2.2 (see [39]). Let H be a Hilbert space, let E be a nonempty closed convex subset of H, and
let B be a mapping of E into H. Let p € E. Then for A > 0,

p € VI(E,B) < p = Pe(p - \Bp), (2.5)

where Pg is the metric projection of H onto E.

It is clear from Lemma 2.2 that variational inequality and fixed point problem are
equivalent. This alternative equivalent formulation has played a significant role in the studies
of the variational inequalities and related optimization problems.

Lemma 2.3 (see [40]). Each Hilbert space H satisfies Opials condition; that is, for any sequence

{xn} ¢ H with x,, — x, the inequality

lim infl|x, — x|| < lim inf]|x, - y| (2.6)

holds for each y € H with y # x.

Lemma 2.4 (see [36]). Assume that A is a strongly positive linear bounded operator on H with
coefficient Y > 0and 0 < p < ||A||™2. Then ||I - pA|| <1 - py.

For solving the equilibrium problem for a bifunction F : ExE — R, let us assume that
F satisfies the following conditions:

(A1) F(x,x) =0, for all x € E;

(A2) F is monotone, thatis, F(x,y) + F(y,x) <0, forall x,y € E;

(A3) limyoF(tz+ (1 -t)x,y) < F(x,y), forall x,y,z € E;

(A4) for each x € E, y — F(x,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [4].

Lemma 2.5 (see [4]). Let E be a nonempty closed convex subset of H and let F be a bifunction of
E x E into R satisfying (A1)-(A4). Let r > 0 and x € H. Then, there exists z € E such that

F(z,y)+%<y—z,z—x)20, Vy € E. (2.7)

The following lemma was also given in [5].
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Lemma 2.6 (see [5]). Assume that F : Ex E — R satisfies (A1)-(A4). For r > 0 and x € H, define
a mapping T, : H — E as follows:

Tr(x):{zeE:F(z,y)+%<y—z,z—x>20, VyeE}, (2.8)

forall z € H. Then, the following holds:
(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,

| Trx - T,y”2 <(Tyx-Ty,x-y); (2.9)

(3) F(T;) = EP(F);
(4) EP(F) is closed and convex.

Remark 2.7. Replacing x with x — rDx € H in (2.7), then there exists z € E, such that
1
F(zy) +(Dx,y-z)+ (y-zz-x)20, VyeE. (2.10)

Lemma 2.8 (see [41]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let
Ty, T, ... be nonexpansive mappings of E into itself such that (., F(T,) is nonempty, and let
U1, o, ... be real numbers such that 0 < p, < b < 1 for every n > 1. Then, for every x € E and
k € N, the limit lim,, _, ..U, kX exists.

Using Lemma 2.8, one can define a mapping W of E into itself as follows:

Wx = lim Wyx = lim U, 1x, (2.11)
n— oo

n—oo

for every x € E. Such a W is called the W-mapping generated by T;,T>,... and pi, o, .. ..
Throughout this paper, we will assume that 0 < p,, < b < 1 for every n > 1. Then, we have the
following results.

Lemma 2.9 (see [41]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let
Ty, T, . .. be nonexpansive mappings of E into itself such that (\;—, F(Ty) is nonempty, let p1, po, . ..
be real numbers such that 0 < p,, < b < 1 for every n > 1. Then, F(W) = ;24 F(Ty).

Lemma 2.10 (see [7]). If {x,} is a bounded sequence in E, then lim,, _, o, ||[Wx,, — Wyx,]|| = 0.

Lemma 2.11 (see [42]). Let {x,} and {z,} be bounded sequences in a Banach space X and let { B, } be
a sequence in [0,1] with 0 < liminf, B, <limsup, B, <1.Suppose x,1 = (1= Pn)zn + Pnxn
for all integers n > 0 and limsup,, _, _ ([|zn1 = Znll = [ Xns1 — x4ll) < 0. Then, lim,, _, ||z, — x| = 0.

Lemma 2.12. Let H be a real Hilbert space. Then the following inequality holds:

@) llx + yl? < llxl? +2¢y, x + y),
(@) llx + yl? > llx[* +2(y, x)

forall x,y € H.
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Lemma 2.13 (see [43]). Assume that {a,} is a sequence of nonnegative real numbers such that

ay1 < (1-1)a,+o0, Vn>0, (2.12)

where {1, } is a sequence in (0,1) and {o,} is a sequence in R such that

(1) 25l In = oo,
(2) limsup,, _, _ (0,/1,) <0o0r 372 |on] < co.

Then lim,, _, ca, = 0.

3. Main Results

In this section, we prove a strong convergence theorem of a new iterative method (3.4) for an
infinite family of nonexpansive mappings and relaxed (u, v)-cocoercive mappings in a real
Hilbert space.

We first prove the following lemmas.

Lemma 3.1. Let H be a real Hilbert space, let E be a nonempty closed convex subset of H, and let
D : E — H be n-inverse-strongly monotone. It 0 < r, < 21, then I -1, D is a nonexpansive mapping
in H.

Proof. For all x,y € E and 0 < r,, < 217, we have

1T = ruD)x = (I = raD)y||* = [|(x = y) = ra(Dx = Dy)||*
= ||x - y||* - 2ru{x - y, Dx - Dy) + r2|| Dx - Dy||*
< |lx = y|I* - 2r.m || Dx - Dy|| + 72| Dx - Dy ||* (3.1)
= |lx = y|I* + 7u (s = 21) || Dx - Dy||*

2
<l =yl

So, I — r,D is a nonexpansive mapping of E into H. O

Lemma 3.2. Let H be a real Hilbert space, let E be a nonempty closed convex subset of H, and let
B : E — H be a relaxed (u,v)-cocoercive and ¢-Lipschitz continuous. If 0 < 7, < 2(v — ug?) /¢,
v > ué?, then I — 7, B is a nonexpansive mapping in H.

Proof. For any x,y € E and 7, < 2(v — ug?) /¢%, v > ug®.

Putting r = 1 + 21,u? - 27,0 + T2¢%, we obtain

Ty < —Z(U gzugz)

= T8 +2uét - 20 <0

= 128 + 21U - 21,0 < 0 (3.2)

=1+ rﬁgz + 2Tnu§2 -2r,v <1,
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thatis, » < 1. It follows that
1T = :B)x = (I =7 B)y||* = || (x - y) - 7u(Bx - By) |
= |lx = yI* - 27 (x - y, Bx - By) + 7 || Bx - By||’
< =y - 2z {~ul| Bx - By||* + ol|x - y||*| + ]| Bx ~ By’
<l =yl + 2mug|x -yl - 2mlx - y P+ gl -

= (1 + 2T, ué% - 21,0 + T,%éz) ||x - y”2

2
=r|x-y|
2
<lx -yl
(3.3)
forall x,y € E. Thus ||(I - 7,B)x — (I - 7, B)y|| < ||lx — y||-
So, I — T, B is a nonexpansive mapping of E into H. O

Now, we prove the following main theorem.

Theorem 3.3. Let E be a nonempty closed convex subset of a real Hilbert space H, and let F : EXE —
R be a bifunction satisfying (A1)—(A4). Let

(1) {T.} be an infinite family of nonexpansive mappings of E into E;
(2) D be an n-inverse strongly monotone mappings of E into H;

(3) B be relaxed (u,v)-cocoercive and ¢-Lipschitz continuous mappings of E into H.

Assume that © = (24 F(T,) NEP(F,D) N VI(E,B) #0. Let f : E — E be a contraction mapping
with 0 < a < 1 and let A be a strongly positive linear bounded operator on H with coefficient y > 0
and 0 <y <y/a. Let {x,}, {yn}, {kn}, and {u,} be sequences generated by

x1 € E chosen arbitrary,

! (Y —un,up—x,) >0, Vye€eE,

F(un,y) + (Dxn,y — up) + -

Yn = Py + (1 - (Pn)WnPE (Un — 6,Buy), (34)

kn =Xy + (1 - “n)WnPE (yn - )LnByn>/
X1 = €nY f(Waxn) + Buxn + ((1 = Bp)I — €,A)W,,Pe(ky, — T,Bky), Vn>1,
where {W,} is the sequence generated by (1.24) and {e,}, {a,}, {¢.}, and {p,} are sequences in
(0, 1) satisfy the following conditions:

(C1) limy, o€, =0, Xo2q €n = 00,

(C2) lim,  oaxy, = limy, 50, = 0,
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(C3) 0 <liminf, B, <limsup, , pn <1,

C4) iminf,, _, 1, > 0and limy, _, o |[rs1 — 14| = 0,

(

(

(C5) limy — o[ A1 = M| = limy 0 [Ops1 = Ol = limy s 00| Tui1 = Tl = 0,

(C6) {Tu}, {An}, {6n} C [a,b] for some a,bwith0 < a<b<2(v-ué?)/é, v>ud?
(

C7) {rn} C [c,d] for some c,d with 0 < ¢ < d < 27.

Then, {x,} and {u,} converge strongly to a point z € ©, where z = Po(I — A +y f)(z), which solves
the variational inequality

((A-yf)z,x-2z) >0, Vxe€©O, (3.5)

which is the optimality condition fot the minimization problem

min{%(Ax,x} —h(x)}, (3.6)

x€©

where h is a potential function for y f (i.e., h'(x) =y f(x) for x € H).

Proof. Since lim,, _, €, = 0 by the condition (C1) and limsup, , _f, < 1, we may assume,
without loss of generality, that e, < (1 — f,)||A[™. Since A is a strongly positive bounded
linear operator on H, then

[All = sup{|{Ax, x)| : x € H, [[x]| = 1}. (3.7)

Observe that

((1=Bu)I - €, A)x,x) =1 =B, — €x(Ax, x)
2 1-pn - el Al (3.8)

20,

that is to say (1 — f3,)I — €, A is positive. It follows that

([ (1= )T = enAl| = sup{[(((1 - pu)] - enA)x, x)| : x € H, |Ix]| = 1}
=sup{1l-pf, —e.(Ax,x) :x € H, ||x|| =1} (3.9)

Sl_ﬂn_en?~

We will divide the proof of Theorem 3.3 into six steps.

Step 1. We prove that there exists z € E such that z = Pn=, r(r,)rer(ED)vIEB) (I — A+ Y f)z.
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Let 3 = Pn=, r(r,)nEP(F,D)nvI(E,B)- Note that f is a contraction mapping of E into itself
with coefficient a € (0,1). Then, we have

|3 -A+yf)(@) =TT -A+yf )W < [T-A+yf)x) - (I-A+yf) (W)l
<= Allllx =yl + [l f ) = FW)
<@=-Dllx -yl +rallx-y|l
=(1-G-ay)llx-yll. ¥xyeH

(3.10)

Therefore, J(I — A + yf) is a contraction mapping of E into itself. Therefore by the Banach
Contraction Mapping Principle guarantee that J(I — A + yf) has a unique fixed point, say
z € E. Thatis,z=3(I-A+ Yf) (z) = Pﬂz';l F(T,)NEP(F,D)nVI(E,B) I-A+ }’f) (2).

Step 2. We prove that {x,} is bounded.

Since

F(un,y) + (Dxy, y — up) + rl(y — Uy, Uy —x,) >0, Vy€E, (3.11)

we obtain

F(un,y) + rl(y —up, up— (I =1,D)x,) >0, Vy€E. (3.12)

From Lemma 2.6, we have u, = T, (x, — r,Dx,), forall n € N.
For any p € © := "2, F(T,) N EP(F, D) N VI(E, B), it follows from p € EP(F, D) that

F(p,y)+(y-p,Dp)>0, VyeE. (3.13)

So, we have
1
F(py)+ —(y-pp=(p-mDp)) 20, VyeE. (3.14)

By Lemma 2.6 again, we have p = T}, (p — r,Dp), for all n € N. If follows that

s = pll = | Tr, (xn = raDxn) = Ty, (p = raDp) |
< ||(xn = raDxy) = (p — raDp) || (3.15)

= |(T =mD)xu = (I = D)p|| < [|lxn = p].
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If we applied Lemma 3.2, we get I — A,B and I — 6,B are nonexpansive. Since p € VI(E, B)
and W, is a nonexpansive, we have p = W,,Pe(p — A,Bp) = W,Pe(p — 6,,Bp), and we have
[y2 =Pl < @ulluen = pll + (L = @) [WaPr (un = 61Bun) = WyPe(p ~ 6.Bp) |
< @ullun = pll + (1= 9a) | (n = 6Bun) = (p ~ 6.Bp) |
= @ulun —pll + (1 - @) || (I - 6,B)un — (I - 5,B)p| (3.16)
< @alun =pll + (1= ¢n) [lun = p

< luw =pll < flxn = pl-
It follows that

llkn = plI < aull2cn = pl| + (1 = @) [|WaPe (yn = AuByn) = WaPe(p — AuBp) ||
< an|xn = pll + (1 - an) || (vn = AaByn) = (p — XuBp) ||
= ty||xn = p|| + (1 = ) || (T = XuB)yw — (I - A, B)p|| (3.17)
< anl|2en = pll + (1= a) ||y~ pl
< aul|2 = pl| + (1= aw)[|xn = p| = %0 = p|,

which yields that

[t = Il = len(yf (xn) = Ap) + Bu(xn = p) + (1 = Pu)I = enA) (WuPr (kn — TuBkn) - p) |
< (1= Pu = en¥) | Pe(I = 7uB)kn = p|| + Pullxn = pI| + €nllyf (xn) - Ap|
< (1= Pu—ent) k= pll + Pullxn = Il + enllyf (xa) - Ap||
< (1= Pu = en¥) | xn =PIl + Pullxn = pl| + €nlly f (xn) = Ap|
< (L=ea¥) [|xn = pll + €ny || f (xa) = fF(P) || + enllyf (p) - Ap||

< (1= enY)|lxn —pl| + envallxn = p|| + exllyf(p) - Ap||

_ _ -A
- (1- (- aenllma—pl + (- e, L2
y—ay
(3.18)
This in turn implies that
- A
ln =2l Smax{”xl—p ,W}, neN. (3.19)
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Therefore, {x,} is bounded. We also obtain that {u,}, {k.}, {y.}, {Bun}, {Bk.}, {By.},
{(Whu,}, {(Whkn}, {(Wnys}, and { f (W,x,)} are all bounded.

Step 3. We claim that lim,, _, oo ||Xp+1 — x»|| = 0 and limy, _, oo ||W,,0,, — x| = 0.
From Lemma 2.6, we have u,, = T, (x, — r,Dx,) and u,1 = T}, ., (Xp+1 — ¥nr1Dxpi1). Let

w, = x, — 1, Dxy,, we get u, = T, @y, Upa1 = T, @y, and so

F(un,y) + %(y —Up, Up —wy) 20, VyE€E, (3.20)

1
F(una,y) + r—1<y = Ups1, Uns1 —Wna1) 20, Vy €E. (3.21)
Putting y = 41 in (3.20) and y = u,, in (3.21), we have

1
F(up, ttps1) + r_<un+1 — Uy, Uy —Ty) 20,
n

(3.22)
1
F(uns1, Un) + —— (U = Ups1, Uns1 — @ny1) 2 0.
Tn+1
So, from the monotonicity of F, we get
Uy — W, u — W,
<un+1 —u,, n no_ n+1 n+1> > 0’ (323)
n Tn+1
and hence
r
<un+1 — Up, Up — Upy1 + Upy1 — Wy — r_n(un+1 - wn+1)> > 0. (3.24)
n+1

Without loss of generality, let us assume that there exists a real number ¢ such thatr, > ¢ >0
for all n € N. Then, we have

2 T
[ttne1 — un||” < <un+1 —Up, Wyl — Wy + <1 - ; nl > (Uns1 — Wn+1)>
n+

(3.25)

1-In
-

n+1

< [l —unn{uwl e it —Wn+1||},
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and hence
1
”un+1 - un” < ||wn+1 - w'n” + Z|rn+1 - rn”lum—l - w'n+1||

1
= ||xp41 = Tue1 DXy = (X — 1 D) || + Elrrﬁ—l = Tnll[tns1 — @i ]|

< H|%ne1 = Tue1 Dxpar = (X0 = 1pa1 Dxy) || + [T = Tl || Dy ||
(3.26)

1
+ E|Tn+1 = Tnll[ttns1 — @i |

1
< “xn+1 - xn” + |rn+1 - rn”len” + E|rn+1 - rnlllun+1 - w'n+1||

< lxns1 = x|l + Ma|rnsr = 7al,

where M = sup{||Dx,l|| + (1/¢)||tn+1 — @il : 1 € N},
Put 0, = Pe(k, — 7,Bky), ¢n = Pe(yn — \yByy), and ¢, = Pe(u,, — 6,Buy,). Since I — 7,B,
I-A.B, and I - 6,,B are nonexpansive, then we have the following some estimates:

”(lfn+1 - (Pn” < ||Pe(tns1 = 6ps1Buys1) — Pe(un — 6,Buy)||
< |[(uns1 — Ops1Btnsr) — (un — 6,Bu)||

= ”(un+1 - 6n+1Bun+l) - (un - 6n+1Bun) + (671 - 6n+1)Bun”

(3.27)
< |[(Uns1 = Ons1 Btns1) — (Un = Op1 Buy)|| + 160 — Opaa ||| Bual|
= ”(I - 6n+1B)un+1 - (I - 6n+1B)un” + |6n - 6n+1|I|Bun”
< et = tnl| + 165 — Onaa ||| Bun|l.
Similarly, we can prove that
||¢n+1 - ¢n” < ||yn+1 - ]/n” + Ay - )‘n+1|”Byn ’ (3.28)
18n41 = Oull < llkns1 = knll + |70 = Tnaa|l| Bkall- (3.29)

Since T; and U,,; are nonexpansive, we deduce that, for eachn <1,

[Wagin = Wagsal| = [Tl = i T2
< p [ U1 29 = U248 |
= || 2Tl 30 = p2Toln s |
< pp2 | Unar a9 — Unagon|
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n
< H[/li||un+1,n+1(l"n - un,nﬂq’””

i=1
n
< MZH#i/
i=1

(3.30)

where M, > 0 is a constant such that ||U1,n+1¢n — Upps1@nll < Ms for all n > 0.
Similarly, we can obtain that there exist nonnegative numbers M3, My such that

||un+1,n+1(Pn - un,n+1(Pn ” < Ms, ||un+1,n+16n - un,n+16n” < My, (331)
and so are
||Wn+1¢n - Wn(i)n” < M3H,uir ||Wn+19n - Wnen” < M4H//¢i- (332)
i1 i=1
Observing that
Yn = Py + (1 - (Pn)qufn/
(3.33)
Yn+l = Pu+1lUn+1 + (1 - (Pn+1)Wn+1(Fn+1/
we obtain

Yn —Yn+1 = Pn (U — Upi1) + (1 - (Pn) (Wn(,Un - Wn+1‘l’n+1) + (Wn+1(lfn+1 - un+1) ((Pn+1 - (Pn)r
(3.34)

which yields that

l7n = Vet || < @allitn — tnaall + (1 = @) [[War@ner = Watgn|| + |@ne1 = @n| | Wis1¢na — ttnan ||
< ulltn = | + (1= @) {|Wnrnar = Waagpn || + [|Waagn = Wagpa|}
+ | @nt = @n| [ Wi @pnar = s |
< @ulltn = | + (1= @) {1t = @l + [ Waagpn = Wagpa |}
+ |t = @nl [Wasigpnar = s |
< @ullttn = el + (1= @n) [|gpner = gl + W grn = Wagpa|

+ |‘Pn+1 - (Pnl ||Wn+1(lfn+1 - un+1”-
(3.35)
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Substitution of (3.27) and (3.30) into (3.35) yields that

”yn — Yn+1 II < (Pn”un - un+1” + (1 - (Pn) { ||un+1 - un” + |6n - 6n+1|”Bun”}

n
+ MzHﬂi + |@ni1 — @n| ||Wair@ns1 — tnan ||
i=1

= |ty — ttgr|l + (1 = 91) |6 — G ||| Bt | (3.36)

n
+ MZHHi + ||Wn+1llfn+1 — Up+1 ” |(Pn+1 - ‘Pnl

i=1

<y = upaa || + M5(|6n —Opa1| + |‘Pn+1 - (Pnl) + MZHﬂi/

i=1

where M5 is an appropriate constant such that M5 = max{sup,.,||Bunl|, sup,,. W, — unll}-
Observing that

kn=anx, + (1 - a,)Wyoy,,
(3.37)
kni1 = ap1 Xy + (1 - an+1)Wn¢n+1/

we obtain

ky = kpa = an(xy = xp41) + (1 — ap) (Wnd)n - Wn+1¢n+l) + (Wn+1¢n+1 - xn+1) (Ane1 — an),
(3.38)

which yields that

lIkn = knsall < @nlln = Xnsall + (1= @) |Wandpn = Wasi Pt || + |etnsr = @l | Was1Pnar = x|
< |2y = Xps1ll + (1 = @) { [|Wai1@ns1 = W@ || + |Was1dn = Wahn ||}
+ a1 = anl||Was1rer = X ||
< ayllxn = Xnaall + (1 = @) || Pre1 = Pu]| + |Was19n = Wl

+ |aper — “n|||Wn+1¢n+1 — Xn+l ”
(3.39)
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Substitution of (3.28) and (3.32) into (3.39) yields that
||kn - kn+1|| < an”xn - xn+1“ + (1 - an){ ||yn+1 - ]/n” + I-)Ln - -)‘n+1|||B]/n”}

n
+ M3HH1’ + |t — an|||Wn+l¢n+1 — Xn+l ”
i=1
= an”xn - xn+1” + (1 - an) ”yn+1 - ]/n” + (]— - lxn)p‘n - -)Ln+1|||Byn||

(3.40)

n
+ M3H,ui + |t — an| ||Wn+l¢n+1 — Xn+l ”
i=1

n
< apllxn = Xpoall + (1= @) || Yner = y| + Ms] [
i=1

+ M6(|)tn - /\n+1| + |an+1 - an|)/

where M is an appropriate constant such that Mg = max{sup,.,||Byall, sup,,s; [[Wn$n — xull}.
Substituting (3.26) and (3.36) into (3.40), we obtain

||kn - kn+1” < an”xn - xn+1||+(1 - an) {”un - un+1” + M5(|6n - 6n+1| + |(Pn+1 - (Pn|) + MZHﬂl}
i=1

n
+ MSH#i + Mg (|An = At | + a1 — anl)
i=1
= an”xn - xn+1|| + (1 - an)”un - un+1|| + (1 - an)M5(|6n - 6n+1| + |‘Pn+1 - ‘Pnl)

n n
+ (1= ag) Mo ] [+ Ms] Jpi + Me(IAn = M| + lans1 — )
-1 i=1

< an”xn - xn+1|| + (1 - lxn){”xnﬂ - xn” + Mllrn+1 - rn|}

+(1- an)MS(lﬁn - 6n+1| + |(Pn+1 - (Pnl) +(1- “n)M2H,ui
i=1

n
+ Ms] Jpi + Me(|An = M| + |@ne1 — tu)
i=1
= an||xn = Xps1l| + (1 = @) [[Xn41 — Xul| + (1 = an) My|tni — 1l

+(1- ‘Xn)MS(l(Sn — Ops1| + |(Pn+1 - (Pnl) +(1- an)MZHﬂi

i=1

n
+ M3H#i + Me(|hy = Aps| + |@ns1 — )
i=1

S loxn = Xpe1 |l + Mty — 1] + leillﬂi + M3ﬁﬂi
i= i=1
+ M5(|6n —Opi| + |(Pn+1 - ‘Pnl) + Meo(|Ay = At | + ns1 — anl)
<l = x| + lezll#i + Msllllﬂi
i= iz
+ K1 (|rns1 = Tnl + |60 = Opa1| + |@na1 — @n| + [N = s | + |t — anl),
(3.41)

where Kj is an appropriate constant such that K; = max{M;, M5, Ms}.
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Substituting (3.41) into (3.29), we obtain

[0n+1 = Onll < [lkn1 = knll + |Tn = Tna|l| Bkl

n n
< lotn = xpor || + Ma ] Jpui + M ] [

i=1 i=1
+ K1(|rn+l — 7| + |6n = Ops1| + |(Pn+1 - (Pn| + A = | + |ansr = anl)

+ T = T ||| Bkal

n n
< lotn = x|l + M Jpi + Ms] Jpus

i=1 i=1

+ K2(|rn+1 — | + |6n = Ot | + |(Pn+1 - (Pn| + Ay = A | + o — ap| + |7 — Tn+1|);

(3.42)
where K3 is an appropriate constant such that K = max{sup,.,[|Bkx||, K1}.
Define
Xne1 = (1= Pn)zn + Puxn, n2>1 (3.43)
Observe that from the definition z,,, we obtain
€n+1Yf(Wn+1xn+1) + ((1 - ﬂn+1)I - €n+1A) W16
Zn+l — Zn =
1- ﬁn+1
~ eny f Waxy) + (1= n)I — €, A)W,,0,
1-p,
€ €
= ad Yf(Wn+1xn+1) - —an(ann) + Wn+19n+1 - Wnen
1- ﬁn+l 1- ﬁn (344)
€n €En+l
+ 1= ﬂn AW,.0, 1- ﬂm—l AW,141001
€ €
= n—H(Yf(Wn+1xn+1) - AWn+19n+1) + —n(AWnen - Yf(ann))
1- ﬂn+1 1- ﬂn

+ Wp10ne1 = W10y + W16, — W,0,.
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It follows from (3.32), (3.42), and (3.44) that

1zne1 = zall = [2¢ne1 = Xal|

<o "” 2 (I Waaxna) |+ 1AWa18uia ) + =75 (IAWul + [lyf Waoxa) )

+ ||Wn+19n+1 - Wn+19n” + ||Wn+16n - Wnen” - ||xn+1 - xn”

< T Wz ¢ 1AWl +

+ ||9n+1 - Qn” + ||Wn+19n - WnQnH - ||xn+1 - xn”

ﬁn (llAWn6n|| + ”Yf(wnxn)”)

€n+1

(llYf(Wn+1xn+1)|| + ||AWn+19n+1||) +

< (IIAW Oull + [|y.f Wnxn) [|)

+ MzH/Ai + Manﬂi + M4H,ui
i=1 i-1 i=1

+ K2(|rn+l =Tl + |64 — Opia| + |‘Pn+1 - (Pnl + Ay = g | + |@ns1 — an| + |70 — Tn+1|)

< T (W ¢ 1AWl +

+ BKﬁy,
i=1

(IIAW Oull + Iy f Waxn) 1)

+ K2(|Tn+1 - rn| + |6n - 6n+1| + |‘Pn+1 - (Pnl + |)Ln - )‘n+1| + |an+1 - anl + |Tn - Tn+l|)/
(3.45)

where K is an appropriate constant such that K = max{Ma, M3, M4}.
It follows from conditions (C1), (C2), (C3), (C4), (C5),and 0 < y; <b <1, foralli>1

tim sup([25e1 — zall = |1 ) < 0. (3.46)

n—oo
Hence, by Lemma 2.11, we obtain
Jim |z, = 24| = 0. (3.47)
It follows that

nli_{lgo”xwrl - xn” = nlgl;lo(l - ﬁn)“zn - xn” =0. (348)
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Applying (3.48) and conditions in Theorem 3.3 to (3.26), (3.41), and (3.42), we obtain that
Jim [Juper = syl = T [[Knsa = Kl = i {641 = 65| = 0. (3.49)
From (3.49), (C2), (C5),and 0 < y; < b < 1, foralli > 1, we also have
Jim [|yner = yul| = 0. (3.50)
Since xp41 = €ny f (W) + Puxn + ((1 - pn)I — €,A)W,,0,, we have

”xn - Wnen” < ”xn - xn+1|| + ||xn+1 - Wnen”

= |l = X | + ||€ny f (Wnxn) + Buxn + (1 = Bu) ] — €2 A)W,,0, — W,6, ||

(3.51)
= [Jacn — Xpa || + ||€n (Yf(wnxn) - Awnen) + Pl — Wnen)”
< lxen = xpaa || + €n(”Yf(ann)” + ||AWn6n||) + Pullocn = Wauball,
that s,
1 €n
0 = Wil < 1=l = sl + 25 (I W) | + 1AW 6,1). (52)
By (C1), (C3), and (3.48) it follows that
Jim [W,,0, — x| = 0. (3.53)

Step 4. We claim that the following statements hold:

(i) limy, ||ty — 6]l = O;
(1) limy - o [|xn — unll = 0;

(iid) limy oo [|[Wy6p — 6, = 0.

Since B is relaxed (u, v)-cocoercive and ¢-Lipschitz continuous mappings, by the assumptions
imposed on {7,} for any p € © := 2, F(T,,) NEP(F, D) N VI(E, B), we have
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W00 = pII* < 1| Pe (K = 7o) = Pe(p = 7uBp) |
< ||k = 7Bks) = (p = 7 Bp)|
= [|kn = p) = 7 (BK, ~ Bp) |
< llkn = pII* ~ 27 (ky ~ p, Bky ~ Bp) + 73| Bk, ~ Bp|*

< 1% = pII? = 27, (ks = p, Bk, ~ Bp) + 72]| Bk, - B

(3.54)
< It pII = 25 {-ull Bk ~ Bl + o~ pI} + 73] Bk, - By
<l pII* + 25,0 Bk, Bpl* 2101k~ pI + 31| B - Bl
27,0
< Il pI + 25| Bk Byl = == Bk = Bpll* + 5Bk - Bplf’
2 5 2TyU 2
= ||xn - p||” + 27',1u+7'n—§—2 | Bk — Bp||".
Similarly, we have
21,0
Wil < I + (2001 5 - 252 ) By~ B,
o6 (3.55)
W0
W =l < W= I+ (2804 6 = 27 ) 1 Bus ~ B

Observe that

xs1 =PI = (1= BT =~ €aA) (Wi = p) + P — p) + enly f (Wata) = Ap) |

= (0= BT = ex A) Wby = p) + Bu(u — p)II + €2l f (W) - Ap]|*
+ 2fnen(Xn = p, Y f (Waxn) = Ap)
+2en(((1= Pu)I - €nA) (Wb = p), v f (Waxn) = Ap)

< (1= Bu = D) Wi = | + Bullxu = p11)* + exlly f (Wa) = Ap]|*
+2fnen(Xn = p, Y f (Waxn) = Ap)
+2€n(((1 = Pu)I = €nA) (Wabn = p), v f (Waxn) — Ap)

< (1= Bu = &) [[Wabh = | + Bulln = pI)* + ca

< (1= pu—ea?)’[|Wab = p|I” + Brllxa — pII°
+2(1 = P = €nY) P ||[Wibn = p||[|xn = p|| + n

< (1= B = &a?) Wb = p|I* + G110 — pII”

+ (1= = ea?)Pu([| Wb = pI* + [0 = p||”) + cn
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= [(A- ) =21 - eaF) B+ B2 W0 - pII* + B2l - I
+ (- e)Pu= ) (IWab = p 1> + llxu = p*) + o
= [ = &) = (1= ) B | Wb = pI* + (1= aF) a0 = pII* + o

= (1= eF) (1= Bu = ) [|[Wabn = p||* + (1 = €47 Bu|xn = p||* + cas

(3.56)
where
cn = enllyf () = Ap||” +2puen(xn = p,yf (xn) - Ap) 657
+ 26, (((1 = Bn)I — € A)(Wy6,, = p), v f (xn) — Ap).
It follows from condition (C1) that
lim ¢, = 0. (3.58)

n— oo

Substituting (3.54) into (3.56), and using condition (C6), we have

_ _ 27,0
et =l < (1= ) (1= o =) { Il =l + (204 73~ 52 ) 3k, = By}

+ (L= enT)ulln = pll* + e

= (1-ex?)’[lxn = p|I* + (1 - €a¥) (1 - fu — &)

2T, 0

3z

x <2Tnu+‘r£— >||Bkn—Bp||2+cn

< |on - p||2 + <2’rnu +712 - 2’;1)) || Bk — Bp”2 + Cp.
(3.59)
It follows that
2av ’ 2 21,0 2 2
?—Zbu—b ||Bk» — Bp||” < 2 - 21,u -1, )||Bks - Bp||
< lx =l = s = Il + e
= (lxn =PIl = llxner =2l (llxn = Il + 2001 = pI) + cn

< Nlxn = Xl ([[xn = p| + [|xne1 = p|) + cn.
(3.60)
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Since ¢, — 0asn — oo and (3.48), we obtain

lim || Bk, - Bp|| = 0. (3.61)

Note that

s = I < aalls — pll + @ - @) [[Waghs — pI

21,0
<=l + (1= ) { =l + (20 - 252 ) 1By =Bl | (369
21,0
S||xn—p||2+(1—an)<2)tnu+)ui— ; >||Byn—Bp||2,

v = pII” < @ulltn = Pl + (1= @u) [[Wagsn — p||*

26,0
< ullta=pl+ (1= ) { o=l + (26,8~ 2552 ) 1B = Bl | (3.5
26,0
<z —plP + (1= 1) <26nu £ 62— §_Z> I1But, - Bp|™

Using (3.56) again, we have

201 = pII* < (1= €a¥) (1= Bu = eaT) Wi = p || + (1 = ex¥)Bullx = pI* + ca
< (1-ex¥) (1= fu =) 60 = plI* + (1 =€) Bullxu = p|I* + ca (3.64)

< (L=ed) (1= Pu=eD)lkn=pl* + (1 - ea)Bullxa —plI* + -

Substituting (3.62) into (3.64) and using condition (C2) and (C6), we have

_ _ 21,0
s =PI < (1= ) (1= B = ) {0 =PI+ (1 =) (20,004 03 = 22 ) | By~ By}

+ (L&) ulln = pll” + e

21,0
2

= (1-ex7)(1=Pu—eny) (1 - ) <2Anu +12 - ) | By. - Bp||®

+(1=ead)’[xa = pll* + e
21,0
2

< xu—plP+ (1~ an)<2)tnu 2 >||Byn ~Bp| + on.

(3.65)
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It follows that

2av 21,0
(1-ay,) <? —2bu - b2> ||Byn — B;9||2 <(1-ay) (é—; - 27U — T5> || By — Bp”2
3.66
< 1 =PI = 10t = I+ o (369
< ot = et ll (|20 = Pl + X001 = p|) + cne
Since ¢, — 0asn — oo and (3.48), we obtain
lim ||By, - Bp|| = 0. (3.67)
In a similar way, we can prove
nli_r}r;O”Bun - Bp|| =0. (3.68)

By (2.3), we also have

16— pII* = || Pe(kn — 7uBkx) — Pe(p — 7.Bp) ||*
= ||Pe(I = 7,B)k,, — Pe(I - 7,B)p||”

<A = mB)ky — (I - 4B)p, 0, — p)
1= Bk~ - 5B+ 10,
I -7 B)ky — (I~ B)p — (6, — )|’}
< Mk =l + 116 - I = 1k ~ 62) ~ 7 (B, — Bp)|*

1
< §{||xn = p* + 1164 = pII* = Ikn = 041> = 2| Bk ~ Bp||* + 27 (K, - 6, Bk, - Bp)},
(3.69)

which yields that

16, = pII” < |10 = I|” = kn = Bull? + 27ullkn = 6,l|| Bk — Bp||- (3.70)
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Substituting (3.70) into (3.56), we have

%01 = pI” < (1= €27) (1= B = D) (Wi = PII” + (1 = €07 Bullxn = p|I* + c2
< (1-e7) (1= =) 6n = pl* + (1= &) Bullxn =] + e
< (1= &) (1= Bu — eaT) { I1xn = pII* = 1k = 00> + 271K — 00| B — By}
+ (1= ea?)ullxn = plI* +cn
= (1= e)’[|xn = pI* = (1= &a¥) (1 = B = €a¥) licn = 6a’
+2(1 - €x¥) (1 = B — €x7) Tullkn — 0all|| Bkn — Bp|| + cn
< Jlen = pII* = (1= €x¥) (1= o = €T llkn = Bl

+2(1 = ex¥) (1 = B = €x7) Tullkn — Oall|| Bk — Bp|| + cn-
(3.71)

It follows that
(1= ea?) (1= Bu = eaT)llkn = 0ull” < [l2n = p|I* = [l 01 ~ ||
+2(1 = ex¥) (1= B = €x¥) Tullkn — 04ll|| Bk — Bp|| + cn
< lxn = x| (|| = p| + [[xner = pI|)

+2(1 =€) (1= fu = V) Tullkn = Oull || Bk = Bp|| + ca.
(3.72)

Applying ||x41 — x4|| — O, |Bk, = Bp|| — Oand ¢, — 0asn — oo to the last inequality, we
have

Jim ||k, = 0,[| = 0. (3.73)
On the other hand, we have

”Wnen - P”Z S ”PE(kn - Tann) - PE(F’ - Tan)”z
= ||Pe(I = 7,B)k, — Pe(I - 7,B)p||”

<{(I-7B)k,- (I -7,B)p, W,60, —p)
1
= E{”(I - B)ky — (I - TnB)P”2 + ”Wﬂeﬂ - pllz

—||(I = 7B)kn = (I = 7, B)p — (W6, — p) ||2}
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IN
Nl—= N =

1K = pIP + W = I — [| (k= W) = 7u(Bs — Bp) |
< Sl =PI+ [ Wb = pIIP = ks - WP

~72|Bky = Bpl|* + 27, (kn = W6y, Bles — Bp) },

(3.74)
which yields that
W = BII> < |20 = PII” = ki = WaBl|? + 270l kn — Wil || Bk — Bp||. (3.75)
Similarly, we can prove
[Wadn = pII” < Nl = pI” = 19 = WadpalI* + 20|y = Wl | By ~ Bpll,  (376)
Waggn = pII” < Nl = pI* = lln = Wagpu|* + 26|t = W ||| Buw = Bp||. - (3.77)
Substituting (3.75) into (3.56), we have
et =PI < (1= ) (1= B = eaT) [Wabh = pII* + (1= ) Bullu = pI” + s
< (1- ) (1- fu -7
x { [E p||2 —|lkn = Wiull* + 270l ks = Wbl || Bk - Bp|| }
+ (1 - €n?)ﬂn"xn - p”2 +Cn (378)

= (1= &) [|xn = plI* = (1 =€) (1 = B = &)l = W64
+2(1 = ea¥) (1= Bu — €n¥) Tullkn = Wa|[| B, — Bp|| + cu
< lxn=pl* = (1= ea¥) (1= Bu = €a?) Ik = Wil
+2(1 = €,7) (1= B = €T) Tallkn = Wib,ll|| Bk — Bp|| + cn,

which yields that

(1 - €n?) (1 —PBu— en?)”kn - Wn6n||2
< Nl = plI* = [1%ne1 = pII* +2(1 =€) (1 = Bu = €xT) Tullkn = Wiball|| Bk = Bp]| + cx
<l = xn+1||(||x" - P” + ||x"+1 —P”)

+ 2(1 - 6',1?) (1 - ﬁn - €n?)Tn||kn - Wnen” ”Bkn - BP” + Cn.
(3.79)
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Applying (3.48) and (3.61) to the last inequality, we have

Tim [k, — W, 6,]] = 0. (3.80)

Using (3.64) again, we have

1201 =plI* < (1= €a¥) (1= B = €T | kn = pII* + (1= €7 Bull 2 = p || + s
= (1— ) (1~ B — ea?) { NlauCou = ) + (1 = ) W~ )|’}
+ (1=e)Bullxn—pl* +cn
< (1- ) (1= o= ea?) {aullxa = I + (1 - ) [Wahs - |}
+ (1= enY)ullcn = p|I* + cn
= (1= €n7) (1 = Bu = €aT) tu|xn — p||”
+ (1= €7) (1= = &) (1= ) [Wad = pI* + (1 = exF) Bl xn = p||* + o
< (1= &) (1= fu = enV)aullxa = pl|” + (1 = €a7) (1 = fu — €aT) (1 = 1)
< {ll2n = II* = [y = WapalI* + 20|y = Wapall| By — Bpl|}
+ (1= en¥)Bullxn = plI* + cn
= (1= ea¥) (1 = fu = ea¥) | — p|I*
+ (1= ) (1= o - €a¥) (1 = ) |20 = ||’
= (1= ) (1= = &) (1 = ) |y = Wau||®
+ (1= &) (1= B - eaT) (L= @) 2|y = Wadh|[[ By~ Bp |
+ (1= en¥)Bullxn = plI* + cn
= (1-€x7) (1= Bu — €a¥) |20 = p|”
~ (1= &x¥) (1= Bu — &) (1= ) [y — W |*
+ (1= en¥) (1= n = €nY) (1 = n)2An || yn = Wahu ||| By - Bp |
+ (1= €)Bullxn —pII* + cn
= (1)’ llx = pIF = (1= ) (1= o =€) (L= @) lyn = Wocha |
+ (1= &) (1= B — eaT) (L= @) 2y = Wadha|[[ By = B + o

< lxn = pl* = (1 - €a¥) (1 = Bu = €x¥) (1 = ) |y = Wapu|*

+ (1= en¥) (1= Pn = €n¥) (1 = an)2An|yn = Wapu ||| Byn — Bp|| + cn,
(3.81)
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which implies that

(1= e7) (1= Bu = &a7) (1 = @) [[yn = Waha|”
2 2
< loxn = plI” = lxner = pl
+2(1- ) (1= fu— &) (= a) v - Waal| By~ Bpl e, (382)
< lloxn = xpaal|([|xn = || + [|xne1 = pII)

+2(1 = ey) (1= B =€) (1 = @) X || yn = Wopu || || By = Bp|| + cn-
From (3.48) and (3.67), we obtain
Tim [y = Wadba | = 0. (3.83)
By using the same argument, we can prove that
Tim [Juy = Wagsu|| = 0. (3.84)

Note that

kn - Wn(,bn =an (xn - Wn(i)n)/

(3.85)
Yn — qufn = @n (un - qufn)-
Since &, — O0and ¢, — 0asn — oo, respectively, we also have
Tim ||k, = Wagpn || = lim ||y = Wag| = 0. (3.86)

On the other hand, we observe

||un - en” < ”un - Wn(,un” + ”Wn(lfn - yn” + ”yn - Wn(,bn” + ”Wn(,bn - kn” + ”kn - en”
(3.87)

Applying (3.73), (3.83), (3.84), and (3.86), we have

Jim [[un — 6, = 0. (3.88)
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On the other hand, we have

1w =pII” < aulloen = pI* + (1 = @) [ W~ p||”
< | = plI* + (1= )|~ pII°
< aul|xn = plI* + (1 = @) [|ya — plI’
< | = pl*+ (1= @) {pulln = pI* + (1= @) [Wagp — pIl}
<ayllx—pl* + A= an) {gullun =PI + (1= @n) g —pll}
< a1z = plI*+ (1= @) {ulln = plI* + (1= @) a - p| (3.89)
= | = plI* + (1 = &) un — p||?
= aul|x = pl|” + (1 - @) | T, (I = raD)xs ~ p|’
< | = p|I” + (1 = @) [|(T = ruD)xs ~ p|*
< anllxn = p|I* + (1= an) { |0 = plI* = ra (211 = 1) | Dx, — Dp|*}

= [lxn = pII* = (1 = @) (21 = 1) | D = Dp||*.
Substituting (3.89) into (3.64) and using conditions (C2) and (C7), we have

n =PI < (1= ea) (1= Bu = ead) [k = pII* + (1= eV Pullxu = pII* + s
< (1= &¥) (1= fu = ea¥){ 10 = pII* = (1 = @)1 (2 = 1) | D - Dp||*}

+ (1= ea?)Pulln - pll” + e

(3.90)
= (1= &) (1= fu = €a¥) (1 = @u)ru(21 = 1) | Dxo ~ Dp||®
+ (1=e7) || =Pl + cn
< [lxu = pII = (1 = @n)ra (27— ) | Dx, — Dp]|.
This implies that
(1= an)7u (21 = 1) || Dxn = Dp|| < || = p||* = |1 = p|* + €. (3.91)

In view of the restrictions (C2) and (C7), we obtain that

Jlim || Dx, - Dp|| = 0. (3.92)
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Letp € © := ,2, F(T,) nEP(F, D) N VI(E, B). Since u, = Ty, (x, — rsDx,) and T, is firmly
nonexpansive (Lemma 2.6), then we obtain
[un = pII* = I 5, (s = raDxa) = T, (p = ruDp) ||
ATy, (%0 = TaDx) = Ty, (p = 1aDp), ttn = p)

= (xy — tyDx, — (p — raDp), un — p)

1
= 5{ 1w = raDxa) = (p = ruDp)|I* + [|1tn = |

)|t = ruD2) = (p = raDp) = (= p) |I*} (3.93)
< %{len = > + Il = plI* = ll2n = 0 = 7 (D~ Dp) ||}
= 2l =PI+l =PI = I = sl + 270 ~ s, Dxy ~ Dp)
~r2||Dx, - Dp||*}.
So, we obtain
[t = pII* < |0 = PII” = I = el + 27l|xn = || Dx = Dp]|. (3.94)

Therefore, we have

I =plI* = (1= exF) (1= fu = ea?) Wb = pII* + (1 = eaT) Bulla —pI” + €
< (1=ed) (1= Pu—eaD)[|6n = pII* + (1 = ea?)Bullxa — p|I* + s
= (1= ) (1= Bu = eaD) | @n = 1n) + (un = P)||* + (1 = ) Bull 2w = || + €
< (1= ea¥) (1= fu = ea?) {1 = wall” + ||t = pII” + 2080 = 10, 0 = p) }
+ (1= ea)Ballxa = pl|” +
< (1= ea?) (1= P = ea?) 16— unl* + (1= €x¥) (1 = ex¥ = Bu) un — P’
+2(1 = &) (1= Bu = &0 =l [[un = || + (1 = €a?)Pulln = p||” +
< (1= ) (1= Pu = ea?) 160 =l
+ (1= e7) (1= Bu = ea?) { %0 = pII* = 60 = all” + 27l = | D — Dp|}

+2(1= ) (1= B =€) 16 = ttall 11w = p| + (1 = a7 Bullxu = pI* + €2
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IN

It follows that

(1= en¥) (1= B = €160 = unll* + (1= €4¥) (1 = B = &) || - ||’

~ (1= &) (1= B = €aT)lIn =

+ (1= &) (1= Bu = €T)2ralln — ||| D - Dp|

+2(1 = &x¥) (1= = exF) 10 = wll |10 = pl| + (1 = T Bullxa = pI|* + ca
(1= )| = pI* = (1 = €T) (1 = B = €)% = el

+ (1= ex¥) (1= P — €a) 16 — un®

+ (1= €7) (1= b — eT)2rlln — || Dx,, — Dp|

+2(1 = €n¥) (1= B — €a7) 165 — tnll]| 120 = p|| + cn

(1= 2647 + (ea?)”)lxw = pII” = (1= eaF) (1= P = eah) la =

+ (1 =€) (1= fn — €TI0 — unl®

+ (1= &) (1= P = enT)2rllxn e ||| Dy = Dp|

+2(1 - €nT) (1= B = eaT)[16n — ttull [t = p| + cn

10 = 2I1* + (a?)* I = pII* + (1 = €4¥) (1 = B = exT) 160 = 1l

~ (1= &) (1~ B~ €aT)lIn —

+ (1= €7) (1= — eT)2rlln — || D, - Dp]|

+2(1 = &) (1 = Bu — eaT) 10 = nl|[tn ~ p|| + . (3.95)

(1= €nY) (1= Pu = €aT) 120 — n®
<l =pl* = 101 = plI* + (a7) |~ PII®
+ (1= ex¥) (1= fu = €TI0 — tnll® + (1= €F) (1 = P — €4T) 27ul|Xn — 1| | D - Dp|
+2(1 = €nY) (1 = B~ a¥) 100 = wnll||ten = p|| + cn

< Noew = x| (| = pll + llcwer = pII) + (ea?)*[l2n =PI
(1= &) (1~ Ba - €x) 60 — s+ (1~ ) (1 = B = eaT)27al0 - | D - Dp|
+2(1-€7) (1 = B — €a¥) 160 — unll||ttn — p|| + cn-

Using e, — 0,

(3.96)
cn — 0asn — oo, (3.48), (3.88), and (3.92), we obtain

i oy = 4| = 0. (397)
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Since liminf, _, 7, > 0, we obtain

tim | = ]| = tim L, — ] = 0. (3.98)
n—owl| 1, n—ooty,
Note that
[l = Onll < [|26n = ull + [t = Bnll, (3.99)
and thus from (3.88) and (3.97), we have
Jim [|x, — 0] = 0. (3.100)
Observe that
WO = Onll < Wb — x| + |30 = - (3.101)
Applying (3.53) and (3.100), we obtain
Jim [[W,,6,, - 6, = 0. (3.102)

Let W be the mapping defined by (2.11). Since {6, } is bounded, applying Lemma 2.10 and
(3.102), we have

W6, — 0, <|IW8,, = Wayubn|| + ||Wybp — 0,|| — 0 as n — oo. (3.103)

Step 5. We claim that limsup, | ((A -yf)z,z - x,) < 0, where z is the unique solution of
the variational inequality ((A -yf)z,x —z) >0, forall x € ©.

Since z = Po(I — A + yf)(2) is a unique solution of the variational inequality (3.5), to
show this inequality, we choose a subsequence {0,,} of {0,} such that

lim ((A=yf)z,z=0y) = limsup((A -yf)z,z - 6,). (3.104)

n—oo

Since {6,,} is bounded, there exists a subsequence {Gni,. } of {6,,} which converges weakly to
w € E. Without loss of generality, we can assume that 8,, — w. From ||[W6,, - 0,|| — 0, we
obtain W8,, — w. Next, We show that w € ©, where © := 2, F(T,,) NEP(F, D) N VI(E, B).
(a) First, we prove w € EP(F, D).
Since u, = T, (x,, — r,Dx,), we know that

F(un,y) + (Dxn, y — ty) + %(y — Uy, Uy —Xx,) >0, Vye€E. (3.105)
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From (A2), we also have
(Dxn, y —un) + %(y = U, Un = Xp) 2 =F(n, y) 2 F(y, tn). (3.106)

Replacing n by n;, we have

Up; — xn,-

i

(Dxp,, Y = th,) + <y — Uy, > > F(y, un,). (3.107)

i

ForanytwithO<t<landy € E, let¢y; =ty+(1-t)z.Since y € Eand z € E, we have ¢; € E.
So, from (3.107) we have

Un

= Xp
’r > + F(py, ty,)

ni

(pr — un, Dpy) > (¢ — Uy, Dpy) — (Dxyy, (pr — Uy, ) — <(Pt - Uy,

> (¢ — un, Doy — Duy, ) + (¢t — Uy, Duy,, — Dxy,,)

Uy, — Xp,
=t =, =) + F(p1, tn,)-
n;i
(3.108)
Since D is Lipschitz continuous, from (3.97), we have ||Du,, — Dx,,|| — Oasi — co.
Further, from the monotonicity of D, we get that
(¢ — Uy, Doy — Duy,) > 0. (3.109)
It follows from (A4) and (3.108) that
(¢r —z,Dgy) > F(g1, 2). (3.110)

From (A1), (A4), and (3.110), we also have

0 =F(¢pt, 1) <tF(pr,y) + (1= 1)F (g1, 2)
<tF(pr,y) + (1= t){(p: = z, Dopy) (3.111)

= tF(p1,y) + (1 - Ky - 2, Dyy),
and hence

F(pi,y) +(1-t)(y -z Dy;) > 0. (3.112)
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Letting t — oo in the above inequality, we have, for each y € E,
F(z,y)+(y-2zDz) >0. (3.113)

Thus z € EP(F, D).

(b) Next, we show that w € N2, F(Ty).

By Lemma 2.9, we have F(W) = (,2; F(T,). Assume w ¢ F(W). Since ||x, — 8,] —
0, we know that 8,, — w (i — oo0) and w# Ww, and it follows by the Opial’s condition
(Lemma 2.3) that

liminf||0,, — w|| < liminf||6,, - Ww]||
< Uminf(||0y, — WOyl + W6y, - Ww])) (3.114)

< liminf||6,, — w||,
1— 00

that is a contradiction. Thus, we have w € F(W) = N2, F(Ty).
(c) Finally, Now we prove that w € VI(E, B). Define,

Bwi + Nrwy, if wy €E,
Tw, = (3.115)

@, if w1 ﬁ E.
Since B is relaxed (u, v)-cocoercive and condition (C6), we have
(Bx - By,x—vy) > (-u)||Bx - By||* + o||x - y||* > (v - u§2> lx-y|*>0, (3.116)

which yields that B is monotone. Then, T is maximal monotone. Let (w;, w;) € G(T). Since
w, — Bwy € Nrw, and 6, € E, we have (w; — 0,,, w, — Bw;) > 0. On the other hand, from
0, = Pg(k, — t,Bk,), we have

(wl - Gnr 971 - (kn - Tann)> 2 0/ (3117)
and hence

<w1 -0,, On=kn) Bkn> > 0. (3.118)

Tn
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Therefore, we have
(w1 — O, w) > (w1 — Oy, Bwy)

0, -k,
> (w1 - Gni,Bwl) - <w1 - Qni,(xT—’) + Bkn,->

ni

-
= <w1 - Gni,Bwl - Bkni - M>
Ty,
0, — kn.
= (wq — 6y, Bv - BO,,) + (w1 — 6,,, B0, — Bky,) — <w1 -0, ¥>
O, — kn,
> <w1 - enirBeni - Bk'r‘l,‘) - <w1 - 611,'/ g>/
l (3.119)
which implies that
(w1 —w,wy) > 0. (3.120)

Since T is maximal monotone, we have w € T~'0 and hence w € VI(E,B). That is, w € O,
where © := (2, F(T,) NEP(F, D) N VI(E, B). Since z = Po(I - A+ yf)(2), it follows that

limsup((A - yf)z,z - x,) = limsup((A - yf)z,z-6,)
= lim((A -vf)z,z—6y) (3.121)
=((A-yf)z,z-w) <0.

On the other hand, we have

(A=yf)z,z=Wubn) = ((A=yf)z, %0 = Wy0y) + ((A=yf)z,2— x4)

(3.122)
<A =yf)z||llxn = Wibull + ((A=yf)z,z = xn).
From (3.53) and (3.121), we obtain that
limsup(yf(z) - Az, W,,0,, — z) <0. (3.123)

n—oo

Step 6. Finally, we show that {x,} and {u,} converge strongly to z = Po(I - A+ yf)(2).
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Indeed, from (3.4) and Lemma 2.4, we obtain
%1 = 2l1* = ||€ny f Wann) + Buxn + (1= Bu) ] — €AY W0y, — z||2
= [[((1 = )] — €0 A) Wiy = 2) + u(xn = 2) + en(yf (Waxa) - A2)|
= |01 = BT = €4 A) (Wi = 2) + Bu(xu = 2)||* + €2]|y f Waxa) = Az|)?

+2Bnen(xn — 2,y f Wyx,) — Az)
+26,(((1 = Bn)I - €nA) (Wp0, — 2), v f Whyxy) — Az)

IN

(1= P = aT) Wi = 2l + Bullxa - 2I1)” + 2|y f (Waxy) - Az’

+ 2Bneny(xn — 2, f(Waxn) = f(2)) + 2Pnen(xn — 2,7 f(2) — Az)

+2(1 = Bu) Yeu(Waby — 2, f (Wo) - £(2))

+2(1 - Bu)en(Waby — 2,7 f(2) - Az) — 262 ( AWy - 2), Y (2) - Az),
(1= B = exT) Wby = 2l + Bulln — zI))° + €[y f (Wax) - Az]|”

+ 2uenylxn — 2I|[| f (Waxa) = £ (2)]| +2Buen(xu - 2,y f (2) - Az)

+2(1 = Bu) Yenl|Wabn = zll|| f (Waxa) = f(2)|

+2(1 - Pu)en(Wbn — 2,7 f (2) — Az) 262 (AW, - 2), Y f (2) — Az),

IN

(1= Pu = )10 = 2l + Bullx = 21)* + €|y f Waxa) - Az

+ 2Bnenyllacn = zll|| f(Waxn) = f(2)|| +2Bnen{xn — 2,y f(2) - Az)

+2(1= Bu)yenlOn = zI||| f Wan) = F(2)|| +2(1 = ) en{ Wby — 2,y f () - Az)
~ 22 (A(W,0, - 2),7f(2) — Az)

(1= Bu = &) llxn = 2l + Bulltn = 21)° + E[ly f Woicy) - Az

+ 2Byl X, — Z|* + 2Buen{xn — 2,y f(2) — Az)

+2(1 = Bn) yena|| s - z|I*

+2(1 = Bn)en{Wiby — 2,7 f(2) — Az) = 262 (A(W,,0, - 2),Yf (2) - Az)

IN

IN

= [(1 - en)® + 2Buenya +2(1 - B ) yena] I, — 2P + €2y f (Wix) - Az
+ 2PBnen(xn — 2,7 f(2) = Az) + 2(1 = Bn) €n(WiOp — 2,y f (z) — Az)
-2e2(A(W,0, - 2),yf(z) — Az)

< [1-2(7 - ay)en] 0 - 217 + Peqllxn = zI + exlly f (Wax) - Az]|*
+2Bnen(Xn — 2,y (2) = Az) + 2(1 = Bn) € Wb — 2,7 f (2) — Az)
+ 263 AWnb — 2) ||y f(2) - Az]|
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= [1 - 2(?_ DCY)(:’n] “xn - Z||2
=2 2 2
+ €n{en <Y 30 = zlI* + ||y f W) — Az||” + 2| AW,0, - 2)|||y f (2) — Az||>

+2B,(xn — 2,y f(2) = Az) +2(1 = B) (W0, — 2,7 f(2) — Az)}. (3.124)
Since {x,}, { f(Wux,)}, and {W,,0,} are bounded, we can take a constant M > 0 such that
Pllxa = 2l + ||y f (Wax) = Az||> + 2 A(W,6, - 2)l[|y f (2) - Az|| < M (3.125)
for all n > 0. It then follows that

[%ne1 = 2% < (1 = L)% = ZI|* + €n0n, (3.126)

where

b =2(F - ay)en

(3.127)
On = nM + 2B, (xn — 2,7 f(2) — Az) + 2(1 = ) (Wubn — 2,7 f (2) — Az).

Using (C1), (3.121), and (3.123), we get I, — 0, 3721 I, = oo and limsup, ,_(0,/1,) < 0.
Applying Lemma 2.13 to (3.126), we conclude that x, — z in norm. Finally, noticing ||u, —
z|| = ||T;, (xn — rnDxy) — Ty, (z — r,Dz)|| < ||x, — 2|, we also conclude that u, — z in norm.
This completes the proof. O

Corollary 3.4. Let E be a nonempty closed convex subset of a real Hilbert space H. Let F : EXE — R
be a bifunction satisfying (A1)—(A4), let B : E — H be relaxed (u,v)-cocoercive and ¢-Lipschitz
continuous mappings, and let {T,,} be an infinite family of nonexpansive mappings of E into itself
such that © := "2, F(T,) N EP(F) N VI(E, B) #0. Let f be a contraction mapping of E into itself
with a € (0,1). Let {x,}, {yn}, {kn}, and {u,} be sequences generated by

x1 € E chosen arbitrary,

F(un,y) +rl(y—un,un—xn) >0, VyeE,

Yn = Puly + (1 - (Pn)WnPE(un — 6nBun), (3128)

kn = apXy t+ (1 - an)WnPE (yn - )LnByn)/
Xn+l = Enf(wnxn) + ﬂnxn + YanPE(kn - Tann); Vn>1,
where {W,} is the sequence generated by (1.24) and {e,}, {an}, {¢n}, and {p,} are sequences in
(0,1) and {ry} is a real sequence in (0, co) satisfying the following conditions:

Cl) en+Pu+yn=1,
(C2) limy o€, =0, Xprq €n = 00,
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(C4) limy, oy, = limy, 00, =0,
(C5) 0 < liminf, B, <limsup, , pn <1,
(C6) Limy, oo Ans1 = Au| = limy  oo[Ops1 = On| = limy oo Tys1 — T = 0,
(C7) {Ta}, {An}, {64} C [a,b] for some a,bwith0 < a <b<2(v-u?) /&%, v > ué
Then, {x,} and {u,} converge strongly to a point z € ©, where z = Po f (z).
Proof. Put A=1,y=1,y, = 1-€,—Pu, D = 0 (:the zero mapping) and {e,} = 0in Theorem 3.3.

Then y, = v, = u,, and for any 7 > 0, we see that

(Dx - Dy,x -y) >14||Dx - Dyl||>, Vx,y€E. (3.129)

Let {r,} be a sequence satisfying the restriction: ¢ < r,, < d, where ¢,d € (0, o). Then we can
obtain the desired conclusion easily from Theorem 3.3. O

Corollary 3.5. Let E be a nonempty closed convex subset of a real Hilbert space H. Let {T,} be an
infinite family of nonexpansive mappings of E into itself and let B : E — H be relaxed (u,v)-
cocoercive and ¢-Lipschitz continuous mappings such that © := (2, F(T,) N VI(E, B) #. Let f :
E — E be a contraction mapping with 0 < a < 1 and let A be a strongly positive linear bounded
operator on H with coefficient y > 0 and 0 < y < y/a. Let {x,},{yn}, and {k,} be sequences
generated by

x1 € E chosen arbitrary,
Yn = PnXn + (1 - (Pn)WnPE(xn - 6ann)/
(3.130)
kn = anx, + (1 - “n)WnPE(yn - )‘nB]/n)r

X1 = €nY f(Waxy) + Buxn + ((1 = u)I — €,A)W, Pe(ky, — T,Bky), Vn>1,

where {W,} is the sequence generated by (1.24) and {e,}, {a,}, {¢.}, and {p,} are sequences in
(0,1) satisfying the following conditions:

Cl) limy, €, =0, Zf:l €n = 0,

C2) lim,, oty = limy . o9 = 0,

(

(

(C3) 0 <liminf, B, <limsup, , pn <1,

(C4) limy, oo [ A1 = Ap| = limy, —, 5641 — 6| = limy, —, o[ T — T = 0,
(

C5) {7}, {An}, {60} C [a,b] for some a,bwith0 < a <b<2(v-—ug?) /&, v>ué’

Then, {x,} converges strongly to a point z € ©, where z = Po(I — A + yf)(z), which solves the
variational inequality

((A-yf)z,x-2z)>0, Vxe€O, (3.131)
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which is the optimality condition fot the minimization problem

in{%(Ax,x) —h(x)}, (3.132)

m
x€O©

where h is a potential function for y f (i.e., h'(x) = y f(x) for x € H).

Proof. Put D =0, F(x,y) =0forall x,y € E and r,, = 1 for all n € N in Theorem 3.3. Then, we
have u, = Pcx, = x,,. So, by Theorem 3.3, we can conclude the desired conclusion easily. [
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Abstract In this paper, we introduce an iterative scheme by a new hybrid method
for finding a common element of the set of fixed points of a nonexpansive map-
ping, the set of solutions of an equilibrium problem and the set of solutions of the
variational inequality for a-inverse-strongly monotone mappings in a real Hilbert
space. We show that the iterative sequence converges strongly to a common element
of the above three sets under some parametric controlling conditions by the new
hybrid method which is introduced by Takahashi et al. (J. Math. Anal. Appl., doi:
10.1016/j.jmaa.2007.09.062, 2007). The results are connected with Tada and Taka-
hashi’s result [A. Tada and W. Takahashi, Weak and strong convergence theorems for
a nonexpansive mappings and an equilibrium problem, J. Optim. Theory Appl. 133,
359-370, 2007]. Moreover, our result is applicable to a wide class of mappings.
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Let H be a real Hilbert space with the inner product (-, -) and the norm || - ||. Let C be
a closed convex subset of H and let P¢ be the metric projection of H onto C. Let F'
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be a bifunction of C x C into R, where R is the set of real numbers. The equilibrium
problem for F : C x C — R is to find x € C such that

F(x,y)>=0 forallyeC. (1.1)

The set of such solutions is denoted by EP(F'). This problem contains fixed point
problems, includes as special cases numerous problems in physics, optimization, and
economics. Some methods have been proposed to solve the equilibrium problem,
please consult [3, 4, 21]. Let A of C in to H be a nonlinear mapping. The classical
variational inequality problem is to find u € C such that (v —u, Au) > O forallv € C.
We denoted by VI(A, C) the set of solutions of this variational inequality problem.
The variational inequality has been extensively studied in the literature; see [27, 28]
and the references therein.

The above formulation (1.1) was shown in [1] to cover monotone inclusion prob-
lems, saddle point problems, variational inequality problems, minimization problems,
optimization problems, variational inequality problems, vector equilibrium problems,
Nash equilibria in noncooperative games. In addition, there are several other prob-
lems, for example, the complementarity problem, fixed point problem and optimiza-
tion problem, which can also be written in the form of an EP(F'). In other words,
the EP(F) is an unifying model for several problems arising in physics, engineer-
ing, science, optimization, economics, etc. In the last two decades, many papers have
appeared in the literature on the existence of solutions of EP(F); see, for example
[1, 4, 10, 21] and references therein. Some solution methods have been proposed
to solve the EP(F); see, for example, [3, 4, 18, 19, 21] and references therein. In
2005, Combettes and Hirstoaga [3] introduced an iterative scheme of finding the best
approximation to the initial data when EP(F) is nonempty and they also proved a
strong convergence theorem. They also studied the strong convergence of the se-
quences generated by their algorithm to a solution of EP(F) which is also a fixed
point of a nonexpansive mapping on a closed convex subset of a Hilbert space.

Recall, a mapping S : C — C is said to be nonexpansive if

[1Sx = Syl < llx =yl

forall x, y € C. We denote by F(S) the set of fixed points of S. If C is bounded closed
convex and S is a nonexpansive mapping of C into itself, then F(S) is nonempty
(see [8]). We write x,, — x (x, — x, resp.) if {x,} converges (weakly, resp.) to x.
A mapping A of C into H is called monotone if

(Au — Av,u —v) >0

A mapping A of C into H is called a-inverse-strongly-monotone if there exists a
positive real number o such that

(Au— Av,u —v) > a||Au — Av||?, (1.2)

for all u, v € C. It is obvious that any « -inverse-strongly-monotone mapping A is
monotone and Lipschitz continuous.

@ Springer



A new hybrid iterative method for solution of equilibrium problems 265

In 1953, Mann [9] introduced the iteration as follows: a sequence {x,} defined by
Xptl = apXxp + (1 — ) Sxy, (1.3)

where the initial guess element xo € C is arbitrary and {«,} is a real sequence in
[0, 1]. The Mann iteration has been extensively investigated for nonexpansive map-
pings. One of the fundamental convergence results is proved by Reich [12]. In an
infinite-dimensional Hilbert space, the Mann iteration can conclude only weak con-
vergence [5]. Attempts to modify the Mann iteration method (1.3) so that strong
convergence is guaranteed have recently been made. Generally speaking, the algo-
rithm suggested by Takahashi and Toyoda [22] is based on two well-known types
of methods, namely, on the projection-type methods for solving variational inequal-
ity problems and so-called hybrid or outer-approximation methods for solving fixed
point problems. The idea of “hybrid” or “outer-approximation” types of methods was
originally introduced by Haugazeau in 1968; see [2] for more details.

Recently, for finding an element of EP(F) N F(S), Tada and Takahashi [19] in-
troduced the following iterative scheme by the hybrid method in a Hilbert space:
xo=x € H and let

1

u, € C suchthat F(u,,y)+ —(y—un,uy, —x,)>0, VyeC,
I'n

wy = (1 —a)x, + 0y Suy,

Cp={zeH:|wy—z|l < llxu —zll},
On={z€C:{x;, —z,x0 — x,) >0},
Xn+1 = Pc,ng, X0,

(1.4)

for every n € N, where {«,} C [a, b] for some a,b € (0, 1) and {r,} C (0, c0) sat-
isfies liminf,,_, o r, > 0. Further, they proved {x,} and {u,} converge strongly to
z € F(§) NEP(F), where z = Pr(s)nEP(F)X0-

On the other hand, for finding an element of F(S) N VI(C, A) under the assumption
that a set C C H is closed and convex, a mapping S of C into itself is nonexpansive
and a mapping A of C into H is a-inverse-strongly-monotone, Takahashi and Toyoda
[22] introduced the following iterative scheme:

Xpt1 =Xy + (1 —ay)SPc(xy — Ay Axy) (1.5)

foreveryn=0,1,2,..., where xo =x € C, {«,} is a sequence in (0, 1) and {A,} is a
sequence in (0, 2«). They shown that, if F(S) N VI(C, A) # (4, then such a sequence
{x,} converges weakly to some z € Pr(s)nvi(c, A)X.

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see [24—26] and the references therein. Convex min-
imization problems have a great impact and influence in the development of almost
all branches of pure and applied sciences.

Very recently, Takahashi, Takeuchi and Kubota [23] proved the following strong
convergence theorem by using the hybrid method in mathematical programming. For
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C1 = C and x| = P, xo, define a sequence as follows:

Yn =Xy + (1 —ay)Sxy,
Cot1={z€Cpn:|lyn —zll < llxn — zlI}, (1.6)
Xnt1 = Pc,, X0, neN,

where 0 < o, <@ < 1 for all n € N. They proved a strongly convergence theorem in
a Hilbert space.

In this paper, motivated and inspired by the above results, we introduce a new
following iterative scheme: For C; = C, x1 = P¢, xo, and let

1
u, € C suchthat F(u,,y)+ —(y—uy,u, —x,)>0, VyeC,
7

n
Yn = 0pXy + (1 — 0y)SPc(uy — Ay Auy), (L.7)
Cot1 ={z€Cp:lyn —zll = llxn — zll}

Xnt1= Pc,, x0, neN,

for finding a common element of the set of fixed points of a nonexpansive map-
ping, the set of solutions of an equilibrium problem and the set of solutions of the
variational inequality for a-inverse-strongly monotone mappings in a Hilbert space.
Consequently, we prove a strong convergence theorem by the new hybrid iterative
algorithm method in the mathematical programming which solves some fixed point
problems, variational inequality problems and equilibrium problems. Using this the-
orem, we can apply to a wide class of mappings. Our results are connected with Tada
and Takahashi’s result [19] and Takahashi’s et al. result [23].

2 Preliminaries
Let H be a real Hilbert space. Then

lx = Y1 = llx ) = Iy > = 2(x =y, ») (2.1)
and
Iax + (L= )ylIP = Al >+ A =lyI> = A0 =Dlx —yI* (22
for all x,y € H and A € [0, 1]. It is also known that H satisfies the Opial’s condi-
tion [11], that is, for any sequence {x,} with x, — x, the inequality

liminf||x, — x| < liminf|x, — y||
n— o0 n—o0

holds for every y € H with y # x. Hilbert space H satisfies the Kadec-Klee property
[6, 20], that is, for any sequence {x,} with x, — x and ||x, || — ||x| together imply
lXn —x[| = 0.

Let C be a closed convex subset of H. For every point x € H, there exists a unique
nearest point in C, denoted by Pcx, such that

lx — Pcx|| <|lx —y|| forallyeC.
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Pc is called the metric projection of H onto C. It is well known that P¢ is a nonex-
pansive mapping of H onto C and satisfies

(x —y, Pcx — Pcy) > | Pcx — Pcyl? (2.3)

for every x,y € H. Moreover, Pcx is characterized by the following properties:
Pcx € C and

(x = Pcx,y — Pcx) <0, 2.4)

lx — yII2 > lx — Pex|I* + |y — Pex|l? (2.5)

forallx e H,y e C.
In the context of the variational inequality problem, this implies that

ueVI(A,C) < u= Pc(u—rAu), forall A > 0. (2.6)
We also have that, for all u, v € C and A > 0,

(I — 2 A)u — (I — AAW|* = ||(u — v) — A(Au — Av)|?
= llu—v|®> = 2A{u — v, Au — Av)
+ 22| Au — Av|)?

<llu—v|>+ ik —2)||Au — Av|>.  (2.7)

So, if A <2«, then I — A A is a nonexpansive mapping from C to H.

A set valued mapping 7 : H — 2 is called monotone if for all x,y € H, f €
Tx and g € Ty imply (x — y, f — g) > 0. A monotone mapping T : H — 2/ is
maximal if the graph G(T') of T is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping 7 is maximal if and only if
for (x, f)e Hx H,{(x —y, f —h) > 0forevery (v, g) € G(T) implies f € Tx. Let
A be an inverse-strongly monotone mapping of C into H and let Ncv be the normal
coneto CatveC,ie.,

Nev={we H:{v—u,w)>0,Yu e C}

and define
_JAv+Ncv, veC,
Tv= { 9, v¢C.

Then T is maximal monotone and 0 € Tv if and only if v € VI(C, A); see [13, 14].
For solving the equilibrium problem, let us assume that the bifunction F satisfies
the following conditions (see [1]):

(Al) F(x,x)=0forall x € C;
(A2) F is monotone, i.e., F(x,y)+ F(y,x) <0 forany x, y € C;
(A3) F is upper-hemicontinuous, i.e., for each x, y,z € C,

limsup F(tz + (1 —t)x,y) < F(x, y);

t—0t
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(A4) F(x,-) is convex and lower semicontinuous for each x € C.
The following lemma appears implicitly in [1]
Lemma 2.1 ([1]) Let C be a nonempty closed convex subset of H and let F be a

bifunction of C x C into R satisfying (A1)—-(A4). Let r > 0 and x € H. Then, there
exists z € C such that

1
F(Z,y)—i-;(y—z,z—x) >0 forallyeC.
The following lemma was also given in [3].

Lemma 2.2 ([3]) Assume that F : C x C — R satisfies (A1)-(A4). For r > 0 and
x € H, define a mapping T, : H — C as follows:

1
Tr(x)={ZGC:F(z,y)+;(y—z,z—x>20, VyGC}

forall z € H. Then, the following hold:

1. T, is single-valued,

2. T, is firmly nonexpansive, i.e., for any x,y € H, ||T,x — Ty y|*> < (Tyx — T}y,
x—yh

F(T,) =EP(F);

4. EP(F) is closed and convex.

»

3 Strong convergence theorems

In this section, we show a strong convergence theorem which solves the problem
of finding a common element of the set of fixed points of a nonexpansive mapping,
the set of solutions of an equilibrium problem and the set of solutions of the varia-
tional inequality of an «-inverse-strongly monotone mapping in a Hilbert space by
the hybrid method in the mathematical programming.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from C x C into R satisfying (A1)-(A4) and let A be an o-
inverse-strongly monotone mapping of C into H. Let S be a nonexpansive mappings
Sfrom C into H such that F(S) N VI(C, A) NEP(F) # . For C; = C, x1 = Pc,xo,
define sequences {x,} and {u,} of C as follows:

1
u, € C suchthat Fu,,y)+ —(y—uy,u, —x,) >0, VyeC,
r

n
Yn =Xy + (1 — 0y)SPc(up — Ay Auy),
Cop1 ={z€Cp:llyn —zll = llxn —zll},
Xp+1 = Pc,, X0, ne N,
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for every n € N, where {a,,} C (0, 1) such that lim,_,~ &, =0 and {1} C [a, b] C
(0, 2a) and {r,} C (0, 00) satisfies liminf,,_, o, 7, > 0. Then {x,} converges strongly
to PE(s)nvI(C,A)NEP(F)X0-

Proof We show first that the sequence {x,} is well defined. By induction we can show
that

F(S) N VI(C, A) NEP(F) C C, forallneN.

Itis obvious that F(S)NVI(C, A)NEP(F) C C = Cy. Suppose that F(S)NVI(C, A)N
EP(F) C Cy, for each k € N. Hence, for v € F(S) N VI(C, A) NEP(F) C Cy and let
{T,} be a sequence of mappings defined as in Lemma 2.2. Then v = Pc (v — X, Av) =
T,,v. Putv, = Pc(u, — ApAuy) and from u, = T, x,, we have

lvn —vll = | Pc(un — AnAup) — Pc(v — Ay Av) ||
< up — ApAup) — (v — 2y Av) ||
< llup —vl|
=Ty, xn — 1), vl
< llxp — vl (3.1)
for every n € N. Thus, we obtain
lyn — vl = llatnxn + (1 — an)SPc (U — Ap Aup) — v||
< apllxy — vl + (1 —ap)l|Svy — vl
< apllxy — vl + (1 —ap)llv, — vl
< apllxp — vl + (1 —ap)llxp, — vl
= [lxp — v (3.2)
So, we have v € C,,. This implies that
F(S)nVvI(C,A)NEP(F)CC, forallneN. (3.3)

Next, we prove that C,, is closed and convex for all n € N. From the definition of
C,, it is obvious that C, is closed for all n > 0. Since C, = {z € C : |lyn — x> +
2(yn — xn, xp — z) <0}, we deduce that C, is convex for all n > 0. This implies that
{x,} is well-defined. From Lemma 2.1, the sequence {u,} is also well defined. From
xp = Pc,x0, we obtain

(x0 — Xn, xp, —y) >0

for each y € C,,. Using F(S) N VI(C, A) NEP(F) C C,, we also have
(xo — xp, X, —u) >0 foreachu e F(S)NVI(C,A)NEP(F) and neN.
Hence, for u € F(S) N VI(C, A) NEP(F), we obtain

0 < (xo—xu,xp —u)
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= (X0 — Xu, Xp — X0 + X0 — U)
2
= —|lxo — xx I~ + llxo — xn [l llx0 — ull.

This implies that

llxo — xnll < llxo —ull forall u € F(S) N VI(C, AYNEP(F) andn e N.

From x, = Pc,xo and x,41 = Pc,,,x0 € Cn4+1 C Cy,, we obtain

n+1
(x0 — Xn, Xp — Xnt1) = 0.
It follow that, for n € N,
0 < {x0 — Xn, Xp — Xn+t1)
= (X0 — Xp, Xp — X0 + X0 — Xp+1)
= —llx0 — xull* + (x0 = Xn, X0 — X 1)

2
—llxo — xull” + llxo — xnllllx0 — Xp41l

IA

and hence

X0 = xnll < llx0 = Xn1ll-

(3.4)

Since {||x, — xol|} is bounded, lim,,_, » [|x, — Xo|| exists. Next, we can show that

limy,— o6 | Xp+1 — Xn || = 0. In deed, from (3.4) we have

2 2
X0 — Xn1 17 = llXn — x0 + X0 — Xp1l

2 2
= llxn — x0ll” + 2{xp — x0, X0 — Xp41) + [lx0 — Xp41l

2 2
= —|lxp — x0ll” +2{x; — X0, X0 — Xpn + Xp — Xpy1) + X0 — Xp41l

2 2
=l — xoll” + llxo — Xp41ll”.

IA

Since lim,,_,  [|X0 — X5, || exists, this implies that
lim [|x; — X441l =0.
n—>oo

Since x,41 € C,, we obtain that

lxn — yull < l1xn — Xpp1 | + 1 xn+1 — Yull < 2l1%0 — Xpp1 |l

By (3.5), we have
lim x, — yall = 0.
n—0o0
For v e F(S) N VI(A, C) NEP(F) and from Lemma 2.2, we get
v — V1> = | Pc(un — AnAuty) — Pc(v — Ay Av) |
< 1t — AnAttn) — (v — Ay AV) |12
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= (I = Ay Auy — (I — 2y A)v|?
< llun — 0l = 1Ty, %0 — T, 0l
= <Tr,,xn - Tr,,vs Xp — V)

= (up — v, Xy — V)

1
= 5 ln VlIZ + 12 — vl1? = 12 — unll?)

and hence [|v, — v[|* < [|lx, — v]|> = [|xy — un .
From this, we obtain

2 2 2
Iyn = vlI” < anllxn = vlI” + A —an)[|Sva — vl
2 2
< apllxy —vlI” + (A = an) vy — vl
< 2 1 2 2
< anllxn = lI” + (1 — ) {llxn — vlI" = llxp — unll}
2 2
= llxn —vlI” = (I —an) lxp — unll”

Since {o,} C (0, 1), we get

2 2 2
X — unll” < llxn = vl = llyn — vl

< lIxn = yull{llxn = vl = llyn — v}
From this and (3.6), implies
lim ||x, —u,| =0. (3.7
n—oQ

Since liminf,,_, o, 1, > 0, we also have

— 1
Xn Uy — lim _”xn _ un“ =0. (38)

n—>00 ry,

lim
n—>oo

'n

Next, we show that ||u, — v,| — 0. For v € F(S) N VI(A, C) N EP(F), from (2.7),
we compute that
lyn = vlI* < anllxn — vl1* + (1 — @) [ Sy — |
< apllxn = vlI* + (1= ) lvg — v]?
= an[lxn — V1> + (1 — &) | Pc (un — M Autn) — Pe(v — Ay Av)|?
< apllxn —vI*+ A —a) (I — Ay Ay — (I = Ay A)v|?
< opllxy — vlI* + (1= o) (lun — vII* + A (o — 20) || Aupy — Avl|?)
< dpllxn = vl* + lun —vI* + (1 — an)alb — 20)|| Auy — Av]*.

Therefore, we have
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—(1 —ap)a(b —2a)||Au, — Av||?
< apllxy — vII? + llun — vII* = llyn — vlI?

< apllxn = vI” + (lun = vl + 1y — V) ln = yall- (3.9)

From (3.6) and (3.7), we get ||un — yull < llun — xn|l + llxn — yull = 0. Since o, —
0,a,b € (0,2a) and ||u, — yu|| — 0, we obtain ||Au,, — Av|| — 0. From (2.3), we
have

lon = vI1* = | Pc (un — AnAuty) — P (v — Ay AV)||?
< {(un — AnAuy) — (v — A Av), vy — V)
= (/{01 n — AnAun) — (v = 2y AV) > + [0, — v|?
— [t = AnAup) — (0 = 2y AV)] = (v, — V) ]|}
< (/2D {llun = 01> + llvw = vl = [ = va) = 2n(Aup — Av)[}
= (1/2){llun — vII* + llvn — 011> = [1Gtn — va)II?
+ 20 (tty — U, Aty — Av) — 22| Au, — Avl|?).
So, we obtain

2 2 2
lvn = vlI” < lup = vlI” = llun — vall

+ 20 (tty — Vn, Aty — Av) — A2 A, — Av|?

and hence
lyn — vlI* = lotxn + (1 — ) Svy — w2
< oty llxn — vII* + (1 = a) v — v]|?
< ayllxn — vII* + llug — vlI* = lluy — val?
+ 20 (tty — Vn, Aty — Av) — 22| A, — Av|?.
Thus, we get

litn — vall? < apllxn — v + Ny — 1> — lyn — vlI?
+ 2hn (tty — vy, Aty — Av) — A2|| Au, — Av|?

2 2 2
< anllxn = vlI” + (lun = vlI” = llyn — vII)

+ 200 (Ut — U, Aty — Av) — 22| Au,, — Av|?

2
< apllxn = vlI* 4+ (lun — vl = llyn — vIDllun — yaull

+ 20 (tty — vy, Ay — Av) — A2 || Au, — Av|%.
Since o, — 0, |lu;, — yu|l = 0 and || Au,, — Av|| — 0, we obtain

lun — vull — 0. (3.10)
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From (3.7) and (3.10), we also have
lxn — vall < llxp — unll + lluy — vyl = 0. (3.11)
Since y,, — u, = ayx, + (1 — o) Sv, — uy,, We obtain

(an — DIISvy —upll < apllxn —unll + lyn — unll
< anllxny — unll + llyn — unll.

From o, — O and ||y, — u,|| — 0, we get ||Sv, —u,|| = 0 as n — oo. Since ||Sv,, —
vnll < 1Sv, — uyll + ||y — v, and from (3.10) that

lim [|Svn — va]l = O. (3.12)
n—oo

Since {x,} is bounded, there exists a subsequence {x,,} of {x,} which converges
weakly to z. From (3.11), we obtain also that v,, — z. Since v,; C C and C is closed
and convex, we obtain z € C. From ||Sv, — v, || — 0, we obtain Sv,, — z. Let us
show that z € EP(F). Since u, = T}, x,, we have

1

F(u,,y) + r—(y—un,u,, —xp) >0, VyeC.
n

From (A2), we also have

1

—{(y —up,up —xp) = F(y,uy)
'n

and hence
Up, — Xn,
<y _un,-» ¥> Z F(yvun,')-
Tn;
From |lu,; — x,|| = O, ||uy — Sv,|| = 0, and || Sv, — v, || — O, we get u,, — z. Since

D=y 0, it follows by (Ad) that 0 > F(y,z) forall y € C. For t with 0 <7 < 1

andly eC,lety;=ty+ (1 —t)z.Since y € C and z € C, we have y; € C and hence
F(y;,7) <0. So, from (A1) and (A4) we have

O0=FQr,y) <tF(y,,y) + A —=0DF(,2) <tF(y,y)

and hence 0 < F(y;, y). From (A3), we have 0 < F(z, y) for all y € C and hence z €
EP(F). Let us show that z € F(S). Assume z ¢ F(S). From Opial’s condition, we have

liminf ||v,, — z|| <liminf ||v,;, — Sz||
n—oo i— 00
= liminf v, — Sv,; + Sv,, — Szl
1—> 00

= liminf||Sv,, — Sz||
11— 00

< liminf ||v,, — z]|.
1—>00

@ Springer



274 P. Kumam

This is a contradiction. Thus, we obtain z € F(S). Finally, we can show that
ze VI(A, C). Defined

_JAv+ Ncv, veC,
T”_{VJ, v C.

Then T is maximal monotone. Let (u, v) € G(T). Since u — Av € Ncv and v, € C,
we have (v — v, u — Av) > 0. On the other hand, from v, = Pc(u,, — A, Au,), we
have

(v =y, vy — (Uy — ApAuy)) >0,

and hence,

<U — M +Aun> > 0.
An

Therefore, we have

(v— Un; s u)) > (v— Un;» Av)
(Un,- - un,—)
An;
(Un,' - un,')>

)\n,-
= (v —Vp;, AV — Avy;) + (v — vp;, Avp, — Auy,)
—v—v (vn;_”n;)
n; s 7)%_

i

v

(v—vni,Av)—<v—vni, +AMn,->

=<v—vni,Av—Auni —

= <U_Unia Avni _Aun,'> _<U_Unl-,

(Un,' - un,')
An '

which together with ||v, — u,|| — 0 and A is Lipschitz continuous implies that
(v—2z,u)>0.

Since T is maximal monotone, we have z € T~'0 and hence z € VI(C, A). Hence

zeF(S)NVI(A, C) NEP(F).

Finally, we show that x, — z, where z = Pg(s)nvi(c,A)EP(F)X0. Since x, = Pc,xo
and z e F(S) N VI(C, A) NFP(F) C C,,, we have

llxn = xoll < llz = xoll.

It follows from z’ = Pr¢s)nvi(c, 4)nEP(F)X0 and the lower semicontinuity of the norm
that

"—xoll < llz = xoll <limi n; — Xoll <1i m — Xoll < 112 = xoll.
Iz" = xoll < llz — xoll <liminf||x,; — xoll <limsup ||x,; — xoll < llz" — xoll
I—>0 i—00

@ Springer



A new hybrid iterative method for solution of equilibrium problems 275

Thus, we obtain that limy_, o [|X;, — xoll = ||z — x0ll = Iz’ — x0l|. Using the Kadec-
Klee property of H, we obtain that

lim x,, =z = Z.
— 00

Since {x,,} is an arbitrary subsequence of {x,}, we can conclude that {x,} converges
strongly to z, where z = PF(T)QV](C’A)QEP(F).XO. O

As direct consequences of Theorem 3.1, we can obtain the following results.

Theorem 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from C x C into R satisfying (A1)—(A4). Let S be a nonexpan-
sive mappings from C into H such that F(S) NEP(F) # 0. For C1 = C, x1 = Pc,xo,
define sequences {x,} and {u,} of C as follows:

1
u, € C suchthat Fu,,y)+ —(y—uy,up —x,) >0, VyeC,
I'n

Yn =0pXy + (1 —an)Suy,
Cov1=1{z€Cy:llyn —zll < llxn — zll},
Xn1 = Pc, X0, neN,

for every n € N, where {a,} C (0, 1) such that lim,_, 5 &, = 0 and {r,} C (0, 0)
satisfies liminf,, oo 7, > 0. Then {x,} converges strongly to Pr(s)nEP(F)X0.

Proof Putting Pc(I — A,A) = I, by Theorem 3.1, we obtain the desired result eas-
ily. O

Theorem 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from C x C into R satisfying (A1)—(A4) such that EP(F) # 0.
For Cy =C, x1 = Pc,xo, define sequences {x,} and {u,} of C as follows:

1

u, € C suchthat F(uy,y)+ —(y—uy,un —x,) >0, VyeC,
I'n

Cop1={z€Cp:llyn —zll = llxn —zll},

Xn1 = Pc,, X0, neN,

for every n € N, where {a,} C (0, 1) such that lim,_,» &, = 0 and {r,} C (0, 0)
satisfies liminf,, _, oo 7, > 0. Then {x,} converges strongly to Pgp(r)xo.

Proof Putting S = I, and «, =0 in Theorem 3.2, we obtain the Theorem 3.3. O
Theorem 3.4 Let C be a nonempty closed convex subset of a real Hilbert space H .
Let F be a bifunction from C x C into R satisfying (A1)—(A4) and let A be an o-

inverse-strongly monotone mapping of C into H. Let S be a nonexpansive mappings
Sfrom C into H such that F(S) N VI(C, A) # @. For C; = C, x1 = Pc,xq, define
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sequences {x,} and {u,} of C as follows:

u, € C  suchthat (y—un,u, —x,)>0, VyeC,
Yn =Xy + (1 —ay)SPc(uy — Ay Auy),
Cov1={z€Cy:|lyn—zll < llxn —zlI},

Xn+1= Pc,. X0, neN,

for every n € N, where {a,,} C (0, 1) such that lim,_,~ o, = 0 and {},} C [a, b] C
(0, 2a). Then {x,} converges strongly to Prs)nvi(c,a)X-

Proof Putting F(x,y) =0forall x, y € C and r, = 1 in Theorem 3.1, the conclusion
follows. O

Remark 3.5 (i) Our results generally improve and extend the results of Tada and
Takahashi [19] by the new hybrid method in the mathematical programming.

(ii) The hybrid iterative algorithm in Theorem 3.1 solves some variational inequal-
ity problems and equilibrium problems. It follows that from Theorem 3.2 and 3.3, we
can replace by using the C Q-hybrid method (see [16, 17, 19]) for finding a com-
mon element of fixed point problems, equilibrium problems. For example to solving
a linear system of two equations in two unknowns by hybrid methods (see an exam-
ple in [17]). More example for projection algorithm for solving variational inequality
problems by MATLAB see [15, pp. 772-774].

4 Applications
4.1 Maximal monotone operators

Let H be a Hilbert space and 7T be a maximal monotone operator on H. Consider
the problem find x € H such that 0 € T'(x). We shall denote the solution set of this
problem by

S={xeH:0eT(x)}=T"Y0).

Then S is a closed convex nonempty subset of H and thus the projection Pg from H
onto F(S) is well-defined. One of the fundamental problems in the theory of maximal
monotone operators is to find a solution of 7, that is, a point is S. Rockafellar’s
proximal point algorithm [14] provides us with a powerful numerical tool to find a
point in S.

The following theorem is connected with the problem of obtaining of a common
element of the sets of zeroes of a maximal monotone operator and an «-inverse-
strongly monotone operator.

Theorem 4.1 Let C be a nonempty closed convex subset of H. Let F be a bifunction

from C x C to R satisfying (A1)—(A4) and let A be an o-inverse-strongly monotone
operatorin H and B : H — 2" be a maximal monotone operator such that A~ (0) N
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B~Y0)NEP(F) # . Let J,B be the resolvent of B for eachr > 0. Let {x,} and {u,}
be sequences generated by xo =u € H and

Fun, y) + 3y = ttn,un —%,) 20, Vy€eC,
X1 = Xy + (1= ) By — My Auy),
Cor1={z€Cy:llyn —zll < llxn — zlI},

Xn+1 = Pc, X0,

4.1)

where {a,}, {\,} and {r,} satisfy the following conditions:

1) {a,} C[0,1], Zﬁioan =00, ay —> 0 and {A,} C [c,d] for some [c,d] C
0, 2a);
(i) {rn} C (0, 00), liminf, 5o r, >0

then, {x,} and {u,} converge strongly to 7 € A~50) N B~Y(0) N EP(F), where 7 =
Ps-10)nB~1 0)EP(F)X0-
Proof Since JrB is nonexpansive, we have the following
A7 0=V, A) and FIP)=B"10).
Putting Py = I then, by Theorem 3.1, we obtain the desired result. O

Motivated by above results, we consider the following algorithm:

Algorithm 1 Let {x,} and {u,} be sequences generated by xo =u € H and
u, € C suchthat (y—un,u, —x,)>0, VyeC,
Yn = Uy — ApAuy,
Xng1 =Xy + (1= )Py,
Cor1={z€Cp:llyn —zll = llxn —zll},
xn+1 = Pc, ., X0,

where JrB be the resolvent of B for each r > 0.

Theorem 4.2 Let C be a nonempty closed convex subset of H. Let A be an a-inverse-
strongly monotone operator in H and B : H — 2" be a maximal monotone operator
such that A=1(0) N B=1(0) # @. Let J,B be the resolvent of B for each r > 0. Let
{x,} be a sequence generated by Algorithm 1 suppose that {«,} and {)\,} satisfy the
conditions (1) and (iii) in Theorem 4.1. Then, {x,} converges strongly to z € A~HO)N
B~1(0), where z = P4 ©)NB-1(0)X0-

4.2 Strictly pseudocontractive maps

A mapping T : C — C is called strictly pseudocontractive on C if there exists k with
0 <k < 1 such that

ITx —Ty|* < |lx — ylI> + k(I = T)x + (I — T)y||>, forallx,yeC.
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If k =0, then T is nonexpansive. Put A=1 — T, where T : C — C is a strictly
pseudocontractive mapping with k. Then we have, for all x, y € C,

(I — A)x — (I — A)y|* < lx — ylI* + k[ Ax — Ay|1%.
On the other hand, we have
(I = A)x — (I = Ayl =lx — ylI> = 2(x — y, Ax — Ay) + | Ax — Ay|1>.
Hence we have
1—k )
(x =y, Ax = Ay) = —— | Ax — Ay||”.

Then, A is %—inverse strongly monotone and A~H0) = F(T) (see [7]).
Now, using Theorem 3.1, we state a strong convergence theorem for a pair of a
nonexpansive mapping and strictly pseudocontractive mapping.

Theorem 4.3 Let C be a closed convex subset of a real Hilbert space H. Let F be a
bifunction from C x C — R satisfying (A1)—(A4) and let S be a nonexpansive map-
ping of C into itself and let T be a strictly pseudocontractive mapping with constant
k of C into itself such that F(S) NF(T)NEP(F) # §. For C1 = C, x1 = Pc,xq, define
sequences {x,} and {u,} of C as follows:

1
u, € C suchthat Fu,,y)+ —(y—uy,up —x,) >0, VyeC,
r

n
yn =0 —op)xy + 0, S((A = Ap)uy + Ay Tuy),
Cop1 ={z€Cp:llyn —zll = llxn —zll},

Xn1 = Pc,, X0, neN,

for every n € N, where {a,,} C (0, 1) such that lim,— &, =0 and {},} C [a, b] C
(0,2a) and {r,} C (0, 00) satisfies liminf,,_, o, 7, > 0. Then {x,} converges strongly

to PE($)nE(T)NEP(F)X0-

Proof Put A=1—T.Then A is %-inverse-strongly monotone. We have that F(T')
is the solution set of VI(A, C) i.e., F(T) = VI(A, C) and

Pc(up — ApAuy) = (1 = 2)uy + Ay Tuy,.
Therefore, by Theorem 3.1, the conclusion follows. O

Corollary 4.4 Let C be a closed convex subset of a real Hilbert space H. Let S be
a nonexpansive mapping of C into itself and let T be a strictly pseudocontractive
mapping with constant k of C into itself such that F(S) NF(T) # @. For C1 =C,
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x1 = Pc,xq. Let {x,} and {u,} be sequences generated

u, € C  suchthat (y—u,,u, —x,)>0, VyeC,
o =1 —=Xp)xn + Ay Txp

Xp1 =pXxp + (1 — ap)Syn,

Cor1={z€Cy:|lyn —zll < llxn — zlI},

Xpn+1 = Pcn_HX(), ne N,

for every n € N, where {a,,} C (0, 1) such that lim,_,~ &, =0 and {},} C [a, b] C
(0, 2a). Then {x,} converges strongly to Pr(s)nF(T)X0-

Proof Put F(x,y)=0forallx,yeC,r,=1forallneNand A=1—-T, we get

U, = Pcx, = x, and A is %-inverse-strongly monotone. We have that F(T') is the

solution set of VI(A, C) i.e., F(T) = VI(A, C) and
Pc(xp — ApAxp) = — Xp)xy + 2, T xp.

Therefore, by Theorem 3.2, the conclusion follows. OJ

Theorem 4.5 Let H be a real Hilbert space. Let F be a bifunction from H x H — R
satisfying (A1)—(A4) and let A be an o-inverse-strongly monotone mapping of H into
itself and let S be a nonexpansive mapping of H into itself such that F(S) N A~1(0) N
EP(F) # 0. Suppose C1 = C, x| = Pc,x0, and {x,}, {y,} and {u,} are given by

Fun, y) + Ay —tnsun =) 20, Vy &
Yn = (un — ApAup),

Xnt+1 = pXp + (1 — 0ty) Syn,

Cop1 ={z€Cp:llyn —zll = llxn — zll},
Xp+1= Pc, X0, ne€E N,

for every n € N, where {a,} C (0, 1) such that lim,_, 5 ¢, =0 {r,} C (0, 00) satis-
fies liminfy, oo 7, > 0 and {1,} C [a, b] C (0,2«a). Then {x,} converges strongly to
Pr(s)na-1(0)nEP(F)#-

Proof Since A1 (0) is the solution set of VI(A, H), we can obtain the conclusion by
Theorem 3.1 and by noting that Py is the identity mapping on H. This completes the
proof. g
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1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. Let E be a nonempty closed convex subset of H. Let
A be a strongly positive linear bounded operator on H if there is a constant ¥ > 0 with property

(Ax,x) = 7llx|*>, Vx eH. (1.1)
Now, we consider the following optimization problem (for short, OP):
R 2 1 2
OP : min — (Ax, x) + —|lx — u||* — h(x), (1.2)
xeF 2 2

where F = N2 1 En, E1, E, ... are infinitely many closed convex subsets of H such that N3° | E, # #,u € H,u > Oisa
real number, A is a strongly positive linear bounded operator on H and h is a potential function for yf (i.e., h'(x) = yf(x)
for x € H). This kind of optimization problem has been studied extensively by many authors, see, for example, [1-4] when
F = N2, Eyand h(x) = (x, b), where b is a given point in H.
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Let ¢ : E —> R be areal-valued function and ® : E x E —> R be an equilibrium bifunction, i.e., ® (u, u) = 0 for each
u € E. The mixed equilibrium problem (for short, MEP) which is to find z € E such that

MEP: ©(z,y) + ¢(y) —¢(z) >0, VyekE. (1.3)
In particular, if ¢ = 0, this problem reduces to the equilibrium problems (for short, EP), which is to find z € E such that
EP:®(z,y) >0, VyeeE. (1.4)

The set of solutions of MEP (1.3) is denoted by 2. The mixed equilibrium problems include Nash equilibrium problems,
fixed point problems, saddle point problems, variational inequality problems, optimization problems and the equilibrium
problems as special cases; see, for example, [5-13]. Some methods have been proposed to solve the MEP and EP; see, for
instance [ 14-27]. Recently, Combettes and Hirstoaga [15] introduced an iterative scheme of finding the best approximation
to the initial data when EP is nonempty and proved a strong convergence theorem. On the other hand, Gao and Guo [17]
studied strong convergence by using the hybrid iterative scheme for finding a common element of the set of solutions of MEP,
the set of common fixed points of finitely many nonexpansive mappings and the set of solution of variational inequalities for
relaxed cocoercive mappings in a real Hilbert space. In 2009, Yao et al. [27] introduced and analyzed a new hybrid iterative
algorithm for finding a common element of the set of solutions of MEP and the set of fixed points of an infinite family
of nonexpansive mappings. Furthermore, they proved that the sequences generated by the new hybrid iterative scheme
converge strongly to a common element of the set of solutions of MEP and the set of common fixed points of finitely many
nonexpansive mappings, which solves optimization problem (OP).
Let B : E —> H be a nonlinear mapping. The classical variational inequality problem is to find u € E such that

(Bu,v—u) >0, VYveeE. (1.5)

We denoted by VI(E, B) the set of solutions of the variational inequality problem. The variational inequality problem has
been extensively studied in literature, see, e.g. [28,29] and reference therein.
We now recall some well-known concepts and results as follows.

Lemma 1.1. The function u € E is a solution of the variational inequality (1.5) if and only if u € E satisfies the relation u =
Pe(u — ABu), where A. > 0 is a constant.
It is clear from Lemma 1.1 that the variational inequality and fixed point problem are equivalent. This alternative equivalent
formulation has played a significant role in the studies of the variational inequalities and related optimization problems.
Definition 1.2. Let B: E — H be a mapping. Then B is called
(1) monotone if
(Bx —By,x —y) >0, Vx,y€E,
(2) v-strongly monotone if there exists a positive real number v such that
(Bx—By,x —y) = v|x —y|?, Vxy€E,
for constant v > 0. This implies that
1Bx — By|l = vllx — yl,

that is, B is v-expansive and when v = 1, it is expansive.
(3) &-Lipschitz continuous if there exists a positive real number & such that

Bx — Byl < &llx —yll, Vx,y €E,
(4) m-cocoercive, [30,13] if there exists a positive real number m such that
(Bx —By,x —y) > m|Bx — By||*>, Vx,y €E.

Clearly, every m-cocoercive map A is %—Lipschitz continuous.
(5) Relaxed m-cocoercive, if there exists a positive real number m such that

(Bx — By, x —y) = (—m)||Bx — By||*, Vx,y € E.
(6) Relaxed (m, v)-cocoercive, if there exists a positive real number m, v such that
(Bx — By, x —y) > (=m)||Bx — By||* + vllx — y|*>, Vx,y €E,

for m = 0, B is v-strongly monotone. This class of maps is more general that the class of strongly monotone maps. It is
easy to see that we have the following implication: v-strongly monotonicity implying relaxed (m, v)-cocoercivity.
(7) Amapping T of E into itself is called nonexpansive (see [31]) if

ITx =Tyl < llx—yll, Vx,y €E.
We denote by F(T) = {x € E : Tx = x} the set of fixed points of T.
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(8) Letf : E — E is said to be a @-contraction if there exists a coefficient « (0 < @ < 1) such that

IFC) —fOI < allx—yll, Vx,y €E.

(9) A set-valued mapping T : H — 2/ is called monotone if forallx,y € H,f € Txand g € Ty imply (x —y,f — g) > 0.
A monotone mapping T : H — 2/ is maximal if the graph of G(T) of T is not properly contained in the graph of
any other monotone mapping. It is known that a monotone mapping T is maximal if and only if for (x,f) € H x H,
(x —y,f —g) = 0forevery (y,g) € G(T) implies f € Tx. Let B be a monotone map of E into H and let N;w; be the
normal cone to E at w, € E, i.e.,

Newy ={w € H : (u—wq, w) >0,Vu € E}.
Define

_ Bwy + Nrwq, wq € E;
Tw] - {0’, w1 ¢E

Then T is the maximal monotone and 0 € Tw; if and only if w; € VI(E, B); see [32,33]

This paper is inspired and motivated by ongoing research in this field, so we will introduce an iterative scheme by the
new hybrid iterative method (3.1) for finding a common element of the set of solutions of (1.3), the set of fixed points of
an infinite family of nonexpansive mappings and the set of solutions of variational inequalities for a £-Lipschitz continuous
and relaxed (m, v)-cocoercive mappings in Hilbert spaces. The results shown in this paper improve and extend the recent
ones announced by Gao and Guo [17], Yao et al., [27] and many others.

2. Preliminaries

Let H be a real Hilbert space and let E be a nonempty closed convex subset of H. We denote weak convergence and strong
convergence by notations — and —, respectively. In a real Hilbert space H, it is well known that

[Ax — (1= ylI> = Allx)* + (1 = Dyl — A1 = ) [x — yl?,

forallx,y € H and A € [0, 1]. Recall that the (nearest point) projection P from H onto E assigns to each x € H the unique
point in Pr € E satisfying the property

llx — Pex|| = min [|x — y]|.
yeE

The following characterizes the projection Pg.
In order to prove our main results, we need the following lemmas.

Lemma 2.1. Foragivenz € H,u € E,

u="Pz< (u—z,v—u) >0, VveeE.
It is well known that Pg is a firmly nonexpansive mapping of H onto E and satisfies

IPex — Peyll> < (Pex — Py, x —y), Vx,y € H. (2.1)
Moreover, Pex is characterized by the following properties: Pex € E and forallx e H,y € E,

(x — Pgx,y — Pgx) < 0. (2.2)
Using Lemma 2.1 one can see that the variational inequality (1.5) is equivalent to a fixed point problem.

Lemma 2.2 ([34]). Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence {x,} C H with x, — X, the inequality
liminf ||x, — x|| < liminf|x, — y|,
n—oo n—oo
hold for eachy € H withy # x.
Lemma 2.3 ([35]). Assume A be a strongly positive linear bounded operator on H with coefficient y > 0and 0 < p < ||A|| "L
Then ||l — pAll < 1— py.

For solving the mixed equilibrium problem for an equilibrium bifunction ® : E x E — R, let us assume that ® satisfies
the following conditions:

(H1) ® is monotone, i.e., ©(x,y) + O (y,x) < 0,Vx,y € E;
(H2) for each fixedy € E, x — ©(x,y) is convex and upper semicontinuous;
(H3) foreachx € E,y — ©(x, y) is convex.
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Definition 2.4. Let n : E x E — H, which is called Lipschitz continuous if there exists a constant § > 0 such that

n@ I <élx—=yll. Vx.y€E.

Definition 2.5. Let K : E —> R be a differentiable functional on a convex set E, which is called:
(K1) n-convex [16] if

K@) —Kx) > (K/(x), n(, x)), Vx,y € E,

where K’(x) is the Fréchet derivative at x;
(K2) n-strongly convex [36] if there exists a constant o > 0 such that

K®) =K = (K'00.00.0) = ZIx =yl Vx.y<E.
In particular, if n(x, y) = x — y forall x, y € E, then K is said to be strongly convex.

Definition 2.6. Let E be a nonempty closed convex subset of a real Hilbert space H, let ¢ : E —> R be a real-valued function
and ® : E x E —> R be an equilibrium bifunction. Let r be a positive parameter. For a given point x € E, the auxiliary
problem for MEP consists of finding y € E such that

1
0.2) + 92 — o) + ;(K’(y) ~K'®.n@y)z0, VzeE.

Definition 2.7. Let S, : E —> E be the mapping such that for each x € E, S;(x) is the solution set of the auxiliary problem
MEP, that is,

S (x) = [y €eE:0W,2)+¢2) — @) + %<K’(y) —K'(x), n(z,y)> >0, Vze E}, Vx € E.

The following lemma appears implicitly in [16].

Lemma 2.8 ([16]). Let E be a nonempty closed convex subset of a real Hilbert space H and let ¢ be a lower semicontinuous and
convex functional from E to R. Let ® be a bifunction from E x E to R satisfying (H1)-(H3). Assume that

(i) n : E x E —> H is Lipschitz continuous with constant A > 0 such that;
(@) nx,y) +n(y,x) =0, Vx,y € E,
(b) n(-, -) is affine in the first variable,
(c) foreach fixedy € E, x — n(y, x) is sequentially continuous from the weak topology to the weak topology;
(ii) K : E —> R is n-strongly convex with constant ¢ > 0 and its derivative K’ is sequentially continuous from the weak
topology to the strong topology;
(iii) for each x € E, there exist a bounded subset D, C E and z, € E such that foranyy € E \ Dy,

1 ! !
0. 20 + (@) = 90) + (K1) =K', (z:.y)) < 0.
Then, there exists y € E such that

1
O0.2)+ 9@ — 00 + ~(K'®) —K'0.n@.y) 0. VzeE.

Lemma 2.9 ([16]). Assume that @ satisfies the same assumptions as Lemma 2.8 for r > 0 and x € E, the mapping S, : E — E
can be defined as follows:

50 = {y €E: 00,2 +0@) o)+ (K0) ~ K0, 1) 20, V2 € E}.

Then, the following hold:
(i) S, is single-valued;
(i) (2) {K'00) = K'Goo), mur, 1)) = (K'(ur) = K'(ua), m(ur, ), Y1, x2) € E  E, where uy = 5,(x), i = 1,2;

(b) S, is nonexpansive if K’ is Lipschitz continuous with constant v > 0 such that o > \v;
(iii) F(S;) = £2; and
(iv) £2 is closed and convex.
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Remark 2.10. From Lemma 2.9 in particular, whenever K (x) = Il and n(x,y) = x — y foreach (x,y) € E x E, then S; is

2
firmly nonexpansive, that is,

IS, (x1) = S ()12 = (31 = 2. 5, x0) = 5, )).

Definition 2.11 (/8]). Let {T,} be a sequence of nonexpansive mappings of E into itself and let {u,} be a sequence of
nonnegative numbers in [0,1]. For each n > 1, define a mapping W, of E into itself as follows:

Un,n+1 =1,

Unn = nTaUpngr + (1 — wp)l,

Unn-1 = tn-1Ta—1Upn + (1 — pp—1)l,

Unk = miTeUn 1 + (1 — i)l (2.3)
Unk—1 = mk—1Tk—1Uni + (1 — pr—1I,

Un2 = naToUnz + (1 — w)l,

Wy = Un1 = u1TiUp + (1 — pp)l.
Such a mapping W, is nonexpansive from E to E and it is called the W-mapping generated by T;,T>, ..., T, and
M1, U2, -y Un.

Foreachn, k € N, let the mapping U, , be defined by (2.3). Then we can have the following crucial conclusions concerning
W,. You can find them in [37]. Now we only need the following similar version in Hilbert spaces.

Lemma 2.12 ([37]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let Ty, T, . . . be nonexpansive mappings
of E into itself such that N7 | F(Ty,) is nonempty, let (i1, W2, . .. be real numbers such that 0 < u, < b < 1 foreveryn > 1.
Then, for every x € E and k € N, the limit lim,_, o, Uy X exists.

Using Lemma 2.12, one can define a mapping W of E into itself as follows:
Wx = lim Wpx = lim Upx, (2.4)
n—oo

n—oo

for every x € E. Such a W is called the W-mapping generated by Ty, T, ... and p1, U2, . ... Throughout this paper, we will
assume that 0 < u, < b < 1for every n > 1. Then, we have the following results.

Lemma 2.13 ([37]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let Ty, T, . . . be nonexpansive mappings
of E into itself such that N2, F(T,) is nonempty, let i1, |42, ... be real numbers such that 0 < p, < b < 1 foreveryn > 1.
Then, F(W) = N2 F(Ty).

Lemma 2.14 ([24]). If {x,} is a bounded sequence in E, then lim,__, o, ||[Wx, — Wyx,|| = 0.

Lemma 2.15 ([38]). Let {x,} and {v,} be bounded sequences in a Banach space X and let {8,} be a sequence in [0, 1] with
0 < liminf,_,o By < limsup, . Bn < 1. Suppose x,n1 = (1 — Bp)vn + Pnxn for all integers n > 0 and
lim sup,_, o (Ilvn+1 — vall = 1Xnt1 — Xall) < 0. Then, limy—,  [[vn — xall = 0.

Lemma 2.16. Let H be a real Hilbert space. Then the following inequalities hold:

(1) Ix+yI2 < lIxI12 + 20y, x +y);
) lIx+y1? = Ix11* + 2(y, x);

forallx,y € H.
Lemma 2.17 ([39]). Assume {a,} is a sequence of nonnegative real numbers such that
an+l S (1 - ln)an + On, Vl’l Z Oa

where {l,} is a sequence in (0, 1) and {o,,} is a sequence in R such that

(1) Xl =00
(2) limsup, o, 7" < 0or Yoo lon] < oo

Then lim,__, o, a, = 0.
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Lemma 2.18 ([27]). Let E be a nonempty closed convex subset of a real Hilbert space H, and g : E —> R U {oco} be a proper
lower-semicontinuous differentiable convex function. If z is a solution to the minimization problem
g(z) = infg(x),
xeE
then
<g/(x),x - z> >0, xeE.

In particular, if z solves problem OP, then

(u +[vf—-a +uA)]z,x—z> <o.

3. Main results

In this section, we prove a strong convergence theorem of a new hybrid iterative method (3.1) to compute the
approximate solutions of the mixed equilibrium problems and optimization problems in a real Hilbert space.

Theorem 3.1. Let E be a nonempty closed convex subset of a real Hilbert space H and let ¢ be a lower semicontinuous and convex
functional from E to R. Let ® be a bifunction from E x E to R satisfying (H1)-(H3), let {T,,} be an infinite family of nonexpansive
mappings of E into itself and let B be a &-Lipschitz continuous and relaxed (m, v)-cocoercive map E into H such that

I =N, F(T,) N 2 NVIE,B) # 0.

Let u > 0,y > Oandr > O, which are three constants. Let f be a contraction of E into itself with & € (0, 1) and let A be a
strongly positive linear bounded operator on H with coefficient y > 0and0 < y < (1*?7””’ For given x, € H arbitrarily and
fixed u € H, suppose the {x,}, {yn} and {z,} are generated iteratively by

O (2, X) + 0(X) — 9(zn) + %(K/(zn) — K (). (X, z,,)> >0, Vxek,
Yn = anzy + (1 — o) WyPe(zy — AyBzy),
Xn+1 = En(u + Vf(ann)) + Bnxn + ((1 =Bl —en(l + MA))WnPE(yn — TaByn),

foralln € N, where W,, be the W-mapping defined by (2.3) and {e,}, {a,} and {B,} are three sequences in (0, 1). Assume the
following conditions are satisfied:

(3.1)

(C1) n: E x E—> H is Lipschitz continuous with constant X > 0 such that;
(@) nx,y) +ny,x) =0, Vx,yek
(b) n(-, -) is affine in the first variable,
(c) foreach fixedy € E, x — n(y, x) is sequentially continuous from the weak topology to the weak topology;
(C2) K : E —> R is n-strongly convex with constant o > 0 and its derivative K’ is not only sequentially continuous from the
weak topology to the strong topology but also Lipschitz continuous with constant v > 0 such that o > Av;
(C3) for each x € E, there exist a bounded subset D, C E and z, € E such that foranyy € E \ Dy,

1
0. 20 + (@) = 90) + ~{K' 1) = K'(0. (z:.y)) < 0

4) limy— 00 0y = 0, im0 €, = 0and Y_,- ; €, = 00;
0 < liminf,_, o By <limsup,_, . Bn < 1;
limy— o0 [Ant1 — Anl = limy_— oo |Thy1 — Ta| = 0;

{Ta}, I} C [a, b] for some a, bwith0 < a < b < “;7;”52)

C
G5
C6

(
(
(
(c7

—_ =

Then, {x,} and {z,} converge strongly toz € I' := N2, F(T,) N £2 N VI(E, B) provided that S, is firmly nonexpansive, which
solves the following optimization problem:

 min * L up -
OP : 1)211[1 5 (Ax, x) + 2 llx — ull h(x). (3.2)

Proof. Since e, —> 0 by the condition (C4) and (C5), we may assume, without loss of generality, thate, < (1 — 8,)(1 +
w|A|D~! for all n e N. First, we show that I — 7,,B is nonexpansive. Indeed, B : E — H be a £-Lipschitz continuous and
relaxed (m, v)-cocoercive mappings, we note that
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(I — wB)x — (I — TaB)y|I*> = [[(x —y) — Ta(Bx — By)||?

Ix = yII*> = 27 (x — y, Bx — By) + 77 |[Bx — By||’

X = ylI> = 22 {—m||Bx — By||* + v|x — y|I*} + 7;I|Bx — By|®
Ix = ylI*> + 21am&>|Ix — ylI*> — 210X — yII> + 12E%]x — yII?
= (1+2t,m&? — 20 + 269 [Ix — y|1?

= 0|lx — yl%,

IA I

IA

where

o — \/1 + 20,mE? — 2,0 + 1282,
It follows (C7) that & < 1. Hence
I = B)x — (I — mByll < lIx —yll,

which implies that the mapping I — t,,B is nonexpansive, and so is[ — A,B.
Since A is a strongly positive bounded linear operator on H, we have

lAll = sup{|{Ax, x)| : x € H, ||x|]| = 1}.
Observe that

(= 81 = e+ ) x) = 1= By — e — npelax. v

1- ﬂn — €p — 6nM”AH
07

vV v

so this shows that (1 — B,)I — €,(I 4+ pA) is positive. It follows that

(1= Bl — ex(I + pA)|

sup ”(((1 — Bl — €l + pA))x, x>‘ :x eH, x| = l}
=sup{l — B, — €, — enu{Ax,x) :x € H, ||x|| = 1}
<1—fp—€n—€Ly.
We shall divide the proof into five steps.
Step 1. We claim that {x,} is bounded.
Indeed, letp € I" := N2, F(T,) N £ N VI(E, B) and let {S;} be a sequence of mappings defined as in Lemma 2.9. Then
Zn = S;x,. So, we have
lzo — pll = IS0 — Sepll < |0 — pII.
Because I — A,B, I — §,,B, Pr and W,, are nonexpansive mappings and p = W,Pt(p — A,,Bp), we have
1Yn =PIl = llan(zn = p) + (1 = an) (WyPe (zy — AnBzn) — )|
onllzn — pll + (1 — o) [|Pe(zn — AnBzn) — Pe(p — AnBp)||
onllzn — pll + (1 — an)ll(zn — AnBzn) — (p — AnBp)||
= apllzn — pll + (1 — ap) | — AnB)zy — (I — AB)p||
< apllzn = pll + (1 —en)llza — pll = llza — pIl < lIXn — pII,
which yields that
X011 — Pl = llntt + €n(¥f (Waxa) — (I + 1A)p) + Bn(Xn — p)
+ (1 = Bl — en(I + pA)) (WaPe (ky — TuBky) — D) |
< (1= B — &1+ )7) IPel = TuB)kn — pll + Bullxa — pll + enlull + €nllyf Waxa) — (I + uA)p|
< (1= Bn = &1+ )7)llkn =PIl + BallXn — pll + €nllull + €nllyf (Waxa) — (I 4 nA)pl|
< (1= Bu— &1+ w)7)llkn = pll + Ballxa — pll + €nllull
+ ey If Waxn) — fF@I + €nllyf () — I + uA)pll
< (1= Bn = &1+ )7)l1x0 — pll + BullXe — pll + €nllull
+enyalxn —pll + enllyf () — (I + pA)pll
< (1 =&+ w7 + eaya) I, — pll + ea(llyf () — (I 4+ pA)pll + llull)

INTA
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= (1= (A + w7 = ya)er)Ixa = pll + ea(I7£ ) = U+ pA)pl + 1ul)

_ i _ I7f(®) = (1 + uA)pll + lul
= (1= (+ 07 = ye)a )l = pll + (1 + w7 =y F T S (33)

It follows that (3.3) and induction that

lvf®) — A+ pA)p|l + [lull }
A+wy —ya

X, —pll < maX{||X1 —pll,

Hence, {x,} is bounded, so are {y,} and {z,}.
Step 2. We claim that lim,— o ||Xp+1 — Xp|| = 0 and lim,_—, o [|W;,0, — x,|| = 0.
Observing that z, = S;x, and z,1 = S;X,+1, by the nonexpansiveness of S;, we get

1Zne1 — Zall = ISrXn+1 — SrXall < 1Xn+1 — Xnll- (3.5)

Put 8, = Pe(y, — tByn) and ¢, = Pg(z, — AnBz,). Since I — ;B and I — X\;B are nonexpansive mappings, we have the
following estimates:

nt1 — @nll < IIPe(Zn1 — Ant1BZnt1) — Pp(zn — AnBzo) ||
< [1@Zn41 — Ant1Bznt1) — (20 — AnBzn) ||
= [|(Znt1 — Ant1Bzny1) — (20 — Anp1B2zn) + (An — Any1)Bznll
< 1@n+1 — Ant1Bzas1) — (20 — Ans1Bzo) | + |An — Ansall1Bza |l
= | = Ant1B)zny1 — (I — Apy1B)znll + [An — Antall|Bza |l
< lzn1 — zall + 1An — Ang1llIBzall < N1 Xnr1 — Xall + [An — Anga || Bza |l (3.6)
and
[6n+1 — Onll < lIPE(Wnt1 — Tat1BYns1) — PE(Yn — TaByn) |l
< a1 — Thr1BYns1) — n — Byl
< [[Wnt+1 — Tnt1BYnt1) — Wn — Tar1BYn) | + 170 — T 1 I1BYn |l
= |0 = ta+1B)Ynr1 — I = Tas1B)Ynll + [T — Tt ll1Byall
< I¥ne1 = Ynll + 17a — TotallIBynll. (3.7)

Since T; and U, ; are nonexpansive, we have

Whit1¢n — Wadnll = ll1TiUngr,200 — 1T1Un 20l

=< Ml||Un+1,2¢n - Un,2¢n||

= pill2ToUng1,3¢0n — 2ToUn3¢nll

< 12 llUns1,30n — Upn 36nll

< mip2 - UpllUng1ne19n — Unnr1®all
n

<M, [ ] (3.8)
i=1

where M, > 0is a constant such that ||Upy1,n+10n — Un.nt19nll < M, foralln > 0.
Similarly, we obtain that there exist nonnegative numbers M3 such that

||Un+1,n+19n - Un,n+19n|| = M3,
and so is
n
W16 — Waball < M5 ] ] s (3.9)
i=1

Observing that

Yn = anzp + (1 — ap) Wiy
Ynr1 = Qny1Zpgr + (1 — g ) Widhnga,
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we obtain

Yo = Ynr1 = &n(Zn — Zng1) + (1 = o) Wady — Wi 1Pnp1) + Wap1@ni1 — Zop1) @ny1 — ),

which yields that

1¥n = Yne1ll < onllzn — zpsall + (1 — @) [Wapn — Wog1@paa [l + |t — el IWni1 a1 — Znga |l
nlltn = X1l + (1 = )| Wi 161 = Wil + | War 10 — Wadsl

+ a1 — ol [Wot1@nt1 — Znsal
< anllXn — Xpall + (1T — @) |Pnr1 — Gull + Wig 160 — Widhnll
+ a1 — anl [Whp1@nr1 — Znga |-

IA

Substitution of (3.6) and (3.8) into (3.10) yields that
19 = Yastl = @allxe = Xasall 4+ (1 = )| It = %all + 12n = Jnial 1Bzl

n
+My [ i + lotnss — el Was 11 — Znga |
i=1

= X — Xnga |l + (1 — @) |Xpp1 — Xall + (1 — @) |An — Apg1|1Bzy |

n
+ My [ i + lotnss — anlWas 11 — Znga
i=1

n
%0 = Xnall + Ma [ | i+ Ma(1xn = Anst| + lotnin — o).
i=1

IA

where My is an appropriate constant such that My = max{supnzl 1Bz I, sup,>1 [|Wndn — zyl| ]
Substitution of (3.11) into (3.7), we obtain

10n+1 — Onll < llynt1 — Yl + |70 — TagalI1Byall

n
< 1% = Xap1ll + M | | i+ Ma(l120 = 2nsa| + letnss — eall) + 170 = Tagall1Bal
i=1

n
< 1% = Xn |l + Mo | [ i+ Ms (120 = Angt| + lotngr — ol + |70 — Tagal).
i=1

where Ms is an appropriate constant such that Ms = max {supnz1 By, M4}.
Let X,11 = (1 — Bp)vy + BuXn, n > 1; therefore,

_ Xn+1 — BnXn _ 6n(u + yf(ann)) + ((1 — Bl —en( + MA))Wnen

1— B, 1- 8

Then we have

nt1 (U + Yf Wixni1)) + ((1 = Bas)] — €np1 (I + 1A)) Wi16n41
1- ﬂn+l
6n(u + Vf(wnxn)) + ((1 =Bl — (I + MA))Wnen
- 1— B
€n+1

= ———(u+ yf Wat1Xnp1)) —
1-— ,Bn-H

€n €n+1

+ I+ pnAYWnby — ————

1-— ,Bn mr 1-— ,3n+1

€
= L((U + yf Whs1Xns)) — (I + MA)Wn+19n+1> +
1— Bns 1

+ Wit 16h1 — Wpp 16 + Wi 16y — Wity

Uny1 — Up =

€n
1-— /gn
(I + pAYWh 16541

(u + yf(ann)) + Wn+10n+1 - Wnen

€n

n

(3.10)

(3.11)

(3.12)

((I + pAYWnby —u — yf(ann))

(3.13)
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It follows from (3.9), (3.12) and (3.13) that

Ions1 = vall = st = Xall (3.14)
€
< = (ull + 1y Was o)l + 10+ 1AW 160111
1- /3n+1
€
g (104 kAWl + v W)
— Pn

+ ||Wn+19n+l - Wn+19n|| + ||Wn+19n - Wn9n|| - ||Xn+1 _Xn”

€
< =l + 1 f Wo i)l + 10+ ) W16,
11— /3n+1
€
2 (10 s AWabal -+l 7S W) ) + s = 6l
— Pn

+ IWig16n — Wil — l1xng1 — Xall

€
< = (ull + I f Wa i)l + 10+ A W16,
1- ﬁn+l
€n il
o5 (||(1 + HAW, b, + [lull + ||yf(wnxn>||) +Ms [ [
T Pn i=1

n
+ My [ 1+ Ms (120 — Anal + latngs — ol + 1T = Tusa)
i=1
€n+1
=< 7(””” + 1VfWapaxne Dl + 1T + MA)Wn+19n+1||)
1- ﬂn+1
€n

+
]_ﬁn

(10 + AWl + llul + 7S Waxa) ) + 20T ]
i=1

+M5(|)Ln = Angt| + lonpr — ol + |70 — Tn+l|)a (3.15)

where L is an appropriate constant such that L = max{M,, Ms}.
It follows from condition (C4), (C5),(C6)and 0 < u; < b < 1,Vi > 1, we have

lim sup(flvnt1 — vall = [IXn41 — Xall) < 0.

n—oo

Hence, by Lemma 2.15, we obtain
lim v, — x,|| = 0.
n—oo
It follows that
lim (IX41 — Xl = lim (1 — By)|lvy — X4l = 0. (3.16)
n—oo n—-o00
Applying (3.16) and condition in Theorem 3.1 to (3.5), (3.6), (3.11) and (3.12), we obtain that
lim [zpp1 —zoll = M |[lype1 —yall = Um (|@pr1 — @nll = lm |61 — 6On]l = 0.
n—oo n—oo n—oo n—oo
Since Xp41 = € (U + ¥f (Wixn)) + Buxn + ((1 — B)I — €x(I + nA))Wy6,, we have
”Xn - Wnen” = ”Xn - Xn+1 ” + ||Xn+l - Wnen”

= [1X0 — X1l + ||6n(u + yf(ann)) + Bnxn + ((1 = Bl —en(l + I‘LA))Wnen — Wabn||
6n((u + Vf(ann)) -+ MA)Wn9n> + Bn(Xn — Wnbh)
X0 — Xn4all + En(”u” + lyf Waxa) |l + 10 + /vLA)Wnen”) + BullXn — Wb,

= X0 — X1l +

IA

that is

— X1l + ——= (lull + lyf Waxo) | + 11U + pAYWob,])).

1 €
1- ﬂn 1-— ,Bn
By (C4), (C5) and (3.16) it follows that

1% — Wity |l

IA
¥

Hm [[Wyby — Xl = 0. (3.17)
n—oo
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Step 3. We claim that lim,, . » [|X; — 6,|| = 0 and lim,__, o, ||Wy,0, — 6] = 0.

Since B is a £-Lipschitz continuous and relaxed (m, v)-cocoercive mappings by the assumptions imposed on {t,} for any
pe ' :=nN2 F(T,) N $2 NVI(E, B), we have

IWaby — pII* < [IPe (v — wByn) — Pe(p — wBp) |

|n — TuByn) — (0 — Tan)”z
= [|(a — p) — Ta(Byn — Bp) |
< llya — pI* = 22y — . Byn — Bp) + 7, ||By, — Bp||®
< ||%n = plI*> = 220 (yn — p. Byn — Bp) + 77 [|Byn — Bp||®

< lI%a — plI* = 2to{—ml|IBy, — Bp||* + vllyn — PI*} + 7I|Byn — Bp||*
< lIXn — pII* + 2zam||Byy — Bpl|* — 274v|lyn — pII*> + 77 11Byx — Bpll®
2 AL 2 2 2
< llxn — plI” + 2zam||By, — Bp|l* — £ 1Byn — Bpll* + 7, Byn — Bpl|
2 5 2Tpv )
= |lx, —plI° + | 2zm + 1, — 2 1By, — Bpl|*. (3.18)
Similarly, we have
2 2 2 2Agv 2
[Waedn — plI* < lIxq — pII° + | 2Aam + A — £ |Bz, — Bpl|*. (3.19)

Observe that
%41 — PII> = [1((1 = B — €n + pA)) (Wi — D) + Ba(xn — P) + €n(u + ¥f Wixy) — (I + pA)p)|1?
= |((1 = B — ea + pA)) (Wi — p) + Bu(n — D)II> + €7 llu + vf (Wyxy) — (I + pA)pll®

+ 2Baen{Xn — P, U+ 7f (Wixa) — (1 + pA)D)
+26(((1= Bl = €nll + uA) Wathy = p), u+ yf Woxa) — (I + A)p)
< [(1— Bt — €t 4+ 1)) IWab — Pl + Bullva — pIl| + €2l + 7 Wax) — 1 + aA)pI?
+2BrealXe = P+ 1 Wixa) — 1+ puA)p)
+260{((1= Bl = €nll + uA) Wathy = p), u + 7S (Woxa) — (I + pA)p)

2
= [ = Bu = &0 = i) Wb = pll + Bullxa =PIl |+
= (1= o — &0 — &l [ Wathy — pII> + B2l1xa — pIP
+2(1 = 1 — €0 = €alt?)Ball Wi — pllIxs = pll + c;
= (1 - IBn —€n — Gnﬂ?)ZHWn@n —P||2 + ,an ”Xn —P||2
+ (1= Bo — €n — €at?) Bu(Wabh — pII” + %0 — pII*) +
= (1= & — €7 = 201 = &0 — cau?)Ba + B2 | IWath =PI + B lxa = pI*
+((1 = e = €at?)Ba — B (Wb — DI + I3 = 1) + o
= [(1 = & — €7 = (1 = &0 = eas?) B | IWba =PI + (1 = &0 — €as?)Bullxa =PI +c;
= (1 - en = €t?)(1 = o — e — &P Watha = PI* + (1 = & — eat?)ullta =PI + o, (3:20)
where
tn = & llu+yf() — (I + uAp|* + Zﬂnen<xn =P u+yf(Wakn) — (I + MA)P>
260 ((1= Bl = &0l + 1) Wathy = ), u + v Waxa) — (1 + pA)p).

It follows from condition (C4) that

lim ¢, =0. (3.21)

n—oo
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Substituting (3.18) into (3.20), and using condition (C7), we have

- _ 2T
a1 = PI? < (1= & = €at?)(1 = i — €n = €nt?) | %0 =PI + <2rnm + -5 ) 1Byn — BpIP

+ (1 — €y — €auuy) BullXn — p”2 +Cn
= (1— e — &uy)* % — plI?
2T,

52

+ (1 — €& —epuy)(A — By — € — €nuty) <2rnm + Tr? - ) |Byn — BP||2 + Cn

21,0

%—2

< I = pIP + (20am + 2 = Z25 ) 1By — Bpl + ci.

It follows that
2av ) 2 2700 2 2
(52 —2bm—b ) IByn — Bpll” = ( 2 2t,m — r,1> 1Byn — Bpl|
%2 = pII* = X1 = PII* + ca
= ([IXn = pll = IXn41 = PIDUXa =PIl + X012 = PID + Cn
= %0 = Xn41llCIxn =PIl + X041 =PI + Cn-

Since ¢, —> 0asn —> oo and (3.16), we obtain

A

IA

lim ||By, — Bp|l = 0.
n—oo
Note that
Iyn — pI* < anllza — pI* + (1 — o) [Wathy — plI?

2 2 2 2hnv 2
enlin =PI+ (1 = o) o = pIP o+ (22am + 2~ =257 ) 120 — oI

IA

2An0
10 — pII* + (1 = atn) (2Anm + A2 - %_; ) 1Bzn — Bpl|*.

Using (3.20) again, we have
IXns1 — pII?
S —e—euy)(1 — By —en — equy) |Waby — P||2 + (1 — € — enuy) Bullxn — P||2 +
< (1— € —euy)(1 = Bo— €0 — €auP)|6n — plI*> + (1 — €n — €aa¥) Bullxn — PII* + Cn
S (I —en—euy)( — By — €0 — €uy) |lYn —P||2 + (1 — €y — €quy) Bullxn _p”2 + Cn-
Substituting (3.23) into (3.24), and using condition (C4) and (C7), we have

521

(3.22)

(3.23)

(3.24)

- _ 2A 5V
a1 = PI? = (1= &0 = €)1 = o — €0 = eat?) {l1xa = pI> + (1 = ) (uanﬁ— ; )nan—Bpnz}

£2
+ (1= & — &up)Ballxa — pII* + ¢

_ _ 2 v
= (1€ — &up)(1 = fo — en — enty) (1 — atn) <2Anm A ) 1Bz, — Bpl|*
+(1—€ - Enﬂ)_/)znxn - p||2 + Cn
5 L 2
< % —plI* + (A —ay) | 2Am + )Vn - 5_2 |Bz, — Bpl|* + ¢a.
It follows that
2av 2Av
(1—ay) (?2 — 2bm — bz) IBzn — Bpll> < (1 — @) (? — 2h,m — xﬁ) 1Bz — Bp|®

< % = pI* = IXns1 = pII* + cn
< X0 = Xnpa (1% =PI + X041 = PID + Co.

Since ¢, —> 0asn —> oo and (3.16), we obtain

lim |Bz, — Bp|| = 0.
n—oo

(3.25)
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By (2.1), we also have

16n — PI*> = IIPe(Vn — TwBYn) — Pe(p — 1aBp)|1?
IPe(I — ©4B)yn — Pe(I — .B)p|?
(4 = aByya — (1 = wiB)p. 62 — p)

IA

1
= {10 = wuByya — A= wBPI? + 160 — pII* = U = wiB)ya — (= wB)p — 6 —P)II*}
1 —_ pll? —pll2 — _ _ _ 2
< 2 {1n =PI + 162 = PI2 = 100 = 60) — 7a(Bya — B
1 2 2 2 2 2
= {0 =PI+ 18 = PIP = 190 — 621 — =7 1Byn — BpI + 21y — 0. Bya — Bp) |,
which yields that

16n — pII> < %0 — PI* = Ilyn — 6all*> + 27allyn — 6alllIByn — Bpl.
Substituting (3.26) into (3.20), we have

(%541 _p||2 S (I =€ —€puy)(1 — By — €n — €quy) Wiy —P||2 + (1 —en — €quy ) Bullxn —P||2 +Cn
S (M—e€—€puy)(1 — B — €n — €quy)I6n —P||2 + (1 —en — €quy ) Bullxn _p”2 + Cn

= (O —en—euy)(1—fn—en — énm?)illxn = pII* = llyn — 6all?
+ 274 llyn — Onll1Byn — Bpll} + (1= €0 — €t7)Ballxn — pI* + cn

= (1—én — €aut)’lIxn — pII> — (1 — € — €up)(1 — By — €0 — €y [lyn — Oull’
+2(1 —€p — equy)(1 — By — €n — €nt¥)Tllyn — Onlll1Byn — Bpll + cn

< % =PI = (1 = €0 — €uy)(1 = Bo — €n = €ntt ) lyn — Oull®
+2(1 —en — &uy)(1 — Bn — €n — €k ¥ ) Tnllyn — OnlllIByn — Bpll + ca.

It follows that

(1 —én— 7)1 = B — € — €ntP)lyn — Onll?
< % =PI = X1 = PII* +2(1 — €0 — €t 7)(1 = Bu — €n — €t 7)Tallyn — Onll By — Bpll + cy
< %0 = Xns1 [l(Ixn — Il + X041 — PID
+2(1 —én — €auy)(1 — Bn — €0 — €ty ) Tllyn — OnllI1Byn — Bpll + cn.

Applying ||X;+1 — xn|l —> 0, ||Byn — Bp|| — 0and ¢, —> oo as n — oo to the last inequality, we get
lim |ly, — 6|l = 0.
n—oo
On the other hand, we have

Wagn — plI* < |IPe(zn — AnBza) — Pe(p — AnBp)|I*
= [|Pe(I — AnB)zy — Pe(I — AaB)p|I*

(4 = 2aB)z0 = (1 = 2aB)p, Wagho — p)

IA

(3.26)

(3.27)

1
= {10 = 2B)z = (1 = 2aBPI? + Wiy = PIP = 10 = 3:B)z0 — (1 = 2aB)p — (Wi — D)

IA

1
{120 =PI + 1Wae = PI? = 110 — W) — 2a(Bz: — Bp) I

IA

which yields that

”Wn¢n - p||2 = ”Xn - p||2 - ”Zn - Wn(i)n“2 + 2)‘n||zn - Wn¢n” ”an - Bp”-

1
S 10 =PI + 1Wags = pI” = llz0 — Wagha I — 33 1B20 — BI> + 20n (20 — Washn. B2 — Bp) .

(3.28)
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Using (3.24) again, we have
i1 = PI? < (1= €0 — eait?)(1 = By — €0 — €aiti)lyn — PIP + (1 = €5 — €07 Ballxa — pI” + G
< (1= & — )1 = By — & — ) [anllza = pI? + (1 = @) [Wan — b1
+ (1= & — i) Bullxa — pIP + ¢
(1= & = a7 (1 = o — e = €ae?) |anllta = I + (1 = ) [Wahn — pI

+ (1= €0 — €t ) Bullxa — Pl + ca
= (1 — €& — &uy)(1 = B — €n — €npt)aty I — plI?
+(1— & — eup)(1 = B — & — €up) (1 — an) | Watpy — p|?
+ (1= €0 — €at?)Bullxa — plI> +
(1 —én— €)1 = By — € — a7 )anll%n — p|I?

+ (1= & — )1 = o = & = EuP)(1 = )| 0 = PI? = Iz — Wagh

IA

IA

+ 2051z — WydnlllIBzy — Bp||} + (1 —€n — equy) Bullxn — P”Z + Cn

= (1— & — &up)(1 = fy — & — €ty )anllXn — plI*

+(1—en — eaup)(1 = B — €0 — €nu7)(1 — o) % — p°

— (=& —euy)(1 = B — én — ) (1 — o) |zo — Wadhn®

+ (1 —en—equy)(1 — Bn — €n — €nuuy)(1 — an)2Anl120 — Waenl| 1Bz, — Bpl|

+ (1 —en —enuy)Bullxn — plI* + e
=1 —en—equy)(1— Bn — €n — €nt¥)I%n —pl

—(1—en—euy)(1 = By — €n — €quy )(1 — o) llzn — Wanll®

+ (1 —€n —enuy)(1 = Bp — € — €Y )(1 — an) 24 ll2n — Wynlll|Bz, — Bpl|

+ (1 —en — enuy)Bullxn — p”2 + G
=(1-e - EnNJ_/)ZHXn —plP - —e— ent¥)(1 — Bn — €n — €au¥) (1 — atn) 120 — Wahp &
+ (1 —en —enuy)(1 = Bn — €n — €nu¥)(1 — an)2hn||zn — Waénlll|Bzy — Bpl| + cn
llXn — p||2 — (1 =€ —equy)(1 — B — €n — €au7)(1 — atn)llzn — Wn¢n”2
+ (1 —en—enuy)(1 = Bn — €n — €nu¥)(1 — an)2hn||zn — Waénlll|Bzn — Bpl| + cn

IA

which implies that

(1= en — €)1 = B — €n — €apt?)(1 = o) 2o = Wadnl” < [1%0 = PII* = X1 — pI°
+2(1 —en —equy)(1 — Bn — €n — €npt¥)(1 — an)Anllza — Wan||[1Bzo — Bpll + ¢a
< lIxn — Xpa 1l — Pl + Xp41 — PID
+2(1 —en —equy)(1 — Bn — €n — €qu¥)(1 — an)Anllza — Wan|[1Bzo — Bpl| + ca.

From (3.16) and (3.25), we obtain
lim ||z, — Whénll = 0. (3.29)
n—oo
Note that
Yn — Wnd)n = an(zn - Wn¢n)~
Since o, —> o0 asn —> 00, we also have
lim ||y, — W] = 0. (3.30)
n—oo
From (3.29) and (3.30), we have
lim ||y, —z:]| =0. (3.31)
n—oo
On the other hand, we observe that

Iz — Onll < llza — Yull + llyn — Onll.



524 P. Kumam, C. Jaiboon / Nonlinear Analysis: Hybrid Systems 3 (2009) 510-530

Applying (3.27) and (3.31), we have
lim ||z, — 6,]| = 0. (3.32)
n—oo

Letp € I' :== N2, F(T,) N £2 N VI(E, B). Since z, = S;x, and S; is firmly nonexpansive (Remark 2.10), we obtain

”Zn _p||2 = ”ern - Srp||2
f (ern - Srp, Xn — P)
= (zZn — P, Xn — D)
1
= E(”Zn = pII” + 1% — pI* = 10 — zall?).
So, we have

lzn =PI < lIxa — PI* — lIx0 — zalI*.
Therefore, we have
%41 — PI* < (1 — € — €uP)(1 — B — €n — et 16 — PI* + (1 — €n — €at?) BullXn — PII* + Cn
=(1— e —up)(1— Bn—en— &) — 20) + @0 — PI* + (1 — €0 — €aut?) Bullxn — pI> + Cn
= (=& —ean?)(1 = o — e — P 160 = 20l + 120 =PI + 2060 — 20,20 — )}
+(1 =€ — € by)Bullxn — p||2 +Cn
< (=€ — )1 — By — €0 — eat?)I6n — zall* + (1 — € — €u¥)(1 — By — € — €nut?) lzn — pII?
+2(1— e —uy)(1 — By — €n — €au¥) 100 — znllllza — Pl + (1 — €5 — € y) BullXn — p||2 +

< (1—én— )1 = Bo — €0 — €ut?)16n — zal1?
+ (1= € — en?) (1 = i — e — )| Ixa =PI = Iy — 20112}
+2(1 — &0 — eut7)(1 = o — € — €u?) 100 — 2all 120 — Pll + (1 — €5 — €t ¥)Bullxa — PI* + Cn
= (1—€n— 7)1 — B — €n — €t P[00 — za?
+(1 =€ —euy)(1 — B — g — €quy) Xy — p||2
—(1— €0 — €)1 = B — € — €?) X0 — za?
+2(1 — &0 — eut7)(1 = o — € — €uP)10n — 2all 120 — Pll + (1 — €5 — €t ¥)Bullxa — PI* + Cn
= (1— €& — &) lIxa — pI> — (1 — € — €apt?)(1 = By — €0 — €nt?) %0 — zull
+(1— e —enuy)(1 — By — € — €y |0 — Zn”2
+2(1 — €, —€uy)(1 — Bn — €n — €uY) 100 — zZallllza — pll + Cn
= (1-26(1+ w7 + €1+ w?7?)xa — plI* = (1 — €n — €)1 = Br — €n — €t X0 — Zull?
+ (1 — €y — ) (1 — By — €0 — €t |60 — za||
+2(1 = € — €t 7)(1 = By — €0 — €?)16n — zall 1z — pll + Cn
< e = pI* + €21+ 1?72 1% — I — (1 — €0 — €ait?)(1 — B — €n — €t |1x0 — zu >

+ (1= €n — €)1 — B — €n — €atP)|6n — 2ol
+2(1 — €n — ey )(1 — B — €0 — €Y 60 — znllllzn — pIl + Cn.
It follows that
(1— & — eup)(1 = By — €n — €t ) llxn — 2all?
< %0 =PI = xns1 — PI” + €2 (14 w)* P2 [1%0 — pII* + (1 — €0 — €au?)(1 — B — €0 — €t 160 — zu?
+2(1 — € —€qpuy)(1 — Bn — €n — €quY)|0n — Zullllza — PIl + Cn
< %0 = X1 (1% = Pl + X041 — PI) + €7 (14 w)*721[x0 — plI®
+ (1 —én — €aup)(1 — fr — €n — €uy) 160 — za?
+2(1 — €y — equy)(1 — By — €0 — €au¥)10n — Zullllzn — pl + Ca.

Using ¢, —> 0,¢c, —> 0asn —> 00, (3.16) and (3.32), we obtain

lim [zy — %] = 0. (3.33)
n—oo
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Note that
X = Enll < lXn — zall + llzn — 6nll
from (3.32) and (3.33), and we have
lim ||x, —6,]| = 0.
n—oo
Observe that
”WnQn - 911” = ”Wn‘9n _Xn” + ”Xn - 911”-
Applying (3.17) and (3.34), we obtain
lim ||W,6, — 6, = 0.
n—oo
Let W be the mapping defined by (2.4). Since {6,} is bounded, applying Lemma 2.14 and (3.35), we have
WO, — 6, < W8, — Wpbpll + Wb — 6]l — 0 asn —> oo.

Step 4. We claim that
lim sup<u +[vf — U+ pA)]z, %, — z> <0,
n—oo
where z is a solution of the optimization problem:
0P : min X (Ax. ) + 1% — ull? — h(x).
xell 2 ’ 2

To show this inequality, we can choose a subsequence {6y, } of {6,} such that

<u +[yf = U+ ud)]z. 6, — z) — lim sup(u +[vf = U+ ud)]z. 6, — z>.

lim
i—>00 n—- 00
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(3.34)

(3.35)

(3.36)

(3.37)

Since {6y} is bounded, there exists a subsequence {Qnij } of {6} which converges weakly to w € E. Without loss of generality,
we can assume that 6,, — w. From |W6, — 6,|| —> 0, we obtain W6,, — w. Next, we show that w € I" where I' =

N2, F(T,) N 2 NVI(E, B). First, we prove w € £2. Since z, = S;x,, we derive

Oz, %) + 9(x) — 0(z0) + %(K’(zn) —K'(), 1(x,7)) 2 0, Vx€E.

From (H1), we also have

i@ — Ko ) + o0 — o) = ~0G 0 = 0 2,

and hence

K (zn) — K' (%,
<M, n(x, zn,-)> T o) — o) = O zy).

Since /@)K G

— 0Oand z,, = w, from the weak lower semicontinuity of ¢ and ® (x, y) in the second variable y, we

also have ®(x, w) + ¢(w) — @(x) < O0forallx € E.Fort withO <t < landx € E,letx; = tx + (1 — t)w. Since x € E and
w € E, we have x; € E and hence ® (x;, w) + ¢(w) — ¢(x;) < 0. From the convexity of equilibrium bifunction @ (x, y) in

the second variable y, we have

0= 0O, x)+ o) —o(x)
tO (X, X) + (1 — )OO (X, w) + tex) + (1 — DHp(w) — e(x¢)
t[O(xe. %) + 9 (0) — p(x)],

=
=

and hence O (x;, x) + ¢(x) — ¢(x;) > 0. Then, we have & (w, x) + ¢(x) — ¢(w) > 0forall x € E and hence w € £2.

Next, we show that w € N;2, F(T,). By Lemma 2.13, we have F(W) = N32, F(T;). Assume that w ¢ F(W). Since
IX; — 6,1l —> 0, we know that 8,, — w (i — 00) and w # Ww, it follows by the Opial’s condition (Lemma 2.2) that

liminf [|6,, — w| < liminf |6, — Ww||
i—> 00 1—>00
< liminf(||6y; — WO [| + WOy, — Ww])
i— 00
< liminf |6, — w,
i—> 00

which is a contradiction. Thus, we get w € F(W) = N2 F(Ty).
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Finally, we show that w € VI(E, B).
Define

_ Bwy + Nfwq, w; €E,
TU)1 B [@, w1 ¢E

Since B is relaxed (m, v)-cocoercive and condition (C7), we have

(Bx — By, x —y) > (=m)|[Bx — By||” + v|lx = y||I* > (v — m&?)||lx — y||* > 0,

which yields that B is monotone. Thus T is maximal monotone. Let (w1, w,) € G(T). Since w, — Bw; € Nrw; and 6,, € E,

we have
(wy — 6y, wy — Bwy) > 0.

On the other hand, from 6,, = P¢(y, — 7,,By,), we have
(w1 = 6n, 00 — (Yo — TaByn)) = 0,

and hence

9 _
<w1—9n, "T In +By,,>zo.

n

Therefore, we have

(w1 = On;, w) = (wq — O, Bwy)

nj

0, — V.
> (w; —en,.,Bw1>—<w1 — Oy ”'r Yo +Byn,.>

On. — Yn;
= <w1 _Gnianl _B}’n,- - nlynl>
Tn;

= (wy — Qn,-» Bw; — Ben,-) + {wy — 9n,-7 Beni

On; — Yn;

Ty,

nj

On; — Yn;
> (wy — O, By, — Byn;) — <w1 — Opyy — . Y > (3.38)

Noting that |6y, — yn; Il —> 0 asn — oo and B is Lipschitz continuous, hence from (3.38), we obtain

(w; —w, wy) > 0.

Since T is maximal monotone, we have w € T~'0 and hence w

€ VI(E,B). Thatis w € I' := N>, F(T,) N 2 N VI(E, B).

Therefore, from Lemma 2.18, ||x, — 6,|| —> 0asn —> oo and (3.37), we have

lim sup{u + [vf — A+ pA)]z, xy — z) = lim sup<u + [vf — A+ pA)z, 6, — z>

n—-00

= l_l_i)moo<u + [vf — A+ pA)]z, 6, — z>

By using (3.17), (3.34) and (3.39), we obtain

lim sup(u + [vf — (4 + pA)]z, Wab, — z> <0.

n—oo

<u +[yf = (4 + uA)]z.w — z> <o. (3.39)

(3.40)

Step 5. Finally, we prove that {x,} and {z,} converge stronglytoz € I'.

From (3.1), we obtain

Xn41 — Z||2 = ”611(” + Vf(ann)) + Bnxn + ((1 = Bl — el + MA))Wnen - Z||2
= ”((1 =Bl —en(l + MA))(Wnen —2) + Bnlxn —2) + En(u + yf (Waxn) — (I + NA)Z)HZ
= (1 = Bl = (I + pA) (Wabh = 2) + Ba(n = DII* + €qllu + yf (Waxa) — (I + pA)z|?
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+2,Bn6n<xn —z,u+yf(Wyxy) — (I + MA)Z>

+2€n<((1 — Bl — en(I + pA)) Wiby — 2), u + yf (Wixy) — (I + /LA)Z>

IA

2
[(1= o = a1+ 07) Wiy — 21+ Ballxa — 21|+ €Fllu+ 1 Wake) = (0 + pyz?
+ 2Br€ny (10— 2. S (Wiike) =) + 2Bnea{ta — 2, u+ 7§ @) — (1 + uz)
+2(1 - ﬁn)yfn<Wn9n —z, f(Whxy) —f(Z)> +2(1— ﬂn)€n<wn9n —z,u+yf@2)—d+ /LA)Z>

- 26,3((1 + HAY Wiy — 2), u+ yf(z) — (I + /LA)z>

IA

2
[(1= B — a1+ 107) I Wabhs = 21l + Bullxa — 21| + €2llu+ 7§ Waxa) — (1 + uyz|?
+2Bn€ny 10 — Z||If Whxy) — F(2) || + 2,3n€n<xn —z,u+yf(z) — U+ MA)Z>
+2(1 = By enlWaba = 2IIf Wake) = @)1l + 201 = Bu)eaWath — 2.1+ 1f @) = (1 + puA)2)

- 26,?((1 + uA) Wy — 2), u+yf(2) — 0 + uA)z)

IA

2
[(1= Bo = a1+ 107160 =21l + Ballxa = 21| | + €2llu+ 7f Wo) = (1 + )z
+2B16n7 lta = ZI|If Wa) = F @Il + 2Bncalte — 2.4+ ¥f (D) = (1 + pA)z)
+2(1 = By eallbn — ZIlIf Waxa) = F @)1l + 201 = B)en(Waba — 2, u+ 7/ @) — (I + puA)z)

—282( + A Wby — 2,1+ 1f @) = (0 + uA)2)

IA

[(1= Bu = x4+ 07 s — 2l 4+ Bults — 21|+ €20+ 7 Waxy) — (1 + pAsel?
+2Brcavalinn — 2| + 2fnenltn — 2, u+ @) — (0 + pA)2)

+21 = Boyenalixg — 22 + 21 = BeaWaby — 2,1+ y£@) — (1 + pA)z)

_ 26,3<(1 F LAY Wiy — 2), u+ yf (@) — (I + MA)z>

= [(1 —en(1+ 0)7)" + 2Bnenve +2(1 - ﬁn)yéna]llxn — 2| + €2||u+ yf (Waxa) — (I + uA)z|)?
+2ﬂnen<xn —zu+yf@— I+ uA)z) +2(1 - ﬂn)en<Wn9n —zu+yf@ -+ MA)Z>

- 26,3((1 + HAY Wiy — 2), u+ yf(z) — (I + MA)z)

IA

[1 —2((A+ w7 — ay)enllin — 2I° + f (14 10* 7 I1x0 — 21° + €7 lu + yf Waxa) — (I + nA)z||?

+ 2Bren(xn — 2.4+ YF@) — (1 + pAZ) + 201 = Bea(Wathy — 2, u+ vf (@) — (1 + uA)z)
+2€2101 + AY Wb — D)l + 7f 2) — (1 + pAYz]

=[1-2(0+ w7 —ay)en]ix - 212 +en{en[(1 2P % — 21+l 7 (Waxo)
— U+ pA)z|* + 2010 + pA)Y Wby — 2)|llu+ yf (@) — +;LA)Z||]
+ 2ﬂn(xn —zu+yf@) -+ uA)z) +2(1 - m(wnen —zu+yf@@) — U+ MA)Z>}.

Since {x,}, {f(ann)} and {W,,6,} are bounded, we can take a constant M > 0 such that

(14 0?72 1% — 2I% + [t + yf Waxn) — (I + nA)z]* + 2] + pA) Wby — D llu+ vf (@) — (I + pA)zll < M,
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for all n > 0. It follows that

X041 — 21 < (1 = L) %0 — 2|1 + €n0n, (3.41)
where
ln 2((1 + M))_/ - Ofl/)fn,

op = €M + 2,3n<xn —z,u+yf@2) — U+ ,uA)z> +2(1— /;3,1)<W,,61,1 —z,u+yf@z) — U+ ,uA)z).

By using (C4), (3.39) and (3.40), we get [, —> 0, Z,fi] I, = coand limsup,__, (1’7" < 0. Applying Lemma 2.17 and (3.39)

to (3.41), we conclude that x, — z in norm. Finally, noticing ||z, — z|| = ||S;x;, — S:z|| < ||x;, — z||. We also conclude that
z, —> z in norm. This completes the proof. O

Corollary 3.2. Let E be a nonempty closed convex subset of a real Hilbert space H and let ¢ be a lower semicontinuous and convex
functional from E to R. Let ® be a bifunction from E x E to R satisfying (H1)-(H3) and let B be a &-Lipschitz continuous and
relaxed (m, v)-cocoercive map E into H such that

I = 2 NVIE,B) # ¢.

Let w > 0,y > Oandr > O, which are three constants. Let f be a contraction of E into itself with o« € (0, 1) and let A be a
strongly positive linear bounded operator on H with coefficient y > 0and0 < y < % For given x; € H arbitrarily and
fixed u € H, suppose the {x,}, {yn} and {z,} are generated iteratively by

O (zn, %) + (%) — @(zn) + %(K/(Zn) —K'(xa), n(x, zn)> >0, Vxek,
Yn = onZn + (1 - an)PE(zn - knBZn),
Xnt1 = En(u + Vf(xn)) + Bnxn + ((1 = Bl —en(l + MA))PE(Yn — TuByn),

foralln € N, where {€,}, {a,} and {B8,} are three sequences in (0, 1). Assume the following conditions are satisfied:

(C1) n : E x E —> H is Lipschitz continuous with constant A > 0 such that;
(@) n(xy) +n(y,x) =0, Vx,y € E,
(b) n(-, -) is affine in the first variable,
(c) foreach fixedy € E, x — n(y, x) is sequentially continuous from the weak topology to the weak topology;
(C2) K : E —> R is n-strongly convex with constant o > 0 and its derivative K’ is not only sequentially continuous from the
weak topology to the strong topology but also Lipschitz continuous with constant v > 0 such that o > \v;
(C3) foreach x € E, there exist a bounded subset Dy, C E and z, € E such that forany y € E \ Dy

1
0. 20 +9(z) = ¢0) + ~(K'1) =K' nz.y)) < 0:

(c4
(C5
(C6

(c7

limp_ oo 0tn = 0,limy_, 5 €, = 0and Y2 | €, = 00;
0 < liminf,_, o By < limsup,_, ., Bn < 1;
lim, o0 [Ang1 — Agl = 1My o0 [Tnp1 — T = 0;

{za}, {An} C [a, b] for some a, bwith0 <a <b < 2(”;7;"52)

—_ D

Then, {x,} and {z,} converge strongly toz € I" := 2 N VI(E, B) provided that S, is firmly nonexpansive, which solves the
following optimization problem:

- min & LR
OP : 1)21}1 5 (Ax, x) + > lx — ul| h(x).

Proof. Put T, = I for alln € N and for all x € E. Then W,, = I for all x € E. The conclusion follows from Theorem 3.1. This
completes the proof. O

Corollary 3.3. Let E be a nonempty closed convex subset of a real Hilbert space H, let {T,} be an infinite family of nonexpansive
mappings of E into itself and let B be a &-Lipschitz continuous and relaxed (m, v)-cocoercive map E into H such that

o0
= ﬂF(Tn) N VI(E, B) + 0.
n=1
Let w > 0and y > 0, which are two constants. Let f be a contraction of E into itself with o« € (0, 1) and let A be a strongly
positive linear bounded operator on H with coefficient y > 0and0 < y < W For given x, € H arbitrarily and fixedu € H,
suppose the {x,} and {y,} are generated iteratively by

Yn = anXp + (1 — o) WpPe (X, — AyBxy),
Xn+1 = en(u + Vf(ann)) + Bnxn + ((1 = Bl —en(l + MA))WnPE(_Vn — TuByn),
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foralln € N, where W,, be the W-mapping defined by (2.3) and {e,}, {a,} and {B,} are three sequences in (0, 1). Assume the
following conditions are satisfied:

(C1) limp— oo 0ty = 0, limy_ o €y = 0and Y o, €5 = 00;
(C2) 0 < liminf,_, o By < limsup,_, . Bn < 1;

(C3) llmn—>oo |)‘-n+1 - }\nl = llmn—)oo |Tn+1 - I'n| = O;
(C4)

C4) {tn}, {*n} C [a, b] for somea,bwith0 <a <b < 2(”;72"52)

Then, {x,} converge strongly toz € I" := N2, F(T,) N VI(E, B), which solves the following optimization problem:

R 1 2
OP : min 5<AX’ X) + 5||x —u||* = h(x).

xel’

Proof. Put ©®(x,y) = ¢(x) = 0forallx,y € Eand r = 1. Take K(x) = @ and n(y,x) =y — x, for all x, y € E. Then, we
get z, = Pgx, = x, in Theorem 3.1. Hence, the conclusion follows. This completes the proof.

Corollary 3.4. Let E be a nonempty closed convex subset of a real Hilbert space H. Let {T,} be an infinite family of nonexpansive
mappings of E into itself such that

r= ﬁ F(T,) # 9.

n=1

Let @ > 0and y > 0, which are two constants. Let f be a contraction of E into itself with « € (0, 1) and let A be a strongly

positive linear bounded operator on H with coefficient y > 0and0 < y < % For given x, € H arbitrarily and fixed u € H,
suppose the {x,} be generated iteratively by

Xn+1 = 6n(u + Vf(Wan)) + BnXn + ((] — Bl —en(l + I/LA))Wan»

foralln € N, where W,, be the W-mapping defined by (2.3) and {e,} and {8, } are two sequences in (0, 1). Assume the following
conditions are satisfied:

(C1) lim,_, o €, = 0 and Z;’il €n = 00;
(C2) 0 < liminfy,— o B < limsup,__, ., Bn < 1.

Then, {x,} converge strongly to z € I" := N2, F(T,), which solves the following optimization problem:

0P < min X (Ax. x) + % — ull — h(x).
xell 2 ’ 2
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into R, where R is the set of real numbers. The equilibrium problem for
F:CxC — Ristofind z € C such that

F(z,y) >0, VyeC. (1)

The set of solutions of (1) is denoted by EP(F'). Given a mapping T : C —
H,let F(z,y) = (Tx,y—x) for all x,y € C. Then z € EP(F) if and only if
(Tz,y —z) >0 for all y € C, i.e., z is a solution of the variational inequal-
ity problems. Numerous problems in physics, optimization, saddle point
problems, complementarity problems, mechanics and economics reduce to
find a solution of (1). In 1997, Combettes and Hirstoaga [4] introduced
an iterative scheme of finding the best approximation to initial data when
EP(F) is nonempty and proved a strong convergence theorem. The clas-
sical variational inequality is denoted by VI(C, A), is to find u € C such
that
(Au,v—u) >0, forall veC.

The variational inequality has been extensively studied in the literature,

see [18, 20] and the references therein.
Recall that the following definitions.
(1) A mapping A of C into H is called monotone if
(Au— Av,u—v) >0, forall wu,vecC. (2)

(2) A is called a-inverse-strongly monotone [3, 6] if there exists a positive

real number « such that
(Au — Av,u —v) > al|Au — Av||?, forall wu,v € C. (3)
Clearly, every a-inverse-strongly monotone is monotone.

(3) A is said to be B-strongly monotone if there exists a positive real number

[ such that

(Au— Av,u —v) > Bllu —v||?, forall wu,veC. (4)
(4) A is called L-Lipschitz-continuous if there exists a positive real number
L such that

|[Au — Av|| < L||u —wv]||, forall w,ve C. (5)
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It is easy to see that if A is an a-inverse-strongly monotone mapping of C

into H, then A is éfLipschitz continuous.

(5) A mapping f : C — C is said to be a contraction if there exists a
coefficient k£ (0 < k < 1) such that

1f (@) = fW)ll < kllz —yll, forall z,yeC. (6)

To find an element of F'(S)NVI(C, A), Takahashi and Toyoda [14] intro-

duced the following iterative scheme:
Tnt1 = Wy + (1 — ) SPo(xy, — A\ Axy), (7)

for every n > 0 where 1 = 2 € C, {ay,} is a sequence in (0, 1) and {\,}
is a sequence in (0, 2«). Recently, Nadezhkina and Takahashi [7] and Zeng
and Yao [21] proposed some new iterative schemes for finding elements in
F(S)NVI(C, A). In 2007, Chen et al. [5] introduced the following iterative

scheme:
Tn41 = Oénf(l'n) + (1 - O‘n)SPC'(xn - )\nA'Z‘n)a (8)

for every n > 0, where zyp = z € C,{a,} is a sequence in (0,1),{\,} is
a sequence in (0,2a), f is a contraction on C, S is a nonexpansive self-
mapping of a closed convex subset C' of a Hilbert space H. They proved
that such a sequence {x,} converges strongly to a common element of the
set of fixed points of nonexpansive mapping and the set of solutions of
the variational inequality for an inverse-strongly-monotone mapping which
solves some variational inequality problems. Recently, many authors stud-
ied the problem of finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of an equilibrium problem
in the framework of Hilbert spaces and Banach spaces, respectively; see,

for instance, [1, 8, 9, 14, 15, 16] and the references therein.

On the other hand, for finding an element of F/(S)NVI(C, A)NEP(F),
Su et al. [13] introduced the following iterative scheme by the viscosity

approximation method in a Hilbert space: 1 € H

F(unay)+i<y_un7un_xn>20a VZUEC’

9)
Tnt1 = o f(xn) + (1 — an)SPo(un — AnAuy),
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for all n € N, where {a,} C [0,1) and {r,} C (0,00) satisfy some
appropriate conditions. Furthermore, they proved {z,} and {u,} con-
verge strongly to the same point z € F(S)NVI(C,A) N EP(F) where
z = Ppis)nvic,aneprr)f(2)-

Very recently, Yao et al. [19] also introduced the following iterative

scheme:
Tnt1 = Bxn + (1 = B)S[anu + (1 — ap) Po(xn, — AnAx,)], (10)

for every n > 0, where 1 = u € C, 8 € (0,1), {a,} is a sequence in (0, 1)
and {\,} is a sequence in (0, 2a). They proved that, if F(S)NVI(C, A) # 0,
then the sequence {z,} generate by (10) converges strongly to F(S) N
VI(C,A).

In this paper motivated by the iterative schemes considered in (8), (9)
and (10), we will introduce a new iterative schemes for finding a common
element of the set of solutions, the fixed points of a nonexpansive mapping,
an equilibrium problem and the variational inequality problem for an a-
inverse-strongly monotone mapping by the viscosity approximation method
in a real Hilbert space. Then, we prove a strong convergence theorem under
the some mild conditions on parameters. The results is connected with
Chen et al. [5], Su et al. [13] and Yao et al. [19].

2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-, )
and let C' be a closed convex subset of H. It is well known that for all
z,y € H and X € [0,1] there holds

Az + (1= Nyl = Mal® + @ =yl = A1 =Nz —y[*. Q1)

For every point x € H, there exists a unique nearest point in C, denoted
by Pcx, such that

|z — Pez|| < ||z —y|| forallyecC.

P¢ is called the metric projection of H onto C. It is well known that Pc is

a nonexpansive mapping of H onto C' and satisfies

(x =y, Pox — Poy) > || Pex — Peyll?, (12)
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for every x,y € H. Moreover, Pox is characterized by the following prop-
erties: Pox € C and

<$_PC$,Z/_PC$>§O7 (13)
lz = ylI* = |z — Pea|® + |ly — Pez|® (14)

for all x € H,y € C. It is easy to see that the following is true:
ue VI(AC) e u=Po(u— XAu),A > 0. (15)

We note that, for all u,v € C'and A > 0,

I(Z = AA)u— (I = AA)w|* = [|(u—v) = A(Au — Av)|?
= |u—v|® =2\ (u — v, Au — Av)
+ A% Au — Avl]?
< u—off?
A\ = 2a) || Au — Av|?. (16)

So, if A < 2a, then I — AA is a nonexpansive mapping from C to H.

A set-valued mapping T : H — 2 is called monotone if for all
z,y € H, f € Tz and g € Ty imply (z—y, f—g) > 0. A monotone mapping
T : H — 2% is maximal if the graph of G(T') of T is not properly contained
in the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if and only if for (z, f) € Hx H, (x—y, f—g) > 0 for
every (y,g) € G(T') implies f € Tz. Let A be an inverse-strongly monotone
mapping of C' into H and let Nev be the normal cone to C at v € C| i.e.,
Nev={w € H : {u—v,w) > 0,Vu € C}. Define
Av + Nev, v e,
Tv= { 0, ¢ véC.
Then T is the maximal monotone and 0 € Tw if and only if v € VI(C, A);
see [10, 11]. It is also known that H satisfies the Opial condition; for any

sequence {x,} with z,, — z, the inequality
liminf ||z, — z|| < liminf ||z, — yl|, (17)
n—oo n—oo

holds for every y € H with y # x.
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The following lemmas will be useful with proving the convergence result of

this paper.

Lemma 2.1 [12]. Let {z,} and {y,} be bounded sequences in a Banach

space X and let {ay, } be a sequence in [0, 1] with 0 < liminfey,, < limsupa,, <
n—~oo n—soo

1. Suppose 11 = (1—a)yn+Bntn for all integersn > 0 and lim sup(||yn4+1—

n——o0

all = [zaer —2al)) 0. Then, Tim_[ly, — 2, = 0.

Lemma 2.2 [17]. Assume {a,} is a sequence of nonnegative real numbers
such that

An+41 S (1 - 'Yn)an + 67“ n Z 1,

where {v,} is a sequence in (0,1) and {6, } is a sequence in R such that
oo
(a) Z’Yn = 00,
n=1

(b) 1imsup5—n <0or Z|6n| < 00.

n—soo Tn ne1

Then lim a, =0.

For solving the equilibrium problem for a bifunction F' : C' x C' — R,

let us assume that F satisfies the following conditions:

(Al) F(xz,xz) =0 for all z € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each z,y,z € C, lim;__,o F(tz+ (1 — t)z,y) < F(z,y);

(A4) for each z € C,y — F(x,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [2]:

Lemma 2.3 [2]. Let C be a nonempty closed convex subset of H and let
F be a bifunction of C x C into R satisfying (A1)-(A4). Let v > 0 and
x € H. Then, there exists z € C such that

1
F(z,y)+—(y—z,2—x) >0foral y e C.
r
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The following lemma was also given in [4].

Lemma 2.4 [4]. Assume that F : C x C — R satisfies (A1)-(A4). For
r >0 and x € H, define a mapping T, : H — C' as follows:

T.(x)={z€C: F(z,y) + %(y—z,z —x)>0, VyeC}.
Then, the following hold:
(1) T is single-valued;
(2) T is firmly nonexpansive, i.e., for any x,y € H,
Tz — Toy|* < (Trx — Ty, x — y);
(3) F(T,) = EP(F); and
(4) EP(F) is closed and convez.

3. Main Results

In this section, we prove a strong convergence theorem for finding a
common element of the set of solutions for an equilibrium problem, the set
variational inequality and the set of fixed points of a nonexpansive mapping

by the viscosity approximation method in Hilbert spaces.

Theorem 3.1. Let C' be a closed convex subset of a real Hilbert space
H. Let F be a bifunction from C x C — R satisfying (A1)-(A4) and
A: C — H be an a-inverse-strongly monotone mapping. Let f : C — C
be a contraction with coefficient k (0 < k < 1) and S be a nonexpansive
mappings of C into itself such that F(S)NVI(C, A)NEP(F) # (. Suppose
z1 € C and {z,}, {yn} and {u,} are given by

Fun,y) + i(y — Up, Uy — Ty) >0, VyeC,

n

Tn4l = Opdy + (1 - an)yn7 (18)

where {an}, {Bn} are two sequence in [0,1] and {\,} is a sequence in
[0,2a]. If {an}, {Bn} and {Mn} are chosen so that \,, € [a,b] for some a,b
with 0 < a < A\, <b<2a and {r,} C (0,00) satisfying the conditions:
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(C1) lim B, =0 and Zﬂn = 00,

n=1

(C2) 0 < liminfa, < limsupa, < 1,

n—oo n—s00

(C3) > A1 — Anl <00 and Y [Bus1 — Bl < o0,
n=1

= n=1

(C4) liminfr, > 0 and Z‘Tnﬂ — 1| < 00.
n=1
Then {z,} and {u,} converge strongly to ¢ € F(S)NVI(C,A)NEP(F),

where ¢ = Pp(synvic,anepr)f(q)-

Proof. Let Q = Pp(s)nvi(c,A)nep(r)- Then Qf is a contraction of H into
itself. In fact, there exists k € [0,1) such that ||f(x) — f(y)| < kllx — y||
for all z,y € H. So, we have that

1Qf(x) = QF Wl < [1f(x) = Fw)l| < Kllz =yl

for all z,y € H. This implies that Qf is a contraction on H into itself.
Since H is complete, there exists a unique ¢ € H, such that ¢ = Qf(q).
Such a ¢ is an element of C. The unique fixed point of the mapping Q f
is denoted by ¢ in the statement of Theorem 3.1. Further, we take z* €
F(S)NVI(C,A)NEP(F) and let {7}, } be a sequence of mappings defined
as in Lamma 2.4. Then z* = Po(z* — \yAz*) = T, z* and u, = 1) xy.

Setting v, = Po(un — AnAu, ), we have

fun =27l = |Ton — T2 < llzm — 2. (19)
and hence
H'Un - x*” = ||PC(un — )\nAun) — PC(LE* _ )\nAI*)”
< [(un = AnAug) — (27 = A Az
< T =X A)uy = (I = X A)z||
< lun — 27| < flon — 27,
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Put M= max {||z1

-z, W} It is obvious that ||x; —x*|| < M.

Suppose ||z, — x*|| < M. Then, we obtain

IN

[Zn1 — 2%

IN

IN

IN

IN

IN

IN

<

an[zn — 2| + (1 — an)llv, — 2|

anflzn — 27| + (1= an){Ball f(zn) — 27|

+(1 = Ba)llvn — ="}

anl[zn — @[ + (1 = an)Bull f(2n) — 2|

+(1 = an) (1 = Bp)llvn — 2|

anflzn — 2| + (1= an)Balll f(2n) — f(z7)|

HIf (@) = 2"+ (1= an)( = Bu)l|lzn — 27|
anflzn — 2|+ (1= an)Ball f(2n) — f(27)]|

+(1 = an)Ballf(2") = 27| + (1 = an)(1 = Bn)|zn — 27|
anl[zn — || + (1 = an) Bukllzn — 2|

+(1 = an)Bullf (") — 2|

+(1 = an)(1 = Bp)lz, — 27|

{an + (1= an)Buk + (1 — an)(1 = Bp) Hlzn — 27|
+(1 = an)Bullf(2") — 2|
{1-(1-k)1—an)Bn}lzn — 2

+(1 - k)(1 —an)ﬂnw

1—k
{1 - (1 - k)(l - an)ﬁn}M + (1 - k)(l - O‘n)ﬁnM =M.

So, we have that ||, —2*|| < M for all n € N and {z,} is bounded. Con-
sequently, the sequences {yn}, {un}, {Sv,} and {f(z,)} are also bounded.

Next, we show that lim, e ||Zn+1 — 2n|| = 0. Since I — A\, A and Pg

are nonexpansive, we have

lvnt1 —onl =

IN

[ Pe(unt1 — Angr Aungr) — Pol(un — AnAuy)||

[(tn41 = AngrAungr) = (Un — A Auy)|

(i1 = Anp1Atngr) — (un — Ang1Aug)

+(An = An1) Aun ||

(1 = Anp1A)upgr — (I = AnprA)un + (An = A1) Au |
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< ungr = unll + [An = Anga| | Aun || (20)

On the other hand, from u, = T;., 7, and un11 =T, Tny1, We have

1
F(un7y)+7<y7umun71‘n> >0, Vy eC (21)
T

n

and

F(un+17 y) + <y — Un41, Up+1 — xn+1> > 07 Vy eC. (22)

Tn+1
Substituting y = up41 in to (21) and y = u, in to (22), we have

1
F(un7un+l) + r_<un+1 — Up, Un — xn) Z O

n

and
1
F(Un+l7un) + 7(“71 — Up+41,Un+1 — xn+l> Z 0.
Tn+1

So, from (A2) we have
Up — Tp, Up+1 — Tn+1

(Unt1 — Un, - >0
Tn Tn+1

and hence

n

<un+1 — Up, Up — Un+1 + Un+1 — Tn — (un+1 - (Bn+1)> > 0.

Tn+1
Without the loss of generality, let us assume that there exists a real number
¢ such that r, > ¢ > 0 for all n € N. Then, we have

r
[uns1 = unll® < (pis =, Tngr = @0+ (1= —=) (U1 — Tnp1))
Tn+1
T
< Nnsr = unl{llnss — @nll + 11— ——|luns1 — 2]}
Tn+1
and hence
1
[unt1 —unll < l2pgr — 2l + rnt1 = Tollltns1 — Tl
Tn+1
M
< lengr = aall + 71|7”n+1 —Tal, (23)

where M; = sup{||u, — z,|| : n € N}. Substituting (20) into (21) we have

M,y
”UnJrl - UnH < H:En+1 - an + T|Tn+l - Tn|

A = Anga | Auall. (24)
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Note that

”yn — Yn+1 ||

It follows that

IN

IN

IN

IN

180 f (@n) + (1 = B1)Svn = Brs1f (1)

—(1 = Bn+1)Svpt|

180 (f(zn) = f(@nt1)) = (1 = Bn)(Svnt1 — Svn)
+(Bn = Brt1) f(@nt1) = (Bn — Brt1)Svnta |l
Bl f(@n) = f(@nt) | + (1 = Bu) [ Svns1 — Svnl|
+1Bn = Batalllf (@ns- D)l + 18n = B[l Svnall
Bullf (@n) = f(@ni) | + (L= Bn)[[Svns1 — Sonl|
+18n = Bt l(I1f @ns) | + [[Svnga )

Brkl|lzn — Tnga ]l + (1= Bn)llvn1 — vnll

+18n = Bt | f (@nt1) | + [[Svnall)

Brkllan = znia |l + (1 = Ba){ [[n41 — znll
sl e = Al A )

+1Bn = Bt (1 @ns) | + 1Syn41 D)

M,
Brkl|Tn — Tnsall + [|[Tns1 — 2l + T‘rn+1 — 7]

+ A0 = Al Aun | + 180 = Brga |[(Lf (2nga)
+Syn+1ll)-

M,
lyn = Ynt1ll = |Tns1 — 2l < Bukllzn — Tpgal| + T|7'n+1 — 7l

HAn = Ay ||| Aug ||

39

(25)

180 = Brta [ f (@n )| + 15yt

this together with 8, — 0 as n — oo and condition (C3), (C4) imply

that

Since Zp4+1 = @pZn + (1 — @y )y, and 0 < liminfe,, < limsupa,, < 1. Hence
n—-soo

limsup([[yns1 = ynll = [2nt1 — 2al)) <0.
n—-ao0o

n——-oQ

by Lemma 2.1, we obtain

lim ||y, — x| = 0.
— 00

(26)



40 C. Jaiboon et al.

It follows that

hl{loo [Zn1 — znl| = nhl)noo(l —an)|lyn — x| = 0. (27)

From Z|rn+1 —rp| < 00, (23) and (27) we have

n=1

lim  |Jupse1 — ug| = 0. (28)

From Z|)\n+1 — Ap| < o0 and (27), we obtain

n=1

|Unt1 — vn]| = 0. (29)

lim |
Observing condition (C1), (C3), (C4) and ||zp4+1 — 2] — 0 as n — oo,
we also have
lim |[kns1 — kn] = 0. (30)
Notice that
Yn — SV = Bn(f(xn) — Svp).

we can easily get
lim ||y, — Sv,|| = 0. (31)
n—-aoo
On the other hand, we observe
lyn — Svnll < 20 — yull + lyn — Sval.
Applying (26) and (31), we have

lim ||z, — Sv,|| = 0. (32)

n——-o0

Next we show that ||z, — u,| — 0, as n — oco. For each z* € F(S)nN
VI(C,A)N EP(F), note that T, is firmly nonexpansive, then we have

lup —a*|* = T, 20 = Tp,2|? < Ty 20 — Trp 2™, 2 — )

= (up—2", 2, — %)
1

= Glun =27+ flon =27 = un = 2a]?). (33)
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Then from (33) become
lun = 2*[I* < Nzn — 2|1 = 2 — unll®. (34)

Therefore, from the convexity of || - [|2, (18) and (34), we have

lyn — 21> < Bullf(mn) — 2" + (1 = Bo)[|Svp — 2|2
< Ballf(mn) — 2|2+ (1 = Ba) v — 2|2
< Ballf(@n) — 22+ (1 = Bo)llun — ™2
< Ballf(xn) — 2> + (1= Bu){l|zn — %12 = |20 — ual?*}
< Bullf@n) = 2P + llan — 2" = (1= Ba) 2 — ual®

Observe that

lZnts =21 < anllzn — 2| + (1 - an)lyn — 2"
< anllen = + (1 = an){Ball f(2n) — 2"
Hlan =2 ? = (1 = Ba)lon — ual®}
< lzn =21+ (1 = an)Ball f(zn) — 212
(1= an) (A = B) 0 — un*.
That is,
(1= o)1 = Bo)llzn —unll® < (1= an)Bullf(@n) — 27> + [l — 2”2
“lznsr — 2
= (1-an)Balf(an) = «*|* + (lzn — 2|
Fllzntr =2 ) (lzn — 2™ -
[#ni1 — 7))
< (U —an)Bull fln) — 2|2

Hllzn = zngall(lzn — 27|

Hlzntr —27)).
Since ||Zp+1 — Znl] — 0,, — 0 and 3, — 0, then, we have

lim ||z, —u,| =0. (35)
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Since liminf r,, > 0, we obtain
. T U, . 1
lim || |l= lim —|z, — uyl =0. (36)
n—-00 " n—so00 Ty

For z* € F(S)NEP(F)NVI(A,C), we have

lyn — 2| <
<

IN

IN

IN

IN

IN

IN

Bullf(wn) — a*[|* + (1 = Bo) | Svn — =%

Bullf(wn) — a*[|* + (1 = Bo) v — 2*|?

Bl f(zn) — x*HQ + (1 = Bl Pe(un — AnAuy,)
—Pe(z* — )\nAa:*)H2

Bull f(2n) — CE*HQ + (1 = Bo) [ (un — AnAuy,)

—(a* — A Az™)|?

Bull f(wn) — |12+ (1 = Bo) | (un — 2¥)

—An(Au, — Az™)|]?

Bullf(mn) — &*|1* + (1 = Bo){[lun — 2*||?

—2X, (uy, — ¥, Au,, — Ax™) + /\iHAun - Ax*HQ}

Bullf(zn) — x*HQ + (1 = Bu){llun — x*Hz

—2\pal|Au, — Az*||? + A2 || Au,, — Az*|?}

Bullf(wn) —a*|1* + (1 = Bo){[Jun — 2"

A (A = 20) || A, — Az*|?}

Bl f(zn) — C5*”2 + (1 = Bn)l|un — z*||2

+(1 = Ba)An(An — 20) || Au,, — Az*|?

Bull f(zn) — z*||2 + [|on — *T*||2

+(1 = B)An (N — 20) || Auy, — Az™ )% (37)

Using (18) and (38), we get

a1 — 2™

IN

anllzn — 2% + (1 = o) [lyn — 2|
anllzn — 27 + (1 = cn){Ballf(2n) — 2|
Hlan — 2|

+(1 = B)An(An = 20) || Au, — Az™[|?}

lzn = 2|1 + (1 = an) Bl f () — 2*||?

IN
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Then we have

(1 — o)1 = Bp)a(2a — b)||Au,, — Az*|]?

+(1 = an)(1 = Bo) A (An — 2a) || Au,, — Az*||?

IN

(1 —an)(1—0,)

An(20 — Ap)

| Auy, — Ax*[|?

(1= an)Ballf(zn) — *T*HQ

Hlwn — 27

IN

~ll@nt1 = 2*||?
(1= an)Ball f () — 2*|I?

Hlznt1 — znll([|zn — 2]

IN

Fllznsr = 2")-

From conditions (C1), (C2), (C3), {\n} C [a,b] C (0,2a) and lim ||z41—

Zn|| = 0, we obtain

lim |Aw, — Az*|| =0. (38)

From (18) and (12), we have

lvn — 2|

and hence

[E

<

IN

IN

<

1Pt — Adn) — Pola® — AAz®)|?

((un = AnAun) = (2" = AnAz™), v — z7)

%{Il(un = AnAug) = (2% = An A)z*||* + [vn — 2™
[ (un = AnAun) = (2 = ApAz”) = (vn — 27)[°}
5l = 1?4+ — 27

~[1(un = vn) = An(Aun — Az")|*}

%{Ilun = @7|* + v — 27|* = [lun = va ]|}
+2M (U — Y, Aty — Ax™) — N2 || Ay, — Ax™||?
%{H%‘n =27+ flon = 2™ = [lun = va1*}

+2\n (U, — U, Aty — Az™) — N2|| Au,, — Az* ||,
|2

|lzn —z — |lun, _Un”2
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+2X\ (U, — U, Auy, — Az®) — N2 || Au,, — Ax*||%. (39)
Therefore, from (18) and (39), we have

lyn —2* 7 < Ballf(za) — 2" + (1 = Bu) [ Svn — 22
< Ballfn) =22 + (1 = Ba)llvn — 2|
< Ballf(@n) =1 + (1 = Ba) {20 — 2" [” = llun — va?
2\ Uy — U, Aty — Az*) — N2 || A, — Ax* ||}
< Ballf(@n) = 27l + o — 2™ = (1= Ba)lun — val®
+20 (1 = Bp) (uy, — Up, Auy — Ax™)
A0 (1= Bl Aun — Az* |,
and hence
lznt1 = 2" < anllzn — 2|7 + (1 = an)lyn — 2|
< anllzn — " + (1= an){Ball f(zn) — 2|2
Hlen =2 = @ = Ba)llun — yul®
+20, (1 = Bn)(un — vp, Aup, — Ax™)
=An (1= Bn)llAuy, — Az*|?}
< o =22+ (1 = ) Ballf(wn) — 2|

—(1 = an)(1 = Bp)llun — 'Un||2
+2An (1 = Bn) (1 — ) [[up — vpl[|| Aun — Az™||
A (1= Ba)(1 = o)l Ay — Aa”| %,

which implies that

(1= an)(1 = Bo)llun = yul® < 2w — 27| = llzngs — 2"
+(1 = an)Ball f(0) — 2”1
+20,(1 = 8n)(1 — o)
[un — vpll[|Aun — Az™||
< (1=an)Bull flzn) — 22

Hlznt1 — znll(l|zn — 27 + lzns1 — 27)
+2>‘n(1 - ﬂn)(l - an)”un - Un“
|Au,, — Az™||.
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Since nli_H}OOHan —z,| =0, (C1), (C2) and (38), imply that
nh_)moo [t — vp|| = 0. (40)
Since
[Svn = vn |l < |Svn = zn | + [|2n — unll + lun — vall;

By (32), (35) and (40) we conclude that

lim |[Sv, —v,| =0. (41)

n—-aoo

Next, we show that

limsup(f(q) — ¢, Svn, — q) <0.

n—o0

Indeed, we choose a subsequence {v,,} of {v,} such that

limsup(f(q) —q,Svn —q) = lim (f(q) —q,Svn; —q),

n—-:ao0

where ¢ = Pp(s)nvi(c,anepr)f(q). Without loss of generality, we may
assume that {v,,} converges weakly to z € C'. From ||Sv,, — v, || — 0, we
obtain Sv,, — z. Now, we will show that z € F(S)NVI(C,A) N EP(F).
Firstly, we will show z € F'(S). Assume that z ¢ F(S). Since v,, — z and
Sz # z, By the Opial’s condition, we obtain

liminf [|v,, — z|| < liminf ||v,, — SZ||
n——=ao 1—00

lim inf ||v,, — Syn, + Svn, — Sz

73—

< liminf |v,, — Syn,|| + ||Svn, — Sz|]
1—>0Q

= liminf ||Sv,, — Sz||
11— 00

<

liminf ||v,, — z]|.
1—>00

This is a contradiction. Thus, we have z € F(S5).
Next, let us show that z € VI(C, A). Let

| Awi + Nowi, w; €
Twl_{ @, wlgéC
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Then T is maximal monotone (see [11]). Let (wq,w2) € G(T). Since
wg — Awy € N (wy) and v, € C, we have (w1 — v, we — Awq) > 0. On the

other hand, from v, = Po(un — ApAuy,), we have
(w1 — vy, vp — (U — ApAuy)) >0 (42)

that is,

”’”;7”" + Au,) > 0. (43)

<U)1 — Un,
Therefore, we obtain

(Wi — v, we) > (w1 — Uy, Awr) > (w1 — Up,, Awy)

U, — Un,
—(wy — vp,, e T + Auy,,)
An;
= (w1 — Un,, Awy — Auy, — M)
= (w1 — Up,;, Awr — Ayn,) + (W1 — vp,, Avy, — Auy,)
Un; — Un,
<w1 fUnm )\ni >
Up, — Up,
2 <’U)1 - UniaAvn1:> - <1U1 — Unys % + Au’m>
Uz
= (w1 — Up,, Avp, — Aup,)
U, — Un,
—(wy — vy, %% (44)
n;
which together lim ||v, —u,|| =0 and A is a-inverse-strongly monotone
n—-m<0

implies that
(w1 — z,wa) > 0.

Since T is maximal monotone, we have z € T~10, and hence z € VI(C, A).

Finally, we show that z € EP(F). Since u,, = T}, x,, we have

1
F(un>y)+_<y_unaun_$n>20a vy € C.
T

From (A2), we also have

1
— (Y — Un, Up, — Tn) > F(y, uy)
Tn
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and hence
Un; — xnz> Z F(y7unz)
T

uzs

<y = Un,,

From ||u,, — v,|| — 0 and v,,, — z, we have u,,, — z. Since u”r;” — 0,
it follows by (A4) that 0 > F(y, z) for all y € C. For ¢ with 0 < ¢ < 1 and
yeC, let yy =ty+ (1 —t)z. Since y € C and z € C, we have y; € C and

hence F(y,z) < 0. So, from (A1) and (A4) we have

0= F(ye, yr) <tF(ye,y) + (1 =) F(yr, 2) < tF(yr,y)

and hence 0 < F(y:,y). From (A3), we have 0 < F(z,y) for all y € C
and hence z € EP(F). Therefore z € F(S)NVI(C,A) N EP(F). Since
q = Prs)ynvi(c,anep(r)f(q), which implies that

lim sup(f(q) — g, Svn - q) = lim (f(g) =g Svn, —q)
= (fle) —¢,2—q) <0. (45)

Finally, we prove that {z,} converge strongly to ¢. From (18), we also have

lyn —all> < 11Ba(f(zn) — q) + (1 = B)[|Svn — gl

S (1 - ﬁn)zHS'Un - q”2 + 2ﬁn<f(‘rn) —4q,Yn — q>

< (]- - ﬁn)2an - Q||2 + 25n[<f(xn) - f(Q),yn - Q>
(@) = ¢ yn — )]

< (1 - Bn)QHmn - QHQ + Qﬂnk”xn - QHHyn - QH
+28:(f(q) — 4;yn — )

< (1= B0 llen — dll® + Buk(lzn — all® + llyn — 4l?)
+2ﬂn<f(q) —4,Yn — l])

= ((1- /Bn)2 + Bk | zn — QH2 + Brkllyn — Q||2
+28:(f (@) — ¢ yn — @),

that is
1—8n)% + Bnk
o —al? < UL DR g
+ 2 fq) - 4,y - a): (46)

1— Bk



48 C. Jaiboon et al.

From (18) and (47), we obtain

Hmn+1 - QH2 < an||$n - QH2 + (1 - an)”yn - Q||2
1 _ﬁn)z +ﬁnk
< —all? _ (— 2
< apllzn —gll” + (1 —an)f 1— Bk [ [
26n
1 ﬁnk<f(Q) — ¢ Yn — )}
_ e (=B Bk,
= apllzn =gl + (1 —an) 1— Gk |z [
26n
+(1—an)1_ﬁnk<f(q) ~4,Yn —q)
21— k)1 — ap)Bn
< —ql? - —
< apllzn —gll” +{(1 - an) 1— Gk
(1 — )b, 2
26n
+(1*an)1_ﬂnk<f(q) —4,Yn —q)
2(1 = k)(1 — o) B 2
< — _
< (1 1— Bk Mzn —qll
21— k)(1 — an)Bn On 9
1
1@ - ay -9}
Put
21 = k)(1 = an)By
Yo = L= Gk
and 5 )
o n o 2 _ _
Oon = 50— k) lzn =gl + 3 =7 (f(@) = 4, yn — a)-
That is
(e ‘J||2 < (A =w)llzn — QHQ + Ynon, (47)
It is easy to seen that ~, — 0, Z’yn = 00, and limsupd,, < 0. Ap-
ot n—so00

plying Lemma 2.2 to (47), the sequence {z,} converges strongly to ¢ =

Ppsynvic,anepr)f(q). Consequently, also {u,} converge strongly to g.
This completes the proof. O
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Corollary 3.2. Let C' be a closed convexr subset of a real Hilbert space
H. Let F be a bifunction from C x C — R satisfying (A1)-(A4) and
let f:C — C be a contraction with coefficient k (0 < k < 1) and S be
a nonezxpansive mappings of C into itself such that F(S) N EP(F) # (.
Suppose x1 € C' and {zy}, {yn} and {u,} are given by

1
F(unvy)"’_ <y_unaun_xn> >0, Vyed,
T

n

Tnt1 = 0n®n + (1 — ) Yn,

where {an}, {Bn} are two sequence in [0,1] and {r,} C (0,00) satisfying

the conditions:
(C1) lim B, =0, Zﬂn = o0, and Z|ﬂn+1 — Bn| < o0,
n=1 n=1

(C2) 0 < liminfa, < limsupa, < 1,

n 0 n—-s00

(C3) liminfr, >0 and Z|T"+1 — 7| < 00.

n—-o00
n=1

Then {x,} and {un} converge strongly to ¢ € F(S) N EP(F), where q =
Prsynepr) f(a)-

Proof. Putting Py = I, by Theorem 3.1, we have the desired result easily.0

4. Applications

In this section, we prove two theorem in Hilbert spaces by using The-
orem 3.1. A mapping T : C — C is called strictly pseudo-contraction if
there exists a constant 0 < ¢ < 1 such that

|72 =Tyl < lle = yl? + | (I = T)a — (I = T)y|]%, Va,y e C.
If ¢ = 0, then T is nonexpansive. Put A =1 —T. Then, we have

11 = A)a — (I = Ay < [lz — y|> + ¢l Az — Ay|%, Va,y € C.
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Observe that
I = Az = (I=Ayl* = llz—y|*+ Az - Ayl
—2(x —y, Az — Ay), Vax,y e C.
Hence we obtain
(— y, Az — Ay) > 1_T(p|\Aa:—Ay||2, v,y € C. (48)

1—

Then, A is gp—inverse-strongly monotone.

Now we get the following result.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let
F be a bifunction from C x C — R satisfying (A1)-(A4) and T : C — C
be a p-strict pseudo-contraction mapping. Let f : C — C be a contraction
with coefficient k (0 < k < 1) and S be a nonexpansive mappings of C into
itself such that F(S)NF(T)NEP(F) # 0. Suppose x1 € C and {zy}, {yn}
and {u,} are given by

1
F(tn,y) + —(y — Un,un — x,) >0, VyeC,
T

n
Tn+l = Opdnp + (1 - an)yna

Yn = ﬂnf(xn) + (1 - ﬂn)s((l - )\n)un + )\nT'UJn)7 vn > 17

where {an}, {Bn} are two sequence in [0,1] and {\,} is a sequence in
[0,2a]. If {o,} and {\,} are chosen so that A\, € [a,b] for some a,b with
0<a<\, <b<2xand {r,} C (0,00) satisfying the conditions:

fn =0 and iﬁn = 00,

n=1

(C1)

lim
n——aoXo

(C2) 0 < liminfa, < limsupa, < 1,

n—oo n—»00

(03) Z‘)‘nJrl - /\n| < oo and Z|ﬁn+1 - 6n| < 00,
n=1 n=1

(C4) liminfr, >0 and Y |rpi1 — s < 00,

n=1
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then {z,} and {u,} converge strongly to q € F(S)NF(T)NEP(F), where
q = Pr(s)nrrynepr)f(q)-

1
Proof. Put A= (I —T):C — H, from (48) we know that A is
inverse-strongly monotone mapping. We have F'(T') = VI(C, A) and

Po(up — MAuy) = Po((1 — M)ty + M Tuy) = (1 — Ap)up + AT, € C.
So, from Theorem 3.1, we obtain the desired result. |

Corollary 4.2. Let C be a closed convex subset of a real Hilbert space H
andT : C' — C be a p-strict pseudo-contraction mapping. Let f : C — C
be a contraction with coefficient k (0 < k < 1) and S be a nonexpansive
mappings of C into itself such that F(S)N F(T) # 0. Suppose 1 € C' and
{zn} is given by

Tnt+1 = anxn‘F(l_an)[ﬁnf(xn)+(]-_ﬁn)s((l_)\n)xn‘F)‘nTxn)]y Vn 2 ]-7

where {an}, {Bn} are two sequence in [0,1] and {\,} is a sequence in
[0,2a]. If {an}, {Bn} and {\,} are chosen so that A\, € [a,b] for some a,b
with 0 < a < A\, < b < 2« satisfying the conditions:

(C1) lim B, =0 and Zﬁn = 00,

n=1

(C2) 0 < liminfa, < limsupa, < 1,

n 0 n—so00

(C3) Y [Ant1 = An| <00 and Y _|Bat1 — Bl < o0,

n=1 n=1

then {x,} converges strongly to q € F(S)NF(T'), where q = Pp(synr () f(q)-

Proof. Put F(z,y) = 0 for all z,y € C, r,, = 1 for alln € N and A =
(I-T):C — H in Theorem 3.1. Then, we have u,, = Pcx, = x, and A

is w—inverse—strongly monotone. we have that F(T') is the solution set
of VI(C,A) ie. F(T)=VI(C,A) and

Po(xn — MAzy) = Po((1 — An)xn + AnTan) = (1= \p)zp + A\ Tz, € C.

Therefore, by Theorem 3.1, the conclusion follows. a
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Theorem 4.3. Let C be a closed convex subset of a real Hilbert space
H. Let F be a bifunction from C x C — R satisfying (A1)-(A4) and
A C — H be an a-inverse-strongly monotone mapping. Let f: C — C
be a contraction with coefficient k (0 < k < 1) and S be a nonexpansive
mappings of C into itself such that F(S) N A~1(0)N EP(F) # 0. Suppose
z1 € C and {zy}, {yn} and {u,} are given by

1
F(Unvy)+7<y_un7un_mn>207 Vy€07

Tn4+1 = Qpdyp + (]- - an)ynv
Yn = Bnf(@n) + (1 = Bn)S(un — ApAu,), Vn>1,

where {an}, {Bn} are two sequence in [0,1] and {\,} is a sequence in
[0,2c]. If {an}, {Bn} and {\.} are chosen so that \,, € [a,b] for some a,b
with 0 < a < A, <b < 2a and {r,} C (0,00) satisfying the conditions:

(C1) lim 8, =0 and Zﬁn = 00,
n=1

(C2) 0 < liminfa, < limsupa, < 1,

n—oo n—»00

(C3) > Ant1 = Anl <00 and Y [Bus1 — Bl < o0,

n=1 n=1

(C4) liminfr, > 0 and Z‘Tn_i'_l — 1| < 00.
n=1

Then {z,} and {u,} converge strongly to ¢ € F(S) N A=1(0) N EP(F),
where ¢ = Pp(syna—10)nepr)f(4)-

Proof. Since A~1(0) is the solution set of VI(H, A) i.e, A=1(0) = VI(H, A),
we can obtain the conclusion by Theorem 3.1 and by noting that Py = I
is the identity on H. Tt is noted that F(S) N A=Y(0) Cc VI(F(S), A). This
completes the proof. O
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1. Introduction

Throughout the paper, let E be a real Banach space, E* the dual space of E. Let C be a nonempty closed convex subset of
E. Recall that a mapping T : C — C is said to be nonexpansive if |Tx — Ty|| < ||x — y||, Vx,y € C. A point x € C is a fixed
point of T provided Tx = x. Denote by F(T) the set of fixed points of T; that is, F(T) = {x € C : Tx = x}. Let f be a bifunction
from C x C to R, where R denotes the set of numbers. The equilibrium problem is to find p € C such that

f(p,y) >0, VyeC. (1.1)

The set of solutions of (1.1) is denoted by EP(f). Given a mapping T : C — E*, let f(x,y) = (Tx,y — x) for all x, y € C. Then
p € EP(f) ifand only if (Tp,y — p) > Oforally € C; i.e,, p is a solution of the variational inequality. Numerous problems
in physics, optimization, and economics reduce to find a solution of (1.1). Some methods have been proposed to solve the
equilibrium problem; see, for instance, [4,9,15]. In 1997 Combettes and Hirstoaga [10] introduced an iterative scheme of
finding the best approximation to initial data when EP(F) is nonempty and proved a strong convergence theorem.
Recently, many authors studied the problem of finding a common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of an equilibrium problem in the framework of Hilbert spaces and Banach spaces,
respectively; see, for instance, [7,8,14,17,20,21,23,26,28-30] and the references therein. Matsushita and Takahashi [14]

* The project was supported by the Commission on Higher Education and the Thailand Research Fund Under Grant No. MRG5180034.
* Corresponding author. Tel.: +66 2 4708822; fax: +66 2 4284025.
E-mail addresses: s9510105@st.kmutt.ac.th (K. Wattanawitoon), poom.kum@kmutt.ac.th (P. Kumam).
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introduced the following iteration: a sequence {x,} defined by

X1 = T1c] ™" (@ + (1 — an)JTxy) (1.1)
where the initial guess element xy € C is arbitrary, {«,} is a real sequence in [0, 1], T is a relatively nonexpansive mapping
and 71 denotes the generalized projection from E onto a closed convex subset C of E. They prove that the sequence {x,}
converges weakly to a fixed point of T.

Very recently, Takahashi and Zembayashi [28], proposed the following modification of iteration (1.1) for a relatively
nonexpansive mapping:

X=x€C, G =C,

Yn =]71(05njxn + (- Oln)]SZn%,

up € C suchthatf(un, y) + r—(y — U, Jup —Jyn) 20, VyeC, (1.2)

n

Cot1 =1{z € Gy : Pz, un) < P(z, %)},

Xn+1 = Ilc, 4 Xo,
where | is the duality mapping on E, and I1¢ is the generalized projection from E onto a closed convex subset C of E and
proved that the sequence {x,} converges strongly to ITr)nep(f)Xo-

In 2008, Qin et al. [19], introduced the following iterative scheme for two closed relatively quasi-nonexpansive mappings
in a Banach space:

Xo € E chosen arbitrarily,

G =C,
X1 = I, Xo,
Yo =] onfxn + BuJTxn + yiuJSkn), (1.3)

1
u, € C suchthat f(u,,y) + r—(y — Up, Jup —Jyn) =0, VyeC,

n
Cor1=1{z€ G : oz, up) < Pz, x0)},
Xn+1 = Tlc, 1 Xo.

Under suitable conditions. Some strong convergence theorems are proved which extend and improve the results of
Takahashi and Zembayashi [27,28].

Employing the ideas of Qin et al. [ 19] and Plubtieng and Ungchittrakool [ 18], we modify iterations (1.2) and (1.3) to obtain
strong convergence theorems for finding a common element of the set of solutions of an equilibrium problem and the set of
common fixed points of two relatively quasi-nonexpansive mappings in the framework Banach spaces. The results obtained
in this paper improve and extend the recent ones announced by Qin et al.’s result [19] and Takahashi and Zembayashi’s
result [28] and many others.

2. Preliminaries

In this section we discuss some results based on the basic properties of a generalized projection, and then we derive
some results of relatively quasi-nonexpansive mappings and the equilibrium problem. i
Let E be a real Banach space with norm || - || and let J be the normalized duality mapping from E into 2F" given by

Jx={x* € E* : (x,x) = [Ix|lIx*II, ]| = lIx*|I}

for all x € E, where E* denotes the dual space of E and (-, -) the generalized duality pairing between E and E*. It is well
known that if E* is uniformly convex, then J is uniformly continuous on bounded subsets of E.

As we all know that if C is a nonempty closed convex subset of a Hilbert space H and P¢ : H — C is the metric projection
of H onto C, then P¢ is nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it is not available
in more general Banach spaces. In this connection, Alber [2] recently introduced a generalized projection operator I1c in a
Banach space E which is an analogue of the metric projection in Hilbert spaces.

Consider the functional defined by

d(x,y) = x> — 2(x, Jy) + llyl*> forx,y € E. (2.1)

Observe that, in a Hilbert space H, (2.1) reduces to ¢(x, y) = ||x — y||?, x, y € H. The generalized projection IT¢c : E — C is
a map that assigns to an arbitrary point x € E the minimum point of the functional ¢ (x, y), that is, ITcx = X, where X is the
solution to the minimization problem:

P, x) = yilel(fd)(y,X). (2.2)

The existence and uniqueness of the operator /1 follows from the properties of the functional ¢»(x, y) and strict monotonicity
of the mapping J (see, for example, [1,2,6,12,25]). In Hilbert spaces, I1c = Pc. It is obvious from the definition of function ¢
that:

(Yl = 1xID* < ¢, %) < Uyl + IXID*,  Vx,y € E. (2.3)
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We note that, if E is a reflexive, strictly convex and smooth Banach space, then forx, y € E, ¢(x, y) = Oifand only ifx = y. It
is sufficient to show that if ¢(x, y) = 0 then x = y. From (2.3), we have ||x|| = ||y||. This implies that (x, Jy) = ||x||*> = |[Jy||°.
From the definition of J, one has Jx = Jy. Therefore, we have x = y; see [6,25] for more details.

Let C be a closed convex subset of E, and let T be a mapping from C into itself. A point p in C is said to be an asymptotic
fixed point of T [22] if C contains a sequence {xni\w/hich converges weakly to p such that lim,,_, , ||X, — Tx,|| = 0. The set of

asymptotic fixed points of T will be denoted by F(T). A mapping T from C into itself is said to be relatively nonexpansive [ 16,

24,31]if F(T) = F(T) and ¢(p, Tx) < ¢(p, x) forallx € Candp € F(T).The asymptotic behavior of a relatively nonexpansive
mapping was studied in [3,5]. T is said to be ¢-nonexpansive, if ¢(Tx, Ty) < ¢(x,y) forx,y € C.T is said to be relatively
quasi-nonexpansive if F(T) £ # and ¢(p, Tx) < ¢(p, x) forx € C and p € F(T) (see also [16]).

Remark 2.1. The class of relatively quasi-nonexpansive mappings is more general than the class of relatively nonexpansive
mappings [3,5,13] which requires the strong restriction: F(T) = F(T).

Next, we give some examples which are closed relatively quasi-nonexpansive; (see [19] for more details).
Example 2.2. Let E be a uniformly smooth and strictly convex Banach space and A C E x E* is a maximal monotone mapping

such that its zero set A~'0 is nonempty. Then, J, = (J + rA)~'] is a closed relatively quasi-nonexpansive mapping from E onto
D(A) and F(J;) = A~'0.

Example 2.3. Let I1c be the generalized projection from a smooth, strictly convex, and reflexive Banach space E onto a nonempty
closed convex subset C of E. Then, Il is a closed relatively quasi-nonexpansive mapping from E onto C with F(I1c) = C.

A Banach space E is said to be strictly convex if ||’%|| < 1forallx,y € E with ||x|]| = |lyll = 1and x # y. Itis said to
be uniformly convex if lim,_, o ||X, — yal| = O for any two sequences {x,} and {y,} in E such that ||x,|| = |[y.|| = 1 and
limp,_ o || @ | = 1.LetU = {x € E : ||x|| = 1} be the unit sphere of E. Then the Banach space E is said to be smooth
provided

i lIx + tyll — [Ix]]
im——
t—0 t

exists for each x, y € U. It is also said to be uniformly smooth if the limit is attained uniformly for x, y € E. It is well known
that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.
The following lemmas will be needed in proving our main results:

Lemma 2.4 (Kamimura and Takahashi [12]). Let E be a uniformly convex and smooth Banach space and let {x,} and {y,} be two
sequences of E. If ¢(x,, yn) — 0 and either {x,} or {y,} is bounded, then x, — y, — 0.
Concerning the generalized projection, the following are well known.
Lemma 2.5 (Alber [2]). Let C be a nonempty closed convex subset of a smooth Banach space E and x € E. Then, xo = I1cx if and
only if

(Xo =y, Jx —Jxo) =0 VyeC.

Lemma 2.6 (Alber [2]). Let E be a reflexive, strictly convex and smooth Banach space, let C be a nonempty closed convex subset
of E and let x € E. Then

oW, Icx) + ¢Icx, x) < dp(y,x) VyeC.

Lemma 2.7 (Qinetal. [19, Lemma 2.4.]). Let E be a uniformly convex and smooth Banach space, let C be a closed convex subset
of E,and let T be a closed and relatively quasi-nonexpansive mapping from C into itself. Then F(T) is a closed convex subset of C.

Lemma 2.8 (Cho et al. [11]). Let X be a uniformly convex Banach space and B, (0) be a closed ball of X. Then there exists a
continuous strictly increasing convex function g : [0, o0) — [0, oo) with g(0) = 0 such that

1A+ py + yzI1? < AlxI? + wlyl? + vzl — rugix —yID
forallx,y,z € B,(O)and A, u,y € [0, 1]withA +pu+y = 1.
Lemma 2.9 (Kamimure and Takahashi [12]). Let E be a smooth and uniformly convex Banach space and let r > 0. Then there

exists a strictly increasing, continuous, and convex function g : [0, 2r] — R such that g(0) = 0and g(||x — y||) < ¢(x,y) for
allx,y € B,.

For solving the equilibrium problem for a bifunction f : C x C — R, let us assume that f satisfies the following conditions:

(A1) f(x,x) =0forallx € C;
(A2) f is monotone, i.e., f(x,y) + f(y,x) < Oforallx,y € C;
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(A3) foreachx,y,z € C,
ltifgf (tz+ (1 —-0xy) =< fx )
(A4) foreachx € C,y — f(x,y) is convex and lower semi-continuous.

Lemma 2.10 (Blum and Oettli [4]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space E, let
f be a bifunction from C x C to R satisfying (A1)-(A4), and let r > 0 and x € E. Then, there exists z € C such that

f(Z,Y)+;<y—z,jz—Jx) >0, VyecC.

Lemma 2.11 (Qin et al. [19, Lemma 2.8.]). Let C be a closed convex subset of a uniformly smooth, strictly convex, and reflexive
Banach space E, and let f be a bifunction from C x C to R satisfying (A1)-(A4). For r > 0and x € E, defineamapping T, : E — C
as follows:

Trx:{zeC:f(z,y)+%(y—z,]z—]x), VyeC}.

Then the following hold:

(1) T, is single-valued;

(2) T, is a firmly nonexpansive-type mapping, i.e., forallx, y € E,
<Trx - Tr’JTrX _]Try> = (Trx - Tﬁjx _JY>

(3) F(T;) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.12 (Takahashi and Zembayashi [28]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach
space E, let f be a bifunction from C x C to R satisfying (A1)-(A4), and let r > 0. Then, for x € E and q € F(T,),

d(q, Trx) + ¢(Trx, X) < ¢(q, X).

3. Main results

In this section, we establish strong convergence theorems for finding a common element of the set of common fixed
points of two relatively quasi-nonexpansive mappings and the set of solutions of an equilibrium in the framework of Banach
spaces.

Theorem 3.1. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth Banach space E. Let f
be a bifunction from C x C to R satisfying (A1)-(A4) andlet T, S : C — C be two closed relatively quasi-nonexpansive mappings
such that F := F(T) N F(S) NEP(f) # @. Let {x,,}, {yn}, {zn} and {u,} be the sequences generated by the following:

Xo € E chosen arbitrarily,

G =C,

X1 = I¢, Xo,

Yo =17 Gufxa + (1 = 8n)Jzn),

Zn zjil(anjxn + BuTxy + YuJSXn), (3.1)

1
U, € C such thatf(un, }’) + _<y - un,Jun _Jzn> > 07 Vy € C,
T

n
Cor1 =1{z € Gz, yn) < &z, xn)},
Xn+1 = Ilc, 1 Xo,

where | is the duality mapping on E. Suppose that {«,}, {B,} and {y,} are three sequences in [0, 1] satisfying the restrictions:

@an+pht+ym=1

(b) 0 <, < 1foralln e NU {0} and limsup,_,,, oy < 1;
(c) liminf,_, o oy Bn > O, liminf,_, o atyyy > 0;

(d) {r,} C [a, c0) for some a > 0.

Then {x,} and {u,} converge strongly to z € F, where z = IIgxy.

Proof. First, we show that C, is closed and convex for all n > 0. It is obvious that C; = C is closed and conveXx. Suppose that
Cy is closed and convex for some k € N. For z € C, one obtains that

Oz, y0) < ¢z, xi)

is equivalent to
2((z, Ja) = 24z, Jyi) < lxel® = llyxll?.
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It is easy to see that Gy is closed and convex. Then, for all n > 0, G, is closed and convex. This shows that ITc,_, xo is well
defined. Notice that u, = T, z, foralln > 0.

On the other hand, from Lemma 2.11, one has T;, is relatively quasi-nonexpansive mapping. Next, we prove F C C, for
alln > 0.F C C; = C is obvious. Suppose F C C, for some k € N. Then, for Yw € F C C, one has:

p(w, ze) = p(w, ] (afxi + BTk + ViSxi))
= lwll® — 2w, Jx) — 28w, JTxe) — 2yic{w, JSxk) + llowfxi + BTk + viSxell®

lwll® = 200(w, Jxi) — 2Be(w, JTx) — 21(w, JSxi) + ellxicll> + BelUTxiell* + vielUSxill?
akp(w, X)) + Brp(w, Txk) + vedp(w, Sxi)

(P(wvxk)’ (3'2)

1A

IA

and then

Pp(w, yi) = p(w, ]~ Gixi + (1 — 8)Jzi))
lwll* = 2 (w, Sxe + (1 — 8)zi) + I8xe + (1 — Si)Jzll®

< wl? = 28k (w, Jxe) — 2(1 = &) (w, Jzi) + Sillxell® + (1 = 8|zl

= Scllwll* = 2 (w, Jxi) + [1%1*) + (1 = 8 lwl> = 2 (w, Jze) + llz|1*)

= Skp(w, x) + (1 — Sk d(w, z)

< S (w, xp) + (1 — S (w, xk)

= ¢(w, xk), (3.3)
thatis w € Cy44. This implies that F C G, for all n > 0. From x,, = I1¢,Xo, we have

(Xn — z,Jxg — Jxn) =0, Vze(, (3.4)
and

(Xn — w, Jxo — Jx,) >0, VYw €F. (3.5)
From Lemma 2.6, we obtain

¢ (Xn, Xo) = ¢(Ic,Xo, Xo) < P(w, Xo) — P(w, Xn) < d(w, Xo),
foreachw € F C G, and n > 1. Then, the sequence {¢(xn, Xo)} is bounded. Since x,, = I1¢,xo, we have

¢ (Xn, X0) < ¢(Xnt1,%0), Vn € NU{0}.

Therefore, {¢(x;, Xo)} is nondecreasing. It follows that the limit of {¢(x;,, Xo)} exists. By the construction of C,, one has that
Cn C Gy and x;y = I, X € G, for any positive integer m > n. It follows that:

¢ X, Xn) = ¢ (Xm, Tc,Xo)
< ¢(Xm, X0) — d(I¢, X0, Xo)
= ¢(Xm, X0) — P(Xn, Xo). (3.6)

Letting m,n — o0 in (3.6), one has ¢ (X, X,) —> 0. It follows from Lemma 2.4, that x,, — x, — 0asm,n — oQ.
Hence, {x,} is a cauchy sequence. Since E is a Banach space and C is closed and convex, one can assume thatx, — p € C
asn — oo.

Since
G Xnt1, Xn) = G Xny1, T, X0) < P (Xnt1, X0) — P ([, X0, X0) = P (Xnt1, X0) — P (Xn, Xo),
foralln € N U {0}, we have lim,_, ¢(Xy11,%,) = 0. From Lemma 2.5, we get lim, ., [|x,1 — Xp|| = 0. Since

Xnt1 = I, ,x € Gy 1, We have

¢(xn+1, un) S ¢(Xn+ls Xn), Vn € N U {O}
Therefore, we also have

lim ¢(Xn+la u,) = 0.
n—s-o00

Since limp— 00 @ (Xn41, Xn) = limy_— 5 @ (Xp+1, Uy) = 0 and E is uniformly convex and smooth, we have from Lemma 2.4
that

M (X1 —Xoll = Hm X1 — tgll = 0.
n—oo n—oo
So, we have

lim ||x, —un|| = 0. (3.7)
n—oo
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Since J is uniformly norm-to-norm continuous on bounded sets and lim,__, », ||x, — u,|| = 0, we have
lim ||Jx, — Jun|| = 0.
n—oo

Since x, —> pasn —> oo, we also have u, — pasn — oc.
Since E is uniformly smooth Banach space, we known that E* is a uniformly convex Banach apace.
Let r = sup,enugoy UIXnll, 1Txnll, ISxq[|}. From Lemma 2.8, we have

d(w, un) = ¢(w, T, zn) < P(w, zy)
= ¢(w, ] (anfxn + BuJTxn + YuJSXn))
= lwl® = 2an (w, Jxn) — 285 (W, JTxa) — 20 (W, JSXn)
< wll* = 2a (w, Jxx) — 2Bn (W, JTxn) — 2y (w, JSXn)
+ ot |1 + BalUTxnll” + ¥alUSxall* — ctnBag (UTxa — Jxal))
= an@(w, Xn) + Bnd(w, Txn) + Yn@(w, Sxn) — n g (IJTxn — Jxn )
< ¢(w, Xn) — on g (ITxn — Jxnl)- (3.8)
It follows that
o Bng (IUTxn — Jxnll) < ¢ (w, xn) — G(w, up).
On the other hand, we have
(W, %) — p(w, tp) = [|xall* — [lunl|® — 2 (w, Jxa — Jup)
< lxn — unll(llxnll + lunl) + 21wl Uxn — Junll.
It follow from ||x,, — u,|| —> 0 and ||Jx, — Ju,|| —> O that
o(w, x,) — p(w,u,) —> 0, asn —> oo. (3.9)
Observing that assumption liminf, . o, 8, > 0 and by Lemma 2.9, we also
Jlim (g lxn — JTxall) = 0.
It follows from the property of g that

lim [[Jxy — JTxa|| = O.
n—oo

Since J~! is also uniformly norm-to-norm continuous on bounded sets, we see that

lim |[x;, — Tx,]| = 0.
n—-oo
Similarly, one can obtain
lim ||x;, — Sx,|| = 0.
n—oo

From the closedness of S and T, we have p € F(T) N F(S). Next, we show p € EF(f) = F(T;). On the other hand, from (3.3),
we have

o, yn) < d(u, xy). (3.10)

From u, = T;,z, and Lemma 2.12, we obtain

¢(Un, zn) = ¢(Tr,2n, 20)
< ¢(w,zy) — p(w, Ty, zn)
< ¢(w, xp) — p(w, Ty, zy)
= ¢(w, xp) — d(w, Up).
It follows from (3.9) that
¢(up, z,) > 0, asn — oo.
Noticing that Lemma 2.4, we get
luy —zyll = 0, asn — oo.

Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim |[Jup, — Jzy|| = 0.
n—oo
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From the assumption r,, > a, we have

po W =gl _
m —— =

n—o00 'n

0.

Noticing that u, = T;,z,, we obtain

1
flun, y) + r—<y — Uy, Jup — Jz;,) > 0, VyeC.

n

By condition (A2), we note that
Jun — Jzu || > l

n n

By taking the limit asn — oo in above inequality and from (A4) and u, —> p,wehavef(y,p) <0, VyeC.ForO <t <1
andy € C, define y, = ty + (1 — t)p. Noticing thaty, p € C, we obtains y; € C, which yields that f(y;, p) < 0. It follows
from (A1) that 0 = f(y¢, ye) < tf (e, ¥) + (1 — O)f e, ) < tf (¥, y). Hence, f (y¢, y) > 0. From condition (A3), we obtain
f(p,y) = 0, for Vy € C. This implies that p € EP(f). This shows thatp € F =: F(S) N F(T) N EP(f). Finally, we prove
p = Ipxo. By taking limit in (3.4), one has

”y - un” O’ - unajun _.]Zn> = _f(un’Y) Zf(y’ un)7 Vy e C.

(p—w,Jxo—Jp) >0, Yw€eF.

At this point, in view of Lemma 2.5, we see that p = ITgxo. By (3.7), u, —> p as n — o0 also. This completes the proof of
Theorem 3.1. O

Corollary 3.2 (Qinetal. [19], Theorem 3.1). Let C be a nonempty and closed convex subset of a uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C x C to R satisfying (A1)-(A4) and let T, S : C — C be two closed relatively
quasi-nonexpansive mappings such that F := F(T) N F(S) N EP(f) # . Let {x,} be a sequence generated by the following
manner:

Xo € E chosen arbitrarily,

G =C,

X1 = HC]X()v

Yo =] (nfén + BuJTxa + ynllsxn),

u, € C such that f(u,,y) + r—(y — Up, Ju, —Jyn) >0, VyeC,

n
Cn-H ={zeG: ¢(Z, Up) < d)(Z, X)),
Xn+1 = Ilc, ;1 Xo,

(3.11)

where | is the duality mapping on E. Assume that {c,}, {B,} and {y,} are three sequences in [0, 1] satisfying the restrictions:
@ag+pht+ym=1
(b) 0 <, < 1foralln e NU {0} and limsup,_,,, oy < 1;
(c) liminf,_, o ap By > O, liminf,_, o anyn > O;
(d) {r,} C [a, 00) for some a > 0.
Then {x,} converges strongly to ITgx.

Proof. Setting §, = O for alln € N U {0}, then (3.1) reduced to (3.11) and putting u, = Ty, for z € F, we have
@(z,un) = ¢(z, Tr,yn) < ¢(z, yn). Therefore, the conclusion follows immediately from Theorem 3.1. O

Corollary 3.3. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth Banach space E. Let
f be a bifunction from C x C to R satisfying (A1)-(A4) and let T : C — C be a closed relatively quasi-nonexpansive mappings
such that F := F(T) NEP(f) # . Let {x,} be a sequence generated by the following manner:

Xo € E chosen arbitrarily,

C; =C,

X1 = I¢, Xo,

Yn =J_](Sn.lxn + (1 = 6p)Jzn),

2y =] anfxn + (1 = an)JTxa), (3.12)

1
u, € C suchthat f(u,,y) + —(y — up, Ju, — Jz;) =0, VyeC,
T

n
Coir1 =12 € C:p(z,yn0) < Pz, x0)},
Xny1 = I, X0,

where | is the duality mapping on E. Assume that {«,}, is a sequences in [0, 1] such that 0 < «, < 1foralln € N U
{0}, limsup,_,, an < 1, liminf,—, o on(1 — @y) > O0and {r,} C [a, oo) for some a > 0. Then {x,} converges strongly
to ITeXo.
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Proof. In Theorem 3.1if S = I, the identity mapping, then (3.1) reduced to (3.12). O

Corollary 3.4. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth Banach space E. Let f
be a bifunction from C x C to R satisfying (A1)-(A4) and let S : C — C be two closed relatively quasi-nonexpansive mappings
such that F := F(S) NEP(f) # @. Let {x,} be a sequence generated by the following manner:

Xo € E chosen arbitrarily,

G =C,

X1 = Pc X0,

Yo =" (anfxa + (1 — an)Janl),

un € C suchthat f(us, y) + r—<y — Up, Juy —Jyn) 20, VyeC,

n
Cir1={z2€C oz, yn) <Pz, x0)},
Xn+1 = Pc,, 1 X0,

(3.13)

where ] is the duality mapping on E, {an )22 is a sequence in [0, 1] such that liminf, ., o oty (1 — o) > 0 and {r,} C [a, 00)
for some a > 0. Then {x,} converges strongly to Prx.
Remark 3.5. Corollary 3.4 improves Theorem 3.1 of Takahashi and Zembayashi [28] in the following senses:

(1) from relatively nonexpansive mappings to more general relatively quasi-nonexpansive mappings; that is, we relax the
strong restriction: F(T) = F(T);

(2) the algorithm in Theorem 3.1 is also more general than the one given by Qin et al. [19] and Takahashi and
Zembayashi [27].

4. Applications
In Hilbert spaces, we obtain the following results:

Theorem 4.1. Let C be a nonempty and closed convex subset of a Hilbert space H. Let f be a bifunction from C x C to R
satisfying (A1)-(A4) andlet T,S : C — C be two closed relatively nonexpansive mappings such that F := F(T)NF(S)NEP(f) #
@. Let {x,} and {u,} be the sequences generated by the following manner:

Xo € E chosen arbitrarily,

C] = Ca

X1 = Pc,xo,

Yn = ‘Snxn + (1 - an)zna

Zn = nXn + BuTXn + VaSxn, (4.1)

1
u, € C suchthat f(u,,y) + —{y — up, Ju, — Jz,) >0, VyeC,
T,

n
Cri=1{zeCG:llz=yll = llz—xall},
Xn+1 = Pc,, 1 X0,

where P is a projection from H into its subset. Assume that {«,}, {8,} and {y,} are three sequences in [0, 1] satisfying the
restrictions:

(a) an"‘ﬂn“"yn = ];

(b) 0 <ay < 1foralln e NU {0} and limsup,__, o, < 1;
(c) liminf,_ o ap By > O, liminf,_ o apyn > O;

(d) {r,} C [a, 00) for some a > 0.

Then {x,} and {u,} converge strongly to Prx,.
Proof. Since ] is an identity operator, we have
P, y) = lx —y|?
for every x, y € H. Therefore
ISx — pll < lIx — pll < ¢(p, SX) < ¢(p, %)
and
ITx = pll < lIx = pll < ¢, Tx) < ¢(p. %)

foreveryx € Candp € F(S) and p € F(T) respectively. Hence, S and T are relatively nonexpansive if and only if S and T are
relatively quasi-nonexpansive. Then, by Theorem 3.1, we obtain the result. O
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Corollary 4.2. Let C be a nonempty and closed convex subset of a Hilbert space H. Let f be a bifunction from C x C to R
satisfying (A1)-(A4) andlet T, S : C — C be two closed relatively nonexpansive mappings such that F .= F(T)NF(S)NEP(f) #
@. Let {x,} be a sequence generated by the following manner:

Xo € E chosen arbitrarily,

C; =C,

X1 = Pc,Xo,

Yn = QnXn + BaTXy + ynSxn, 1

U, € C such thatf(una y) + r_<y - un,Jun _].Vn) = O» Vy € C,

n
Cir1=1{z€ G :llz—=yull < llz—xill},
Xn+l = PCH+]X07

where P is a projection from H into its subset. Assume that {«,}, {8,} and {y,} are three sequences in [0, 1] satisfying the
restrictions:

@ar+bt+wm=1

(b) 0 <ay < 1foralln e NU {0} and limsup,__, o, < 1;
(c) liminf,_, o oy Bn > 0, liminf,_, o atyyy > 0;

(d) {r,} C [a, 00) for some a > 0.

Then {x,} converges strongly to Ppx.
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STRONG CONVERGENCE THEOREMS OF MODIFIED
ISHIKAWA ITERATIONS FOR TWO FAMILY OF
RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN
BANACH SPACES

K. WATTANAWITOON, P. KUMAM*, AND U. W. HUMPHRIES

ABSTRACT. In this paper, we prove strong convergence theorems of mod-
ified Ishikawa iterations for a countable family of two relatively quasi-
nonexpansive mappings in Banach spaces. Moreover, we discuss the prob-
lem of strong convergence of relatively nonexpansive mappings and we
also apply our results to generalize, extend and improve those announced
by Qin and Su’s result [Strong convergence theorems for relatively non-
expansive mapping in a Banach space, Nonlinear Anal. 67 (2007) 1958—
1965.], Nilsrakoo and Saejung’s result [Strong convergence to common
fixed points of countable relatively quasi-nonexpansive mappings, Fixed
Point Theory and Appl. (2008), doi:10.1155/2008/312454.] and Su et
al.’s result [Strong convergence of monotone hybrid algorithm for hemi-
relatively nonexpansive mappings, Fixed Point Theory and Appl. (2008),
doi:10.1155/2008,/284613.].

1. INTRODUCTION

Let E be a real Banach space, C' be a nonempty closed convex subset of F,
and T : C — C be a mapping. Recall that T' is nonexpansive if

Tz — Ty| < ||z — || for all z,y e C.

We denote by F(T') the set of fixed points of T', that is F(T) ={x € C: 2z =
Tz}. A mapping T is said to be quasi-nonexpansive if F(T') # () and

1Tz —y|| < ||z —y| forall x€C and ye€ F(T).

It is easy to see that if T is nonexpansive with F(T) # 0, then it is quasi-
nonexpansive. Some iteration processes are often used to approximate a fixed
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Key words and phrases. Strong convergence, nonexpansive mappings, Ishikawa iterations;
countable family, relatively quasi-nonexpansive mappings.

*Corresponding author.



2 K. WATTANAWITOON, P. KUMAM, AND U. W. HUMPHRIES

point of a nonexpansive mapping. The Mann’s iterative algorithm was intro-
duced by Mann [9] in 1953. This iteration process is now known as Mann’s
iteration process, which is defined as

(1.1) Tpt1 = Ty + (1 — )Tz, n >0,

where the initial guess ¢ is taken in C arbitrarily and the sequence {a,}52
is in the interval [0, 1].
In 1967, Halpern [5] first introduced the following iteration scheme:

(1.2) { zg=x¢cC chosen arbitrarily,

Tnt1 = apu+ (1 — )Ty,

see also Browder [3]. He pointed out that the conditions lim, ..o, = 0 and
32 ay, = 00 are necessary in the sence that, if the iteration 1.2 converges to
a fixed point of T', then these conditions must be satisfied.

In 1974, Ishikawa [6] introduced a new iteration scheme, which is defined
recursively by

(1 3) Yn = BrnTn + (1 - ﬂn)Txna
' Tpt1 = nZpn + (1 — ap)TYn,

where the initial guess z is taken in C arbitrarily and the sequences {«,,} and
{B,} are in the interval [0, 1].

Matsushita and Takahashi [10] introduced the following iteration: a sequence
{z,} defined by

(1.4) Tpy1 = Mo HanJz, + (1 — ay)JTe,),

where the initial guess element x¢ € C' is arbitrary, {a,,} is a real sequence in
[0,1], T is a relatively nonexpansive mapping and Il denotes the generalized
projection from E onto a closed convex subset C' of E. They prove that the
sequence {z,} converges weakly to a fixed point of T. Moreover, Matsushita
and Takahashi [11] proposed the following modification of iteration (1.4):

xg € C chosen arbitrarily,
yn = J HanJon + (1 — an)JTx,),
(1.5) Cn={2€C:8(z,yn) < d(z,2n)},
Qn={2€C:{x,— 2,10 — ) >0},
ZTnt1 = e, ng, (%o), n=0,1,2,....
and proved that the sequence {z,} converges strongly to IIpr)(2o).

Many authors have appeared in the literature on Ishikawa’s iteration process,
see, for example [13, 14, 15] and references therein.
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In 2007, Qin and Su [15] proved the following iteration for relatively nonex-
pansive mappings 7' in a Banach space E:

xo € C, chosen arbitrarily,

yn = J HanJz, + (1 — an)JTz,),

2 = J Y (Budxn + (1 — Bn)JTzy),

Cp = {U eC: ¢(’U7yn) < an(b(vvxn) + (1 - an)¢(v7 Zn)a
Qn={velC:{Jx,— Ja,,x, —v) >0},

Tpt1 = e, nq, (o),

(1.6)

the sequence {x,} generated by (1.6) converges to Ilpr)zo,
and

xo € C, chosen arbitrarily,
Yn = J HanJzo + (1 — an)JTzy),
(1.7) Cpn={veC:d(v,yn) < and(v,z,) + (1 — an)d(v, z,),

Qn={velC:(Jr, — Jan,x, —v) >0},
Tnt1 = e, nq, (7o),

the sequence {z,,} generated by (1.7) converges to Ilp(r)xo.

In 2008, Takahashi et al. [17] proved the following theorem by a hybrid
method. We call such a method the shrinking projection method.

Theorem 1.1. (Takahashi et al. [17]). Let H be a Hilbert space and let C' be
a nonempty closed convex subset of H. Let T be a nonexpansive mapping of
C into H such that F(T) # 0 and let o € H. For C; = C and uy = Pg, xo,
define a sequence {u,} of C as follows:

Yn = QplUp + (1 - an)Tu'ru
(1.8) Cn1={2€Cp: lyn — 2l < [lun — 2|},

un+1 == PCT,,_HIO; n e N7
where 0 < ap, < a < 1 for all n € N. Then, {u,} converges strongly to
zZ0 = PF(T)IL‘O-

Nilsrakoo and Saejung [12] proved the following Mann’s iteration process,

with C a closed convex bounded subset of Banach spaces:

xg € C, and C_1 =Q_1 =C,

Yn = J HanJz, + (1 — an)JThay),
(1.9) Cn={v € Cp:9(v,yn) < and(v,zn),

Qn={vel:{Jx, — Jan,x, —v) >0},

ZTny1 =e,ng, (), n=0,1,2,....
converges strongly to a common fixed point of a countable family of relatively
nonexpansive mappings.
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Recently, Qin and Su [15] and Su et al. [16] extended Takahashi et al.’s
theorem [17] to a closed hemi-relatively nonexpansive mapping. They proved
a strong convergence theorem by the (CQ) hybrid method. Very recently,
Nilsrakoo and Saejung [12], generalized theorem of Su et al. [16, Theorem
3.1]. It is noted that relative quasi-nonexpansiveness considered in the paper
and hemi-relative nonexpansiveness of [16] are the same. They do prefer the
former name because in a Hilbert space setting, relatively quasi-nonexpansive
mappings are just quasi-nonexpansive mappings.

In this paper, motivated by Qin and Su’s result [15] and Nilsrakoo and
Saejung’s result [12] the idea is to modify Ishikawa’s iteration process (1.6) and
(1.7) for two countable relatively quasi-nonexpansive mappings to have strong
convergence theorems in a Banach space by using the shrinking projection
method. Our result extends and improves the recent results by Nilsrakoo and
Saejung’s result [12], Qin and Su [15], Su et al. [16] and Takahashi et al.’s
theorem [17] and many other authors.

2. PRELIMINARIES

Let E be a real Banach space with dual E*. Denote by (-,-) the duality
product. The normalized duality mapping J from E to E* is defined by

(2.1) Jo={f€E": (x,f) = |z|* = |IfI*},

forallz € E.

If C is a nonempty closed convex subset of real Hilbert space H and P¢ :
H — C is the metric projection, then Pc is nonexpansive. Alber [1] has
recently introduced a generalized projection operator Il in a Banach space F
which is an analogue representation of the metric projection in Hilbert spaces.

Let E be a smooth Banach space. The function ¢ : F x E — R is defined
by

(2.2) $a,y) = ||z = 2(z, Jy) + ||yl for all ,y € E.

The generalized projection Il : E — C'is a map that assigns to an arbitrary
point & € E the minimum point of the functional ¢(y, =), that is, llocx = z*,
where z* is the solution to the minimization problem

(z*,x) = rylgg (y, x),

existence and uniqueness of the operator IIs follows from the properties of the
functional ¢(y,z) and strict monotonicity of the mapping J. In the Hilbert
space, IIc = Pg. It is obvious from the definition of the function ¢ that

(2.3) Iyl = lzl)? < ¢y, @) < (lyll + |z])*  forallz,y € E.
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Remark 2.1. (Matsushita and Takahashi [11]). If E is a strictly convex and
a smooth Banach space, then for all z,y € E, ¢(y,z) = 0 if and only if z = y.
It is sufficient to show that if ¢(y,z) = 0 then x = y. From (2.3), we have
lz|| = ||ly||- This implies (y, Jz) = ||ly||> = ||Jz||*. From the definition of .J, we
have Jx = Jy. Since J is one-to-one, we have x =y

Lemma 2.2. (Kamimura and Takahashi [7]). Let E be a uniformly convex
and smooth Banach space and let r > 0. Then there exists continuous, strictly
increasing, and convex function g : [0,2r] — [0,00) such that g(0) =0 and

g(llz = yl) < é(z,y)
forallz,y e B, ={z€ E:|z|| <r}.

Let C be a closed convex subset of E, and let T' be a mapping from C' into
itself. The set of fixed points of T is denoted by F(T'). A mapping T is said to
be relatively quasi-nonexpansive if

o(p, Tz) < P(p, x) forall x € C and pe F(T).

A point p in C is said to be an asymptotic fixed point of T' [4] if C contains a
sequence {x, } which converges weakly to p such that the strong lim,, o (z, —
Tx,) = 0. The set of asymptotic fixed points of T' will be denoted by F(T). A
relatively quasi-nonexpansive mapping T’ from C' into itself is called relatively
nonexpansive if £ (T) = F(T). We say that the mapping T is relatively non-
expansive if the following conditions are satisfied:

(R1) F(T) 0

(R2) ¢(p, Tx) < ¢(p,x) for each z € C,pe F(T);

(R3) F(T) = F(T).

Lemma 2.3. (Kamimura and Takahashi [7]). Let E be a uniformly convex
and smooth real Banach space and let {xz,},{yn} be two sequences of E. If
&(Tn,yn) — 0 and either {z,} or {yn} is bounded, then ||z, — yn|| — 0.

Lemma 2.4. (Alber [1]). Let C' be a nonempty closed convex subset of a
smooth real Banach space E and x € E. Then, xg = oz if and only if

(2.4) (o —y, Jo — Jxg) > 0, Yy e C.

Lemma 2.5. (Alber [1]). Let E be a reflexive, strict convez, and a smooth
real Banach space, let C be a nonempty closed convex subset of E and letx € E.
Then
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Lemma 2.6. (Nilsrakoo and Saejung [12, Lemma 2.5]. Let E be a strictly
convez and a smooth real Banach space, let C be a closed convex subset of F,
and let T be a relatively quasi-nonexpansive mapping from C into itself. Then
F(T) is closed and convex.

Lemma 2.7. (Plutieng and Ungchittrakool [14]). Let E be a uniformly convex
and uniformly smooth Banach space and let C' be a closed convex subset of E.
Then, for points w,x,y,z € E and a real number a € R, the set K :={v € C :
o(v,y) < d(v,x) + (v, Jz — Jw) + a} is closed and conver.

Let C be a subset of Banach space E and let {T},} be a family of mappings
from C into E. For a subset B of C, we say that
(i) ({Tw}, B) satisfies condition AKTT if

Zsup{|ITn+1z —Thz| : z € B} < o0;

n=1

(ii) ({T,.}, B) satisfies condition *AKTT if

oo

ZSUP{”JTn-HZ — JT,z|| : z € B} < o0

n=1
Aoyama et al. [2] prove the following result which is very useful for our main
result.

Lemma 2.8. (Nilsrakoo and Saejung [12]). Let C' be a nonempty subset of
Banach space E and let {T,,} be a sequence of mappings from C into E. Let B
be a subset of C with ({T,,}, B) satisfying condition AKTT, then there exists a
mapping T : B — E such that

Tr= lim T,z forall z€ B

and limsup,, . {||Tz —Tpz||: 2 € B} =0.
Inspired by the preceding Lemma, we have the following result.

Lemma 2.9. (Nilsrakoo and Saejung [12]). Let E be a reflexive and strictly
convezr Banach space whose norm is Fréchet differentiable, let C be a nonempty
subset of Banach space E and let {T,,} be a sequence of mappings from C into
E. Let B be a subset of C with ({T,,}, B) satisfies condition *AKTT, then

there exists a mapping T : B — E such that

Tz = lim T,z forall x€ B

and limsup, . {||[JTz — JT,z||: z € B} = 0.
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Lemma 2.10. (Nilsrakoo and Saejung [12]). Let E be a reflexive and strictly
convexr Banach space whose norm is Fréchet differentiable, let C be a nonempty
subset of Banach space E and let {T,,} be a sequence of mappings from C into
E. Suppose that for each bounded subset B of C, the ordered pair ({1}, B)
satisfies either condition AKTT or condition *AKTT. Then there exists a map-
ping T : C — E such that

Tx= lim T,z forall z€C

Recall that an operator T in a Banach space is closed if x,, — x and Tz,, — v,
then Tz = y.

3. MODIFY ISHIKAWA ITERATION SCHEME

In this section, we establish a strong convergence theorem for finding com-
mon fixed points of a countable family of relatively quasi-nonexpansive mapping
in a Banach space. This theorem generalizes recent theorems by Nilsrakoo and
Saejung [12] and Su et al. [16].

Theorem 3.1. Let E be a uniformly convexr and uniformly smooth Banach
space, and let C be a nonempty bounded closed convex subset of E. Let {S,} and
{T,} be two sequences of relatively quasi-nonexpansive mappings from C into
itself, where F(S) = (\,_q F(Sn) and F(T) = ("o F(T,); F(T) = F(S)N
F(T) is nonempty. Assume that {an 52 and {8,}32, are sequence in [0,1]
such that limsup,,_, . a, <1 andlim,_,0, =1, and let {z,} be a sequence
in C by the following algorithm:

r9 € C,Co = C,
Yn = J  HanJxn + (1 — ap)JSnzn),
(3.1) 2n = J N Budxn + (1 = Bn) I Thay),

Chy1 = {U €Cy: ¢(Uayn) < QS(Uaxn)}a
Tn+1 = ch+1 (1}0),

for n € NU {0}, where J is the single-valued duality mapping on E. Suppose
that for each bounded subset B of C the ordered pair ({Sn}, B) and ({1}, B)
satisfies either condition AKTT or condition *AKTT. Let S and T be two map-
pings from C into itself defined by Sv = lim,, ..o S,v and Tv = lim,,__.Trv
for allv € C' and suppose that S and T are closed. If S, is uniformly contin-
uous for alln € N, then {x,} converges strongly to U p(ryzo, where g1y is
the generalized projection from C onto F(T).

Proof. We first show that C), 11 is closed and convex for each n > 0. From the
definition of C),41 it is obvious that C),4; is closed for each n > 0. By Lemma
2.7, Cp41 is convex for any n > 0.
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Next, we show that (", F(T,,) C C, for all n > 0. Indeed, let p €
N, F(T,), we have

n=0

¢(P7 yn) = (b(pa Jﬁl(anjxn + (]- - an)JSnzn))

= |pll*> = 2(p, anJzy + (1 — ) I Sp2n)

+HlanJzn + (1 — an)JSpzn||?
HPHQ - 20‘n<pa J$n> - 2(1 - O‘n)<pa JSnZn>
(3.2) +0‘n||xn||2 + (1 - O‘n)||SnZnH2
an([plII? = 2(p, Jxn) + [lzn]?)
+(1 - an)(||pH2 —2(p, JSnzn) + Hsnzn||2)
an¢(p; xn) + (1 - an)¢(p7 Snzn)
an¢(pa zn) + (1 - O‘n)d’(l’y Zn)

IN

INIA

and

o(p, J_l(ﬁn']xn + (1= Bn)JThzn))

= Hp||2 72<pvﬂnjxn+(lfﬂn)JTnxn>
+|BnJxn + (1 — ﬁn)JTnxnﬂz

Hp||2 = 280 (p, Jxn) — 2(1 = By )(p, JTnn)
+ﬂn||xn||2 +(1- Bn)HTnanQ

Bu(lpl? = 2{p, Jzn) + l|lzal?)

+(1 = Ba)(lIpll? = 2{p, JTntn) + | Trznll?)
ﬂn¢(pa xn) + (]- - ﬂn)¢(pa Tnxn)

Bn(b(pa xn) + (1 - Bn)(b(pa Qin)

o(p, xn)

Substituting (3.3) into (3.2), we have

(3.4) o, yn) < O(p,n).
This means that, p € C,41 for all n > 0. Thus, {z,} is well defined. Since
ZTpy1 =g, 20 and x,41 € Cpyq C Oy, we get

A2, x0) < P(Tny1,T0),

for all n > 0. Therefore, {¢(x,,zo)} is nondecreasing.
By definition of z,, and Lemma 2.5, we have

(3.5) (2, x0) = ¢(Ilo, 20, w0) < G(p,w0) — (p, e, 20) < O(p, 20),

for all p € F(T) C C,. Thus, ¢(zn,xo) is bounded. Moreover, by (2.3), we
have that {x,} is bounded. So, lim, . .o¢(z,,xo) exists. By again Lemma
2.5, we have

¢(p7 ZTL)

IN

INIAIN

A(xn41, e, o)
A(n+1,0) — ¢(Ile, 0, 0)
¢(Tnt1,70) — A0, T0),

¢(xn+1a xn)

A
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for all n > 0. Thus, ¢(zpt1,2,) — 0 as n — oo.
Next, we show that {x,} is a Cauchy sequence. Using Lemma 2.2, we have,
for m,n such that m > n,

Ilzm — zal]) < O(@m, 2n) < ST, x0) — G(Tn, T0),

where ¢ : [0,00) — [0,00) is a continuous, stricly increasing, and convex func-
tion with g(0) = 0. then the properties of the function g yield that {x,} is a
Cauchy sequence, such that {x,} converges strongly to p for some point p in
C. However, since lim,,_ 0, = 1 and {z,} is bounded, we obtain
(3.6)
¢(In+1a Zn) = ¢(zn+1a Jﬁl(ﬂnjxn + (1 - ﬂn)JTnIn))
= ||xn+1||2 - 2<xn+1; /Bann + (]- - ﬂn)JTnxn>
< ||xn-‘,-1||2 - 2@n<xn+ly Jl‘n) - 2(1 - Bn)<xn+la JTnxn>
+Bnllzall® + (1 = Bu) [ Tnn1?
= ﬂn(yb(xn-&-la xn) + (]— - ﬂn)¢(xn+la Tnfn)

Therefore, ¢(xp+1,2,) — 0 as n — oo.
Since xp41 = I¢, ., (w0) € Cpy1, from the definition of C,,, we have

O (Tn+1,Yn) < A(Tnt1,Tn),
for all n > 0. Thus
O (Tnt1,yn) — 0,88 N — 00.
By using Lemma 2.3, we also have
(3.7) nh—{lgo [Zn+1 — yull = nh—{I;o [Zn+1 — nll = nh—>Holo [Zn+1 — znll = 0.
Since J is uniformly norm-to-norm continuous on bounded sets, we have
(3.8) lm ||Jzpt1—Jyn|| = Um ||Jzpi1 —Jzs|| = lim ||J2pe1—J2,] = 0.
n—oo n—oo n=00
For each n € NU {0}, we observe that

[Jans1r = Jynll = [[JZni1 = (anJzn + (1 — an)JSpzn) ||
= lan(Jzns1 = Jon) + (1 = an)(Jzns1 = JSnzn) ||
= (1 —an)(Jont1 — JSnzn) — an(Jzn — JTp i)
> (1—an)|lJxnse1r — ISnznll — an||Jxn — JTpnaa]|-

It follows that

([JTng1 = Jynll + anllJzn — JTnga|)-

[J2pt1 — JSnznll < 1

n

By (3.8) and limsup,,_, . a, < 1, we obtain
lim ||Jzp41 — JSnzn| = 0.

n—oo
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Since J~! is uniformly norm-to-norm continuous on bounded sets, we have
(3.9) lim ||@n4+1 — Spzn|l = 0.
n—oo
Since
20 — Znll < ll2n — Tptall + |Tns1 — @a]-
By (3.7), we obtain
(3.10) lim ||z, — 2z,] = 0.
n—-o0
By using the triangle inequality, we get
[ = Snanl < [lon = Znpall + @041 — Snzall + |Snzn — Snanl.

Since Sy, is uniformly continuous for all n € N. It follow from (3.7), (3.9) and
(3.10) that lim,, o ||2n — Spay,|| = 0 and so

|Jzy — JSna,|| = 0.

lim
From (3.8), we obtain
[Jant1 = Jznll = [[Jons1 — (Bud@n + (1= Bn) STy
= Bn(Jonss = Jan) + (1 = Bn)(Jzngr — JTnws)||

(1= Bu)(Jznt1 — JTpxn) — Bu(Jon — JTnia)||
(1 = Bu)llJxns1 — Izl — BullJrn — Jnia]|-

IVl

It follows that

1
”']mn-i-l - ']Tnxnn < W(Hjxn-i-l - JZn” +ﬂnHan - an-i-lH)-

By (3.8) and 8, — 1, we have

lim || Jzp41 — JThzn| = 0.

Since J~! is uniformly norm-to-norm continuous on bounded sets, we have
lim |1 — Than| = 0.
n——-mao0
It follows from (3.7) that
lzn — Thznll < |20 — Zpsall + [Zn41 — Taznl|l — 0,

and so
lim ||Jx, — JTh2,| = 0.

Case 1: ({1}, {zn}) satisfies condition *AKTT. We apply Lemma 2.9 to get

|Jxy — JTzy|| < |Jxn — JThxn|| + || JThen — JT24]|,
[Tz, — JTpxy || + sup{||JThz — JTz| : z € {x,}} — 0.

N
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Case 2: ({T..},{zn}) satisfies condition AKTT. We apply Lemma 2.8 to get

)
[an = Tapl| < |lon = Toan|| + | Town — Toall,
< Nen — Thxn|| + supf{||Thz — Tz|| : z € {xn}} — 0.

Hence

lim ||z, — Tx,| = lim |J~'(Jz,) = J 2 (JTxz,)| = 0.

From both cases, we obtain

lim ||z, — Tx,| = 0.
n—--oo
Similarly, we also have lim,,_, ||z, — Sz,| = 0.

Since T, S are closed and x,, — p, we have p € F(7T). Moreover, by (3.5), we
obtain

¢(p7 IO) = nlg,nm¢(xn’x0) < ¢(p> LTJ()),

for all p € F(T). Therefore, p = Ilp(7)xo. This completes the proof. a

4. APPLICATIONS IN HILBERT SPACES

In Hilbert spaces, relatively quasi-nonexpansive mappings and quasi-
nonexpansive mappings are the same. We obtain the following results:

Theorem 4.1. Let H be a Hilbert space, and let C' be a nonempty bounded
closed convex subset of E. Let {S,} and {T,,} be two sequences of relatively
quasi-nonezpansiwe mappings from C into itself F(S) = (", F(Sn) and
F(T) = N,_oF(T,); F(T) = F(S)n F(T) is nonempty. Assume that
{an}22, and {Bn 152 are sequences in [0,1] such that limsup,,_ . an <1 and
lim,,—Bn = 1, and let a sequence {x,} in C by the following algorithm:

rg € C,Cy = C,
Yn = Qpdnp + (1 - an)Snzn7
(41) 2 = PBnTn + (1 - 6n)Tnxn7

Cny1={v € Cp: [lyn — v < lzn — ||},
Tn+1 = PCn+l (-To),

forn € NU{0}. Suppose that for each bounded subset B of C the ordered pair
({Sn}, B) and ({T,,}, B) satisfies condition AKTT. Let S and T be two map-
pings from C' into itself defined by Sv = lim,,__..oSpv and Tv = lim,,__, T, v
for allv € C and suppose that S and T is closed. Then {x,} converges strongly
to PF(T)330-
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Proof. Since J is an identity operator, we have

$@,y) = llo -yl

for every x,y € H. Therefore,

HSnx _pH < Hx _p” <~ ¢(p7 Snx) < ¢(pa x)
and
|Twx —p|| < |lz—pll & é(p, Thx) < ¢(p,x)

for every x € C and p € F(7T). Hence, S, and T,, are quasi-nonexpansive if
and only if S, and T;, are relatively quasi-nonexpansive. Then, by Theorem
3.1, we obtain the result. O

Theorem 4.2. Let H be a Hilbert space, and let C' be a nonempty bounded
closed convex subset of E. Let {T,} be a sequence of quasi-nonexpansive
mapping from C into itself such that (\,—, F(Ty) is nonempty. Assume that
{an}5% is a sequence in [0,1] such that limsup,,_, oy, < 1 and let a sequence
{zn} in C be defined by the following algorithm:

zg € C,Cy=0C,

Yn = ATy + (]- - an)Snme

Cr1 ={v € Cp : |lyn —v|| < [lzn — 0|},
Tn+1 = PCn+1 ('IO)’

(4.2)

forn e NU{0}. Suppose that for each bounded subset B of C the ordered pair
({T.}, B) satisfies condition AKTT. Let T be the mapping from C into itself
defined by Tv = limy,__,,Tpv for all v € C' and suppose that T is closed and
F(T) = (",_o F(T,). Then {x,} converges strongly to Pp 0.

n=0

Proof. In Theorem 4.1 if T,, = I and (8, = 1 for all n € NU {0}, then (4.1)
reduced to (4.2). O
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