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Abstract 

    The purposes of this research are to create new knowledge of fixed point theorem and 

construct several new iterative approximation methods for approximating the fixed point of 

nonexpansive mappings, and to solve many mathematical problems in Hilbert spaces and Banach 

spaces.  We introduce the proof of new convergence theorems of a new iterative approximation 

method for finding the common element of the set of common fixed points of nonexpansive  

mappings, the set solutions of the variational inequality problems for nonlinear mappings and the 

set of solutions of equilibrium problems in Hilbert space and Banach spaces. Therefore, by using 

the previous result, an iterative algorithm for the solution of a optimization problems was obtained. 
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� 1 
����	 (Introduction) 

 

            ���������	
������
�����������
������
��
�����
��� (Functional Analysis) ����  ���������!"����� 

(Fixed points) #��!�$%��&
'&�����#�������&%*��#� +���,�!�-'*�-&�����./����.����0�1�2*3 ���&��� 

����4�   

���������� ���.����0�1���������������������5��4��,4&�,�1����'.�
6%#
�*��3 ��������
����*��3 �,����4�!��7�

����
�������#4!"����� �#�����������#4�7���'����#����*��3 -8�� .�2���4��*���1!�*�5.�0���  

��������
���� ���!����7���'����#����*��3 ����5���&*��5�  �7�$�#����8*���4��0�7�1��#4����	
������


!7����#����1!�����  �
�������'4&'�
94����7�+�7����!"����� (fixed-point iterations) �*��3�4�1��1������

�7���';�&�
94.��#�	�*� �,����7�5..��&"��
1��1����-��.�2�������''�#����4�#4����7���
����5#*��
����� 

(nonlinear operator equations)    1����������-��.�2����#���-.�<�� (variational inequality problem 

(VIP)) -8�-���#������7���'���.�2���"86�,(equilibrium  problems (EP)) .�2���4��4�4��"�(optimizations 

problems) .�2�����&�4��"� (minimizations problems)  ����1�.�
6%#
=
8�'
�
�-8�.�
6%#
'����   +���.�2��

����8*���./�.�2���4��7���2�4�#4.��;&��
#��#�&1������
���*��3 ��*� �����
���>�
��
  �	
������


.��&"��
  �
�����# �����������?�����
 ��'';8!
��
��
 -8�,�@��;��������,���?����''������*� 

-8���'''�
���!������4���#���# �./����  

���'����������87���'���&�
94�7�+�7� 1�.�
6%#
�������
�*��3 -8�����������������5��4�!7��./� -8�

�,4&�,��4�!��7�1��87���'��8*�����8%*�����%*!"�����!"�������������
����*��3 �./��������4�!7��./������
����-8�

����� �,���1����'������1��������������-8��*�&���� ���'����������87���'���&�
94�7�+�7�#4�8���8�&�
94

���&��� ��*� Mann Iteration process, Ishikawa Iteration process, Noor Iteration process �./���� +������

��#��$�7�������;�;8&4����7���	���&��#,
�����
#��*�&1������!"�����;�&���'����������87���' �4�

�8*��#�-8���������  

���!���4� &��#4���'����������87���'�4�-''�������� ���'����������87���'���&�
94�7�+�7�;�&

.�
&�&  (Implicit Iteration process) +����./����'����������87���' �4�8%*�����%*!"�����5�������0���*�

���'����������87���'�4��8*��#�-8��������� -8��./����'������4�<%��
!�& ��1!�4�!�.��'.�"� ,�@�� -8�

�����$��������5��4�!��7�1�� 87���'����8*��8%*�����%*!"����� �������*�-''5#*�&�& 

���,�@���C�D4'���4�&���'���8%*�����%*!"������"*#��� ���'����������87���'���&�
94�7�+�7�;�&.�
&�& ���

.��#�	�*����8%*��������������7�+�7����!"������*�#�7����'���
��'5�� -8����.��&"��
���7���'���

.�2���"86�, -8� .�2����#���-.�<�� �./��������4����!�������,����4�!�������C�D41�#*����	
������


'�
�"�9
G -8� �	
������
.��&"��
�,���1��1����-��.�2��5#*��
������*�5.    1�����
�����C�D4�,��������
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���#�%�1�#*3 ������'�*�#4.��;&��
�./��&*��#���*�����
�����-8����,�@��.����� +����C�D4-8����


���#�%�1�#*3�4���
�!������
!�&���� ���!��!�#4.��;&��
�&*��#��1����,�@�����#�%���
��
�����1�����

-8�-����*��3����-8�� &����#��$�7�5..��&"��
1���������3  -8��./�,���?���7���21����,�@�����

�
�&������
,���?�� (basic science) +����./�����
!�&,���?�� (basic research) �,�����������
���#�%�1�#* ���$��

�./�,���?��1����,�@��.��������
�*�5. 

��������#��$-��.�2��5#*��
�����6�&1��������5��*��3 ���&���'������4��
�������5�� ����0

��#��$�9
'�&.���H���	
�*��35��1�8���4&����#�./�!�
�#������ ��#$��8����,���,�-8�����7�����

���;�;8&4!���*�����
  

�C�D4'�!"����� (Fixed point theorem) $���*��./��C�D4�4��7���2#��1�����7�5..��&"��
����1�

�����	
������
-8�1��������� 3 ���������
!�&1�����������C�D4'�!"�����'�.�
6%#
'���� �./������

������5��4��,4&�,��4��7�1������*� T �4��*�!���+�&*�& K   ���.�
6%#
'���� E  5.&�� K  �4�#4!"����� (����

���!�#4!"� 1� a K  +����7�1�� )  ( )T a a�

�8��!�������./����#�5��#4����	
������
!7����#���4��7����������
!�&�,�����������5��4��,4&�,��4�

�./��#'��
��������	
����.�
6%#
'�����,���1��,
�%!�
��4�&���'�C�D4'�!"����� 

�*�#�5��#4����	
������
!7����������4��7����������
!�&���#'��
��������	
��4��./�������5��,4&�,��4�!�

,
�%!�
�C�D4'�!"������7����'��&����5.�������*�-''5#*�&�&(������� ( ) ( )T x T y x y� � �  �"� 

,x y K� ) 

1� .J �.�. 1922 ���� Banach 5�����,'�C�D4'��4�#4������4&�+���$%���4&��*� Banach Contraction 

Principle Theorem  ����4�  �7����1��  (M, d) �./�.�
6%#
�#��
�+
'�
'%�	
 -8�  �./�����*�-''�� 

(contraction mapping) �������$�� 

:T C C�

( , ) ( , )d Tx Ty kd x y�  �7����''��!7���� (0,1)k� ) -8�� !�#4!"� x M�  

+����./�!"�������� ����
��� T  (������� Tx x� )   

�7����'���'����������87���' �,���1��8%*�����%*!"��������� #4���#�7���25#*���&  ���'����������

87���'�4��7���2  -8�#4������4&�+�������
!�&����	
������
  #��!��&
'&�#������
�1�����7��
!�&1������4���#�3  

���1�.J  �.�.  1953  W.R.  Mann  5�������87���'  � �nx   1�.�
6%#
=
8�'
�
�  H   ����*�5.�4�  �8*�����  �7����'  

 +����./��+��%�.>�  �
&�#87���' HC 	
�

   
�


�

���
�

� nnnnn Txxx
Cx

)1(1

0

��

�#���    �./�����*�-''5#*�&�&  -8�  CCT �: � � ]1,0[	n�  ���5��,
�%!�
�*�  $��  � �n�   ����8�����'

�"	�#'��
�4���#���#-8��    !�8%*����-''�*��5.&��!"��������  T  � nx �

�*�#�1�.J  �.�.  1967  B.  Halpern  5������87���'�4��8��&�8����'87���'���  Mann�8*�����   
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�


�

���
�

� nnnn Txux
Cu

)1(1 ��

�#���    �./�����*�-''5#*�&�&  -8�  CCT �: � � 1,0[	n ]�  ���5��,
�%!�
�*�  $��  � �n�     

����8�����'�"	�#'��
�4���#���#-8��  � �nx   !�8%*����-''���#5.&��!"��������  T  

-8�1�.J  �.�.  1974  S.  Ishikawa  5������87���'-''1�#*  �4��./��%.����5.#����*�87���'���  Mann  

�8*����� 

   
�
�

�



�

���
���

�

� nnnnn

nnnnn

Tyxx
Txxy

Cx

)1(
)1(

1

0

��
��

 �#���    �./�����*�-''5#*�&�&  -8�  CCT �: � � 1,0[	n ]�  ���5��,
�%!�
�*�  $��  � �n�     

����8�����'�"	�#'��
�4���#���#-8��  � �nx   !�8%*����-''���#5.&��!"��������  T  

-8��*�#�1�.J  �.�. 2001 Xu -8� Ori  5�������87���' � �nx  1� Hilbert Spaces H   ����*�5.�4�  �7����'    

0x C H� 	 !�5�� 

      

1 1 0 1 1 1

2 2 1 2 2 2

3 3 2 3 3 3

1

(1 )
(1 )
(1 )

(1 )N N N N N

x x T x
x x T x
x x T x

Nx x T x

� �
� �
� �

� ��

� � �
� � �
� � �

� � �
�

�

 

������4&�1��%.����5���./� 1 (1 )n n n n n nx x T x� ��� � �   �#��� modn nT T N�  -8�    �./�����*�

-''5#*�&�& !�� C  5. C   +���    -8�5��,
�%!�
�*�$��   

1 2, ,..., NT T T

1

( )
N

i
i

F F T
�

�� 
 � lim 0nn
�

��
�  -8��87���' � �nx  

!�8%*�����&*���*�� (Weakly Converges) 5.��!"������*�#!"���������  1 2, ,..., NT T T

�&*��5��0��#  �7����'87���'���  Mann  &�����./�87���'�4�8%*����-''�*��5.&��!"�����  -#��*�!��./�

87���'1�.�
6%#
�'
�
�  ���#,&�&�#�4�!��7�1��87���'���  Mann  8%*����-''���#5.&��!"�����  $%����������;�&

����	
������
�8�&�*�����&���  -8�1�.J  �.�.  2005  T. W.  Kim  -8� H. K. Xu  5�������87���'���  

Mann  -8�.��'.�"�   87���'�4�  '�.�
6%#
'��������%.��'��4&'  (uniformly  smooth  Banach)  X  ;�&���

1��!"��4�5������5��  -8���,
�#���'�������� 87���'   �,���1��87���'�4���
�����#�1�#*8%*����-''���#5.&��

!"������������*�-''5#*�&�&    �8*�����  1��   CCT �: XC 	
�   �./��+��%�.>�  -8�  

  �8���     -''5#*�!��!�   -8�1��  �
)(TF Cu� � �n�   -8�  � �n�   �./�87���'1��*��    +���

����8�����'������5��4���#���#  �
&�#87���'  

)1,0(

� �nx   1�  C   ;�& 
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�
�

�



�

���
���

�

� nnnn

nnnnn

yux
Txxy

Cx

)1(
)1(

1

0

��
��

-8��  �   !�8%*����-''���#5.&��!"��������  �nx T  

 +�������
!�&��4�&���'�������7�+�7����!"�����-8����.��#�	�*�!"������4��7���2������#��$�7�#�-��

�#������7���'���.�2���"86�, ��*�1� .J 1997 Combettes -8� Hirstoaga  5����
�#��������-8�1���
94���

�7�+�7�1���������.��#�	�*��4��4�4��"��,���-��.�2���"86�, -8�5��,
�%!�
�C�D4'����8%*����-''���# (strong 

convergence theorems) -8�#4����	
������
�4�#��#�& �7��C�D4'�����7�+�7�����8*��#�.��&"��
1��1����

-����#���-.�<�� 

������#�7���2�4�5���8*��#�-8��������� <%��
!�&!��8*��$���4�#��������7��
!�&�4� ;�&��
�#���!��1�.J 

�.�. 1994 Stampacchaia  [46]    5���./�<%��
����1���
94���.��#�	�*�-''+�7��,���-��5�.�2����#������-.�

<��6�&1������7���
���������4&��&*�����# -8��*�������-''8
�+
�,
 �*�#� Korpelevich [27]  ��0��*��
94���

.��#�	�*�-''+�7�����8*��#4���!7����#��#�&�,���1��5��#�+����7���'�����#������-.�<�� !��5���
����

�
94���.��#�	�*�-''+�7�����#�1�#*+�����4&��*� �
94��0�+
���������4&� (Extragradient method)   -8�,'�*����

-��.�2����#������-.�<������8*������ ����7���
����5#*!7��./������./� �����	�����	��	���
�����	����� 

-8��*�������-''8
�+
�,
 -�*��1���./� �����	�����	��	���
�� -8��*�������-''8
�+
�,
 �0�,4&�,�-8��  

���!���
94���.��#�	�*�-''+�7�!���#��$-��5�.�2����#������-.�<��-8�� &����#��$.��&"��
1��1�

��������!"������������*�-''5#*�&�&�����&8���4&�����4�  

�7����1�� H  �./�.�
6%#
=
8�'
�
�'��+����!7����!�
� -8�  �./��+�&*�&.>� (closed) �%� 

(convex) ��� 

C

H  �7��������*�  !���4&�����*� :A C H� A  �*� ����*������4&� (monotone mapping) 

$�� 

, 0, , .Au Av u v C� � �  

.�2����#������-.�<�� (variational inequality problem(VIP)) ��������  +����7�1����#���

�*�5.�4��./�!�
� 

0u C�

(1)  0 0, 0 ,A u u u u C� � � �

�+��7���'���.�2����#������-.�<��!�$%���4&�-�����&  ������� ( , )VI C A

� �( , ) : , 0VI C A u C Au v u� � � �  .�2����#������-.�<������5��$%����������&*�����������;�&�%

5��!�������������
� [58] -8� [59] �7����'����*�  !���4&��*��./�����*�-'' :A C H� � -�����4&��&*��

<�<��(� -inverse-strongly monotone mapping) $��#4!7����!�
� 0� �  +����7�1�� 
2, ,Au Av u v Au Av�� � � �  

�7����'�"�3  -8���4&�  �*�����*�-''5#*�&�& (nonexpansive mapping)  $�� ,u v C� :T C C�

Tx Ty x y� � �  



5

�7����'�"�3 ,x y C�  -8��7����1�� -���+����!"����������#��������*�  ������� ( )F T T

� �( ) :F T x C Tx x� � �   !���
&�#����8*��!���0�5���*�  �./��7���'�����#������-.�<��1��#���

�4� (1) �0�*��#��� 

u

( )Cu P u Au�� � �#��� 0� �  -8�  �./�6�,��&��&����( metric projection) ����-���

1����0��*�.�2����#������-.�<���./����#��#,��9
�##%8��'.�2��!"����� (Fixed point problems) !���./�

<81��1�.J �.�. 2003  Takahashi -8� Toyoda [52]   5���
�����
94����7�+�7��*�5.�4� �,���������7���'�*�#

����*��!"������������*�-''5#*�&�&-8�<8��8&�����#������-.�<����������,���������7���'��� 

;�&�7����1�� 

CP

( ) ( , )F S V C A� 0x C�  -8��
&�# 87���' � �nx  ;�& 

1 (1 ) ( ) ( 2 )n n n n C n n nx x SP x A x� � �� � � � �  

�7����'�"�3 �#���  �0,1, 2,...,n � � (0,1)n� 	 , � � (0, 2 )n� �	   -8�   �./�����*�-''5#*

�&�&'� ,   �./�6�,��&��&����-8�  �./�  

:S C C�

C :CP H C� :A C H� � -�����4&��&*��<�<�� !������ 

Takahashi -8� Toyoda [52]      �05��,
�%!�
�*�87���' � �nx  +����
&�#;�&�#��� (2)  8%*�����&*���*���%*�#��
�

�*�#���  1�.�
6%#
=
8�'
�
�  ( ) ( , )F T VI C A�

�*�#� Iiduka and Takahashi [15] ��������C�D4'����8%*�����&*�����#�%*�#��
��*�#��� 

 !��5���7�����
94����7�+�7�-''1�#*����4� �7����1�� ( ) ( , )F T VI C A� 0x u C� �  -8��
&�# 87���' � �nx  

;�& 

1 (1 ) ( ) (3 )n n n C n n nx u S P x A x� � �� � � � �  

�7����'�"�3 �#���  �0,1, 2,...,n � � (0,1)n� 	 , � � (0, 2 )n� �	 -8�   �./�����*�-''5#*�&�&

'� ,   �./�6�,��&��&����-8�  �./�  

:S C C�

C :CP H C� :A C H� � -�����4&��&*��<�<��  ���!������

-8��;�&1���
94�����0�+
���������4&� (Extragradeint)  +������� Nadezhkina -8� Takahashi [34] -8� Zeng -8� 

Yao [66] �05��1�����.��#�	�*�-''+�7���
�1�#*�,��������<8��8&�*�#���   �*�#� Yao 

-8� Yao [62] 5��-���7��
94���.��#�	�*�-''+�7��,������#��
���� 

( ) ( , )F T VI C A�

( ) ( , )F T VI C A�  ����4� �7����1�� 

 �./�  :A C H� � -�����4&��&*��<�<�� -8�   �./�����*�-''5#*�&�&+��� 

  

:S C C�

( ) ( , )F T VI A C� 
 �

�7����1�� 0x u C� �  -8��
&�# 87���' � �nx -8� � �ny   ;�& 

1

( )
(4)

( )
n C n n n

n n n n n C n n n

y P x x
x u x SP y Ay

�
� � � ��

� ��

 � � � ��

 

�#��� � � � � � �, ,n n n� � �  �./�87���'���!7����!�
�1��*��.>�   -8� [0,1] � �n�  �./�87���'���!7����!�
�

1��*��.>� [0, 2 ]�   Yao -8� Yao [64] 5��,
�%!�
�*�$��87���' � � � � � �, ,n n n� � �  ����8���������5�'���&*�� 

-8��87���' � �nx -8� � �ny   �
&�#;�& (4) 8%*�����&*�����#�%*!"������*�#����+��7���'���!"������������*�

-''5#*�&�&-8��+����<8��8&�����#������-.�<�� �������   � �nx -8� � �ny  8%*�����&*�����#�%*�#��
�

���   ( ) ( , )F T VI A C�
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�4������.�2������	
������
�4��./��4���1!�������	
������
�8�&��1�.�!!"'����� ���!	�"��
�#$�%	& (equilibrium  problems (EP)) +����#�&$�� ������*���� x C�  +�������8�����'��#����*�5.�4�  

( , ) 0 , ( 5 )F x y y C� � �  

�#����7��������
���;��#���
��%*  -8��+��7���'���.�2����
��"8&6�, (5) ����'��4����!�

��4&�-�����& 

:F C C� ��
( )EP F  $���7��������*�  1�� :T C H� ( , ) ,F x y Tx y x� � � �  �7����'�"�3  ,x y C�  

-8��!�5���*�     �0�*��#���    ����-���1����0��*��7���'���.�2����
��"8

6�,��#��$-��5�'��.�2����#������-.� ���!��-8��!���0��*�.�2���*��3 1�����>�
��
 ����1����

����?�����
 '���&*����#��$-.8��./��#���������#��� 1���&%*1��%.��#��� (5) ������������<8��8&

�������.��#�	�*����.�2����
��"8&6�, (5) $���./����-��5�.�2��1�����>�
��
 ����1����

����?�����
5���4��������� +�����#��$�%5��!�������������
� [4] , [12] -8� [33]  ;�&1�.J 1997 Combettes 

-8� Hirstoaga [10]  5����
�#��������-8�1���
94���.��#�	�*�-''+�7�1����.��#�	�*��4��4�4��"��,���5.��

�

( )z EP F� , 0,Tz y z y C� � � � � �

7���' (solutions) 1����'.�2����
��"8&6�, -8�5��,
�%!�
�C�D4'����8%*�����&*�����# �,���������7���'�*�#

��� ( ) ( )EP F F T�  -8��#�����0�3�4� Takahashi -8� Takahashi [53]  !��5��������
94���.��#�	�*�-''

���� (viscosity approximation method) 1�.�
6%#
=
8�'
�
� ;�&�7����1��  �./�����*�-''5#*

�&�& -8�1��   

:S C C�

1x C�  -8��
&�#87���' { }nx -8� {  ;�& }nu

1

1( ,  )  , 0,

( ) (1 )

n n n n
n

n n n n n

F u y y u u x y C
r

x f x Su� ��

� � � � � � ��


� � � ��

 

�7����'�"�3  �#��� { }n�� [0,1]n� 	  -8� { }  6�&1��������5��4���#���#'���&*���7����'87���'  (0, )nr 	 �

� � � �,n n� �  Takahashi -8� Takahashi [53] 5��,
�%!�
�*� { }nx  -8�  8%*�����&*�����#�%*!"������*�# 

 �#���  ;�&1��-���
�����8*�� �*�#�1�.J �.�. 2007 Su, Shang -8� 

Qin [47] 5��������
94���.��#�	�*�-''+�7�-''1�#*�,������7���'�*�#����*��   �+����!"������������*�

-''5#*�&�&       �+��7���'�����#������-.����  (�#��� 

{ }nu

( ) ( )z F T EP F� � ( ) ( ) ( )F T EP Fz P f z��

( )F S ( , )VIP A C A  �./�����*�-'' 

� � inverse-strongly monotone) -8� �+��7���'���.�2����
��"8&6�, ( )EP F  1�.�
6%#
=
8�'
�
� ;�&

�7����1��  1x C�  -8��
&�#87���';�& 

   

1

1( ,  )  , 0,

( ) (1 ) ( ), 1

n n n n
n

n n n n c n n n

F u y y u u x y C
r

x f x SP u Au n� � ��

� � � � � � ��


� � � � � ��

 

-8� Su, Shang -8� Qin [13] 5��,
�%!�
{ }nx  -8�  8%*�����&*�����#�%*!"������*�# 

 �#��� 

{ }nu

( ) ( ) ( , )z F T EP F VI A C� � � ( ) ( ) ( , ) ( )F T EP F VI A Cz P f z� ��  -8��#�����0�3 �4� Plubtieng -8� 

Punpaeng [40]    5���7������
94���-��5�.�2����
��"8&6�,;�&1���
94�����0�+
���������4&�-''1�#*+���

-���*��!�� Su, Shang -8� Qin [47]    ;�&<�#-���
���� Takahashi -8� Takahashi [53] -8� Yao -8� 

Yao [65] ����4� �7����  1x C�  -8��
&�#87���' � �{ },n nx y  -8� {  ����4� }nu
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1

1( ,  )  , 0,

( ),
( )

n n n n
n

n C n n n

n n n n n C n n n

F u y y u u x y C
r

y P u u
x u x SP y Ay

�
� � � ��

� � � � � � ��
�� � �

� � � � ��
��

(6)  

�#��� � � � � � �, ,n n n� � �  �./�87���'���!7����!�
�1��*��.>�   -8� [0,1] � �n�  �./�87���'���!7����!�
�

1��*��.>� [0, 2 ]�  +��� Plubtieng -8� Punpaeng [41] 5��,
�%!�
�*�$��87���' � � � � � �, ,n n n� � �  ����8���

������5�'���&*�� -8��87���' � �nx -8� � �ny   �
&�#;�& (6) 8%*�����&*�����#�%*!"������*�#����+��7���'���!"�

�����������*�-''5#*�&�& �+����<8��8&�����#������-.�<�� -8� �+��7���'���.�2����
��"8&6�, 

1��4�������������.�2��!"������4��./��4���1!�������	
������
 ��� ���1���
94���.��#�	�*��,���

.��&"��
1��1����-�� ���!	'�	�����#� (minimization problem) +����./��4����'����4�*�.�2���*����&�"��4�#4

'�'���7���21����,�@��������������
�&������
'�
�"�9
G -8� �
�&������
.��&"��
  .�2���*����&�"�

�#�&$�� ������*���� x C�  +��� �7�1�� 
( )

1min , ,
2x F S
Ax x x b

�
�  #4!�
� �#��� b H�     �./�����*�-''5#*

�&�&'�.�
6%#
=
8�'
�
� 

S

H  -8� A  �./�����7���
������
������4�#4��'���-8�#4�*��./�'���&*�����#'� H   

(strongly positive bounded linear operator on H )  1�.J�.�. 2003 Xu [58]  5���7������
94���.��#�	�*�

�7���'���.�2���*����&�"� ;�&�7�����*���
�#��� 0x u H� �  -8��
&�#87���' � �nx  ;�&���#��#,��9


����4�  

1 ( ) , 0n n n nx I A Sx u n (7)� �� � � � �  

�#��� � �n�  �./�87���'1��*��   � �0,1 A   -8�  ����
&�#����'� !������ Xu [18]   �05��,
�%!�
�*�87���' S � �nx  

�4��
&�#;�& (7) 8%*�����&*�����#5.&��<8��8&��4�&� (unique solution) ���.�2���*����&�"��4�5���8*��5.-8�� 

!������ Marino -8� Xu [30] 5��1�����#�
�!���
94���.��#�	�*�-''����(viscosity approximation 

methods) ��� Moudafi [32] -8� Xu [58] ;�&�7������
94���.��#�	�*�-''1�#*����4�    �
&�#87���' � �nx  

;�&���#��#,��9
 

1 ( ) ( ), 0n n n n nx I A Sx f x n (8)� � �� � � � �  

�#��� � �n�  �./�87���'1��*�� � �   0,1 A   -8�  ����
&�#����'� !������ Marino -8� Xu [30] �05��,
�%!�
�*�

87���' �
S

�nx  �4��
&�#;�& (8) 8%*�����&*�����#5.&��<8��8&��4�&������#���-.�<�� 

(9 )  * *( ) , 0 ,A f x x x x C�� � � �

+����./�������5��4��7���21����-��.�2���*����&�"� 
1min , ( )
2x C
Ax x h x

�
�  �#���  �./�����
���;,�����4&8 

(potential function) �7����' 

h

f�  ������� '( ) ( ),h x f x x H�� � �  -8��#�����0�3 �4� ;�&����&-�����#�
�

!�� Takahashi -8� Takahashi [53] -8�  Marino -8� Xu [30] �./�<81��  Plubtieng -8� Punpaeng [41]  5��

�7������
94���.��#�	�*�-''1�#*����#�1�#*1�.�
6%#
=
8�'
�
� H  ����4� �7����1��  �./��+�&*�&.>��%�

���

C

H  -8�1���*���
�#���  1x C�   �
&�#87���'  { }nx  -8� {  ;�& }nu
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1

1( ,  )  , 0,
(10)

( ) (1 ) , 1

n n n n
n

n n n n n

F u y y u u x y C
r

x f x A Su n� ��

� � � � � � ��


� � � � ��

 

-8� Plubtieng -8� Punpaeng [41]  5��,
�%!�
{ }nx  -8�  8%*�����&*�����#�%*!"������*�# 

 �#���   

{ }nu

( ) ( )z F T EP F� � ( ) ( ) ( )F T EP Fz P f z��

 !��-��-���4��8*��#������#�!���0�5���,4&�-�*���.��#�	�*�!"�����������������*�-''5#*�&�& 

-�*.�2���*��3 1�����	
������
����#��!�,'��'�8�&3����*�-''5#*&�&  !7��./��&*��&
���4�!�,�@����

�
94���.��#�	�*�-''+�7��,���1��1����������7���'�*�#���87���'�������*�-''5#*�&�& ����87���'���

����*�-''5#*��
�������
�����3  !�����#�7���2����4��./�<81�� 1�.J 2008 Yao, Liou -8� Yao [65]   5��

�7������
94���.��#�	�*�-''+�7��7����'���.��#�	�*�����7���'�*�#���87���'�������*�-''5#*�&�& 

;�&�7����1�� � �nW �./�87���'�������*�-''5#*�&�&�4��*��7���
�;�&87���'�������*�-''5#*�&�& � �nS  

-8��
&�#87���' { }nx  -8� {  ;�& }nu

1

1( ,  )  , 0,
(11)

( ) , 1

n n n n
n

n n n n n n n n

F u y y u u x y C
r

x f x x W u n� � ��

� � � � � � ��


� � � � ��

 

�#��� � � � � � �, ,n n n� � �  �./�87���'���!7����!�
�1��*��.>�   +��� Yao, Liou -8� Yao [64]   5��,
�%!�


�*�$��87���' 

(0,1)

� � � � � �, ,n n n� � � -8� � �nr  ����8���������5�'���&*�� -8��87���' { }nx  -8�  �
&�#;�& 

(11) 8%*�����&*�����#�%*�#��
��*�#����*�� �+��7���'���!"������*�#���87���'�������*�-''5#*�&�& 

{ }nu

� �nS  

-8� �+��7���'���.�2����
��"8&6�, ���!������-8�� Yao, Liou -8� Chen [61]  &��.��&"��
1���
94���

.��#�	�*�-''+�7��7����'���.��#�	�*�����7���'�*�#���87���'�������*�-''5#*�&�& � �nS  �4�

��#��$-��5�.�2���*����&�"�5�� ����4�  

1 1, ( ) ((1 ) ) , 1 (12)n n n n n n n n nx H x f x x I A W x n� � � � ��� � � � � � �  

-8� Yao, Liou -8� Chen [61]  5��,
�%!�
�*�87���' � �nx  �4��
&�#;�& (12) 8%*�����&*�����#5.&�� 

<8��8&��4�&����'����#���-.�<�� 

!��<8����
!�&�*��3 �4��8*��#��������!���0��*�,�@�����1��������
94���.��#�	�*�����5��$%��
����

�&%*��#�3 1�.�
6%#
�4�-���*�����5. !���./����"<8�4��7�1��<%��
!�&��������4�!�����������7������
94���

.��#�	�*�-''1�#*3 �,���1����#��$.��&"��
1����'.�2������	
������
1��%.-''�*��3 ����'��.�2��

1���� �>�
��
 -8� �������?�����
 5��#������ ,���#����&���./�����*�1����
����
���#�%�  �����C�D41�#*3 

1��������
������
��
�����
���������������3 �4���4�&�����  
 

 



CHAPTER 2

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results that will be used in the later

chapters.

2.1 Basic results

Throughout this thesis, we let R stand for the set of all real numbers and N the set of all natural numbers.

Definition 2.1. Let X be a nonempty set. A mapping d : X × X −→ R, satisfying the following condition

for all x, y and z in X:

(M1) d(x, y) = 0⇐⇒ x = y;

(M2) d(x, y) = d(y, x);

(M2) d(x, y) ≤ d(x, z) + d(z, y).

The function d assigns to each pair (x, y) of element of X a nonnegative real number d(x, y), which

does not on the order of the elements; d(x, y) is called the distance between x and y. The set X together

with a metric, denoted by (X, d), is called a metric space. The conditions (M1)-(M3) are usually called the

metric axioms.

Definition 2.2. Let X be a linear space over the field K (R or C). A function

‖ · ‖ : X −→ R is said to be a norm on X if it satisfies the following conditions:

(N1) ‖x‖ ≥ 0,∀x ∈ X;

(N2) ‖x‖ = 0⇔ x = 0;

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X;

(N4) ‖αx‖ = |α|‖x‖, ∀x ∈ X and ∀α ∈ K.

From this norm we can define a metric, induced by the norm ‖ · ‖, by

d(x, y) = ‖x − y‖, (x, y ∈ X).

A linear space X equipped with the norm ‖ · ‖ is called a normed linear space.

Definition 2.3. Let (X, ‖ · ‖) be a normed space.

(1) A sequence {xn} ⊂ X is said to converge strongly in X if there exists x ∈ X such that lim
n−→∞ ‖xn−

x‖ = 0. That is, if for any ε > 0 there exists a positive integer N such that ‖xn − x‖ < ε,∀n ≥ N. We often

write lim
n−→∞xn = x or xn −→ x to mean that x is the limit of the sequence {xn}.

(2) A sequence {xn} ⊂ X is said to be a Cauchy sequence if for any ε > 0 there exists a positive

integer N such that ‖xm − xn‖ < ε,∀ m,n ≥ N . That is, {xn} is a Cauchy sequence in X if and only if

‖xm − xn‖ −→ 0 as m,n −→ ∞.

Definition 2.4. A normed space X is called complete if every Cauchy sequence in X converges to an element

in X.
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Definition 2.5. A complete normed linear space over field K is called a Banach space over K.

Definition 2.6. Let F and X be linear spaces over the field K.

(1) A mapping T : F −→ X is called a linear operator if T (x+y) = Tx+Ty and T (αx) = αTx,∀x, y ∈
F, and ∀α ∈ K.

(2) A mapping T : F −→ K is called a linear functional on F if T is a linear operator.

Definition 2.7. A sequence {xn} in a normed spaces is said to converge weakly to some vector x if

limn−→∞ f(xn) = f(x) holds for every continuous linear functional f . We often write xn ⇀ x to mean

that {xn} converges weakly to x.

Definition 2.8. Let F and X be normed spaces over the field K and T : X −→ F a linear operator. T is

said to be bounded on X if there exists a real number M > 0 such that ‖T (x)‖ ≤ M‖x‖,∀x ∈ X.

Definition 2.9. Sequence {xn}∞n=1 in a normed linear space X is said to be a bounded sequence if there

exists M > 0 such that ‖xn‖ ≤ M, ∀n ∈ N.

Definition 2.10. Let F and X be normed spaces over the field K, T : F −→ X an operator and c ∈ F .

We say that T is continuous at c if for every ε > 0 there exists δ > 0 such that ‖T (x)− T (c)‖ < ε whenever

‖x − c‖ < δ and x ∈ F . If T is continuous at each x ∈ F , then T is said to be continuous on F.

Definition 2.11. Let X and Y be normed spaces. The mapping T : X −→ Y is said to be completely

continuous if T (C) is a compact subset of Y for every bounded subset C of X.

Definition 2.12. A subset C of a normed linear space X is said to be convex subset in X if λx+(1−λ)y ∈ C

for each x, y ∈ C and for each scalar λ ∈ [0, 1].
Definition 2.13. The real-value function of two variables 〈·, ·〉 : X × X −→ R is called inner product on a

real vector space X if for any x, y, z ∈ X and α, β ∈ R the following conditions are satisfied:

(I1) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉;

(I2) 〈x, y〉 = 〈y, x〉;

(I3) 〈x, x〉 ≥ 0 for each x ∈ X and 〈x, x〉 = 0 if and only if x = 0. A real inner product space is a

real vector space equipped with an inner product.

Definition 2.14. A Hilbert spaces is an inner product space which is complete under the norm induced

by its inner product.

An inner product on X defines a norm on X given by ‖x‖ =√〈x, x〉.
Lemma 2.15. [51](The Schwarz inequality)

If x and y are any two vector in an inner product space X, then

|〈x, y〉| ≤ ‖x‖‖y‖.

Lemma 2.16. [52] Let H be a real Hilbert space. Then the following inequalities hold:

(i) ‖x+ y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2,

(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉,

(iii)‖x+ y‖2 ≥ ‖x‖2 + 2〈y, x〉,

(iv) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x − y‖2, ∀λ ∈ [0, 1].
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Definition 2.17. A sequence of points xn in a Hilbert space H is said to converge weakly to a point x in

H if limn−→∞〈xn, y〉 = 〈x, y〉 for all y ∈ H. The notation xn ⇀ x is sometimes used to denote this kind of

convergence.

Definition 2.18. The metric (or nearest point) projection from H onto C is the mapping PC : H −→ C

which assigns to each point x ∈ C the unique point PCx ∈ C satisfying the property

‖x − PCx‖ = inf
y∈C

‖x − y‖ =: d(x,C)

Lemma 2.19. [52] Let C be a closed convex subset of a real Hilbert space H. Given x ∈ H and y ∈ C.

Then

(i) z = PCx ⇐⇒ 〈z − x, y − x〉 ≥ 0, ∀y ∈ C,

(ii) ‖PCx − PCy‖ ≤ ‖x − y‖, ∀x, y ∈ H,

(iii) ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉, ∀x, y ∈ H,

(iv) 〈x − PCx, y − PCx〉 ≤ 0, ∀x ∈ H, y ∈ C,

(v) ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C.

2.2 The Classical of Fixed Point Theory

Definition 2.20. An element x ∈ C is said to be a fixed point of a mapping S : C −→ C proved Sx = x.

The set of all fixed points of S is denoted by F (S) = {x ∈ C : Sx = x}.
Definition 2.21. Let H be a Hilbert space and let C a nonempty bounded convex subset of H. A mapping

S : C −→ C is called nonexpansive on C if

‖Sx − Sy‖ � ‖x − y‖, ∀x, y ∈ C.

Lemma 2.22. [52] Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H.

Let S be a nonexpansive mapping of C into itself. Then, F (S) �= ∅.
Definition 2.23. Let H be a Hilbert space and let C a nonempty bounded convex subset of H. A mapping

f : C −→ C is called a contraction on C if there exists a constant α ∈ [0, 1) such that

‖f(x)− f(y)‖ � α‖x − y‖, ∀x, y ∈ C.

Theorem 2.24. [52] (The Banach Contraction Principle)

Let X be a complete metric space and f a contraction of X into itself. Then f has a unique fixed point, in

the sense that f(u) = u for some u ∈ X.

Let (X, d) be a metric space, C ⊂ X a closed subset of X and S : C −→ C a selfmap possessing at

least one fixed point p ∈ F (S). For a given x0 ∈ X, we consider the sequence of iterates {xn}∞n=0 determined

by the successive iterative method

xn+1 = Sxn = Snx0, ∀n ≥ 0. (2.1)

We are interested in obtaining(additional) conditions on S, C and X, as general as possible, and

which should guarantee the (strong) convergence of the {xn}∞n=0 to a fixed point of S in X.

As we already mentioned, the sequence defined by (2.1) is known as the sequence of successive

approximations or, simply, Picard iteration.
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2.3 Some Nonlinear Mappings

Definition 2.25. A mapping S : C −→ C is called strictly pseudo-contractive if there exists a constant

0 ≤ k < 1 such that

‖Sx − Sy‖2 ≤ ‖x − y‖2 + k‖(I − S)x − (I − S)y‖2, ∀x, y ∈ C.

Remark 2.26. If k = 0, then S is nonexpansive.

In this case, we say that S : C −→ C is a k-strictly pseudo-contraction.

Putting B = I − S. Then, we have

‖(I − B)x − (I − B)y‖2 ≤ ‖x − y‖2 + k‖Bx − By‖2, ∀x, y ∈ C.

Observe that

‖(I − B)x − (I − B)y‖2 = ‖x − y‖2 + ‖Bx − By‖2 − 2〈x − y, Bx − By〉, ∀x, y ∈ C.

Hence, we obtain

〈x − y, Bx − By〉 ≥ 1− k

2
‖Bx − By‖2, ∀x, y ∈ C.

Then, B is 1−k
2 -inverse-strongly monotone mapping.

Lemma 2.27. [32] Assume that C is a closed convex subset of Hilbert space H, and let S : C → C be a

self-mapping of C

(i) If S is a k-strict pseudo-contraction, then S satisfies the Lipscchitz condition

‖Sx − Sy‖ ≤ 1 + k

1− k
‖x − y‖ ∀x, y ∈ C.

(ii) If S is a k-strict pseudo-contraction, then the mapping I−S is demiclosed(at 0). That is, if {xn}
is a sequence in C such that xn ⇀ x̃ and (I − S)xn → 0, then(I − S)x̃ = 0.

(iii) If S is a k-strict pseudo-contraction, then the fixed point set F (S) of S is closed and convex so

that the projection PF (S) is well defined.

Lemma 2.28. [69] Let C be a nonempty closed convex subset of a real Hilbert space H and let S : C −→ C

be a k-strict pseudo-contraction mapping with a fixed point. Then F (S) is closed and convex. Define Sk :

C −→ C by Sk = kx+ (1− k)Sx for each x ∈ C. Then Sk is nonexpansive such that F (Sk) = F (S).

Let C be a subset of a Banach space E and let {Tn} be a family of mappings from C into E. For a

subset B of C, we say that

(a) ({Tn}, B) satisfies condition AKTT if
∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞.

(b) ({Tn}, B) satisfies condition *AKTT if
∞∑

n=1

sup{‖JTn+1z − JTnz‖ : z ∈ B} < ∞.
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For more information, see Aoyama et al. [3].

Lemma 2.29. (Aoyama et al. [3, Lemma 3.2]). Let C be a nonempty closed convex subset of E. Suppose

that
∑∞

n=1 sup{(‖Tn+1z − Tnz‖) : z ∈ C} < ∞. Then, for each y ∈ C, {Tny} converges strongly to some

point of C. Moreover, let T be a mapping of C into itself defined by

Ty = lim
n→∞Tny for all y ∈ C.

Then limn→∞ sup{‖Tz − Tnz‖ : z ∈ C} = 0.

Inspired by Lemma 2.29, Nilsrakoo and Saejung [36] proved the following results.

Lemma 2.30. (Nilsrakoo and Saejung [36]). Let E be a reflexive and strictly convex Banach space whose

norm is Fréchet differentiable, let C be a nonempty subset of a Banach space E and let {Tn} be a sequence

of mappings from C into E. Let B be a subset of C with ({Tn}, B) satisfies condition *AKTT, then there

exists a mapping T̂ : B → E such that

T̂ x = lim
n−→∞Tnx, for all x ∈ B

and lim supn−→∞{‖JT̂ z − JTnz‖ : z ∈ B} = 0.

Lemma 2.31. (Nilsrakoo and Saejung [36]). Let E be a reflexive and strictly convex Banach space whose

norm is Fréchet differentiable, let C be a nonempty subset of Banach space E and let {Tn} be a sequence of

mappings from C into E. Suppose that for each bounded subset B of C, the ordered pair ({Tn}, B) satisfies

either condition AKTT or condition *AKTT. Then there exists a mapping T : B → E such that

Tx = lim
n−→∞Tnx, for all x ∈ C.

Lemma 2.32. (Kamimura and Takahashi [25]). Let E be a uniformly convex and smooth real Banach

space and let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then

‖xn − yn‖ → 0.

Lemma 2.33. (Alber [2]). Let C be a nonempty closed convex subset of a smooth real Banach space E and

x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C. (2.2)

Lemma 2.34. (Alber [2]). Let E be a reflexive, strictly convex, and smooth real Banach space, let C be a

nonempty closed convex subset of E and let x ∈ E. Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C. (2.3)

Lemma 2.35. (Matsushita and Takahashi [30]). Let E be a strictly convex and smooth real Banach space,

let C be a closed convex subset of E, and let T be a hemi-relatively nonexpansive mapping from C into itself.

Then F(T) is closed and convex.

Lemma 2.36. (Cho et al. [9]). Let X be a uniformly convex Banach space and Br(0) be a closed ball of

X. Then there exists a continuous strictly increasing convex function g : [0,∞)→ [0,∞) with g(0) = 0 such

that

‖λx+ μy + γz‖2 ≤ λ‖x‖2 + μ‖y‖2 + γ‖z‖2 − λμg(‖x − y‖)
for all x, y, z ∈ Br(0) and λ, μ, γ ∈ [0, 1] with λ+ μ+ γ = 1.
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Lemma 2.37. (Kamimura and Takahashi [25]). Let E be a uniformly convex and smooth Banach space and

let r > 0. Then there exists a continuous, strictly increasing, and convex function g : [0, 2r] → [0,∞) such

that g(0) = 0 and

g(‖x − y‖) ≤ φ(x, y),

for all x, y ∈ Br = {z ∈ E : ‖z‖ ≤ r}.

We make use of the following mapping V studied in Alber [2]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, (2.4)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1(x∗)) and V (x, J(y)) = φ(x, y).

Lemma 2.38. (Kohsaka and Takahashi [27, Lemma 3.2]). Let E be a reflexive, strictly convex and smooth

Banach space and let V be as in (2.4). Then

V (x, x∗) + 2〈J−1(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.

2.4 Variational inequality problem

Definition 2.39. Let B : C −→ H be a nonlinear mapping. The variational inequality problem is to find

x ∈ C such that

〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (2.5)

We denote by V I(C,B) the set of solutions of the variational inequality problem, that is,

V I(C, B) = {x ∈ C : 〈Bx, y − x〉 ≥ 0, ∀y ∈ C}. (2.6)

Lemma 2.40. [52] Let H be Hilbert space, let C be a nonempty closed convex subset of H and let B be a

mapping of C into H. Let u ∈ C. Then, for λ > 0,

u ∈ V I(C, B)⇐⇒ u = PC(u − λBu),

where PC is the metric projection of H onto C.

Remark 2.41. It is clear from Lemma 2.40 that the variational inequality and fixed point problem are equiv-

alent. This alternative equivalent formulation has played a significant role in the studies of the variational

inequalities and related optimization problems.

Definition 2.42. Let B : C −→ H be a nonlinear mapping. Then, B is called

(1) monotone if 〈Bx − By, x − y〉 ≥ 0, ∀x, y ∈ C,

(2) v-strongly monotone if there exists a positive real number v such that

〈Bx − By, x − y〉 ≥ v‖x − y‖2, ∀x, y ∈ C,

for constant v > 0. This implies that ‖Bx−By‖ ≥ v‖x− y‖, that is, A is v-expansive and when v = 1, it is

expansive.

(3) L-Lipschitz continuous if there exists a positive real number L such that

‖Bx − By‖ ≤ L‖x − y‖, ∀x, y ∈ C,
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(4) ξ-inverse-strongly monotone if there exists a positive real number ξ such that

〈Bx − By, x − y〉 ≥ u‖Bx − By‖2, ∀x, y ∈ C.

Clearly, every ξ-inverse-strongly monotone map B is 1
ξ -Lipschitz continuous,

(5) relaxed (u, v)-cocoercive, if there exists a positive real number u, v such that

〈Bx − By, x − y〉 ≥ (−u)‖Bx − By‖2 + v‖x − y‖2, ∀x, y ∈ C,

for u = 0, A is v-strongly monotone. This class of maps is more general that the class of strongly monotone

maps. It is easy to see that we have the following implication: v-strongly monotonicity implying relaxed

(u, v)-cocoercivity.

Lemma 2.43. [52] Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of. Let

ξ > 0 and let B : C −→ B be ξ-inverse strongly monotone. Then, V I(C,B) �= ∅.
Definition 2.44. A set-valued mapping T : H −→ 2H is called monotone if for all x, y ∈ H, f ∈ Tx and

g ∈ Ty imply 〈x − y, f − g〉 ≥ 0.

Definition 2.45. A monotone mapping T : H −→ 2H is maximal if the graph of G(T ) of T is not properly

contained in the graph of any other monotone mapping.

Remark 2.46. It is known that a monotone mapping T is maximal if and only if for (x, f) ∈ H × H,

〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx.

Lemma 2.47. [45] Let B be a monotone mapping of C into H and let NCw1 be the normal cone to C at

w1 ∈ C, i.e.,

NCw1 = {w ∈ H : 〈w1 − w2, w〉 ≥ 0, ∀w2 ∈ C}
and define a mapping T on C by

Tw1 =

{
Bw1 +NCw1, w1 ∈ C;

∅, w1 /∈ C.

Then, T is the maximal monotone and 0 ∈ Tw1 if and only if w1 ∈ V I(C,B).

2.5 Equilibrium Problems

Definition 2.48. Let F be a bifunction of C×C into R, where R is the set of real numbers. The equilibrium

problem for F : C × C −→ R is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (2.7)

The set of solutions of (2.7) is denoted by EP (F ), that is,

EP (F ) = {x ∈ C : F (x, y) ≥ 0, ∀y ∈ C}.

Given a mapping B : C −→ H, let F (x, y) = 〈Bx, y − x〉 for all x, y ∈ C. Then, z ∈ EP (F ) if and

only if 〈Bz, y − z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of the variational inequality.

Let � = {Fk}k∈Λ be a family of bifunctions from C×C into R, where R is the set of real numbers. The

system of equilibrium problems for � = {Fk}k∈Λ is to determine common equilibrium points for � = {Fk}k∈Λ

such that

Fk(x, y) ≥ 0, ∀k ∈ Λ ∀y ∈ C, (2.8)
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where Λ is an arbitrary index set. The set of solutions of (2.8) is denoted by SEP (�), that is,

SEP (�) = {
x ∈ C : Fk(x, y) ≥ 0, ∀k ∈ Λ ∀y ∈ C

}
. (2.9)

If Λ is a singleton, then the problem (2.8) is reduced to the problem (2.7).

Definition 2.49. For solving the equilibrium problem, let us assume that the bifunction F satisfies the

following conditions (see [4]):

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;

(A3) F is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t−→0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) F (x, ·) is convex and lower semicontinuous for each x ∈ C.

Definition 2.50. Let B : C −→ H be a nonlinear mapping and F be a bifunction of C × C into R. The

generalized equilibrium problem is to find x ∈ C such that

F (x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (2.10)

The set of solution of (2.10) is denoted by GEP (F, B), that is,

GEP (F, B) =
{
x ∈ C : F (x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C

}
.

In the case of B ≡ 0 (:the zero mapping), then the problem (2.10) is reduced to the problem (2.7).

In the case of F ≡ 0, the problem (2.10) is reduced to the classical variational inequality problem (2.5).

Definition 2.51. The domain of the function ϕ : C −→ R ∪ {+∞} is the set

domϕ = {x ∈ C : ϕ(x) < +∞}.

Let ϕ : C −→ R be a real-valued function and F : C×C −→ R be an equilibrium bifunction, i.e., F (x, x) = 0

for each x ∈ C. The mixed equilibrium problem which is to find x ∈ C such that

F (x, y) + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C. (2.11)

The set of solution of (2.11) is denoted by MEP (F, ϕ), that is,

MEP (F,ϕ) =
{
x ∈ C : F (x, y) + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C

}
.

In particular, if ϕ ≡ 0, this problem reduces to the equilibrium problems (2.7).

Definition 2.52. For solving the mixed equilibrium problem, let us give the following assumptions for the

bifunction F , the function ϕ and the set C:

(A1)-(A4) (in Definition 2.49);

(A5) for each y ∈ C, x �→ F (x, y) is weakly upper semicontinuous;

(B1) for each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C such that for any

z ∈ C \ Dx,

F (z, yx) + ϕ(yx)− ϕ(z) +
1
r
〈yx − z, z − x〉 < 0; (2.12)

(B2) C is a bounded set.
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Definition 2.53. Let ϕ : C −→ R∪{+∞} be a proper extended real-valued function and let F be a bifunction

of C × C into R such that C ∩ domϕ �= ∅, where R is the set of real numbers and domϕ = {x ∈ C : ϕ(x) <

+∞}.
The generalized mixed equilibrium problem for finding x ∈ C such that

F (x, y) + 〈Bx, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C. (2.13)

The set of solutions of (2.13) is denoted by GMEP (F, ϕ,B), that is,

GMEP (F, ϕ,B) =
{
x ∈ C : F (x, y) + 〈Bx, y − x〉
+ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C

}
.

We see that x is a solution of a problem (2.13) implies that x ∈ domϕ = {x ∈ C : ϕ(x) < +∞}. If
B ≡ 0, the problem (2.13) is reduced into the mixed equilibrium problem. If ϕ ≡ 0, the problem (2.13) is

reduced into the generalized equilibrium problem. If B ≡ 0 and ϕ ≡ 0, the problem (2.13) is reduced into

the equilibrium problem. If F ≡ 0 and ϕ ≡ 0, the problem (2.13) is reduced into the variational inequality

problem.

The generalized mixed equilibrium problems include fixed point problems, variational inequality prob-

lems, optimization problems, Nash equilibrium problems and the equilibrium problem as special cases.

Numerous problems in physics, optimization and economics reduce to find a solution of (2.13). In 1997,

Combettes and Hirstoaga [10] introduced an iterative scheme of finding the best approximation to initial

data when EP (F ) is nonempty and proved a strong convergence theorem. Many authors have proposed some

useful methods for solving the GMEP (F,ϕ, B), GEP (F,B), MEP (F,ϕ) and EP (F ); see, for instance [7],

[10], [12], [16], [18], [19], [20], [21], [22], [23], [24], [29], [37], [44], [49], [54], [55], [58], [65].

Definition 2.54. Let A be a strongly positive linear bounded operator on H if there is a constant γ̄ > 0

with property

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.

Lemma 2.55. [32]. Let C be a nonempty closed convex subset of H and let f be a contraction of H into

itself with α ∈ (0, 1), and A be a strongly positive linear bounded operator on H with coefficient γ̄ > 0. Then

, for 0 < γ < γ̄
α , 〈

x − y, (A − γf)x − (A − γf)y
〉
≥ (γ̄ − αγ)‖x − y‖2, x, y ∈ H.

That is, A − γf is strongly monotone with coefficient γ̄ − αγ.

Lemma 2.56. [32]. Assume A be a strongly positive linear bounded operator on H with coefficient γ̄ > 0

and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ̄.

Lemma 2.57. [1]. Let C be a closed convex subset of H. Let {xn} be a bounded sequence in H. Assume

that

(i) The weak ω-limit set ωw(xn) ⊂ C,

(ii) For each z ∈ C, limn−→∞ ‖xn − z‖ exists. Then, {xn} is weakly convergent to a point in C.

Lemma 2.58. [38]. Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence {xn} ⊂ H

with xn ⇀ x, the inequality lim infn−→∞ ‖xn −x‖ < lim infn−→∞ ‖xn − y‖, holds for each y ∈ H with y �= x.

Lemma 2.59. [52]. Each Hilbert space H, satisfies the Kadec-Klee property, that is, for any sequence

{xn} with xn ⇀ x and ‖xn‖ −→ ‖x‖ together imply ‖xn − x‖ −→ 0.
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Lemma 2.60. [50] Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be a sequence

in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1. Suppose xn+1 = (1− βn)yn + βnxn for all integers

n ≥ 0 and lim supn−→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖yn − xn‖ = 0.

Lemma 2.61. [13](Demiclosedness Principle)

Let H be a Hilbert space, C a closed convex subset of H, and S : C −→ C a nonexpansive mapping with

F (S) �= ∅. If {xn} is a sequence in C weakly converging to x ∈ C and if {(I − S)xn} converges strongly to

y, then (I − S)x = y.

Lemma 2.62. [60] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 1,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that
∑∞

n=1 αn =∞, lim supn−→∞
δn

αn
≤ 0

or
∑∞

n=1 |δn| < ∞. Then, limn−→∞ an = 0.

Lemma 2.63. [39] Let (H, 〈., .〉) be an inner product space. Then, for all x, y, z ∈ H and α, β, γ ∈ [0, 1]

with α+ β + γ = 1, we have

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x − y‖2 − αγ‖x − z‖2 − βγ‖y − z‖2.



CHAPTER 3

MAIN RESULTS

3.1 Equilibrium Problems in Hilbert spaces

3.1.1 Weak Convergence Theorems

In this section, we prove a weak convergence theorem for finding a common element of the set of solutions of

an equilibrium problem, the set of solutions of a variational inequality problem and the set of fixed points of

a nonexpansive mapping in a real Hilbert space. Before proving our theorem, we need the following lemmas.

Lemma 3.1. [4] Let C be a nonempty closed convex subset of H and let F be a bifunction of C ×C into R

satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C. (3.1)

Lemma 3.2. [10] Let F : C × C −→ R satisfies (A1)-(A4). For r > 0 and x ∈ H, define a mapping

Tr : H −→ C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all z ∈ H. Then, the following hold:

1. Tr is single-valued;

2. Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;

3. F (Tr) = EP (F );

4. EP (F ) is closed and convex.

Lemma 3.3. [53] Let H be a real Hilbert space, let {αn} be a sequence of real numbers such that 0 < a ≤
αn ≤ b < 1 for all n = 0, 1, 2, ..., and let {vn} and {wn} be sequences of H such that lim supn−→∞ ‖vn‖ ≤ c,

lim supn−→∞ ‖wn‖ ≤ c and limn−→∞ ‖αnvn+(1−αn)wn‖ = c, for some c ≥ 0, then limn−→∞ ‖ vn−wn‖ =
0.

Lemma 3.4. [53] Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let

{xn} be a sequence in H. Suppose that, for all u ∈ C,

‖xn+1 − u‖ ≤ ‖xn − u‖

for every n = 0, 1, 2, . . .. Then, the sequence {PC(xn)} converges strongly to some z ∈ C, where PC stands

for the metric projection of H onto C.

Now, we show the following weak convergence theorem which solves the problem of finding a common

element of the set of solutions of an equilibrium problem, the set of solutions of a variational inequality

problem and the set of fixed points of a nonexpansive mapping in a real Hilbert space.
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Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction

from C × C −→ R satisfying (A1)-(A4), let A be a monotone, k-Lipschitz continuous mapping of C into

H and let S be a nonexpansive mapping of C into itself such that F (S) ∩ V I(C, A) ∩ EP (F ) �= ∅. Suppose

x1 = u ∈ C and {xn}, {yn} and {un} are given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
un ∈ C such that F (un, y) +

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = αnSxn + (1− αn)PC(un − λnAyn), ∀n ∈ N,

(3.2)

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for some c, d ∈ (0, 1) and {rn} ⊂ (0,∞)

satisfies lim infn−→∞ rn > 0. Then, {xn} converges weakly to p ∈ F (S) ∩ V I(C,A) ∩ EP (F ), where

p = limn→∞ PF (S)∩V I(C,A)∩EP (F )xn.

Proof. By Lemma 3.26, {xn}, {yn} and {un} are well-defined. We divide the proof into five steps.
Step 1. We claim that {xn} is bounded.

Indeed, let x∗ ∈ F (S) ∩ V I(C,A) ∩ EP (F ) and let {Trn
} be a sequence of mappings defined as in

Lemma 3.2. Then, x∗ = PC(x∗ − λnAx∗) = Trnx∗ and un = Trnxn. So, we have

‖un − x∗‖2 = ‖Trnxn − Trnx∗‖2 ≤ ‖xn − x∗‖2. (3.3)

Put vn = PC(un − λnAyn). Then, from Lemma 2.19 (v) and the monotonicity of A, we have

‖vn − x∗‖2 ≤ ‖un − λnAyn − x∗‖2 − ‖un − λnAyn − vn‖2

= ‖un − x∗‖2 − ‖un − vn‖2 + 2λn〈Ayn, x∗ − vn〉
= ‖un − x∗‖2 − ‖un − vn‖2

+2λn

(〈Ayn − Ax∗, x∗ − yn〉+ 〈Ax∗, x∗ − yn〉+ 〈Ayn, yn − vn〉
)

≤ ‖un − x∗‖2 − ‖un − vn‖2 + 2λn〈Ayn, yn − vn〉
= ‖un − x∗‖2 − ‖un − yn‖2 − 2〈un − yn, yn − vn〉 − ‖yn − vn‖2

+2λn〈Ayn, yn − vn〉
= ‖un − x∗‖2 − ‖un − yn‖2 − ‖yn − vn‖2

+2〈un − λnAyn − yn, vn − yn〉.

Moreover, since yn = PC(un − λnAun) and Lemma 2.19 (iv), we have

〈un − λnAun − yn, vn − yn〉 ≤ 0. (3.4)

Since A is k-Lipschitz continuous, from (3.4) we obtain that

〈un − λnAyn − yn, vn − yn〉
= 〈un − λnAun − yn, vn − yn〉+ 〈λnAun − λnAyn, vn − yn〉
≤ 〈λnAun − λnAyn, vn − yn〉
≤ λn‖Aun − Ayn‖‖vn − yn‖
≤ λnk‖un − yn‖‖vn − yn‖.
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Thus, we have

‖vn − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − yn‖2 − ‖yn − vn‖2

+2λnk‖un − yn‖‖vn − yn‖
≤ ‖un − x∗‖2 − ‖un − yn‖2 − ‖yn − vn‖2

+λ2
nk2‖un − yn‖2 + ‖vn − yn‖2

= ‖un − x∗‖2 + (λ2
nk2 − 1)‖un − yn‖2 (3.5)

≤ ‖un − x∗‖2,

and hence

‖vn − x∗‖ ≤ ‖un − x∗‖ ≤ ‖xn − x∗‖. (3.6)

Thus, by (3.3) and (3.5), we can calculate

‖xn+1 − x∗‖2

= ‖αn(Sxn − x∗) + (1− αn)(vn − x∗)‖2

≤ αn‖Sxn − x∗‖2 + (1− αn)‖vn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)
{
‖un − x∗‖2 + (λ2

nk2 − 1)‖un − yn‖2
}

≤ αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖un − yn‖2

= ‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖un − yn‖2 (3.7)

≤ ‖xn − x∗‖2.

Since the sequence {‖xn − x∗‖} is a bounded and nonincreasing sequence, there exists

c = lim
n→∞ ‖xn − x∗‖ (3.8)

and hence {xn} is bounded. Consequently, the sets {un} and {vn} are also bounded.
Step 2. We claim that limn−→∞ ‖Sxn − xn‖ = 0.
Indeed, let x∗ ∈ F (S) ∩ V I(C,A) ∩ EP (F ). Then, we obtain that

‖un − x∗‖2 = ‖Trnxn − Trnx∗‖2

≤ 〈Trnxn − Trnx∗, xn − x∗〉 = 〈un − x∗, xn − x∗〉
=

1
2
(‖un − x∗‖2 + ‖xn − x∗‖2 − ‖xn − un‖2

)
.

Therefore, ‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2. Thus, we can calculate

‖xn+1 − x∗‖2 = ‖αn(Sxn − x∗) + (1− αn)(vn − x∗)‖2

≤ αn‖Sxn − x∗‖2 + (1− αn)‖vn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖un − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)
{
‖xn − x∗‖2 − ‖xn − un‖2

}
= ‖xn − x∗‖2 − (1− αn)‖xn − un‖2,

and hence

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1− αn)‖un − xn‖2.

Since 0 < c ≤ αn ≤ d < 1, it follows that

(1− d)‖xn − un‖2 ≤ (1− αn)‖xn − un‖2

= ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.9)
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From (3.8) and (3.9), we have

lim
n−→∞ ‖xn − un‖ = 0. (3.10)

Since lim infn−→∞ rn > 0, we obtain

lim
n−→∞

∥∥∥∥xn − un

rn

∥∥∥∥ = 0. (3.11)

From (3.7), we also have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖un − yn‖2.

It follows that

(1− αn)(1− λ2
nk2)‖un − yn‖ ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

So, we have

‖un − yn‖ ≤ 1
(1− αn)(1− λ2

nk2)
(‖xn − x∗‖2 − ‖xn+1 − x∗‖2). (3.12)

Hence,

lim
n−→∞ ‖un − yn‖ = 0. (3.13)

From (3.10) and (3.13), we also have

‖xn − yn‖ ≤ ‖xn − un‖+ ‖un − yn‖ −→ 0 as n −→ ∞. (3.14)

Note that

‖yn − vn‖2 = ‖PC(un − λnAun)− PC(un − λnAyn)‖2

≤ ‖(un − λnAun)− (un − λnAyn)‖2

= λ2
n‖Aun − Ayn‖2 ≤ λ2

nk2‖un − yn‖2 ≤ ‖un − yn‖2.

Hence,

lim
n−→∞ ‖yn − vn‖ = 0.

From

‖xn − vn‖ ≤ ‖xn − yn‖+ ‖yn − vn‖,
we also have

lim
n−→∞ ‖xn − vn‖ = 0.

Since ‖Sxn − x∗‖ ≤ ‖xn − x∗‖, from (3.6) and (3.8) we have

lim sup
n−→∞

‖Sxn − x∗‖ ≤ c and lim sup
n−→∞

‖vn − x∗‖ ≤ c.

Furthermore, we have

lim
n−→∞ ‖αn(Sxn − x∗) + (1− αn)(vn − x∗)‖ = lim

n−→∞ ‖xn+1 − x∗‖ = c.

By Lemma 3.3, we obtain

lim
n−→∞ ‖Sxn − vn‖ = 0.

Also, we have

‖Sxn − xn‖ ≤ ‖Sxn − vn‖+ ‖vn − xn‖.
Therefore, we get

lim
n→∞ ‖Sxn − xn‖ = 0.

Step 3. We claim that, for a subsequence {xni
} of {xn} such that xni

⇀ p, p ∈ V I(C,A)∩EP (F )∩F (S).
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Since {xn} is bounded, there exists a subsequence {xni} of {xn} which converges weakly to some
p ∈ H. We first prove p ∈ EP (F ). Since un = Trn

xn, we have

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have
1
rn

〈y − un, un − xn〉 ≥ F (y, un)

and hence 〈
y − uni ,

uni − xni

rni

〉
≥ F (y, uni).

From (3.10), we get uni
⇀ p. Moreover, we have p ∈ C. In fact, if C is closed and convex, then C is weakly

closed. Therefore, from {xni
} ⊂ C, we obtain p ∈ C. From (3.11) and (A4), it follows that 0 ≥ F (y, p) for

all y ∈ C. For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)p. From y ∈ C and p ∈ C, we have yt ∈ C

and hence F (yt, p) ≤ 0. So, by (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, p) ≤ tF (yt, y)

and hence 0 ≤ F (yt, y). From (A3), we have 0 ≤ F (p, y) for all y ∈ C and hence p ∈ EP (F ). Next,

we prove that p ∈ F (S). Let x∗ ∈ F (S) ∩ V I(C, A) ∩ EP (F ). From the demiclosedness (Lemma 2.61)

of I − S, we know that xni
⇀ p and limn−→∞ ‖Sxn − xn‖ = 0 mean p ∈ F (S). Finally, we show that

p ∈ V I(C, A). By using the same argument in the proof of Theorem 3.5, we can get p ∈ V I(C,A). So, we

have p ∈ V I(C, A) ∩ EP (F ) ∩ F (S).

Step 4. We claim that xn ⇀ p as n −→ ∞. Let {xnj
} be another subsequence of {xn} such that xnj

⇀ p′.

Then, we have p′ ∈ F (S)∩V I(C, A)∩EP (F ). We may show that p = p′. Assume that p �= p′. From Opial’s

condition, we get p = p′. This implies that

xn ⇀ p ∈ F (S) ∩ V I(C, A) ∩ EP (F ).

Step 5. Finally, we prove p = limn→∞ PF (S)∩V I(C,A)∩EP (F )xn.

Let zn = PF (S)∩V I(C,A)∩EP (F )xn and z ∈ F (S) ∩ V I(C, A) ∩ EP (F ). Then, we have from (3.6)

‖xn+1 − z‖ = ‖αn(Sxn − z) + (1− αn)[PC(un − λnAyn)− z]‖
≤ αn‖Sxn − z‖+ (1− αn)‖vn − z‖
≤ αn‖xn − z‖+ (1− αn)‖xn − z‖
= ‖xn − z‖.

By Lemma 3.4, we obtain that {zn} converges strongly to some p0 ∈ F (S) ∩ V I(C, A) ∩EP (F ). Since 〈p−
zn, zn−xn〉 ≥ 0, we have 〈p−p0, p0−p〉 ≥ 0, and hence p = p0. So, we have that p = limn−→∞ PF (S)∩V I(C,A)∩EP (F )xn.

This completes the proof.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction

from C ×C −→ R satisfying (A1)-(A4) and let A be a monotone, k-Lipschitz continuous mapping of C into

H such that V I(C, A) ∩ EP (F ) �= ∅. Suppose x1 = u ∈ C and {xn}, {yn} and {un} are given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
un ∈ C such that F (un, y) +

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = αnxn + (1− αn)PC(un − λnAyn), ∀n ∈ N,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for some c, d ∈ (0, 1) and {rn} ⊂ (0,∞) satisfies

lim infn−→∞ rn > 0. Then, {xn} converges weakly to p ∈ V I(C, A)∩EP (F ), where p = limn−→∞ PV I(C,A)∩EP (F )xn.
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Proof. Putting S = I , by Theorem 3.5, we obtain the desired result.

3.1.2 Strong Convergence Theorems

In this section, we show a strong convergence theorem which solves the problem of finding a common element

of the set of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium problem and the

set of solutions of a variational inequality problem for a monotone, k-Lipschitz continuous mapping in a

Hilbert space by using the hybrid extragradient method.

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction

from C ×C into R satisfying (A1)-(A4) and let A be a monotone, k-Lipschitz continuous mapping of C into

H. Let S be a nonexpansive mapping from C into itself such that F (S)∩ V I(C, A)∩EP (F ) �= ∅. Let {xn},
{yn}, {wn} and {un} be sequences generated by x0 ∈ C and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un ∈ C such that F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

wn = αnSxn + (1− αn)PC(un − λnAyn),

Cn = {z ∈ C : ‖wn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ∈ N,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for some c, d ∈ (0, 1) and {rn} ⊂ (0,∞) satisfies

lim infn−→∞ rn > 0. Then, {xn} converges strongly to PF (S)∩V I(C,A)∩EP (F )x0.

Proof. We first show that the sequence {xn} is well-defined. From the definitions of Cn and Qn, it is

obvious that Cn is closed and Qn is closed and convex for each n ∈ N ∪ {0}. Since Cn = {z ∈ C :

‖wn − xn‖2 + 2〈wn − xn, xn − z〉 ≤ 0}, we deduce that Cn is convex for all n ∈ N ∪ {0}. So, Cn ∩ Qn is

closed and convex for any n ∈ N ∪ {0}. Let x∗ ∈ F (S) ∩ V I(C, A) ∩ EP (F ), and let {Trn
} be a sequence of

mappings defined as in Lemma 3.2. Then, x∗ = PC(x∗ − λnAx∗) = Trnx∗ and un = Trnxn. So, we have

‖un − x∗‖ = ‖Trn
xn − Trn

x∗‖ ≤ ‖xn − x∗‖. (3.15)

Put vn = PC(un − λnAyn). From Lemma 2.19 (v) and the monotonicity of A, we have

‖vn − x∗‖2 ≤ ‖un − λnAyn − x∗‖2 − ‖un − λnAyn − vn‖2

= ‖un − x∗‖2 − ‖un − vn‖2 + 2λn〈Ayn, x∗ − vn〉
= ‖un − x∗‖2 − ‖un − vn‖2

+2λn

(〈Ayn − Ax∗, x∗ − yn〉+ 〈Ax∗, x∗ − yn〉+ 〈Ayn, yn − vn〉
)

≤ ‖un − x∗‖2 − ‖un − vn‖2 + 2λn〈Ayn, yn − vn〉
= ‖un − x∗‖2 − ‖un − yn‖2 − 2〈un − yn, yn − vn〉 − ‖yn − vn‖2

+2λn〈Ayn, yn − vn〉
= ‖un − x∗‖2 − ‖un − yn‖2 − ‖yn − vn‖2

+2〈un − λnAyn − yn, vn − yn〉.

Moreover, from yn = PC(un − λnAun) and Lemma 2.19 (iv), we have

〈un − λnAun − yn, vn − yn〉 ≤ 0. (3.16)
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Since A is k-Lipschitz continuous, from (3.16) we obtain that

〈un − λnAyn − yn, vn − yn〉
= 〈un − λnAun − yn, vn − yn〉+ 〈λnAun − λnAyn, vn − yn〉
≤ 〈λnAun − λnAyn, vn − yn〉 ≤ λnk‖un − yn‖‖vn − yn‖.

So, we have

‖vn − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − yn‖2 − ‖yn − vn‖2

+2λnk‖un − yn‖‖vn − yn‖
≤ ‖un − x∗‖2 − ‖un − yn‖2 − ‖yn − vn‖2

+λ2
nk2‖un − yn‖2 + ‖vn − yn‖2

= ‖un − x∗‖2 + (λ2
nk2 − 1)‖un − yn‖2 (3.17)

≤ ‖un − x∗‖2,

and hence

‖vn − x∗‖ ≤ ‖un − x∗‖ ≤ ‖xn − x∗‖. (3.18)

Thus, from (3.17) we have

‖wn − x∗‖2

= ‖αn(Sxn − x∗) + (1− αn)(vn − x∗)‖2

≤ αn‖Sxn − x∗‖2 + (1− αn)‖vn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)
{
‖un − x∗‖2 + (λ2

nk2 − 1)‖un − yn‖2
}

≤ αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖un − yn‖2

= ‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖un − yn‖2 ≤ ‖xn − x∗‖2. (3.19)

So, we have x∗ ∈ Cn and hence

F (S) ∩ V I(C, A) ∩ EP (F ) ⊂ Cn for all n ∈ N ∪ {0}. (3.20)

Next, we show that

F (S) ∩ V I(C, A) ∩ EP (F ) ⊂ Cn ∩ Qn for all n ∈ N ∪ {0}. (3.21)

We prove this by induction. For n = 0, we have F (S) ∩ V I(C, A) ∩ EP (F ) ⊂ C0 and Q0 = C. So, we get

F (S) ∩ V I(C,A) ∩ EP (F ) ⊂ C0 ∩ Q0.

Suppose that F (S) ∩ V I(C, A) ∩ EP (F ) ⊂ Ck ∩ Qk for k ∈ N ∪ {0}. Then, there exists a unique element
xk+1 ∈ Ck ∩ Qk such that xk+1 = PCk∩Qk

x0. Therefore, for each z ∈ Ck ∩ Qk, we also have

〈xk+1 − z, x0 − xk+1〉 ≥ 0.

Since F (S) ∩ V I(C, A) ∩ EP (F ) ⊂ Ck ∩ Qk for any z ∈ F (S) ∩ V I(C,A) ∩ EP (F ) we obtain

〈xk+1 − z, x0 − xk+1〉 ≥ 0

and hence z ∈ Qk+1. It follows that F (S) ∩ V I(C,A) ∩ EP (F ) ⊂ Qk+1. This together with (3.20) gives

F (S) ∩ V I(C, A) ∩ EP (F ) ⊂ Ck+1 ∩ Qk+1.
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This implies that {xn} is well-defined. From Lemma 3.26, the sequence {un} is also well-defined.

Since F (S) ∩ V I(C,A) ∩ EP (F ) is a nonempty closed convex subset of H, there exists a unique

z′ ∈ F (S) ∩ V I(C,A) ∩ EP (F ) such that

z′ = PF (S)∩V I(C,A)∩EP (F )x0.

From xn+1 = PCn∩Qnx0, we obtain

‖xn+1 − x0‖ ≤ ‖z − x0‖ for all z ∈ Cn ∩ Qn and all n ∈ N ∪ {0}.

Since z′ ∈ F (S) ∩ V I(C, A) ∩ EP (F ) ⊂ Cn ∩ Qn, we have

‖xn+1 − x0‖ ≤ ‖z′ − x0‖ for all n ∈ N ∪ {0}. (3.22)

Therefore, {xn} is bounded. From (3.18) and (3.19), {un}, {vn} and {wn} are also bounded. Since xn =

PQnx0 and xn+1 ∈ Qn, we have

‖x0 − xn‖ ≤ ‖x0 − xn+1‖
for every n ∈ N∪{0}. Hence, the sequence {‖x0−xn‖} is bounded and nondecreasing. So, limn−→∞ ‖x0−xn‖
exists. Since xn = PQn

x0, xn+1 ∈ Qn and
xn+xn+1

2 ∈ Qn, we have

‖x0 − xn‖2 ≤
∥∥∥∥x0 − xn + xn+1

2

∥∥∥∥2

=
∥∥∥∥12(x0 − xn) +

1
2
(x0 − xn+1)

∥∥∥∥2

=
1
2
‖x0 − xn‖2 +

1
2
‖x0 − xn+1‖2 − 1

4
‖xn − xn+1‖2.

So, we obtain
1
4
‖xn − xn+1‖2 ≤ 1

2
‖x0 − xn+1‖2 − 1

2
‖x0 − xn‖.

Since limn−→∞ ‖x0 − xn‖ exists, this implies that

lim
n−→∞ ‖xn − xn+1‖ = 0. (3.23)

From xn+1 ∈ Cn, we have

‖xn − wn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − wn‖ ≤ 2‖xn − xn+1‖.

By (3.23), we obtain

lim
n−→∞ ‖xn − wn‖ = 0. (3.24)

Next, let x∗ ∈ F (S) ∩ V I(C, A) ∩ EP (F ). Then, as in the proof of Theorem 3.5, we obtain that

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 − (1− αn)‖un − xn‖2.

Since 0 < c ≤ αn ≤ d < 1, it follows that

(1− d)‖xn − un‖2 ≤ (1− αn)‖xn − un‖2

= ‖xn − x∗‖2 − ‖wn − x∗‖2

= (‖xn − x∗‖+ ‖wn − x∗‖)(‖xn − x∗‖ − ‖wn − x∗‖)
≤ ‖xn − wn‖(‖xn − x∗‖+ ‖wn − x∗‖).
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Since {xn} and {wn} are bounded, from (3.24) we have that

lim
n−→∞ ‖xn − un‖ = 0. (3.25)

Since lim infn−→∞ rn > 0, we obtain

lim
n−→∞

∥∥∥∥xn − un

rn

∥∥∥∥ = 0.
For x∗ ∈ F (S) ∩ V I(C,A) ∩ EP (F ), from (3.19) we obtain

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖un − yn‖2.

Therefore, we have

‖un − yn‖
≤ 1

(1− αn)(1− λ2
nk2)

(‖xn − x∗‖2 − ‖wn − x∗‖2)

=
1

(1− αn)(1− λ2
nk2)

(‖xn − x∗‖+ ‖wn − x∗‖)(‖xn − x∗‖ − ‖wn − x∗‖)

≤ 1
(1− αn)(1− λ2

nk2)
‖xn − wn‖(‖xn − x∗‖+ ‖wn − x∗‖).

So, by (3.24) we obtain

lim
n−→∞ ‖un − yn‖ = 0. (3.26)

Since ‖xn − yn‖ ≤ ‖xn − un‖+ ‖un − yn‖, from (3.25) and (3.26), we also have

lim
n−→∞ ‖xn − yn‖ = 0. (3.27)

From ‖vn − yn‖ ≤ ‖un − yn‖ and (3.26), we obtain

lim
n−→∞ ‖vn − yn‖ = 0. (3.28)

From (3.26) and (3.28), we also have

lim
n−→∞ ‖un − vn‖ = 0. (3.29)

From (3.27) and (3.28), we also have

lim
n−→∞ ‖xn − vn‖ = 0. (3.30)

From (3.24) and (3.30), we also have

lim
n−→∞ ‖wn − vn‖ = 0. (3.31)

Since αn(Sxn − xn) = αn(vn − xn) + (wn − vn) and 0 < c ≤ αn ≤ d < 1, it follows that

c‖Sxn − xn‖ ≤ αn‖Sxn − xn‖
≤ αn‖vn − xn‖+ ‖wn − vn‖.

From (3.30) and (3.31), we obtain

lim
n−→∞ ‖Sxn − xn‖ = 0. (3.32)

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} which converges weakly to z. From (3.25),

we obtain also that uni
⇀ z. Since {uni

} ⊂ C and C is closed and convex, C is weakly closed and hence

z ∈ C. We will show that z ∈ EP (F ). Since un = Trnxn, we have

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.
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From (A2), we also have
1
rn

〈y − un, un − xn〉 ≥ F (y, un)

and hence 〈
y − un,

un − xn

rn

〉
≥ F (y, un).

From un−xn

rn
−→ 0, uni ⇀ z and (A4), we have

0 ≥ F (y, z), ∀y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have yt ∈ C and hence

F (yt, z) ≤ 0. So, by (A1) and (A4), we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, z) ≤ tF (yt, y)

and hence 0 ≤ F (yt, y). From (A3), we have 0 ≤ F (z, y) for all y ∈ C and hence z ∈ EP (F ). Let

us show that z ∈ F (S). Assume z /∈ F (S). From Opial’s condition (Lemma 2.58) and (3.32), we have

z ∈ F (S). On the other hand, as in the proof of Theorem 3.5, we obtain z ∈ V I(C, A). So, we have

z ∈ F (S) ∩ V I(C, A) ∩ EP (F ).

Finally, we show that xn −→ z′, where z′ = PF (S)∩V I(C,A)EP (F )x0. From xni
⇀ z, the lower

semicontinuity of the norm and (3.22), we have that

‖z′ − x0‖ ≤ ‖z − x0‖ ≤ lim inf
i−→∞

‖xni
− x0‖ ≤ lim sup

i−→∞
‖xni

− x0‖ ≤ ‖z′ − x0‖.

Thus, we obtain limi−→∞ ‖xni
− x0‖ = ‖z − x0‖ = ‖z′ − x0‖. Using the Kadec-Klee property (Lemma 2.59)

of H, we obtain that

lim
i−→∞

xni
= z = z′.

Since {xni
} is an arbitrary weakly convergent subsequence of {xn}, we can conclude that {xn} converges

strongly to z′, where z′ = PF (T )∩V I(C,A)∩EP (F )x0.

Corollary 3.8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction

from C ×C into R satisfying (A1)-(A4) and let A be a monotone, k-Lipschitz continuous mapping of C into

H such that V I(C, A) ∩ EP (F ) �= ∅. Let {xn} and {un} be sequences generated by x0 ∈ C and let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un ∈ C such that F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

wn = αnxn + (1− αn)PC(un − λnAyn),

Cn = {z ∈ C : ‖wn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

x0, ∀n ∈ N,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for some c, d ∈ (0, 1) and {rn} ⊂ (0,∞) satisfies

lim infn−→∞ rn > 0. Then, {xn} converges strongly to PV I(C,A)∩EP (F )x0.

Proof. Putting S = I, by Theorem 3.7 we obtain the desired result.

We first prove that the following Lemmas.
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Lemma 3.9. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H and let A : C −→
H be α-inverse-strongly monotone. If 0 ≤ λn ≤ 2α, then I − λnA is a nonexpansive mapping in H.

Proof. See [16, 20]

Now, we prove the following main Theorem.

Theorem 3.10. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction

from C × C −→ R satisfying (A1)-(A4) and A : C −→ H be an α-inverse-strongly monotone mapping. Let

f : C −→ C be a contraction with coefficient k (0 ≤ k < 1) and S be a nonexpansive mappings of C into

itself such that F (S) ∩ V I(C, A) ∩ EP (F ) �= ∅. Suppose x1 ∈ C and {xn}, {yn} and {un} are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = βnf(xn) + (1− βn)SPC(un − λnAun),

xn+1 = αnxn + (1− αn)yn, ∀n ≥ 1,

(3.33)

where {αn}, {βn} are two sequence in [0, 1] and {λn} is a sequence in [0, 2α]. If {αn}, {βn} and {λn}
are chosen so that λn ∈ [a, b] for some a, b with 0 < a ≤ λn ≤ b < 2α and {rn} ⊂ (0,∞) satisfying the

conditions:

(C1) limn−→∞ βn = 0 and
∑∞

n=1 βn =∞,

(C2) 0 < lim infn−→∞ αn ≤ lim supn−→∞ αn < 1,

(C3)
∑∞

n=1 |λn+1 − λn| < ∞ and
∑∞

n=1 |βn+1 − βn| < ∞,

(C4) lim infn−→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn| < ∞.

Then, {xn} and {un} converge strongly to q ∈ F (S)∩V I(C,A)∩EP (F ), where q = PF (S)∩V I(C,A)∩EP (F )f(q).

Proof. See [16].

3.1.3 An Infinite Family of Nonexpansive Mappings

In this section, we prove the strong convergence theorem of an iterative algorithm based on extragradient

method which solves the problem of finding a common element of the set of fixed point of an infinite family of

nonexpansive mappings, the set of solution of a equilibrium problems and the set of solution of a variational

inequality problem for a inverse-strongly monotone mapping in a real Hilbert space.

Definition 3.11. [8]. Let {Tn}∞n=1 be an infinite family of nonexpansive mappings of C into itself and let

{μn} be a sequence of nonnegative numbers in [0,1]. For each n ≥ 1, define a mapping Wn of C into itself



30

as follows:

Un,n+1 = I,

Un,n = μnTnUn,n+1 + (1− μn)I,

Un,n−1 = μn−1Tn−1Un,n + (1− μn−1)I,

... (3.34)

Un,k = μkTkUn,k+1 + (1− μk)I,

Un,k−1 = μk−1Tk−1Un,k + (1− μk−1)I,

...

Un,2 = μ2T2Un,3 + (1− μ2)I,

Wn = Un,1 = μ1T1Un,2 + (1− μ1)I.

Such a mappings Wn is nonexpansive from C to C and it is called the W -mapping generated by T1, T2, ..., Tn

and μ1, μ2, ..., μn.

For each n, k ∈ N, let the mapping Un,k be defined by (3.34). Then we can have the following crucial

conclusions concerning Wn. You can find them in [46]. Now we only need the following similar version in

Hilbert spaces.

Lemma 3.12. [46]. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1, T2, ... be

nonexpansive mappings of C into itself such that ∩∞
n=1F (Tn) is nonempty, let μ1, μ2, ... be real numbers such

that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, for every x ∈ C and k ∈ N, the limit limn−→∞ Un,kx exists.

Using Lemma 3.12, one can define a mapping W of C into itself as follows:

Wx = lim
n−→∞Wnx = lim

n−→∞Un,1x (3.35)

for every x ∈ C. Such a W is called the W -mapping generated by T1, T2, ... and μ1, μ2, .... Throughout this

thesis, we will assume that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, we have the following results.

Lemma 3.13. [46]. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1, T2, ... be

nonexpansive mappings of C into itself such that ∩∞
n=1F (Tn) is nonempty, let μ1, μ2, ... be real numbers such

that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, F (W ) = ∩∞
n=1F (Tn).

Lemma 3.14. [63]. If {xn} is a bounded sequence in C, then limn−→∞ ‖Wxn − Wnxn‖ = 0.

Theorem 3.15. Let C be a nonempty closed convex subset of a real Hilbert space H, let F be a bifunction

from C×C to R satisfying (A1)-(A4), let {Tn} be an infinite family of nonexpansive of C into itself and let B

be an β-inverse-strongly monotone mapping of C into H such that Θ := ∩∞
n=1F (Tn)∩EP (F )∩V I(C, B) �= ∅.

Let f be a contraction of H into itself with α ∈ (0, 1) and let A be a strongly positive linear bounded operator

on H with coefficient γ̄ > 0 and 0 < γ < γ̄
α . Let {xn}, {yn}, {kn} and {un} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C chosen arbitrary,

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnBun),

kn = αnun + (1− αn)PC(un − λnByn),

xn+1 = εnγf(xn) + βnxn +
(
(1− βn)I − εnA

)
Wnkn, ∀n ≥ 1,

(3.36)
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where {Wn} is the sequence generated by (3.34)and {εn}, {αn}, {βn} are three sequences in (0, 1) and {rn}
is a real sequence in (0,∞) satisfy the following conditions:

(i) limn−→∞ εn = 0,
∑∞

n=1 εn =∞,

(ii) limn−→∞ αn = 0 and
∑∞

n=1 αn =∞,

(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(iv) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0,

(v) {λn

β } ⊂ (τ, 1− δ) for some τ, δ ∈ (0, 1) and limn→∞ λn = 0.

Then, {xn} converges strongly to a point z ∈ Θ which is the unique solution of the variational inequality〈
(A − γf)z, x − z

〉
≥ 0, ∀x ∈ Θ. (3.37)

Equivalently, we have z = PΘ(I − A+ γf)(z).

Proof. From [16, 29] it follows that PΘ(I − A + γf) is a contraction of H into itself. Therefore, by the

Banach Contraction Mapping Principle, which implies that there exists a unique element z ∈ H such that

z = PΘ(I − A+ γf)(z).

We will divide the proof into five steps.

Step 1. We claim that {xn} is bounded. Indeed, pick any p ∈ Θ. From the definition of Tr, we note

that un = Trnxn. If follows that

‖un − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖.

Since I − λnB is nonexpansive and p = PC(p − λnBp) from Lemma 2.40, we have

‖yn − p‖ = ‖PC(un − λnBun)− PC(p − λnBp)‖
≤ ‖(un − λnAun)− (p − λnBp)‖
= ‖(I − λnA)un − (I − λnB)p‖
≤ ‖un − p‖ ≤ ‖xn − p‖.

Put vn = PC(un − λnByn). Since p ∈ V I(C,B), we have p = PC(p − λnBp). Substituting x = un − λnAyn

and y = p in Lemma 2.19 (v), we can write

‖vn − p‖2 ≤ ‖un − λnByn − p‖2 − ‖un − λnByn − vn‖2

= ‖un − p‖2 − 2λn〈Byn, un − p〉+ λ2
n‖Byn‖2

−‖un − vn‖2 + 2λn〈Byn, un − vn〉 − λ2
n‖Byn‖2

= ‖un − p‖2 − ‖un − vn‖2 + 2λn〈Byn, p − vn〉
= ‖un − p‖2 − ‖un − vn‖2 + 2λn〈Byn − Bp, p − yn〉

+2λn〈Bp, p − yn〉+ 2λn〈Byn, yn − vn〉. (3.38)

Using the fact that B is β-inverse-strongly monotone mapping and p is a solution of the variational inequality

problem V I(C,B), we also have

〈Byn − Bp, p − yn〉 ≤ 0 and 〈Bp, p − yn〉 ≤ 0. (3.39)
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It follows from (3.38) and (3.39) that

‖vn − p‖2

≤ ‖un − p‖2 − ‖un − vn‖2 + 2λn〈Byn, yn − vn〉
= ‖un − p‖2 − ‖(un − yn) + (yn − vn)‖2 + 2λn〈Byn, yn − vn〉
≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2 − 2〈un − yn, yn − vn〉

+2λn〈Byn, yn − vn〉
= ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2

+2〈un − λnByn − yn, vn − yn〉. (3.40)

Substituting x by un − λnBun and y = vn in Lemma 2.19 (iv), we obtain

〈un − λnBun − yn, vn − yn〉 ≤ 0.

It follows that

〈un − λnByn − yn, vn − yn〉 = 〈un − λnBun − yn, vn − yn〉
+ 〈λnBun − λnByn, vn − yn〉

≤ 〈λnBun − λnByn, vn − yn〉
≤ λn‖Bun − Byn‖‖vn − yn‖
≤ λn

β
‖un − yn‖‖vn − yn‖. (3.41)

Substituting (3.41) into (3.40), we have

‖vn − p‖2 ≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2 + 2〈un − λnByn − yn, vn − yn〉
≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2 + 2

λn

β
‖un − yn‖‖vn − yn‖

≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2 +
λ2

n

β2
‖un − yn‖2 + ‖vn − yn‖2

= ‖un − p‖2 − ‖un − yn‖2 +
λ2

n

β2
‖un − yn‖2

= ‖un − p‖2 +
(λ2

n

β2
− 1

)
‖un − yn‖2 (3.42)

≤ ‖un − p‖2 ≤ ‖xn − p‖2.

Setting kn = αnun + (1− αn)vn, we can calculate

‖xn+1 − p‖
=

∥∥∥εn

(
γf(xn)− Ap

)
+ βn(xn − p) +

(
(1− βn)I − εnA

)
(Wnkn − p)

∥∥∥
≤ (1− βn − εnγ̄)‖kn − p‖+ βn‖xn − p‖+ εn‖γf(xn)− Ap‖
≤ (1− βn − εnγ̄)

{
αn‖un − p‖+ (1− αn)‖vn − p‖}

+βn‖xn − p‖+ εn‖γf(xn)− Ap‖
≤ (1− βn − εnγ̄)

{
αn‖xn − p‖+ (1− αn)‖xn − p‖}

+βn‖xn − p‖+ εn‖γf(xn)− Ap‖
= (1− βn − εnγ̄)‖xn − p‖+ βn‖xn − p‖+ εn‖γf(xn)− Ap‖
= (1− εnγ̄)‖xn − p‖+ εnγ‖f(xn)− f(p)‖+ εn‖γf(p)− Ap‖
≤ (1− εnγ̄)‖xn − p‖+ εnγα‖xn − p‖+ εn‖γf(p)− Ap‖
= (1− (γ̄ − γα)εn)‖xn − p‖+ (γ̄ − γα)εn

‖γf(p)− Ap‖
γ̄ − γα

.
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By induction that

‖xn − p‖ ≤ max
{
‖x1 − p‖, ‖γf(p)− Ap‖

γ̄ − γα

}
, n ∈ N.

Hence, {xn} is bounded, so are {un}, {vn}, {Wnkn}, {f(xn)}, {Bun} and {yn}.

Step2. We claim that limn−→∞ ‖xn+1 − xn‖ = 0.
Observing that un = Trn

xn and un+1 = Trn+1xn+1, we get

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0 for all y ∈ H (3.43)

and

F (un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0 for all y ∈ H. (3.44)

Putting y = un+1 in (3.43) and y = un in (3.44), we have

F (un, un+1) +
1
rn

〈un+1 − un, un − xn〉 ≥ 0

and

F (un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

So, from (A2) we have 〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0

and hence 〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)

〉
≥ 0.

Without loss of generality, let us assume that there exists a real number c such that rn > c > 0 for all n ∈ N.

Then, we have

‖un+1 − un‖2 ≤
〈

un+1 − un, xn+1 − xn +
(
1− rn

rn+1

)
(un+1 − xn+1)

〉
≤ ‖un+1 − un‖

{
‖xn+1 − xn‖+

∣∣∣1− rn

rn+1

∣∣∣‖un+1 − xn+1‖
}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+ 1
rn+1

|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+ M1

c
|rn+1 − rn|, (3.45)

where M1 = sup{‖un − xn‖ : n ∈ N}. Note that

‖vn+1 − vn‖ ≤ ‖PC(un+1 − λn+1Byn+1)− PC(un − λnByn)‖
≤ ‖un+1 − λn+1Byn+1 − (un − λnByn)‖
= ‖(un+1 − λn+1Bun+1)− (un − λn+1Bun)

+λn+1(Bun+1 − Byn+1 − Bun) + λnByn‖
≤ ‖(un+1 − λn+1Bun+1)− (un − λn+1Bun)‖

+λn+1(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖) + λn‖Byn‖
≤ ‖un+1 − un‖+ λn+1

(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖
)
+ λn‖Byn‖
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and

‖kn+1 − kn‖
= ‖αn+1un+1 + (1− αn+1)vn+1 − αnun − (1− αn)vn‖
= ‖αn+1(un+1 − un) + (αn+1 − αn)un + (1− αn+1)(vn+1 − vn) + (αn − αn+1)vn‖
≤ αn+1‖un+1 − un‖+ (1− αn+1)‖vn+1 − vn‖+ |αn − αn+1|‖un + vn‖
= αn+1‖un+1 − un‖+ (1− αn+1)

{
‖un+1 − un‖+ λn+1

(‖Bun+1‖+ ‖Byn+1‖

+ ‖Bun‖
)
+ λn‖Byn‖

}
+ |αn − αn+1|‖un + vn‖

= ‖un+1 − un‖+ (1− αn+1)λn+1(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖)
+ (1− αn+1)λn‖Byn‖+ |αn − αn+1|‖un + vn‖

≤ ‖xn+1 − xn‖+ M1

c
|rn+1 − rn|+ (1− αn+1)λn+1(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖)

+ (1− αn+1)λn‖Byn‖+ |αn − αn+1|‖un + vn‖. (3.46)

Setting

zn =
xn+1 − βnxn

1− βn
=

εnγf(xn) +
(
(1− βn)I − εnA

)
Wnkn

1− βn
,

we have xn+1 = (1− βn)zn + βnxn, n ≥ 1. It follows that

zn+1 − zn =
εn+1γf(xn+1) +

(
(1− βn+1)I − εn+1A

)
Wn+1kn+1

1− βn+1

− εnγf(xn) +
(
(1− βn)I − εnA

)
Wnkn

1− βn

=
εn+1

1− βn+1
γf(xn+1)− εn

1− βn
γf(xn) +Wn+1kn+1 − Wnkn

+
εn

1− βn
AWnkn − εn+1

1− βn+1
AWn+1kn+1

=
εn+1

1− βn+1

(
γf(xn+1)− AWn+1kn+1

)
+

εn

1− βn

(
AWnkn − γf(xn)

)
+Wn+1kn+1 − Wn+1kn +Wn+1kn − Wnkn. (3.47)

It follows from (3.46) and (3.47) that

‖zn+1 − zn‖ − ‖xn+1 − xn‖
≤ εn+1

1− βn+1

(‖γf(xn+1)‖+ ‖AWn+1kn+1‖
)

+
εn

1− βn

(‖AWnkn‖+ ‖γf(xn)‖
)
+ ‖Wn+1kn+1 − Wn+1kn‖

+ ‖Wn+1kn − Wnkn‖ − ‖xn+1 − xn‖
≤ εn+1

1− βn+1

(‖γf(xn+1)‖+ ‖AWn+1kn+1‖
)

+
εn

1− βn

(‖AWnkn‖+ ‖γf(xn)‖
)
+ ‖kn+1 − kn‖

+ ‖Wn+1kn − Wnkn‖ − ‖xn+1 − xn‖
≤ εn+1

1− βn+1

(‖γf(xn+1)‖+ ‖AWn+1kn+1‖
)

+
εn

1− βn

(‖AWnkn‖+ ‖γf(xn)‖
)
+

M1

c
|rn+1 − rn|

+(1− αn+1)λn+1

(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖
)

+(1− αn+1)λn‖Byn‖+ |αn − αn+1|‖un + vn‖
+ ‖Wn+1kn − Wnkn‖. (3.48)
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Since Ti and Un,i are nonexpansive, we have

‖Wn+1kn − Wnkn‖ = ‖μ1T1Un+1,2kn − μ1T1Un,2kn‖
≤ μ1‖Un+1,2kn − Un,2kn‖
= μ1‖μ2T2Un+1,3kn − μ2T2Un,3kn‖
≤ μ1μ2‖Un+1,3kn − Un,3kn‖
...

≤ μ1μ2 · · ·μn‖Un+1,n+1kn − Un,n+1kn‖

≤ M2

n∏
i=1

μi, (3.49)

where M2 ≥ 0 is a constant such that ‖Un+1,n+1kn − Un,n+1kn‖ ≤ M2 for all n ≥ 0.

Combining (3.48) and (3.49), we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ εn+1

1− βn+1

(‖γf(xn+1)‖+ ‖AWn+1kn+1‖
)

+
εn

1− βn

(‖AWnkn‖+ ‖γf(xn)‖
)
+

M1

c
|rn+1 − rn|

+(1− αn+1)λn+1

(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖
)

+(1− αn+1)λn‖Byn‖+ |αn − αn+1|‖un + vn‖

+M2

n∏
i=1

μi,

which implies that (noting that (i), (ii), (iii), (iv), (v) and 0 < μi ≤ b < 1,∀i ≥ 1)

lim sup
n−→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖
) ≤ 0.

Hence, by Lemma 2.60, we obtain

lim
n−→∞ ‖zn − xn‖ = 0.

It follows that

lim
n−→∞ ‖xn+1 − xn‖ = lim

n−→∞(1− βn)‖zn − xn‖ = 0. (3.50)

Applying (3.50) and (ii),(iv), (v) to (3.45) and (3.46), we obtain that

lim
n−→∞ ‖un+1 − un‖ = lim

n−→∞ ‖kn+1 − kn‖ = 0. (3.51)

Since xn+1 = εnγf(xn) + βnxn + ((1− βn)I − εnA)Wnkn, we have

‖xn − Wnkn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Wnkn‖
= ‖xn − xn+1‖+

∥∥∥εnγf(xn) + βnxn +
(
(1− βn)I − εnA

)
Wnkn − Wnkn

∥∥∥
= ‖xn − xn+1‖+

∥∥∥εn

(
γf(xn)− AWnkn

)
+ βn(xn − Wnkn)

∥∥∥
≤ ‖xn − xn+1‖+ εn

(‖γf(xn)‖+ ‖AWnkn‖
)
+ βn‖xn − Wnkn‖

that is,

‖xn − Wnkn‖ ≤ 1
1− βn

‖xn − xn+1‖+ εn

1− βn

(‖γf(xn)‖+ ‖AWnkn‖
)
.

By (i), (iii) and (3.50) it follows that

lim
n−→∞ ‖Wnkn − xn‖ = 0. (3.52)

Step 3. We claim that the following statements hold:
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limn−→∞ ‖un − kn‖ = 0 and limn−→∞ ‖xn − un‖ = 0.

For any p ∈ Θ := ∩∞
n=1F (Tn) ∩ EP (F ) ∩ V I(C, B) and (3.42), we have

‖kn − p‖2 = ‖αn(un − p) + (1− αn)(vn − p)‖2

≤ αn‖un − p‖2 + (1− αn)‖vn − p‖2

≤ αn‖un − p‖2 + (1− αn)
{
‖un − p‖2 +

(λ2
n

β2
− 1

)
‖un − yn‖2

}
= ‖un − p‖2 + (1− αn)

(λ2
n

β2
− 1

)
‖un − yn‖2

≤ ‖xn − p‖2 + (1− αn)
(λ2

n

β2
− 1

)
‖un − yn‖2.

‖xn+1 − p‖2

=
∥∥∥((1− βn)I − εnA

)
(Wnkn − p) + βn(xn − p) + εn

(
γf(xn)− Ap

)∥∥∥2

= ‖((1− βn)I − εnA
)
(Wnkn − p) + βn(xn − p)‖2 + ε2n‖γf(xn)− Ap‖2

+2βnεn

〈
xn − p, γf(xn)− Ap

〉
+2εn

〈(
(1− βn)I − εnA

)
(Wnkn − p), γf(xn)− Ap

〉
≤ [

(1− βn − εnγ̄)‖Wnkn − p‖+ βn‖xn − p‖]2 + ε2n‖γf(xn)− Ap‖2

+2βnεn

〈
xn − p, γf(xn)− Ap

〉
+2εn

〈(
(1− βn)I − εnA

)
(Wnkn − p), γf(xn)− Ap

〉
≤ [

(1− βn − εnγ̄)‖kn − p‖+ βn‖xn − p‖]2 + cn

= (1− βn − εnγ̄)2‖kn − p‖2 + β2
n‖xn − p‖2

+2(1− βn − εnγ̄)βn‖kn − p‖‖xn − p‖+ cn

≤ (1− βn − εnγ̄)2‖kn − p‖2 + β2
n‖xn − p‖2

+(1− βn − εnγ̄)βn

(‖kn − p‖2 + ‖xn − p‖2
)
+ cn

=
[
(1− εnγ̄)2 − 2(1− εnγ̄)βn + β2

n

]‖kn − p‖2 + β2
n‖xn − p‖2

+
(
(1− εnγ̄)βn − β2

n

)(‖kn − p‖2 + ‖xn − p‖2
)
+ cn

= (1− εnγ̄)2‖kn − p‖2 − (1− εnγ̄)βn‖kn − p‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)(1− βn − εnγ̄)‖kn − p‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn, (3.53)

where

cn = ε2n‖γf(xn)− Ap‖2 + 2βnεn

〈
xn − p, γf(xn)− Ap

〉
+2εn

〈(
(1− βn)I − εnA

)
(Wnkn − p), γf(xn)− Ap

〉
.

It follows from condition (i) that

lim
n−→∞ cn = 0. (3.54)
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By (3.53), and using (v), we have

‖xn+1 − p‖2

≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖xn − p‖2 + (1− αn)

(λ2
n

β2
− 1

)
‖un − yn‖2

}
+(1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)2‖xn − p‖2

+(1− εnγ̄)(1− βn − εnγ̄)(1− αn)
(λ2

n

β2
− 1

)
‖un − yn‖2 + cn

≤ ‖xn − p‖2 + (1− αn)
(λ2

n

β2
− 1

)
‖un − yn‖2 + cn.

It follows that

(1− αn)δ‖un − yn‖2 ≤ (1− αn)
(
1− λ2

n

β2

)
‖un − yn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + cn

= (‖xn − p‖ − ‖xn+1 − p‖)(‖xn − p‖+ ‖xn+1 − p‖) + cn

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + cn.

Since limn−→∞ cn = 0 and from (3.50), we obtain

lim
n−→∞ ‖un − yn‖ = 0. (3.55)

Note that

kn − vn = αn(un − vn).

Since limn−→∞ αn = 0, we have

lim
n−→∞ ‖kn − vn‖ = 0. (3.56)

From B is 1
β -Lipschitz continuous, we obtain

‖vn − yn‖ = ‖PC(un − λnByn)− PC(un − λnBun)‖
≤ ‖(un − λnByn)− (un − λnBun)‖
= λn‖Bun − Byn‖
≤ λn

β
‖un − yn‖

then we get

lim
n−→∞ ‖vn − yn‖ = 0. (3.57)

From

‖un − kn‖ ≤ ‖un − yn‖+ ‖yn − vn‖+ ‖vn − kn‖.

Applying (3.55), (3.56) and (3.57), we have

lim
n−→∞ ‖un − kn‖ = 0. (3.58)

For any p ∈ Θ, note that Tr is firmly nonexpansive (Lemma 3.2), then we have

‖un − p‖2 = ‖Trn
xn − Trn

p‖2

≤ 〈Trn
xn − Trn

p, xn − p〉
= 〈un − p, xn − p〉
=

1
2
(‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖2)
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and hence

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2.

This together with (3.53) gives

‖xn+1 − p‖2

≤ (1− εnγ̄)(1− βn − εnγ̄)‖kn − p‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)(1− εnγ̄ − βn)
{
‖kn − un‖2 + ‖un − p‖2 + 2〈kn − un, un − p〉

}
+(1− εnγ̄)βn‖xn − p‖2 + cn

≤ (1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2 + (1− εnγ̄)(1− εnγ̄ − βn)‖un − p‖2

+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ (1− εnγ̄)βn‖xn − p‖2 + cn

≤ (1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2

+(1− εnγ̄)(1− εnγ̄ − βn)
{
‖xn − p‖2 − ‖xn − un‖2

}
+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ (1− εnγ̄)βn‖xn − p‖2 + cn

≤ (1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2

+(1− εnγ̄)(1− εnγ̄ − βn)‖xn − p‖2 − (1− εnγ̄)(1− εnγ̄ − βn)‖xn − un‖2

+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ (1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)2‖xn − p‖2 − (1− εnγ̄)(1− εnγ̄ − βn)‖xn − un‖2

+(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2

+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ cn

=
[
1− 2εnγ̄ + (εnγ̄)2

]‖xn − p‖2 − (1− εnγ̄)(1− εnγ̄ − βn)‖xn − un‖2

+(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2

+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ cn

≤ ‖xn − p‖2 + (εnγ̄)2‖xn − p‖2 + (1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2

− (1− εnγ̄)(1− εnγ̄ − βn)‖xn − un‖2

+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ cn.

So, we obtain

(1− εnγ̄)(1− εnγ̄ − βn)‖xn − un‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (εnγ̄)2‖xn − p‖2

+(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2

+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ cn

= (‖xn − p‖ − ‖xn+1 − p‖)(‖xn − p‖+ ‖xn+1 − p‖)
+ (εnγ̄)2‖xn − p‖2 + (1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2

+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ cn

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + (εnγ̄)2‖xn − p‖2

+(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖2

+2(1− εnγ̄)(1− εnγ̄ − βn)‖kn − un‖‖un − p‖+ cn.

Using εn −→ 0, cn −→ 0 as n −→ ∞, (3.50) and (3.58), we obtain

lim
n−→∞ ‖xn − un‖ = 0 (3.59)
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Since lim infn−→∞ rn > 0, we obtain

lim
n−→∞ ‖xn − un

rn
‖ = lim

n−→∞
1
rn

‖xn − un‖ = 0. (3.60)

Observe that

‖Wnun − un‖ ≤ ‖Wnun − Wnkn‖+ ‖Wnkn − xn‖+ ‖xn − un‖
≤ ‖un − kn‖+ ‖Wnkn − xn‖+ ‖xn − un‖.

Applying (3.52), (3.58) and (3.59) to the last inequality, we obtain

lim
n−→∞ ‖Wnun − un‖ = 0. (3.61)

Let W be the mapping defined by (3.35). Since {un} is bounded, applying Lemma 3.14 and (3.61), we have

‖Wun − un‖ ≤ ‖Wun − Wnun‖+ ‖Wnun − un‖ −→ 0 as n −→ ∞. (3.62)

Step 4. We claim that lim supn−→∞
〈
(A − γf)z, z − xn

〉 ≤ 0, where z is the unique solution of the

variational inequality
〈
(A − γf)z, x − z

〉 ≥ 0, ∀x ∈ Θ.

Since z = PΘ(I − A + γf)(z) is a unique solution of the variational inequality (3.37). To show this

inequality, we choose a subsequence {uni
} of {un} such that

lim
i−→∞

〈
(A − γf)z, z − uni

〉
= lim sup

n−→∞

〈
(A − γf)z, z − un

〉
.

Since {uni
} is bounded, there exists a subsequence {unij

} of {uni
} which converges weakly to w ∈ C.

Without loss of generality, we can assume that uni
⇀ w. From ‖Wun − un‖ −→ 0, we obtain Wuni

⇀ w.

Next, we show that w ∈ Θ, where Θ := ∩∞
n=1F (Tn) ∩ EP (F ) ∩ V I(C,B). First, we show that w ∈ EP (F ).

It follow form Theorem 3.5, we obtain w ∈ EP (F ). Next, we show that w ∈ ∩∞
n=1F (Tn). By Lemma 3.13,

we have F (W ) = ∩∞
n=1F (Tn). Assume w /∈ F (W ). Since uni

⇀ w and w �= Ww, it follows by the Opial’s

condition (Lemma 2.58) then w ∈ F (W ) = ∩∞
n=1F (Tn). By the same argument as that in the proof of [43,

Theorem 2.1, p. 10–11], we can show that w ∈ V I(C,B). Hence, w ∈ Θ. Since z = PΘ(I − A + γf)(z), it

follows that

lim sup
n−→∞

〈
(A − γf)z, z − xn

〉
= lim sup

n−→∞

〈
(A − γf)z, z − un

〉
= lim

i−→∞
〈
(A − γf)z, z − uni

〉
=

〈
(A − γf)z, z − w

〉 ≤ 0. (3.63)

It follows from the last inequality, (3.52) and (3.59) that

lim sup
n−→∞

〈
γf(z)− Az,Wnkn − z

〉 ≤ 0. (3.64)

Step 5. Finally, we show that {xn} converges strongly to z = PΘ(I − A+ γf)(z).
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Indeed, from (3.36) , we have

‖xn+1 − z‖2

=
∥∥εnγf(xn) + βnxn +

(
(1− βn)I − εnA

)
Wnkn − z

∥∥2

= ‖((1− βn)I − εnA
)
(Wnkn − z) + βn(xn − z) + εn

(
γf(xn)− Az

)‖2

= ‖((1− βn)I − εnA
)
(Wnkn − z) + βn(xn − z)‖2 + ε2n‖γf(xn)− Az‖2

+2βnεn

〈
xn − z, γf(xn)− Az

〉
+2εn

〈(
(1− βn)I − εnA

)
(Wnkn − z), γf(xn)− Az

〉
≤

[
(1− βn − εnγ̄)‖Wnkn − z‖+ βn‖xn − z‖

]2

+ ε2n‖γf(xn)− Az‖2

+2βnεnγ
〈
xn − z, f(xn)− f(z)

〉
+ 2βnεn

〈
xn − z, γf(z)− Az

〉
+2(1− βn)γεn

〈
Wnkn − z, f(xn)− f(z)

〉
+ 2(1− βn)εn

〈
Wnkn − z, γf(z)− Az

〉
− 2ε2n

〈
A(Wnkn − z), γf(z)− Az

〉
,

≤
[
(1− βn − εnγ̄)‖Wnkn − z‖+ βn‖xn − z‖

]2

+ ε2n‖γf(xn)− Az‖2

+2βnεnγ‖xn − z‖‖f(xn)− f(z)‖+ 2βnεn

〈
xn − z, γf(z)− Az

〉
+2(1− βn)γεn‖Wnkn − z‖‖f(xn)− f(z)‖+ 2(1− βn)εn

〈
Wnkn − z, γf(z)− Az

〉
− 2ε2n

〈
A(Wnkn − z), γf(z)− Az

〉
,

≤
[
(1− βn − εnγ̄)‖xn − z‖+ βn‖xn − z‖

]2

+ ε2n‖γf(xn)− Az‖2

+2βnεnγα‖xn − z‖2 + 2βnεn

〈
xn − z, γf(z)− Az

〉
+2(1− βn)γεnα‖xn − z‖2 + 2(1− βn)εn

〈
Wnkn − z, γf(z)− Az

〉
− 2ε2n

〈
A(Wnkn − z), γf(z)− Az

〉
(3.65)

=
[
(1− εnγ̄)2 + 2βnεnγα+ 2(1− βn)γεnα

]
‖xn − z‖2 + ε2n‖γf(xn)− Az‖2

+2βnεn

〈
xn − z, γf(z)− Az

〉
+ 2(1− βn)εn

〈
Wnkn − z, γf(z)− Az

〉
− 2ε2n

〈
A(Wnkn − z), γf(z)− Az

〉
≤ [

1− 2(γ̄ − αγ)εn

]‖xn − z‖2 + γ̄2ε2n‖xn − z‖2 + ε2n‖γf(xn)− Az‖2

+2βnεn

〈
xn − z, γf(z)− Az

〉
+ 2(1− βn)εn

〈
Wnkn − z, γf(z)− Az

〉
+2ε2n‖A(Wnkn − z)‖‖γf(z)− Az‖

=
[
1− 2(γ̄ − αγ)εn

]‖xn − z‖2 + εn

{
εn

[
γ̄2‖xn − z‖2 + ‖γf(xn)− Az‖2

+2‖A(Wnkn − z)‖‖γf(z)− Az‖
]
+ 2βn

〈
xn − z, γf(z)− Az

〉
+2(1− βn)

〈
Wnkn − z, γf(z)− Az

〉}
Since {xn}, {f(xn)} and {Wnkn} are bounded, we can take a constant M > 0 such that

γ̄2‖xn − z‖2 + ‖γf(xn)− Az‖2 + 2‖A(Wnkn − z)‖‖γf(z)− Az‖ ≤ M,

for all n ≥ 0. It then follows that

‖xn+1 − z‖2 ≤ [
1− 2(γ̄ − αγ)εn

]‖xn − z‖2 + εnσn, (3.66)

where

σn = 2βn

〈
xn − z, γf(z)− Az

〉
+ 2(1− βn)

〈
Wnkn − z, γf(z)− Az

〉
+ εnM.
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Using (i), (3.63) and (3.64), we get lim supn−→∞ σn ≤ 0. Applying Lemma 2.62 to (3.66), we conclude that

xn −→ z in norm. Finally, noticing

‖un − z‖ = ‖Trn
xn − Trn

z‖ ≤ ‖xn − z‖.

We also conclude that un −→ z in norm. This completes the proof.

Corollary 3.16. Let C be nonempty closed convex subset of a real Hilbert space H, let {Tn} be an infinitely

many nonexpansive of C into itself and let B be an β-inverse-strongly monotone mapping of C into H such

that Θ := ∩∞
n=1F (Tn) ∩ V I(C,B) �= ∅. Let f be a contraction of H into itself with α ∈ (0, 1) and let A be a

strongly positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄
α . Let {xn}, {yn}, and

{kn} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C chosen arbitrary,

yn = PC(xn − λnBxn),

kn = αnxn + (1− αn)PC(xn − λnByn),

xn+1 = εnγf(xn) + βnxn + ((1− βn)I − εnA)Wnkn, ∀n ≥ 1,

where {Wn} is the sequences generated by (3.34) and {εn}, {αn} , {βn} are three sequences in (0, 1) satisfy

the following conditions:

(i) limn−→∞ εn = 0 and
∑∞

n=1 εn =∞,

(ii) limn−→∞ αn = 0 and
∑∞

n=1 αn =∞,

(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(iv) {λn

β } ⊂ (τ, 1− δ) for some τ, δ ∈ (0, 1) and limn→∞ λn = 0.

Then, {xn} converges strongly to a point z ∈ Θ which is the unique solution of the variational inequality〈
(A − γf)z, x − z

〉
≥ 0, ∀x ∈ Θ.

Equivalently, we have z = PΘ(I − A+ γf)(z).

Proof. Put F (x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N in Theorem 3.15. Then, we have

un = PCxn = xn. So, by Theorem 3.15, we can conclude the desired conclusion easily.

3.1.4 A Finite Family of Nonexpansive Mappings

In this section, we show a strong convergence theorem of an iterative algorithm based on shrinking relaxed

extragradient method which solves the problem of finding a common element of the set of fixed point of a

finite family of nonexpansive mappings, the set of solution of a generalized equilibrium problems and the

set of solution of a variational inequality problem for a inverse-strongly monotone mapping in a real Hilbert

space.
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Definition 3.17. [26] Let {Ti}N
i=1 be a finite family of nonexpansive mappings of C into itself and sequence

{λn,i}N
i=1 in [0,1], define the mapping Kn : C −→ C as follows:

Un,1 = λn,1T1 + (1− λn,1)I,

Un,2 = λn,2T2Un,1 + (1− λn,2)Un,1,

Un,3 = λn,3T3Un,2 + (1− λn,3)Un,2,

.

.

.

Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)Un,N−2,

Kn = Un,N = λn,NTNUn,N−1 + (1− λn,N )Un,N−1, (3.67)

Definition 3.18. [26] Let C be a nonempty convex subset of real Banach space. Let {Ti}N
i=1 be a finite

family of nonexpanxive mappings of C into itself, and let λ1, ..., λN be real numbers such that 0 ≤ λi ≤ 1 for

every i = 1, ..., N . Define a mapping K : C → C as follows:

U1 = λ1T1 + (1− λ1)I,

U2 = λ2T2U1 + (1− λ2)U1,

U3 = λ3T3U2 + (1− λ3)U2,

.

.

.

UN−1 = λN−1TN−1UN−2 + (1− λN−1)UN−2,

K = UN = λNTNUN−1 + (1− λN )UN−1. (3.68)

Such a mapping K is called the K-mapping generated by T1, ...., TN and λ1, ..., λN .

Lemma 3.19. [26] Let C be a nonempty closed convex subset of a strictly convex Banach space. Let {Ti}N
i=1

be a finite family of nonexpanxive mappings of C into itself with
⋂N

i=1 F (Ti) �= ∅ and let λ1, ..., λN be real

numbers such that 0 < λi < 1 for every i = 1, ..., N − 1 and 0 < λN ≤ 1. Let K be the K-mapping generated

by T1, ...., TN and λ1, ..., λN . Then, F (K) =
⋂N

i=1 F (Ti).

Lemma 3.20. [26] Let C be a nonempty closed convex subset of Banach space. Let {Ti}N
i=1 be a finite family

of nonexpanxive mappings of C into itself and {λn,i}N
i=1 sequences in [0,1] such that λn,i → λi, as n →

∞, (i = 1, 2, ..., N). Moreover, for every n ∈ N, let K and Kn be the K-mappings generated by T1, T2, ..., TN

and λ1, λ2, ..., λN , and T1, T2, ..., TN and λn,1, λn,2, ..., λn,N respectively. Then, for every x ∈ C, we have

limn→∞ ‖Knx − Kx‖ = 0.

Remark 3.21. Replacing x with x − rAx ∈ H in (3.1), then there exists z ∈ C, such that

F (z, y) + 〈Ax, y − z〉+ 1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Theorem 3.22. Let C be a nonempty closed convex subset of a real Hilbert space H, let F be a bifunction

from C×C to R satisfying (A1)-(A4), let {Ti}N
i=1 a finite family of nonexpansive mappings from H into itself,

let A be an β-inverse-strongly monotone mapping of C into H and let B be a ξ-inverse-strongly monotone

mapping of C into H such that Ω := ∩N
i=1F (Ti) ∩ GEP (F,A) ∩ V I(C, B) �= ∅. Let {xn}, {yn}, {vn}, {zn}
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and {un} be sequences generated by x0 ∈ H, C1 = C, x1 = PC1x0, un ∈ C and let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (un, y) + 〈Axn, y − un〉+ 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − δnBun),

vn = εnxn + (1− εn)PC(yn − λnByn),

zn = αnxn + (1− αn)Knvn,

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, ∀n ∈ N,

(3.69)

where {Kn} is the sequence generated by (3.67)and {αn} ⊂ (0, 1) satisfy the following conditions:

(i) {εn} ⊂ [0, e] for some e with 0 ≤ e < 1 and limn−→∞ αn = 0,

(ii) {δn}, {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2ξ,

(iii) {rn} ⊂ [c, d] for some c, d with 0 < c < d < 2β. Then, {xn} and {un} converge strongly to

P∩N
i=1F (Ti)∩GEP (F,A)∩V I(C,B)x0.

Proof. In the light of the definition of the resolvent, un can be rewritten as un = Trn(xn − rnAxn). Let

p ∈ Ω := ∩N
i=1F (Ti) ∩ GEP (F, A) ∩ V I(C, B) and using the fact {Trn

} be a sequence of mappings defined
as in Lemma 3.2, A be an β-inverse-strongly monotone and that p = Trn(p − rnAp), where {rn} ⊂ [c, d] for

some c, d with 0 < c < d < 2β, we can write

‖un − p‖2 = ‖Trn
(xn − rnAxn)− Trn

(p − rnAp)‖2

≤ ‖(xn − rnAxn)− (p − rnAp)‖2

= ‖(xn − p)− rn(Axn − Ap)‖2

= ‖xn − p‖2 − 2rn〈xn − p,Axn − Ap〉+ r2
n‖Axn − Ap‖2

≤ ‖xn − p‖2 − 2rnβ‖Axn − Ap‖2 + r2
n‖Axn − Ap‖2

= ‖xn − p‖2 + rn(rn − 2β)‖Axn − Ap‖2 (3.70)

≤ ‖xn − p‖2.

Next, we will divide the proof into six steps.

Step 1. We show that {xn} is well-defined and Cn is closed and convex for any n ∈ N.

From the assumption, we see that C1 = C is closed and convex. Suppose that Ck is closed and convex

for some k ≥ 1. Next, we show that Ck+1 is closed and convex for some k. for any p ∈ Ck, we obtain

‖zk − p‖ ≤ ‖xk − p‖

is equivalent to

‖zk − xk‖2 + 2〈zk − xk, xk − p〉 ≤ 0. (3.71)

Thus, Ck+1 is closed and convex. Then, Cn is closed and Convex for any n ∈ N. This implies that {xn} is
well-defined.

Step 2. We show that Ω ⊂ Cn for each n ≥ 1.

From the assumption, we see that Ω ⊂ C = C1. Suppose Ω ⊂ Ck for some k ≥ 1. For any p ∈ Ω ⊂ Ck,
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we have

‖yk − p‖ = ‖PC(uk − δkBuk)− PC(p − δkBp)‖
≤ ‖(uk − δkBuk)− (p − δkBp)‖
≤ ‖(I − δkB)uk − (I − δkB)p‖
≤ ‖uk − p‖ ≤ ‖xk − p‖

and

‖vk − p‖ = ‖εk(xk − p) + (1− εk)(PC(yk − λkByk)− p)‖
≤ εk‖xk − p‖+ (1− εk)‖yk − p‖
≤ εk‖xk − p‖+ (1− εk)‖xk − p‖ = ‖xk − p‖.

Thus, we have

‖zk − p‖ = ‖αk(xk − p) + (1− αk)(Kkvk − p)‖
≤ αk‖xk − p‖+ (1− αk)‖vk − p‖
≤ αk‖xk − p‖+ (1− αk)‖xk − p‖ = ‖xk − p‖.

It follows that p ∈ Ck+1. This implies that Ω ⊂ Cn for each n ≥ 1.

Step 3. We show that limn−→∞ ‖xn+1 − xn‖ = 0 and limn−→∞ ‖xn − zn‖ = 0.
From xn = PCnx0, we have

〈x0 − xn, xn − y〉 ≥ 0

for each y ∈ Cn. Using Ω ⊂ Cn, we also have

〈x0 − xn, xn − p〉 ≥ 0, ∀p ∈ Ω and n ∈ N.

So, for p ∈ Ω, we have

0 ≤ 〈x0 − xn, xn − p〉
= 〈x0 − xn, xn − x0 + x0 − p〉
= −〈x0 − xn, x0 − xn〉+ 〈x0 − xn, x0 − p〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − p‖.

This implies that

‖x0 − xn‖ ≤ ‖x0 − p‖, ∀p ∈ Ω and n ∈ N.

From xn = PCn
x0, and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we obtain

〈x0 − xn, xn − xn+1〉 ≥ 0. (3.72)

From (3.72), we have, for n ∈ N,

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −〈x0 − xn, x0 − xn〉+ 〈x0 − xn, x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖.
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It follows that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

Thus the sequence {‖xn − x0‖} is a bounded and nondecreasing sequence,
so limn−→∞ ‖xn − x0‖ exists, and then there exists m such that

limn−→∞‖xn − x0‖ = m. (3.73)

Indeed, from (3.72) we get

‖xn − xn+1‖2

= ‖xn − x0 + x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉+ ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉+ ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈xn − x0, xn − x0〉+ 2〈xn − x0, xn − xn+1〉+ ‖x0 − xn+1‖2

= −‖xn − x0‖2 + 2〈xn − x0, xn − xn+1〉+ ‖x0 − xn+1‖2

≤ −‖xn − x0‖2 + ‖x0 − xn+1‖2.

From (3.73), we obtain

limn−→∞‖xn − xn+1‖ = 0. (3.74)

Since xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we have

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ ≤ 2‖xn − xn+1‖.

By (3.74), we obtain

limn−→∞‖xn − zn‖ = 0. (3.75)

Step 4. We show that limn−→∞ ‖Knφn − φn‖ = 0, where φn = PC(yn − λnByn).

Since B is a ξ-inverse-strongly monotone by the assumptions imposed on {λn} for any p ∈ Ω, we have

‖φn − p‖2 = ‖PC(yn − λnByn)− PC(p − λnBp)‖2

≤ ‖(yn − λnByn)− (p − λnBp)‖2

= ‖(yn − p)− λn(Byn − Bp)‖2

≤ ‖yn − p‖2 − 2λn〈yn − p,Byn − Bp〉+ λ2
n‖Byn − Bp‖2

≤ ‖xn − p‖2 − 2λn〈yn − p,Byn − Bp〉+ λ2
n‖Byn − Bp‖2

≤ ‖xn − p‖2 + λn(λn − 2ξ)‖Byn − Bp‖2.

Similarly, we can prove

‖yn − p‖2 ≤ ‖xn − p‖2 + δn(δn − 2ξ)‖Bun − Bp‖2. (3.76)

Observe that

‖zn − p‖2 = ‖αn(xn − p) + (1− αn)(Knvn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)‖Knvn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2 (3.77)
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and

‖vn − p‖2

≤ εn‖xn − p‖2 + (1− εn)‖φn − p‖2

≤ εn‖xn − p‖2 + (1− εn)
{
‖xn − p‖2 + λn(λn − 2ξ)‖Byn − Bp‖2

}
= ‖xn − p‖2 + (1− εn)λn(λn − 2ξ)‖Byn − Bp‖2. (3.78)

Substituting (3.78) into (3.77), and using condition (i) and (ii), we have

‖zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

≤ αn‖xn − p‖2 + (1− αn)
{
‖xn − p‖2 + (1− εn)λn(λn − 2ξ)‖Byn − Bp‖2

}
= ‖xn − p‖2 + (1− αn)(1− εn)λn(λn − 2ξ)‖Byn − Bp‖2.

It follows that

(1− αn)(1− e)a(2ξ − b)‖Byn − Bp‖2

≤ (1− αn)(1− εn)λn(2ξ − λn)‖Byn − Bp‖2

≤ ‖xn − p‖2 − ‖zn − p‖2

= (‖xn − p‖ − ‖zn − p‖)(‖xn − p‖+ ‖zn − p‖)
≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖).

Since limn−→∞‖xn − zn‖ = 0, we obtain

lim
n−→∞ ‖Byn − Bp‖ = 0. (3.79)

By Lemma 2.19 (iii), we also have

‖φn − p‖2 = ‖PC(yn − λnByn)− PC(p − λnBp)‖2

= ‖PC(I − λnB)yn − PC(I − λnB)p‖2

≤
〈
(I − λnB)yn − (I − λnB)p, φn − p

〉
=

1
2

{
‖(I − λnB)yn − (I − λnB)p‖2 + ‖φn − p‖2

−‖(I − λnB)yn − (I − λnB)p − (φn − p)‖2
}

≤ 1
2

{
‖yn − p‖2 + ‖φn − p‖2 − ‖(yn − φn)− λn(Byn − Bp)‖2

}
≤ 1

2

{
‖xn − p‖2 + ‖φn − p‖2 − ‖yn − φn‖2

−λ2
n‖Byn − Bp‖2 + 2λn〈yn − φn, Byn − Bp〉

}
,

which yields that

‖φn − p‖2 ≤ ‖xn − p‖2 − ‖yn − φn‖2 + 2λn‖yn − φn‖‖Byn − Bp‖. (3.80)

Similarly, we have

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖un − yn‖2 + 2δn‖un − yn‖‖Bun − Bp‖. (3.81)
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Using (3.78) again and (3.80), we have

‖vn − p‖2

≤ εn‖xn − p‖2 + (1− εn)‖φn − p‖2

≤ εn‖xn − p‖2 + (1− εn)
{
‖xn − p‖2 − ‖yn − φn‖2 + 2λn‖yn − φn‖‖Byn − Bp‖

}
= ‖xn − p‖2 − (1− εn)‖yn − φn‖2 + 2(1− εn)λn‖yn − φn‖‖Byn − Bp‖. (3.82)

Substituting (3.82) into (3.77), and using condition (i), we have

‖zn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

≤ αn‖xn − p‖2 + (1− αn)
{
‖xn − p‖2 − (1− εn)‖yn − φn‖2

+2(1− εn)λn‖yn − φn‖‖Byn − Bp‖
}

= ‖xn − p‖2 − (1− αn)(1− εn)‖yn − φn‖2

+2(1− αn)(1− εn)λn‖yn − φn‖‖Byn − Bp‖.

It follows that

(1− αn)(1− e)‖yn − φn‖2 (3.83)

≤ (1− αn)(1− εn)‖yn − φn‖2

≤ ‖xn − p‖2 − ‖zn − p‖2 + 2(1− αn)(1− εn)λn‖yn − φn‖‖Byn − Bp‖
≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖) + 2(1− αn)(1− εn)λn‖yn − φn‖‖Byn − Bp‖.

Applying ‖xn − zn‖ −→ 0 and ‖Byn − Bp‖ −→ 0 as n −→ ∞ to the last inequality, we get

lim
n−→∞ ‖yn − φn‖ = 0. (3.84)

Note that

‖vn − p‖2 ≤ εn‖xn − p‖2 + (1− εn)‖φn − p‖2

≤ εn‖xn − p‖2 + (1− εn)‖yn − p‖2. (3.85)

Substituting (3.76) into (3.85), we have

‖vn − p‖2 ≤ εn‖xn − p‖2 + (1− εn)‖yn − p‖2

≤ εn‖xn − p‖2 + (1− εn)
{
‖xn − p‖2 + δn(δn − 2ξ)‖Bun − Bp‖2

}
= ‖xn − p‖2 + (1− εn)δn(δn − 2ξ)‖Bun − Bp‖2. (3.86)

Substituting (3.86) into (3.77), and using condition (i) and (ii), we have

‖zn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

≤ αn‖xn − p‖2 + (1− αn)
{
‖xn − p‖2

+(1− εn)δn(δn − 2ξ)‖Bun − Bp‖2
}

= ‖xn − p‖2 + (1− αn)(1− εn)δn(δn − 2ξ)‖Bun − Bp‖2.

It follows that

(1− αn)(1− e)a(2ξ − b)‖Bun − Bp‖2 ≤ (1− αn)(1− εn)δn(2ξ − δn)‖Bun − Bp‖2

≤ ‖xn − p‖2 − ‖zn − p‖2

≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖).
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Since limn−→∞‖xn − zn‖ = 0, we obtain
lim

n−→∞ ‖Bun − Bp‖ = 0. (3.87)

Using (3.85) again and (3.81), we have

‖vn − p‖2

≤ εn‖xn − p‖2 + (1− εn)‖yn − p‖2

≤ εn‖xn − p‖2 + (1− εn)
{
‖xn − p‖2 − ‖un − yn‖2 + 2δn‖un − yn‖‖Bun − Bp‖

}
= ‖xn − p‖2 − (1− εn)‖un − yn‖2 + 2(1− εn)δn‖un − yn‖‖Bun − Bp‖. (3.88)

Substituting (3.88) into (3.77), and using condition (i) and (ii), we have

‖zn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

≤ αn‖xn − p‖2 + (1− αn)
{
‖xn − p‖2 − (1− εn)‖un − yn‖2

+2(1− εn)δn‖un − yn‖‖Bun − Bp‖
}

= ‖xn − p‖2 − (1− αn)(1− εn)‖un − yn‖2

+2(1− αn)(1− εn)δn‖un − yn‖‖Bun − Bp‖.
It follows that

(1− αn)(1− e)‖un − yn‖2

≤ (1− αn)(1− εn)‖un − yn‖2

≤ ‖xn − p‖2 − ‖zn − p‖2 + 2(1− αn)(1− εn)δn‖un − yn‖‖Bun − Bp‖
≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖) + 2(1− αn)(1− εn)δn‖un − yn‖‖Bun − Bp‖.

Applying ‖xn − zn‖ −→ 0 and ‖Bun − Bp‖ −→ 0 as n −→ ∞ to the last inequality, we get

lim
n−→∞ ‖un − yn‖ = 0. (3.89)

From (3.84) and (3.89), we have

lim
n−→∞ ‖un − φn‖ = 0. (3.90)

Using (3.85) again and (3.70), we have

‖vn − p‖2 ≤ εn‖xn − p‖2 + (1− εn)‖yn − p‖2

≤ εn‖xn − p‖2 + (1− εn)‖un − p‖2

≤ εn‖xn − p‖2 + (1− εn)
{
‖xn − p‖2 + rn(rn − 2β)‖Axn − Ap‖2

}
= ‖xn − p‖2 + (1− εn)rn(rn − 2β)‖Axn − Ap‖2. (3.91)

Substituting (3.91) into (3.77), and using condition (i) and (ii), we have

‖zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

≤ αn‖xn − p‖2 + (1− αn)
{
‖xn − p‖2 + (1− εn)rn(rn − 2β)‖Axn − Ap‖2

}
= ‖xn − p‖2 + (1− αn)(1− εn)rn(rn − 2β)‖Axn − Ap‖2.

It follows that

(1− αn)(1− e)c(2β − d)‖Axn − Ap‖2 ≤ (1− αn)(1− εn)rn(β − rn)‖Axn − Ap‖2

≤ ‖xn − p‖2 − ‖zn − p‖2

≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖).
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Since limn−→∞‖xn − zn‖ = 0, we obtain

lim
n−→∞ ‖Axn − Ap‖ = 0. (3.92)

On the other hand, in the light of Lemma 3.2 Trn is firmly nonexpansive, so we have

‖un − p‖2 = ‖Trn(xn − rnAxn)− Trn(p − rnAp)‖2

≤ 〈Trn
(xn − rnAxn)− Trn

(p − rnAp), un − p〉
= 〈xn − rnAxn − (p − rnAp), un − p〉
=

1
2

{
‖(xn − rnAxn)− (p − rnAp)‖2 + ‖un − p‖2

−‖(xn − rnAxn)− (p − rnAp)− (un − p)‖2
}

≤ 1
2

{
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un − rn(Axn − Ap)‖2

}
=

1
2

{
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖2

+2rn〈xn − un, Axn − Ap〉 − r2
n‖Axn − Ap‖2

}
.

So, we obtain

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 + 2rn‖xn − un‖‖Axn − Ap‖. (3.93)

Using (3.85) again and (3.93), we have

‖vn − p‖2

≤ εn‖xn − p‖2 + (1− εn)‖yn − p‖2

≤ εn‖xn − p‖2 + (1− εn)‖un − p‖2

≤ εn‖xn − p‖2 + (1− εn)
{
‖xn − p‖2 − ‖xn − un‖2 + 2rn‖xn − un‖‖Axn − Ap‖

}
= ‖xn − p‖2 − (1− εn)‖xn − un‖2 + 2(1− εn)rn‖xn − un‖‖Axn − Ap‖. (3.94)

Therefore, from (3.77) and (3.94), we arrive at

‖zn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

≤ αn‖xn − p‖2 + (1− αn)
{
‖xn − p‖2 − (1− εn)‖xn − un‖2

+2(1− εn)rn‖xn − un‖‖Axn − Ap‖
}

= ‖xn − p‖2 − (1− αn)(1− εn)‖xn − un‖2

+2(1− αn)(1− εn)rn‖xn − un‖‖Axn − Ap‖.

It follows that and condition (i), we have

(1− αn)(1− e)‖xn − un‖2

≤ (1− αn)(1− εn)‖xn − un‖2

≤ ‖xn − p‖2 − ‖zn − p‖2 + 2(1− αn)(1− εn)rn‖xn − un‖‖Axn − Ap‖
≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖) + 2(1− αn)(1− εn)rn‖xn − un‖‖Axn − Ap‖.

Since limn−→∞‖xn − zn‖ = 0, limn−→∞ ‖Axn − Ap‖ = 0 implies that

limn−→∞‖xn − un‖ = 0. (3.95)
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From (3.89) and (3.95), we have

lim
n−→∞ ‖xn − yn‖ = 0. (3.96)

From (3.84) and (3.96), we have

lim
n−→∞ ‖xn − φn‖ = 0. (3.97)

By (3.69), we have

zn − Knvn = αn(xn − Knvn)

and

vn − φn = εn(xn − φn).

Since αn −→ 0 and ‖xn − φn‖ −→ 0 as n −→ ∞, we also have

lim
n−→∞ ‖zn − Knvn‖ = 0 (3.98)

and

lim
n−→∞ ‖vn − φn‖ = 0. (3.99)

From (3.84) and (3.99), we have

lim
n−→∞ ‖vn − yn‖ = 0. (3.100)

On the other hand, we observe that

‖xn − Knφn‖ ≤ ‖xn − zn‖+ ‖zn − Knvn‖+ ‖Knvn − Knφn‖
≤ ‖xn − zn‖+ ‖zn − Knvn‖+ ‖vn − φn‖.

Applying (3.75), (3.98) and (3.99), we have

lim
n−→∞ ‖xn − Knφn‖ = 0. (3.101)

Furthermore, by the triangular inequality we also have

‖Knφn − φn‖ ≤ ‖Knφn − xn‖+ ‖xn − un‖+ ‖un − φn‖.

Applying (3.90), (3.95) and (3.101), we obtain

lim
n−→∞ ‖Knφn − φn‖ = 0. (3.102)

Let K be the mapping defined by (3.68). Since {φn} is bounded, applying Lemma 3.20 and (3.102), we have

‖Kφn − φn‖ ≤ ‖Kφn − Knφn‖+ ‖Knφn − φn‖ −→ 0 as n −→ ∞.

Step 5. We show that there exists a subsequence {φni} of {φn} which converges weakly to z, where

z ∈ ∩N
i=1F (Ti) ∩ GEP (F,A) ∩ V I(C, B).

Since {φn} is bounded, there exists a subsequence {φni
} of {φn} which converges weakly to z. Without

loss of generality, we can assume that φni ⇀ z. Since φni ⊂ C and C is closed and convex, C is weakly

closed and hence z ∈ C. From ‖Kφn − φn‖ −→ 0, we obtain Kφni
⇀ z.

Next, we show that z ∈ ∩N
i=1F (Ti) ∩ GEP (F, A) ∩ V I(C, B).

(a) First, we prove that z ∈ V I(C, B).

In fact, let T be the maximal monotone mapping defined:

Tv =

{
Bv +NCv, v ∈ C,

∅, v /∈ C.
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Let (v, u) ∈ G(T ). Since u − Bv ∈ NCv and φn ∈ C, we have

〈v − φn, u − Bv〉 ≥ 0.

On the other hand, from φn = PC(yn − λnByn), we have
〈
v − φn, φn − (yn − λnByn)

〉≥ 0, and hence,〈
v − φn, φn−yn

λn
+Byn

〉
≥ 0. Therefore, we have

〈v − φni
, u〉 ≥ 〈v − φni

, Bv〉
≥ 〈v − φni , Bv〉 −

〈
v − φni ,

φni − yni

λni

+Byni

〉
=

〈
v − φni

, Bv − Byni
− φni − yni

λni

〉
= 〈v − φni

, Bv − Bφni
〉+ 〈v − φni

, Bφni
− Byni

〉
−

〈
v − φni

,
φni

− yni

λni

〉
≥ 〈v − φni

, Bφni
− Byni

〉 −
〈

v − φni
,
φni

− yni

λni

〉
.

Since limi−→∞ ‖φni − yni‖ = 0, φni ⇀ z and B is Lipschitz continuous, we obtain that limi−→∞ ‖Bφni −
Byni

‖ = 0 and φni
⇀ z. From lim infn−→∞ λn > 0, we obtain

lim
i−→∞

〈v − φni
, u〉 = 〈v − z, u〉 ≥ 0.

Since T is maximal monotone, we have z ∈ T−10 and hence z ∈ V I(C,B).

(b) Next, we prove that z ∈ GEP (F, A).

Since un = Trn
(xn − rnAxn) for any y ∈ C, we can write

F (un, y) + 〈Axn, y − un〉+ 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have〈
Axn, y − un〉+ 1

rn
〈y − un, un − xn

〉
≥ −F (un, y) ≥ F (y, un).

Replacing n by ni, we have

〈Axni , y − uni〉+
〈

y − uni ,
uni − xni

rni

〉
≥ F (y, uni). (3.103)

For any t with 0 < t ≤ 1 and y ∈ C, let ϕt = ty+ (1− t)z. Since y ∈ C and z ∈ C, we have ϕt ∈ C. So, from

(3.103) we have

〈ϕt − uni , Aϕt〉 ≥ 〈ϕt − uni , Aϕt〉 − 〈Axni , ϕt − uni〉
−

〈
ϕt − uni ,

uni − xni

rni

〉
+ F (ϕt, uni)

≥ 〈ϕt − uni
, Aϕt − Auni

〉+ 〈ϕt − uni
, Auni

− Axni
〉

−
〈

ϕt − uni
,
uni

− xni

rni

〉
+ F (ϕt, uni

). (3.104)

Since A is Lipschitz continuous, from (3.95), we have ‖Auni
− Axni

‖ −→ 0 as i −→ ∞.
Further, from the monotonicity of A, we get that

〈ϕt − uni
, Aϕt − Auni

〉 ≥ 0.
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It follows from (A4) and (3.104) that

〈ϕt − z, Aϕt〉 ≥ F (ϕt, z). (3.105)

From (A1), (A4) and (3.105), we also have

0 = F (ϕt, ϕt) ≤ tF (ϕt, y) + (1− t)F (ϕt, z)

≤ tF (ϕt, y) + (1− t)〈ϕt − z, Aϕt)

= tF (ϕt, y) + (1− t)t〈y − z, Aϕt)

and hence

F (ϕt, y) + (1− t)〈y − z, Aϕt) ≥ 0.

Letting t −→ ∞ in the above inequality, we have, for each y ∈ C,

F (z, y) + 〈y − z, Az) ≥ 0.

Thus, z ∈ GEP (F,A).

(c) Now, we prove that z ∈ F (K) =
⋂N

i=1 F (Ti).

Assume z /∈ F (K). Since ‖xn − φn‖ −→ 0 we know that φni
⇀ z (i −→ ∞) and z �= Kz, it

follows from the Opial’s condition (Lemma 2.58), we get z ∈ F (K) =
⋂N

i=1 F (Ti). The conclusion is

z ∈ ∩N
i=1F (Ti) ∩ GEP (F,A) ∩ V I(C, B).

Step 6. Finally, we show that xn −→ z and un −→ z, where z = PΩx0. Since Ω is nonempty closed

convex subset of H, there exists a unique z′ ∈ Ω such that z′ = PΩx0. Since z′ ∈ Ω ⊂ Cn and xn = PCn
x0,

we have

‖x0 − xn‖ = ‖x0 − PCn
x0‖ ≤ ‖x0 − z′‖ (3.106)

for all n ∈ N. From (3.106), {xn} is bounded, so ωw(xn) �= ∅. By the weak lower semi-continuity of the
norm, we have

‖x0 − z‖ ≤ liminfi−→∞‖x0 − xni‖ ≤ ‖x0 − z′‖. (3.107)

However, Since z ∈ ωw(xn) ⊂ Ω, we have

‖x0 − z′‖ = ‖x0 − PΩx0‖ ≤ ‖x0 − z‖.

Using (3.106) and (3.107), we obtain z′ = z. Thus, ωw(xn) = {z} and xn ⇀ z. So, we have

‖x0 − z′‖ ≤ ‖x0 − z‖ ≤ liminfn−→∞‖x0 − xn‖ ≤ limsupn−→∞‖x0 − xn‖ ≤ ‖x0 − z′‖.

Thus, we obtain that

‖x0 − z‖ = lim
n−→∞ ‖x0 − xn‖ = ‖x0 − z′‖.

From xn ⇀ z, we obtain (x0 − xn) ⇀ (x0 − z). Using the Kadec-Klee property (Lemma 2.59) of H, we

obtain that

‖xn − z‖ = ‖(xn − x0)− (z − x0)‖ −→ 0 as n −→ ∞
and hence xn −→ z in norm. Finally, noticing ‖un − z‖ = ‖Trn

(xn − rnAxn)− Trn
(z − rnAz)‖ ≤ ‖xn − z‖.

We also conclude that un −→ z in norm. This completes the proof.
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Corollary 3.23. Let C be a nonempty closed convex subset of a real Hilbert space H, let {Ti}N
i=1 a finite

family of nonexpansive mappings from H into itself, let A be an β-inverse-strongly monotone mapping of

C into H and let B be a ξ-inverse-strongly monotone mapping of C into H such that Ω := ∩N
i=1F (Ti) ∩

V I(C,A)∩ V I(C, B) �= ∅. Let {xn}, {yn}, {vn}, {zn} and {un} be sequences generated by x0 ∈ H, C1 = C,

x1 = PC1x0 and let ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = PC(xn − rnAxn),

yn = PC(un − δnBun),

vn = εnxn + (1− εn)PC(yn − λnByn),

zn = αnxn + (1− αn)Knvn,

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N,

where {Kn} is the sequence generated by (3.67)and {αn} ⊂ (0, 1) satisfy the following conditions:

(i) {εn} ⊂ [0, e] for some a with 0 ≤ e < 1 and limn−→∞ αn = 0,

(ii) {δn}, {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2ξ,

(iii) {rn} ⊂ [c, d] for some c, d with 0 < c < d < 2β.

Then, {xn} and {un} converge strongly to P∩N
i=1F (Ti)∩V I(C,A)∩V I(C,B)x0.

Proof. Put F (x, y) = 0 for all x, y ∈ C in Theorem 3.22. From

〈Axn, y − un〉+ 1
rn

〈y − un, un − xn〉 ≥ 0,

we have

〈y − un, xn − un − rnAxn〉 ≥ 0, ∀y ∈ C.

This implies that

un = PC(xn − rnAxn).

From the proof of Theorem 3.22, we can obtain the desired conclusion easily.

3.1.5 Systems of equilibrium problems

In this section, we deal with the strong convergence of extragradient approximation method for finding a

common element of the set of solutions of the system equilibrium problems, the set of common fixed points

of an infinite family of nonexpansive mappings and the set of solutions of variational inequality for be a

monotone and ζ-Lipschitz continuous mapping in a real Hilbert space.

Theorem 3.24. Let C be a nonempty closed convex subset of a real Hilbert space H, let Fk, k ∈ {1, 2, 3, . . . , M}
be a bifunction from C×C to R satisfying (A1)-(A4), let {Tn} be an infinite family of nonexpansive mappings

of C into itself and let B be a monotone and ζ-Lipschitz continuous mapping of C into H such that

Υ := ∩∞
n=1F (Tn) ∩

(∩M
k=1SEP (Fk)

) ∩ V I(C, B) �= ∅.
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Let f be a contraction of H into itself with α ∈ (0, 1) and let A be a strongly positive linear bounded operator

on H with coefficient γ̄ > 0 and 0 < γ < γ̄
α . Let {xn}, {yn} and {un} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C chosen arbitrary,

un = JFM
rM,n

J
FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
xn,

yn = PC(un − λnBun),

xn+1 = εnγf(Wnxn) + βnxn +
(
(1− βn)I − εnA

)
WnPC(un − λnByn), ∀n ≥ 1,

(3.108)

where {Wn} is the sequence generated by (3.34) and {εn}, {βn} are two sequences in (0, 1), {λn} ⊂ [a, b] ⊂
(0, 1

ζ ) and {rk,n}, k ∈ {1, 2, 3, . . . ,M} are a real sequence in (0,∞) satisfy the following conditions:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn =∞,

(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C3) lim infn−→∞ rk,n > 0 and limn−→∞ |rk,n+1 − rk,n| = 0 for each k ∈ {1, 2, 3, . . . , M},

(C4) limn→∞ λn = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Υ which is the unique solution of the variational

inequality 〈
(A − γf)z, x − z

〉
≥ 0, ∀x ∈ Υ. (3.109)

Equivalently, we have z = PΥ(I − A+ γf)(z).

Proof. See [18]

Corollary 3.25. Let C be a nonempty closed convex subset of a real Hilbert space H, let Fk, k ∈ {1, 2, 3, . . . ,M}
be a bifunction from C × C to R satisfying (A1)-(A4) and let B be a monotone and ζ-Lipschitz continuous

mapping of C into H such that

Υ :=
(∩M

k=1SEP (Fk)
) ∩ V I(C, B) �= ∅.

Let f be a contraction of H into itself with α ∈ (0, 1) and let A be a strongly positive linear bounded operator

on H with coefficient γ̄ > 0 and 0 < γ < γ̄
α . Let {xn}, {yn} and {un} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C chosen arbitrary,

un = JFM
rM,n

J
FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
xn,

yn = PC(un − λnBun),

xn+1 = εnγf(xn) + βnxn +
(
(1− βn)I − εnA

)
PC(un − λnByn), ∀n ≥ 1,

where {εn}, {βn} are two sequences in (0, 1), {λn} ⊂ [a, b] ⊂ (0, 1
ζ ) and {rk,n}, k ∈ {1, 2, 3, . . . , M} are real

sequence in (0,∞) satisfy the following conditions:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn =∞,

(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C3) lim infn−→∞ rk,n > 0 and limn−→∞ |rk,n+1 − rk,n| = 0,

(C4) limn→∞ λn = 0.
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Then, {xn} and {un} converge strongly to a point z ∈ Υ which is the unique solution of the variational

inequality 〈
(A − γf)z, x − z

〉
≥ 0, ∀x ∈ Υ.

Equivalently, we have z = PΥ(I − A+ γf)(z).

Proof. Put Tn = I for all n ∈ N and for all x ∈ C. Then Wn = I for all x ∈ C. The conclusion follows from

Theorem 3.24. This completes the proof.

3.2 Equilibrium Problems in Banach spaces

Lemma 3.26. (Blum and Oettli [4]). Let C be a closed convex subset of a uniformly smooth, strictly convex

and reflexive Banach space E and let Θ be a bifunction of C ×C into R satisfying (A1)-(A4). Let r > 0 and

x ∈ E. Then, there exists z ∈ C such that

Θ(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0 for all y ∈ C.

Lemma 3.27. (Takahashi and Zembayashi [56]). Let C be a closed convex subset of a uniformly smooth,

strictly convex and reflexive Banach space E and let Θ be a bifunction from C×C to R satisfying (A1)-(A4).

For all r > 0 and x ∈ E, define a mapping Tr : E −→ C as follows:

Trx = {z ∈ C : Θ(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}, (3.110)

for all x ∈ E. Then, the followings hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;

(3) F (Tr) = EP (Θ);

(4) EP (Θ) is closed and convex.

Lemma 3.28. (Takahashi and Zembayashi [56]). Let C be a closed convex subset of a smooth, strictly

convex, and reflexive Banach space E, let Θ be a bifunction from C × C to R satisfying (A1)-(A4) and let

r > 0. Then, for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Theorem 3.29. Let E a uniformly convex and uniformly smooth real Banach space, let C be a nonempty

and closed convex subset of a E. Let Θ be a bifunction from C × C to R satisfying (A1)-(A4) and let

T, S : C → C are closed hemi-relatively nonexpansive mappings such that F := F (T ) ∩ F (S) ∩ EP (Θ) �= ∅.
Let {xn} be a sequence generated by the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C, C0 = C

yn = J−1(αnJxn + (1− αn)JSzn),

zn = J−1(βnJxn + (1− βn)JTxn),

un ∈ C such that Θ(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1(x0)

(3.111)
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for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn} and {βn} are sequences in

[0, 1] such that lim supn−→∞ αn < 1, limn−→∞ βn = 1, lim infn−→∞(1−αn)βn(1−βn) > 0 and {rn} ⊂ [a,∞)
for some a > 0. If S is uniformly continuous, then {xn} converges strongly to ΠF x0, where ΠF is the

generalized projection of E onto F := F (T ) ∩ F (S) ∩ EP (Θ).

Proof . First, we show that Cn+1 is closed and convex for each n ≥ 0. From the definition of Cn+1, it is

obvious that Cn is closed. Therefore,

φ(z, un) ≤ φ(z, xn)⇔ 2(〈z, Jxn〉 − 2〈z, Jun〉) ≤ ‖xn‖2 − ‖un‖2.

It is easy to see that Cn+1 is convex. Then, for all n ≥ 0, Cn is closed and convex. This shows that F ⊂ Cn

for all n ≥ 0. Let p ∈ F . Putting un = Trn
yn for all n ≥ 0. On the other hand, from Lemma 3.27, one has

Trn is hemi-relatively nonexpansive mapping. Next, we prove F ⊂ Cn for all n ≥ 0. F ⊂ C1 = C is obvious.

Suppose F ⊂ Ck for some k ∈ N. Then, for ∀p ∈ F ⊂ Ck, one has

φ(p, uk) = φ(p, Trk
yk)

≤ φ(p, yk)

= φ(p, J−1(αkJxk + (1− αk)JSzk))

= ‖p‖2 − 2〈p, αkJxk + (1− αk)JSzk〉
+‖αkJxk + (1− αk)JSzk‖2

≤ ‖p‖2 − 2αk〈p, Jxk〉 − 2(1− αk)〈p, JSzk〉+ αk‖Jxk‖2

+(1− αk)‖JSzk‖2

= αkφ(p, xk) + (1− αk)φ(p, Szk)

≤ αkφ(p, xk) + (1− αk)φ(p, zk),

(3.112)

and then
φ(p, zk) = φ(p, J−1(βkJxk + (1− βk)JTxk))

= ‖p‖2 − 2 〈p, βkJxk + (1− βk)JTxk〉
+‖βkJxk + (1− βk)Txk‖2

≤ ‖p‖2 − 2βk 〈p, Jxk〉 − 2(1− βk) 〈w, JTxk〉+ βk‖xk‖2

+(1− βk)‖Txk‖2

= βk(‖p‖2 − 2 〈p, Jxk〉+ ‖xk‖2) + (1− βk)

(‖p‖2 − 2 〈p, JTxk〉+ ‖Txk‖2)

= βkφ(p, xk) + (1− βk)φ(p, Txk)

≤ βkφ(p, xk) + (1− βk)φ(p, xk)

= φ(p, xk).

(3.113)

Substituting (3.113) into (3.112), we have

φ(p, uk) ≤ αkφ(p, xk) + (1− αk)φ(p, xk)

≤ φ(p, xk),
(3.114)

that is p ∈ Ck+1. This implies that F ⊂ Cn for all n ≥ 0. From xn = ΠCnx0, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn (3.115)

and

〈xn − p, Jx0 − Jxn〉 ≥ 0, ∀p ∈ F. (3.116)

From Lemma 2.34, one has

φ(xn, x0) = φ(ΠCn
x0, x0) ≤ φ(p, x0)− φ(p, xn) ≤ φ(p, x0)
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for each p ∈ F ⊂ Cn and n ≥ 1. Then, the sequence {φ(xn, x0)} is bounded. Since xn = ΠCnx0, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ∈ N ∪ {0}.

Therefore, {φ(xn, x0)} is nondecreasing. It follows that the limit of {φ(xn, x0)} exists. By the construction
of Cn, one has that Cm ⊂ Cn and xm = ΠCm

x0 ∈ Cn for any positive integer m ≥ n. It follows that

φ(xm, xn) = φ(xm,ΠCn
x0)

≤ φ(xm, x0)− φ(ΠCnx0, x0)

= φ(xm, x0)− φ(xn, x0).

(3.117)

Letting m,n −→ ∞ in (3.117), one has φ(xm, xn) −→ 0. It follows from Lemma 2.32, that xm − xn −→ 0

as m,n −→ ∞. Hence, {xn} is a Cauchy sequence. Since E is a Banach space and C is closed and convex,

one can assume that xn −→ x̃ ∈ C as n −→ ∞. Since

φ(xn+1, xn) = φ(xn+1,ΠCn
x0) ≤ φ(xn+1, x0)− φ(ΠCn

x0, x0) = φ(xn+1, x0)− φ(xn, x0)

for all n ∈ N∪{0}, we have limn−→∞φ(xn+1, xn) = 0. From Lemma 2.33, we get limn−→∞ ‖xn+1 −xn‖ = 0.
Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}.

Therefore, we also have

lim
n−→∞φ(xn+1, un) = 0.

Since limn−→∞φ(xn+1, xn) = limn−→∞φ(xn+1, un) = 0 and E is uniformly convex and smooth. Previously,

we know from Lemma 2.32 that

lim
n−→∞‖xn+1 − xn‖ = lim

n−→∞‖xn+1 − un‖ = 0.

So, we have

lim
n−→∞‖xn − un‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets and limn−→∞‖xn − un‖ = 0, we have

lim
n−→∞‖Jxn − Jun‖ = 0.

Since E is uniformly smooth Banach space, one knows that E∗ is a uniformly convex Banach apace. Let

r = supn∈N∪{0}{‖xn‖, ‖Txn‖, ‖Szn‖}. From Lemma 2.36, we have

φ(p, zn) = φ(p, J−1(βnJxn + (1− βn)JTxn))

= ‖p‖2 − 2 〈p, βnJxn + (1− βn)JTxn〉+ ‖βnJxn + (1− βn)JTxn‖2

≤ ‖p‖2 − 2β 〈p, Jxn〉 − 2(1− βn) 〈p, JTxn〉
+βn‖Jxn‖2 + (1− βn)‖JTxn‖2 − βn(1− βn)g(‖Jxn − JTxn‖)

= βnφ(p, xn) + (1− βn)φ(p, Txn)− βn(1− βn)g(‖Jxn − JTxn‖)
= φ(p, xn)− βn(1− βn)g(‖Jxn − JTxn‖), (3.118)

and

φ(p, un) = φ(p, Trn
yn) ≤ φ(p, yn)

≤ αnφ(p, xn) + (1− αn)φ(p, zn). (3.119)
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Substituting (3.118) into (3.119), we have

φ(p, un) ≤ αnφ(p, xn) + (1− αn)(φ(p, xn)− βn(1− βn)g(‖Jxn − JTxn‖))
≤ φ(p, xn)− (1− αn)βn(1− βn)g(‖Jxn − JTxn‖). (3.120)

It follows that

(1− αn)βn(1− βn)g(‖Jxn − JTxn‖) ≤ φ(p, xn)− φ(p, un).

On the other hand, we have

φ(p, xn)− φ(p, un) = ‖xn‖2 − ‖un‖2 − 2 〈p, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖+ ‖un‖) + 2‖p‖‖Jxn − Jun‖.

It follows from ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0 that

φ(p, xn)− φ(p, un) −→ 0 as n −→ ∞. (3.121)

By assumption lim infn−→∞(1− αn)βn(1− βn) > 0 and by Lemma 2.37, we also get

g(‖Jxn − JTxn‖) −→ 0 as n −→ ∞.

From the property of g,

‖Jxn − JTxn‖ −→ 0 as n −→ ∞.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we see that

lim
n−→∞‖xn − Txn‖ = 0.

Since T is a closed operator and xn −→ x̃, the x̃ is a fixed point of T . Since limn−→∞βn = 1 and {xn} is
bounded, we obtain

φ(xn+1, zn) = φ(xn+1, J
−1(βnJxn + (1− βn)JTxn))

= ‖xn+1‖2 − 2〈xn+1, βnJxn + (1− βn)JTnxn〉
+‖βnJxn + (1− βn)JTxn‖2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jxn〉 − 2(1− βn)〈xn+1, JTxn〉
+βn‖xn‖2 + (1− βn)‖Txn‖2

= βnφ(xn+1, xn) + (1− βn)φ(xn+1, Txn)

≤ φ(xn+1, xn).

(3.122)

Since φ(xn+1, xn) −→ 0 as n −→ ∞, φ(xn+1, zn)→ 0 as n → ∞.
Since xn+1 = ΠCn+1x0 ∈ Cn+1, from (3.112) and (3.113), we have

φ(xn+1, un) ≤ φ(xn+1, yn) ≤ φ(xn+1, xn)

for all n ≥ 0. Thus,

φ(xn+1, yn)→ 0, as n → ∞.

By using Lemma 2.32, we also have

lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = lim
n→∞ ‖xn+1 − zn‖ = 0. (3.123)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖Jxn+1 − Jyn‖ = lim

n→∞ ‖Jxn+1 − Jxn‖ = lim
n→∞ ‖Jxn+1 − Jzn‖ = 0. (3.124)



59

For each n ∈ N ∪ {0}, we observe that

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (αnJxn + (1− αn)JSzn)‖
= ‖αn(Jxn+1 − Jxn) + (1− αn)(Jxn+1 − JSzn)‖
= ‖(1− αn)(Jxn+1 − JSzn)− αn(Jxn − Jxn+1)‖
≥ (1− αn)‖Jxn+1 − JSzn‖ − αn‖Jxn − Jxn+1‖.

It follows that

‖Jxn+1 − JSzn‖ ≤ 1
1− αn

(‖Jxn+1 − Jyn‖+ αn‖Jxn − Jxn+1‖).

By (3.124) and lim supn−→∞αn < 1, we obtain

lim
n→∞ ‖Jxn+1 − JSzn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖xn+1 − Szn‖ = 0. (3.125)

Since

‖zn − xn‖ ≤ ‖zn − xn+1‖+ ‖xn+1 − xn‖.
By (3.123), we obtain

lim
n−→∞ ‖zn − xn‖ = 0. (3.126)

By using the triangle inequality, we get

‖xn − Sxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Szn‖+ ‖Szn − Sxn‖.

Since, S is uniformly continuous, it follows from (3.123), (3.125) and (3.126) that limn−→∞ ‖xn −Sxn‖ = 0.

Again using J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞‖Jxn − JSxn‖ = 0.

Since S is closed operator and xn −→ x̃, x̃ is a fixed point of S. Hence x̃ ∈ F (T ) ∩ F (S). Next, we show

x̃ ∈ EF (Θ) = F (Tr). From un = Trn
yn and Lemma 3.28, we obtain

φ(un, yn) = φ(Trnyn, yn)

≤ φ(x̃, yn)− φ(x̃, Trn
yn)

≤ φ(x̃, xn)− φ(x̃, Trn
yn)

= φ(x̃, xn)− φ(x̃, un).

It follows from (3.121) that

φ(un, yn)→ 0 as n → ∞.

Noticing that Lemma 2.32, we get

‖un − yn‖ → 0 as n → ∞.

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞ ‖Jun − Jyn‖ = 0.

From the (A2), we note that

‖y − un‖‖Jun − Jyn‖
rn

≥ 1
rn

〈y − un, Jun − Jyn〉 ≥ −Θ(un, y) ≥ Θ(y, un), ∀y ∈ C.
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By taking the limit as n → ∞ in above inequality and from (A4) and un −→ x̃, we have Θ(y, x̃) ≤ 0, ∀y ∈ C.

For 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)x̃. Noticing that y, x̃ ∈ C, we obtain yt ∈ C which yield

that Θ(yt, x̃) ≤ 0. It follows from (A1) that

0 = Θ(yt, yt) ≤ tΘ(yt, y) + (1− t)Θ(yt, x̃) ≤ tΘ(yt, y).

That is, Θ(yt, y) ≥ 0.

Let t ↓ 0, from (A3), we obtain Θ(x̃, y) ≥ 0, for ∀y ∈ C. This implies that x̃ ∈ EP (Θ). This shows

that x̃ ∈ F.

Finally, we prove x̃ = ΠF x0. By taking limit in (3.115), one has

〈x̃ − p, Jx0 − Jp〉 ≥ 0, ∀p ∈ F.

At this point, in view of Lemma 2.33, one sees that x̃ = ΠF x0. This completes the proof.

Theorem 3.30. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth

Banach space E. Let Θ be a bifunction from C × C to R satisfying (A1)-(A4) and let T, S : C → C be two

closed relatively quasi-nonexpansive mappings such that F := F (T ) ∩ F (S) ∩ EP (Θ) �= ∅. Let {xn} be a

sequence generated by the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)Jzn),

zn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that Θ(un, y) + 1
rn
〈y − un, Jun − Jzn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0,

(3.127)

where J is the duality mapping on E. Assume that {αn}, {βn} and {γn} are three sequences in [0, 1] satisfying

the restrictions:

(a) αn + βn + γn = 1;

(b) 0 ≤ αn < 1 for all n ∈ N ∪ {0} and lim supn−→∞αn < 1;

(c) lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0;

(d) {rn} ⊂ [a,∞) for some a > 0.

Then, {xn} converges strongly to ΠF x0.

Proof . First, we show that Cn is closed and convex for all n ≥ 0. It is obvious that C1 = C is closed and

convex. Suppose that Ck is closed and convex for some k ∈ N. For z ∈ Ck, one obtains that

φ(z, yk) ≤ φ(z, xk)

is equivalent to

2(〈z, Jxk〉 − 2〈z, Jyk〉) ≤ ‖xk‖2 − ‖yk‖2.

It is easy to see that Ck+1 is closed and convex. Then, for all n ≥ 0, Cn is closed and convex. This shows

that ΠCn+1x0 is well-defined. Notice that un = Trnzn for all n ≥ 0.
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On the other hand, from Lemma 3.27, one has Trn is relatively quasi-nonexpansive mapping. Next,

we prove F ⊂ Cn for all n ≥ 0. F ⊂ C1 = C is obvious. Suppose F ⊂ Ck for some k ∈ N. Then, for

∀w ∈ F ⊂ Ck, one has

φ(w, uk) = φ(w, Trk
zk)

≤ φ(w, zk)

= φ(w, J−1(αkJxk + βkJTxk + γkJSxk))

= ‖w‖2 − 2αk〈w, Jxk〉 − 2βk〈w, JTxk〉 − 2γk〈w, JSxk〉
+‖αkJxk + βkJTxk + γkJSxk‖2

≤ ‖w‖2 − 2αk〈w, Jxk〉 − 2βk〈w, JTxk〉 − 2γk〈w, JSxk〉
+αk‖Jxk‖2 + βk‖JTxk‖2 + γk‖JSxk‖2

= αkφ(w, xk) + βkφ(w, Txk) + γkφ(w, Sxk)

≤ φ(w, xk),

(3.128)

and then
φ(w, yk) = φ(w, J−1(δkJxk + (1− δk)Jzk))

= ‖w‖2 − 2 〈w, δkJxk + (1− δk)Jzk〉
+‖δkJxk + (1− δk)Jzk‖2

≤ ‖w‖2 − 2δk 〈w, Jxk〉 − 2(1− δk) 〈w, Jzk〉+ δk‖xk‖2

+(1− δk)‖zk‖2

= δk(‖w‖2 − 2 〈w, Jxk〉+ ‖xk‖2)

+(1− δk)(‖w‖2 − 2 〈w, Jzk〉+ ‖zk‖2)

= δkφ(w, xk) + (1− δk)φ(w, zk)

≤ δkφ(w, xk) + (1− δk)φ(w, xk)

= φ(w, xk),

(3.129)

which show that w ∈ Ck+1. This implies that F ⊂ Cn for all n ≥ 0. From xn = ΠCn
xn, one see

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn (3.130)

and

〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ F. (3.131)

From Lemma 2.34, one has

φ(xn, x0) = φ(ΠCn
a0, x0) ≤ φ(w, x0)− φ(w, xn) ≤ φ(w, x0)

for each w ∈ F ⊂ Cn and xn = ΠCn
x, we have

φ(xn, x) ≤ φ(xn+1, x), ∀n ∈ N ∪ {0}.

Therefore, {φ(xn, x)} is nondecreasing. It follows that the limit of {φ(xn, x0)} exists. By the construction
of Cn, one has that Cm ⊂ Cn and xm = ΠCmx0 ∈ Cn for any positive integer m ≥ n. It follows that

φ(xm, xn) = φ(xm,ΠCn
x0)

≤ φ(xm, x0)− φ(ΠCnx0, x0)

= φ(xm, x0)− φ(xn, x0).

(3.132)

Letting m,n −→ ∞ in (3.132), one has φ(xm, xn) −→ 0. It follows from Lemma 2.32, that xm − xn −→ 0

as m,n −→ ∞. Hence, {xn} is a Cauchy sequence. Since E is a Banach space and C is closed and convex,

one can assume that xn −→ p ∈ C as n −→ ∞. Since

φ(xn+1, xn) = φ(xn+1,ΠCn) ≤ φ(xn+1, x)− φ(ΠCnx, x) = φ(xn+1, x)− φ(xn, x)
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for all n ∈ N ∪ {0}, we have limn−→∞φ(xn+1, xn) = 0. From xn+1 = ΠCn+1x ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}.

Therefore, we also have

lim
n−→∞φ(xn+1, un) = 0.

Since limn−→∞φ(xn+1, xn) = limn−→∞φ(xn+1, un) = 0, E is uniformly convex and smooth and from Lemma

2.32, we have

lim
n−→∞‖xn+1 − xn‖ = lim

n−→∞‖xn+1 − un‖ = 0.
So, we have

lim
n−→∞‖xn − un‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets and limn−→∞‖xn − un‖ = 0, we have

lim
n−→∞‖Jxn − Jun‖ = 0.

Since E is uniformly smooth Banach space, one knows that E∗ is a uniformly convex Banach space. Let

r = supn∈N∪{0}{‖xn‖, ‖Txn‖, ‖Sxn‖}. From Lemma 2.36, we have

φ(w, un) = φ(w, Trn
zn) ≤ φ(w, zn)

= φ(w, J−1(αnJxn + βnJTxn + γnJSxn))

= ‖w‖2 − 2αn 〈w, Jxn〉 − 2βn 〈w, JTxn〉 − 2γn 〈w, JSxn〉
≤ ‖w‖2 − 2α 〈w, Jxn〉 − 2βn 〈w, JTxn〉 − 2γn 〈w, JSxn〉

+αn‖Jxn‖2 + βn‖JTxn‖2 + γn‖JSxn‖2 − αnβng(‖JTxn − Jxn‖)
= αnφ(w, xn) + βnφ(w, Txn) + γnφ(w, Sxn)− αnβng(‖JTxn − Jxn‖)
≤ φ(w, xn)− αnβng(‖JTxn − Jxn‖).

(3.133)

It follows that

αnβng(‖JTxn − Jxn‖) ≤ φ(w, xn)− φ(w, un).

On the other hand, one has

φ(w, xn)− φ(w, un) = ‖xn‖2 − ‖un‖2 − 2 〈w, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖+ ‖un‖) + 2‖w‖‖Jxn − Jun‖.

It follows from ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0 that

φ(w, xn)− φ(w, un) −→ 0 as n −→ ∞. (3.134)

Observing that assumption lim infn−→∞αnβn > 0 and by Lemma 2.37, we also have

g‖Jxn − JTxn‖ −→ 0 as n −→ ∞.

It follows from the property of g that

‖Jxn − JTxn‖ −→ 0 as n −→ ∞.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we see that

lim
n−→∞‖xn − Txn‖ = 0.

Similarly, one can obtain

lim
n−→∞‖xn − Sxn‖ = 0.
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Next, we show p ∈ EF (Θ) = F (Tr). On the other hand, from (3.129), we arrive at

φ(u, yn) ≤ φ(u, xn). (3.135)

From un = Trn
zn and Lemma 3.28, we obtain

φ(un, zn) = φ(Trn
zn, zn)

≤ φ(w, zn)− φ(w, Trn
zn)

≤ φ(w, xn)− φ(w, Trn
zn)

= φ(w, xn)− φ(w, un).

It follows from (3.134) that

φ(un, zn)→ 0, as n → ∞.

Noticing that Lemma 2.32, we get

‖un − zn‖ → 0, as n → ∞.

Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞ ‖Jun − Jzn‖ = 0.

From the assumption rn ≥ a, one sees

lim
n→∞

‖Jun − Jzn‖
rn

= 0.

Noticing that un = Trnzn, one obtains

f(un, y) +
1
rn

〈y − un, Jun − Jzn〉 ≥ 0, ∀y ∈ C.

From the (A2), we note that

‖y − un‖‖Jun − Jzn‖
rn

≥ 1
rn

〈y − un, Jun − Jzn〉 ≥ −Θ(un, y) ≥ Θ(y, un), ∀y ∈ C.

By taking the limit as n → ∞ in above inequality and from (A4) and un −→ p, we obtain Θ(y, p) ≤ 0, ∀y ∈
C. For 0 < t < 1 and y ∈ C, define yt = ty + (1− t)p. Noticing that y, p ∈ C, we obtain yt ∈ C which yield

that Θ(yt, p) ≤ 0. It follows from (A1) that

0 = Θ(yt, yt) ≤ tΘ(yt, y) + (1− t)Θ(yt, p) ≤ tΘ(yt, y).

That is, Θ(yt, y) ≥ 0.

Let t ↓ 0, from (A3), we obtain Θ(p, y) ≥ 0, for ∀y ∈ C. This implies that p ∈ EP (Θ). This shows

that p ∈ F.

Finally, we prove p = ΠF x0. By taking limit in (3.130), one has

〈p − w, Jx0 − Jp〉 ≥ 0, ∀w ∈ F.

At this point, in view of Lemma 2.33, one sees that p = ΠF x0. This completes the proof. �

Corollary 3.31. (Qin et al. [44], Theorem 3.1 ) Let C be a nonempty and closed convex subset of a

uniformly convex and uniformly smooth Banach space E. Let Θ be a bifunction from C × C to R satisfying
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(A1)-(A4) and let T, S : C → C be two closed relatively quasi-nonexpansive mappings such that F :=

F (T ) ∩ F (S) ∩ EP (Θ) �= ∅. Let {xn} be a sequence generated by the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that Θ(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0,

(3.136)

where J is the duality mapping on E. Assume that {αn}, {βn} and {γn} are three sequences in [0, 1] satisfying

the restrictions:

(a) αn + βn + γn = 1;

(b) 0 ≤ αn < 1 for all n ∈ N ∪ {0} and lim supn−→∞αn < 1;

(c) lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0;

(d) {rn} ⊂ [a,∞) for some a > 0.

Then, {xn} converges strongly to ΠF x0.

Proof . Setting δn = 0 for all n ∈ N∪{0}, then (3.127) reduced to (3.136) and putting un = Trn
yn for z ∈ F,

we have φ(z, un) = φ(z, Trnyn) ≤ φ(z, yn). Therefore, the conclusion follows immediately from Theorem 3.30.

�

Corollary 3.32. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth

Banach space E. Let Θ be a bifunction from C × C to R satisfying (A1)-(A4) and let S : C → C be two

closed relatively quasi-nonexpansive mappings such that F := F (S) ∩ EP (Θ) �= ∅. Let {xn} be a sequence

generated by the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = PC1x0,

yn = J−1(αnJxn + (1− αn)JSxn),

un ∈ C such that Θ(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = PCn+1x0,

(3.137)

where J is the duality mapping on E, {αn}∞n=0 is a sequence in [0, 1] such that lim infn−→∞ αn(1− αn) > 0

and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly to PF x0.

Remark 3.33. Corollary 3.32 improves Theorem 3.1 of Takahashi and Zembayashi [56] in the following

senses:

(1) from relatively nonexpansive mappings to more general relatively quasi-

nonexpansive mappings; that is, we relax the strong restriction: F̃ (T ) = F (T );

(2) the algorithm in Theorem 3.30 is also more general than the one given by Qin et al. [44] and Takahashi

and Zembayashi [57].
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Lemma 3.34. (Zhang [68]). Let C be a closed convex subset of a smooth, strictly convex and reflexive

Banach space E. Let A : C −→ E∗ be a continuous and monotone mapping, ϕ : C → R is convex and lower

semi-continuous and Θ be a bifunction from C × C to R satisfying (A1)-(A4). For r > 0 and x ∈ E, then

there exists u ∈ C such that

Θ(u, y) + 〈Au, y − u〉+ ϕ(y)− ϕ(u) +
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C.

Define a mapping Kr : C −→ C as follows:

Kr(x) = {u ∈ C : Θ(u, y) + 〈Au, y − u〉+ ϕ(y)− ϕ(u)

+
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C} (3.138)

for all x ∈ E. Then, the followings hold:

1. Kr is single-valued;

2. Kr is firmly nonexpansive, i.e., for all x, y ∈ E, 〈Krx−Kry, JKrx− JKry〉 ≤ 〈Krx−Kry, Jx− Jy〉;

3. F (Kr) = Ω;

4. Ω is closed and convex.

5. φ(p,Krz) + φ(Krz, z) ≤ φ(p, z) ∀p ∈ F (Kr), z ∈ E.

Remark 3.35. (Zhang [68]). It follows from Lemma 3.27 that the mapping Kr : C −→ C defined by (3.138)

is a relatively nonexpansive mapping. Thus, it is quasi-φ-nonexpansive.

In this section, using the CQ hybrid method, we prove a strong convergence theorem for finding a

common element of the set of solutions of a mixed equilibrium problem, the set of solutions of the variational

inequality problem and the set of fixed points of quasi-φ-nonexpansive mappings in a Banach space.

Theorem 3.36. Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth

Banach space E. Let Θ be a bifunction from C×C to R satisfying (A1)-(A4) and let ϕ : C −→ R be a proper

lower semicontinuous and convex function, let A be an α-inverse-strongly monotone operator of C into E∗

and let T, S : C → C be closed quasi-φ-nonexpansive mappings such that F := F (T ) ∩ F (S) ∩ V I(A,C) ∩
MEP (Θ, ϕ) �= ∅ and ‖Ay‖ ≤ ‖Ay − Au‖ for all y ∈ C and u ∈ F . Let {xn} be a sequence generated by the

following manner: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

wn = ΠCJ−1(Jxn − λnAxn),

zn = J−1(βnJxn + γnJTxn + δnJSwn),

yn = J−1(αnJxn + (1− αn)Jzn),

un ∈ C such that Θ(un, y) + ϕ(y)− ϕ(un)

+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(3.139)

for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn}, {βn}, {γn} and {δn} are

sequences in [0, 1] satisfying the restrictions:

(i) lim supn−→∞ αn < 1;
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(ii) βn + γn + δn = 1;

(iii) lim infn→∞ βnγn > 0, lim infn→∞ βnδn > 0;

(iv) {rn} ⊂ [a,∞) for some a > 0;

(v) {λn} ⊂ [b, c] ∈ (0, 2α), for some b, c ∈ N.

Then, {xn} converges strongly to p ∈ F , where p = ΠF x.

Proof . We first show that Cn ∩Qn is closed and convex for each n ≥ 0. It is obvious that Cn is closed and

Qn is closed and convex. Since

φ(z, un) ≤ φ(z, xn)

is equivalent to

2〈z, Jun〉 − 2〈z, Jxn〉 ≤ ‖un‖2 − ‖xn‖2,

Cn is convex. So, Cn ∩ Qn is closed and convex subset of E for all n ∈ N ∪ {0}.
Put vn = J−1(Jxn − λnAxn). We observe that un = Krnyn for all n ≥ 1 and let p ∈ F , it follows from the

definition of quasi-φ-nonexpansive that

φ(p, un) = φ(p,Krn
yn)

≤ φ(p, yn)

= φ(p, J−1(αnJxn + (1− αn)Jzn)

= ‖p‖2 − 2〈p, αnJxn + (1− αn)Jzn〉+ ‖αnJxn + (1− αn)Jzn‖2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2(1− αn)〈p, Jzn〉+ αn‖xn‖2 + (1− αn)‖zn‖2

= αnφ(p, xn) + (1− αn)φ(p, zn), (3.140)

and then

φ(p, zn) = φ(p, J−1(βnJxn + γnJTxn + δnJSwn))

= ‖p‖2 − 2βn〈p, Jxn〉 − 2γn〈p, JTxn〉 − 2δn〈p, Jwxn〉
+‖βnJxn + γnJTxn + δnJSwn‖2

≤ ‖p‖2 − 2βn〈p, Jxn〉 − 2γn〈p, JTxn〉 − 2δn〈p, JSwn〉
+βn‖Jxn‖2 + γn‖JTxn‖2 + δn‖JSwn‖2

= βnφ(p, xn) + γnφ(p, Txn) + δnφ(p, Swn)

≤ βnφ(p, xn) + γnφ(p, xn) + δnφ(p, wn). (3.141)

From Lemma 2.34 and Lemma 2.38,

φ(p, wn) = φ(p,ΠCvn)

≤ φ(p, vn) = φ(p, J−1(Jxn − λnAxn))

≤ V (p, Jxn − λnAxn + λnAxn)− 2〈J−1(Jxn − λnAxn)− p, λnAxn〉
= V (p, Jxn)− 2λn〈vn − p,Axn〉
= φ(p, xn)− 2λn〈xn − p,Axn〉+ 2〈vn − xn,−λnAxn〉. (3.142)

Since p ∈ V I(A,C) and A is α-inverse-strongly monotone, we have

− 2λn〈xn − p,Axn〉 = −2λn〈xn − p,Axn − Ap〉 − 2λn〈xn − p,Ap〉
≤ −2αλn‖Axn − Ap‖2, (3.143)
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and we obtain

2〈vn − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn)− xn,−λnAxn〉
≤ 2‖J−1(Jxn − λnAxn)− xn‖‖λnAxn‖
= 2‖Jxn − λnAxn − Jxn‖‖λnAxn‖
= 2λ2

n‖Axn‖2

≤ 2λ2
n‖Axn − Ap‖2. (3.144)

Replacing (3.143) and (3.144) into (3.142), we get

φ(p, wn) ≤ φ(p, xn)− 2λn(α − λn)‖Axn − Ap‖2

≤ φ(p, xn). (3.145)

From (3.140), (3.141) and (3.145), we have

φ(p, un) ≤ φ(p, xn). (3.146)

Hence, we have p ∈ Cn. This implies that

F ⊂ Cn, ∀n ∈ N ∪ {0}. (3.147)

Next, we show by induction that F ⊂ Cn∩Qn for all n ∈ N∪{0}. FromQ0 = C, we have F ⊂ C0∩Q0. Suppose

that F ⊂ Ck ∩ Qk for some k ∈ N ∪ {0}. Then, there exists xk+1 ∈ Ck ∩ Qk such that xk+1 = ΠCk∩Qk
x.

From the definition of xk+1, we have

〈xk+1 − z, Jx − Jxk+1〉 ≥ 0 for all z ∈ Ck ∩ Qk. (3.148)

Since F ⊂ Ck ∩ Qk, we have

〈xk+1 − p, Jx0 − Jxk+1〉 ≥ 0, ∀p ∈ F, (3.149)

and hence p ∈ Qk+1. So, we have

F ⊂ Qk+1. (3.150)

Hence by (3.147) and (3.150) we obtain

F ⊂ Ck+1 ∩ Qk+1.

Threrfore, we have that F ⊂ Ck ∩ Qk for all n ∈ N ∪ {0}. This means that {xn} is well-defined.

Using xn = ΠQnx, from Lemma 2.30, one has

φ(xn, x) = φ(ΠQn
x, x) ≤ φ(p, x)− φ(p, xn) ≤ φ(p, x)

for each p ∈ F ⊂ Qn and xn = ΠQn
x. Thus, φ(xn, x) is bounded. Then, {xn}, {Swn} and {Txn} are

bounded.

Since xn+1 = ΠCn∩Qnx ∈ Cn ∩ Qn and xn = ΠQnx, we have

φ(xn, x) ≤ φ(xn+1, x), ∀n ∈ N ∪ {0}.

Therefore, {φ(xn, x)} is nondecreasing. It follows that the limit of {φ(xn, x)} exists. By the construction of
Qn, we have Qm ⊂ Qn and xm = ΠQm

x ∈ Qn for any positive integer m ≥ n. It follows that

φ(xm, xn) = φ(xm,ΠQnx)

≤ φ(xm, x)− φ(ΠQn
x, x)

= φ(xm, x)− φ(xn, x).

(3.151)
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Letting m,n −→ ∞ in (3.151), we have φ(xm, xn) −→ 0 as n −→ ∞. It follows that, from Lemma 2.32,

‖xm − xn‖ −→ 0 as m,n −→ ∞. Hence, {xn} is a Cauchy sequence. Since E is a Banach space and C is

closed and convex, one can assume that xn −→ x̂ ∈ C as n −→ ∞. Since

φ(xn+1, xn) = φ(xn+1,ΠQnx) ≤ φ(xn+1, x)− φ(ΠQnx, x) = φ(xn+1, x)− φ(xn, x)

for all n ∈ N ∪ {0}, we have limn−→∞φ(xn+1, xn) = 0. From xn+1 = ΠCn∩Qnx ∈ Cn, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}.

Therefore, we also have

lim
n−→∞φ(xn+1, un) = 0.

Since E is uniformly convex and smooth, we have from Lemma 2.32 that

lim
n−→∞‖xn+1 − xn‖ = lim

n−→∞‖xn+1 − un‖ = 0.

So, we have

lim
n−→∞‖xn − un‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞‖Jxn − Jun‖ = 0.

Since E is uniformly smooth Banach spaces, one knows that E∗ is a uniformly convex Banach apace. Let

r = supn∈N∪{0}{‖xn‖, ‖Txn‖, ‖Swn‖}. From Lemma 2.36 and (3.145), we have

φ(p, zn) = φ(p, J−1(βnJxn + γnJTxn + δnJSwn))

= ‖p‖2 − 2βn 〈p, Jxn〉 − 2γn 〈p, JTxn〉 − 2δn 〈p, JSwn〉
+‖βnJxn + γnJTxn + δnJSwn‖2

≤ ‖p‖2 − 2β 〈p, Jxn〉 − 2γn 〈p, JTxn〉 − 2δn 〈p, JSwn〉
+βn‖xn‖2 + γn‖Txn‖2 + δn‖Swn‖2

−βnγng(‖JTxn − Jxn‖)
= βnφ(p, xn) + γnφ(p, Txn) + δnφ(p, Swn)

−βnγng(‖JTxn − Jxn‖)
≤ φ(p, xn)− βnγng(‖JTxn − Jxn‖)

−2λn(α − λn)δn‖Axn − Ap‖2.

(3.152)

Substituting (3.152) into (3.140), we have

φ(p, un) ≤ αnφ(p, xn) + (1− αn)[φ(p, xn)− βnγng(‖JTxn − Jxn‖)
−2λn(α − λn)δn‖Axn − Ap‖2]

≤ αnφ(p, xn) + (1− αn)φ(p, xn)

−(1− αn)βnγng(‖JTxn − Jxn‖)
−2λn(1− αn)(α − λn)δn‖Axn − Ap‖2.

(3.153)

Therefore, we have

(1− αn)βnγng(‖JTxn − Jxn‖) ≤ φ(p, xn)− φ(p, un).

On the other hand, we have

φ(p, xn)− φ(p, un) = ‖xn‖2 − ‖un‖2 − 2 〈p, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖+ ‖un‖) + 2‖p‖‖Jxn − Jun‖.
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It follows from ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0 that

lim
n−→∞(φ(p, xn)− φ(p, un)) = 0. (3.154)

Observing that assumption lim infn−→∞βnγn > 0 and by Lemma 2.37, we also

lim
n−→∞ g‖Jxn − JTxn‖ = 0.

It follows from the property of g that

lim
n−→∞ ‖Jxn − JTxn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we see that

lim
n−→∞‖xn − Txn‖ = 0. (3.155)

Similarly, one can obtain

lim
n−→∞‖xn − Swn‖ = 0. (3.156)

By (3.153), we have

2λn(α − λn)δn‖Axn − Ap‖2 ≤ φ(p, xn)− φ(p, un),

which yield that

lim
n−→∞ ‖Axn − Ap‖ = 0. (3.157)

From Lemma 2.34, Lemma 2.38, and (3.144), we have

φ(xn, wn) = φ(xn,ΠCvn) ≤ φ(xn, vn)

= φ(xn, J−1(Jxn − λnAxn))

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn)

−2〈J−1(Jxn − λnAxn)− xn, λnAxn〉
= φ(xn, xn) + 2〈vn − xn, λnAxn〉
= 2〈vn − xn, λnAxn〉
≤ 2λ2

n‖Axn − Ap‖2.

From Lemma 2.32 and (3.157), we have

lim
n−→∞ ‖xn − wn‖ = 0. (3.158)

Since J is also uniformly norm-to-norm continuous on bounded sets, we see that

lim
n−→∞ ‖Jxn − Jwn‖ = 0. (3.159)

By (3.156) and (3.158), we obtain

lim
n−→∞ ‖Swn − wn‖ = 0. (3.160)

From (3.158), we have

lim
n−→∞ ‖Sxn − xn‖ = 0.

Since S and T are closed operators and xn −→ x̂, x̂ is a common fixed point of S and T , i.e., x̂ ∈ F (T )∩F (S).

Next, we show that x̂ ∈ MEP (Θ, ϕ). Since un = Krn
yn. From Lemma 3.34, we have

φ(un, yn) = φ(Krnyn, yn)

≤ φ(x̂, yn)− φ(x̂,Krn
yn)

≤ φ(x̂, xn)− φ(x̂,Krn
yn)

= φ(x̂, xn)− φ(x̂, un)

= ‖xn‖2 − ‖un‖2 − 2〈x̂, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖+ ‖un‖) + 2‖x̂‖‖Jxn − Jun‖.
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It follows from ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0 that

φ(un, yn)→ 0 as n → ∞.

and so

lim
n−→∞ ‖un − yn‖ = 0. (3.161)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞ ‖Jun − Jyn‖ = 0. (3.162)

From (3.139) and (A2), we also have

ϕ(y)− ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ Θ(y, un), ∀y ∈ C.

Hence,

ϕ(y)− ϕ(uni) + 〈y − uni ,
Juni

− Jyni

rni

〉 ≥ Θ(y, uni), ∀y ∈ C.

From ‖xn − un‖ −→ 0, we get uni
−→ x̂. Since

Juni − Jyni

rni

−→ 0, it follows by (A4) and the weakly lower

semicontinuous of ϕ that

Θ(y, x̂) + ϕ(x̂)− ϕ(y) ≤ 0, ∀y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)u. Since y ∈ C and x̂ ∈ C, we have yt ∈ C and hence

Θ(yt, x̂) + ϕ(x̂)− ϕ(yt) ≤ 0. So, from (A1), (A4) and the convexity of ϕ, we have

0 = Θ(yt, yt) + ϕ(yt)− ϕ(yt)

≤ tΘ(yt, y) + (1− t)Θ(yt, u) + tϕ(y) + (1− t)ϕ(y)− ϕ(yt)

≤ t(Θ(yt, y) + ϕ(y)− ϕ(yt)).

Dividing by t, we get Θ(yt, y)+ϕ(y)−ϕ(yt) ≥ 0. From (A3) and the weakly lower semicontinuity of ϕ, we have

Θ(x̂, y) + ϕ(y)− ϕ(x̂) ≥ 0 for all y ∈ C implies x̂ ∈ MEP (Θ, ϕ). Next, we show that x̂ ∈ V I(A,C). Define

T ⊂ E ×E∗ be as in Theorem 2.47. Thus by Theorem 2.47, T is maximal monotone and T−10 = V I(A,C).

Let (v, w) ∈ G(T ). Since w ∈ Tv = Av +NC(v), we get w − Av ∈ NC(v). From wn ∈ C, we have

〈v − wn, w − Av〉 ≥ 0. (3.163)

On the other hand, since wn = ΠCJ−1(Jxn − λnAxn). Then, by Lemma 2.33, we have

〈v − wn, Jwn − (Jxn − λnAxn)〉 ≥ 0;

thus,

〈v − wn,
Jxn − Jwn

λn
− Axn〉 ≤ 0. (3.164)

It follows from (3.163) and (3.164) that

〈v − wn, w〉 ≥ 〈v − wn, Av〉

≥ 〈v − wn, Av〉+ 〈v − wn,
Jxn − Jwn

λn
− Axn〉

= 〈v − wn, Av − Axn〉+ 〈v − wn,
Jxn − Jwn

λn
〉

= 〈v − wn, Av − Awn〉+ 〈v − wn, Awn − Axn〉

+〈v − wn,
Jxn − Jwn

λn
〉

≥ −‖v − wn‖‖wn−xn‖
α − ‖v − wn‖

‖Jxn − Jwn‖
b

≥ −M(
‖wn − xn‖

α
+

‖Jxn − Jwn‖
b

),
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where M = supn≥1{‖v − wn‖}. From (3.158) and (3.159), we obtain 〈v − x̂, w〉 ≥ 0. By the maximality of

T , we have x̂ ∈ T−10 and hence x̂ ∈ V I(A,C). Hence, x̂ ∈ F := V I(C, A) ∩ T−1(0) ∩ MEP (Θ, ϕ).

Finally, we prove that x̂ = ΠF x0. From xn = ΠCn∩Qn
x, we have

〈Jx − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn ∩ Qn.

Since F ⊂ Cn ∩ Qn, we also have

〈Jx − Jxn, xn − p〉 ≥ 0, ∀p ∈ F. (3.165)

By taking limit in (3.165), one has

〈Jx − Jx̂, x̂ − p〉 ≥ 0, ∀p ∈ F.

At this point, in view of Lemma 2.33, one sees that x̂ = ΠF x0. This completes the proof.

3.3 Optimization Problems

Let H be a real Hilbert space and C be a closed convex subset of H.

Now, we consider the following Optimization Problem :

min
x∈ ̂F

{
μ

2
〈Ax, x〉+ 1

2
‖x − u‖2 − h(x)

}
, (3.166)

where F̂ = ∩∞
n=1Cn, C1, C2, · · · are infinitely many closed convex subsets of H such that ∩∞

n=1Cn �= ∅,
u ∈ H, μ ≥ 0 is a real number, A is a strongly positive linear bounded operator on H and h is a potential

function for γf (i.e., h′(x) = γf(x) for x ∈ H).

For solving the mixed equilibrium problem for an equilibrium bifunction Θ : C × C −→ R, let us

assume that Θ satisfies the following conditions:

(H1) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0, ∀x, y ∈ C;

(H2) for each fixed y ∈ C, x �→ Θ(x, y) is convex and upper semicontinuous;

(H3) for each x ∈ C, y �→ Θ(x, y) is convex.

Definition 3.37. Let η : C ×C −→ H, which is called Lipschitz continuous if there exists a constant δ > 0

such that

‖η(x, y)‖ ≤ δ‖x − y‖, ∀x, y ∈ C.

Definition 3.38. Let K : C −→ R be a differentiable functional on a convex set C, which is called:

(D1) η-convex [7] if

K(y)− K(x) ≥
〈
K ′(x), η(y, x)

〉
, ∀x, y ∈ C,

where K ′(x) is the Fréchet derivative at x;

(D2) η-strongly convex [61] if there exists a constant σ > 0 such that

K(y)− K(x)−
〈
K ′(x), η(y, x)

〉
≥ σ

2
‖x − y‖2, ∀x, y ∈ C.

In particular, if η(x, y) = x − y for all x, y ∈ C, then K is said to be strongly convex.
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Definition 3.39. Let C be a nonempty closed convex subset of a real Hilbert space H, let ϕ : C −→ R be a

real-valued function and Θ : C ×C −→ R be an equilibrium bifunction. Let r be a positive parameter. For a

given point x ∈ C, the auxiliary problem for mixed equilibrium problem (2.11) consists of finding y ∈ C such

that

Θ(y, z) + ϕ(z)− ϕ(y) +
1
r

〈
K ′(y)− K ′(x), η(z, y)

〉
≥ 0, ∀z ∈ C.

Definition 3.40. Let Sr : C −→ C be the mapping such that for each x ∈ C, Sr(x) is the solution set of

the auxiliary problem the mixed equilibrium problem (2.11), that is,

Sr(x) =
{

y ∈ C : Θ(y, z) + ϕ(z)− ϕ(y)

+
1
r

〈
K ′(y)− K ′(x), η(z, y)

〉
≥ 0, ∀z ∈ E

}
, ∀x ∈ C.

Lemma 3.41. [7]. Let C be a nonempty closed convex subset of a real Hilbert space H and let ϕ be a

lower semicontinuous and convex functional from C to R. Let Θ be a bifunction from C ×C to R satisfying

(H1)-(H3). Assume that

(i) η : C × C −→ H is Lipschitz continuous with constant λ > 0 such that;

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C,

(b) η(·, ·) is affine in the first variable,

(c) for each fixed y ∈ C, x �→ η(y, x) is sequentially continuous from the weak topology to the weak

topology;

(ii) K : E −→ R is η-strongly convex with constant σ > 0 and its derivative

K ′ is sequentially continuous from the weak topology to the strong topology;

(iii) for each x ∈ C, there exist a bounded subset Dx ⊂ E and zx ∈ C such that for any y ∈ \Dx,

Θ(y, zx) + ϕ(zx)− ϕ(y) +
1
r

〈
K ′(y)− K ′(x), η(zx, y)

〉
< 0.

Then, there exists y ∈ C such that

Θ(y, z) + ϕ(z)− ϕ(y) +
1
r

〈
K ′(y)− K ′(x), η(z, y)

〉
≥ 0, ∀z ∈ C.

Lemma 3.42. [7]. Assume that Θ satisfies the same assumptions as Lemma 3.41 for r > 0 and x ∈ C, the

mapping Sr : C −→ C can be defined as follows:

Sr(x) =
{

y ∈ E : Θ(y, z) + ϕ(z)− ϕ(y) +
1
r

〈
K ′(y)− K ′(x), η(z, y)

〉
≥ 0, ∀z ∈ C

}
.

Then, the following hold:

(i) Sr is single-valued;

(ii) (a)
〈
K ′(x1) − K ′(x2), η(u1, u2)

〉
≥

〈
K ′(u1) − K ′(u2), η(u1, u2)

〉
, ∀(x1, x2) ∈ C × C, where ui =

Sr(xi), i = 1, 2;

(b) Sr is nonexpansive if K ′ is Lipschitz continuous with constant ν > 0 such that σ > λν;

(iii) F (Sr) = MEP (Θ, ϕ);

(iv) MEP (Θ, ϕ) is closed and convex.
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Remark 3.43. From Lemma 3.42 in particular, whenever K(x) = ‖x‖2

2 and η(x, y) = x − y for each

(x, y) ∈ C × C, then Sr is firmly nonexpansive, that is,

‖Sr(x1)− Sr(x2)‖2 ≤
〈
x1 − x2, Sr(x1)− Sr(x2)

〉
.

Lemma 3.44. [64]. Let C be a nonempty closed convex subset of a real Hilbert space H, and g : C −→
R∪{∞} be a proper lower-semicontinuous differentiable convex function. If z is a solution to the minimization

problem

g(z) = inf
x∈C

g(x),

then 〈
g′(x), x − z

〉
≥ 0, x ∈ C.

In particular, if z solves problem Optimization Problem, then

〈
u+

[
γf − (I + μA)

]
z, x − z

〉
≤ 0.

We prove a strong convergence theorem of a new iterative method to compute the approximate solutions of

the mixed equilibrium problems and optimization problems in a real Hilbert space.

We first prove that the following Lemmas.

Lemma 3.45. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H and let

B : C −→ H be a relaxed (m, v)-cocoercive and μ-Lipschitz continuous. It 0 ≤ τn ≤ 2(v−mμ2)
μ2 , v > mμ2,

then I − τnB is a nonexpansive mapping in H.

Proof. See [20].

Now, we prove the following main Theorem.

Theorem 3.46. Let C be a nonempty closed convex subset of a real Hilbert space H and let ϕ be a lower

semicontinuous and convex functional from C to R. Let Θ be a bifunction from C ×C to R satisfying (H1)-

(H3), let {Tn} be an infinite family of nonexpansive mappings of C into itself and let B be a ξ-Lipschitz

continuous and relaxed (m, v)-cocoercive map C into H such that

Γ := ∩∞
n=1F (Tn) ∩ MEP (Θ, ϕ) ∩ V I(C, B) �= ∅.

Let μ > 0, γ > 0 and r > 0, which are three constants. Let f be a contraction of E into itself with α ∈ (0, 1)
and let A be a strongly positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < (1+μ)γ̄

α .

For given x1 ∈ H arbitrarily and fixed u ∈ H, suppose the {xn}, {yn} and {zn} are generated iteratively by⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ(zn, x) + ϕ(x)− ϕ(zn) + 1

r

〈
K ′(zn)− K ′(xn), η(x, zn)

〉
≥ 0, ∀x ∈ C,

yn = αnzn + (1− αn)WnPC(zn − λnBzn),

xn+1 = εn

(
u+ γf(Wnxn)

)
+βnxn +

(
(1− βn)I − εn(I + μA)

)
WnPC(yn − τnByn),

(3.167)

for all n ∈ N, where Wn be the W -mapping defined by (3.34) and {εn}, {αn} and {βn} are three sequences

in (0, 1). Assume the following conditions are satisfied:

(C1) η : C × C −→ H is Lipschitz continuous with constant λ > 0 such that;

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C
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(b) η(·, ·) is affine in the first variable,

(c) for each fixed y ∈ C, x �→ η(y, x) is sequentially continuous from the weak topology to the weak

topology;

(C2) K : C −→ R is η-strongly convex with constant σ > 0 and its derivative K ′ is not only sequentially

continuous from the weak topology to the strong topology but also Lipschitz continuous with constant

ν > 0 such that σ > λν;

(C3) for each x ∈ C, there exist a bounded subset Dx ⊂ E and zx ∈ C such that for any y ∈ C\Dx,

Θ(y, zx) + ϕ(zx)− ϕ(y) +
1
r

〈
K ′(y)− K ′(x), η(zx, y)

〉
< 0;

(C4) limn−→∞ αn = 0, limn−→∞ εn = 0 and
∑∞

n=1 εn =∞;

(C5) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;

(C6) limn−→∞ |λn+1 − λn| = limn−→∞ |τn+1 − τn| = 0;

(C7) {τn}, {λn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v−mξ2)
ξ2 .

Then, {xn} and {zn} converge strongly to z ∈ Γ := ∩∞
n=1F (Tn) ∩ MEP (Θ, ϕ) ∩ V I(C, B) provided that Sr

is firmly nonexpansive, which solves the following Optimization Problem:

min
x∈Γ

{
μ

2
〈Ax, x〉+ 1

2
‖x − u‖2 − h(x)

}
. (3.168)

Proof. See [16].

Corollary 3.47. Let C be a nonempty closed convex subset of a real Hilbert space H, let {Tn} be an infinite

family of nonexpansive mappings of E into itself and let B be a ξ-Lipschitz continuous and relaxed (m, v)-

cocoercive map C into H such that

Γ := ∩∞
n=1F (Tn) ∩ V I(C, B) �= ∅.

Let μ > 0 and γ > 0, which are two constants. Let f be a contraction of C into itself with α ∈ (0, 1) and let

A be a strongly positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < (1+μ)γ̄
α . For given

x1 ∈ H arbitrarily and fixed u ∈ H, suppose the {xn} and {yn} are generated iteratively by⎧⎨⎩ yn = αnxn + (1− αn)WnPC(xn − λnBxn),

xn+1 = εn

(
u+ γf(Wnxn)

)
+ βnxn +

(
(1− βn)I − εn(I + μA)

)
WnPC(yn − τnByn)

for all n ∈ N, where Wn be the W -mapping defined by (3.34) and {εn}, {αn} and {βn} are three sequences

in (0, 1). Assume the following conditions are satisfied:

(C1) limn−→∞ αn = 0, limn−→∞ εn = 0 and
∑∞

n=1 εn =∞;

(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;

(C3) limn−→∞ |λn+1 − λn| = limn−→∞ |τn+1 − τn| = 0;

(C4) {τn}, {λn}⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v−mξ2)
ξ2 .

Then, {xn} converge strongly to z ∈ Γ := ∩∞
n=1F (Tn) ∩ V I(C, B), which solves the following Optimization

Problem:

min
x∈Γ

{
μ

2
〈Ax, x〉+ 1

2
‖x − u‖2 − h(x)

}
.
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1. Introduction

Let C be a closed convex subset of a real Hilbert space H and let PC be the metric projection of H onto C . A mapping
S : C → C is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, (1)

for all x, y ∈ C . We denote by F(S) the set of fixed points of S. If C is bounded closed convex and S is a nonexpansivemapping
of C into itself, then F(S) is nonempty. A mapping A of C into H is called monotone if

〈Au− Av, u− v〉 ≥ 0, (2)

for all u, v ∈ C . A is called α-inverse-strongly-monotone if there exists a positive real number α such that

〈Au− Av, u− v〉 ≥ α‖Au− Av‖2, (3)

for all u, v ∈ C . It is obvious that any α-inverse-strongly-monotone mapping A is monotone and Lipschitz continuous.
The classical variational inequality problem is to find u ∈ C such that 〈v − u, Au〉 ≥ 0 for all v ∈ C . We denoted by

VI(A, C) the set of solutions of this variational inequality problem. The variational inequality has been extensively studied
in the literature. See, e.g. [13,14] and the references therein.

Construction of fixed points of nonexpansive mapping is an important subject in the theory of nonexpansive mappings.
However, the sequence {Snx}∞n=0 of iterates of themapping S at a point x ∈ C may not converge even inweak topology. More
precisely, Mann’s iterated procedure is a sequence {xn}which is generated in the following recursive way:

xn+1 = αnxn + (1− αn)Sxn, n ≥ 0, (4)
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where the initial guess x0 ∈ C is chosen arbitrarily. However, we note that Mann’s iterations have only weak convergence
even in a Hilbert space [6]. For finding an element of F(S) ∩ VI(C, A) under the assumption that a set C ⊂ H is closed and
convex, a mapping S of C into itself is nonexpansive and amapping A of C intoH is α-inverse-strongly-monotone. Takahashi
and Toyoda [12] introduced the following iterative scheme:

xn+1 = αnxn + (1− αn)SPC (xn − λnAxn), (5)

for every n ∈ N ∪ {0}, where x0 = x ∈ C, {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2α). They showed that, if
F(S) ∩ VI(C, A) �= ∅, then such a sequence {xn} converges weakly to some z ∈ F(S) ∩ VI(C, A).

On the other hand, Aoyama et al. [1] introduced an iterative sequence {xn} of C defined by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Snxn, n ∈ N, (6)

where {αn} is a sequence in [0, 1], C is a closed convex subset of H and {Sn} is a sequence of nonexpansive mappings of
C into itself with

⋂∞
n=1 F(Sn) �= ∅. They also proved that such a sequence converges strongly to a common fixed point of

nonexpansive mappings.
In this paper, we introduce the following iteration process of α-inverse-strongly-monotone mappings A of C into H and

a countable family of nonexpansive mappings {Sn} of C into itself, where C is a closed convex subset of a Hilbert space H .
Let x1 = x ∈ C and

xn+1 = αnxn + (1− αn)SnPC (xn − λnAxn), (7)

for all n ∈ N, where {αn} is a sequence in (0, 1) and {λn} ⊂ (a, b) ⊂ (0, 2α). We will prove that if the sequences {αn} and
{λn} of parameters satisfy the appropriate condition, then the sequence {xn} generated by (7) converges weakly to the point
z ∈ F(S) ∩ VI(C, A). Moreover, we apply our result to the problem for finding a common element of the set of equilibrium
problems and the set of common fixed points of a countable family of nonexpansive mappings.

2. Preliminaries

Let H be a real Hilbert space. Then

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 (8)

and

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2 (9)

for all x, y ∈ H and λ ∈ [0, 1]. It is also known that H satisfy

(1) the Opial condition [9], that is, for any sequence {xn}with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖
holds for every y ∈ H with y �= x.

(2) the Kadec-Klee property [5,10], that is, for any sequence {xn}with xn ⇀ x and ‖xn‖ → ‖x‖ implies ‖xn − x‖ → 0.

Let C be a closed convex subset of H . For every point x ∈ H , there exists a unique nearest point in C , denoted by PCx, such
that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C .

PC is called the metric projection of H onto C . It is well known that PC is a nonexpansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (10)

for every x, y ∈ H . Moreover, PCx is characterized by the following properties: PCx ∈ C and

〈x− PCx, y− PCx〉 ≤ 0, (11)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y− PCx‖2 (12)

for all x ∈ H, y ∈ C .
In the context of the variational inequality problem, this implies that

u ∈ VI(A, C)⇔ u = PC (u− λAu), for all λ > 0. (13)

We have that, for all u, v ∈ C and λ > 0,

‖(I − λA)u− (I − λA)v‖2 = ‖(u− v)− λ(Au− Av)‖2
= ‖u− v‖2 − 2λ〈u− v, Au− Av〉 + λ2‖Au− Av‖2
≤ ‖u− v‖2 + λ(λ− 2α)‖Au− Av‖2. (14)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping from C to H .
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The following lemmas will be useful for proving the convergence result of this paper.

Lemma 1 ([1, Lemma 3.2]). Let C be a nonempty closed subset of a Banach space and let {Tn} be a sequence of nonexpansive
mappings of C into itself. Suppose that

∑∞
n=1 sup{‖Tn+1z − Tnz‖ : z ∈ C} <∞. Then, for each y ∈ C, {Tny} converges strongly

to some point of C. Moreover, let T be a mapping of C into itself defined by

Ty = lim
n→∞ Tny for all y ∈ C .

Then limn→∞ sup{‖Tnz − Tz‖ : z ∈ C} = 0.

Lemma 2 ([12, Lemma 3.1]). Let H be a real Hilbert space, let {αn} be a sequence of real numbers such that 0 < a ≤ αn ≤ b < 1
for all n = 0, 1, 2, . . . , and let {vn} and {wn} be sequences of H such that

lim sup
n→∞

‖vn‖ ≤ c, lim sup
n→∞

‖wn‖ ≤ c,

and

lim
n→∞‖αnvn + (1− αn)wn‖ = c, for some c > 0.

Then,

lim
n→∞‖vn − wn‖ = 0.

Lemma 3 ([12, Lemma 3.2]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let {xn} be a sequence in H such
that

‖xn+1 − y‖ ≤ ‖xn − y‖ for all y ∈ C and n ∈ N.

Then the sequence {PC (xn)} converges strongly to some point in C.

3. Weak convergence theorems

In this section, we prove some weak convergence theorems for monotone mappings and a countable family of
nonexpansive mappings.

Theorem 4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let α > 0 and let A be an α-inverse-
strongly-monotone mapping of C into H. Let {Sn} be a sequence of nonexpansive mappings from C into itself such that⋂∞

n=1 F(Sn) ∩ VI(C, A) �= ∅. Let {xn} be a sequence in C defined by x0 ∈ C and

xn+1 = αnxn + (1− αn)SnPC (xn − λnAxn),

for all n = 0, 1, 2, . . ., where 0 < a < λn < b < 2α, 0 < c < αn < d < 1 and
∑∞

n=1 αn(1 − αn) = ∞. Suppose

that
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset B of C. Let S be a mapping of C into itself defined by

Sz = limn→∞ Snz for all z ∈ C and suppose that F(S) =⋂∞
n=1 F(Sn). Then {xn} converges weakly to z ∈ F(S) ∩ VI(C, A), where

z = limn→∞ PF(S)∩VI(C,A)xn.

Proof. Put yn = PC (xn − λnAxn), for every n = 0, 1, 2, . . . . Let u ∈ F(S) ∩ VI(C, A).
Since I − λnA is nonexpansive and

u = PC (u− λnAu),

we have

‖yn − u‖ = ‖PC (xn − λnAxn)− PC (u− λnAu)‖
≤ ‖(xn − λnAxn)− (u− λnAu)‖
≤ ‖(I − λnA)xn − (I − λnA)u‖
≤ ‖xn − u‖

for every n = 0, 1, 2, . . .. From (14), we note that

‖xn+1 − u‖2 = ‖αn(xn − u)+ (1− αn)(Snyn − u)‖2
≤ αn‖(xn − u)‖2 + (1− αn)‖(Snyn − u)‖2
≤ αn‖xn − u‖2 + (1− αn)‖yn − u‖2
≤ αn‖xn − u‖2 + (1− αn){‖xn − u‖2 + λn(λn − 2α)‖Axn − Au‖2}
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= ‖xn − u‖2 + (1− αn)λn(λn − 2α)‖Axn − Au‖2
≤ ‖xn − u‖2 + (1− d)a(b− 2α)‖Axn − Au‖2
≤ ‖xn − u‖2

for all n ∈ N. This implies that

‖xn+1 − u‖ ≤ ‖xn − u‖ (15)

for all n ∈ N. Hence limn→∞ ‖xn − u‖ exists and so Axn − Au→ 0. Then {xn} and {yn} are bounded. From (10), we have

‖yn − u‖2 = ‖PC (xn − λnAxn)− PC (u− λnAu)‖2
≤ 〈yn − u, (xn − λnAxn)− (u− λnAu)〉
= (1/2){‖yn − u‖2 + ‖(xn − λnAxn)− (u− λnAu)‖2 − ‖(yn − u)− [(xn − λnAxn)− (u− λnAu)]‖2}
≤ (1/2){‖yn − u‖2 + ‖xn − u‖2 − ‖(yn − xn)+ λn(Axn − Au)‖2}
= (1/2){‖yn − u‖2 + ‖xn − u‖2 − ‖(yn − xn)‖2 − 2λn〈yn − xn, Axn − Au〉 − λ2

n‖Axn − Au‖2}.
So, we obtain

‖yn − u‖2 ≤ ‖xn − u‖2 − ‖yn − xn‖2 − 2λn〈yn − xn, Axn − Au〉 − λ2
n‖Axn − Au‖2

and hence

‖xn+1 − u‖2 ≤ αn‖xn − u‖2 + (1− αn)‖Snyn − u‖2
≤ αn‖xn − u‖2 + (1− αn)‖yn − u‖2
≤ ‖xn − u‖2 − (1− αn)‖yn − xn‖2 − 2λn(1− αn)〈yn − xn, Axn − Au〉 − λ2

n(1− αn)‖Axn − Au‖2
≤ ‖xn − u‖2 − (1− d)‖yn − xn‖2 − 2λn(1− αn)〈yn − xn, Axn − Au〉 − λ2

n(1− αn)‖Axn − Au‖2.
Since

lim
n→∞‖xn − u‖2 = lim

n→∞‖xn+1 − u‖2

and

Axn − Au→ 0,

we obtain

yn − xn → 0. (16)

By the boundedness of {xn}, there exists a subsequence {xni} of {xn} that converges weakly to z. Finally, we shall show that

z ∈ F(S) ∩ VI(C, A).

First, we show that z ∈ VI(C, A). By the same argument as in the proof of Theorem 3.1 in [12, pp. 423–424], we note that
z ∈ VI(C, A).

Next, we show that z ∈ F(S). Let

u ∈ F(S) ∩ VI(C, A).

Since

‖Snyn − u‖ ≤ ‖yn − u‖ ≤ ‖xn − u‖,
we have

lim sup
n→∞

‖Snyn − u‖ ≤ c,

where

c = lim
n→∞‖xn − u‖.

Furthermore, we have

lim
n→∞‖αn(xn − u)+ (1− αn)(Snyn − u)‖ = lim

n→∞‖xn+1 − u‖ = c.

By Lemma 2, we have

lim
n→∞‖Snyn − xn‖ = 0. (17)
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Since {yn} is bounded, it follows that

∞∑
n=1

{‖Snz − Sn+1z‖ : z ∈ {yn}} <∞.

By applying (16) and (17) and Lemma 1, we note that

‖Sxn − xn‖ ≤ ‖Sxn − Syn‖ + ‖Syn − Snyn‖ + ‖Snyn − xn‖
≤ ‖xn − yn‖ + sup{‖Snz − Sz‖ : z ∈ {yn}} + ‖Snyn − xn‖ → 0.

Hence limn→∞ ‖Sxn − xn‖ = 0. Since xni ⇀ z, it follows by the demiclosedness principle of S that z ∈ F(S). Hence
z ∈ F(S) ∩ VI(C, A).

We will prove that xn ⇀ z. Suppose that there exist {xmj
} ⊂ {xn} and z ′ �= z such that xmj

⇀ z ′. So, we have

z ′ ∈ F(S) ∩ VI(C, A). From Opial’s condition, it follows that

lim
n→∞‖xn − z‖ lim

i→∞‖xni − z‖ < lim
i→∞‖xni − z ′‖

= lim
j→∞‖xmj

− z ′‖ < lim
j→∞‖xmj

− z‖
= lim

n→∞‖xn − z‖,
which leads to a contradiction. Hence xn ⇀ z ∈ F(S) ∩ VI(C, A). Finally we prove that limn→∞ zn = z, where zn =
PF(S)∩VI(C,A)xn for each n ∈ N. By (15) and Lemma 3, there is z0 ∈ F(T ) such that zn → z0. From zn = PF(S)∩VI(C,A)xn and
z ∈ F(S) ∩ VI(C, A), we have

〈xn − zn, zn − z〉 ≥ 0, for all n ∈ N.

It follows from zn → z0 and xn ⇀ z that

〈z − z0, z0 − z〉 ≥ 0

and then z0 = z. This completes the proof. �

Setting Sn ≡ S in Theorem 4, we immediately obtain the following result.

Corollary 5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let α > 0 and let A be an α-inverse-strongly-
monotone mapping of C into H. Let S be a nonexpansive mapping from C into itself such that F(S) ∩ VI(C, A) �= ∅. Let {xn} be a
sequence in C defined by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)SPC (xn − λnAxn),

for all n = 0, 1, 2, . . . , where 0 < a < λn < b < 2α, 0 < c < αn < d < 1 and
∑∞

n=1 αn(1− αn) = ∞. Then {xn} converges
weakly to z ∈ F(S) ∩ VI(C, A), where z = limn→∞ PF(S)∩VI(C,A)xn.

By using the same argument presented in the proof of Theorem 4, we have the following theorem.

Theorem 6 ([8, Corollary 6]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let {S} be a sequence of
nonexpansive mappings from C into itself such that

⋂∞
n=1 F(Sn) �= ∅. Let {xn} be a sequence in C defined by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Snxn,

for every n ∈ N, where {αn} is a sequence in (0, 1) and
∑∞

n=1 αn(1 − αn) = ∞. Suppose that
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈
B} <∞ for any bounded subset B of C. Let S be a mapping of C into itself defined by Sz = limn→∞ Snz for all z ∈ C and suppose
that F(S) =⋂∞

n=1 F(Sn). Then {xn} converges weakly to z ∈ F(S), where z = limn→∞ PF(S)xn.

Proof. Putting yn = xn in the proof of Theorem 4. Then, by using the same argument as in the proof of Theorem 4, we can
show that {xn} converges weakly to a point z ∈ F(S), where z = limn→∞ PF(S)xn. �

4. Applications

4.1. Equilibrium problems

Let C be a nonempty closed convex subset of a real Hilbert space H . Let F be a bifunction of C × C into R, where R is the
set of real numbers. The equilibrium problem for F : C × C → R is to find x ∈ C such that

F(x, y) ≥ 0 for all y ∈ C . (18)
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The set of solutions of (18) is denoted by EP(F). Numerous problems in physics, optimization, and economics can be reduced
to find a solution of (18). Some methods have been proposed to solve the equilibrium problem (see [2,4,7,11]). In 2005,
Combettes and Hirstoaga [3] introduced an iterative scheme of finding the best approximation to the initial data when
EP(F) is nonempty and they also proved a strong convergence theorem.

For solving the equilibrium problem, let us assume that the bifunction F satisfies the following conditions (see [2]):

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F(x, y)+ F(y, x) ≤ 0 for any x, y ∈ C;
(A3) F is upper-hemicontinuous, i.e., for each x, y, z ∈ C ,

lim sup
t→0+

F(tz + (1− t)x, y) ≤ F(x, y);
(A4) F(x, ·) is convex and lower semicontinuous for each x ∈ C .

By [2, Corollary 1] and [3, Lemma 2.12], we have the following lemma.

Lemma 7. Let C be a nonempty closed convex subset of a real Hilbert space H, let F be a bifunction from C × C into R

satisfying (A1)–(A4) and let r > 0 and x ∈ H. Then there exists unique x∗ ∈ C such that

F(x∗, y)+ 1

r
〈y− x∗, x∗ − x〉 ≥ 0 for all y ∈ C .

Moreover, let Tr be a mapping of H into C defined by

Tr(x) = x∗

for all x ∈ H. Then, the following hold:

(i) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
(ii) F(Tr) = EP(F);
(iii) EP(F) is closed and convex.

Using [8, Theorem 16], we have the following lemma.

Lemma 8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from C × C into R

satisfying (A1)–(A4). Let {rn} be a sequence of positive integers and Trn be themapping defined as in Lemma 7. If lim infn→∞ rn >
0 and

∑∞
n=1 |rn+1 − rn| <∞, then the following hold:

(i)
∑∞

n=1 sup{‖Trn+1
z − Trnz‖ : z ∈ B} <∞ for any bounded subset B of C,

(i) F(T ) =⋂∞
n=1 F(Trn) where T is a mapping defined by Tx = limn→∞ Trnx for all x ∈ C .

Using Theorem 4 and Lemma 8, we have the following theorem.

Theorem 9. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from C × C into R

satisfying (A1)–(A4). Let A be an α-inverse-strongly-monotone mapping of C into H such that VI(C, A) ∩ EP(F) �= ∅. Let
{xn} and {un} be sequences generated by x1 ∈ C and⎧⎪⎨

⎪⎩
yn = PC (xn − λnAxn)

F(un, y)+ 1

rn
〈y− un, un − yn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1− αn)un,

for all n ∈ N, where {αn} is a sequence in [0, 1] and {λn} ⊂ [a, b] ⊂ (0, 2α) satisfy
∑∞

n=1 |λn+1 − λn| < ∞, with∑∞
n=1 αn(1 − αn) = ∞ and {rn} is a sequence in (0,∞) with lim infn→∞ rn > 0 and

∑∞
n=1 |rn+1 − rn| < ∞. Then {xn}

converges weakly to w ∈ VI(C, A) ∩ EP(F). Moreover, w = limn→∞ PVI(C,A)∩EP(F)xn.

Using Theorem 6 and Lemma 8, we have the following theorem.

Theorem 10 (Nilsrakoo and Saejung [8, Theorem 16]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let F
be a bifunction from C × C into R satisfying (A1)–(A4) with EP(F) �= ∅. Let {xn} and {un} be sequences generated by x1 ∈ C and{

F(un, y)+ 1

rn
〈y− un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1− αn)un,

for all n ∈ N, where {αn} is a sequence in [0, 1] with
∑∞

n=1 αn(1 − αn) = ∞ and {rn} is a sequence in (0,∞) with

lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn| <∞. Then {xn} converges weakly to w ∈ EP(F). Moreover, w = limn→∞ PEP(F)xn.
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4.2. Accretive operator

In this section, we consider the problem of finding a zero of an accretive operator. An operator T ⊂ H × H is said to be
accretive if for each (x1, y1) and (x2, y2) ∈ T , there exists j ∈ J(x1− x2) such that 〈y2− y1, j〉 ≥ 0. An accretive operator T is

m-accretive if R(I+ rT ) = H for each r > 0. An accretive operator T is said to satisfy the range condition if D(T ) ⊂ R(I+ rT )

for all r > 0, where D(T ) is the domain of T , I is the identity mapping on H, R(I + rT ) is the range of I + rT , and D(T ) is
the closure of D(T ). If T is an accretive operator which satisfies the range condition, then we can define, for each r > 0, a
mapping Jr : R(I + rT ) → D(T ) by Jr = (I + rT )−1, which is called the resolvent of T . We know that Jr is nonexpansive and
F(Jr) = T−10 for all r > 0 (see [1]).

Lemma 11. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T ⊂ C×C be an accretive operator such that

T−10 �= ∅ andD(T ) ⊂ C ⊂⋂
r>0 R(I+rT ), and {rn} be a sequence in (0,∞). If inf {rn : n ∈ N} > 0, and

∑∞
n=1 |rn+1−rn| <∞,

then the following hold:

(i)
∑∞

n=1 sup{‖Jrn+1
z − Jrn z‖ : z ∈ B} <∞ for any bounded subset B of C,

(ii) F(S) =⋂∞
n=1 F(Jrn), where S is a mapping defined by Sx = limn→∞ Jrnx for all x ∈ C .

Using Theorem 4 and Lemma 11, we have the following theorem.

Theorem 12. Let C be a nonempty closed convex subset of a real Hilbert space H. Let α > 0 and let A be an α-inverse-strongly-

monotone mapping of C into H. Let T ⊂ C × C be an accretive operator such that T−10 �= ∅ and D(T ) ⊂ C ⊂⋂
r>0 R(I + rT ).

Let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)JrnPC (xn − λnAxn)

for all n ∈ N, where {αn} is a sequence in [0, 1] and {rn} is a sequence in (0,∞) and {λn} ⊂ [a, b] ⊂ (0, 2α) satisfy∑∞
n=1 |λn+1 − λn| < ∞. Suppose that S is a nonexpansive mapping defined by Sx = limn→∞ Jrnx for all x ∈ C. If

limn αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn| < ∞, inf {rn : n ∈ N} > 0, and
∑∞

n=1 |rn+1 − rn| < ∞, then {xn}
converges weakly to z ∈ T−1(0) ∩ VI(C, A), where z = limn→∞ PT−1(0)∩VI(C,A)xn.

Proof. By Lemma 11, we have the following

F(S) =
∞⋂
n=1

F(Jrn) = T−1(0) �= ∅.

Therefore, by Theorem 4, we obtain that {xn} converges weakly to z = limn→∞ PT−1(0)∩VI(C,A)xn. �

4.3. Monotone mappings

A mapping T : C → C is called strictly pseudocontractive on C if there exists kwith 0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x+ (I − T )y‖2, for all x, y ∈ C .

If k = 0, then T is nonexpansive. Put A = I−T , where T : C → C is a strictly pseudocontractive mapping with k. It is known
that, A is 1−k

2
-inverse-strongly-monotone and A−1(0) = F(T ).

Now, using Theorem 4 we state a strong convergence theorem for a pair of nonexpansive mapping and strictly
pseudocontractive mapping as follows.

Theorem 13. Let C be a closed convex subset of a real Hilbert space H. Let {Sn} be a sequence of nonexpansive mappings of C
into itself and let f be a contraction of H into itself. Let T be a strictly pseudocontractive mapping with constant k of C into itself
such that ∩∞n=1 F(Sn) ∩ VI(C, A) �= ∅. Let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)SnPC ((1− λn)xn + λnTxn)

for all n ∈ N, where {αn} is a sequence in [0, 1], {rn} is a sequence in (0,∞) and {λn} ⊂ [a, b] ⊂ (0, 2α) satisfy∑∞
n=1 |λn+1 − λn| < ∞. Suppose that S is a nonexpansive mapping defined by Sz = limn→∞ Snz for all z ∈ C. If

limn αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn| < ∞, inf {rn : n ∈ N} > 0, and
∑∞

n=1 |rn+1 − rn| < ∞, then {xn}
converges weakly to z ∈ F(S) ∩ F(T ), where z = limn→∞ PF(S)∩F(T )xn.

Proof. Put A = I − T . Then A is 1−k
2

-inverse-strongly-monotone. We have that F(T ) is the solution set of VI(A, C)
i.e., F(T ) = VI(A, C) and

PC (xn − λnAxn) = (1− λn)xn + λnTxn.

Therefore, by Theorem 4, the conclusion follows. �
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In this work, we establish new coincidence and common fixed point theorems for hybrid

strict contraction maps by dropping the assumption ‘‘f is T -weakly commuting’’ for a

hybrid pair (f , T ) of multivalued maps in Theorem 3.10 of T. Kamran (2004) [8]. As an

application, an invariant approximation result is derived.
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1. Introduction

The theory of nonlinear analysis has emerged as amomentousmathematical discipline during the last 50 years. The fixed
point theorem, generally known as the Banach ContractionMapping Principle, appeared in explicit form in Banach’s thesis in
1922 where it was used to establish the existence of a solution for an integral equation. Since then, because of its simplicity
and usefulness, it has become a very popular tool in solving existence problems in many branches of mathematical analysis.

In 1969, the Banach Contraction Mapping Principle was extended nicely to set-valued or multivalued mappings, a fact
first noticed by Nadler [1]. Sessa [2] introduced the concept of weakly commuting maps. Jungck [3] defined the notion
of compatible maps to generalize the concept of weak commutativity and showed that weakly commuting mappings
are compatible but the converse is not true [3]. In recent years, a number of fixed point theorems have been obtained
by various authors utilizing this notion. Jungck further weakens the notion of compatibility by introducing the notion of
weak compatibility and in [4] Jungck and Rhoades further extended weak compatibility to the setting of single-valued and
multivalued maps. In [5] Singh and Mishra also introduced the notion of (I, T )-commutativity for a hybrid pair of single-
valued and multivalued maps. In 2002, Aamri and El Moutawakil [6] defined the property (E.A.) for self-maps and obtained
some fixedpoint theorems for suchmappings under strict contractive conditions. The class ofmaps satisfying property (E.A.)
contains the class of noncompatible maps. In 2003, Hussain and Khan [7] proved more general invariant approximation
results for 1-subcommuting maps. Recently, Kamran [8] defined the property ‘‘f is T -weakly commuting’’ as follows:

Definition 1.1 ([8]). Assume that (X, d) is a metric space and x ∈ X . Let f : X → X and T : X → CB(X). The map f is said to
be T -weakly commuting at x ∈ X if ffx ∈ Tfx.

Theorem 1.2 (Theorem 3.10 [8]). Let f be a self-mapping of a metric space (X, d) and T be a map from X into CB(X) such that:

(i) f and T satisfy the property (E.A.).

� The second author was partially supported by the Thailand Research Fund and the Commission on Higher Education under Grant No. MRG5180034.∗ Corresponding author. Tel.: +66 02 470 8998; fax: +66 02 428 4025.
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(ii) For all x �= y ∈ X

H(Tx, Ty) ≤ max

{
d(fx, fy),

1

2
[d(fx, Tx)+ d(fy, Ty)], 1

2
[d(fx, Ty)+ d(fy, Tx)]

}
. (1)

(iii) f is T -weakly commuting at v and ff v = f v for v ∈ C(f , T ).

If fX is a closed subset of X, then f and T have a common fixed point.

The aim of this work is to drop the assumption of ‘‘f is T -weakly commuting’’ in the above theorem, establish some new
coincidence and common fixed point theorems for hybrid strict contraction maps and derive an invariant approximation
result.

2. Preliminaries

Throughout the work, X denotes a metric space with metric d.

Definition 2.1. Wedenote by CB(X), the families of all nonempty bounded closed subsets ofX . TheHausdorffmetric induced
by d on CB(X) is given by

H(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

for A, B ∈ CB(X), where d(a, B) = inf{d(a, b) : b ∈ B} is the distance from a to B ⊆ X .

Definition 2.2. Let f : X → X and T : X → CB(X).

1. A point x ∈ X is a fixed point of f (resp. T ) iff x = fx (resp. x ∈ Tx).

The set of all fixed points of f (resp. T ) is denoted by F(f ) (resp. F(T )).

2. A point x ∈ X is a coincidence point of f and T iff fx ∈ Tx.

The set of all coincidence points of f and T is denoted by C(f , T ).

3. A point x ∈ X is a common fixed point of f and T iff x = fx ∈ Tx.

The set of all common fixed points of f and T is denoted by F(f , T ).

Definition 2.3 ([6,8]). Let f be a self-mapping of a metric space (X, d) and T be a map from X into CB(X). We say that f and
T satisfy the property (E.A.) if there exists a sequence {xn} in X such that

lim
n→∞ fxn = t ∈ A = lim

n→∞ Txn, (2)

for some t ∈ X and A ∈ CB(X).

For examples of the property (E.A.) see [6,8].

Definition 2.4 ([9]). The maps f : X → X and T : X → CB(X) are said to be compatible if fTx ∈ CB(X) for all x ∈ X and
H(fTxn, Tfxn)→ 0 whenever {xn} is a sequence in X such that Txn → A ∈ CB(X) and fxn → t ∈ A.

The maps f : X → X and T : X → CB(X) are noncompatible if fTx ∈ CB(X) for all x ∈ X and there exists at least one
sequence {xn} in X such that Txn → A ∈ CB(X) and fxn → t ∈ A but limn→∞ H(fTxn, Tfxn) �= 0 or is nonexistent.

Remark 2.5. The noncompatible hybrid pair (f , T ) satisfy the property (E.A.).

3. Main results

Theorem 3.1. Let f be self-mapping of a metric space (X, d) and T be a mapping from X into CB(X) such that the following
conditions are satisfied:

(i) f and T satisfy the property (E.A.) and (1) holds.

(ii) ff v = f v for v ∈ C(f , T ).

If fX is a closed subset of X, then f and T have a common fixed point.

Proof. By virtue of (2) there exists a sequence {xn} in X , some t ∈ X and A ∈ CB(X) such that

lim
n→∞ fxn = t ∈ A = lim

n→∞ Txn.
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Since fX is closed, we have limn→∞ fxn = fx for some x ∈ X . Thus t = fx ∈ A. We claim that fx ∈ Tx. If not, then condition
(1) implies

H(Txn, Tx) ≤ max

{
d(fxn, fx),

1

2
[d(fxn, Txn)+ d(fx, Tx)], 1

2
[d(fxn, Tx)+ d(fx, Txn)]

}
.

Letting n→∞, we have

H(A, Tx) ≤ max

{
d(fx, fx),

1

2
[d(fx, A)+ d(fx, Tx)], 1

2
[d(fx, Tx)+ d(fx, A)]

}

= 1

2
d(fx, Tx).

Since fx ∈ A, it follows from the definition of the Hausdorff metric that

d(fx, Tx) ≤ H(A, Tx) ≤ 1

2
d(fx, Tx),

which is a contradiction. Hence fx ∈ Tx and C(f , T ) �= ∅. From this, and ff v = f v for some v ∈ C(f , T ), we let z := f v. This
implies that

z = f v = ff v = fz ∈ Tv.

We claim that v = z. Assume not; then condition (1) implies

H(Tv, Tz) ≤ max

{
d(f v, fz),

1

2
[d(f v, Tv)+ d(fz, Tz)], 1

2
[d(f v, Tz)+ d(fz, Tv)]

}

= max

{
d(f v, fz),

1

2
[d(f v, Tv)+ d(fz, Tz)], 1

2
[d(fz, Tz)+ d(fz, Tv)]

}

= 1

2
d(fz, Tz).

Since f v ∈ Tv, it follows from the definition of the Hausdorff metric that

d(fz, Tz) ≤ H(Tv, Tz) ≤ 1

2
d(fz, Tz),

which is a contradiction. Hence v = z. Thus z = fz ∈ Tz. �

Remark 3.2. Theorem 3.1 extends and improves the Banach Contraction Principle, Nadler’s Contraction Principle [1],
Theorem 3.10 of Kamran [8], and results of many authors.

Now we give an example to support our result.

Example 3.3. Let X = [0, 1] with the usual metric. Define f : X → X and T : X → CB(X) by fx = x
2
and Tx = [0, x

4
] for all

x ∈ X . Then:

(1) f and T satisfy the property (E.A.) for the sequence xn = 1
n
, n = 1, 2, 3, . . . and (1) holds.

(2) ff 0 = f 0 for 0 ∈ C(f , T ).

Thus the conditions (i) and (ii) of Theorem 3.1 are satisfied and 0 = f 0 ∈ T0, i.e., 0 is a common fixed point of f and T .

Remark 3.4. (i) If C(f , T ) is singleton set, then the common fixed point of f and T is the limit of the sequence {xn} in X
satisfying

lim
n→∞ fxn = t ∈ A = lim

n→∞ Txn,

for some t ∈ X and A ∈ CB(X).
(ii) If C(f , T ) is not a singleton set, then the common fixed point of f and T is v ∈ C(f , T ) for ff v = f v.

Corollary 3.5. Let T be a map from a metric space (X, d) into CB(X) such that the following conditions hold:

(i) There exists a sequence {xn} in X such that

lim
n→∞ xn ∈ A = lim

n→∞ Txn,

for some A ∈ CB(X).
(ii) For all x �= y ∈ X

H(Tx, Ty) ≤ max

{
d(x, y),

1

2
[d(x, Tx)+ d(y, Ty)], 1

2
[d(x, Ty)+ d(y, Tx)]

}
.

Then T has a fixed point.
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Proof. Let f : X → X be the identity mapping. It follows from Theorem 3.1 that T has a fixed point. �

Theorem 3.6. Let f be a self-mapping of ametric space (X, d) and T be amap fromX into CB(X) such that the following conditions
hold:

(i) f and T satisfy the property (E.A.) and (1) holds.
(ii) ff v = f v for v ∈ C(f , T ).

If TX is a closed subset of X and TX ⊆ fX , then f and T have a common fixed point.

Proof. By virtue of (2) there exists a sequence {xn} in X , some t ∈ X and A ∈ CB(X) such that

lim
n→∞ fxn = t ∈ A = lim

n→∞ Txn.

Since TX is closed, we have limn→∞ Txn = Ta for some a ∈ X . It follows from TX ⊆ fX that t ∈ Ta ⊆ TX ⊆ fX . Thus
t = fx ∈ A. Now the results follow from Theorem 3.1. �

Since a noncompatible hybrid pair (f , T ) satisfy the property (E.A.), we get the following results:

Corollary 3.7. Let f be a self-mapping of ametric space (X, d) and T be amap fromX into CB(X) such that the following conditions
hold:

(i) f and T are noncompatible and (1) holds.
(ii) ff v = f v for v ∈ C(f , T ).

If fX is a closed subset of X, then f and T have a common fixed point.

Corollary 3.8. Let f be a self-mapping of ametric space (X, d) and T be amap fromX into CB(X) such that the following conditions
hold:

(i) f and T are noncompatible and (1) holds.
(ii) ff v = f v for v ∈ C(f , T ).

If TX is a closed subset of X and TX ⊆ fX , then f and T have a common fixed point.

Invariant approximation for non-commuting maps was considered for the first time by Shahzad [10,11]. Let M be a subset
of a normed space X and p ∈ X . The set BM(p) := {x ∈ M : ‖x− p‖ = d(p,M)} is called the set of best M-approximates to
p ∈ X out ofM .

Theorem 3.9. Let f be self-mapping of a normed space X and T be a map from X into CB(X) such that the following conditions
are satisfied:

(i) f and T satisfy the property (E.A.) and (1) holds on BM(p).
(ii) ff v = f v for v ∈ C(f , T ) ∩ BM(p).
(iii) f (BM(p)) = BM(p).
(iv) supy∈Tx ‖y− p‖ ≤ ‖fx− p‖ for all x ∈ BM(p).

If f (BM(p)) is a closed subset of BM(p), then F(f , T ) ∩ BM(p) �= ∅.
Proof. Let x ∈ BM(p) and z ∈ Tx. Since f (BM(p)) = BM(p), so fx ∈ BM(p) for all x ∈ BM(p). It follows from the definition of
BM(p) that ‖fx− p‖ = d(p,M). Since

‖z − p‖ ≤ sup
y∈Tx

‖y− p‖ ≤ ‖fx− p‖ = d(p,M),

so z ∈ BM(p). Thus Tx ⊆ BM(p) for all x ∈ BM(p). Since Tx is closed for all x ∈ X , so Tx is closed for all x ∈ BM(p). Therefore
f |BM (p) : BM(p)→ BM(p), T |BM (p) : BM(p)→ CB(BM(p)). Clearly, F(f |BM (p), T |BM (p)) = F(I, T )∩BM(p). Now the result follows
from Theorem 3.1 with X = BM(p). �

Remark 3.10. Theorem 3.9 extends and improves theorems of Khan, Domlo and Hussain [12], and results of many authors.

Corollary 3.11. Let X be a normed space and T be a map from X into CB(X) such that the following conditions hold:

(i) There exists a sequence {xn} in BM(p) such that

lim
n→∞ xn ∈ A = lim

n→∞ Txn,

for some A ∈ CB(BM(p)).
(ii) For all x �= y ∈ BM(p)

H(Tx, Ty) ≤ max

{
d(x, y),

1

2
[d(x, Tx)+ d(y, Ty)], 1

2
[d(x, Ty)+ d(y, Tx)]

}
.

(iii) supy∈Tx ‖y− p‖ ≤ ‖x− p‖ for all x ∈ BM(p).

Then F(T ) ∩ BM(p) �= ∅.
Proof. Take f as the identity mapping from X into X in Theorem 3.9 to get F(T ) ∩ BM(p) �= ∅. �
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Abstract. In this paper, we introduce a new iterative scheme for finding the

common element of the set of: fixed points; equilibrium; and the variational
inequality problems for monotone and k -Lipschitz continuous mappings. The

iterative process is based on the so-called extragradient method. We show that

the sequence converges weakly to a common element of the above three sets
under some parameter controlling conditions. This main theorem extends a

recent result of Nadezhkiha and Takahashi [7].
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be
a closed convex subset of H. Let F be a bifunction of C ×C into R, where R is the
set of real numbers. The equilibrium problem for F : C × C −→ R is to find x ∈ C
such that

(1.1) F (x, y) ≥ 0, for all y ∈ C.

The set of solutions of (1.1) is denoted by EP (F ). Given a mapping T : C −→
H, let F (x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then z ∈ EP (F ) if and only if
〈Tz, y − z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics reduce to find a solution
of (1.1). In 1997, Combettes and Hirstoaga [3] introduced an iterative scheme of
finding the best approximation to initial data when EP (F ) is nonempty and proved
a strong convergence theorem. Let A : C −→ H be a mapping. The classical
variational inequality is denoted by V I(A,C), is to find x∗ ∈ C such that

〈Ax∗, v − x∗〉 ≥ 0,

Received: April 11, 2008; Revised: November 23, 2008.
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for all v ∈ C. The variational inequality has been extensively studied in the literature.
See, e.g. [12, 14] and the references therein. A mapping A of C into H is called
monotone if

〈Au − Av, u − v〉 ≥ 0,

for all u, v ∈ C and A is called α-inverse-strongly monotone [2, 6] if there exists a
positive real number α such that

〈Au − Av, u − v〉 ≥ α‖Au − Av‖2,

for all u, v ∈ C. A mapping A of C into H is called k-Lipschitz continuous if there
exists a positive real number k such that

‖Au − Av‖ ≤ k‖u − v‖, for all u, v ∈ C.

It is obvious that any α-inverse-strongly monotone mapping A is monotone and
Lipschitz continuous. A mapping S of C into itself is called nonexpansive if

‖Su − Sv‖ ≤ ‖u − v‖,
for all u, v ∈ C. We denote the set of fixed points of S by F (S). To find an element
of F (S) ∩ V I(A,C), Takahashi and Toyoda [11] introduced the following iterative
scheme:

(1.2) xn+1 = αnxn + (1− αn)SPC(xn − λnAxn),

for every n = 0, 1, 2, ..., where x0 = x ∈ C,αn is a sequence in (0, 1), and λn is a
sequence in (0, 2α). Recently, Nadezhkina and Takahashi [7] and Zeng and Yao [15]
proposed some new iterative schemes for finding elements in F (S) ∩ V I(A,C).
In 1976, Korpelevič [5] introduced the following so-called extragradient method:

(1.3)

⎧⎪⎨⎪⎩
x0 = x ∈ C,

x̄n = PC(xn − λAxn),

xn+1 = PC(xn − λAx̄n)

for all n ≥ 0, where λ ∈ (0, 1
k ), C is a closed convex subset of Rn and A is a monotone

and k-Lipschitz continuous mapping of C into Rn. He proved that if V I(A,C) is
nonempty, then the sequences {xn} and {x̄n}, generated by (1.3), converge to the
same point z ∈ V I(A,C). Recently, motivated by the idea of Korpelevičs extragra-
dient method [5], Nadezhkina and Takahashi [7] introduced the following iterative
scheme for finding an element of F (S) ∩ V I(A,C) and proved the following weak
convergence theorem.

Theorem 1.1. [7, Theorem 3.1] Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A be monotone and a k-Lipschitz continuous mapping of C into
H. Let S be a nonexpansive mapping from C into itself such that F (S)∩V I(A,C) �=
∅. Let {xn} and {yn} be sequences in C defined as follows:

(1.4)

⎧⎪⎨⎪⎩
x0 = x ∈ C,

yn = PC(xn − λnAxn),

xn+1 = αnxn + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0,
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where αn ⊂ [c, d] for some c, d ∈ (0, 1) and λn ⊂ [a, b] for some a, b ∈ (o, 1
k ). Then

{xn} and {yn} converge weakly to the same point z ∈ F (S) ∩ V I(A,C) where z =
limn−→∞ PF (S)∩V I(A,C)xn.

In 2007, Plubtieng and Punpaeng [8] introduced a new iterative scheme for find-
ing a common element of the set of solutions of: an equilibrium; the variational
inequality; and the set of fixed points problems of a nonexpansive mapping in a
Hilbert space.
In this paper motivated by the iterative schemes considered in [7, 11], we will

introduce a new iterative process (3.1) which is different from the Plubtieng and
Punpaeng iterative schemes [8], the aim is to find a common element of the set of
solutions, the fixed points of a nonexpansive mapping, an equilibrium, and the varia-
tional inequality problems of a k-Lipschitz continous mapping in a real Hilbert space.
Then, we prove a weak convergence theorem, which is connected with Korpelevičs
extragradient method [5] and Nadezhkina and Takahashi’s result [7].

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and let C be
a closed convex subset of H. For every point x ∈ H, there exists a unique nearest
point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping of H onto C and satisfies

(2.1) 〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2,

for every x, y ∈ H. Moreover, PCx is characterized by the following properties:
PCx ∈ C and

(2.2) 〈x − PCx, y − PCx〉 ≤ 0,

(2.3) ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2,

for all x ∈ H, y ∈ C. It is easy to see that the following is true:

(2.4) u ∈ V I(A,C)⇔ u = PC(u − λAu), λ > 0.

It is also known that H satisfies the Opial condition; for any sequence {xn} with
xn ⇀ x, the inequality

(2.5) lim inf
n−→∞ ‖xn − x‖ < lim inf

n−→∞ ‖xn − y‖,
holds for every y ∈ H with y �= x.
The following lemmas will be useful for proving the convergent result of this paper.

Lemma 2.1. [9] Let {xn} and {yn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.
Suppose xn+1 = (1− βn)yn+ βnxn for all integers n ≥ 0 and lim supn−→∞(‖yn+1 −
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖yn − xn‖ = 0.
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Lemma 2.2. [4] (Demiclosedness Principle) Let H be a Hilbert space, C a closed
convex subset of H, and T : C −→ C a nonexpansive mapping with F (T ) �= ∅. If
{xn} is a sequence in C weakly converging to x ∈ C and if {(I − T )xn} converges
strongly to y, then (I − T )x = y. Here, I is the identity operator of H.

For solving the equilibrium problem for a bifunction F : C × C −→ R, let us
assume that F satisfies the following conditions:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt−→0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y �→ F (x, y) is convex and lower semicontinuous.
The following lemma appears implicitly in [1].

Lemma 2.3. [1] Let C be a nonempty closed convex subset of H and let F be a
bifunction of C ×C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there
exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

The following lemma was also given in [3].

Lemma 2.4. [3] Assume that F : C ×C −→ R satisfies (A1)–(A4). For r > 0 and
x ∈ H, define a mapping Tr : H −→ C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0,∀y ∈ C},

for all z ∈ H. Then, the following hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx −

Try, x − y〉;
(3) F (Tr) = EP (F ); and
(4) EP (F ) is closed and convex.

3. Weak convergence theorems

In this section, we prove a weak convergence theorem for finding a common element
of the set of solutions for an equilibrium problem, the set variational inequality and
the set of fixed points of a nonexpansive mapping in a Hilbert space. Before proving
the theorem, we need the following lemmas.

Lemma 3.1. [11] Let H be a real Hilbert space, let {αn} be a sequence of real
numbers such that 0 < a ≤ αn ≤ b < 1 for all n = 0, 1, 2, ..., and let {vn} and
{wn} be sequences of H such that lim supn−→∞ ‖vn‖ ≤ c, lim supn−→∞ ‖wn‖ ≤ c,
and limn−→∞ ‖αnvn + (1− αn)wn‖ = c, for some c ≥ 0,
then limn−→∞ ‖ vn − wn‖ = 0.
Lemma 3.2. [11] Let H be a real Hilbert space and let D be a nonempty closed
convex subset of H. Let {xn} be a sequence in H. Suppose that, for all u ∈ D,

‖xn+1 − u‖ ≤ ‖xn − u‖,
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for every n = 0, 1, 2, ..., then the sequence {PD(xn)} converges strongly to some
z ∈ D, where PD stands for the metric projection of H onto D.

Now, we show the following weak convergence theorem, which solves the problem
of finding a common element of the set solutions of: an equilibrium; variational
inequality; and fixed point problems of a nonexpansive mapping in Hilbert spaces.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let F
be a bifunction from C × C −→ R satisfying (A1)–(A4) and let A be a monotone
k-Lipschitz continuous mapping of C into H and let S be a nonexpansive mapping
of C into itself such that F (S) ∩ V I(A,C) ∩ EP (F ) �= ∅. Suppose x1 = u ∈ C and
{xn}, {yn} and {un} are given by

(3.1)

⎧⎪⎪⎨⎪⎪⎩
un ∈ C;F (un, y) +

1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = PC(un − λnAun),
xn+1 = αnxn + (1− αn)SPC(xn − λnAyn),

for all n ∈ N, where {αn} ⊂ (a, b) ⊂ (0, 1) and {λn} is a sequence in (0, 1/k) and
{rn} ⊂ (0,∞) satisfying the following conditions:

(i) lim infn−→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞, and
(ii) limn−→∞ λn = 0, then {xn}, {yn} and {un} converges weakly to the same

point p ∈ F (S) ∩ V I(A,C) ∩ EP (F ),
where p = limn→∞ PF (S)∩V I(A,C)∩EP (F )xn.

Proof. We divide the proof into five steps.

Step 1. We claim that {xn} is bounded. Indeed, let x∗ ∈ F (S)∩V I(A,C)∩EP (F )
and let {Trn

} be a sequence of mappings defined as in Lemma 2.4. Then x∗ =
PC(x∗ − λnAx∗) = Trn

x∗ and un = Trn
xn. Putting vn = PC(xn − λnAyn), we note

that

‖un − x∗‖2 = ‖Trn
xn − Trn

x∗‖2 ≤ ‖xn − x∗‖2.(3.2)

From (2.3) and the monotonicity of A, we have

‖vn − x∗‖2 ≤ ‖xn − λnAyn − x∗‖2 − ‖xn − λnAyn − vn‖2

= ‖xn − x∗‖2 − ‖xn − vn‖2 + 2λn〈Ayn, x∗ − vn〉
= ‖xn − x∗‖2 − ‖xn − vn‖2

+ 2λn(〈Ayn − Ax∗, x∗ − yn〉+ 〈Ax∗, x∗ − yn〉) + 〈Ayn, yn − vn〉
≤ ‖xn − x∗‖2 − ‖xn − vn‖2 + 2λn〈Ayn, yn − vn〉
= ‖xn − x∗‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − vn〉 − ‖yn − vn‖2

+ 2λn〈Ayn, yn − vn〉
= ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − vn‖2

+ 2〈xn − λnAyn − yn, vn − yn〉.
Moreover, since yn = PC(un − λnAun) and from (2.2), we have

(3.3) 〈xn − λnAxn − yn, vn − yn〉 ≤ 0.



178 C. Jaiboon, P. Kumam and U. W. Humphries

Where A is k-Lipschitz continuous, so that

〈xn − λnAyn − yn, vn − yn〉 = 〈xn − λnAxn − yn, vn − yn〉
+ 〈λnAxn − λnAyn, vn − yn〉

≤ 〈λnAxn − λnAyn, vn − yn〉
≤ λn‖Axn − Ayn‖‖vn − yn‖
≤ λnk‖xn − yn‖‖vn − yn‖.

Thus, we have

‖vn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − vn‖2

+ 2λnk‖xn − yn‖‖vn − yn‖
≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − vn‖2

+ λ2
nk2‖xn − yn‖2 + ‖vn − yn‖2

= ‖xn − x∗‖2 + (λ2
nk2 − 1)‖xn − yn‖2(3.4)

≤ ‖xn − x∗‖2,

and we obtain

‖xn+1 − x∗‖2 = ‖αn(xn − x∗) + (1− αn)(Svn − x∗)‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖Svn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖vn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2

≤ ‖xn − x∗‖2.

Since the sequence {‖x∗−xn‖} is a bounded and nonincreasing sequence, limn→∞ ‖x0−
xn‖ exists, that is there exists
(3.5) c = lim

n→∞ ‖xn − x∗‖.
Hence {xn} is bounded. Consequently, the sets {un} and {vn} are also bounded.

Step 2. We claim that limn−→∞ ‖xn+1 − xn‖ = 0, limn−→∞ ‖xn − yn‖ = 0 and
limn−→∞ ‖xn − un‖ = 0. Indeed, since PC is a nonexpansive mapping, we obtain

‖yn+1 − yn‖ = ‖PC(un+1 − λn+1Aun+1)− PC(un − λnAun)‖
≤ ‖(un+1 − λn+1Aun+1)− (un − λnAun)‖
= ‖(un+1 − λn+1Aun+1)− (un − λn+1Aun) + (λn − λn+1)Aun‖
= ‖(un+1 − un)− λn+1(Aun+1 − Aun)− (λn+1 − λn)Aun‖
≤ ‖un+1 − un‖+ λn+1‖Aun+1 − Aun‖+ (λn+1 − λn)‖Aun‖
≤ ‖un+1 − un‖+ kλn+1‖un+1 − un‖+ |λn+1 − λn|‖Aun‖,

by (ii), it follows that

‖yn+1 − yn‖ ≤ ‖un+1 − un‖.(3.6)

Hence, we observe that

‖vn+1 − vn‖ = ‖PC(xn+1 − λn+1Ayn+1)− PC(xn − λnAyn)‖
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≤ ‖(xn+1 − λn+1Ayn+1)− (xn − λnAyn)‖
= ‖(xn+1 − λn+1Ayn+1)− (xn − λn+1Ayn) + (λn − λn+1)Ayn‖
= ‖(xn+1 − xn)− λn+1(Ayn+1 − Ayn)− (λn+1 − λn)Ayn‖
≤ ‖xn+1 − xn‖+ λn+1‖Ayn+1 − Ayn‖+ (λn+1 − λn)‖Ayn‖
≤ ‖xn+1 − xn‖+ kλn+1‖yn+1 − yn‖+ |λn+1 − λn|‖Ayn‖
≤ ‖xn+1 − xn‖+ kλn+1‖un+1 − un‖+ |λn+1 − λn|‖Ayn‖.

On the other hand, from un = Trn
xn and un+1 = Trn+1xn+1, we note that

(3.7) F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0 for all y ∈ C

and

(3.8) F (un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0 for all y ∈ C.

Substituting y = un+1 into (3.7) and y = un into (3.8), we have

F (un, un+1) +
1
rn

〈un+1 − un, un − xn〉 ≥ 0

and
F (un+1, un) +

1
rn+1

〈un − un+1, un+1 − xn+1〉 ≥ 0.

So, from (A2) we have〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0

and hence〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)

〉
≥ 0.

Without loss of generality, let us assume that there exists a real number c such
that rn > c > 0 for all n ∈ N. Then, we have

‖un+1 − un‖2 ≤
〈

un+1 − un, xn+1 − xn +
(
1− rn

rn+1

)
(un+1 − xn+1)

〉
≤ ‖un+1 − un‖

{
‖xn+1 − xn‖+

∣∣∣∣1− rn

rn+1

∣∣∣∣ ‖un+1 − xn+1‖
}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+ 1
rn+1

|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+ L

c
|rn+1 − rn|,(3.9)

where L = sup{‖un − xn‖ : n ∈ N}. Hence, we have
‖vn+1 − vn‖ ≤ ‖xn+1 − xn‖+ kλn+1‖un+1 − un‖+ |λn+1 − λn|‖Ayn‖

≤ ‖xn+1 − xn‖+ kλn+1{‖xn+1 − xn‖+ L

c
|rn+1 − rn|}

+ |λn+1 − λn|‖Ayn‖
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≤ ‖xn+1 − xn‖+ kλn+1‖xn+1 − xn‖+ kλn+1
L

c
|rn+1 − rn|

+ |λn+1 − λn|‖Ayn‖.(3.10)

Let xn+1 = (1− αn)zn + αnxn. Thus, we note that zn = Svn and we have

‖zn+1 − zn‖ = ‖Svn+1 − Svn‖ ≤ ‖vn+1 − vn‖.(3.11)

Combining (3.10) and (3.11), we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ ‖vn+1 − vn‖ − ‖xn+1 − xn‖
≤ kλn+1‖xn+1 − xn‖+ kλn+1

L

c
|rn+1 − rn|

+ |λn+1 − λn|‖Ayn‖.
This inequality together with (i) and (ii) imply that

lim sup
n−→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 2.1, we obtain ‖zn − xn‖ −→ 0 as n −→ ∞. Consequently,
(3.12) lim

n−→∞ ‖xn+1 − xn‖ = lim
n−→∞(1− αn)‖zn − xn‖ = 0.

From (i), (ii), (3.9) and (3.10), we also have
‖vn+1 − vn‖ −→ 0, ‖un+1 − un‖ −→ 0 and ‖yn+1 − yn‖ −→ 0 as n −→ ∞.
Consequently,

xn+1 − xn = αnxn + (1− αn)Svn − xn = (1− αn)(Svn − xn),

and from (3.12) we also have

(3.13) lim
n−→∞ ‖Svn − xn‖ = 0.

By (3.4), we obtain

‖vn − x∗‖2 ≤ ‖xn − x∗‖2 + (λ2
nk2 − 1)‖xn − yn‖2,

then, we also have

‖xn+1 − x∗‖2 = ‖αnxn + (1− αn)Svn − x∗‖2

= ‖αn(xn − x∗) + (1− αn)S(vn − x∗)‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖Svn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖vn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn){‖xn − x∗‖2

+ (λ2
nk2 − 1)‖xn − yn‖2}

= ‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖xn − yn‖2,

and hence

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖xn − yn‖2.

It follows that

(1− αn)(1− λ2
nk2)‖xn − yn‖ ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.
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So we have

‖xn − yn‖ ≤ 1
(1− αn)(λ2

nk2 − 1)(‖xn − x∗‖2 − ‖xn+1 − x∗‖2).(3.14)

Since {αn} ⊂ (a, b) ⊂ (0, 1), λn ∈ (0, 1/k) and

limn→∞‖xn+1 − x∗‖ = limn→∞‖xn − x∗‖ = c,

we obtain
lim

n−→∞ ‖xn − yn‖ = 0.
We note that

‖yn − vn‖ = ‖PC(un − λnAun)− PC(xn − λnAyn)‖
≤ ‖(un − λnAun)− (xn − λnAyn)‖
≤ ‖un − xn‖+ λn‖Aun − Ayn‖
≤ ‖un − xn‖+ kλn‖un − yn‖.

Since λn −→ 0 (n −→ ∞), we get
‖yn − vn‖ ≤ ‖un − xn‖.(3.15)

From (3.15), we also have

‖vn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − vn‖2

+ 2λnk‖xn − yn‖‖vn − yn‖
≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − vn‖2

+ ‖xn − yn‖2 + λ2
nk2‖vn − yn‖2

= ‖xn − x∗‖2 + (λ2
nk2 − 1)‖vn − yn‖2

= ‖xn − x∗‖2 + (λ2
nk2 − 1)‖un − xn‖2,

then, we also have

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1− αn)‖Svn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖vn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn){‖xn − x∗‖2 + (λ2
nk2 − 1)‖un − xn‖2}

= ‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖un − xn‖2,

and hence

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + (1− αn)(λ2
nk2 − 1)‖un − xn‖2.

It follows that

(1− αn)(1− λ2
nk2)‖xn − un‖ ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

So we have

‖xn − un‖ ≤ 1
(1− αn)(λ2

nk2 − 1)(‖xn − x∗‖2 − ‖xn+1 − x∗‖2).(3.16)

Since {αn} ⊂ (a, b) ⊂ (0, 1), λn ⊂ (0, 1
k ) and

lim
n→∞ ‖xn+1 − x∗‖2 = lim

n→∞ ‖xn − x∗‖2 = c2,



182 C. Jaiboon, P. Kumam and U. W. Humphries

thus
lim

n−→∞ ‖xn − un‖ = 0.
Since lim infn−→∞ rn > 0, we obtain

lim
n−→∞ ‖xn − un

rn
‖ = 0.

From (3.15) we also have
lim

n→∞ ‖yn − vn‖ = 0.
From

‖xn − vn‖ ≤ ‖xn − yn‖+ ‖yn − vn‖.
we also have

lim
n−→∞ ‖xn − vn‖ = 0.

And
‖Svn − vn‖ ≤ ‖Svn − xn‖+ ‖xn − yn‖+ ‖yn − vn‖

and hence
lim

n−→∞ ‖Svn − vn‖ = 0.
Step 3. We claim that p ∈ V I(A,C) ∩ EP (F ) ∩ F (S).
First, we prove p ∈ EP (F ). Since {vni

} is bounded, there exists a subsequence
{vnij

} of {vni
} which converges weakly to p. Without loss of generality, we can

assume that vni ⇀ p. From ‖Svn − vn‖ −→ 0, we obtain Svni ⇀ p. Let us show
p ∈ EP (F ). Since un = Trn

xn, we have

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

1
rn

〈y − un, un − xn〉 ≥ F (y, un)

and hence 〈
y − uni

,
uni − xni

rni

〉
≥ F (y, uni

).

From ‖un − xn‖ −→ 0, ‖xn − Svn‖ −→ 0, and ‖Svn − vn‖ −→ 0, we get uni
⇀ p.

Since uni
−xni

rni
−→ 0, it follows by (A4) that 0 ≥ F (y, p) for all y ∈ C. For t with

0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)p. Since y ∈ C and p ∈ C, we have yt ∈ C
and hence F (yt, p) ≤ 0. So, from (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, p) ≤ tF (yt, y)

and hence 0 ≤ F (yt, y). From (A3), we have 0 ≤ F (p, y) for all y ∈ C and hence
p ∈ EP (F ).
Next, we prove that p ∈ F (S). Let x∗ ∈ F (S)∩V I(A,C)∩EP (F ). Since ‖Svn−x∗‖ ≤
‖vn − x∗‖ ≤ ‖xn − x∗‖, from (3.5), we have

lim sup
n−→∞

‖Svn − x∗‖ ≤ c.
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Furthermore, we have

lim
n−→∞ ‖αn(xn − x∗) + (1− αn)(Svn − x∗)‖ = lim

n−→∞ ‖xn+1 − x∗‖ = c.

By Lemma 3.1, we obtain

lim
n−→∞ ‖Svn − xn‖ = 0.

Also, we have

‖Sxn − xn‖ ≤ ‖Sxn − Svn‖+ ‖Svn − xn‖
≤ ‖xn − vn‖+ ‖Svn − xn‖.

Therefore, we get
lim

n→∞ ‖Sxn − xn‖ = 0.
From the demiclosedness (Lemma 2.2) of I − S, we know that xni

⇀ p, and
limn−→∞‖Sxn − xn‖ = 0. We obtain p ∈ F (S). Finally, by the same argument
as in the proof of [7, Theorem 3.1, pp.197–198], we prove that p ∈ V I(A,C). Hence
p ∈ V I(A,C) ∩ EP (F ) ∩ F (S).

Step 4. We claim that xn ⇀ p′(n −→ ∞).
Let {xnj

} be another subsequence of {xn} such that xnj
⇀ p′, then we have p′ ∈

V I(A,C)∩EP (F )∩F (S). We may show that p = p′. Assume that p �= p′, from the
Opial condition, we get

lim
n−→∞ ‖xn − p‖ = lim inf

n−→∞ ‖xni − p‖ < lim inf
n−→∞ ‖xni − p′‖

= lim
n−→∞ ‖xn − p′‖ = lim inf

j−→∞
‖xnj − p′‖

< lim inf
j−→∞

‖xnj
− p‖ = lim

n−→∞ ‖xn − p‖.

This is a contradiction. So, we have p = p′. This implies that

xn ⇀ p ∈ V I(A,C) ∩ EP (F ) ∩ F (S).

Step 5. Finally we prove p = limn→∞ PF (S)∩V I(A,C)∩EP (F )xn.
Let zn = PV I(A,C)∩EP (F )∩F (S)xn, so that for all p ∈ V I(A,C) ∩ EP (F ) ∩ F (S), we
have

‖xn+1 − p‖ = ‖αn(xn − p) + (1− αn)[SPC(xn − λnyn)− p]‖
≤ ‖xn − p‖.

By Lemma 3.2, we have that {zn} converges strongly to some p0 ∈ V I(A,C) ∩
EP (F ) ∩ F (S).
Since 〈p − zn, zn − xn〉 ≥ 0 then, we have 〈p − p0, p0 − p〉 ≥ 0, and hence p = p0 =
limn→∞ PV I(A,C)∩EP (F )∩F (S)xn. This completes the proof.

Using Theorem 3.1, we prove two corollaries in Hilbert spaces.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be monotone and a k-Lipschitz continuous mapping of C into H. Let S
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be a nonexpansive mapping from C into itself such that F (S) ∩ V I(A,C) �= ∅. Let
{xn} and {yn} be sequences in C defined as follows:

(3.17)

⎧⎪⎨⎪⎩
x0 = x ∈ C,

yn = PC(xn − λnAxn),

xn+1 = αnxn + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0,

for all n ∈ N, where {αn} ⊂ (a, b) ⊂ (0, 1) and {λn} is a sequence in (0, 1/k). Then
{xn} and {yn} converges weakly to the same point z ∈ F (S) ∩ V I(A,C) where z =
limn→∞ PF (S)∩V I(A,C)xn.

Proof. Put F (x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N in Theorem 3.1.
Then, we have un = PCxn = xn. So, from Theorem 3.1 the sequence {xn} generated
in Corollary 3.1 converges weakly to PF (S)∩V I(A,C)xn.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A be monotone and a k-Lipschitz continuous mapping of C into H. Let S be
a nonexpansive mapping from C into itself such that V I(A,C) �= ∅. Let {xn} and
{yn} be sequences in C defined as follows:

(3.18)

⎧⎪⎨⎪⎩
x0 = x ∈ C,

yn = PC(xn − λnAxn),

xn+1 = αnxn + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0,

for all n ∈ N, where {αn} ⊂ (a, b) ⊂ (0, 1) and {λn} is a sequence in (0, 1/k).
Then {xn} and {yn} converges weakly to the same point z ∈ V I(A,C) where z =
limn→∞ PV I(A,C)xn.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Recall that a mapping T of H into itself is called nonex-
pansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ H. A point x ∈ C is a fixed
point of T provided Tx = x. Denote by F (T ) the set of fixed points of
T ; that is, F (T ) = {x ∈ C : Tx = x}. Let f be a bifunction of C × C
into R, where R is the set of real numbers. The equilibrium problem
for f : C × C → R is to find x ∈ C such that

(1.1) f(x, y) ≥ 0 for all y ∈ C.

The set of solutions of (1.1) is denoted by EP (f). Given a mapping
T : C → H, let f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then z ∈ EP (f)
if and only if 〈Tz, y − z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of
the variational inequality. Numerous problems in physics, optimization,
and economics reduce to finding a solution of (1.1). In 1997 Combettes
and Hirstoaga [5] introduced an iterative scheme of finding the best
approximation to initial data when EP (f) is nonempty and proved a
strong convergence theorem.
Let A : C → H be a mapping. The classical variational inequality,

denoted by V I(A, C), is to find u ∈ C such that

(1.2) 〈Au, v − u〉 ≥ 0

for all v ∈ C. The variational inequality has been extensively studied in
the literature. See, e.g. [1][6][17] [19] [20] and the references therein. A
mapping A of C into H is called monotone if

(1.3) 〈Au − Av, u − v〉 ≥ 0,

for all u, v ∈ C. A mapping A of C into H is called α-inverse-strongly-
monotone if there exists a positive real number α such that

(1.4) 〈Au − Av, u − v〉 ≥ α‖Au − Av‖2,

for all u, v ∈ C. It is obvious that any α -inverse-strongly-monotone
mapping A is monotone and Lipschitz continuous. For finding an el-
ement of F (S) ∩ V I(A,C), Takahashi and Toyoda [12] introduced the
following iterative scheme:

(1.5) xn+1 = αnxn + (1− αn)SPC(xn − λnAxn)

for every n = 0, 1, 2, ..., where x0 = x ∈ C,αn is a sequence in (0, 1),
and λn is a sequence in (0, 2α). Recently, Nadezhkina and Takahashi [7]
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and Zeng and Yao [20] proposed some new iterative schemes for finding
elements in F (S) ∩ V I(A,C). In 1976, Korpelevich [2] introduced the
following so-called extragradient method:

(1.6)

⎧⎪⎨⎪⎩
x0 = x ∈ C,

x̄n = PC(xn − λnAxn),

xn+1 = PC(xn − λnAx̄n)

for all n ≥ 0, where λn ∈ (0, 1
k ), C is a closed convex subset of Rn and

A is a monotone and k-Lipschitz continuous mapping of C in to Rn .
He proved that if V I(C,A) is nonempty, then the sequences {xn} and
{x̄n}, generated by (1.6), converge to the same point z ∈ V I(C, A).
Motivated by the idea of Korpelevichs extragradient method Zeng and

Yao [20] introduced a new extragradient method for finding an element of
F (S)∩V I(C, A) and obtained the following strong convergence theorem
under some suitable conditions . Let {xn} and {yn} be sequences in C
defined as follows:

(1.7)

⎧⎪⎨⎪⎩
x1 = u ∈ C,

yn = PC(xn − λnAxn),

zn = αnu+ (1− αn)SPC(xn − λnAyn), ∀n ≥ 0,

Then the sequence {xn} and {yn} converges strongly to the same point
PF(S)∩V I(C,A)x0 proved that limn→∞ ‖xn+1−xn‖ = 0. Later, Nadezhkina
and Takahashi [7] and Zeng and Yao [20] proposed some new iterative
schemes for finding elements in F (S) ∩ V I(C, A). In the same year,
Yao and Yao [18] introduced the following iterative scheme: Let C be a
closed convex subset of real Hilbert space H. Let A be an α− inverse-
strongly monotone mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F (S) ∩ V I(C, A) �= ∅. Suppose x1 =
u ∈ C and {xn}, {yn} are given by (1.7) where {αn}, {βn}, {γn} are three
sequences in [0, 1] and {λn} is a sequence in [0, 2α]. They proved that the
sequence {xn} defined by (1.7) converges strongly to common element of
the set of fixed points of a nonexpansive mapping and the set of solutions
of the variational inequality for α-inverse-strongly monotone mappings
under some parameter controlling conditions. After that, Plubtieng and
Punpaeng [9] introduced an iterative scheme:

(1.8)

⎧⎪⎨⎪⎩
f(yn, u) + 1

rn
〈u − yn, yn − xn〉 ≥ 0, ∀u ∈ C;

yn = PC(xn − λnAxn)
xn+1 = αnu+ βnxn + γnSPC(yn − λnAyn),
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for approximating a common element of the set of fixed points of a non-
expansive mapping and the set of solutions of the equilibrium problem
and obtained a strong convergence theorem in a real Hilbert space.
Let C be a closed convex subset of real Hilbert space H. Let A,B :

C → H be two mappings. We consider the following problem of finding
(x∗, y∗) ∈ C × C such that

(1.9)

{
〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈μBx∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C,

which is called a general system of variational inequalities where λ > 0
and μ > 0 are two constants. In particular, if A = B, then problem
(1.9) reduces to finding (x∗, y∗) ∈ C × C such that

(1.10)

{
〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈μAx∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C,

which is defined by Verma [14] and Verma [15], and is called the new
system of variational inequalities. Further, if x∗ = y∗, then problem
(1.10) reduces to the classical variational inequality V I(C,A).
Recently, Ceng et al. [4], introduced the following iterative scheme

by a relaxed extragradient method. Let the mappings A,B : C −→ H
be α-inverse-strongly monotone and β-inverse-strongly monotone, re-
spectively. Let S : C −→ C be a nonexpansive mapping and suppose
x1 = u ∈ C and {xn} is generated by

(1.11)

{
yn = PC(xn − μBxn)
xn+1 = αnu+ βnxn + SPC(yn − λAyn), n ≥ 1,

where λ ∈ (0, 2α), μ ∈ (0, 2β), and {αn}, {βn}, {γn} are three sequences
in [0, 1] with αn + βn + γn = 1, ∀n ≥ 1. Then, they proved that the
iterative sequence {xn} converges strongly to some point x0 ∈ C.
In this paper, motivated and inspired by the above results, we will

introduce a new iterative scheme (3.1) below for finding a common el-
ement of the set of fixed points of a nonexpansive mapping, the set of
solutions of an equilibrium problem, and the solutions of a general sys-
tem of variational inequality problem for two inverse-strongly-monotone
mappings in a Hilbert space. Then we prove some strong convergence
theorems which are connected with Ceng et al. [4] Takahashi and Taka-
hashi’s result [13] and Zeng and Yao’s result [20]. Our results of this
paper extended and improved the corresponding results of Ceng et al.
[4], Plubtieng and Punpaeng [9], Su et al. [10] and many others.



A relaxed extragradient approximation method of two inverse-strongly monotone 5

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉
and let C be a closed convex subset of H. Let H be a real Hilbert space.
Then

(2.1) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉
and

(2.2) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x − y‖2

for all x, y ∈ H and λ ∈ [0, 1]. For every point x ∈ H, there exists a
unique nearest point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC

is a nonexpansive mapping of H onto C and satisfies

(2.3) 〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2

for every x, y ∈ H. Moreover, PCx is characterized by the following
properties: PCx ∈ C and

(2.4) 〈x − PCx, y − PCx〉 ≤ 0,

(2.5) ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2

for all x ∈ H, y ∈ C. It is easy to see that the following is true:

(2.6) u ∈ V I(C, A)⇔ u = PC(u − λAu), λ > 0.

The following lemmas will be useful for proving the convergence result
of this paper.

Lemma 2.1. (Osilike and Igbokwe [8]) Let (E, 〈., .〉) be an inner product
space. Then for all x, y, z ∈ E and α, β, γ ∈ [0, 1] with α + β + γ = 1,
we have

‖αx+βy+γz‖2 = α‖x‖2+β‖y‖2+γ‖z‖2−αβ‖x−y‖2−αγ‖x−z‖2−βγ‖y−z‖2.

Lemma 2.2. (Suzuki [11]) Let {xn} and {yn} be bounded sequences
in a Banach space X and let {βn} be a sequence in [0, 1] with 0 <
lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1−βn)yn+βnxn

for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.
Then, limn→∞ ‖yn − xn‖ = 0.
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Lemma 2.3. (Goebel and Kirk [3]) Let H be a Hilbert space, C a closed
convex subset of H, and T : C → C a nonexpansive mapping with
F (T ) �= ∅. If {xn} is a sequence in C weakly converging to x ∈ C and
if {(I − T )xn} converges strongly to y, then (I − T )x = y.

Lemma 2.4. (Xu [16]). Assume {an} is a sequence of nonnegative real
numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(1)

∑∞
n=1 αn =∞

(2) lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ an = 0.

For solving the equilibrium problem for a bifunction f : C × C → R,
let us assume that F satisfies the following conditions:
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt→0 f(tz + (1− t)x, y) ≤ f(x, y);
(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1]

Lemma 2.5. (Blum and Oettli [1]) Let C be a nonempty closed convex
subset of H and let f be a bifunction of C × C into R satisfying (A1)-
(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

The following lemma was also given in [5].

Lemma 2.6. (Combettes and Hirstoaga [5]) Assume that f : C×C → R
satisfies (A1)-(A4). For r > 0 and x ∈ H, define a mapping Tr : H → C
as follows:

Tr(x) = {z ∈ C : f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0,∀y ∈ C}

for all z ∈ H. Then, the following hold:
(1) Tr is single- valued;
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(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H, ‖Trx−Try‖2 ≤
〈Trx − Try, x − y〉;

(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

Lemma 2.7. (Ceng et al. [4, Lemma 2.1]) For given x∗, y∗ ∈ C ×
C, (x∗, y∗) is a solution of problem (1.9) if and only if x∗ is a fixed point
of the mapping G : C → C defined by

G(x) = PC [PC(x − μBx)− λAPC(x − μBx)], ∀x ∈ C,

where y∗ = PC(x∗−μBx∗) λ, μ are positive constants and A,B : C → H
are two mappings.

Remark 2.8. Let A : C → H be an α-inverse-strongly-monotone. For
each u, v ∈ C and λ > 0, we have

‖(I − λA)u − (I − λA)v‖2 = ‖(u − v)− λ(Au −Av)‖2

= ‖u − v‖2 − 2λ〈u − v,Au −Av〉
+λ2‖Au −Av‖2

≤ ‖u − v‖2 + λ(λ − 2α)‖Au −Av‖2.(2.7)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping from C to H.

We note that the mapping G : C → C is a nonexpansive mapping
provided λ ∈ (0, 2α), μ ∈ (0, 2β).
Throughout this paper, the set of fixed points of the mappingG is denote
by Ω.

3. Main results

In this section, we introduce an iterative scheme by the relaxed ex-
tragradient approximation method for finding a common element of the
set of fixed points of a nonexpansive mapping, the set of solutions of an
equilibrium problem, and the solution set of the general system of vari-
ational inequality problem for two inverse-strongly monotone mappings
in a real Hilbert space. We prove that the iterative sequences converge
strongly to a common element of the above three sets.
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Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H.
Let f be a bifunction from C × C → R satisfying (A1)-(A4) and A,B :
C −→ H be α and β-inverse-strongly monotone mappings, respectively.
Let S be a nonexpansive mapping of C into itself such that F (S) ∩ Ω ∩
EP (f) �= ∅ and given x1 = u ∈ H arbitrarily. Then the sequences
{xn}, {yn} and {un} are given by

(3.1)
f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = PC(un − μBun)
xn+1 = αnu+ βnxn + γnSPC(yn − λAyn),∀n ∈ N,

where λ ∈ (0, 2α), μ ∈ (0, 2β) and {αn}, {βn}, {γn} are three sequences
in [0, 1] and {rn} ⊂ (0,∞) satisfying the following conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iv) lim infn→∞ rn > 0,

∑∞
n=1 |rn+1 − rn| < ∞.

Then {xn} converges strongly to z ∈ F (S) ∩ Ω ∩ EP (f), where z =
PF (S)∩Ω∩EP (f)u and (z, y) is a solution of problem (1.9), where y =
PC(z − μBz).

Proof. Let x∗ ∈ F (S) ∩ Ω ∩ EP (f), and let {Trn} be a sequence of
mappings defined as in Lemma 2.6 and un = Trnxn. Then x∗ = Sx∗,
x∗ = Trnx∗ and

x∗ = PC [PC(x∗ − μBx∗)− λAPC(x∗ − μBx∗)],

where put y∗ = PC(x∗ − μBx∗) and vn = PC(yn − λAyn). Then x∗ =
PC(y∗ − λAy∗) and

xn+1 = αnu+ βnxn + γnSPCvn.

For any n ∈ N, we have

(3.2) ‖un − x∗‖ = ‖Trnxn − Trnx∗‖ ≤ ‖xn − x∗‖.
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Since PC is nonexpansive and from remark 2.8, we obtain that I − λA
and I − μB are nonexpansive. Then, it follows that

‖vn − x∗‖2 = ‖PC(yn − λAyn)− PC(y∗ − λAy∗)‖2

≤ ‖(I − λA)yn − (I − λA)y∗‖2

≤ ‖yn − y∗‖2

= ‖PC(un − μBun)− PC(x∗ − μBx∗)‖2

≤ ‖(un − μBun)− (x∗ − μBx∗)‖2

≤ ‖un − x∗‖2

≤ ‖xn − x∗‖2.

Thus, we also have

‖xn+1 − x∗‖ = ‖αnu+ βnxn + γnSvn − x∗‖
≤ αn‖u − x∗‖+ βn‖xn − x∗‖+ γn‖vn − x∗‖
≤ αn(‖u − x∗‖) + βn‖xn − x∗‖+ γn‖xn − x∗‖
≤ αn(‖u − x∗‖) + (1− αn)‖xn − x∗‖
≤ max{‖u − x∗‖, ‖x1 − x∗‖}
= ‖u − x∗‖.

Therefore the sequence {xn} is bounded. Hence, we also that the sets
{un}, {vn} {Ayn}, {Bxn} and {Svn} are bounded. Moreover, by non-
expansiveness of I − λA, I − μB and PC , we get

‖vn+1 − vn‖ = ‖PC(yn+1 − λAyn+1)− PC(yn − λAyn)‖
≤ ‖(yn+1 − λAyn+1)− (yn − λAyn)‖
≤ ‖(I − λA)yn+1 − (I − λA)yn‖
≤ ‖yn+1 − yn‖
= ‖PC(un+1 − μBun+1)− PC(un − μBun)‖
≤ ‖(I − μB)un+1 − (I − μB)un‖
≤ ‖un+1 − un‖.(3.3)

On the other hand, from uj = Trjxj , where j = n, n+ 1, we have

(3.4) f(uj , y) +
1
rj
〈y − uj , uj − xj〉 ≥ 0 for all y ∈ C.

Putting y = un+1 and y = un in (3.4), we get

f(un, un+1) +
1
rn

〈un+1 − un, un − xn〉 ≥ 0
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and

f(un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

From (A2) that

〈un+1 − un,
un − xn

rn
− un+1 − xn+1

rn+1
〉 ≥ 0

and hence

〈un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)〉 ≥ 0.

Since lim infn→∞ rn > 0, without loss of generality, let us assume that
there exists a real number c such that rn > c > 0 for all n ∈ N. Then,
we have

‖un+1 − un‖2 ≤ 〈un+1 − un, xn+1 − xn + (1− rn

rn+1
)(un+1 − xn+1)〉

≤ ‖un+1 − un‖{‖xn+1 − xn‖+ |1− rn

rn+1
|‖un+1 − xn+1‖}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+ 1
rn+1

|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+ L

c
|rn+1 − rn|,(3.5)

where L = sup{‖un − xn‖ : n ∈ N}. Substituting (3.5) into (3.3), we
obtain

‖vn+1 − vn‖ ≤ ‖xn+1 − xn‖+ L

c
|rn+1 − rn|.(3.6)

Let xn+1 = (1− βn)zn + βnxn. Thus, we get

zn =
xn+1 − βnxn

1− βn
=

αnu+ γnSPC(yn − λAyn)
1− βn

=
αnu+ γnSvn

1− βn

it follows that

zn+1 − zn =
αn+1u+ γn+1Svn+1

1− βn+1
− αnu+ γnSvn

1− βn

= (
αn+1

1− βn+1
− αn

1− βn
)u+

γn+1

1− βn+1
(Svn+1 − Svn)

+(
γn+1

1− βn+1
− γn

1− βn
)Svn.
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Combining (3.6) and (3.7), we obtain

‖zn+1 − zn‖ − ‖xn+1 − xn‖
≤ | αn+1

1− βn+1
− αn

1− βn
|‖u‖+ γn+1

1− βn+1
‖vn+1 − vn‖

+| γn+1

1− βn+1
− γn

1− βn
|‖Svn‖ − ‖xn+1 − xn‖

≤ | αn+1

1− βn+1
− αn

1− βn
|‖u‖+ γn+1

1− βn+1
‖xn+1 − xn‖

+
γn+1

1− βn+1

L

c
|rn+1 − rn|

+| γn+1

1− βn+1
− γn

1− βn
|‖Svn‖ − ‖xn+1 − xn‖

≤ | αn+1

1− βn+1
− αn

1− βn
| (‖u‖+ ‖Svn‖) + γn+1

1− βn+1

L

c
|rn+1 − rn|.

From (ii), (iv) and (v) imply that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Thus, by Lemma 2.2, we have

(3.7) lim
n→∞ ‖zn − xn‖ = 0.

Consequently,

(3.8) lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1− βn)‖zn − xn‖ = 0.
By (iv), (v), (3.3) and (3.5), we also have
‖vn+1 − vn‖ → 0, ‖un+1 − un‖ → 0 and ‖yn+1 − yn‖ → 0 as n → ∞.
Since

xn+1 − xn = αnu+ βnxn + γnSvn − xn = αn(u − xn) + γn(Svn − xn),

it follows from (ii) and (3.8) that

(3.9) lim
n→∞ ‖xn − Svn‖ = 0.

Since x∗ ∈ F (S) ∩ Ω ∩ EP (f), we observe that

‖vn − x∗‖ = ‖PC(yn − λAyn)− PC(y∗ − λAy∗)‖
≤ ‖(yn − λAyn)− (y∗ − λAy∗)‖
≤ ‖yn − y∗‖ = ‖PC(un − λAun)− PC(x∗ − λAx∗)‖
≤ ‖(un − λAun)− (x∗ − λAx∗)‖
≤ ‖un − x∗‖(3.10)
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and

‖un − x∗‖2 = ‖Trnxn − Trnx∗‖2 ≤ 〈Trnxn − Trnx∗, xn − x∗〉
= 〈un − x∗, xn − x∗〉
=

1
2
(‖un − x∗‖2 + ‖xn − x∗‖2 − ‖xn − un‖2)

then ‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2. From (3.10), we have

‖xn+1 − x∗‖2 = ‖αnu+ βnxn + γnSvn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖Svn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖un − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2

+γn(‖xn − x∗‖2 − ‖xn − un‖2)
= αn‖u − x∗‖2 + (βn + γn)‖xn − x∗‖2 − γn‖xn − un‖2

= αn‖u − x∗‖2 + (1− αn)‖xn − x∗‖2 − γn‖xn − un‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − γn‖xn − un‖2(3.11)

and hence

γn‖xn − un‖2 ≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ αn‖u − x∗‖2 + ‖xn − xn+1‖(‖xn − x∗‖+ ‖xn+1 − x∗‖)(3.12)

by (ii) and (3.8) imply that

(3.13) lim
n→∞ ‖xn − un‖ = 0.

Since lim infn→∞ rn > 0, we have

(3.14) lim
n→∞ ‖xn − un

rn
‖ = lim

n→∞
1
rn

‖xn − un‖ = 0.
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Again since αn → 0 and (3.8) imply that ‖un − xn‖ → 0 as n → ∞.
From (3.2), (3.10) and Lemma 2.1, we get

‖xn+1 − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn{‖(yn − λAyn)− (y∗ − λAy∗)‖2}
≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn{‖yn − y∗‖2

+λ(λ − 2α)‖Ayn − Ay∗‖2}
= αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖un − x∗‖2

+γnλ(λ − 2α)‖Ayn − Ay∗‖2

= αn‖u − x∗‖2 + (βn + γn)‖xn − x∗‖2

+γnλ(λ − 2α)‖Ayn − Ay∗‖2

= αn‖u − x∗‖2 + (1− αn)‖xn − x∗‖2 + γnλ(λ − 2α)‖Ayn − Ay∗‖2

and

‖xn+1 − x∗‖2 ≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖yn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn{‖(un − μBun)
−(x∗ − μBx∗)‖2}

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn{‖un − x∗‖2

+μ(μ − 2β)‖Bun − Bx∗‖2}
= αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖xn − x∗‖2

+γnμ(μ − 2β)‖Bun − Bx∗‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 + γnμ(μ − 2β)‖Bun − Bx∗‖2.

Hence, by (3.15) and (3.15), we obtain

γnλ(2α − λ)‖Ayn − Ay∗‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖u − x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)(‖xn − x∗‖ − ‖xn+1 − x∗‖)
≤ αn‖u − x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖
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and

γnμ(2β − μ)‖Bun − Bx∗‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖u − x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)(‖xn − x∗‖ − ‖xn+1 − x∗‖)
≤ αn‖u − x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖.

From (ii), (iii), (3.8), (3.15) and (3.15), respectively, we also have

(3.15) ‖Ayn − Ay∗‖ → 0 and ‖Bun − Bx∗‖ → 0 as n → ∞.

By (2.3), we obtain

‖yn − y∗‖2 = ‖PC(un − μBun)− PC(x∗ − μBx∗)‖2

≤ 〈(un − μBun)− (x∗ − μBx∗), yn − y∗〉
=

1
2
{‖(un − μBun)− (x∗ − μBx∗)‖2 + ‖yn − y∗‖2

−‖(un − μBun)− (x∗ − μBx∗)− (yn − y∗)‖2}
≤ 1

2
{‖un − x∗‖2 + ‖yn − y∗‖2 − ‖(un − yn)− μ(Bun − Bx∗)

−(x∗ − y∗)‖2}
=

1
2
{‖un − x∗‖2 + ‖yn − x∗‖2 − ‖(un − yn)− (x∗ − y∗)‖2

+2μ〈(un − yn)− (x∗ − y∗), Bun − Bx∗〉 − μ2‖Bun − Bx∗‖2}

which implies that

‖yn − y∗‖2 ≤ ‖un − x∗‖2 − ‖(un − yn)− (x∗ − y∗)‖2

+2μ〈(un − yn)− (x∗ − y∗), Bun − Bx∗〉 − μ2‖Bun − Bx∗‖2.
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Thus, we observe that

‖xn+1 − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖yn − y∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2

+γn{‖un − x∗‖2 − ‖(un − yn)− (x∗ − y∗)‖2

+2μ〈(un − yn)− (x∗ − y∗), Bun − Bx∗〉 − μ2‖Bun − Bx∗‖2}
≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2

+γn‖xn − x∗‖2 − γn‖(un − yn)− (x∗ − y∗)‖2

+2γnμ‖(un − yn)− (x∗ − y∗)‖‖Bun − Bx∗‖ − γnμ2‖Bun − Bx∗‖2

≤ αn‖u − x∗‖2 + (1− αn)‖xn − x∗‖2 − γn‖(un − yn)− (x∗ − y∗)‖2

+2γnμ‖(un − yn)− (x∗ − y∗)‖‖Bun − Bx∗‖

it follows that

γn‖(un − yn)− (x∗ − y∗)‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+2γnμ‖(un − yn)− (x∗ − y∗)‖‖Bun − Bx∗‖
≤ αn‖u − x∗‖2 + ‖xn+1 − xn‖(‖xn − x∗‖+ ‖xn+1 − x∗‖2)

+2γnμ‖(un − yn)− (x∗ − y∗)‖‖Bun − Bx∗‖.(3.16)

From (ii), (3.15), (3.8) and ‖Bun − Bx∗‖ → 0 as n → ∞, we have

(3.17) ‖(un − yn)− (x∗ − y∗)‖ → 0 as n → ∞.
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We observe that

‖(yn − vn) + (x∗ − y∗)‖2

= ‖(yn − y∗)− [PC(yn − λAyn)− x∗]‖2

= ‖yn − λAyn − (y∗ − λAy∗)
−[PC(yn − λAyn)− x∗] + λ(Ayn − Ay∗)‖2

≤ ‖yn − λAyn − (y∗ − λAy∗)‖2

−‖PC(yn − λAyn)− PC(y∗ − λAy∗)‖2

+2λ〈Ayn − Ay∗, (yn − vn) + (x∗ − y∗)〉
≤ ‖yn − λAyn − (y∗ − λAy∗)‖2

−‖SPC(yn − λAyn)− SPC(y∗ − λAy∗)‖2

+2λ‖Ayn − Ay∗‖‖(yn − vn) + (x∗ − y∗)‖
≤ ‖yn − λAyn − (y∗ − λAy∗)‖2 − ‖Svn − Sx∗‖2

+2λ‖Ayn − Ay∗‖‖(yn − vn) + (x∗ − y∗)‖
≤ ‖yn − λAyn − (y∗ − λAy∗)− Svn − Sx∗‖

×(‖yn − λAyn − (y∗ − λAy∗)‖+ ‖Svn − Sx∗‖)
+2λ‖Ayn − Ay∗‖‖(yn − vn) + (x∗ − y∗)‖

≤ ‖xn − Svn + x∗ − y∗ − (xn − yn)− λ(Ayn − Ay∗)‖
×(‖yn − λAyn − (y∗ − λAy∗)‖2‖+ ‖Svn − Sx∗‖)
+2λ‖Ayn − Ay∗‖‖(yn − vn) + (x∗ − y∗)‖.

From (3.9), (3.17) and ‖Ayn − Ay∗‖ → 0, as n → ∞, it follows that
‖(yn − vn) + (x∗ − y∗)‖ → 0, (n → ∞).

We note that

‖Svn − vn‖ ≤ ‖Svn − xn‖+ ‖xn − un‖+ ‖(un − yn)− (x∗ − y∗)‖
+‖(yn − vn) + (x∗ − y∗)‖,

from above, we obtain

(3.18) lim
n→∞ ‖Svn − vn‖ = 0.

Next, we show that

lim sup
n→∞

〈u − z0, xn − z0〉 ≤ 0,
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where z0 = PF (S)∩Ω∩EP (f)u. To show this inequality, we choose a subse-
quence {vni} of {vn} such that

lim sup
n→∞

〈u − z0, Svn − z0〉 = lim
i→∞

〈u − z0, Svni − z0〉.

Since {vni} is bounded, there exists a subsequence {vnij
} of {vni} which

converges weakly to z. Without loss of generality, we can assume that
vni ⇀ z. From ‖Svn − vn‖ → 0, we obtain Svni ⇀ z. Let us show
z ∈ EP (f). Since un = Trnxn, we have

f(un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0,∀y ∈ C.

From (A2), it follow that

1
rn

〈y − un, un − xn〉 ≥ f(y, un)

and hence 〈y − uni ,
uni−xni

rni
〉 ≥ f(y, uni). From ‖un − xn‖ → 0, ‖xn −

Svn‖ → 0, and ‖Svn − vn‖ → 0, we get uni ⇀ z. Since uni−xni
rni

→ 0, it
follows by (A4) that 0 ≥ f(y, z) for all y ∈ C. For t with 0 < t ≤ 1 and
y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have yt ∈ C
and hence f(yt, z) ≤ 0. So, from (A1) and (A4) we have 0 = f(yt, yt) ≤
tf(yt, y) + (1− t)f(yt, z) ≤ tf(yt, y) and hence 0 ≤ f(yt, y). From (A3),
we have f(z, y) ≥ 0, for all y ∈ C and hence z ∈ EP (f). By Opial’s
condition, we obtain z ∈ F (S). Finally, by the same argument as that
in the proof of [4, Theorem 3.1, p. 384-385] , we can show that z ∈ Ω.
Hence z ∈ F (S) ∩ Ω ∩ EP (f). Now from (2.4), we have

lim sup
n→∞

〈u − z0, xn − z0〉 = lim sup
n→∞

〈u − z0, Svn − z0〉
= lim

i→∞
〈u − z0, Svni − z0〉

= 〈u − z0, z − z0〉 ≤ 0.(3.19)
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Finally, we show that xn → z0, where z0 = PF (S)∩V I(A,C)∩EP (f)u. We
observe that

‖xn+1 − z0‖2 = 〈αnu+ βnxn

+γnSvn − z0, xn+1 − z0〉
= αn〈u − z0, xn+1 − z0〉+ βn〈xn − z0, xn+1 − z0〉

+γn〈Svn − z0, xn+1 − z0〉
≤ 1

2
βn(‖xn − z0‖2 + ‖xn+1 − z0‖2) + αn〈u − z0, xn+1 − z0〉

+
1
2
γn(‖xn − z0‖2 + ‖xn+1 − z0‖2)

≤ 1
2
{(1− αn)‖xn − z0‖2 + ‖xn+1 − z0‖2}
+αn〈u − z0, xn+1 − z0〉

which implies that

‖xn+1 − z0‖2 ≤ (1− αn)‖xn − z0‖2 + 2αn〈u − z0, xn+1 − z0〉.
Finally by (3.19) and Lemma 2.4, we get that {xn} converges to z0,
where z0 = PF (S)∩Ω∩EP (f)u. This completes the proof. �

By Theorem 3.1, we obtain the following corollaries:

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C × C → R satisfying (A1)-(A4) and
A : C −→ H be α-inverse-strongly monotone. Let S be a nonexpansive
mapping of C into itself such that F (S) ∩ Ω ∩ EP (f) �= ∅. Let f be
a contraction of H into itself and given x0 ∈ H arbitrarily. Suppose
x1 = u ∈ C and {xn}, {yn} and {un} are given by

(3.20)
f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = PC(un − λAun)
xn+1 = αnu+ βnxn + γnSPC(yn − λAyn),∀n ∈ N,

where λ ∈ (0, 2α) and {αn}, {βn}, {γn} are three sequences in [0, 1]. If
{αn}, {βn}, {γn} and λ ∈ [a, b] for some a, b with 0 < a < b < 2α and
{rn} ⊂ (0,∞) satisfying the following conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iv) lim infn→∞ rn > 0,

∑∞
n=1 |rn+1 − rn| < ∞,
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then {xn} converges strongly to u = PF (S)∩Ω∩EP (f)u.

Proof. Put A = B and λ = μ for n ∈ N in Theorem 3.1, we obtain
the desired easily. �

Setting PH = I, we obtain the following corollary:

Corollary 3.3. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C × C → R satisfying (A1)-(A4) and
A : C −→ H be α-inverse-strongly monotone. Let S be a nonexpansive
mapping of C into itself such that F (S)∩ V I(A,C)∩EP (f) �= ∅. Let f
be a contraction of H into itself and given x0 ∈ H arbitrarily. Suppose
x1 = u ∈ C and {xn}, {yn} and {un} are given by

(3.21)
f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

xn+1 = αnu+ βnxn + γnSPC(un − λAun),∀n ∈ N,

where λ ∈ (0, 2α) and {αn}, {βn}, {γn} are three sequences in [0, 1]. If
{αn}, {βn}, {γn} and λ ∈ [a, b] for some a, b with 0 < a < b < 2α and
{rn} ⊂ (0,∞) satisfying the following conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iv) lim infn→∞ rn > 0,

∑∞
n=1 |rn+1 − rn| < ∞,

then {xn} converges strongly to z ∈ F (S) ∩ V I(C, A) ∩ EP (f), where
z = PF (S)∩V I(C,A)∩EP (f)u.

Using Theorem 3.1, we obtain the following two corollaries in Hilbert
space:

Corollary 3.4. (Ceng et. al [4, Theorem 3.1]) Let C be a closed convex
subset of a real Hilbert space H. Let A,B be αand β-inverse-strongly
monotone mappings of C into H, respectively and let S be a nonexpan-
sive mapping of C into itself such that F (S)∩Ω �= ∅. Suppose x1 = u ∈ C
and {xn}, {yn} are given by

yn = PC(xn − μBxn)
xn+1 = αnu+ βnxn + γnSPC(yn − λAyn),

where λ ∈ (0, 2α), μ ∈ (0, 2β) and {αn}, {βn}, {γn} are three sequences
in [0, 1] and {rn} ⊂ (0,∞) satisfying the following conditions:
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(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
then {xn} converges strongly to PF (S)∩Ωu and (x∗, y∗) is a solution of
problem (1.9), where y∗ = PC(x∗ − μBx∗).

Proof. Put F (x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N in
Theorem 3.1 . Then, we have un = PCxn = xn. So, from Theorem 3.1
the sequence {xn} converges strongly to PF (S)∩Ωu. �

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H.
Let A be an α−inverse-strongly monotone mapping of C into H and let S
be a nonexpansive mapping of C into itself such that F (S)∩V I(A,C) �=
∅. Suppose x1 = u ∈ C and {xn}, {yn} are given by

yn = PC(xn − λAxn)
xn+1 = αnu+ βnxn + γnSPC(yn − λAyn),

where λ ∈ [0, 2α] and {αn}, {βn}, {γn} are three sequences in [0, 1] sat-
isfying

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
then {xn} converges strongly to PF (S)∩Ωu. Moreover, we also have (x∗, y∗)
is a solution of problem (1.10), where y∗ = PC(x∗ − λAx∗).

Proof. Take A = B and λ = μ in Corollary 3.4, we can get the
desired conclusion easily. �

4. Applications

A mapping T : C → C is called strictly pseudocontractive on C if
there exists k with 0 ≤ k < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x+ (I − T )y‖2, for all x, y ∈ C.

If k = 0, then T is nonexpansive. Put A = I − T , where T : C → C
is a strictly pseudocontractive mapping with k. Then we have, for all
x, y ∈ C,

‖(I − A)x − (I − A)y‖2 ≤ ‖x − y‖2 + k‖Ax − Ay‖2.
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On the other hand, we have

‖(I − A)x − (I − A)y‖2 = ‖x − y‖2 − 2〈x − y, Ax − Ay〉+ ‖Ax − Ay‖2.

Hence we have

〈x − y, Ax − Ay〉 ≥ 1− k

2
‖Ax − Ay‖2.

Then, A is 1−k
2 − inverse strongly monotone.

Now, using Theorem 3.1, we state a strong convergence theorem for a
pair of nonexpansive mappings and strictly pseudocontractive mappings.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C ×C → R satisfying (A1)-(A4) and let
S be a nonexpansive mappings of C into itself and let T, V be strictly
pseudocontractive mapping with constant k of C into itself such that
F (S) ∩ F (T ) ∩ EP (F ) �= ∅. Suppose x1 = u ∈ C and {xn}, {yn} and
{un} are given by

f(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = (1− μ)un + μV un

xn+1 = αnu+ βnxn + γnS((1− λ)yn + λTyn),

for all n ∈ N, where {αn}, {βn}, {γn} are three sequences in [0, 1], λ ∈
[0, 1− k] and μ ∈ [0, 1− l]. If {αn}, {βn}, {γn} {rn} ⊂ (0,∞) satisfying

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iv) lim infn→∞ rn > 0,

∑∞
n=1 |rn+1 − rn| < ∞,

then {xn} converges strongly to z = PF (S)∩F (T )∩EP (f)u.

Proof. Put A = I − T and B = I − V . Then A is 1−k
2 −inverse-

strongly monotone and B is 1−l
2 −inverse-strongly monotone. We have

that F (T ) is the solution set of V I(A,C) and Ω i.e., F (T ) = V I(A,C)⇔
problem (1.9) ⇔ problem (1.10) (see cf. Ceng et al. [4, Theorem 4.1
pp. 388–389]) and

PC(un−μBun) = (1−μ)un+μV un and PC(yn−λAyn) = (1−λ)yn+λTyn.

Therefore, by Theorem 3.1, the conclusion follows. �

Therefore, the conclusion follows immediately from Theorem 4.1.
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Corollary 4.2. (Ceng et al. [4, Corollary 3.3]) Let C be a closed convex
subset of a real Hilbert space H. Let S be a nonexpansive mapping of
C into itself and let T, V be strictly pseudocontractive mappings with
constant k of C into itself such that F (S)∩F (T ) �= ∅. Suppose x1 = u ∈
C and {xn} is given by

yn = (1− μ)xn + μV xn

xn+1 = αnu+ βnxn + γnS((1− λ)yn + λTyn),

for all n ∈ N, where {αn}, {βn}, {γn} are three sequences in [0, 1], λ ∈
[0, 1 − k] and μ ∈ [0, 1 − l]. If {αn}, {βn}, {γn} satisfying the following
conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
then {xn} converges strongly to x∗ = PF (S)∩Ωu and (x∗, y∗) is a solution
of problem (1.10), where y∗ = (1− μ)x∗ − μV x∗).

Corollary 4.3. Let C be a closed convex subset of a real Hilbert space
H. Let S be a nonexpansive mapping of C into itself and let T be a
strictly pseudocontractive mapping with constant k of C into itself such
that F (S) ∩ F (T ) �= ∅. Suppose x1 = u ∈ C and {xn} is given by

yn = (1− λ)xn + λTxn

xn+1 = αnu+ βnxn + γnS((1− λ)yn + λTyn),

for all n ∈ N, where λ ∈ [0, 1 − k] and {αn}, {βn}, {γn} are three se-
quences in [0, 1] and satisfying

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
then {xn} converges strongly to PF (S)∩F (T )u.

The following three theorems are connected with the problem of ob-
taining of a common element of the sets of zeroes of a maximal monotone
operator and an α−inverse-strongly monotone operator.

Theorem 4.4. Let C be a nonempty closed convex subset of H. Let f
be a bifunction from C × C to R satisfying (A1) − (A4) and let A be
an α−inverse-strongly monotone operator in H and B : H → 2H be a
maximal monotone operator such that A−1(0)∩B−1(0)∩EP (f) �=. Let
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JB
r be the resolvent of B for each r > 0. Let {xn} and {un} be sequences

generated by x1 = u ∈ H and

(4.1)

⎧⎪⎨⎪⎩
f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ H;

yn = (un − λAun)
xn+1 = αnu+ βnxn + γnJB

r (yn − λAyn),

where {λ} ⊂ [c, d] for some [c, d] ⊂ (0, 2α), {αn}, {βn}, {γn} and {rn}
satisfy the following conditions:

(i) αn + βn + γn = 1,
(ii) {αn} ⊂ [0, 1],

∑∞
n=0 αn =∞, αn → 0;

(iii) {rn} ⊂ (0,∞), lim infn→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞,
(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then, {xn} and {un} converge strongly to z ∈ A−1(0)∩B−1(0)∩EP (f),
where z = PA−1(0)∩B−1(0)EP (f)x1.

Proof. Since A−10 = V (I,A) and F (JB
r ) = B−1(0). Putting PH = I

then, by Theorem 3.1, we obtain the desired result easily. �
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1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Recall
that a mapping T of H into itself is called nonexpansive (see [1]) if ‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ H. We denote by F(T) = {x ∈ C : Tx = x} the set of fixed points of T . Recall
also that a self-mapping f : H → H is a contraction if there exists a constant α ∈ (0, 1) such
that ‖f(x) − f(y)‖ ≤ α‖x − y‖, for all x, y ∈ H. In addition, let B : C → H be a nonlinear
mapping. Let PC be the projection of H onto C. The classical variational inequality which is
denoted by V I(C,B) is to find u ∈ C such that

〈Bu, v − u〉 ≥ 0, ∀v ∈ C. (1.1)
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For a given z ∈ H, u ∈ C satisfies the inequality

〈u − z, v − u〉 ≥ 0, ∀v ∈ C, (1.2)

if and only if u = PCz. It is well known that PC is a nonexpansive mapping of H onto C and
satisfies

〈
x − y, PCx − PCy

〉 ≥ ∥∥PCx − PCy
∥∥2

, ∀x, y ∈ H. (1.3)

Moreover, PCx is characterized by the following properties: PCx ∈ C and for all x ∈ H,y ∈ C,

〈
x − PCx, y − PCx

〉 ≤ 0, (1.4)

∥∥x − y
∥∥2 ≥ ‖x − PCx‖2 +

∥∥y − PCx
∥∥2

. (1.5)

It is easy to see that the following is true:

u ∈ V I(C,B) ⇐⇒ u = PC(u − λBu), λ > 0. (1.6)

One can see that the variational inequality (1.1) is equivalent to a fixed point problem.
The variational inequality has been extensively studied in literature; see, for instance, [2–
6]. This alternative equivalent formulation has played a significant role in the studies of the
variational inequalities and related optimization problems. Recall the following.

(1) A mapping B of C intoH is called monotone if

〈
Bx − By, x − y

〉 ≥ 0, ∀x, y ∈ C. (1.7)

(2) A mapping B is called β-strongly monotone (see [7, 8]) if there exists a constant
β > 0 such that

〈
Bx − By, x − y

〉 ≥ β
∥∥x − y

∥∥2
, ∀x, y ∈ C. (1.8)

(3) A mapping B is called k-Lipschitz continuous if there exists a positive real number
k such that

∥∥Bx − By
∥∥ ≤ k

∥∥x − y
∥∥, ∀x, y ∈ C. (1.9)

(4) A mapping B is called β-inverse-strongly monotone (see [7, 8]) if there exists a
constant β > 0 such that

〈
Bx − By, x − y

〉 ≥ β
∥∥Bx − By

∥∥2
, ∀x, y ∈ C. (1.10)
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Remark 1.1. It is obvious that any β-inverse-strongly monotone mapping B is monotone and
1/β-Lipschitz continuous.

(5) An operator A is strongly positive on H if there exists a constant γ > 0 with the
property

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.11)

(6) A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx,
and g ∈ Ty imply 〈x−y, f−g〉 ≥ 0. Amonotonemapping T : H → 2H is maximal if the graph
of G(T) of T is not properly contained in the graph of any other monotone mapping. It is
known that a monotonemapping T is maximal if and only if for (x, f) ∈ H×H, 〈x−y, f−g〉 ≥
0 for every (y, g) ∈ G(T) implies f ∈ Tx. Let B be a monotone map of C into H, and let NCv
be the normal cone to C at v ∈ C, that is, NCv = {w ∈ H : 〈u − v,w〉 ≥ 0, for all u ∈ C}, .

Tv =

⎧⎨
⎩
Bv +NCv, v ∈ C,

∅, v /∈ C.
(1.12)

Then T is the maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,B); see [9].
(7) Let F be a bifunction of C × C into R, where R is the set of real numbers. The

equilibrium problem for F : C × C → R is to find x ∈ C such that

F
(
x, y

) ≥ 0, ∀y ∈ C. (1.13)

The set of solutions of (1.13) is denoted by EP(F). Given a mapping T : C → H, let
F(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then, z ∈ EP(F) if and only if 〈Tz, y − z〉 ≥ 0
for all y ∈ C. Numerous problems in physics, saddle point problem, fixed point problem,
variational inequality problems, optimization, and economics are reduced to find a solution
of (1.13). Some methods have been proposed to solve the equilibrium problem; see, for
instance, [10–16]. Recently, Combettes and Hirstoaga [17] introduced an iterative scheme
of finding the best approximation to the initial data when EP(F) is nonempty and proved a
strong convergence theorem.

In 1976, Korpelevich [18] introduced the following so-called extragradient method:

x0 = x ∈ C,

yn = PC(xn − λBxn),

xn+1 = PC

(
xn − λByn

) (1.14)

for all n ≥ 0, where λ ∈ (0, 1/k), C is a closed convex subset of Rn, and B is a monotone and
k-Lipschitz continuous mapping of C into Rn. He proved that if V I(C,B) is nonempty, then
the sequences {xn} and {yn}, generated by (1.14), converge to the same point z ∈ V I(C,B).
For finding a common element of the set of fixed points of a nonexpansive mapping and
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the set of solution of variational inequalities for β-inverse-strongly monotone, Takahashi and
Toyoda [19] introduced the following iterative scheme:

x0 ∈ C chosen arbitrary,

xn+1 = αnxn + (1 − αn)SPC(xn − λnBxn), ∀n ≥ 0,
(1.15)

where B is β-inverse-strongly monotone, {αn} is a sequence in (0, 1), and {λn} is a sequence
in (0, 2β). They showed that if F(S)∩V I(C,B) is nonempty, then the sequence {xn} generated
by (1.15) converges weakly to some z ∈ F(S)∩V I(C,B) . Recently, Iiduka and Takahashi [20]
proposed a new iterative scheme as follows:

x0 = x ∈ C chosen arbitrary,

xn+1 = αnx + (1 − αn)SPC(xn − λnBxn), ∀n ≥ 0,
(1.16)

where B is β-inverse-strongly monotone, {αn} is a sequence in (0, 1), and {λn} is a sequence
in (0, 2β). They showed that if F(S)∩V I(C,B) is nonempty, then the sequence {xn} generated
by (1.16) converges strongly to some z ∈ F(S) ∩ V I(C,B).

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [21–24] and the references therein. Convex
minimization problems have a great impact and influence in the development of almost all
branches of pure and applied sciences. A typical problem is to minimize a quadratic function
over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H:

min
x∈C

1

2
〈Ax, x〉 − 〈x, b〉, (1.17)

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping
S on H, and b is a given point in H. Moreover, it is shown in [25] that the sequence {xn}
defined by the scheme

xn+1 = εnγf(xn) + (1 − εnA)Sxn (1.18)

converges strongly to z = PF(S)(I − A + γf)(z). Recently, Plubtieng and Punpaeng [26]
proposed the following iterative algorithm:

F
(
un, y

)
+

1

rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ H,

xn+1 = εnγf(xn) + (I − εnA)Sun.

(1.19)

They prove that if the sequences {εn} and {rn} of parameters satisfy appropriate condition,
then the sequences {xn} and {un} both converge to the unique solution z of the variational
inequality

〈(A − γf
)
q, q − p〉 ≥ 0, p ∈ F(S) ∩ EP(F), (1.20)
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which is the optimality condition for the minimization problem

min
x∈F(S)∩EP(F)

1

2
〈Ax, x〉 − h(x), (1.21)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
Furthermore, for finding approximate common fixed points of an infinite countable

family of nonexpansive mappings {Tn} under very mild conditions on the parameters.
Wangkeeree [27] introduced an iterative scheme for finding a common element of the set of
solutions of the equilibrium problem (1.13) and the set of common fixed points of a countable
family of nonexpansive mappings on C. Starting with an arbitrary initial x1 ∈ C, define a
sequence {xn} recursively by

F
(
un, y

)
+

1

rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnBun),

xn+1 = αnf(xn) + βnxn + γnSnPC

(
un − λnByn

)
, ∀n ≥ 1,

(1.22)

where {αn}, {βn}, and {γn} are sequences in (0, 1). It is proved that under certain appropriate
conditions imposed on {αn}, {βn}, {γn}, and {rn}, the sequence {xn} generated by (1.22)
strongly converges to the unique solution q ∈ ∩∞n=1F(Sn) ∩ V I(C,B) ∩ EP(F), where p =
P∩∞n=1F(Sn)∩V I(C,B)∩EP(F)f(q)which extend and improve the result of Kumam [14].

Definition 1.2 (see [21]). Let {Tn} be a sequence of nonexpansive mappings of C into itself,
and let {μn} be a sequence of nonnegative numbers in [0,1]. For each n ≥ 1, define a mapping
Wn of C into itself as follows:

Un,n+1 = I,

Un,n = μnTnUn,n+1 +
(
1 − μn

)
I,

Un,n−1 = μn−1Tn−1Un,n +
(
1 − μn−1

)
I,

...

Un,k = μkTkUn,k+1 +
(
1 − μk

)
I,

Un,k−1 = μk−1Tk−1Un,k +
(
1 − μk−1

)
I,

...

Un,2 = μ2T2Un,3 +
(
1 − μ2

)
I,

Wn = Un,1 = μ1T1Un,2 +
(
1 − μ1

)
I.

(1.23)

Such a mapping Wn is nonexpansive from C to C, and it is called the W-mapping generated
by T1, T2, . . . , Tn and μ1, μ2, . . . , μn.
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On the other hand, Colao et al. [28] introduced and considered an iterative scheme for
finding a common element of the set of solutions of the equilibrium problem (1.13) and the
set of common fixed points of infinitely many nonexpansive mappings on C. Starting with an
arbitrary initial x0 ∈ C, define a sequence {xn} recursively by

F
(
un, y

)
+

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ H,

xn+1 = εnγf(xn) + βxn +
((
1 − β

)
I − εnA

)
Wnun,

(1.24)

where {εn} is a sequence in (0, 1). It is proved [28] that under certain appropriate conditions
imposed on {εn} and {rn}, the sequence {xn} generated by (1.24) strongly converges to z ∈
∩∞n=1F(Tn) ∩ EP(F), where z is an equilibrium point for F and is the unique solution of the
variational inequality (1.20), that is, z = P∩∞n=1F(Tn)∩EP(F)(I − (A − γf))z.

In this paper, motivated by Wangkeeree [27], Plubtieng and Punpaeng [26], Marino
and Xu [25], and Colao, et al. [28], we introduce a new iterative scheme in a Hilbert spaceH
which is mixed by the iterative schemes of (1.18), (1.19), (1.22), and (1.24) as follows.

Let f be a contraction ofH into itself,A a strongly positive bounded linear operator on
H with coefficient γ > 0, and B a β-inverse-strongly monotone mapping of C into H; define
sequences {xn}, {yn}, {kn}, and {un} recursively by

x1 = x ∈ C chosen arbitrary,

F
(
un, y

)
+

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnBun),

kn = αnun + (1 − αn)PC

(
un − λnByn

)
,

xn+1 = εnγf(xn) + βnxn +
((
1 − βn

)
I − εnA

)
Wnkn, ∀n ≥ 1,

(1.25)

where {Wn} is the sequence generated by (1.23), {εn}, {αn}, and {βn} ⊂ (0, 1) and {rn} ⊂
(0,∞) satisfying appropriate conditions. We prove that the sequences {xn}, {yn}, {kn} and
{un} generated by the above iterative scheme (1.25) converge strongly to a common element
of the set of solutions of the equilibrium problem (1.13), the set of common fixed points of
infinitely family nonexpansive mappings, and the set of solutions of variational inequality
(1.1) for a β-inverse-strongly monotone mapping in Hilbert spaces. The results obtained in
this paper improve and extend the recent ones announced by Wangkeeree [27], Plubtieng
and Punpaeng [26], Marino and Xu [25], Colao, et al. [28], and many others.

2. Preliminaries

We now recall some well-known concepts and results.
LetH be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and

‖ · ‖, respectively. We denote weak convergence and strong convergence by notations ⇀ and
→ , respectively.
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A spaceH is said to satisfy Opial’s condition [29] if for each sequence {xn} inH which
converges weakly to point x ∈ H, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥∥xn − y
∥∥, ∀y ∈ H, y /=x. (2.1)

Lemma 2.1 (see [25]). Let C be a nonempty closed convex subset of H, let f be a contraction of
H into itself with α ∈ (0, 1), and let A be a strongly positive linear bounded operator on H with
coefficient γ > 0. Then , for 0 < γ < γ/α,

〈
x − y,

(
A − γf

)
x − (A − γf

)
y
〉 ≥ (γ − αγ

)∥∥x − y
∥∥2

, x, y ∈ H. (2.2)

That is, A − γf is strongly monotone with coefficient γ − γα.

Lemma 2.2 (see [25]). Assume that A is a strongly positive linear bounded operator on H with
coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ .

For solving the equilibrium problem for a bifunction F : C × C → R, let us assume
that F satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt↓0F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [30].

Lemma 2.3 (see [30]). Let C be a nonempty closed convex subset of H and let F be a bifunction of
C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F
(
z, y

)
+
1

r

〈
y − z, z − x

〉 ≥ 0 ∀y ∈ C. (2.3)

The following lemma was also given in [17].

Lemma 2.4 (see [17]). Assume that F : C × C → R satisfies (A1)–(A4). For r > 0 and x ∈ H,
define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1

r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(2.4)

for all z ∈ H. Then, the following holds:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Trx − Try
∥∥2 ≤ 〈Trx − Try, x − y

〉
; (2.5)
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(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

For each n, k ∈ N, let the mapping Un,k be defined by (1.23). Then we can have the
following crucial conclusions concerning Wn. You can find them in [31]. Now we only need
the following similar version in Hilbert spaces.

Lemma 2.5 (see [31]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T1, T2, . . . be nonexpansive mappings of C into itself such that ∩∞n=1F(Tn) is nonempty, and let
μ1, μ2, . . . be real numbers such that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, for every x ∈ C and
k ∈ N, the limit limn→∞Un,kx exists.

Using Lemma 2.5, one can define a mapping W of C into itself as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x (2.6)

for every x ∈ C. Such a W is called the W-mapping generated by T1, T2, . . . and μ1, μ2, . . ..
Throughout this paper, we will assume that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, we have the
following results.

Lemma 2.6 (see [31]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T1, T2, . . . be nonexpansive mappings of C into itself such that ∩∞n=1F(Tn) is nonempty, and let
μ1, μ2, . . . be real numbers such that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, F(W) = ∩∞n=1F(Tn).

Lemma 2.7 (see [32]). If {xn} is a bounded sequence in C, then limn→∞‖Wxn −Wnxn‖ = 0.

Lemma 2.8 (see [33]). Let {xn} and {zn} be bounded sequences in a Banach spaceX, and let {βn} be
a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 = (1−βn)zn +βnxn

for all integers n ≥ 0 and lim supn→∞(‖yn+1 − zn‖ − ‖xn+1 −xn‖) ≤ 0. Then, limn→∞‖zn −xn‖ = 0.

Lemma 2.9 (see [34]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − ln)an + σn, n ≥ 0, (2.7)

where {ln} is a sequence in (0, 1) and {σn} is a sequence in R such that

(1)
∑∞

n=1 ln = ∞;

(2) lim supn→∞σn/ln ≤ 0 or
∑∞

n=1 |σn| < ∞.

Then limn→∞an = 0.

Lemma 2.10. LetH be a real Hilbert space. Then for all x, y ∈ H,

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, x〉.
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3. Main Results

In this section, we prove the strong convergence theorem for infinitely many nonexpansive
mappings in a real Hilbert space.

Theorem 3.1. LetC be a nonempty closed convex subset of a real Hilbert spaceH, let F be a bifunction
from C × C to R satisfying (A1)–(A4), let {Tn} be an infinitely many nonexpansive of C into itself,
and let B be an β-inverse-strongly monotone mapping of C into H such that Θ := ∩∞n=1F(Tn) ∩
EP(F) ∩ V I(C,B)/= ∅. Let f be a contraction of H into itself with α ∈ (0, 1), and let A be a strongly
positive linear bounded operator on H with coefficient γ > 0 and 0 < γ < γ/α. Let {xn}, {yn},
{kn}, and {un} be sequences generated by (1.25), where {Wn} is the sequence generated by (1.23),
{εn}, {αn}, and {βn} are three sequences in (0, 1), and {rn} is a real sequence in (0,∞) satisfying the
following conditions:

(i) limn→∞εn = 0,
∑∞

n=1 εn = ∞;

(ii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iv) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0;

(v) {λn/β} ⊂ (τ, 1 − δ) for some τ, δ ∈ (0, 1) and limn→∞λn = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θwhich is the unique solution of the variational
inequality

〈(
A − γf

)
z, z − x

〉 ≥ 0, ∀x ∈ Θ. (3.1)

Equivalently, one has z = PΘ(I −A + γf)(z).

Proof. Note that from the condition (i), we may assume, without loss of generality, that εn ≤
(1 − βn)‖A‖−1 for all n ∈ N. From Lemma 2.2, we know that if 0 ≤ ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤
1−ργ . We will assume that ‖I−A‖ ≤ 1−γ . First, we show that I−λnB is nonexpansive. Indeed,
from the β-inverse-strongly monotone mapping definition on B and condition (v), we have

∥∥(I − λnB)x − (I − λnB)y
∥∥2 =

∥∥(x − y) − λn(Bx − By)
∥∥2

=
∥∥x − y

∥∥2 − 2λn
〈
x − y, Bx − By

〉
+ λ2n

∥∥Bx − By
∥∥2

≤ ∥∥x − y
∥∥2 − 2λnβ

∥∥Bx − By
∥∥2 + λ2n

∥∥Bx − By
∥∥2

=
∥∥x − y

∥∥2 + λn
(
λn − 2β

)∥∥Bx − By
∥∥2

≤ ∥∥x − y
∥∥2

,

(3.2)

which implies that the mapping I − λnB is nonexpansive. On the other hand, since A is a
strongly positive bounded linear operator on H, we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}. (3.3)
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Observe that

〈((
1 − βn

)
I − εnA

)
x, x

〉
= 1 − βn − εn〈Ax, x〉
≥ 1 − βn − εn‖A‖
≥ 0,

(3.4)

and this show that (1 − βn)I − εnA is positive. It follows that

∥∥(1 − βn
)
I − εnA

∥∥ = sup
{∣∣〈((1 − βn

)
I − εnA

)
x, x

〉∣∣ : x ∈ H, ‖x‖ = 1
}

= sup
{
1 − βn − εn〈Ax, x〉 : x ∈ H, ‖x‖ = 1

}
≤ 1 − βn − εnγ.

(3.5)

Let Q = PΘ, where Θ := ∩∞n=1F(Tn) ∩ EP(F) ∩ V I(C,B). Note that f is a contraction of H into
itself with α ∈ (0, 1). Then, we have

∥∥Q(I −A + γf
)
(x) −Q

(
I −A + γf

)(
y
)∥∥ =

∥∥PΘ
(
I −A + γf

)
(x) − PΘ

(
I −A + γf

)(
y
)∥∥

≤ ∥∥(I −A + γf
)
(x) − (I −A + γf

)(
y
)∥∥

≤ ‖I −A‖∥∥x − y
∥∥ + γ

∥∥f(x) − f
(
y
)∥∥

≤ (1 − γ
)∥∥x − y

∥∥ + γα
∥∥x − y

∥∥
=
(
1 − γ + γα

)∥∥x − y
∥∥

=
(
1 − (γ − γα

))∥∥x − y
∥∥, ∀x, y ∈ H.

(3.6)

Since 0 < 1 − (γ − γα) < 1, it follows that Q(I − A + γf) is a contraction of H into itself.
Therefore by the Banach Contraction Mapping Principle, which implies that there exists a
unique element z ∈ H such that z = Q(I −A + γf)(z) = PΘ(I −A + γf)(z).

We will divide the proof into five steps.

Step 1. We claim that {xn} is bounded. Indeed, pick any p ∈ Θ. From the definition of Tr , we
note that un = Trnxn. If follows that

∥∥un − p
∥∥ =

∥∥Trnxn − Trnp
∥∥ ≤ ∥∥xn − p

∥∥. (3.7)

Since I − λnB is nonexpansive and p = PC(p − λnBp) from (1.6), we have

∥∥yn − p
∥∥ =

∥∥PC(un − λnBun) − PC

(
p − λnBp

)∥∥
≤ ∥∥(un − λnAun) −

(
p − λnBp

)∥∥
=
∥∥(I − λnA)un − (I − λnB)p

∥∥
≤ ∥∥un − p

∥∥ ≤ ∥∥xn − p
∥∥.

(3.8)
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Put vn = PC(un − λnByn). Since p ∈ V I(C,B), we have p = PC(p − λnBp). Substituting x =
un − λnAyn and y = p in (1.5), we can write

∥∥vn − p
∥∥2 ≤ ∥∥un − λnByn − p

∥∥2 − ∥∥un − λnByn − vn

∥∥2

=
∥∥un − p

∥∥2 − 2λn
〈
Byn, un − p

〉
+ λ2n

∥∥Byn

∥∥2

− ‖un − vn‖2 + 2λn
〈
Byn, un − vn

〉 − λ2n
∥∥Byn

∥∥2

=
∥∥un − p

∥∥2 − ‖un − vn‖2 + 2λn
〈
Byn, p − vn

〉
=
∥∥un − p

∥∥2 − ‖un − vn‖2 + 2λn
〈
Byn − Bp, p − yn

〉
+ 2λn

〈
Bp, p − yn

〉
+ 2λn

〈
Byn, yn − vn

〉
.

(3.9)

Using the fact that B is β-inverse-strongly monotone mapping, and p is a solution of the
variational inequality problem V I(C,B), we also have

〈
Byn − Bp, p − yn

〉 ≤ 0, 〈Bp, p − yn〉 ≤ 0. (3.10)

It follows from (3.9) and (3.10) that

∥∥vn − p
∥∥2 ≤ ∥∥un − p

∥∥2 − ‖un − vn‖2 + 2λn〈Byn, yn − vn〉

=
∥∥un − p

∥∥2 − ∥∥(un − yn) + (yn − vn)
∥∥2 + 2λn

〈
Byn, yn − vn

〉
≤ ∥∥un − p

∥∥2 − ∥∥un − yn

∥∥2 − ∥∥yn − vn

∥∥2

− 2
〈
un − yn, yn − vn

〉
+ 2λn

〈
Byn, yn − vn

〉
=
∥∥un − p

∥∥2 − ∥∥un − yn

∥∥2 − ∥∥yn − vn

∥∥2 + 2
〈
un − λnByn − yn, vn − yn

〉
.

(3.11)

Substituting x by un − λnBun and y = vn in (1.4), we obtain

〈
un − λnBun − yn, vn − yn

〉 ≤ 0. (3.12)

It follows that

〈
un − λnByn − yn, vn − yn

〉
=
〈
un − λnBun − yn, vn − yn

〉
+
〈
λnBun − λnByn, vn − yn

〉
≤ 〈λnBun − λnByn, vn − yn

〉
≤ λn

∥∥Bun − Byn

∥∥∥∥vn − yn

∥∥
≤ λn

β

∥∥un − yn

∥∥∥∥vn − yn

∥∥.

(3.13)
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Substituting (3.13) into (3.11), we have

∥∥vn − p
∥∥2 ≤ ∥∥un − p

∥∥2 − ∥∥un − yn

∥∥2 − ∥∥yn − vn

∥∥2 + 2
〈
un − λnByn − yn, vn − yn

〉
≤ ∥∥un − p

∥∥2 − ∥∥un − yn

∥∥2 − ∥∥yn − vn

∥∥2 + 2
λn
β

∥∥un − yn

∥∥∥∥vn − yn

∥∥

≤ ∥∥un − p
∥∥2 − ∥∥un − yn

∥∥2 − ∥∥yn − vn

∥∥2 +
λ2n
β2
∥∥un − yn

∥∥2 +
∥∥vn − yn

∥∥2

=
∥∥un − p

∥∥2 − ∥∥un − yn

∥∥2 +
λ2n
β2
∥∥un − yn

∥∥2

=
∥∥un − p

∥∥2 +

(
λ2n
β2

− 1

)∥∥un − yn

∥∥2

≤ ∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2
.

(3.14)

Setting kn = αnun + (1 − αn)vn, we can calculate

∥∥xn+1 − p
∥∥ =

∥∥εn(γf(xn) −Ap
)
+ βn

(
xn − p

)
+
((
1 − βn

)
I − εnA

)(
Wnkn − p

)∥∥
≤ (1 − βn − εnγ

)∥∥kn − p
∥∥ + βn

∥∥xn − p
∥∥ + εn

∥∥γf(xn) −Ap
∥∥

≤ (1 − βn − εnγ
){

αn

∥∥un − p
∥∥ + (1 − αn)

∥∥vn − p
∥∥}

+ βn
∥∥xn − p

∥∥ + εn
∥∥γf(xn) −Ap

∥∥
≤ (1 − βn − εnγ

){
αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥xn − p
∥∥}

+ βn
∥∥xn − p

∥∥ + εn
∥∥γf(xn) −Ap

∥∥
=
(
1 − βn − εnγ

)∥∥xn − p
∥∥ + βn

∥∥xn − p
∥∥ + εn

∥∥γf(xn) −Ap
∥∥

=
(
1 − εnγ

)∥∥xn − p
∥∥ + εnγ

∥∥f(xn) − f
(
p
)∥∥ + εn

∥∥γf(p) −Ap
∥∥

≤ (1 − εnγ
)∥∥xn − p

∥∥ + εnγα
∥∥xn − p

∥∥ + εn
∥∥γf(p) −Ap

∥∥
=
(
1 − (γ − γα

)
εn
)∥∥xn − p

∥∥ +
(
γ − γα

)
εn

∥∥γf(p) −Ap
∥∥

γ − γα
.

(3.15)

By induction,

∥∥xn − p
∥∥ ≤ max

{∥∥x1 − p
∥∥,
∥∥γf(p) −Ap

∥∥
γ − γα

}
, n ∈ N. (3.16)

Hence, {xn} is bounded, so are {un}, {vn}, {Wnkn}, {f(xn)}, {Bun}, {yn}, and {Byn}.

Step 2. We claim that limn→∞‖xn+1 − xn‖ = 0.
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Observing that un = Trnxn and un+1 = Trn+1xn+1, we get

F
(
un, y

)
+

1

rn

〈
y − un, un − xn

〉 ≥ 0 ∀y ∈ H (3.17)

F
(
un+1, y

)
+

1

rn+1

〈
y − un+1, un+1 − xn+1

〉 ≥ 0 ∀y ∈ H. (3.18)

Putting y = un+1 in (3.17) and y = un in (3.18), we have

F(un, un+1) +
1

rn
〈un+1 − un, un − xn〉 ≥ 0

F(un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

(3.19)

So, from (A2) we have

〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0, (3.20)

and hence

〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)

〉
≥ 0. (3.21)

Without loss of generality, let us assume that there exists a real number c such that rn > c > 0
for all n ∈ N. Then, we have

‖un+1 − un‖2 ≤
〈
un+1 − un, xn+1 − xn +

(
1 − rn

rn+1

)
(un+1 − xn+1)

〉

≤ ‖un+1 − un‖
{
‖xn+1 − xn‖ +

∣∣∣∣1 − rn
rn+1

∣∣∣∣‖un+1 − xn+1‖
}
,

(3.22)

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖ + 1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖ + M1

c
|rn+1 − rn|,

(3.23)
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where M1 = sup{‖un − xn‖ : n ∈ N}. Note that

‖vn+1 − vn‖ ≤
∥∥PC

(
un+1 − λn+1Byn+1

) − PC

(
un − λnByn

)∥∥
≤ ∥∥un+1 − λn+1Byn+1 −

(
un − λnByn

)∥∥
= ‖(un+1 − λn+1Bun+1) − (un − λn+1Bun)

+ λn+1
(
Bun+1 − Byn+1 − Bun

)
+ λnByn

∥∥
≤ ‖(un+1 − λn+1Bun+1) − (un − λn+1Bun)‖

+ λn+1
(‖Bun+1‖ +

∥∥Byn+1
∥∥ + ‖Bun‖

)
+ λn‖Byn‖

≤ ‖un+1 − un‖ + λn+1
(‖Bun+1‖ +

∥∥Byn+1
∥∥ + ‖Bun‖

)
+ λn‖Byn‖,

‖kn+1 − kn‖ = ‖αn+1un+1 + (1 − αn+1)vn+1 − αnun − (1 − αn)vn‖

= ‖αn+1(un+1 − un) + (αn+1 − αn)un

+ (1 − αn+1)(vn+1 − vn) + (αn − αn+1)vn‖

≤ αn+1‖un+1 − un‖ + (1 − αn+1)‖vn+1 − vn‖ + |αn − αn+1|‖un + vn‖

= αn+1‖un+1 − un‖ + (1 − αn+1)

× {‖un+1 − un‖ + λn+1
(‖Bun+1‖ +

∥∥Byn+1
∥∥ + ‖Bun‖

)
+ λn‖Byn‖

}
+ |αn − αn+1|‖un + vn‖

= ‖un+1 − un‖ + (1 − αn+1)λn+1
(‖Bun+1‖ +

∥∥Byn+1
∥∥ + ‖Bun‖

)
+ (1 − αn+1)λn

∥∥Byn

∥∥ + |αn − αn+1|‖un + vn‖

≤ ‖xn+1 − xn‖ + M1

c
|rn+1 − rn| + (1 − αn+1)λn+1

× (‖Bun+1‖ +
∥∥Byn+1

∥∥ + ‖Bun‖
)

+ (1 − αn+1)λn
∥∥Byn

∥∥ + |αn − αn+1|‖un + vn‖.

(3.24)

Setting

zn =
xn+1 − βnxn

1 − βn
=

εnγf(xn) +
((
1 − βn

)
I − εnA

)
Wnkn

1 − βn
, (3.25)
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we have xn+1 = (1 − βn)zn + βnxn, n ≥ 1. It follows that

zn+1 − zn =
εn+1γf(xn+1) +

((
1 − βn+1

)
I − εn+1A

)
Wn+1kn+1

1 − βn+1

− εnγf(xn) +
((
1 − βn

)
I − εnA

)
Wnkn

1 − βn

=
εn+1

1 − βn+1
γf(xn+1) − εn

1 − βn
γf(xn) +Wn+1kn+1 −Wnkn

+
εn

1 − βn
AWnkn − εn+1

1 − βn+1
AWn+1kn+1

=
εn+1

1 − βn+1

(
γf(xn+1) −AWn+1kn+1

)
+

εn
1 − βn

(
AWnkn − γf(xn)

)

+ Wn+1kn+1 −Wn+1kn +Wn+1kn −Wnkn.

(3.26)

It follows from (3.24) and (3.26) that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ εn+1
1 − βn+1

(∥∥γf(xn+1)
∥∥ + ‖AWn+1kn+1‖

)

+
εn

1 − βn

(‖AWnkn‖ +
∥∥γf(xn)

∥∥) + ‖Wn+1kn+1 −Wn+1kn‖

+ ‖Wn+1kn −Wnkn‖ − ‖xn+1 − xn‖

≤ εn+1
1 − βn+1

(∥∥γf(xn+1)
∥∥ + ‖AWn+1kn+1‖

)

+
εn

1 − βn

(‖AWnkn‖ +
∥∥γf(xn)

∥∥) + ‖kn+1 − kn‖

+ ‖Wn+1kn −Wnkn‖ − ‖xn+1 − xn‖

≤ εn+1
1 − βn+1

(∥∥γf(xn+1)
∥∥ + ‖AWn+1kn+1‖

)

+
εn

1 − βn

(‖AWnkn‖ +
∥∥γf(xn)

∥∥) + M1

c
|rn+1 − rn|

+ (1 − αn+1)λn+1
(‖Bun+1‖ +

∥∥Byn+1
∥∥ + ‖Bun‖

)
+ (1 − αn+1)λn

∥∥Byn

∥∥ + |αn − αn+1|‖un + vn‖

+ ‖Wn+1kn −Wnkn‖.

(3.27)
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Since Ti andUn,i are nonexpansive, we have

‖Wn+1kn −Wnkn‖ =
∥∥μ1T1Un+1,2kn − μ1T1Un,2kn

∥∥
≤ μ1‖Un+1,2kn −Un,2kn‖
= μ1

∥∥μ2T2Un+1,3kn − μ2T2Un,3kn
∥∥

≤ μ1μ2‖Un+1,3kn −Un,3kn‖
...

≤ μ1μ2 · · ·μn‖Un+1,n+1kn −Un,n+1kn‖

≤ M2

n∏
i=1

μi,

(3.28)

where M2 ≥ 0 is a constant such that ‖Un+1,n+1kn −Un,n+1kn‖ ≤ M2 for all n ≥ 0.
Combining (3.27) and (3.28), we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ εn+1
1 − βn+1

(∥∥γf(xn+1)
∥∥ + ‖AWn+1kn+1‖

)

+
εn

1 − βn

(‖AWnkn‖ +
∥∥γf(xn)

∥∥) + M1

c
|rn+1 − rn|

+ (1 − αn+1)λn+1
(‖Bun+1‖ +

∥∥Byn+1
∥∥ + ‖Bun‖

)
+ (1 − αn+1)λn

∥∥Byn

∥∥ + |αn − αn+1|‖un + vn‖

+ M2

n∏
i=1

μi,

(3.29)

which implies that (noting that (i), (ii), (iii), (iv), (v), and 0 < μi ≤ b < 1, for all i ≥ 1)

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.30)

Hence, by Lemma 2.8, we obtain

lim
n→∞

‖zn − xn‖ = 0. (3.31)

It follows that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)‖zn − xn‖ = 0. (3.32)
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Applying (3.32) and (ii), (iv), and (v) to (3.23) and (3.24), we obtain that

lim
n→∞

‖un+1 − un‖ = lim
n→∞

‖kn+1 − kn‖ = 0. (3.33)

Since xn+1 = εnγf(xn) + βnxn + ((1 − βn)I − εnA)Wnkn, we have

‖xn −Wnkn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 −Wnkn‖
= ‖xn − xn+1‖ +

∥∥εnγf(xn) + βnxn +
((
1 − βn

)
I − εnA

)
Wnkn −Wnkn

∥∥
= ‖xn − xn+1‖ +

∥∥εn(γf(xn) −AWnkn
)
+ βn(xn −Wnkn)

∥∥
≤ ‖xn − xn+1‖ + εn

(∥∥γf(xn)
∥∥ + ‖AWnkn‖

)
+ βn‖xn −Wnkn‖,

(3.34)

that is

‖xn −Wnkn‖ ≤ 1

1 − βn
‖xn − xn+1‖ + εn

1 − βn

(∥∥γf(xn)
∥∥ + ‖AWnkn‖

)
. (3.35)

By (i), (iii), and (3.32) it follows that

lim
n→∞

‖Wnkn − xn‖ = 0. (3.36)

Step 3. We claim that the following statements hold:

(i) limn→∞‖un − kn‖ = 0;

(ii) limn→∞‖xn − un‖ = 0.

For any p ∈ Θ := ∩∞n=1F(Tn) ∩ EP(F) ∩ V I(C,B) and (3.14), we have

∥∥kn − p
∥∥2 =

∥∥αn(un − p) + (1 − αn)(vn − p)
∥∥2

≤ αn

∥∥un − p
∥∥2 + (1 − αn)

∥∥vn − p
∥∥2

≤ αn

∥∥un − p
∥∥2 + (1 − αn)

{∥∥un − p
∥∥2 +

(
λ2n
β2

− 1

)∥∥un − yn

∥∥2

}

=
∥∥un − p

∥∥2 + (1 − αn)

(
λ2n
β2

− 1

)∥∥un − yn

∥∥2

≤ ∥∥xn − p
∥∥2 + (1 − αn)

(
λ2n
β2

− 1

)∥∥un − yn

∥∥2
.

(3.37)
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Observe that

∥∥xn+1 − p
∥∥2 =

∥∥((1 − βn)I − εnA)(Wnkn − p) + βn(xn − p) + εn(γf(xn) −Ap)
∥∥2

=
∥∥((1 − βn)I − εnA)(Wnkn − p) + βn(xn − p)

∥∥2 + ε2n
∥∥γf(xn) −Ap

∥∥2

+ 2βnεn
〈
xn − p, γf(xn) −Ap

〉
+ 2εn

〈((
1 − βn

)
I − εnA

)(
Wnkn − p

)
, γf(xn) −Ap

〉
≤ [(1 − βn − εnγ)

∥∥Wnkn − p
∥∥ + βn

∥∥xn − p
∥∥]2

+ ε2n
∥∥γf(xn) −Ap

∥∥2

+ 2βnεn
〈
xn − p, γf(xn) −Ap

〉
+ 2εn

〈((
1 − βn

)
I − εnA

)(
Wnkn − p

)
, γf(xn) −Ap

〉
≤ [(1 − βn − εnγ)

∥∥kn − p
∥∥ + βn

∥∥xn − p
∥∥]2 + cn

≤ (1 − βn − εnγ
)2∥∥kn − p

∥∥2 + β2n
∥∥xn − p

∥∥2

+ 2
(
1 − βn − εnγ

)
βn
∥∥kn − p

∥∥∥∥xn − p
∥∥ + cn

≤ (1 − βn − εnγ
)2∥∥kn − p

∥∥2 + β2n
∥∥xn − p

∥∥2

+
(
1 − βn − εnγ

)
βn
(∥∥kn − p

∥∥2 +
∥∥xn − p

∥∥2
)
+ cn

=
[(
1 − εnγ

)2 − 2
(
1 − εnγ

)
βn + β2n

]∥∥kn − p
∥∥2 + β2n

∥∥xn − p
∥∥2

+
((

1 − εnγ
)
βn − β2n

)(∥∥kn − p
∥∥2 +

∥∥xn − p
∥∥2
)
+ cn

=
(
1 − εnγ

)2∥∥kn − p
∥∥2 − (1 − εnγ

)
βn
∥∥kn − p

∥∥2

+
(
1 − εnγ

)
βn
∥∥xn − p

∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

)∥∥kn − p
∥∥2 +

(
1 − εnγ

)
βn
∥∥xn − p

∥∥2 + cn,

(3.38)

where

cn = ε2n
∥∥γf(xn) −Ap

∥∥2 + 2βnεn〈xn − p, γf(xn) −Ap〉

+ 2εn
〈((

1 − βn
)
I − εnA

)(
Wnkn − p

)
, γf(xn) −Ap

〉
.

(3.39)

It follows from condition (i) that

lim
n→∞

cn = 0. (3.40)
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Substituting (3.37) into (3.38), and using (v), we have

∥∥xn+1 − p
∥∥2 ≤ (1 − εnγ

)(
1 − βn − εnγ

){∥∥xn − p
∥∥2 + (1 − αn)

(
λ2n
β2

− 1

)∥∥un − yn

∥∥2

}

+
(
1 − εnγ

)
βn
∥∥xn − p

∥∥2 + cn

=
(
1 − εnγ

)2∥∥xn − p
∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)

(
λ2n
β2

− 1

)∥∥un − yn

∥∥2 + cn

≤ ∥∥xn − p
∥∥2 + (1 − αn)

(
λ2n
β2

− 1

)∥∥un − yn

∥∥2 + cn.

(3.41)

It follows that

(1 − αn)δ
∥∥un − yn

∥∥2 ≤ (1 − αn)

(
1 − λ2n

β2

)∥∥un − yn

∥∥2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + cn

=
(∥∥xn − p

∥∥ − ∥∥xn+1 − p
∥∥)(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥) + cn

≤ ‖xn − xn+1‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥) + cn.

(3.42)

Since limn→∞cn = 0 and from (3.32), we obtain

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.43)

Note that

kn − vn = αn(un − vn). (3.44)

Since limn→∞αn = 0, we have

lim
n→∞

‖kn − vn‖ = 0. (3.45)
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As B is 1/β-Lipschitz continuous, we obtain

∥∥vn − yn

∥∥ =
∥∥PC

(
un − λnByn

) − PC(un − λnBun)
∥∥

≤ ∥∥(un − λnByn

) − (un − λnBun)
∥∥

= λn
∥∥Bun − Byn

∥∥
≤ λn

β

∥∥un − yn

∥∥,

(3.46)

then, we get

lim
n→∞

∥∥vn − yn

∥∥ = 0. (3.47)

from

‖un − kn‖ ≤
∥∥un − yn

∥∥ +
∥∥yn − vn

∥∥ + ‖vn − kn‖. (3.48)

Applying (3.43), (3.45), and (3.47), we have

lim
n→∞

‖un − kn‖ = 0. (3.49)

For any p ∈ Θ, note that Tr is firmly nonexpansive (Lemma 2.4), then we have

∥∥un − p
∥∥2 =

∥∥Trnxn − Trnp
∥∥2

≤ 〈Trnxn − Trnp, xn − p
〉

=
〈
un − p, xn − p

〉

=
1

2

(∥∥un − p
∥∥2 +

∥∥xn − p
∥∥2 − ‖xn − un‖2

)
,

(3.50)

and hence

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖xn − un‖2, (3.51)
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which together with (3.38) gives

∥∥xn+1 − p
∥∥2 ≤ (1 − εnγ

)(
1 − βn − εnγ

)∥∥kn − p
∥∥2 +

(
1 − εnγ

)
βn
∥∥xn − p

∥∥2 + cn

=
(
1 − εnγ

)(
1 − εnγ − βn

)
×
{
‖kn − un‖2 +

∥∥un − p
∥∥2 + 2〈kn − un, un − p〉

}

+
(
1 − εnγ

)
βn
∥∥xn − p

∥∥2 + cn

≤ (1 − εnγ
)(
1 − εnγ − βn

)‖kn − un‖2

+
(
1 − εnγ

)(
1 − εnγ − βn

)∥∥un − p
∥∥2

+ 2
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥
+
(
1 − εnγ

)
βn
∥∥xn − p

∥∥2 + cn

≤ (1 − εnγ
)(
1 − εnγ − βn

)‖kn − un‖2

+
(
1 − εnγ

)(
1 − εnγ − βn

){∥∥xn − p
∥∥2 − ‖xn − un‖2

}
+ 2

(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥
+
(
1 − εnγ

)
βn
∥∥xn − p

∥∥2 + cn

≤ (1 − εnγ
)(
1 − εnγ − βn

)‖kn − un‖2

+
(
1 − εnγ

)(
1 − εnγ − βn

)∥∥xn − p
∥∥2

− (1 − εnγ
)(
1 − εnγ − βn

)‖xn − un‖2

+ 2
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥
+
(
1 − εnγ

)
βn
∥∥xn − p

∥∥2 + cn

=
(
1 − εnγ

)2∥∥xn − p
∥∥2 − (1 − εnγ

)(
1 − εnγ − βn

)‖xn − un‖2

+
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖2

+ 2
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥ + cn

=
[
1 − 2εnγ +

(
εnγ

)2]∥∥xn − p
∥∥2

− (1 − εnγ
)(
1 − εnγ − βn

)‖xn − un‖2

+
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖2

+ 2
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥ + cn

≤ ∥∥xn − p
∥∥2 +

(
εnγ

)2∥∥xn − p
∥∥2

+
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖2
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− (
1 − εnγ

)(
1 − εnγ − βn

)‖xn − un‖2

+ 2
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥ + cn.

(3.52)

So

(
1 − εnγ

)(
1 − εnγ − βn

)‖xn − un‖2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 +
(
εnγ

)2∥∥xn − p
∥∥2

+
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖2

+ 2
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥ + cn

=
(∥∥xn − p

∥∥ − ∥∥xn+1 − p
∥∥)(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)
+
(
εnγ

)2∥∥xn − p
∥∥2 +

(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖2

+ 2
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥ + cn

≤ ‖xn − xn+1‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥) + (εnγ)2∥∥xn − p
∥∥2

+
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖2

+ 2
(
1 − εnγ

)(
1 − εnγ − βn

)‖kn − un‖
∥∥un − p

∥∥ + cn.

(3.53)

Using εn → 0, cn → 0 as n → ∞, (3.32), and (3.49), we obtain

lim
n→∞

‖xn − un‖ = 0. (3.54)

Since lim infn→∞rn > 0, we obtain

lim
n→∞

∥∥∥∥xn − un

rn

∥∥∥∥ = lim
n→∞

1

rn
‖xn − un‖ = 0. (3.55)

Observe that

‖Wnun − un‖ ≤ ‖Wnun −Wnkn‖ + ‖Wnkn − xn‖ + ‖xn − un‖

≤ ‖un − kn‖ + ‖Wnkn − xn‖ + ‖xn − un‖.
(3.56)

Applying (3.36), (3.49), and (3.54) to the last inequality, we obtain

lim
n→∞

‖Wnun − un‖ = 0. (3.57)
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Let W be the mapping defined by (2.6). Since {un} is bounded, applying Lemma 2.7 and
(3.57), we have

‖Wun − un‖ ≤ ‖Wun −Wnun‖ + ‖Wnun − un‖ → 0 as n → ∞. (3.58)

Step 4. We claim that lim supn→∞〈(A − γf)z, z − xn〉 ≤ 0, where z is the unique solution of
the variational inequality 〈(A − γf)z, z − x〉 ≥ 0, for all x ∈ Θ.

Since z = PΘ(I − A + γf)(z) is a unique solution of the variational inequality (3.1), to
show this inequality, we choose a subsequence {uni} of {un} such that

lim
i→∞

〈(
A − γf

)
z, z − uni

〉
= lim sup

n→∞

〈(
A − γf

)
z, z − un

〉
. (3.59)

Since {uni} is bounded, there exists a subsequence {unij
} of {uni} which converges weakly to

w ∈ C. Without loss of generality, we can assume that uni ⇀ w. From ‖Wun − un‖ → 0, we
obtainWuni ⇀ w. Next, We show thatw ∈ Θ, whereΘ := ∩∞n=1F(Tn)∩EP(F)∩V I(C,B). First,
we show that w ∈ EP(F). Since un = Trnxn, we have

F
(
un, y

)
+

1

rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.60)

If follows from (A2) that

1

rn

〈
y − un, un − xn

〉 ≥ −F(un, y
) ≥ F

(
y, un

)
, (3.61)

and hence

〈
y − uni ,

uni − xni

rni

〉
≥ F

(
y, uni

)
. (3.62)

Since (uni − xni)/rni → 0 and uni ⇀ w, it follows by (A4) that F(y,w) ≤ 0 for all y ∈ H. For t
with 0 < t ≤ 1 and y ∈ H, let yt = ty + (1 − t)w. Since y ∈ H and w ∈ H, we have yt ∈ H and
hence F(yt,w) ≤ 0. So, from (A1) and (A4) we have

0 = F
(
yt, yt

) ≤ tF
(
yt, y

)
+ (1 − t)F

(
yt,w

) ≤ tF
(
yt, y

)
, (3.63)

and hence F(yt, y) ≥ 0. From (A3), we have F(w,y) ≥ 0 for all y ∈ H and hence w ∈ EP(F).
Next, we show that w ∈ ∩∞n=1F(Tn). By Lemma 2.6, we have F(W) = ∩∞n=1F(Tn).

Assume w/∈F(W). Since uni ⇀ w and w/=Ww, it follows by the Opial’s condition that

lim inf
i→∞

‖uni −w‖ < lim inf
i→∞

‖uni −Ww‖

≤ lim inf
i→∞

{‖uni −Wuni‖ + ‖Wuni −Ww‖}

≤ lim inf
i→∞

‖uni −w‖,

(3.64)
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which derives a contradiction. Thus, we have w ∈ F(W) = ∩∞n=1F(Tn). By the same argument
as that in the proof of [35, Theorem 2.1, Pages 10–11], we can show thatw ∈ V I(C,B).Hence
w ∈ Θ. Since z = PΘ(I −A + γf)(z), it follows that

lim sup
n→∞

〈(
A − γf

)
z, z − xn

〉
= lim sup

n→∞

〈(
A − γf

)
z, z − un

〉
= lim

i→∞
〈(
A − γf

)
z, z − uni

〉
=
〈(
A − γf

)
z, z −w

〉 ≤ 0.

(3.65)

It follows from the last inequality, (3.36), and (3.54) that

lim sup
n→∞

〈
γf(z) −Az,Wnkn − z

〉 ≤ 0. (3.66)

Step 5. Finally, we show that {xn}and {un} converge strongly to z = PΘ(I−A+γf)(z). Indeed,
from (1.25) , we have

‖xn+1 − z‖2

=
∥∥εnγf(xn) + βnxn + ((1 − βn)I − εnA)Wnkn − z

∥∥2

=
∥∥((1 − βn)I − εnA)(Wnkn − z) + βn(xn − z) + εn(γf(xn) −Az)

∥∥2

=
∥∥((1 − βn)I − εnA)(Wnkn − z) + βn(xn − z)

∥∥2 + ε2n
∥∥γf(xn) −Az

∥∥2

+ 2βnεn〈xn − z, γf(xn) −Az〉
+ 2εn〈

((
1 − βn

)
I − εnA

)
(Wnkn − z), γf(xn) −Az〉

≤ [(1 − βn − εnγ)‖Wnkn − z‖ + βn‖xn − z‖]2 + ε2n
∥∥γf(xn) −Az

∥∥2

+ 2βnεnγ〈xn − z, f(xn) − f(z)〉 + 2βnεn〈xn − z, γf(z) −Az〉
+ 2

(
1 − βn

)
γεn〈Wnkn − z, f(xn) − f(z)〉 + 2

(
1 − βn

)
εn〈Wnkn − z, γf(z) −Az〉

− 2ε2n〈A(Wnkn − z), γf(z) −Az〉

≤ [(1 − βn − εnγ)‖Wnkn − z‖ + βn‖xn − z‖]2 + ε2n
∥∥γf(xn) −Az

∥∥2

+ 2βnεnγ‖xn − z‖∥∥f(xn) − f(z)
∥∥ + 2βnεn〈xn − z, γf(z) −Az〉

+ 2
(
1 − βn

)
γεn‖Wnkn − z‖∥∥f(xn) − f(z)

∥∥ + 2
(
1 − βn

)
εn〈Wnkn − z, γf(z) −Az〉

− 2ε2n〈A(Wnkn − z), γf(z) −Az〉
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≤ [(1 − βn − εnγ)‖xn − z‖ + βn‖xn − z‖]2 + ε2n
∥∥γf(xn) −Az

∥∥2

+ 2βnεnγα‖xn − z‖2 + 2βnεn〈xn − z, γf(z) −Az〉

+ 2
(
1 − βn

)
γεnα‖xn − z‖2 + 2

(
1 − βn

)
εn〈Wnkn − z, γf(z) −Az〉

− 2ε2n
〈
A(Wnkn − z), γf(z) −Az

〉
=
[(
1 − εnγ

)2 + 2βnεnγα + 2
(
1 − βn

)
γεnα

]
‖xn − z‖2 + ε2n

∥∥γf(xn) −Az
∥∥2

+ 2βnεn〈xn − z, γf(z) −Az〉 + 2
(
1 − βn

)
εn〈Wnkn − z, γf(z) −Az〉

− 2ε2n〈A(Wnkn − z), γf(z) −Az〉

≤ [1 − 2
(
γ − αγ

)
εn
]‖xn − z‖2 + γ2ε2n‖xn − z‖2 + ε2n

∥∥γf(xn) −Az
∥∥2

+ 2βnεn〈xn − z, γf(z) −Az〉 + 2
(
1 − βn

)
εn〈Wnkn − z, γf(z) −Az〉

+ 2ε2n‖A(Wnkn − z)‖∥∥γf(z) −Az
∥∥

=
[
1 − 2

(
γ − αγ

)
εn
]‖xn − z‖2 + εn

×
{
εn
[
γ2‖xn − z‖2 + ∥∥γf(xn) −Az

∥∥2

+ 2‖A(Wnkn − z)‖∥∥γf(z) −Az
∥∥] + 2βn〈xn − z, γf(z) −Az〉

+ 2
(
1 − βn

)〈Wnkn − z, γf(z) −Az〉}.
(3.67)

Since {xn}, {f(xn)}, and {Wnkn} are bounded, we can take a constant M > 0 such that

γ2‖xn − z‖2 + ∥∥γf(xn) −Az
∥∥2 + 2‖A(Wnkn − z)‖∥∥γf(z) −Az

∥∥ ≤ M (3.68)

for all n ≥ 0. It then follows that

‖xn+1 − z‖2 ≤ [1 − 2
(
γ − αγ

)
εn
]‖xn − z‖2 + εnσn, (3.69)

where

σn = 2βn〈xn − z, γf(z) −Az〉 + 2
(
1 − βn

)〈Wnkn − z, γf(z) −Az〉 + εnM. (3.70)

Using (i), (3.65), and (3.66), we get lim supn→∞σn ≤ 0. Applying Lemma 2.9 to (3.69), we
conclude that xn → z in norm. Finally, noticing

‖un − z‖ = ‖Trnxn − Trnz‖ ≤ ‖xn − z‖, (3.71)

we also conclude that un → z in norm. This completes the proof.
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Corollary 3.2 ([28, Theorem 3.1]). Let C be nonempty closed convex subset of a real Hilbert space
H, let F be a bifunction from C × C to R satisfying (A1)–(A4), and let {Tn} be an infinitely many
nonexpansive of C into itself such that Θ := ∩∞n=1F(Tn) ∩ EP(F)/= ∅. Let f be a contraction ofH into
itself with α ∈ (0, 1), and let A be a strongly positive linear bounded operator on H with coefficient
γ > 0 and 0 < γ < γ/α. Let {xn} and {un} are the sequences generated by

x1 = x ∈ C chosen arbitrary,

F
(
un, y

)
+

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = εnγf(xn) + βxn +
((
1 − β

)
I − εnA

)
Wnun, ∀n ≥ 1,

(3.72)

where {Wn} is the sequence generated by (1.23), β ∈ (0, 1), {εn} is a sequences in (0, 1), and {rn} is
a real sequence in (0,∞) satisfying the following conditions:

(i) limn→∞εn = 0;

(ii) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique solution of the
variational inequality

〈(A − γf
)
z, z − x〉 ≥ 0, ∀x ∈ Θ. (3.73)

Equivalently, one has z = PΘ(I −A + γf)(z).

Proof. Put B = 0, {βn} = β, and {αn} = 0 in Theorem 3.1., then yn = kn = un. The conclusion of
Corollary 3.2 can obtain the desired result easily.

Corollary 3.3. LetC be nonempty closed convex subset of a real Hilbert spaceH, let F be a bifunction
from C×C to R satisfying (A1)–(A4) and let B be an β-inverse-strongly monotone mapping of C into
H such that Θ := EP(F) ∩ V I(C,B)/= ∅. Let f be a contraction of H into itself with α ∈ (0, 1) and
let A be a strongly positive linear bounded operator onH with coefficient γ > 0 and 0 < γ < γ/α. Let
{xn}, {yn}, {kn}, and {un} be sequences generated by

x1 = x ∈ C chosen arbitrary,

F
(
un, y

)
+

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnBun),

kn = αnun + (1 − αn)PC

(
un − λnByn

)
,

xn+1 = εnγf(xn) + βnxn +
((
1 − βn

)
I − εnA

)
kn, ∀n ≥ 1,

(3.74)
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where {εn}, {αn}, and {βn} are three sequences in (0, 1), and {rn} is a real sequence in (0,∞)
satisfying the following conditions:

(i) limn→∞εn = 0 and
∑∞

n=1 εn = ∞;

(ii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iv) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0;

(v) {λn/β} ⊂ (τ, 1 − δ) for some τ, δ ∈ (0, 1) and limn→∞λn = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θwhich is the unique solution of the variational
inequality

〈(A − γf
)
z, z − x〉 ≥ 0, ∀x ∈ Θ. (3.75)

Equivalently, one has z = PΘ(I −A + γf)(z).

Proof. Put Tnx = x for all n ∈ N and for all x ∈ C. Then Wnx = x for all x ∈ C. The conclusion
follows from Theorem 3.1.

Corollary 3.4. Let C be nonempty closed convex subset of a real Hilbert space H, let {Tn} be an
infinitely many nonexpansive of C into itself, and let B be a β-inverse-strongly monotone mapping
of C into H such that Θ := ∩∞n=1F(Tn) ∩ V I(C,B)/= ∅. Let f be a contraction of H into itself with
α ∈ (0, 1) and let A be a strongly positive linear bounded operator on H with coefficient γ > 0 and
0 < γ < γ/α. Let {xn}, {yn}, and {kn} be sequences generated by

x1 = x ∈ C chosen arbitrary,

yn = PC(xn − λnBxn),

kn = αnxn + (1 − αn)PC

(
xn − λnByn

)
,

xn+1 = εnγf(xn) + βnxn +
((
1 − βn

)
I − εnA

)
Wnkn, ∀n ≥ 1,

(3.76)

where {Wn} is the sequences generated by (1.23), and {εn}, {αn} , {βn} are three sequences in (0, 1)
satisfying the following conditions:

(i) limn→∞εn = 0 and
∑∞

n=1 εn = ∞;

(ii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iv) {λn/β} ⊂ (τ, 1 − δ) for some τ, δ ∈ (0, 1) and limn→∞λn = 0.

Then, {xn} converges strongly to a point z ∈ Θ which is the unique solution of the variational
inequality

〈(A − γf
)
z, z − x〉 ≥ 0, ∀x ∈ Θ. (3.77)

Equivalently, one has z = PΘ(I −A + γf)(z).
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Proof. Put F(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N in Theorem 3.1. Then, we have
un = PCxn = xn. So, by Theorem 3.1, we can conclude the desired conclusion easily.

If A = I, γ ≡ 1 and γn = 1 − εn − βn in Theorem 3.1, then we can obtain the following
result immediately.

Corollary 3.5. LetC be nonempty closed convex subset of a real Hilbert spaceH, let F be a bifunction
from C×C to R satisfying (A1)–(A4), let {Tn} be an infinitely many nonexpansive ofC into itself, and
let B be an β-inverse-strongly monotone mapping of C into H such that Θ := ∩∞n=1F(Tn) ∩ EP(F) ∩
V I(C,B)/= ∅. Let f be a contraction of H into itself with α ∈ (0, 1). Let {xn}, {yn}, {kn}, and {un}
be sequences generated by

x1 = x ∈ C chosen arbitrary,

F
(
un, y

)
+

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnBun),

kn = αnun + (1 − αn)PC

(
un − λnByn

)
,

xn+1 = εnf(xn) + βnxn + γnWnkn, ∀n ≥ 1,

(3.78)

where {Wn} is the sequences generated by (1.23), {εn}, {αn}, and {βn} are three sequences in (0, 1)
and {rn} is a real sequence in (0,∞) satisfying the following conditions:

(i) εn + βn + γn = 1;

(ii) limn→∞εn = 0 and
∑∞

n=1 εn = ∞;

(iii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(iv) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(v) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0,

(vi) {λn/β} ⊂ (τ, 1 − δ) for some τ, δ ∈ (0, 1) and limn→∞λn = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique solution of the
variational inequality

〈z − f(z), z − x〉 ≥ 0, ∀x ∈ Θ. (3.79)

Equivalently, one has z = PΘf(z).
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Corollary 3.6. LetC be nonempty closed convex subset of a real Hilbert spaceH, let F be a bifunction
from C × C to R satisfying (A1)–(A4) and let {Tn} be an infinite family of nonexpansive of C into
itself such that Θ := ∩∞n=1F(Tn) ∩ EP(F)/= ∅. Let f be a contraction of H into itself with α ∈ (0, 1).
Let {xn} and {un} be sequences generated by

x1 = x ∈ C chosen arbitrary,

F
(
un, y

)
+

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = εnf(xn) + βnxn + γnWnun, ∀n ≥ 1,

(3.80)

where {εn}, {αn}, and {βn} are three sequences in (0, 1), and {rn} is a real sequence in (0,∞)
satisfying the following conditions:

(i) εn + βn + γn = 1;

(ii) limn→∞εn = 0 and
∑∞

n=1 εn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iv) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θwhich is the unique solution of the variational
inequality

〈(A − γf
)
z, z − x〉 ≥ 0, ∀x ∈ Θ. (3.81)

Equivalently, one has z = PΘ(I −A + γf)(z).

Proof. Put B = 0 and {αn} = 0 in Corollary 3.5. then yn = kn = un. The conclusion of
Corollary 3.6 can obtain the desired result easily.

4. Application for Optimization Problem

In this section, we shall utilize the results presented in the paper to study the following
optimization problem:

min h(x),

x ∈ C.
(4.1)

where h(x) is a convex and lower semicontinuous functional defined on a closed subset C of
a Hilbert spaceH. We denote by T the set of solution of (4.1). Let F be a bifunction from C×C
to R defined by F(x, y) = h(y) − h(x). We consider the following equilibrium problem, that
is, to find x ∈ C such that

F
(
x, y

) ≥ 0, ∀y ∈ C. (4.2)
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It is obvious that EP(F) = T , where EP(F) denotes the set of solution of equilibrium problem
(4.2). In addition, it is easy to see that F(x, y) satisfies the conditions (A1)–(A4) in Section 1.
Therefore, from the Corollary 3.6, we know the following iterative sequence {xn} defined by

x1 ∈ C chosen arbitrary,

h
(
y
) − h(un) +

1

rn

〈
y − un, un − xn

〉
xn+1 = εnf(xn) + βnxn + γnun,

≥ 0, ∀y ∈ C (4.3)

where {εn}, {βn}, and {γn} are three sequences in (0, 1), and {rn} is a real sequence in (0,∞)
satisfying the following conditions:

(i) εn + βn + γn = 1;

(ii) limn→∞εn = 0 and
∑∞

n=1 εn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iv) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0.

Then, {xn} converges strongly to a point z = PTf(z) of optimization problem (4.1).
In special case, we pick f(x) = 0 for all x ∈ H and βn = 0, rn = 1 , εn = 1/2 for all n ∈ N,

then xn+1 = 1/2un, and from (4.3) we obtain a special iterative scheme

h
(
y
) − h(un) +

〈
y − un, un − 1

2
un−1

〉
≥ 0, ∀y ∈ C, n ≥ 2,

h
(
y
) − h(u1) + 〈y − u1, u1 − x1〉 ≥ 0, ∀y ∈ C.

(4.4)

Then, {un} converges strongly to a solution z = PT0 of optimization problem (4.1). In fact, the
z is the minimum norm point on the T .

Therefore, we consider a special from of optimization problem (4.1) which is as
follows: (i.e., is taking h(x) = ‖x‖)

min ‖x‖,
x ∈ C.

(4.5)

In fact, the solution of optimization problem (4.4) is named the minimum norm point
on the closed convex set C. From iterative algorithm (4.4) we obtain the following iterative
algorithm (4.5), and {un} is defined by

∥∥y∥∥ − ‖un‖ +
〈
y − un, un − 1

2
un−1

〉
≥ 0, ∀y ∈ C, n ≥ 2,

∥∥y∥∥ − ‖u1‖ +
〈
y − u1, u1 − x1

〉 ≥ 0, ∀y ∈ C

(4.6)

for any initial guess x1 ∈ H. Then, {un} converges strongly to a minimum norm point on the
closed convex set C.
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Solving Variational Inequalities and Equilibrium Problems in a

Hilbert Space∗
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Abstract

In this paper, we introduce an iterative process for finding the common element of the set of fixed points

of a nonexpansive mapping, the set of solutions of an equilibrium problem and the set of solutions of the

variational inequality for monotone, Lipschitz-continuous mappings. The iterative process is based on the

so-called extragradient method. We show that the sequence converges strongly to a common element of the

above three sets under some parametric controlling conditions. This main theorem extends a recent result of

Yao, Liou and Yao [Y. Yao, Y. C. Liou and J.-C. Yao, “An Extragradient Method for Fixed Point Problems

and Variational Inequality Problems,” Journal of Inequalities and Applications Volume 2007, Article ID

38752, 12 pages doi:10.1155/2007/38752] and many others.

Key Words: Nonexpansive mapping; Equilibrium problem; Fixed point; Lipschitz-continuous mappings;

Variational inequality; Extragradient method.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Recall that a mapping
T of H into itself is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ H . Let F be a bifunction of
C × C into R , where R is the set of real numbers. The equilibrium problem for F : C × C −→ R is to find
x ∈ C such that

F (x, y) ≥ 0 for all y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP (F ). Given a mapping T : C −→ H , let F (x, y) = 〈Tx, y−x〉 for
all x, y ∈ C . Then z ∈ EP (F ) if and only if 〈Tz, y−z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of the variational
inequality. Numerous problems in physics, optimization, and economics reduce to find a solution of (1.1). In

2000 Mathematics Subject Classification: 47J05, 47J25, 47H09, 47H10.
∗This research was partialy supported by the Thailand Research Fund and the Commission on Higher Education under Grant

No. MRG5180034.
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1997 Combettes and Hirstoaga [2] introduced an iterative scheme of finding the best approximation to initial
data when EP (F ) is nonempty and proved a strong convergence theorem.

Let A : C −→ H be a mapping. The classical variational inequality, denoted by V I(A, C), is to find
x∗ ∈ C such that 〈Ax∗, v − x∗〉 ≥ 0 for all v ∈ C. The variational inequality has been extensively studied in
the literature. See, e.g. [12, 15] and the references therein. A mapping A of C into H is called monotone if

〈Au − Av, u − v〉 ≥ 0, (1.2)

for all u, v ∈ C. A is called k -Lipschitz-continuous if there exists a positive constant k such that for all u, v ∈ C

‖Au − Av‖ ≤ k‖u− v‖. (1.3)

We denote by F (S) the set of fixed points of S . For finding an element of F (S) ∩ V I(A, C), Takahashi and
Toyoda [9] introduced the iterative scheme

xn+1 = αnxn + (1 − αn)SPC (xn − λnAxn) (1.4)

for every n = 0, 1, 2, ... , where x0 = x ∈ C, αn is a sequence in (0, 1), and λn is a sequence in (0, 2α). Recently,
Nadezhkina and Takahashi [6] and Zeng and Yao [16] proposed some new iterative schemes for finding elements
in F (S) ∩ V I(A, C).

The algorithm suggested by Takahashi and Toyoda [9] is based on two well-known types of methods,
namely, on the projection-type methods for solving variational inequality problems and so-called hybrid or
outer-approximation methods for solving fixed point problems. The idea of “hybrid” or “outer-approximation”
types of methods was originally introduced by Haugazeau in 1968; see [3] for more details.

In 1976, Korpelevich [4] introduced the following so-called extragradient method:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 = x ∈ C,

x̄n = PC(xn − λnAxn),

xn+1 = PC(xn − λnAx̄n)

(1.5)

for all n ≥ 0, where λn ∈ (0, 1
k ), C is a closed convex subset of Rn and A is a monotone and k -Lipschitz

continuous mapping of C in to Rn . He proved that if V I(C, A) is nonempty, then the sequences {xn} and
{x̄n} , generated by (1.5), converge to the same point z ∈ V I(C, A).

Motivated by the idea of Korpelevichs extragradient method Zeng and Yao [16] introduced a new
extragradient method for finding an element of F (S) ∩ V I(C, A) and proved the following strong convergence
theorem.

Theorem 1.1 ([16, Theorem 3.1]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A be monotone and k -Lipschitz-continous mapping of C into H . Let S be a nonexpansive mappings from C

into itself such that F(S) ∩ V I(C, A) �= ∅ . Let {xn} and {yn} be sequences in C defined as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 = x ∈ C,

yn = PC(xn − λnAxn),

zn = αnx0 + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0,

(1.6)
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where {λn} and {αn} satisfy the conditions

(i) λnk ⊂ (0, 1− δ) for some δ ∈ (0, 1) ;

(ii) αn ⊂ (0, 1),
∑∞

n=1 αn =∞, limn−→∞ αn = 0 ,

Then the sequence {xn} and {yn} converges strongly to the same point PF(S)∩V I(C,A)x0 provied that

limn−→∞ ‖xn+1 − xn‖ = 0.

In 2007, Yao, Liou and Yao [14] introduced the following iterative scheme: Let C be a closed convex subset
of real Hilbert space H . Let A be a monotone k -Lipschitz-continous mapping of C into H and let S be a
nonexpansive mapping of C into itself such that F (S) ∩ V I(A, C) �= ∅. Suppose x1 = u ∈ C and {xn}, {yn}
are given by {

yn = PC(xn − λnAxn)
xn+1 = αnu+ βnxn + γnSPC (xn − λnAyn),

(1.7)

where {αn}, {βn}, {γn} are three sequences in [0, 1] . They proved that the sequence {xn} defined by (1.7)
converges strongly to common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of the variational inequality for a monotone k -Lipschitz-continous mapping under some parameters
controlling conditions.

Recently, Takahashi and Takahashi [10] introduced an iterative scheme:

⎧⎨⎩ F (yn, u) + 1
rn
〈u − yn, yn − xn〉 ≥ 0, ∀u ∈ C;

xn+1 = αnf(xn) + (1− αn)Tyn, n ≥ 1

for approximatiing a common element of the set of fixed points of a non-self nonexpansive mapping and the set
of solutions of the equilibrium problem and obtained a strong convergence theorem in a real Hilbert space.

In this paper, motivated and inspired by the above results, we introduce a new iterative scheme by the
extragradient method as follows: For x1 = u ∈ C and {xn}, {yn} and {un} are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = PC(un − λnAun)

xn+1 = αnu+ βnxn + γnSPC(xn − λnAyn), n ≥ 1,

(1.8)

for finding a common element of the set of fixed points of a nonexpansive mapping, the set of solutions of an
equilibrium problem, and the solution set of the variational inequality problem for a monotone k -Lipschitz-
continous mapping in a real Hilbert space. Moreover, we obtain a strong convergence theorem which is connected
with Yao, Liou and Yao’s result [14], Takahashi and Tada’s result [9] and Zeng and Yao’s result [16].
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2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and let C be a closed convex
subset of H . Let H be a real Hilbert space. Then

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉 (2.1)

and

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1 − λ)‖x − y‖2 (2.2)

for all x, y ∈ H and λ ∈ [0, 1] . For every point x ∈ H , there exists a unique nearest point in C , denoted by
PCx , such that

‖x− PCx‖ ≤ ‖x − y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive mapping of H

onto C and satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2 (2.3)

for every x, y ∈ H. Moreover, PCx is characterized by the following properties: PCx ∈ C and

〈x − PCx, y − PCx〉 ≤ 0, (2.4)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 (2.5)

for all x ∈ H, y ∈ C . It is easy to see that the following is true:

u ∈ V I(A, C)⇔ u = PC(u − λAu), λ > 0. (2.6)

We also have that, for all u, v ∈ C and λ > 0,

‖(I − λA)u − (I − λA)v‖2 = ‖(u − v) − λ(Au − Av)‖2

= ‖u − v‖2 − 2λ〈u − v, Au − Av〉 + λ2‖Au − Av‖2

≤ ‖u − v‖2 + λ(λ − 2α)‖Au − Av‖2. (2.7)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping from C to H .

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (See Osilike and Igbokwe [7].) Let (E, 〈., .〉) be an inner product space. Then for all x, y, z ∈ E

and α, β, γ ∈ [0, 1] with α+ β + γ = 1, we have

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x − y‖2 − αγ‖x − z‖2 − βγ‖y − z‖2.

Lemma 2.2 (See Suzuki [8]) Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be
a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for
all integers n ≥ 0 and lim supn−→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖yn − xn‖ = 0.
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Lemma 2.3 (Demiclosedness Principle; cf. Goebel and Kirk [5].) Let H be a Hilbert space, C a closed
convex subset of H , and T : C −→ C a nonexpansive mapping with F (T ) �= ∅ . If {xn} is a sequence in C

weakly converging to x ∈ C and if {(I − T )xn} converges strongly to y, then (I − T )x = y .

Lemma 2.4 (See Xu [11]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that:

(1)
∑∞

n=1 αn =∞,

(2) lim supn−→∞
δn

αn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn−→∞ an = 0.

For solving the equilibrium problem for a bifunction F : C × C −→ R , let us assume that F satisfies
the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt−→0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y �→ F (x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

Lemma 2.5 (See Blum and Oettli [1]) Let C be a nonempty closed convex subset of H and let F be a bifunction
of C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H . Then, there exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

The following lemma was also given in [2].

Lemma 2.6 (See Combettes and Hirstoaga [2].) Assume that F : C×C −→ R satisfies (A1)-(A4). For r > 0
and x ∈ H , define a mapping Tr : H −→ C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all z ∈ H . Then, the following hold:

1. Tr is single- valued;

2. Tr is firmly nonexpansive, i.e., for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;
3. F (Tr) = EP (F );

4. EP (F ) is closed and convex.
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3. Main Results

In this section, we introduce an iterative process by the extragradient method for finding a common
element of the set of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium problem,
and the solution set of the variational inequality problem for a monotone k -Lipschitz-continous mapping in a
real Hilbert space. We prove that the iterative sequences converges strongly to a common element of the above
three sets.

Theorem 3.1 Let C be a closed convex subset of a real Hilbert space H . Let F be a bifunction from
C × C −→ R satisfying (A1)–(A4) and let A be a monotone k -Lipschitz continuous mapping of C into
H and let S be a nonexpansive mapping of C into itself such that F (S) ∩ V I(A, C) ∩ EP (F ) �= ∅. Suppose
x1 = u ∈ C and {xn}, {yn} and {un} are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = PC(un − λnAun)

xn+1 = αnu+ βnxn + γnSPC(xn − λnAyn),

(3.1)

for all n ∈ N, where {αn}, {βn}, {γn} are three sequences in [0, 1] , {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ) and

{rn} ⊂ (0,∞) satisfying the following conditions:

(i) αn + βn + γn = 1 ,

(ii) limn−→∞ αn = 0,
∑∞

n=1 αn =∞,

(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(iv) lim infn−→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞,

(v) limn−→∞(λn+1 − λn) = 0.

Then {xn} converges strongly to PF (S)∩V I(A,C)∩EP(F )u.

Proof. For all x, y ∈ C , we note that

‖(I − λnA)x − (I − λnA)y‖2 = ‖(x − y) − λn(Ax − Ay)‖2

= ‖x − y‖2 − 2λn〈x − y, Ax − Ay〉 + λ2
n‖Ax − Ay‖2

≤ ‖x − y‖2 + λ2
nk2‖x− y‖2 = (1 + λ2

nk2)‖x − y‖2, (3.2)

which implies that

‖(I − λnA)x − (I − λnA)y‖ ≤ (1 + λnk)‖x − y‖. (3.3)

Let x∗ ∈ F (S) ∩ V I(A, C) ∩ EP (F ), and let {Trn} be a sequence of mappings defined as in Lemma 2.6 and
un = Trnxn . Then x∗ = PC(x∗ − λnAx∗) = Trn x∗. Put vn = PC(xn − λnAyn). For any n ∈ N , we get

‖un − x∗‖ = ‖Trnxn − Trnx∗‖ ≤ ‖xn − x∗‖.
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From (2.5) and the monotonicity of A , we have

‖vn − x∗‖2 ≤ ‖xn − λnAyn − x∗‖2 − ‖xn − λnAyn − vn‖2

= ‖xn − x∗‖2 − ‖xn − vn‖2 + 2λn〈Ayn , u− vn〉
= ‖xn − x∗‖2 − ‖xn − vn‖2 + 2λn(〈Ayn − Au, x∗ − yn〉 + 〈Au, x∗ − yn〉) + 〈Ayn, yn − vn〉
≤ ‖xn − x∗‖2 − ‖xn − vn‖2 + 2λn〈Ayn , yn − vn〉
= ‖xn − x∗‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − vn〉 − ‖yn − vn‖2 + 2λn〈Ayn, yn − vn〉
= ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − vn‖2 + 2〈xn − λnAyn − yn, vn − yn〉.

Since A is k -Lipschitz-continuous, it follows that

〈xn − λnAyn − yn, vn − yn〉 = 〈xn − λnAxn − yn, vn − yn〉+ 〈λnAxn − λnAyn, vn − yn〉

≤ 〈λnAxn − λnAyn, vn − yn〉

≤ λnk‖xn − yn‖‖vn − yn‖.

Thus, we have

‖vn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − vn‖2 + 2λnk‖xn − yn‖‖vn − yn‖
≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − vn‖2 + λ2

nk2(‖xn − yn‖2 + ‖vn − yn‖2)

= ‖xn − x∗‖2 + (λ2
nk2 − 1)‖xn − yn‖2 + (λ2

nk2 − 1)‖yn − vn‖2 (3.4)

≤ ‖xn − x∗‖2.

Then, we have also

‖xn+1 − x∗‖ = ‖αnu+ βnxn + γnSvn − x∗‖
≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn‖vn − x∗‖
≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn‖xn − x∗‖
≤ αn‖u− x∗‖+ (1− αn)‖xn − x∗‖
≤ max{‖u− x∗‖, ‖x0 − x∗‖}

Therefore {xn} is bounded. Consequently, the sets {un} and {vn} are also bounded. Moreover, we
observe that

‖vn+1 − vn‖ = ‖PC(xn+1 − λn+1Ayn+1) − PC(xn − λnAyn)‖
≤ ‖(xn+1 − λn+1Ayn+1)− (xn − λnAyn)‖
= ‖(xn+1 − xn)− λn+1(Ayn+1 − Ayn)− (λn+1 − λn)Ayn‖
≤ ‖xn+1 − xn‖+ λn+1k‖yn+1 − yn‖+ |λn+1 − λn|‖Ayn‖
≤ ‖xn+1 − xn‖+ λn+1k‖un+1 − un‖+ |λn+1 − λn|‖Ayn‖. (3.5)

On the other hand, from un = Trn xn and un+1 = Trn+1xn+1, we have

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0 for all y ∈ C (3.6)
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and

F (un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0 for all y ∈ C. (3.7)

Putting y = un+1 in (3.6) and y = un in (3.7), we obtain

F (un, un+1) +
1
rn

〈un+1 − un, un − xn〉 ≥ 0

and

F (un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

It follows from (A2) that

〈un+1 − un,
un − xn

rn
− un+1 − xn+1

rn+1
〉 ≥ 0

and hence

〈un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)〉 ≥ 0.

Since lim infn−→∞ rn > 0, without loss of generality, let us assume that there exists a real number c such that
rn > c > 0 for all n ∈ N. Then, we have

‖un+1 − un‖2 ≤ 〈un+1 − un, xn+1 − xn + (1− rn

rn+1
)(un+1 − xn+1)〉

≤ ‖un+1 − un‖{‖xn+1 − xn‖+ |1− rn

rn+1
|‖un+1 − xn+1‖}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+ 1
rn+1

|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+ L

c
|rn+1 − rn|, (3.8)

where L = sup{‖un − xn‖ : n ∈ N} . Substituting (3.8) into (3.5), we have

‖vn+1 − vn‖ ≤ ‖xn+1 − xn‖+ kλn+1{‖xn+1 − xn‖+ L

c
|rn+1 − rn|}+ |λn − λn+1|‖Ayn‖

≤ (1 + kλn+1)‖xn+1 − xn‖+ kλn+1
L

c
|rn+1 − rn|+ |λn − λn+1|‖Ayn‖. (3.9)

Let xn+1 = (1− βn)zn + βnxn. Thus, we get

zn =
xn+1 − βnxn

1− βn
=

αnu+ γnSPC(xn − λnAyn)
1− βn

=
αnu+ γnSvn

1− βn
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and hence we have

zn+1 − zn =
αn+1u+ γn+1Svn+1

1− βn+1
− αnu+ γnSvn

1− βn

=
αn+1u+ γn+1Svn+1

1− βn+1
− αn+1u+ γn+1Svn

1− βn+1
+

αn+1u+ γn+1Svn

1− βn+1
− αnu+ γnSvn

1− βn

= (
αn+1

1− βn+1
− αn

1− βn
)u+

γn+1

1− βn+1
(Svn+1 − Svn) + (

γn+1

1− βn+1
− γn

1− βn
)Svn. (3.10)

Combining (3.9) and (3.10), we obtain

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ | αn+1

1− βn+1
− αn

1− βn
|‖u‖+ γn+1

1− βn+1
‖vn+1 − vn‖

+| γn+1

1− βn+1
− γn

1− βn
|‖Svn‖ − ‖xn+1 − xn‖

≤ | αn+1

1− βn+1
− αn

1− βn
|‖u‖+ γn+1

1− βn+1
(1 + λn+1k)‖xn+1 − xn‖

+
γn+1

(1− βn+1)
L

c
λn+1k|rn+1 − rn|+ γn+1

1− βn+1
|λn − λn+1|‖Ayn‖

+| γn+1

1− βn+1
− γn

1− βn
|‖Svn‖ − ‖xn+1 − xn‖

≤ | αn+1

1− βn+1
− αn

1− βn
|(‖u‖+ ‖Svn‖) + γn+1λn+1k − αn+1

1− βn+1
‖xn+1 − xn‖

+
γn+1

1− βn+1
{λn+1k

L

c
|rn+1 − rn|+ |λn − λn+1|‖Ayn‖}.

This together with (ii), (iv) and (v) imply that

lim sup
n−→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 2.2, we have

lim
n→∞ ‖zn − xn‖ = 0. (3.11)

Consequently,

lim
n−→∞ ‖xn+1 − xn‖ = lim

n−→∞(1− βn)‖zn − xn‖ = 0. (3.12)

From (iv), (v), (3.5) and (3.8), we also have ‖vn+1 − vn‖ −→ 0, ‖un+1 − un‖ −→ 0 and ‖yn+1 − yn‖ −→ 0 as
n −→ ∞. Since

xn+1 − xn = αnu+ βnxn + γnSvn − xn = αn(u − xn) + γn(Svn − xn),

it follows by (ii) and (3.12) that

lim
n→∞‖xn − Svn‖ = 0. (3.13)
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We note that

‖yn − vn‖ ≤ ‖PC(un − λnAun)− PC(xn − λnAyn)‖
≤ ‖(un − λnAun) − (xn − λnAyn)‖
≤ ‖un − xn‖+ λn‖Aun − Ayn‖
≤ ‖un − xn‖+ λnk‖un − yn‖
≤ ‖un − xn‖,

since λn ≤ 1, hence we also have

‖yn − vn‖2 ≤ ‖un − xn‖2. (3.14)

From this and by (3.4) and (3.14) we obtain when n ≥ N that

‖vn − x∗‖2 ≤ ‖xn − x∗‖2 + (λ2
nk2 − 1)‖xn − yn‖2 + (λ2

nk2 − 1)‖yn − vn‖2

≤ ‖xn − x∗‖2 + (λ2
nk2 − 1)‖yn − vn‖2

≤ ‖xn − x∗‖2 + (λ2
nk2 − 1)‖un − xn‖2.

So, from this, we get

‖xn+1 − x∗‖2 = ‖αnu+ βnxn + γnSvn − x∗‖2 ≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖Svn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn{‖xn − x∗‖2 + (λ2
nk2 − 1)‖un − xn‖2}

= αn‖u − x∗‖2 + (1 − αn)‖xn − x∗‖2 + γn(λ2
nk2 − 1)‖un − xn‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 + (λ2
nk2 − 1)‖un − xn‖2,

it follows that

(1− λ2
nk2)‖xn − un‖2 ≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ αn‖u − x∗‖2 + ‖xn+1 − xn‖(‖xn − x∗‖ − ‖xn+1 − x∗‖).

Since αn −→ 0, {λn} ⊂ [a, b] ⊂ (0, 1
k ) and ‖xn+1 − xn‖ −→ 0, imply that

lim
n−→∞ ‖xn − un‖ = 0. (3.15)

Since lim infn−→∞ rn > 0, we get

lim
n−→∞ ‖xn − un

rn
‖ = lim

n−→∞
1
rn

‖xn − un‖ = 0. (3.16)

By (3.4), we note that

‖vn − x∗‖2 ≤ ‖xn − x∗‖2 + (λ2
nk2 − 1)‖xn − yn‖2. (3.17)
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Thus, from Lemma 2.1 and (3.17), we get

‖xn+1 − x∗‖2 ≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖Svn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn{‖xn − x∗‖2 + (λ2
nk2 − 1)‖xn − yn‖2}

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 + (λ2
nk2 − 1)‖xn − yn‖2.

(3.18)

Therefore, we have

(1 − λ2
nk2)‖xn − yn‖2 ≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖u− x∗‖2 + ‖xn+1 − xn‖(‖xn − x∗‖+ ‖xn+1 − x∗‖). (3.19)

Since αn −→ 0 and ‖xn − xn+1‖ −→ 0 as n −→ ∞ , we obtain

lim
n−→∞ ‖xn − yn‖ = 0. (3.20)

We note that

‖vn − yn‖ = ‖PC(xn − λnAyn) − PC(un − λnAun)‖
≤ ‖(xn − λnAyn)− (un − λnAun)‖
≤ ‖xn − un‖+ λn‖Aun)− Ayn)‖
≤ ‖xn − un‖+ λnk‖un − yn‖
≤ ‖xn − un‖+ λnk{‖un − xn‖+ ‖xn − yn‖}
≤ (1 + λnk)‖un − xn‖+ λnk‖xn − yn‖

since (3.15) and (3.20), we have

lim
n−→∞ ‖vn − yn‖ = 0. (3.21)

Since

‖Svn − vn‖ ≤ ‖Svn − xn‖+ ‖xn − yn‖+ ‖yn − vn‖,

and hence

lim
n−→∞ ‖Svn − vn‖ = 0. (3.22)

Next, we show that

lim sup
n−→∞

〈u − z0, xn − z0〉 ≤ 0,

where z0 = PF (S)∩V I(A,C)∩EP(F )(u). To show this inequality, we choose a subsequence {vni} of {vn} such that

lim sup
n−→∞

〈u − z0, Svn − z0〉 = lim
i−→∞

〈u − z0, Svni − z0〉.
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Since {vni} is bounded, there exists a subsequence {vnij
} of {vni} which converges weakly to z . Without

loss of generality, we can assume that vni ⇀ z . From ‖Svn − vn‖ −→ 0, we obtain Svni ⇀ z. Let us show
z ∈ EP (F ). Since un = Trnxn , we have

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

1
rn

〈y − un, un − xn〉 ≥ F (y, un)

and hence

〈y − uni,
uni − xni

rni

〉 ≥ F (y, uni).

From ‖un − xn‖ −→ 0, ‖xn − Svn‖ −→ 0, and ‖Svn − vn‖ −→ 0, we get uni ⇀ z . Since uni
−xni

rni

−→ 0, it

follows by (A4) that 0 ≥ F (y, z) for all y ∈ C. For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)z. Since
y ∈ C and z ∈ C, we have yt ∈ C and hence F (yt, z) ≤ 0. So, from (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, z) ≤ tF (yt, y)

and hence 0 ≤ F (yt, y). From (A3), we have 0 ≤ F (z, y) for all y ∈ C and hence z ∈ EP (F ). By the opial’s
condition, we obtain z ∈ F (S). Finally, by the same argument as that in the proof of [9, Theorem 3.1, p.
197-198] , we can show that z ∈ V I(A, C). Hence z ∈ F (S) ∩ V I(A, C) ∩ EP (F ).

Now from (2.4), we have

lim sup
n−→∞

〈u − z0, xn − z0〉 = lim sup
n−→∞

〈u − z0, Svn − z0〉 = lim
i−→∞

〈u − z0, Svni − z0〉

= 〈u − z0, z − z0〉 ≤ 0. (3.23)

Therefore,

‖xn+1 − z0‖2 = 〈αnu+ βnxn + γnSvn − z0, xn+1 − z0〉
= αn〈u − z0, xn+1 − z0〉+ βn〈xn − z0, xn+1 − z0〉+ γn〈Svn − z0, xn+1 − z0〉

≤ 1
2
βn(‖xn − z0‖2 + ‖xn+1 − z0‖2) + αn〈u − z0, xn+1 − z0〉+ 1

2
γn(‖vn − z0‖2 + ‖xn+1 − z0‖2)

≤ 1
2
βn(‖xn − z0‖2 + ‖xn+1 − z0‖2) + αn〈u − z0, xn+1 − z0〉+ 1

2
γn(‖xn − z0‖2 + ‖xn+1 − z0‖2)

=
1
2
(1− αn)(‖xn − z0‖2 + ‖xn+1 − z0‖2) + αn〈u − z0, xn+1 − z0〉

≤ 1
2
{(1− αn)‖xn − z0‖2 + ‖xn+1 − z0‖2}+ αn〈u − z0, xn+1 − z0〉

which implies that

‖xn+1 − z0‖2 ≤ (1− αn)‖xn − z0‖2 + 2αn〈u − z0, xn+1 − z0〉.
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Finally by (3.23) and Lemma 2.4, we get that {xn} converges to z0 , where z0 = PF (S)∩V I(A,C)∩EP(F )(u). This

completes the proof. �

Using Theorem 3.1, we can prove the following result.

Theorem 3.2 (Yao Liou and Yao [14, Theorem 3.1]) Let C be a closed convex subset of a real Hilbert space
H . Let A be a monotone k -Lipschitz-continuous mapping of C into H and let S be a nonexpansive mapping
of C into itself such that F (S) ∩ V I(A, C) 
= ∅. For fixed u ∈ H and give x0 ∈ H arbitrary, let the sequence
{xn}, {yn} be generated by {

yn = PC(xn − λnAxn)
xn+1 = αnu+ βnxn + γnSPC (xn − λnAyn),

(3.24)

where {αn}, {βn}, {γn} are three sequences in [0, 1] and {λn} is a sequence in [0, 1
k
] . If {αn}, {βn}, {γn} and

{λn} are chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < 1
k and

(i) αn + βn + γn = 1 ,

(ii) limn−→∞ αn = 0,
∑∞

n=1 αn =∞,

(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(iv) limn−→∞(λn+1 − λn) = 0,

then {xn} converges strongly to PF (S)∩V I(A,C)x0.

Proof. Put F (x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N in Theorem 3.1 .
Then, we have un = PCxn = xn . So, from Theorem 3.1 the sequence {xn} generated in Theorem 3.2 converges
strongly to PF (S)∩V I(A,C)u. �

Remark 3.3 In Theorem 3.2, we also obtain Yao et al.’s theorem [14].
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The purpose of this paper is to introduce a new hybrid projection method for finding a common
element of the set of common fixed points of two relatively quasi-nonexpansive mappings, the
set of the variational inequality for an α-inverse-strongly monotone, and the set of solutions of
the generalized equilibrium problem in the framework of a real Banach space. We obtain a strong
convergence theorem for the sequences generated by this process in a 2-uniformly convex and
uniformly smooth Banach space. Base on this result, we also get some new and interesting results.
The results in this paper generalize, extend, and unify some well-known strong convergence
results in the literature.

1. Introduction

Let E be a real Banach space, E∗ the dual space of E. A Banach space E is said to be
strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E, with ‖x‖ = ‖y‖ = 1 and x /=y. Let
U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then a Banach space E is said to be smooth if
the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.1)

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ U. Let E be a Banach space. The modulus of convexity of E is the function



2 Abstract and Applied Analysis

δ : [0, 2] → [0, 1] defined by

δ(ε) = inf

{
1 −

∥∥∥∥x + y

2

∥∥∥∥ : x, y ∈ E, ‖x‖ = ∥∥y∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
. (1.2)

A Banach space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a
fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists
a constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see [1, 2] for more details. Observe
that every p-uniform convex is uniformly convex. One should note that no Banach space is
p-uniform convex for 1 < p < 2. It is well known that a Hilbert space is 2-uniformly convex,
uniformly smooth. For each p > 1, the generalized duality mapping Jp : E → 2E

∗
is defined by

Jp(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1

}
(1.3)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert
space, then J = I, where I is the identity mapping. It is also known that if E is uniformly
smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

Let E be a real Banach space with norm ‖ · ‖ and E∗ denotes the dual space of E.
Consider the functional defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+

∥∥y∥∥2 ∀x, y ∈ E. (1.4)

Observe that, in a Hilbert space H, (1.4) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H. The
generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E, the
minimum point of the functional φ(x, y), that is, ΠCx = x, where x is the solution to the
minimization problem

φ(x, x) = inf
y∈C

φ
(
y, x

)
; (1.5)

existence and uniqueness of the mapping ΠC follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, e.g., [3–7]). In Hilbert spaces,ΠC = PC.
It is obvious from the definition of function φ that

(∥∥y∥∥ − ‖x‖)2 ≤ φ
(
y, x

) ≤ (∥∥y∥∥ + ‖x‖)2, ∀x, y ∈ E. (1.6)

Remark 1.1. If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From
(2.13), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J,
one has Jx = Jy. Therefore, we have x = y; see [5, 7] for more details.

Next, we give some examples which are closed relatively quasi-nonexpansive (see
[8]).

Example 1.2. LetΠC be the generalized projection from a smooth, strictly convex and reflexive
Banach space E onto a nonempty closed and convex subset C of E. Then, ΠC is a closed
relatively quasi-nonexpansive mapping from E onto C with F(ΠC) = C.
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Let E be a real Banach space and let C be a nonempty closed and convex subset of E,
and A : C → E∗ be a mapping. The classical variational inequality problem for a mapping A is
to find x∗ ∈ C such that

〈
Ax∗, y − x∗

〉 ≥ 0, ∀y ∈ C. (1.7)

The set of solutions of (1.4) is denoted by VI(A,C). Recall that A is called

(i) monotone if

〈
Ax −Ay, x − y

〉 ≥ 0, ∀x, y ∈ C, (1.8)

(ii) an α-inverse-strongly monotone if there exists a constant α > 0 such that

〈
Ax −Ay, x − y

〉 ≥ α
∥∥x − y

∥∥2
, ∀x, y ∈ C. (1.9)

Such a problem is connected with the convex minimization problem, the complementary
problem, and the problem of finding a point x∗ ∈ E satisfying Ax∗ = 0.

Let f be a bifunction from C × C to R, where R denotes the set of real numbers. The
equilibrium problem (for short, EP) is to find x∗ ∈ C such that

f
(
x∗, y

) ≥ 0, ∀y ∈ C. (1.10)

The set of solutions of (1.10) is denoted by EP(f). Given a mapping T : C → E∗, let
f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then x∗ ∈ EP(f) if and only if 〈Tx∗, y − x∗〉 ≥ 0 for all
y ∈ C; that is, x∗ is a solution of the variational inequality. Numerous problems in physics,
optimization, and economics reduce to find a solution of (1.10). Some methods have been
proposed to solve the equilibrium problem; see, for instance, [9–11].

Let C be a closed convex subset of E; a mapping T : C → C is said to be nonexpansive
if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.11)

A point x ∈ C is a fixed point of T provided that Tx = x. Denote by F(T) the set of
fixed points of T ; that is, F(T) = {x ∈ C : Tx = x}. Recall that a point p in C is said to be an
asymptotic fixed point of T [12] ifC contains a sequence {xn}which converges weakly to p such

that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed points of T will be denoted by F̂(T).
A mapping T from C into itself is said to be relatively nonexpansive [13–15] if F̂(T) = F(T)
and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T). The asymptotic behavior of a relatively
nonexpansive mapping was studied in [16–18]. T is said to be φ-nonexpansive, if φ(Tx, Ty) ≤
φ(x, y) for x, y ∈ C. T is said to be relatively quasi-nonexpansive if F(T)/= ∅ and φ(p, Tx) ≤
φ(p, x) for x ∈ C and p ∈ F(T). A mapping T in a Banach space E is closed if xn → x and
Txn → y, then Tx = y.
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Remark 1.3. The class of relatively quasi-nonexpansive mappings is more general than the
class of relatively nonexpansive mappings [16–19] which requires the strong restriction

F(T) = F̂(T).

In Hilbert spaces H, Iiduka et al. [20] proved that the sequence {xn} defined by: x1 =
x ∈ C and

xn+1 = PC(xn − λnAxn), (1.12)

where PC is themetric projection ofH ontoC, and {λn} is a sequence of positive real numbers,
and converges weakly to some element of VI(A,C).

It is well know that if C is a nonempty closed and convex subset of a Hilbert space H
and PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact
actually characterizes Hilbert spaces and consequently, it is not available in more general
Banach spaces. In this connection, Alber [4] recently introduced a generalized projection
mapping ΠC in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

In 2008, Iiduka and Takahashi [21] introduced the following iterative scheme for
finding a solution of the variational inequality problem for inverse-strongly monotoneA in a
2-uniformly convex and uniformly smooth Banach space E: x1 = x ∈ C and

xn+1 = ΠCJ
−1(Jxn − λnAxn) (1.13)

for every n = 1, 2, 3, . . . ,whereΠC is the generalized metric projection from E onto C, J is the
dualitymapping from E into E∗, and {λn} is a sequence of positive real numbers. They proved
that the sequence {xn} generated by (1.13) converges weakly to some element of VI(A,C).

Matsushita and Takahashi [22] introduced the following iteration: a sequence {xn}
defined by

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)JTxn), (1.14)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], T is a
relatively nonexpansive mapping, and ΠC denotes the generalized projection from E onto a
closed convex subset C of E. They proved that the sequence {xn} converges weakly to a fixed
point of T .
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In 2005, Matsushita and Takahashi [19] proposed the following hybrid iteration
method (it is also called the CQ method) with generalized projection for relatively
nonexpansive mapping T in a Banach space E:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 =
∏

Cn∩Qn

x0.

(1.15)

They proved that {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the generalized
projection from C onto F(T).

Recently, Takahashi and Zembayashi [23] proposed the following modification of
iteration (1.15) for a relatively nonexpansive mapping:

x0 = x ∈ C,

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},

xn+1 =
∏

Hn∩Wn

x,

(1.16)

where J is the duality mapping on E. Then, {xn} converges strongly to ΠF(S)∩EP(f)x, where
ΠF(S)∩EP(f) is the generalized projection of E onto F(S) ∩ EP(f). Also, Takahashi and
Zembayashi [24] proved the following iteration for a relatively nonexpansive mapping:

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x,

(1.17)
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where J is the duality mapping on E. Then, {xn} converges strongly to ΠF(S)∩EP(f)x, where
ΠF(S)∩EP(f) is the generalized projection of E onto F(S) ∩ EP(f). Qin and Su [25] proved the
following iteration for relatively nonexpansive mappings T in a Banach space E:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTxn

)
,

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ(v, xn) + (1 − αn)φ(v, zn)
}
,

Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0},

xn+1 =
∏

Cn∩Qn

x0,

(1.18)

the sequence {xn} generated by (1.18) converges strongly toΠF(T)x0.
In 2009, Wei et al. [26] proved the following iteration for two relatively nonexpansive

mappings in a Banach space E:

x0 ∈ C,

Jzn = αnJxn + (1 − αn)JTxn,

Jun =
(
βnJxn +

(
1 − βn

)
JSzn

)
,

Hn =
{
v ∈ C : φ(v, un) ≤ βnφ(v, xn) +

(
1 − βn

)
φ(v, zn) ≤ φ(v, xn)

}
,

Wn = {z ∈ C : 〈z − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = QHn∩Wnx0;

(1.19)

if {αn} and {βn} are sequences in [0, 1) such that αn ≤ 1 − δ1 and βn ≤ 1 − δ2 for some
δ1, δ2 ∈ (0, 1), then {xn} generated by (1.19) converges strongly to a pointQF(T)∩F(S)x0,where
the mapping QC of E onto C is the generalized projection. Very recently, Cholamjiak [27]
proved the following iteration:

zn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1
(
αnJxn + βnJTxn + γnJSzn

)
,

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x0,

(1.20)

where J is the duality mapping on E. Assume that αn, βn, and γn are sequences in [0, 1]. Then
{xn} converges strongly to q = ΠFx0, where F := F(T) ∩ F(S) ∩ EP(f) ∩ VI(A,C).
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Motivated and inspired by Iiduka and Takahashi [21], Takahashi and Zembayashi [23,
24], Wei et al. [26], Cholamjiak [27], and Kumam and Wattanawitoon [28], we introduce
a new hybrid projection iterative scheme which is difference from the algorithm (1.20) of
Cholamjiak in [27, Theorem 3.1] for two relatively quasi-nonexpansive mappings in a Banach
space. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define a sequence {xn} as
follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTwn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x0, ∀n ≥ 1,

(1.21)

where J is the duality mapping on E. Then, we prove that under certain appropriate
conditions on the parameters, the sequences {xn} and {un} generated by (1.21) converge
strongly toΠF(S)∩F(T)∩EP(f)∩VI(A,C).

The results presented in this paper improve and extend the corresponding results
announced by Iiduka and Takahashi [21], Wei et al. [26], Kumam and Wattanawitoon [28],
and many other authors in the literature.

2. Preliminaries

We also need the following lemmas for the proof of our main results.

Lemma 2.1 (Beauzamy [29] and Xu [30]). If E is a 2-uniformly convex Banach space, then, for all
x, y ∈ E we have

∥∥x − y
∥∥ ≤ 2

c2
∥∥Jx − Jy

∥∥, (2.1)

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant 1/c in the Lemma is called the p-uniformly convex constant of E.

Lemma 2.2 (Beauzamy [29] and Zǎlinescu [31]). If E is a p-uniformly convex Banach space and
p is a given real number with p ≥ 2, then for all x, y ∈ E, Jx ∈ Jp(x), and Jy ∈ Jp(y),

〈
x − y, Jx − Jy

〉 ≥ cp

2p−2p

∥∥x − y
∥∥p

, (2.2)

where Jp is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant of E.
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Lemma 2.3 (Kamimura and Takahashi [6]). Let E be a uniformly convex and smooth Banach space
and let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded,
then ‖xn − yn‖ → 0.

Lemma 2.4 (Alber [4]). Let C be a nonempty closed and convex subset of a smooth Banach space E
and x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0, ∀y ∈ C. (2.3)

Lemma 2.5 (Alber [4]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed and convex subset of E, and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.4)

Lemma 2.6 (Qin et al. [8]). Let E be a uniformly convex and smooth Banach space, let C be a closed
and convex subset of E, and let T be a closed relatively quasi-nonexpansive mapping from C into itself.
Then F(T) is a closed and convex subset of C.

For solving the equilibrium problem for a bifunction f : C×C → R, let us assume that
f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

f
(
tz + (1 − t)x, y

) ≤ f
(
x, y

)
; (2.5)

(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semi-continuous.

Lemma 2.7 (Blum and Oettli [9]). Let C be a closed and convex subset of a smooth, strictly convex
and reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let
r > 0 and x ∈ E. Then, there exists z ∈ C such that

f
(
z, y

)
+
1

r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.6)

Lemma 2.8 (Combettes and Hirstoaga [10]). Let C be a closed and convex subset of a uniformly
smooth, strictly convex and reflexive Banach space E and let f be a bifunction from C × C to R

satisfying (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{
z ∈ C : f

(
z, y

)
+
1

r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, (2.7)
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for all x ∈ C. Then the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
; (2.8)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.9 (Takahashi and Zembayashi [24]). Let C be a closed and convex subset of a smooth,
strictly convex, and reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–
(A4), and let r > 0. Then, for x ∈ E and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.9)

Let E be a reflexive, strictly convex, and smooth Banach space and J the duality
mapping from E into E∗. Then J−1 is also single value, one-to-one, surjective, and it is the
duality mapping from E∗ into E. We make use of the following mapping V studied in Alber
[4]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.10)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1(x∗)).

Lemma 2.10 (Alber [4]). Let E be a reflexive, strictly convex, and smooth Banach space and let V
be as in (2.10) . Then

V (x, x∗) + 2
〈
J−1(x∗) − x, y∗

〉
≤ V

(
x, x∗ + y∗

)
(2.11)

for all x ∈ E and x∗, y∗ ∈ E∗.

Let A be an inverse-strongly monotone of C into E∗ which is said to be hemicontinuous
if for all x, y ∈ C, the mapping F of [0, 1] into E∗, defined by F(t) = A(tx + (1 − t)y), is
continuous with respect to the weak∗ topology of E∗. We define by NC(v)the normal cone for
C at a point v ∈ C; that is,

NC(v) =
{
x∗ ∈ E∗ :

〈
v − y, x∗

〉 ≥ 0, ∀y ∈ C
}
. (2.12)

Theorem 2.11 (Rockafellar [32]). Let C be a nonempty, closed and convex subset of a Banach space
E, and A a monotone, hemicontinuous mapping of C into E∗. Let T ⊂ E × E∗ be a mapping defined as
follows:

Tv =

⎧⎨
⎩
Av +NC(v), v ∈ C;

∅, otherwise.
(2.13)

Then T is maximal monotone and T−10 = VI(A,C).
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3. Main Results

In this section, we establish a new hybrid iterative scheme for finding a common element of
the set of solutions of an equilibrium problems, the common fixed point set of two relatively
quasi-nonexpansive mappings, and the solution set of variational inequalities for α-inverse
strongly monotone in a 2-uniformly convex and uniformly smooth Banach space.

Theorem 3.1. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let A be
an α-inverse-strongly monotone mapping of C into E∗ satisfying ‖Ay‖ ≤ ‖Ay −Au‖, for all y ∈ C
and u ∈ VI(A,C)/= ∅. Let T, S : C → C be closed relatively quasi-nonexpansive mappings such that
Ω := F(T) ∩ F(S) ∩ EP(f) ∩VI(A,C)/= ∅. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C,
we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTwn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x0, ∀n ≥ 1,

(3.1)

where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ1
and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α) and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.

Proof. We have several steps to prove this theorem as follows:

Step 1. We show that Cn+1 is closed and convex.
Clearly C1 = C is closed and convex. Suppose that Cn is closed and convex for each

n ∈ N. Since for any z ∈ Cn, we know that

φ(z, un) ≤ φ(z, xn) (3.2)

is equivalent to

2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2. (3.3)

So, Cn+1 is closed and convex. Then, by induction, Cn is closed and convex for all n ≥ 1.
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Step 2. We show that {xn} is well defined.
Put un = Trnyn for all n ≥ 0. On the other hand, from Lemma 2.8 one has Trn is relatively

quasi-nonexpansivemappings andΩ ⊂ C1 = C. SupposingΩ ⊂ Ck for k ∈ N, by the convexity
of ‖ · ‖2, for each q ∈ Ω ⊂ Ck, we have

φ
(
q, uk

)
= φ

(
q, Trkyk

)
≤ φ

(
q, yk

)
= φ

(
q, J−1(αkJxk + (1 − αk)JSzk)

)

=
∥∥q∥∥2 − 2

〈
q, αkJxk + (1 − αk)JSzk

〉
+ ‖αkJxk + (1 − αk)JSzk‖2

≤ ∥∥q∥∥2 − 2αk〈q, Jxk〉 − 2(1 − αk)
〈
q, JSzk

〉
+ αk‖xk‖2 + (1 − αk)‖Szk‖2

= αkφ
(
q, xk

)
+ (1 − αk)φ

(
q, Szk

)
≤ αkφ

(
q, xk

)
+ (1 − αk)φ

(
q, zk

)
,

(3.4)

and so

φ
(
q, zk

)
= φ

(
q, J−1

(
βkJxk +

(
1 − βk

)
JTwk

))

=
∥∥q∥∥2 − 2〈q, βkJxk +

(
1 − βk

)
JTwk〉 +

∥∥βkJxk + (1 − βk)JTwk

∥∥2

≤ ∥∥q∥∥2 − 2βk
〈
q, Jxk

〉 − 2
(
1 − βk

)〈
q, JTwk

〉
+ βk‖Jxk‖2 +

(
1 − βk

)‖JTwk‖2

= βkφ
(
q, xk

)
+

(
1 − βk

)
φ
(
q, Twk

)
≤ βkφ

(
q, xk

)
+

(
1 − βk

)
φ
(
q,wk

)
.

(3.5)

For all q ∈ Ω, we know from Lemma 2.10, that

φ
(
q,wk

)
= φ

(
q,ΠCJ

−1(Jxk − λkAxk)
)

≤ φ
(
q, J−1(Jxk − λkAxk)

)
= V

(
q, Jxk − λkAxk

)
≤ V

(
q, (Jxk − λkAxk) + λkAxk

) − 2
〈
J−1(Jxk − λkAxk) − q, λkAxk

〉

= V
(
q, Jxk

) − 2λk
〈
J−1(Jxk − λkAxk) − q,Axk

〉

= φ
(
q, xk

) − 2λk〈xk − q,Axk〉 + 2
〈
J−1(Jxk − λkAxk) − xk,−λkAxk

〉
.

(3.6)



12 Abstract and Applied Analysis

Since q ∈ VI(A,C) and from A being an α-inverse-strongly monotone, we get

−2λk〈xk − q,Axk〉 = −2λk
〈
xk − q,Axk −Aq

〉 − 2λk
〈
xk − q,Aq

〉
≤ −2λk

〈
xk − q,Axk −Aq

〉
= −2αλk

∥∥Axk −Aq
∥∥2
.

(3.7)

From Lemma 2.1 and A being an α-inverse-strongly monotone, we obtain

2
〈
J−1(Jxk − λkAxk) − xk,−λkAxk

〉
= 2

〈
J−1(Jxk − λkAxk) − J−1(Jxk),−λkAxk

〉

≤ 2
∥∥∥J−1(Jxk − λkAxk) − J−1(Jxk)

∥∥∥‖λkAxk‖

≤ 4

c2

∥∥∥JJ−1(Jxk − λkAxk) − JJ−1(Jxk)
∥∥∥‖λkAxk‖

=
4

c2
‖Jxk − λkAxk − Jxk‖‖λkAxk‖

=
4

c2
‖λkAxk‖2

=
4

c2
λ2k‖Axk‖2

≤ 4

c2
λ2k

∥∥Axk −Aq
∥∥2

.

(3.8)

Substituting (3.7) and (3.8) into (3.6), we have

φ
(
q,wk

) ≤ φ
(
q, xk

) − 2αλk
∥∥Axk −Aq

∥∥2 +
4

c2
λ2k

∥∥Axk −Aq
∥∥2

= φ
(
q, xk

)
+ 2λk

(
2

c2
λk − α

)∥∥Axk −Aq
∥∥2

≤ φ
(
q, xk

)
.

(3.9)

Replacing (3.9) into (3.5), we get

φ
(
q, zk

) ≤ φ
(
q, xk

)
. (3.10)

Substituting (3.10) into (3.4), we also have

φ
(
q, uk

) ≤ αkφ
(
q, xk

)
+ (1 − αk)φ

(
q, xk

)
,

= φ
(
q, xk

)
.

(3.11)

This shows that q ∈ Ck+1 and hence,Ω ⊂ Ck+1. Hence,Ω ⊂ Cn for all n ≥ 1. This implies
that the sequence {xn} is well defined.
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Step 3. We show that limn→∞φ(xn, x0) exists and {xn} is bounded.
From xn = ΠCnx0 and xn+1 = ΠCn+1x0,we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1 , (3.12)

and from Lemma 2.5, we have

φ(xn, x0) = φ(ΠCn(x0), x0)

≤ φ
(
p, x0

) − φ
(
p, xn

)
≤ φ

(
p, x0

)
, ∀p ∈ Ω.

(3.13)

From (3.12) and (3.13), then {φ(xn, x0)} are nondecreasing and bounded. So, we obtain that
limn→∞φ(xn, x0) exists. In particular, by (1.6), the sequence {(‖xn‖− ‖x0‖)2} is bounded. This
implies that {xn} is also bounded.

Step 4. We show that {xn} is a Cauchy sequence in C.
Since xm = ΠCmx0 ∈ Cm ⊂ Cn, for m > n, by Lemma 2.5, we have

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).

(3.14)

Taking m,n → ∞, we have φ(xm, xn) → 0. We have limn→∞φ(xn+1, x0) = 0. From
Lemma 2.3, we get limn→∞‖xn+1 − x0‖ = 0. Thus {xn} is a Cauchy sequence.

Step 5. We cliam that ‖Jun − Jxn‖ → 0, as n → ∞.
By the completeness of E, the closedness of C and {xn} is a Cauchy sequence (from

Step 4); we can assume that there exists p ∈ C such that {xn} → p as n → ∞.
By definition of ΠCnx0, we have

φ(xn+1, xn) = φ(xn+1,ΠCnx0)

≤ φ(xn+1, x0) − φ(ΠCnx0, x0)

= φ(xn+1, x0) − φ(xn, x0).

(3.15)

Since limn→∞φ(xn, x0) exists, we get

lim
n→∞

φ(xn+1, xn) = 0. (3.16)

It follow form Lemma 2.3, that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.17)
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Since xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn and from the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ≥ 1 (3.18)

and so

lim
n→∞

φ(xn+1, un) = 0. (3.19)

Hence

lim
n→∞

‖xn+1 − un‖ = 0. (3.20)

By using the triangle inequality, we obtain

‖un − xn‖ = ‖un − xn+1 + xn+1 − xn‖
≤ ‖un − xn+1‖ + ‖xn+1 − xn‖.

(3.21)

By (3.17), (3.20), we get

lim
n→∞

‖un − xn‖ = 0. (3.22)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we have

lim
n→∞

‖Jun − Jxn‖ = 0. (3.23)

Step 6. Show that xn → p ∈ EP(f).
Applying (3.4) and (3.11), we get φ(p, yn) ≤ φ(p, xn). From Lemma 2.9 and un = Trnyn,

we observe that

φ
(
un, yn

)
= φ

(
Trnyn, yn

)
≤ φ

(
p, yn

) − φ
(
p, Trnyn

)
≤ φ

(
p, xn

) − φ
(
p, Trnyn

)
= φ

(
p, xn

) − φ
(
p, un

)
=

∥∥p∥∥2 − 2
〈
p, Jxn

〉
+ ‖xn‖2 −

(∥∥p∥∥2 − 2
〈
p, Jun

〉
+ ‖un‖2

)
= ‖xn‖2 − ‖un‖2 − 2

〈
p, Jxn − Jun

〉
≤ ‖xn − un‖(‖xn + un‖) + 2

∥∥p∥∥‖Jxn − Jun‖.

(3.24)
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From (3.22), (3.23) and Lemma 2.3, we get

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.25)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.26)

From rn > 0, we have ‖Jun − Jyn‖/rn → 0 as n → ∞ and

f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.27)

By (A2), that

∥∥y − un

∥∥∥∥Jun − Jyn

∥∥
rn

≥ 1

rn

〈
y − un, Jun − Jyn

〉
≥ −f(

un, y
)

≥ f
(
y, un

)
, ∀y ∈ C

(3.28)

and un → p, we get f(y, p) ≤ 0 for all y ∈ C. For 0 < t < 1, define yt = ty + (1 − t)p. Then
yt ∈ C which implies that f(yt, p) ≤ 0. From (A1), we obtain that

0 = f
(
yt, yt

) ≤ tf
(
yt, y

)
+ (1 − t)f

(
yt, p

) ≤ tf
(
yt, y

)
. (3.29)

Thus f(yt, y) ≥ 0. From (A3), we have f(p, y) ≥ 0 for all y ∈ C. Hence p ∈ EP(f).

Step 7. We show that xn → p ∈ F(T) ∩ F(S).
From definition of Cn, we have

αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn) ⇐⇒ φ(z, zn) ≤ φ(z, xn). (3.30)

Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have

φ(xn+1, zn) ≤ φ(xn+1, xn). (3.31)

It follows from (3.16) that

lim
n→∞

φ(xn+1, zn) = 0, (3.32)

again from Lemma 2.3, we get

lim
n→∞

‖xn+1 − zn‖ = 0. (3.33)
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By using the triangle inequality, we get

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖. (3.34)

Again by (3.17) and (3.33), we also have

lim
n→∞

‖zn − xn‖ = 0. (3.35)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

‖Jzn − Jxn‖ = 0. (3.36)

Since

∥∥yn − zn
∥∥ ≤ ∥∥yn − un

∥∥ + ‖un − xn‖ + ‖xn − zn‖, (3.37)

from (3.22), (3.25), and (3.35), we have

lim
n→∞

∥∥yn − zn
∥∥ = 0. (3.38)

Since J is uniformly norm-to-norm continuous, we also have

lim
n→∞

∥∥Jyn − Jzn
∥∥ = 0. (3.39)

From (3.1), we get

∥∥Jyn − Jzn
∥∥ = ‖αn(Jxn − Jzn) + (1 − αn)(JSzn − Jzn)‖
= ‖(1 − αn)(JSzn − Jzn) − αn(Jzn − Jxn)‖
≥ (1 − αn)‖JSzn − Jzn‖ − αn‖Jzn − Jxn‖;

(3.40)

it follows that

(1 − αn)‖JSzn − Jzn‖ ≤
∥∥Jyn − Jzn

∥∥ + αn‖Jzn − Jxn‖, (3.41)

and hence

‖JSzn − Jzn‖ ≤ 1

1 − αn

(∥∥Jyn − Jzn
∥∥ + αn‖Jzn − Jxn‖

)
. (3.42)
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Since αn ≤ 1 − δ1 for some δ1 ∈ (0, 1), (3.36), and (3.39), one has limn→∞‖JSzn − Jzn‖ = 0.
Since J−1 is uniformly norm-to-norm continuous, we get

lim
n→∞

‖Szn − zn‖ = 0. (3.43)

Since

‖Sxn − xn‖ ≤ ‖Sxn − Szn‖ + ‖Szn − zn‖ + ‖zn − xn‖
≤ ‖xn − zn‖ + ‖Szn − zn‖ + ‖zn − xn‖,

(3.44)

from (3.35) and (3.43), we obtain

lim
n→∞

‖Sxn − xn‖ = 0. (3.45)

Since S is closed and xn → p, we have p ∈ F(S).
On the other hand, we note that

φ
(
q, xn

) − φ
(
q, un

)
= ‖xn‖2 − ‖un‖2 − 2

〈
q, Jxn − Jun

〉
≤ ‖xn − un‖(‖xn + un‖) + 2

∥∥q∥∥‖Jxn − Jun‖.
(3.46)

It follows from ‖xn − un‖ → 0 and ‖Jxn − Jun‖ → 0, that

φ
(
q, xn

) − φ
(
q, un

) −→ 0. (3.47)

Furthermore, from (3.4) and (3.5),

φ
(
q, un

) ≤ φ
(
q, yn

)
≤ αnφ

(
q, xn

)
+ (1 − αn)φ

(
q, zn

)
≤ αnφ

(
q, xn

)
+ (1 − αn)

[
βnφ

(
q, xn

)
+

(
1 − βn

)
φ
(
q,wn

)]
= αnφ

(
q, xn

)
+ (1 − αn)βnφ

(
q, xn

)
+ (1 − αn)

(
1 − βn

)
φ
(
q,wn

)
≤ αnφ

(
q, xn

)
+ (1 − αn)βnφ

(
q, xn

)
+ (1 − αn)

(
1 − βn

)
×

[
φ
(
q, xn

) − 2λn

(
α − 2

c2
λn

)∥∥Axn −Aq
∥∥2

]

= αnφ
(
q, xn

)
+ (1 − αn)βnφ

(
q, xn

)
+ (1 − αn)

(
1 − βn

)
φ
(
q, xn

)
− (1 − αn)

(
1 − βn

)
2λn

(
α − 2

c2
λn

)∥∥Axn −Aq
∥∥2

= φ
(
q, xn

) − (1 − αn)
(
1 − βn

)
2λn

(
α − 2

c2
λn

)∥∥Axn −Aq
∥∥2

,

(3.48)
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and hence

δ1δ22a

(
α − 2a

c2

)∥∥Axn −Aq
∥∥2 ≤ (1 − αn)

(
1 − βn

)
2λn

(
α − 2

c2
λn

)∥∥Axn −Aq
∥∥2

≤ φ
(
q, xn

) − φ
(
q, un

)
.

(3.49)

From (3.47) and (3.49), we have

∥∥Axn −Aq
∥∥ −→ 0. (3.50)

From Lemma 2.5, Lemma 2.10, and (3.8), we compute

φ(xn,wn) = φ
(
xn,ΠCJ

−1(Jxn − λnAxn)
)

≤ φ
(
xn, J

−1(Jxn − λnAxn)
)

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn) − 2
〈
J−1(Jxn − λnAxn) − xn, λnAxn

〉

= φ(xn, xn) + 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉

= 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉

≤ 4λ2n
c2

∥∥Axn −Aq
∥∥2

≤ 4b2

c2
∥∥Axn −Aq

∥∥2
.

(3.51)

Applying Lemmas 2.3 and (3.50), we obtain that

‖xn −wn‖ −→ 0. (3.52)

Again since J is uniformly norm-to-norm continuous on bounded set, we have

‖Jxn − Jwn‖ −→ 0. (3.53)

Since

‖zn −wn‖ ≤ ‖zn − xn‖ + ‖xn −wn‖, (3.54)

by (3.35) and (3.52), we have

lim
n→∞

‖zn −wn‖ = 0, (3.55)
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and hence

lim
n→∞

‖Jzn − Jwn‖ = 0. (3.56)

From (3.1)we obtain that

‖Jzn − Jwn‖ =
∥∥βnJxn +

(
1 − βn

)
JTwn − Jwn

∥∥
≥ (

1 − βn
)‖JTwn − Jwn‖ − βn‖Jwn − Jxn‖,

(3.57)

and hence

(
1 − βn

)‖JTwn − Jwn‖ ≤ ‖Jzn − Jwn‖ + βn‖Jwn − Jxn‖, (3.58)

so

‖JTwn − Jwn‖ ≤ 1

1 − βn
‖Jzn − Jwn‖ + βn‖Jwn − Jxn‖. (3.59)

By (3.53), (3.56) and condition βn ≤ 1 − δ2 for some δ2 ∈ (0, 1), we obtain

‖JTwn − Jwn‖ −→ 0. (3.60)

Since J−1 is uniformly norm-to-norm continuous on bounded set, we obtain

‖Twn −wn‖ −→ 0. (3.61)

Since xn → wn, then ‖Txn − xn‖ → 0. Thus by the closedness of T and xn → p, we get
p ∈ F(T). Hence p ∈ F(T) ∩ F(S).

Step 8. We show that xn → p ∈ VI(A,C).
Define T ⊂ E × E∗ by Theorem 2.11; T is maximal monotone and T−10 = VI(A,C). Let

(v,w) ∈ G(T). Since w ∈ Tv = Av +NC(v), we get w −Av ∈ NC(v).
From wn ∈ C, we have

〈v −wn,w −Av〉 ≥ 0. (3.62)

On the other hand, since wn = ΠCJ
−1(Jxn − λnAxn), then by Lemma 2.4, we have

〈v −wn, Jwn − (Jxn − λnAxn)〉 ≥ 0, (3.63)

and hence

〈
v −wn,

Jxn − Jwn

λn
−Axn

〉
≤ 0. (3.64)
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It follows from (3.62) and (3.64), that

〈v −wn,w〉 ≥ 〈v −wn,Av〉

≥ 〈v −wn,Av〉 +
〈
v −wn,

Jxn − Jwn

λn
−Axn

〉

= 〈v −wn,Av −Axn〉 +
〈
v −wn,

Jxn − Jwn

λn

〉

= 〈v −wn,Av −Awn〉 + 〈v −wn,Awn −Axn〉 +
〈
v −wn,

Jxn − Jwn

λn

〉

≥ −‖v −wn‖‖wn − xn‖
α

− ‖v −wn‖‖Jxn − Jwn‖
a

≥ −M
(‖wn − xn‖

α
+
‖Jxn − Jwn‖

a

)
.

(3.65)

Where M = supn≥1‖v −wn‖. Taking the limit as n → ∞ and (3.53), we obtain 〈v − p,w〉 ≥ 0.
By the maximality of T , we have p ∈ T−10; that is, p ∈ VI(A,C).

Step 9. We show that p = ΠΩx0.
From xn = ΠCnx0, we have 〈Jx0 − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn. SinceΩ ⊂ Cn, we also have

〈
Jx0 − Jxn, xn − y

〉 ≥ 0, ∀y ∈ Ω. (3.66)

By taking limit n → ∞, we obtain that

〈Jx0 − Jp, p − y〉 ≥ 0, ∀y ∈ Ω. (3.67)

By Lemma 2.4, we can conclude that p = ΠΩx0 and xn → p as n → ∞. This completes the
proof.

Setting S ≡ T in Theorem 3.1., so, we obtain the following corollary.

Corollary 3.2. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let A be
an α-inverse-strongly monotone mapping of C into E∗ satisfying ‖Ay‖ ≤ ‖Ay −Au‖, for all y ∈ C
and u ∈ VI(A,C)/= ∅. Let T : C → C be closed relatively quasi-nonexpansive mappings such that
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Ω := F(T) ∩ EP(f) ∩ VI(A,C)/= ∅. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define
a sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTwn

)
,

yn = J−1(αnJxn + (1 − αn)JTzn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x0, ∀n ≥ 1,

(3.68)

where J is the duality mapping on E. Assume that {αn} and {βn} are sequences in [0, 1] such that
αn ≤ 1 − δ1 and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α), and {λn} ⊂ [a, b] for some a, b
with 0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.

If A ≡ 0 in Theorem 3.1, then we obtain the following corollary.

Corollary 3.3. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction fromC×C to R satisfying (A1)–(A4). Let T, S : C → C
is closed relatively quasi-nonexpansive mappings such that Ω := F(T) ∩ F(S) ∩ EP(f)/= ∅. For an
initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define a sequence {xn} as follows:

zn = J−1
(
βnJxn +

(
1 − βn

)
JTwn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x0, ∀n ≥ 1,

(3.69)

where J is the duality mapping on E. Assume that {αn} and {βn} are sequences in [0, 1] such that
αn ≤ 1−δ1 and βn ≤ 1−δ2, for some δ1, δ2 ∈ (0, 1) and {rn} ⊆ (0, 2α). Then {xn} converges strongly
to p ∈ Ω, where p = ΠΩx0.
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4. Application

4.1. Complementarity Problem

LetK be a nonempty, closed and convex cone E, A a mapping ofK into E∗. We define its polar
in E∗ to be the set

K∗ =
{
y∗ ∈ E∗ :

〈
x, y∗

〉 ≥ 0, ∀x ∈ K
}
. (4.1)

Then the element u ∈ K is called a solution of the complementarity problem if

Au ∈ K∗, 〈u,Au〉 = 0. (4.2)

The set of solutions of the complementarity problem is denoted by C(K,A).

Theorem 4.1. LetK be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from K × K to R satisfying (A1)–(A4) and let A be
an α-inverse-strongly monotone of E into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, for all y ∈ K and
u ∈ C(K,A)/= ∅. Let T, S : K → K be closed relatively quasi-nonexpansive mappings and Ω :=
F(T) ∩ F(S) ∩ EP(f) ∩ C(K,A)/= ∅. For an initial point x0 ∈ E with x1 = ΠK1 and K1 = K, we
define the sequence {xn} as follows:

wn = ΠKJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTwn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ K,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x0, ∀n ≥ 1,

(4.3)

where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ1
and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α), and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.

Proof. As in the proof of Takahashi in [7, Lemma 7.11], we get that VI(K,A) = C(K,A). So,
we obtain the result.

4.2. Approximation of a Zero of a Maximal Monotone Operator

Let B be a multivaluedmapping from E to E∗ with domainD(B) = {z ∈ E : Az/= ∅} and range
R(B) = ∪{Bz : z ∈ D(B)}.Amapping B is said to be amonotone operator if 〈x1−x2, y1−y2〉 ≥ 0
for each xi ∈ D(B) and yi ∈ Axi, i = 1, 2. A monotone operator B is said to be maximal if
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its graph G(B) = {(x, y) : y ∈ Ax} is not property contained in the graph of any other
monotone operator. We know that if B is a maximal monotone operator, then B−1(0) is closed
and convex. Let E be a reflexive, strictly convex, and smooth Banach space, and let B be a
monotone operator from E to E∗, we know that B is maximal if and only if R(J + rB) = E∗ for
all r > 0. Let Jr : E → D(B)be defined by Jr = (J + rB)−1Jand such a Jr is called the resolvent
of B . We know that Jr is a relatively nonexpansive (closed relatively quasi-nonexpansive for
example; see [8]), and B−1(0) = F(Jr) for all r > 0 (see [7, 33–35] for more details).

Theorem 4.2. Let C be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let A
be α-inverse-strongly monotone of E into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, for all y ∈ C and
u ∈ VI(A,C)/= ∅. Let B be a maximal monotone operator of E into E∗ and let Jr be a resolvent of B
and a closed mapping such that Ω := B−1(0) ∩ F(S) ∩ EP(f) ∩ VI(A,C)/= ∅. For an initial point
x0 ∈ E with x1 = ΠC1 and C1 = C, we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JJrwn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x0, ∀n ≥ 1,

(4.4)

where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ1
and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α) and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.

Proof. Since Jr is a closed relatively nonexpansive mapping and B−10 = F(Jr). So, we obtain
the result.

Corollary 4.3. Let C be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let A
be α-inverse-strongly monotone of E into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, for all y ∈ C and
u ∈ VI(A,C)/= ∅. Let B be a maximal monotone operator of E into E∗ and let Jr be a resolvent of B
and closed such that Ω := B−1(0) ∩ EP(f) ∩ VI(A,C)/= ∅. For an initial point x0 ∈ E with x1 = ΠC1

and C1 = C, we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JJrwn

)
,

yn = J−1(αnJxn + (1 − αn)JJrzn),

un ∈ C such that f
(
un, y

)
+

1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 =
∏
Cn+1

x0, ∀n ≥ 1,

(4.5)
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where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ1
and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α) and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.
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In this paper, we introduce a newmodified Ishikawa iterative process for computing fixed

points of an infinite family nonexpansive mapping in the framework of Banach spaces.

Then,we establish the strong convergence theoremof the proposed iterative schemeunder

some mild conditions which solves a variational inequality. The results obtained in this

paper extend and improve on the recent results of Qin et al. [Strong convergence theorems

for an infinite family of nonexpansivemappings in Banach spaces, Journal of Computational

and Applied Mathematics 230 (1) (2009) 121–127], Cho et al. [Approximation of common

fixed points of an infinite family of nonexpansive mappings in Banach spaces, Computers

and Mathematics with Applications 56 (2008) 2058–2064] and many others.
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1. Introduction

In recent years, the existence of fixed points for finitely or infinitelymanynonexpansivemappings has been considered by
many authors (see also [1–8]). Thewell-known convex feasibility problem reduces to finding a point in the intersection of the
fixed point sets of a family of nonexpansive mappings (see [9,10]). The problem of finding an optimal point that minimizes
a given cost function over a common set of fixed points of a family of nonexpansive mappings is of wide interdisciplinary
interest and practical importance; see, e.g., [9,11,12]. A simple algorithmic solution to the problemofminimizing a quadratic
function over a common set of fixed points of a family of nonexpansive mappings is of extreme value in many applications
including set theoretic signal estimation (see [13,12]). It is an interesting topic for investigating the approximation of fixed
points of a family of nonexpansive mappings.

Let E be a real Banach space, C be a closed convex subset of E and T : C → C be a nonlinear mapping. We use F(T ) to
denote the set of fixed points of T , that is, F(T ) = {x ∈ C : Tx = x}. A mapping T is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C . (1.1)

One classical way to study nonexpansive mappings is to use contractions to approximate a nonexpansive mapping [14–16].
More precisely, take t ∈ (0, 1) and define a contraction Tt : C → C by

Ttx = tu+ (1− t)Tx, ∀x ∈ C, (1.2)

where u ∈ C is a fixed point. Banach’s contraction mapping principle guarantees that Tt has a unique fixed point xt in C . It is
unclear, in general, what the behavior of xt is as t → 0, even if T has a fixed point. However, in the case of T having a fixed
point, Browder [14] proved that if E is a Hilbert space, then xt converges strongly to a fixed point of T . Reich [15] extended

� This work was completed with the support of the Thailand Research Fund and the Commission on Higher Education under project no. MRG5180034.∗ Corresponding author.

E-mail addresses: p.katchang@hotmail.com (P. Katchang), poom.kum@kmutt.ac.th (P. Kumam).
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Browder’s result to the setting of Banach spaces and proved that if E is a uniformly smooth Banach space, then xt converges
strongly to a fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from C onto F(T ). Xu [16]
proved that Reich’s results hold in reflexive Banach spaces which have a weakly continuous duality mapping.

Recall that a self-mapping f : C → C is a contraction on C if there exists a constant α ∈ (0, 1) and x, y ∈ C such that

‖f (x)− f (y)‖ ≤ α‖x− y‖. (1.3)

We use ΠC to denote the collection of all contractions on C . That is, ΠC = {f |f : C → C a contraction}. Note that each
f ∈ ΠC has a unique fixed point in C . Throughout the paper we assume that F(T ) �= ∅. Given a real number t ∈ (0, 1) and a

contraction f ∈ ΠC , define another mapping T
f
t : C → C by

T
f
t x = tf (x)+ (1− t)Tx, x ∈ C .

For simplicity we will write Tt for T
f
t provided no confusion occurs.

It is not hard to see that Tt is a contraction on C . Indeed, for x, y ∈ C we have

‖Ttx− Tty‖ = ‖t(f (x)− f (y))+ (1− t)(Tx− Ty)‖
≤ αt‖x− y‖ + (1− t)‖x− y‖
= (1− t(1− α))‖x− y‖
≤ ‖x− y‖.

Let xt := x
f
t ∈ C be the unique fixed point of Tt . Thus xt is the unique solution of the fixed point equation

xt = tf (xt)+ (1− t)Txt .

Let A be a strongly positive bounded linear operator on the Hilbert space H [17] if there exists a constant γ̄ > 0 with the
property

〈Ax, x〉 ≥ γ̄ ‖x‖2, ∀x ∈ H. (1.4)

A typical problem is that of minimizing a quadratic function over the set of the fixed points of a nonexpansive mapping on
a real Hilbert space H:

min
x∈F(S)

1

2
〈Ax, x〉 − 〈x, b〉, (1.5)

where S is a nonexpansive mapping and b is a given point in H .
In this paper, we consider the mappingWn defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+1 = I,
Un,n = λnTnUn,n+1 + (1− λn)I,
Un,n−1 = λn−1Tn−1Un,n + (1− λn−1)I,
...
Un,k = λkTkUn,k+1 + (1− λk)I,
Un,k−1 = λk−1Tk−1Un,k + (1− λk−1)I,
...
Un,2 = λ2T2Un,3 + (1− λ2)I,
Wn = Un,1 = λ1T1Un,2 + (1− λ1)I,

(1.6)

where T1, T2, . . . is an infinite family of nonexpansive mappings of C into itself and λ1, λ2, . . . are real numbers such that
0 ≤ λn ≤ 1 for every n ∈ N.

Recently, Qin et al. [6] proved that the sequences {xn} converge strongly to a common fixed point of the infinite family
nonexpansive mappings in Banach spaces under certain appropriate assumptions on the sequences αn and βn. Let the
sequences {xn} be generated by{

x0 = x ∈ C chosen arbitrarily,
yn = βnxn + (1− βn)Wnxn,
xn+1 = αnu+ (1− αn)yn, ∀n ≥ 0.

(1.7)

Cho et al. [1] also modified the iterative algorithm (1.7) to have strong convergence by using the viscosity approximation
method. They considered the following iterative algorithm:{

x0 = x ∈ C chosen arbitrarily,
yn = βnxn + (1− βn)Wnxn,
xn+1 = αnf (xn)+ (1− αn)yn, ∀n ≥ 0.

(1.8)
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On the other hand, Shang et al. [18] introduced the following new iterative algorithms for a nonexpansive mapping in
Hilbert spaces; let the sequences {xn} be generated by⎧⎪⎨

⎪⎩
x0 = x ∈ C chosen arbitrarily,
zn = γnxn + (1− γn)Txn,
yn = βnxn + (1− βn)Tzn,
xn+1 = αnγ f (x)+ (I − αnA)yn, ∀n ≥ 0.

(1.9)

They proved that the sequence {xn} converges strongly to a fixed point of T under some mild assumptions.
In this paper, motivated by (1.7)–(1.9), we extend the algorithm (1.9) to an infinite family of nonexpansive mappings in

Banach spaces and introduce a composite iterative algorithm as follows:⎧⎪⎨
⎪⎩
x0 = x ∈ C chosen arbitrarily,
zn = γnxn + (1− γn)Wnxn,
yn = βnxn + (1− βn)Wnzn,
xn+1 = αnγ f (xn)+ (I − αnA)yn, ∀n ≥ 0,

(1.10)

where Wn is defined by (1.6), f is a contraction and A is a strongly positive linear bounded self-adjoint operator. Then, we
prove that the sequence {xn} generated by (1.10) converges strongly to a common fixed point.

Next, we consider some special cases of the iterative scheme. If {γn} = 1 for all n ≥ 0 in (1.10), then (1.10) reduces to{
x0 = x ∈ C chosen arbitrarily,
yn = βnxn + (1− βn)Wnxn,
xn+1 = αnγ f (xn)+ (I − αnA)yn, ∀n ≥ 0.

(1.11)

If {γn} = γ = 1 for all n ≥ 0 and A = I (the identity mapping) in (1.10), then (1.10) reduces to (1.8) of Cho et al. [1]. If
f (xn) = u for all n ∈ N in (1.8), then (1.8) reduces to (1.7) of Qin et al. [6]. If {βn} = 0 and {γn} = 1 for all n ≥ 0 in (1.10),
then (1.10) reduces to{

x0 = x ∈ C chosen arbitrarily,
xn+1 = αnγ f (xn)+ (I − αnA)Wnxn, ∀n ≥ 0.

(1.12)

If {γn} = γ = 1 and {βn} = 0 for all n ≥ 0 and A = I in (1.10), then (1.10) reduces to{
x0 = x ∈ C chosen arbitrarily,
xn+1 = αnf (xn)+ (1− αn)Wnxn, ∀n ≥ 0.

(1.13)

Our results presented in this paper introduce the composite iterative scheme for approximating a fixed point of an infinite
family nonexpansive mapping. We also establish the strong convergence of the composite iterative sequences {xn} defined
by (1.10), which solves a variational inequality. With an appropriate setting, we obtain the corresponding results due to Qin
et al. [6], Cho et al. [1] and many others.

2. Preliminaries

Recall that we let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be uniformly convex if, for any ε ∈ (0, 2], there exists
a δ > 0 such that, for any x, y ∈ U , ‖x− y‖ ≥ ε implies ‖ x+y

2
‖ ≤ 1− δ. It is known that a uniformly convex Banach space

is reflexive and strictly convex (see also [19]). A Banach space E is said to be smooth if the limit limt→0
‖x+ty‖−‖x‖

t
exists for

all x, y ∈ U . It is also said to be uniformly smooth if the limit is attained uniformly for x, y ∈ U .
Let E∗ be the dual space of E. Let ϕ : [0,∞) := R+ → R+ be a continuous strictly increasing function such that ϕ(0) = 0

and ϕ(t) → ∞ as t → ∞. This function ϕ is called a gauge function. The duality mapping Jϕ : E → E∗ associated with a
gauge function ϕ is defined by

Jϕ(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖ϕ(‖x‖), ‖f ∗‖ = ϕ(‖x‖)}, ∀x ∈ E,

where 〈., .〉 denotes the generalized duality pairing. In the case where ϕ(t) = t , we write J for Jϕ and call J the normalized
duality mapping.

In a smooth Banach space, we define an operator A as strongly positive [20] if there exists a constant γ̄ > 0 with the
property

〈Ax, J(x)〉 ≥ γ̄ ‖x‖2, ‖aI − bA‖ = sup
‖x‖≤1

|〈(aI − bA)x, J(x)〉| a ∈ [0, 1], b ∈ [−1, 1],

where I is the identity mapping and J is the normalized duality mapping.
If C and D are nonempty subsets of a Banach space E such that C is a nonempty closed convex and D ⊂ C , then amapping

Q : C → D is sunny [21,22] provided that Q (x+ t(x−Q (x))) = Q (x) for all x ∈ C and t ≥ 0 whenever x+ t(x−Q (x)) ∈ C .
A mapping Q : C → C is called a retraction if Q 2 = Q . If a mapping Q : C → C is a retraction, then Qz = z for all z is in the
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range of Q . A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C
onto D. A sunny nonexpansive retraction is a sunny retraction which is also nonexpansive. Sunny nonexpansive retractions
play an important role in our argument. They are characterized as follows [21,22]: if E is a smooth Banach space, then
Q : C → D is a sunny nonexpansive retraction if and only if the following inequality holds:

〈x− Qx, J(y− Qx)〉 ≤ 0, ∀x ∈ C, y ∈ D. (2.1)

Following Browder [23], we say that a Banach space E has a weakly continuous duality mapping if there exists a gauge ϕ
for which the duality mapping Jϕ(x) is single-valued and weak-to-weak sequentially continuous (i.e., if {xn} is a sequence
in E weakly convergent to a point x, then the sequence Jϕ(x) converges weakly to Jϕ). It is known that lp has a weakly

continuous duality mapping with a gauge function ϕ(t) = tp−1 for all 1 < p < ∞. Set Φ(t) = ∫ t

0
ϕ(t)dt,∀t ≥ 0; then

Jϕ(x) = ∂Φ(‖x‖),∀x ∈ E, where ∂ denotes the sub-differential in the sense of convex analysis.

We need the following lemmas for proving our main results.

Lemma 2.1 ([24]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that:

(1)
∑∞

n=1 αn = ∞;

(2) lim supn→∞ δn
αn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

Lemma 2.2 ([7]). Let C be a nonempty closed and convex subset of a strictly convex Banach space E. Let T1, T2, . . . be
nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn) �= ∅ and let λ1, λ2, . . . be real numbers such that 0 < λn ≤ b < 1

for any n ≥ 1. Then, for every x ∈ C and k ∈ N, the limit limn→∞ Un,kx exists.

Remark 2.1 (See [4, Remark 3.2]). It can be found from Lemma 2.2 that if D is a nonempty bounded subset of C , then for
ε > 0 there exists n0 ≥ k such that for all n > n0,

sup
x∈D
‖Un,kx− Ukx‖ ≤ ε.

Remark 2.2 (See [4, Remark 3.3]). Using Lemma 2.2, we define a mappingW : C → C as follows:

Wx = lim
n→∞Wnx = lim

n→∞Un,1x

for all x ∈ C . Such a W is called the W -mapping generated by T1, T2, . . . and λ1, λ2, . . .. Since Wn is nonexpansive, then
W : C → C is also nonexpansive. Indeed, observe that for each x, y ∈ C ,

‖Wx−Wy‖ = lim
n→∞‖Wnx−Wny‖ ≤ ‖x− y‖.

If {xn} is a bounded sequence in C , then we put D = {xn : n ≥ 0}. Hence, it is clear from Remark 2.1 that for an arbitrary
ε > 0 there exists N0 ≥ 1 such that for all n > N0,

‖Wnxn −Wxn‖ = ‖Un,1xn − U1xn‖ ≤ sup
x∈D
‖Un,1x− U1x‖ ≤ ε.

This implies that

lim
n→∞‖Wnxn −Wxn‖ = 0.

Lemma 2.3 ([7]). Let C be a nonempty closed and convex subset of a strictly convex Banach space E. Let T1, T2, . . . be
nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn) �= ∅ and let λ1, λ2, . . . be real numbers such that 0 < λn ≤ b < 1

for any n ≥ 1. Then F(W ) =⋂∞
n=1 F(Tn).

In 2006, Xu [16] proved that, if E is a reflexive Banach space and has a weakly continuous duality, then there is a sunny
nonexpansive retraction from C onto F(T ) and it can be constructed as follows.

Lemma 2.4 ([6, Lemma 1.3.]). Let E be a reflexive Banach space that has a weakly continuous duality map Jϕ(x) with gauge ϕ.
Let C be a closed convex subset of E and let T : C −→ C be a nonexpansive mapping. Fix u ∈ C and t ∈ (0, 1). Let xt ∈ C be
the unique solution in C of Eq. (1.2). Then T has a fixed point if and only if {xt} remains bounded as t → 0+, and in this case, {xt}
converges as t → 0+ strongly to a fixed point of T .



Author's personal copy

P. Katchang, P. Kumam / Computers and Mathematics with Applications 59 (2010) 1473–1483 1477

Under the condition of Lemma 2.4, we define a mapping Q : C → F(T ) by

Q (u) := lim
t→0

xt ∀u ∈ C .

From Xu ([16], Theorem 3.2), we know that Q is the sunny nonexpansive retraction from C onto F(T ).

Lemma 2.5 ([25]). Let E be a uniformly smooth Banach space, C be a closed convex subset of E, T : C → C be a nonexpansive
mapping with F(T ) �= ∅ and let us have f ∈ ΠC . Then the sequence {xt} defined by

xt = tf (xt)+ (1− t)Txt ,

converges strongly to a point in F(T ). Suppose we define a mapping Q : ΠC → F(T ) by

Q (f ) := lim
t→0

xt , ∀f ∈ ΠC .

Then Q (f ) solves the following variational inequality:

〈(I − f )Q (f ), J(Q (f )− p)〉 ≤ 0, ∀f ∈ ΠC , p ∈ F(T ). (2.2)

In particular, if f = u ∈ C is a constant, then (2.2) is reduced to the sunny nonexpansive retraction of Reich [15] from C onto
F(T ),

〈Q (u)− u, J(Q (u)− p)〉 ≤ 0, u ∈ C, p ∈ F(T ). (2.3)

Lemma 2.6 ([26]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be a sequence in [0, 1] with
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1−βn)yn+βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1−
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.7 ([27,6]). Assume that a Banach space E has a weakly continuous duality mapping Jϕ with gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

Φ(‖x+ y‖) ≤ Φ(‖x‖)+ 〈y, Jϕ(x+ y)〉.
In particular, for all x, y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉.
(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E.

Then the following identity holds:

lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x‖)+ Φ(‖y− x‖), ∀x, y ∈ E.

Lemma 2.8 ([20]). Assume that A is a strong positive linear bounded operator on a smooth Banach space E with coefficient γ̄ > 0
and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ̄ .

3. Main results

Let E be a Banach space, C a closed convex subset of E, A a strongly positive linear bounded self-adjoint operator with
coefficient γ̄ > 0, and T : C → C a nonexpansivemappingwith F(T ) �= ∅. As previously, letΠC be the set of all contractions
on C . For t ∈ (0, 1) and f ∈ ΠC , let xt ∈ C be the unique fixed point of the contraction x �→ tγ f (x)+ (I − tA)Tx on C; that is

xt = tγ f (xt)+ (I − tA)Txt .

In this section, we prove a strong convergence theorem.

Theorem 3.1. Let C be a nonempty closed and convex subset of a reflexive, smooth and strictly convex Banach space E which also
has a weakly continuous duality map Jϕ(x) with the gauge ϕ. Let T1, T2, . . . be a nonexpansive mapping from C into itself such
that

⋂∞
n=1 F(Tn) �= ∅, and let λ1, λ2, . . . be real numbers. Let A be a strongly positive linear bounded self-adjoint operator with

coefficient γ̄ > 0 and let f be a contraction of C into itself with coefficient α ∈ (0, 1). Assume that 0 < γ <
γ̄

α
, the initial guess

x0 ∈ C is chosen arbitrarily and the given sequences {αn}, {βn} and {γn} are in (0, 1), the following conditions are satisfied:

(i)
∑∞

n=0 αn = ∞; limn→∞ αn = 0;
(ii) limn→∞ βn = 0;
(iii) limn→∞ |γn+1 − γn| = 0.
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Then the sequence {xn} generated by (1.10) converges strongly to x∗ ∈ ⋂∞
n=1 F(Tn), where x∗ = Q (f ) and Q is a unique sunny

nonexpansive retraction from ΠC onto
⋂∞

n=1 F(Tn). If we define Q : ΠC →⋂∞
n=1 F(Tn) by

Q (f ) := lim
t→0

xt , f ∈ ΠC ,

then Q (f ) solves the variational inequality

〈(γ f − A)Q (f ), Jϕ(p− Q (f ))〉 ≤ 0, ∀f ∈ ΠC , p ∈
∞⋂
n=1

F(Tn). (3.1)

In particular, if f = u ∈ C is a constant, then (3.1) is reduced to the sunny nonexpansive retraction from ΠC onto
⋂∞

n=1 F(Tn),

〈γ u− AQ (u), Jϕ(p− Q (u))〉 ≤ 0, u ∈ C, p ∈
∞⋂
n=1

F(Tn). (3.2)

Proof. Since αn → 0 as n → ∞, we may assume, with out loss of generality, that αn < (1 − δn)‖A‖−1 for all n. From
Lemma2.8, we know that if 0 < ρ ≤ ‖A‖−1, then ‖I−ρA‖ ≤ 1−ργ̄ . Firstwe show that {xn} is bounded. Let p ∈⋂∞

n=1 F(Tn).
By the definition of {zn}, {yn} and {xn}, we have

‖zn − p‖ = ‖γnxn + (1− γn)Wnxn − p‖
≤ γn‖xn − p‖ + (1− γn)‖Wnxn − p‖
≤ γn‖xn − p‖ + (1− γn)‖xn − p‖
= ‖xn − p‖,

and from this, we have

‖yn − p‖ = ‖βnxn + (1− βn)Wnzn − p‖
≤ βn‖xn − p‖ + (1− βn)‖Wnzn − p‖
≤ βn‖xn − p‖ + (1− βn)‖zn − p‖
≤ βn‖xn − p‖ + (1− βn)‖xn − p‖
= ‖xn − p‖.

It follows that

‖xn+1 − p‖ = ‖αnγ f (xn)+ (I − αnA)yn − p‖
= ‖αn(γ f (xn)− Ap)+ (I − αnA)(yn − p)‖
≤ αn‖γ f (x)− Ap‖ + (1− αnγ̄ )‖yn − p‖
≤ αn‖γ f (xn)− γ f (p)+ γ f (p)− Ap‖ + (1− αnγ̄ )‖xn − p‖
≤ αnγ ‖f (xn)− f (p)‖ + αn‖γ f (p)− Ap‖ + (1− αnγ̄ )‖xn − p‖
≤ αnγα‖xn − p‖ + αn‖γ f (p)− Ap‖ + (1− αnγ̄ )‖xn − p‖
= (1− αn(γ̄ − γα))‖xn − p‖ + αn(γ̄ − γα)

‖γ f (p)− Ap‖
γ̄ − γα

.

By induction on n, we obtain ‖xn − p‖ ≤ max{‖x0 − p‖, ‖γ f (p)−Ap‖
γ̄−γα

} for every n ≥ 0 and x0 ∈ C; then {xn} is bounded. So,
{yn}, {zn}, {Wnxn}, and {f (xn)} are also bounded.

Next, we claim that ‖xn+1 − xn‖ → 0 as n→∞. Since Tn and Un,n are nonexpansive, from (1.6), we have

‖Wn+1xn −Wnxn‖ = ‖λ1T1Un+1,2xn − λ1T1Un,2xn‖
≤ λ1‖Un+1,2xn − Un,2xn‖
= λ1‖λ2T2Un+1,3xn − λ2T2Un,3xn‖
≤ λ1λ2‖Un+1,3xn − Un,3xn‖
...

≤ λ1λ2 · · · λn‖Un+1,n+1xn − Un,n+1xn‖
≤ M1

n∏
i=1

λi,
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where M1 ≥ 0 is an appropriate constant such that ‖Un+1,n+1xn − Un,n+1xn‖ ≤ M1 for all n ≥ 0. Similarly, we also have
‖Wn+1zn −Wnzn‖ ≤ M2

∏n
i=1 λi, whereM2 ≥ 0 such that ‖Un+1,n+1zn − Un,n+1zn‖ ≤ M2 for all n ≥ 0. It follows that

‖zn+1 − zn‖ = ‖(γn+1xn+1 + (1− γn+1)Wn+1xn+1)− (γnxn + (1− γn)Wnxn)‖
≤ (1− γn+1)‖Wn+1xn+1 −Wn+1xn‖ + |γn+1 − γn|‖xn −Wn+1xn‖ + γn+1‖xn+1 − xn‖
+ (1− γn)‖Wn+1xn −Wnxn‖

≤ (1− γn+1)‖xn+1 − xn‖ + |γn+1 − γn|‖Wn+1xn − xn‖ + γn+1‖xn+1 − xn‖
+ (1− γn)‖Wn+1xn −Wnxn‖

= ‖xn+1 − xn‖ + |γn+1 − γn|‖Wn+1xn − xn‖ + (1− γn)‖Wn+1xn −Wnxn‖
≤ ‖xn+1 − xn‖ + |γn+1 − γn|‖Wn+1xn − xn‖ + ‖Wn+1xn −Wnxn‖
≤ ‖xn+1 − xn‖ + |γn+1 − γn|‖Wn+1xn − xn‖ +M1

n∏
i=1

λi.

Observe that, on putting ln = xn+1−βnxn
1−βn

, we have

xn+1 = (1− βn)ln + βnxn, ∀n ≥ 0. (3.3)

Now, we have

‖ln+1 − ln‖ =
∥∥∥∥xn+2 − βn+1xn+1

1− βn+1

− xn+1 − βnxn

1− βn

∥∥∥∥
=

∥∥∥∥αn+1γ f (xn+1)+ (I − αn+1A)yn+1 − βn+1xn+1

1− βn+1

− αnγ f (xn)+ (I − αnA)yn − βnxn

1− βn

∥∥∥∥
=

∥∥∥∥αn+1(γ f (xn+1)− Ayn+1)

1− βn+1

+ yn+1 − βn+1xn+1

1− βn+1

− αn(γ f (xn)− Ayn)

1− βn

− yn − βnxn

1− βn

∥∥∥∥
=

∥∥∥∥αn+1(γ f (xn+1)− Ayn+1)

1− βn+1

+Wn+1zn+1 − αn(γ f (xn)− Ayn)

1− βn

−Wnzn

∥∥∥∥
≤ αn+1

1− βn+1

‖γ f (xn+1)− Ayn+1‖ + αn

1− βn

‖Ayn − γ f (xn)‖ + ‖Wn+1zn+1 −Wnzn‖

= αn+1

1− βn+1

‖γ f (xn+1)− Ayn+1‖ + αn

1− βn

‖Ayn − γ f (xn)‖ + ‖Wn+1zn+1 −Wn+1zn +Wn+1zn −Wnzn‖

≤ αn+1

1− βn+1

‖γ f (xn+1)− Ayn+1‖ + αn

1− βn

‖Ayn − γ f (xn)‖
+‖Wn+1zn+1 −Wn+1zn‖ + ‖Wn+1zn −Wnzn‖

≤ αn+1

1− βn+1

‖γ f (xn+1)− Ayn+1‖ + αn

1− βn

‖Ayn − γ f (xn)‖ + ‖zn+1 − zn‖ + ‖Wn+1zn −Wnzn‖

≤ αn+1

1− βn+1

‖γ f (xn+1)− Ayn+1‖ + αn

1− βn

‖Ayn − γ f (xn)‖

+‖xn+1 − xn‖ + |γn+1 − γn|‖Wn+1xn − xn‖ +M1

n∏
i=1

λi +M2

n∏
i=1

λi

≤ αn+1

1− βn+1

‖γ f (xn+1)− Ayn+1‖ + αn

1− βn

‖Ayn − γ f (xn)‖

+‖xn+1 − xn‖ + |γn+1 − γn|‖Wn+1xn − xn‖ +M

n∏
i=1

λi,

whereM = M1 +M2. Therefore, we have

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤ αn+1

1− βn+1

‖γ f (xn+1)− Ayn+1‖ + αn

1− βn

‖Ayn − γ f (xn)‖

+ |γn+1 − γn|‖Wn+1xn − xn‖ +M

n∏
i=1

λi.

From the conditions (i), (ii), (iii), and 0 < λn ≤ b < 1, we obtain

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.
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It follows from Lemma 2.6, that limn→∞ ‖ln − xn‖ = 0. Noting (3.3), we see that

‖xn+1 − xn‖ = (1− βn)‖ln − xn‖ → 0

as n→∞. Therefore, we have

lim
n→∞‖xn+1 − xn‖ = 0. (3.4)

Observing that

‖xn+1 − yn‖ = ‖αnγ f (xn)+ (I − αnA)yn − yn‖
= αn‖γ f (xn)− Ayn‖,

and the condition (i), we get

lim
n→∞‖xn+1 − yn‖ = 0. (3.5)

On the other hand, we have

‖yn − xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖.
Combining (3.4) with (3.5), we have

lim
n→∞‖yn − xn‖ = 0. (3.6)

Consider

‖yn −Wnzn‖ = ‖βnxn + (1− βn)Wnzn −Wnzn‖ = βn‖xn −Wnzn‖
and

‖zn − xn‖ = ‖γnxn + (1− γn)Wnxn − xn‖
= ‖γnxn +Wnxn − γnWnxn − xn‖
= ‖(Wnxn − xn)− γn(Wnxn − xn)‖
= ‖(1− γn)(Wnxn − xn)‖
= (1− γn)‖Wnxn − xn‖.

It follows that

‖Wnxn − xn‖ ≤ ‖xn − yn‖ + ‖yn −Wnzn‖ + ‖Wnzn −Wnxn‖
≤ ‖xn − yn‖ + βn‖xn −Wnzn‖ + ‖zn − xn‖
= ‖xn − yn‖ + βn‖xn −Wnzn‖ + (1− γn)‖Wnxn − xn‖.

This implies that

γn‖Wnxn − xn‖ ≤ ‖xn − yn‖ + βn‖xn −Wnzn‖.
From the condition (ii) and (3.6), we get

lim
n→∞‖Wnxn − xn‖ = 0.

On the other hand, we obtain

‖Wxn − xn‖ ≤ ‖Wxn −Wnxn‖ + ‖Wnxn − xn‖.
From Remark 2.2 (see also Remark 3.3 of [28]), we have that ‖Wxn −Wnxn‖ → 0 as n→∞. It follows that

lim
n→∞‖Wxn − xn‖ = 0. (3.7)

Next, we prove that

lim sup
n→∞

〈γ f (xn)− AQ (f ), Jϕ(xn − Q (f ))〉 ≤ 0. (3.8)

By Lemma 2.5, we have the sunny nonexpansive retraction Q : ΠC → ⋂∞
n=1 F(Tn). Take a subsequence {xnk} of {xn} such

that

lim sup
n→∞

〈γ f (xn)− AQ (f ), Jϕ(xn − Q (f ))〉 = lim sup
k→∞

〈γ f (xn)− AQ (f ), Jϕ(xnk − Q (f ))〉. (3.9)
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Since E is reflexive, we may assume that xnk ⇀ x̄ for some x̄ ∈ C . Since Jϕ is weakly continuous, from Lemma 2.7, we have

lim sup
k→∞

Φ(‖xnk − x‖) = lim sup
k→∞

Φ(‖xnk − x̄‖)+ Φ(‖x− x̄‖), ∀x ∈ E.

Put

g(x) = lim sup
k→∞

Φ(‖xnk − x‖), ∀x ∈ E.

It follows that

g(x) = g(x̄)+ Φ(‖x− x̄‖), ∀x ∈ E.

From (3.7), we have

g(Wx̄) = lim sup
k→∞

Φ(‖xnk −Wx̄‖) = lim sup
k→∞

Φ(‖Wxnk −Wx̄‖)
≤ lim sup

k→∞
Φ(‖xnk − x̄‖) = g(x̄). (3.10)

On the other hand, we note that

g(Wx̄) = lim sup
k→∞

Φ(‖xnk − x̄‖)+ Φ(‖Wx̄− x̄‖) = g(x̄)+ Φ(‖Wx̄− x̄‖). (3.11)

Combining (3.10) with (3.11), we obtain

Φ(‖Wx̄− x̄‖) ≤ 0.

HenceWx̄ = x̄ and x̄ ∈ F(W ). That is, x̄ ∈⋂∞
n=1 F(Tn). Hence, by (3.9) and the sunny nonexpansive retraction from ΠC onto⋂∞

n=1 F(Tn), we get

lim sup
n→∞

〈γ f (xn)− AQ (f ), Jϕ(xn − Q (f ))〉 = 〈γ f (xn)− AQ (f ), Jϕ(x̄− Q (f ))〉 ≤ 0. (3.12)

Therefore, we obtain that (3.8) holds.

Finally, we prove that xn → Q (f ) as n→∞. Now from Lemma 2.7, we have

Φ(‖xn+1 − Q (f )‖) = Φ(‖αnγ f (xn)+ (I − αnA)yn − Q (f )‖)
= Φ(‖αnγ f (xn)+ (1− δn)yn − αnAyn + δn(yn − Q (f ))− (1− δn)Q (f )+ αnAQ (f )− αnAQ (f )‖)
= Φ(‖αnγ f (xn)+ ((1− δn)− αnA)yn + δn(yn − Q (f ))− ((1− δn)− αnA)Q (f )− αnAQ (f )‖)
= Φ(‖[((1− δn)I − αnA)(yn − Q (f ))+ δn(yn − Q (f ))] + αn(γ f (xn)− AQ (f ))‖)
≤ Φ(‖((1− δn)I − αnA)(yn − Q (f ))+ δn(yn − Q (f ))‖)+ αn〈γ f (xn)− AQ (f ), Jϕ(xn+1 − Q (f ))〉
≤ Φ((1− δn − αnγ̄ )‖yn − Q (f )‖ + δn‖yn − Q (f )‖)+ αn〈γ f (xn)− AQ (f ), Jϕ(xn+1 − Q (f ))〉
≤ Φ((1− δn − αnγ̄ )‖yn − Q (f )‖ + δn‖yn − Q (f )‖)+ αn〈γ f (xn)− AQ (f ), Jϕ(xn+1 − Q (f ))〉
= (1− αnγ̄ )Φ(‖yn − Q (f )‖)+ αn〈γ f (xn)− AQ (f ), Jϕ(xn+1 − Q (f ))〉
≤ (1− αnγ̄ )Φ(‖xn − Q (f )‖)+ σn, (3.13)

where σn = αn〈γ f (xn)− AQ (f ), Jϕ(xn+1 − Q (f ))〉. By (3.12) and (i), using Lemma 2.1, we see that Φ(‖xn − Q (f )‖)→ 0 as
n→∞. This implies that ‖xn − Q (f )‖ → 0 as n→∞. This completes the proof. �

Corollary 3.2. Let C be a nonempty closed convex subset of a reflexive, smooth and strictly convex Banach space E which also
has a weakly continuous duality map Jϕ(x) with the gauge ϕ. Let T1, T2, . . . be a nonexpansive mapping from C into itself such
that

⋂∞
n=1 F(Tn) �= ∅, and let λ1, λ2, . . . be real numbers. Let A be a strongly positive linear bounded self-adjoint operator with

coefficient γ̄ > 0 and let f be a contraction of C into itself with coefficient α ∈ (0, 1). Assume that 0 < γ <
γ̄

α
, the initial

guess x0 ∈ C is chosen arbitrarily and the given sequences {αn} and {βn} are in (0, 1). Let {xn} be the composite iterative process
defined by{

x0 = x ∈ C chosen arbitrarily,
yn = βnxn + (1− βn)Wnxn,
xn+1 = αnγ f (xn)+ (I − αnA)yn, ∀n ≥ 0.

(3.14)

The following conditions are satisfied:

(i)
∑∞

n=0 αn = ∞; and limn→∞ αn = 0;

(ii) limn→∞ βn = 0;
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Then the composite process {xn} converges strongly to x∗ ∈ ⋂∞
n=1 F(Tn), where x∗ = Q (f ) and Q : ΠC → ⋂∞

n=1 F(Tn) is the

unique sunny nonexpansive retraction from C onto
⋂∞

n=1 F(Tn).

Proof. Taking {γn} = 1 in (1.10), we can reach the desired conclusion easily. �

Corollary 3.3 ([5, Theorem 3.2,]). Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space
E which also has a weakly continuous duality map Jϕ(x) with the gauge ϕ. Let T1, T2, . . . be a nonexpansive mapping from C
into itself such that

⋂∞
n=1 F(Tn) �= ∅, and let λ1, λ2, . . . be real numbers. Let f be a contraction of C into itself with coefficient

α ∈ (0, 1). The initial guess x0 ∈ C is chosen arbitrarily and the given sequences {αn} and {βn} are in (0, 1). Let {xn} be the
composite iterative process defined by{

x0 = x ∈ C chosen arbitrarily,
yn = βnxn + (1− βn)Wnxn,
xn+1 = αnf (xn)+ (1− αn)yn, ∀n ≥ 0.

(3.15)

The following conditions are satisfied:

(i)
∑∞

n=0 αn = ∞; and limn→∞ αn = 0;

(ii) limn→∞ βn = 0;

Then the composite process {xn} converges strongly to x∗ ∈ ⋂∞
n=1 F(Tn), where x∗ = Q (f ) and Q : ΠC → ⋂∞

n=1 F(Tn) is the

unique sunny nonexpansive retraction from C onto
⋂∞

n=1 F(Tn).

Proof. Taking γ = 1 and A = I in (3.14), we can reach the desired conclusion easily. �

Corollary 3.4 ([6, Theorem 2.1,]). Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space E
which also has a weakly continuous duality map Jϕ(x) with the gauge ϕ. Let T1, T2, . . . be a nonexpansive mapping from C into
itself such that

⋂∞
n=1 F(Tn) �= ∅, and let λ1, λ2, . . . be real numbers. The initial guess x0 ∈ C is chosen arbitrarily and the given

sequences {αn} and {βn} are in (0, 1). Let {xn} be the composite iterative process defined by{
x0 = u ∈ C chosen arbitrarily,
yn = βnxn + (1− βn)Wnxn,
xn+1 = αnu+ (1− αn)yn, ∀n ≥ 0.

(3.16)

The following conditions are satisfied:

(i)
∑∞

n=0 αn = ∞; and limn→∞ αn = 0;

(ii) limn→∞ βn = 0;

Then the composite process {xn} converges strongly to x∗ ∈ ⋂∞
n=1 F(Tn), where x∗ = Q (u) and Q : C → ⋂∞

n=1 F(Tn) is the

unique sunny nonexpansive retraction from C onto
⋂∞

n=1 F(Tn).

Proof. Taking f (x) = u ∈ C for all x ∈ C in (3.15), we can reach the desired conclusion easily. �
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We introduce a new iterative scheme for finding the common element of the set of solutions of the
generalized equilibrium problems, the set of fixed points of an infinite family of nonexpansive
mappings, and the set of solutions of the variational inequality problems for a relaxed (u, v)-
cocoercive and ξ-Lipschitz continuous mapping in a real Hilbert space. Then, we prove the strong
convergence of a common element of the above three sets under some suitable conditions. Our
result can be considered as an improvement and refinement of the previously known results.

1. Introduction

Variational inequalities introduced by Stampacchia [1] in the early sixties have had a great
impact and influence in the development of almost all branches of pure and applied sciences.
It is well known that the variational inequalities are equivalent to the fixed point problems.
This alternative equivalent formulation has been used to suggest and analyze in variational
inequalities. In particular, the solution of the variational inequalities can be computed using
the iterative projection methods. It is well known that the convergence of a projection method
requires the operator to be strongly monotone and Lipschitz continuous. Gabay [2] has
shown that the convergence of a projection method can be proved for cocoercive operators.
Note that cocoercivity is a weaker condition than strong monotonicity.

Equilibrium problem theory provides a novel and unified treatment of a wide class of
problems which arise in economics, finance, image reconstruction, ecology, transportation,
network, elasticity, and optimization which has been extended and generalized in many
directions using novel and innovative technique; see [3, 4]. Related to the equilibrium
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problems, we also have the problem of finding the fixed points of the nonexpansive
mappings. It is natural to construct a unified approach for these problems. In this direction,
several authors have introduced some iterative schemes for finding a common element of
a set of the solutions of the equilibrium problems and a set of the fixed points of infinitely
(finitely) many nonexpansive mappings; see [5–7] and the references therein. In this paper,
we suggest and analyze a new iterative method for finding a common element of a set of the
solutions of generalized equilibrium problems and a set of fixed points of an infinite family
of nonexpansive mappings and the set solution of the variational inequality problems for a
relaxed (u, v)-cocoercive mapping in a real Hilbert space.

Let H be a real Hilbert space and let E be a nonempty closed convex subset of H and
PE is the metric projection ofH onto E. Recall that a mapping f : E → E is contraction on E if
there exists a constant α ∈ (0, 1) such that ‖f(x)−f(y)‖ ≤ α‖x−y‖ for all x, y ∈ E.Amapping
S of E into itself is called nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ E. We denote
by F(S) the set of fixed points of S, that is, F(S) = {x ∈ E : Sx = x}. If E ⊂ H is nonempty,
bounded, closed, and convex and S is a nonexpansive mapping of E into itself, then F(S) is
nonempty; see, for example, [8]. We recalled some definitions as follows.

Definition 1.1. Let B : E → H be a mapping. Then one has the following.

(1) B is called monotone if 〈Bx − By, x − y〉 ≥ 0, for all x, y ∈ E.

(2) B is called v-strongly monotone if there exists a positive real number v such that

〈
Bx − By, x − y

〉 ≥ v
∥∥x − y

∥∥2
, ∀x, y ∈ E. (1.1)

(3) B is called ξ-Lipschitz continuous if there exists a positive real number ξ such that

∥∥Bx − By
∥∥ ≤ ξ

∥∥x − y
∥∥, ∀x, y ∈ E. (1.2)

(4) B is called η-inverse-strongly monotone, [9, 10] if there exists a positive real number
η such that

〈
Bx − By, x − y

〉 ≥ η
∥∥Bx − By

∥∥2
, ∀x, y ∈ E. (1.3)

If η = 1, we say that B is firmly nonexpansive. It is obvious that any η-inverse-
strongly monotone mapping B is monotone and (1/η)-Lipschitz continuous.

(5) B is called relaxed (u, v)-cocoercive if there exists a positive real number u, v such that

〈Bx − By, x − y〉 ≥ (−u)∥∥Bx − By
∥∥2 + v

∥∥x − y
∥∥2

, ∀x, y ∈ E. (1.4)

For u = 0, B is v-strongly monotone. This class of maps is more general than
the class of strongly monotone maps. It is easy to see that we have the following
implication: v-strongly monotonicity⇒ relaxed (u, v)-cocoercivity.
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(6) A set-valued mapping T : H → 2H is calledmonotone if for all x, y ∈ H, f ∈ Tx and
g ∈ Ty imply 〈x−y, f −g〉 ≥ 0. A monotone mapping T : H → 2H ismaximal if the
graph of G(T) of T is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal if and only if for
(x, f) ∈ H ×H, 〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(T) implies f ∈ Tx.

Let B be a monotone mapping of E into H and let NEw1 be the normal cone to E at
w1 ∈ E, that is,

NEw1 = {w ∈ H : 〈ϑ −w1, w〉 ≥ 0, ∀ϑ ∈ E}. (1.5)

Define

Tw1 =

⎧⎨
⎩
Bw1 +NEw1, if w1 ∈ E,

∅, if w1 /∈E.
(1.6)

Then T is the maximal monotone and 0 ∈ Tw1 if and only if w1 ∈ VI(E, B); see [11, 12]
In addition, let D : E → H be a inverse-strongly monotone mapping. Let F be a

bifunction of E × E into R, where R is the set of real numbers. The generalized equilibrium
problem for F : E × E → R is to find x ∈ E such that

F
(
x, y

)
+ 〈Dx, y − x〉 ≥ 0, ∀y ∈ E. (1.7)

The set of such x ∈ E is denoted by EP(F,D), that is,

EP(F,D) =
{
x ∈ E : F

(
x, y

)
+

〈
Dx, y − x

〉 ≥ 0, ∀y ∈ E
}
. (1.8)

Special Cases

(I) IfD ≡ 0 (:the zeromapping), then the problem (1.7) is reduced to the equilibrium problem:

Find x ∈ E such that F
(
x, y

) ≥ 0, ∀y ∈ E. (1.9)

The set of solutions of (1.9) is denoted by EP(F), that is,

EP(F) =
{
x ∈ E : F

(
x, y

) ≥ 0, ∀y ∈ E
}
. (1.10)

(II) If F ≡ 0, the problem (1.7) is reduced to the variational inequality problem:

Find x ∈ E such that 〈Dx, y − x〉 ≥ 0, ∀y ∈ E. (1.11)

The set of solutions of (1.11) is denoted by VI(E,D), that is,

VI(E,D) =
{
x ∈ E : 〈Dx, y − x〉 ≥ 0, ∀y ∈ E

}
. (1.12)
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The generalized equilibrium problem (1.7) is very general in the sense that it includes,
as special case, some optimization, variational inequalities, minimax problems, the Nash
equilibrium problem in noncooperative games, economics, and others (see, e.g., [4, 13]).
Some methods have been proposed to solve the equilibrium problem and the generalized
equilibrium problem; see, for instance, [5, 14–28]. Recently, Combettes and Hirstoaga [29]
introduced an iterative scheme of finding the best approximation to the initial data when
EP(F) is nonempty and proved a strong convergence theorem. Very recently, Moudafi [24]
introduced an itertive method for finding an element of EP(F,D) ∩ F(S), where D : E → H
is an inverse-strongly monotone mapping and then proved a weak convergence theorem.

For finding a common element of the set of fixed points of a nonexpansive mapping
and the set of solutions of variational inequality problem for an η-inverse-strongly monotone,
Takahashi and Toyoda [30] introduced the following iterative scheme:

x0 ∈ E chosen arbitrary,

xn+1 = αnxn + (1 − αn)SPE(xn − τnBxn), ∀n ≥ 0,
(1.13)

where B is an η-inverse-strongly monotone mapping, {αn} is a sequence in (0, 1), and {τn}
is a sequence in (0, 2η). They showed that if F(S) ∩ VI(E, B) is nonempty, then the sequence
{xn} generated by (1.13) converges weakly to some z ∈ F(S) ∩ VI(E, B). On the other hand,
Shang et al. [31] introduced a new iterative process for finding a common element of the set of
fixed points of a nonexpansive mapping and the set of solutions of the variational inequality
problem for a relaxed (u, v)-cocoercive mapping in a real Hilbert space. Let S : E → E
be a nonexpansive mapping. Starting with arbitrary initial x1 ∈ E, defined sequences {xn}
recursively by

xn+1 = αnf(xn) + βnxn + γnSPE(I − τnB)xn, ∀n ≥ 1. (1.14)

They proved that under certain appropriate conditions imposed on {αn}, {βn}, {γn}, and {τn},
the sequence {xn} converges strongly to z ∈ F(S) ∩ VI(E, B), where z = PF(S)∩VI(E,B)f(z).

In 2008, S. Takahashi and W. Takahashi [27] introduced the following iterative scheme
for finding an element of F(S) ∩ EF(F,D) under some mild conditions. Let E be a nonempty
closed convex subset of a real Hilbert space H. Let D be an η-inverse-strongly monotone
mapping of E into H and let S be a nonexpansive mapping of E into itself such that F(S) ∩
EP(F,D)/= ∅. Suppose x1 = σ ∈ E and let {un}, {yn}, and {xn} by sequences generated by

F
(
un, y

)
+

〈
Dxn, y − un

〉
+

1

rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnσ + (1 − αn)un,

xn+1 = βnxn +
(
1 − βn

)
Syn,

(1.15)

where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1], and {rn} ⊂ [0, 2η] satisfy some parameters controlling
conditions. They proved that the sequence {xn} defined by (1.15) converges strongly to a
common element of F(S) ∩ EF(F,D).

On the other hand, iterative methods for nonexpansive mappings have recently
been applied to solve convex minimization problems; see, for example, [32–35] and the
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references therein. Convex minimization problems have a great impact and influence in the
development of almost all branches of pure and applied sciences.

A typical problem is to minimize a quadratic function over the set of the fixed points
a nonexpansive mapping in a real Hilbert space H:

min
x∈E

{
1

2
〈Ax, x〉 − 〈x, b〉

}
, (1.16)

where E is the fixed point set of a nonexpansive mapping S onH and b is a given point inH.
Assume thatA is a strongly positive bounded linear operator onH; that is, there exists a constant
γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.17)

In 2006, Marino and Xu [36] considered the following iterative method:

xn+1 = εnγf(xn) + (1 − εnA)Sxn, ∀n ≥ 0. (1.18)

They proved that if the sequence {εn} of parameters satisfies appropriate conditions, then
the sequence {xn} generated by (1.18) converges strongly to the unique of the variational
inequality

〈(
A − γf

)
z, x − z

〉 ≥ 0, ∀x ∈ F(S), (1.19)

which is the optimality condition for the minimization problem

min
x∈F(S)

{
1

2
〈Ax, x〉 − h(x)

}
, (1.20)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
In 2008, Qin et al. [26] proposed the following iterative algorithm:

F
(
un, y

)
+

1

rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ H,

xn+1 = εnγf(xn) + (I − εnA)SPE(I − τnB)un,

(1.21)

whereA is a strongly positive linear bounded operator and B is a relaxed cocoercive mapping
of E into H. They prove that if the sequences {εn}, {τn}, and {rn} of parameters satisfy
appropriate condition, then the sequences {xn} and {un} both converge to the unique solution
z of the variational inequality

〈(A − γf
)
z, x − z〉 ≥ 0, ∀x ∈ F(S) ∩ VI(E, B) ∩ EP(F), (1.22)
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which is the optimality condition for the minimization problem

min
x∈F(S)∩VI(E,B)∩EP(F)

{
1

2
〈Ax, x〉 − h(x)

}
, (1.23)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
Furthermore, for finding approximate common fixed points of an infinite family of

nonexpansive mappings {Tn} under very mild conditions on the parameters, we need the
following definition.

Definition 1.2 (see [37]). Let {Tn}∞n=1 be a sequence of nonexpansive mappings of E into itself
and let {μn}∞n=1 be a sequence of nonnegative numbers in [0, 1]. For each n ≥ 1, define a
mapping Wn of E into itself as follows:

Un,n+1 = I,

Un,n = μnTnUn,n+1 +
(
1 − μn

)
I,

Un,n−1 = μn−1Tn−1Un,n +
(
1 − μn−1

)
I,

...

Un,k = μkTkUn,k+1 +
(
1 − μk

)
I,

Un,k−1 = μk−1Tk−1Un,k +
(
1 − μk−1

)
I,

...

Un,2 = μ2T2Un,3 +
(
1 − μ2

)
I,

Wn = Un,1 = μ1T1Un,2 +
(
1 − μ1

)
I.

(1.24)

Such a mappingsWn is called theW-mapping generated by T1, T2, . . . , Tn and μ1, μ2, . . . , μn. It
is obvious that Wn is nonexpansive, and if x = Tnx, then x = Un,k = Wnx.

On the other hand, Yao et al. [38] introduced and considered an iterative scheme for
finding a common element of the set of solutions of the equilibrium problem and the set of
common fixed points of an infinite family of nonexpansive mappings on E. Starting with an
arbitrary initial x1 ∈ H, define sequences {xn} and {un} recursively by

F
(
un, y

)
+

1

rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ H,

xn+1 = εnγf(xn) + βnxn +
((
1 − βn

)
I − εnA

)
Wnun, ∀n ≥ 1,

(1.25)

where {εn} is a sequence in (0, 1). It is proved [38] that under certain appropriate conditions
imposed on {εn} and {rn}, the sequence {xn} generated by (1.25) converges strongly to
z = P⋂∞

n=1 F(Tn)∩EP(F)(I − A + γf)z. Very recently, Qin et al. [6] introduced an iterative scheme
for finding a common fixed points of a finite family of nonexpansive mappings, the set of
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solutions of the variational inequality problem for a relaxed cocoercive mapping, and the set
of solutions of the equilibrium problems in a real Hilbert space. Starting with an arbitrary
initial x1 ∈ H, define sequences {xn} and {un} recursively by

F
(
un, y

)
+

1

rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ H,

xn+1 = εnγf(Wnxn) + (I − εnA)WnPE(I − τnB)un, ∀n ≥ 1,

(1.26)

where B is a relaxed (u, v)-cocoercive mapping and A is a strongly positive linear bounded
operator. They proved that under certain appropriate conditions imposed on {εn}, {τn}, and
{rn}, the sequences {xn} and {un} generated by (1.26) converge strongly to some point z ∈⋂∞

n=1 F(Tn) ∩ EP(F) ∩ VI(E, B), which is a unique solution of the variation inequality:

〈(A − γf
)
z, x − z〉 ≥ 0, ∀x ∈

∞⋂
n=1

F(Tn) ∩ EP(F) ∩ VI(E, B) (1.27)

and is also the optimality for some minimization problems.
In this paper, motivated by iterative schemes considered in (1.15), (1.25), and (1.26)

we will introduce a new iterative process (3.4) below for finding a common element of the
set of fixed points of an infinite family of nonexpansive mappings, the set of solutions of the
generalized equilibrium problem, and the set of solutions of variational inequality problem
for a relaxed (u, v)-cocoercive mapping in a real Hilbert space. The results obtained in this
paper improve and extend the recent ones announced by Yao et al. [38], S. Takahashi and W.
Takahashi [27], and Qin et al. [6] and many others.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let E be a nonempty
closed convex subset of H. We denote weak convergence and strong convergence by
notations ⇀ and → , respectively. Recall that the (nearest point) projection PE from H to
E assigns each x ∈ H the unique point in PEx ∈ E satisfying the property

‖x − PEx‖ = min
y∈E

∥∥x − y
∥∥. (2.1)

The following characterizes the projection PE.
We need some facts tools in a real Hilbert space H which are listed as follows.

Lemma 2.1. For any x ∈ H, z ∈ E,

z = PEx ⇐⇒
〈
x − z, z − y

〉 ≥ 0, ∀y ∈ E. (2.2)

It is well known that PE is a firmly nonexpansive mapping of H onto E and satisfies

∥∥PEx − PEy
∥∥2 ≤ 〈

PEx − PEy, x − y
〉
, ∀x, y ∈ H. (2.3)
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Moreover, PEx is characterized by the following properties: PEx ∈ E and for all x ∈ H,y ∈ E,

〈x − PEx, y − PEx〉 ≤ 0. (2.4)

Lemma 2.2 (see [39]). LetH be a Hilbert space, let E be a nonempty closed convex subset ofH, and
let B be a mapping of E intoH. Let p ∈ E. Then for λ > 0,

p ∈ VI(E, B) ⇐⇒ p = PE

(
p − λBp

)
, (2.5)

where PE is the metric projection of H onto E.

It is clear from Lemma 2.2 that variational inequality and fixed point problem are
equivalent. This alternative equivalent formulation has played a significant role in the studies
of the variational inequalities and related optimization problems.

Lemma 2.3 (see [40]). Each Hilbert space H satisfies Opials condition; that is, for any sequence
{xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥∥xn − y
∥∥ (2.6)

holds for each y ∈ H with y /=x.

Lemma 2.4 (see [36]). Assume that A is a strongly positive linear bounded operator on H with
coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ .

For solving the equilibrium problem for a bifunction F : E×E → R, let us assume that
F satisfies the following conditions:

(A1) F(x, x) = 0, for all x ∈ E;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0, for all x, y ∈ E;

(A3) limt↓0F(tz + (1 − t)x, y) ≤ F(x, y), for all x, y, z ∈ E;

(A4) for each x ∈ E, y �→ F(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [4].

Lemma 2.5 (see [4]). Let E be a nonempty closed convex subset of H and let F be a bifunction of
E × E into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ E such that

F
(
z, y

)
+
1

r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ E. (2.7)

The following lemma was also given in [5].
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Lemma 2.6 (see [5]). Assume that F : E×E → R satisfies (A1)–(A4). For r > 0 and x ∈ H, define
a mapping Tr : H → E as follows:

Tr(x) =
{
z ∈ E : F

(
z, y

)
+
1

r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ E

}
, (2.8)

for all z ∈ H. Then, the following holds:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,
∥∥Trx − Try

∥∥2 ≤ 〈
Trx − Try, x − y

〉
; (2.9)

(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

Remark 2.7. Replacing x with x − rDx ∈ H in (2.7), then there exists z ∈ E, such that

F
(
z, y

)
+ 〈Dx, y − z〉 + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ E. (2.10)

Lemma 2.8 (see [41]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let
T1, T2, . . . be nonexpansive mappings of E into itself such that

⋂∞
n=1 F(Tn) is nonempty, and let

μ1, μ2, . . . be real numbers such that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, for every x ∈ E and
k ∈ N, the limit limn→∞Un,kx exists.

Using Lemma 2.8, one can define a mapping W of E into itself as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x, (2.11)

for every x ∈ E. Such a W is called the W-mapping generated by T1, T2, . . . and μ1, μ2, . . ..
Throughout this paper, we will assume that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, we have the
following results.

Lemma 2.9 (see [41]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let
T1, T2, . . . be nonexpansive mappings of E into itself such that

⋂∞
n=1 F(Tn) is nonempty, let μ1, μ2, . . .

be real numbers such that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, F(W) =
⋂∞

n=1 F(Tn).

Lemma 2.10 (see [7]). If {xn} is a bounded sequence in E, then limn→∞‖Wxn −Wnxn‖ = 0.

Lemma 2.11 (see [42]). Let {xn} and {zn} be bounded sequences in a Banach spaceX and let {βn} be
a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 = (1−βn)zn +βnxn

for all integers n ≥ 0 and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 −xn‖) ≤ 0. Then, limn→∞‖zn −xn‖ = 0.

Lemma 2.12. LetH be a real Hilbert space. Then the following inequality holds:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,
(2) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, x〉

for all x, y ∈ H.
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Lemma 2.13 (see [43]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − ln)an + σn, ∀n ≥ 0, (2.12)

where {ln} is a sequence in (0, 1) and {σn} is a sequence in R such that

(1)
∑∞

n=1 ln = ∞,

(2) lim supn→∞(σn/ln) ≤ 0 or
∑∞

n=1 |σn| < ∞.

Then limn→∞an = 0.

3. Main Results

In this section, we prove a strong convergence theorem of a new iterative method (3.4) for an
infinite family of nonexpansive mappings and relaxed (u, v)-cocoercive mappings in a real
Hilbert space.

We first prove the following lemmas.

Lemma 3.1. Let H be a real Hilbert space, let E be a nonempty closed convex subset of H, and let
D : E → H be η-inverse-strongly monotone. It 0 ≤ rn ≤ 2η, then I −rnD is a nonexpansive mapping
inH.

Proof. For all x, y ∈ E and 0 ≤ rn ≤ 2η, we have

∥∥(I − rnD)x − (I − rnD)y
∥∥2 =

∥∥(x − y) − rn(Dx −Dy)
∥∥2

=
∥∥x − y

∥∥2 − 2rn〈x − y,Dx −Dy〉 + r2n
∥∥Dx −Dy

∥∥2

≤ ∥∥x − y
∥∥2 − 2rnη

∥∥Dx −Dy
∥∥ + r2n

∥∥Dx −Dy
∥∥2

=
∥∥x − y

∥∥2 + rn
(
rn − 2η

)∥∥Dx −Dy
∥∥2

≤ ∥∥x − y
∥∥2

.

(3.1)

So, I − rnD is a nonexpansive mapping of E intoH.

Lemma 3.2. Let H be a real Hilbert space, let E be a nonempty closed convex subset of H, and let
B : E → H be a relaxed (u, v)-cocoercive and ξ-Lipschitz continuous. If 0 ≤ τn ≤ 2(v − uξ2)/ξ2,
v > uξ2, then I − τnB is a nonexpansive mapping in H.

Proof. For any x, y ∈ E and τn ≤ 2(v − uξ2)/ξ2, v > uξ2.
Putting r = 1 + 2τnuξ2 − 2τnv + τ2nξ

2, we obtain

τn ≤
2
(
v − uξ2

)
ξ2

⇐⇒ τnξ
2 + 2uξ2 − 2v ≤ 0

⇐⇒ τ2nξ
2 + 2τnuξ

2 − 2τnv ≤ 0

⇐⇒ 1 + τ2nξ
2 + 2τnuξ

2 − 2τnv ≤ 1,

(3.2)
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that is, r ≤ 1. It follows that

∥∥(I − τnB)x − (I − τnB)y
∥∥2 =

∥∥(x − y) − τn(Bx − By)
∥∥2

=
∥∥x − y

∥∥2 − 2τn〈x − y, Bx − By〉 + τ2n
∥∥Bx − By

∥∥2

≤ ∥∥x − y
∥∥2 − 2τn

{
−u∥∥Bx − By

∥∥2 + v
∥∥x − y

∥∥2
}
+ τ2n

∥∥Bx − By
∥∥2

≤ ∥∥x − y
∥∥2 + 2τnuξ

2
∥∥x − y

∥∥2 − 2τnv
∥∥x − y

∥∥2 + τ2nξ
2
∥∥x − y

∥∥2

=
(
1 + 2τnuξ

2 − 2τnv + τ2nξ
2
)∥∥x − y

∥∥2

= r
∥∥x − y

∥∥2

≤ ∥∥x − y
∥∥2

,

(3.3)

for all x, y ∈ E. Thus ‖(I − τnB)x − (I − τnB)y‖ ≤ ‖x − y‖.
So, I − τnB is a nonexpansive mapping of E intoH.

Now, we prove the following main theorem.

Theorem 3.3. Let E be a nonempty closed convex subset of a real Hilbert spaceH, and let F : E×E →
R be a bifunction satisfying (A1)–(A4). Let

(1) {Tn} be an infinite family of nonexpansive mappings of E into E;

(2) D be an η-inverse strongly monotone mappings of E intoH;

(3) B be relaxed (u, v)-cocoercive and ξ-Lipschitz continuous mappings of E intoH.

Assume that Θ :=
⋂∞

n=1 F(Tn) ∩ EP(F,D) ∩ VI(E, B)/= ∅. Let f : E → E be a contraction mapping
with 0 < α < 1 and let A be a strongly positive linear bounded operator on H with coefficient γ > 0
and 0 < γ < γ/α. Let {xn}, {yn}, {kn}, and {un} be sequences generated by

x1 ∈ E chosen arbitrary,

F
(
un, y

)
+ 〈Dxn, y − un〉 + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ E,

yn = ϕnun +
(
1 − ϕn

)
WnPE(un − δnBun),

kn = αnxn + (1 − αn)WnPE

(
yn − λnByn

)
,

xn+1 = εnγf(Wnxn) + βnxn +
((
1 − βn

)
I − εnA

)
WnPE(kn − τnBkn), ∀n ≥ 1,

(3.4)

where {Wn} is the sequence generated by (1.24) and {εn}, {αn}, {ϕn}, and {βn} are sequences in
(0, 1) satisfy the following conditions:

(C1) limn→∞εn = 0,
∑∞

n=1 εn = ∞,

(C2) limn→∞αn = limn→∞ϕn = 0,
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(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

(C4) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0,

(C5) limn→∞|λn+1 − λn| = limn→∞|δn+1 − δn| = limn→∞|τn+1 − τn| = 0,

(C6) {τn}, {λn}, {δn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v − uξ2)/ξ2, v > uξ2,

(C7) {rn} ⊂ [c, d] for some c, d with 0 < c < d < 2η.

Then, {xn} and {un} converge strongly to a point z ∈ Θ, where z = PΘ(I −A + γf)(z), which solves
the variational inequality

〈(A − γf
)
z, x − z〉 ≥ 0, ∀x ∈ Θ, (3.5)

which is the optimality condition fot the minimization problem

min
x∈Θ

{
1

2
〈Ax, x〉 − h(x)

}
, (3.6)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

Proof. Since limn→∞εn = 0 by the condition (C1) and lim supn→∞βn < 1, we may assume,
without loss of generality, that εn ≤ (1 − βn)‖A‖−1. Since A is a strongly positive bounded
linear operator onH, then

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}. (3.7)

Observe that

〈((1 − βn
)
I − εnA

)
x, x〉 = 1 − βn − εn〈Ax, x〉

≥ 1 − βn − εn‖A‖
≥ 0,

(3.8)

that is to say (1 − βn)I − εnA is positive. It follows that

∥∥(
1 − βn

)
I − εnA

∥∥ = sup
{∣∣〈((1 − βn

)
I − εnA

)
x, x

〉∣∣ : x ∈ H, ‖x‖ = 1
}

= sup
{
1 − βn − εn〈Ax, x〉 : x ∈ H, ‖x‖ = 1

}
≤ 1 − βn − εnγ.

(3.9)

We will divide the proof of Theorem 3.3 into six steps.

Step 1. We prove that there exists z ∈ E such that z = P⋂∞
n=1 F(Tn)∩EP(F,D)∩VI(E,B)(I −A + γf)z.
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Let I = P⋂∞
n=1 F(Tn)∩EP(F,D)∩VI(E,B). Note that f is a contraction mapping of E into itself

with coefficient α ∈ (0, 1). Then, we have

∥∥I
(
I −A + γf

)
(x) − I

(
I −A + γf

)(
y
)∥∥ ≤ ∥∥(

I −A + γf
)
(x) − (

I −A + γf
)(
y
)∥∥

≤ ‖I −A‖∥∥x − y
∥∥ + γ

∥∥f(x) − f
(
y
)∥∥

≤ (
1 − γ

)∥∥x − y
∥∥ + γα

∥∥x − y
∥∥

=
(
1 − (

γ − αγ
))∥∥x − y

∥∥, ∀x, y ∈ H.

(3.10)

Therefore, I(I − A + γf) is a contraction mapping of E into itself. Therefore by the Banach
Contraction Mapping Principle guarantee that I(I − A + γf) has a unique fixed point, say
z ∈ E. That is, z = I(I −A + γf)(z) = P⋂∞

n=1 F(Tn)∩EP(F,D)∩VI(E,B)(I −A + γf)(z).

Step 2. We prove that {xn} is bounded.
Since

F
(
un, y

)
+ 〈Dxn, y − un〉 + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ E, (3.11)

we obtain

F
(
un, y

)
+

1

rn
〈y − un, un − (I − rnD)xn〉 ≥ 0, ∀y ∈ E. (3.12)

From Lemma 2.6, we have un = Trn(xn − rnDxn), for all n ∈ N.
For any p ∈ Θ :=

⋂∞
n=1 F(Tn) ∩ EP(F,D) ∩ VI(E, B), it follows from p ∈ EP(F,D) that

F
(
p, y

)
+

〈
y − p,Dp

〉 ≥ 0, ∀y ∈ E. (3.13)

So, we have

F
(
p, y

)
+

1

rn

〈
y − p, p − (

p − rnDp
)〉 ≥ 0, ∀y ∈ E. (3.14)

By Lemma 2.6 again, we have p = Trn(p − rnDp), for all n ∈ N. If follows that

∥∥un − p
∥∥ =

∥∥Trn(xn − rnDxn) − Trn
(
p − rnDp

)∥∥
≤ ∥∥(xn − rnDxn) −

(
p − rnDp

)∥∥
=

∥∥(I − rnD)xn − (I − rnD)p
∥∥ ≤ ∥∥xn − p

∥∥.
(3.15)
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If we applied Lemma 3.2, we get I − λnB and I − δnB are nonexpansive. Since p ∈ VI(E, B)
and Wn is a nonexpansive, we have p = WnPE(p − λnBp) = WnPE(p − δnBp), and we have

∥∥yn − p
∥∥ ≤ ϕn

∥∥un − p
∥∥ +

(
1 − ϕn

)∥∥WnPE(un − δnBun) −WnPE

(
p − δnBp

)∥∥
≤ ϕn

∥∥un − p
∥∥ +

(
1 − ϕn

)∥∥(un − δnBun) −
(
p − δnBp

)∥∥
= ϕn

∥∥un − p
∥∥ +

(
1 − ϕn

)∥∥(I − δnB)un − (I − δnB)p
∥∥

≤ ϕn

∥∥un − p
∥∥ +

(
1 − ϕn

)∥∥un − p
∥∥

≤ ∥∥un − p
∥∥ ≤ ∥∥xn − p

∥∥.

(3.16)

It follows that

∥∥kn − p
∥∥ ≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥WnPE

(
yn − λnByn

) −WnPE

(
p − λnBp

)∥∥
≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥(
yn − λnByn

) − (
p − λnBp

)∥∥
= αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥(I − λnB)yn − (I − λnB)p
∥∥

≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥yn − p
∥∥

≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥xn − p
∥∥ =

∥∥xn − p
∥∥,

(3.17)

which yields that

∥∥xn+1 − p
∥∥ =

∥∥εn(γf(xn) −Ap
)
+ βn

(
xn − p

)
+

((
1 − βn

)
I − εnA

)(
WnPE(kn − τnBkn) − p

)∥∥
≤ (

1 − βn − εnγ
)∥∥PE(I − τnB)kn − p

∥∥ + βn
∥∥xn − p

∥∥ + εn
∥∥γf(xn) −Ap

∥∥
≤ (

1 − βn − εnγ
)∥∥kn − p

∥∥ + βn
∥∥xn − p

∥∥ + εn
∥∥γf(xn) −Ap

∥∥
≤ (

1 − βn − εnγ
)∥∥xn − p

∥∥ + βn
∥∥xn − p

∥∥ + εn
∥∥γf(xn) −Ap

∥∥
≤ (

1 − εnγ
)∥∥xn − p

∥∥ + εnγ
∥∥f(xn) − f

(
p
)∥∥ + εn

∥∥γf(
p
) −Ap

∥∥
≤ (

1 − εnγ
)∥∥xn − p

∥∥ + εnγα
∥∥xn − p

∥∥ + εn
∥∥γf(

p
) −Ap

∥∥
=

(
1 − (

γ − αγ
)
εn

)∥∥xn − p
∥∥ +

(
γ − αγ

)
εn

∥∥γf(
p
) −Ap

∥∥
γ − αγ

.

(3.18)

This in turn implies that

∥∥xn − p
∥∥ ≤ max

{∥∥x1 − p
∥∥,

∥∥γf(
p
) −Ap

∥∥
γ − αγ

}
, n ∈ N. (3.19)
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Therefore, {xn} is bounded. We also obtain that {un}, {kn}, {yn}, {Bun}, {Bkn}, {Byn},
{Wnun}, {Wnkn}, {Wnyn}, and {f(Wnxn)} are all bounded.

Step 3. We claim that limn→∞‖xn+1 − xn‖ = 0 and limn→∞‖Wnθn − xn‖ = 0.
From Lemma 2.6, we have un = Trn(xn − rnDxn) and un+1 = Trn+1(xn+1 − rn+1Dxn+1). Let

�n = xn − rnDxn, we get un = Trn�n, un+1 = Trn+1�n+1, and so

F
(
un, y

)
+

1

rn

〈
y − un, un −�n

〉 ≥ 0, ∀y ∈ E, (3.20)

F
(
un+1, y

)
+

1

rn+1

〈
y − un+1, un+1 −�n+1

〉 ≥ 0, ∀y ∈ E. (3.21)

Putting y = un+1 in (3.20) and y = un in (3.21), we have

F(un, un+1) +
1

rn
〈un+1 − un, un −�n〉 ≥ 0,

F(un+1, un) +
1

rn+1
〈un − un+1, un+1 −�n+1〉 ≥ 0.

(3.22)

So, from the monotonicity of F, we get

〈
un+1 − un,

un −�n

rn
− un+1 −�n+1

rn+1

〉
≥ 0, (3.23)

and hence

〈
un+1 − un, un − un+1 + un+1 −�n − rn

rn+1
(un+1 −�n+1)

〉
≥ 0. (3.24)

Without loss of generality, let us assume that there exists a real number c such that rn > c > 0
for all n ∈ N. Then, we have

‖un+1 − un‖2 ≤
〈
un+1 − un,�n+1 −�n +

(
1 − rn

rn+1

)
(un+1 −�n+1)

〉

≤ ‖un+1 − un‖
{
‖�n+1 −�n‖ +

∣∣∣∣1 − rn
rn+1

∣∣∣∣‖un+1 −�n+1‖
}
,

(3.25)
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and hence

‖un+1 − un‖ ≤ ‖�n+1 −�n‖ + 1

c
|rn+1 − rn|‖un+1 −�n+1‖

= ‖xn+1 − rn+1Dxn+1 − (xn − rnDxn)‖ + 1

c
|rn+1 − rn|‖un+1 −�n+1‖

≤ ‖xn+1 − rn+1Dxn+1 − (xn − rn+1Dxn)‖ + |rn+1 − rn|‖Dxn‖

+
1

c
|rn+1 − rn|‖un+1 −�n+1‖

≤ ‖xn+1 − xn‖ + |rn+1 − rn|‖Dxn‖ + 1

c
|rn+1 − rn|‖un+1 −�n+1‖

≤ ‖xn+1 − xn‖ +M1|rn+1 − rn|,

(3.26)

where M1 = sup{‖Dxn‖ + (1/c)‖un+1 −�n+1‖ : n ∈ N}.
Put θn = PE(kn − τnBkn), φn = PE(yn − λnByn), and ψn = PE(un − δnBun). Since I − τnB,

I − λnB, and I − δnB are nonexpansive, then we have the following some estimates:

∥∥ψn+1 − ψn

∥∥ ≤ ‖PE(un+1 − δn+1Bun+1) − PE(un − δnBun)‖

≤ ‖(un+1 − δn+1Bun+1) − (un − δnBun)‖

= ‖(un+1 − δn+1Bun+1) − (un − δn+1Bun) + (δn − δn+1)Bun‖

≤ ‖(un+1 − δn+1Bun+1) − (un − δn+1Bun)‖ + |δn − δn+1|‖Bun‖

= ‖(I − δn+1B)un+1 − (I − δn+1B)un‖ + |δn − δn+1|‖Bun‖

≤ ‖un+1 − un‖ + |δn − δn+1|‖Bun‖.

(3.27)

Similarly, we can prove that

∥∥φn+1 − φn

∥∥ ≤ ∥∥yn+1 − yn

∥∥ + |λn − λn+1|
∥∥Byn

∥∥, (3.28)

‖θn+1 − θn‖ ≤ ‖kn+1 − kn‖ + |τn − τn+1|‖Bkn‖. (3.29)

Since Ti andUn,i are nonexpansive, we deduce that, for each n ≤ 1,

∥∥Wn+1ψn −Wnψn

∥∥ =
∥∥μ1T1Un+1,2ψn − μ1T1Un,2ψn

∥∥
≤ μ1

∥∥Un+1,2ψn −Un,2ψn

∥∥
= μ1

∥∥μ2T2Un+1,3ψn − μ2T2Un,3ψn

∥∥
≤ μ1μ2

∥∥Un+1,3ψn −Un,3ψn

∥∥
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...

≤
n∏
i=1

μi

∥∥Un+1,n+1ψn −Un,n+1ψn

∥∥

≤ M2

n∏
i=1

μi,

(3.30)

where M2 ≥ 0 is a constant such that ‖Un+1,n+1ψn −Un,n+1ψn‖ ≤ M2 for all n ≥ 0.
Similarly, we can obtain that there exist nonnegative numbers M3, M4 such that

∥∥Un+1,n+1ϕn −Un,n+1ϕn

∥∥ ≤ M3, ‖Un+1,n+1θn −Un,n+1θn‖ ≤ M4, (3.31)

and so are

∥∥Wn+1φn −Wnφn

∥∥ ≤ M3

n∏
i=1

μi, ‖Wn+1θn −Wnθn‖ ≤ M4

n∏
i=1

μi. (3.32)

Observing that

yn = ϕnun +
(
1 − ϕn

)
Wnψn,

yn+1 = ϕn+1un+1 +
(
1 − ϕn+1

)
Wn+1ψn+1,

(3.33)

we obtain

yn − yn+1 = ϕn(un − un+1) +
(
1 − ϕn

)(
Wnψn −Wn+1ψn+1

)
+

(
Wn+1ψn+1 − un+1

)(
ϕn+1 − ϕn

)
,

(3.34)

which yields that

∥∥yn − yn+1
∥∥ ≤ ϕn‖un − un+1‖ +

(
1 − ϕn

)∥∥Wn+1ψn+1 −Wnψn

∥∥ +
∣∣ϕn+1 − ϕn

∣∣∥∥Wn+1ψn+1 − un+1
∥∥

≤ ϕn‖un − un+1‖ +
(
1 − ϕn

){∥∥Wn+1ψn+1 −Wn+1ψn

∥∥ +
∥∥Wn+1ψn −Wnψn

∥∥}
+

∣∣ϕn+1 − ϕn

∣∣∥∥Wn+1ψn+1 − un+1
∥∥

≤ ϕn‖un − un+1‖ +
(
1 − ϕn

){∥∥ψn+1 − ψn

∥∥ +
∥∥Wn+1ψn −Wnψn

∥∥}
+

∣∣ϕn+1 − ϕn

∣∣∥∥Wn+1ψn+1 − un+1
∥∥

≤ ϕn‖un − un+1‖ +
(
1 − ϕn

)∥∥ψn+1 − ψn

∥∥ +
∥∥Wn+1ψn −Wnψn

∥∥
+

∣∣ϕn+1 − ϕn

∣∣∥∥Wn+1ψn+1 − un+1
∥∥.

(3.35)
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Substitution of (3.27) and (3.30) into (3.35) yields that

∥∥yn − yn+1
∥∥ ≤ ϕn‖un − un+1‖ +

(
1 − ϕn

){‖un+1 − un‖ + |δn − δn+1|‖Bun‖}

+M2

n∏
i=1

μi +
∣∣ϕn+1 − ϕn

∣∣∥∥Wn+1ψn+1 − un+1
∥∥

= ‖un − un+1‖ +
(
1 − ϕn

)|δn − δn+1|‖Bun‖

+M2

n∏
i=1

μi +
∥∥Wn+1ψn+1 − un+1

∥∥∣∣ϕn+1 − ϕn

∣∣

≤ ‖un − un+1‖ +M5

(|δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣) +M2

n∏
i=1

μi,

(3.36)

whereM5 is an appropriate constant such thatM5 = max{supn≥1‖Bun‖, supn≥1‖Wnψn −un‖}.
Observing that

kn = αnxn + (1 − αn)Wnφn,

kn+1 = αn+1xn+1 + (1 − αn+1)Wnφn+1,
(3.37)

we obtain

kn − kn+1 = αn(xn − xn+1) + (1 − αn)
(
Wnφn −Wn+1φn+1

)
+

(
Wn+1φn+1 − xn+1

)
(αn+1 − αn),

(3.38)

which yields that

‖kn − kn+1‖ ≤ αn‖xn − xn+1‖ + (1 − αn)
∥∥Wnφn −Wn+1φn+1

∥∥ + |αn+1 − αn|
∥∥Wn+1φn+1 − xn+1

∥∥
≤ αn‖xn − xn+1‖ + (1 − αn)

{∥∥Wn+1φn+1 −Wn+1φn

∥∥ +
∥∥Wn+1φn −Wnφn

∥∥}
+ |αn+1 − αn|

∥∥Wn+1φn+1 − xn+1
∥∥

≤ αn‖xn − xn+1‖ + (1 − αn)
∥∥φn+1 − φn

∥∥ +
∥∥Wn+1φn −Wnφn

∥∥
+ |αn+1 − αn|

∥∥Wn+1φn+1 − xn+1
∥∥.

(3.39)



Journal of Inequalities and Applications 19

Substitution of (3.28) and (3.32) into (3.39) yields that

‖kn − kn+1‖ ≤ αn‖xn − xn+1‖ + (1 − αn)
{∥∥yn+1 − yn

∥∥ + |λn − λn+1|
∥∥Byn

∥∥}
+M3

n∏
i=1

μi + |αn+1 − αn|
∥∥Wn+1φn+1 − xn+1

∥∥
= αn‖xn − xn+1‖ + (1 − αn)

∥∥yn+1 − yn

∥∥ + (1 − αn)|λn − λn+1|
∥∥Byn

∥∥
+M3

n∏
i=1

μi + |αn+1 − αn|
∥∥Wn+1φn+1 − xn+1

∥∥
≤ αn‖xn − xn+1‖ + (1 − αn)

∥∥yn+1 − yn

∥∥ +M3

n∏
i=1

μi

+M6(|λn − λn+1| + |αn+1 − αn|),

(3.40)

whereM6 is an appropriate constant such thatM6 = max{supn≥1‖Byn‖, supn≥1‖Wnφn −xn‖}.
Substituting (3.26) and (3.36) into (3.40), we obtain

‖kn − kn+1‖ ≤ αn‖xn − xn+1‖+(1 − αn)

{
‖un − un+1‖ +M5

(|δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣) +M2

n∏
i=1

μi

}

+M3

n∏
i=1

μi +M6(|λn − λn+1| + |αn+1 − αn|)

= αn‖xn − xn+1‖ + (1 − αn)‖un − un+1‖ + (1 − αn)M5

(|δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣)
+ (1 − αn)M2

n∏
i=1

μi +M3

n∏
i=1

μi +M6(|λn − λn+1| + |αn+1 − αn|)

≤ αn‖xn − xn+1‖ + (1 − αn){‖xn+1 − xn‖ +M1|rn+1 − rn|}

+ (1 − αn)M5

(|δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣) + (1 − αn)M2

n∏
i=1

μi

+M3

n∏
i=1

μi +M6(|λn − λn+1| + |αn+1 − αn|)

= αn‖xn − xn+1‖ + (1 − αn)‖xn+1 − xn‖ + (1 − αn)M1|rn+1 − rn|

+ (1 − αn)M5

(|δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣) + (1 − αn)M2

n∏
i=1

μi

+M3

n∏
i=1

μi +M6(|λn − λn+1| + |αn+1 − αn|)

≤ ‖xn − xn+1‖ +M1|rn+1 − rn| +M2

n∏
i=1

μi +M3

n∏
i=1

μi

+M5

(|δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣) +M6(|λn − λn+1| + |αn+1 − αn|)

≤ ‖xn − xn+1‖ +M2

n∏
i=1

μi +M3

n∏
i=1

μi

+K1

(|rn+1 − rn| + |δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣ + |λn − λn+1| + |αn+1 − αn|
)
,

(3.41)

where K1 is an appropriate constant such that K1 = max{M1,M5,M6}.
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Substituting (3.41) into (3.29), we obtain

‖θn+1 − θn‖ ≤ ‖kn+1 − kn‖ + |τn − τn+1|‖Bkn‖

≤ ‖xn − xn+1‖ +M2

n∏
i=1

μi +M3

n∏
i=1

μi

+K1

(|rn+1 − rn| + |δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣ + |λn − λn+1| + |αn+1 − αn|
)

+ |τn − τn+1|‖Bkn‖

≤ ‖xn − xn+1‖ +M2

n∏
i=1

μi +M3

n∏
i=1

μi

+K2

(|rn+1 − rn| + |δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣ + |λn − λn+1| + |αn+1 − αn| + |τn − τn+1|
)
,

(3.42)

where K2 is an appropriate constant such that K2 = max{supn≥1‖Bkn‖, K1}.
Define

xn+1 =
(
1 − βn

)
zn + βnxn, n ≥ 1. (3.43)

Observe that from the definition zn, we obtain

zn+1 − zn =
εn+1γf(Wn+1xn+1) +

((
1 − βn+1

)
I − εn+1A

)
Wn+1θn+1

1 − βn+1

− εnγf(Wnxn) +
((
1 − βn

)
I − εnA

)
Wnθn

1 − βn

=
εn+1

1 − βn+1
γf(Wn+1xn+1) − εn

1 − βn
γf(Wnxn) +Wn+1θn+1 −Wnθn

+
εn

1 − βn
AWnθn − εn+1

1 − βn+1
AWn+1θn+1

=
εn+1

1 − βn+1

(
γf(Wn+1xn+1) −AWn+1θn+1

)
+

εn
1 − βn

(
AWnθn − γf(Wnxn)

)

+ Wn+1θn+1 −Wn+1θn +Wn+1θn −Wnθn.

(3.44)
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It follows from (3.32), (3.42), and (3.44) that

‖zn+1 − zn‖ − ‖xn+1 − xn‖

≤ εn+1
1 − βn+1

(∥∥γf(Wn+1xn+1)
∥∥ + ‖AWn+1θn+1‖

)
+

εn
1 − βn

(‖AWnθn‖ +
∥∥γf(Wnxn)

∥∥)

+ ‖Wn+1θn+1 −Wn+1θn‖ + ‖Wn+1θn −Wnθn‖ − ‖xn+1 − xn‖

≤ εn+1
1 − βn+1

(∥∥γf(Wn+1xn+1)
∥∥ + ‖AWn+1θn+1‖

)
+

εn
1 − βn

(‖AWnθn‖ +
∥∥γf(Wnxn)

∥∥)

+ ‖θn+1 − θn‖ + ‖Wn+1θn −Wnθn‖ − ‖xn+1 − xn‖

≤ εn+1
1 − βn+1

(∥∥γf(Wn+1xn+1)
∥∥ + ‖AWn+1θn+1‖

)
+

εn
1 − βn

(‖AWnθn‖ +
∥∥γf(Wnxn)

∥∥)

+M2

n∏
i=1

μi +M3

n∏
i=1

μi +M4

n∏
i=1

μi

+K2

(|rn+1 − rn| + |δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣ + |λn − λn+1| + |αn+1 − αn| + |τn − τn+1|
)

≤ εn+1
1 − βn+1

(∥∥γf(Wn+1xn+1)
∥∥ + ‖AWn+1θn+1‖

)
+

εn
1 − βn

(‖AWnθn‖ +
∥∥γf(Wnxn)

∥∥)

+ 3K
n∏
i=1

μi

+K2

(|rn+1 − rn| + |δn − δn+1| +
∣∣ϕn+1 − ϕn

∣∣ + |λn − λn+1| + |αn+1 − αn| + |τn − τn+1|
)
,

(3.45)

where K is an appropriate constant such that K = max{M2,M3,M4}.
It follows from conditions (C1), (C2), (C3), (C4), (C5), and 0 < μi ≤ b < 1, for all i ≥ 1

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.46)

Hence, by Lemma 2.11, we obtain

lim
n→∞

‖zn − xn‖ = 0. (3.47)

It follows that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)‖zn − xn‖ = 0. (3.48)
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Applying (3.48) and conditions in Theorem 3.3 to (3.26), (3.41), and (3.42), we obtain that

lim
n→∞

‖un+1 − un‖ = lim
n→∞

‖kn+1 − kn‖ = lim
n→∞

‖θn+1 − θn‖ = 0. (3.49)

From (3.49), (C2), (C5), and 0 < μi ≤ b < 1, for all i ≥ 1, we also have

lim
n→∞

∥∥yn+1 − yn

∥∥ = 0. (3.50)

Since xn+1 = εnγf(Wnxn) + βnxn + ((1 − βn)I − εnA)Wnθn, we have

‖xn −Wnθn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 −Wnθn‖

= ‖xn − xn+1‖ +
∥∥εnγf(Wnxn) + βnxn +

((
1 − βn

)
I − εnA

)
Wnθn −Wnθn

∥∥
= ‖xn − xn+1‖ +

∥∥εn(γf(Wnxn) −AWnθn
)
+ βn(xn −Wnθn)

∥∥
≤ ‖xn − xn+1‖ + εn

(∥∥γf(Wnxn)
∥∥ + ‖AWnθn‖

)
+ βn‖xn −Wnθn‖,

(3.51)

that is,

‖xn −Wnθn‖ ≤ 1

1 − βn
‖xn − xn+1‖ + εn

1 − βn

(∥∥γf(Wnxn)
∥∥ + ‖AWnθn‖

)
. (3.52)

By (C1), (C3), and (3.48) it follows that

lim
n→∞

‖Wnθn − xn‖ = 0. (3.53)

Step 4. We claim that the following statements hold:

(i) limn→∞‖un − θn‖ = 0;

(ii) limn→∞‖xn − un‖ = 0;

(iii) limn→∞‖Wnθn − θn‖ = 0.

Since B is relaxed (u, v)-cocoercive and ξ-Lipschitz continuousmappings, by the assumptions
imposed on {τn} for any p ∈ Θ :=

⋂∞
n=1 F(Tn) ∩ EP(F,D) ∩ VI(E, B), we have
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∥∥Wnθn − p
∥∥2 ≤ ∥∥PE(kn − τnBkn) − PE(p − τnBp)

∥∥2

≤ ∥∥(kn − τnBkn) − (p − τnBp)
∥∥2

=
∥∥(kn − p) − τn(Bkn − Bp)

∥∥2

≤ ∥∥kn − p
∥∥2 − 2τn〈kn − p, Bkn − Bp〉 + τ2n

∥∥Bkn − Bp
∥∥2

≤ ∥∥xn − p
∥∥2 − 2τn〈kn − p, Bkn − Bp〉 + τ2n

∥∥Bkn − Bp
∥∥2

≤ ∥∥xn − p
∥∥2 − 2τn

{
−u∥∥Bkn − Bp

∥∥2 + v
∥∥kn − p

∥∥2
}
+ τ2n

∥∥Bkn − Bp
∥∥2

≤ ∥∥xn − p
∥∥2 + 2τnu

∥∥Bkn − Bp
∥∥2 − 2τnv

∥∥kn − p
∥∥2 + τ2n

∥∥Bkn − Bp
∥∥2

≤ ∥∥xn − p
∥∥2 + 2τnu

∥∥Bkn − Bp
∥∥2 − 2τnv

ξ2
∥∥Bkn − Bp

∥∥2 + τ2n
∥∥Bkn − Bp

∥∥2

=
∥∥xn − p

∥∥2 +
(
2τnu + τ2n −

2τnv

ξ2

)∥∥Bkn − Bp
∥∥2
.

(3.54)

Similarly, we have

∥∥Wnφn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 +
(
2λnu + λ2n −

2λnv

ξ2

)∥∥Byn − Bp
∥∥2

,

∥∥Wnψn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 +
(
2δnu + δ2

n −
2δnv

ξ2

)∥∥Bun − Bp
∥∥2

.

(3.55)

Observe that

∥∥xn+1 − p
∥∥2 =

∥∥((1 − βn)I − εnA)(Wnθn − p) + βn(xn − p) + εn(γf(Wnxn) −Ap)
∥∥2

=
∥∥((1 − βn)I − εnA)(Wnθn − p) + βn(xn − p)

∥∥2 + ε2n
∥∥γf(Wnxn) −Ap

∥∥2

+ 2βnεn
〈
xn − p, γf(Wnxn) −Ap

〉
+ 2εn

〈((
1 − βn

)
I − εnA

)(
Wnθn − p

)
, γf(Wnxn) −Ap

〉
≤ ((

1 − βn − εnγ
)∥∥Wnθn − p

∥∥ + βn
∥∥xn − p

∥∥)2 + ε2n
∥∥γf(Wnxn) −Ap

∥∥2

+ 2βnεn
〈
xn − p, γf(Wnxn) −Ap

〉
+ 2εn

〈((
1 − βn

)
I − εnA

)(
Wnθn − p

)
, γf(Wnxn) −Ap

〉
≤ ((

1 − βn − εnγ
)∥∥Wnθn − p

∥∥ + βn
∥∥xn − p

∥∥)2 + cn

≤ (
1 − βn − εnγ

)2∥∥Wnθn − p
∥∥2 + β2n

∥∥xn − p
∥∥2

+ 2
(
1 − βn − εnγ

)
βn

∥∥Wnθn − p
∥∥∥∥xn − p

∥∥ + cn

≤ (
1 − βn − εnγ

)2∥∥Wnθn − p
∥∥2 + β2n

∥∥xn − p
∥∥2

+
(
1 − βn − εnγ

)
βn

(∥∥Wnθn − p
∥∥2 +

∥∥xn − p
∥∥2

)
+ cn
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=
[(
1 − εnγ

)2 − 2
(
1 − εnγ

)
βn + β2n

]∥∥Wnθn − p
∥∥2 + β2n

∥∥xn − p
∥∥2

+
((

1 − εnγ
)
βn − β2n

)(∥∥Wnθn − p
∥∥2 +

∥∥xn − p
∥∥2

)
+ cn

=
[(
1 − εnγ

)2 − (
1 − εnγ

)
βn

]∥∥Wnθn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

)∥∥Wnθn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn,

(3.56)

where

cn = ε2n
∥∥γf(xn) −Ap

∥∥2 + 2βnεn〈xn − p, γf(xn) −Ap〉
+ 2εn〈

((
1 − βn

)
I − εnA

)(
Wnθn − p

)
, γf(xn) −Ap〉.

(3.57)

It follows from condition (C1) that

lim
n→∞

cn = 0. (3.58)

Substituting (3.54) into (3.56), and using condition (C6), we have

∥∥xn+1 − p
∥∥2 ≤ (

1 − εnγ
)(
1 − βn − εnγ

){∥∥xn − p
∥∥2 +

(
2τnu + τ2n −

2τnv

ξ2

)∥∥Bkn − Bp
∥∥2

}

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)2∥∥xn − p
∥∥2 +

(
1 − εnγ

)(
1 − βn − εnγ

)

×
(
2τnu + τ2n −

2τnv

ξ2

)∥∥Bkn − Bp
∥∥2 + cn

≤ ∥∥xn − p
∥∥2 +

(
2τnu + τ2n −

2τnv

ξ2

)∥∥Bkn − Bp
∥∥2 + cn.

(3.59)

It follows that

(
2av

ξ2
− 2bu − b2

)∥∥Bkn − Bp
∥∥2 ≤

(
2τnv

ξ2
− 2τnu − τ2n

)∥∥Bkn − Bp
∥∥2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + cn

=
(∥∥xn − p

∥∥ − ∥∥xn+1 − p
∥∥)(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)
+ cn

≤ ‖xn − xn+1‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)
+ cn.

(3.60)
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Since cn → 0 as n → ∞ and (3.48), we obtain

lim
n→∞

∥∥Bkn − Bp
∥∥ = 0. (3.61)

Note that

∥∥kn − p
∥∥2 ≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥Wnφn − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

{∥∥xn − p
∥∥2 +

(
2λnu + λ2n −

2λnv

ξ2

)∥∥Byn − Bp
∥∥2

}

≤ ∥∥xn − p
∥∥2 + (1 − αn)

(
2λnu + λ2n −

2λnv

ξ2

)∥∥Byn − Bp
∥∥2

,

(3.62)

∥∥yn − p
∥∥2 ≤ ϕn

∥∥un − p
∥∥ +

(
1 − ϕn

)∥∥Wnψn − p
∥∥2

≤ ϕn

∥∥xn − p
∥∥2 +

(
1 − ϕn

){∥∥xn − p
∥∥2 +

(
2δnu + δ2

n −
2δnv

ξ2

)∥∥Bun − Bp
∥∥2

}

≤ ∥∥xn − p
∥∥2 +

(
1 − ϕn

)(
2δnu + δ2

n −
2δnv

ξ2

)∥∥Bun − Bp
∥∥2

.

(3.63)

Using (3.56) again, we have

∥∥xn+1 − p
∥∥2 ≤ (

1 − εnγ
)(
1 − βn − εnγ

)∥∥Wnθn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

)∥∥θn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

)∥∥kn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn.

(3.64)

Substituting (3.62) into (3.64) and using condition (C2) and (C6), we have

∥∥xn+1 − p
∥∥2 ≤ (

1 − εnγ
)(
1 − βn − εnγ

){∥∥xn − p
∥∥2 + (1 − αn)

(
2λnu + λ2n −

2λnv

ξ2

)∥∥Byn − Bp
∥∥2

}

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)

(
2λnu + λ2n −

2λnv

ξ2

)∥∥Byn − Bp
∥∥2

+
(
1 − εnγ

)2∥∥xn − p
∥∥2 + cn

≤ ∥∥xn − p
∥∥2 + (1 − αn)

(
2λnu + λ2n −

2λnv

ξ2

)∥∥Byn − Bp
∥∥2 + cn.

(3.65)
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It follows that

(1 − αn)
(
2av

ξ2
− 2bu − b2

)∥∥Byn − Bp
∥∥2 ≤ (1 − αn)

(
2τnv

ξ2
− 2τnu − τ2n

)∥∥Byn − Bp
∥∥2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + cn

≤ ‖xn − xn+1‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)
+ cn.

(3.66)

Since cn → 0 as n → ∞ and (3.48), we obtain

lim
n→∞

∥∥Byn − Bp
∥∥ = 0. (3.67)

In a similar way, we can prove

lim
n→∞

∥∥Bun − Bp
∥∥ = 0. (3.68)

By (2.3), we also have

∥∥θn − p
∥∥2 =

∥∥PE(kn − τnBkn) − PE(p − τnBp)
∥∥2

=
∥∥PE(I − τnB)kn − PE(I − τnB)p

∥∥2

≤ 〈(I − τnB)kn − (I − τnB)p, θn − p〉

=
1

2

{∥∥(I − τnB)kn − (I − τnB)p
∥∥2 +

∥∥θn − p
∥∥2

−∥∥(I − τnB)kn − (I − τnB)p −
(
θn − p

)∥∥2
}

≤ 1

2

∥∥kn − p
∥∥2 +

∥∥θn − p
∥∥2 − ∥∥(kn − θn) − τn(Bkn − Bp)

∥∥2

≤ 1

2

{∥∥xn − p
∥∥2 +

∥∥θn − p
∥∥2 − ‖kn − θn‖2 − τ2n

∥∥Bkn − Bp
∥∥2 + 2τn

〈
kn − θn, Bkn − Bp

〉}
,

(3.69)

which yields that

∥∥θn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖kn − θn‖2 + 2τn‖kn − θn‖
∥∥Bkn − Bp

∥∥. (3.70)
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Substituting (3.70) into (3.56), we have

∥∥xn+1 − p
∥∥2 ≤ (

1 − εnγ
)(
1 − βn − εnγ

)∥∥Wnθn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

)∥∥θn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

){∥∥xn − p
∥∥2 − ‖kn − θn‖2 + 2τn‖kn − θn‖

∥∥Bkn − Bp
∥∥}

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)2∥∥xn − p
∥∥2 − (

1 − εnγ
)(
1 − βn − εnγ

)‖kn − θn‖2

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)
τn‖kn − θn‖

∥∥Bkn − Bp
∥∥ + cn

≤ ∥∥xn − p
∥∥2 − (

1 − εnγ
)(
1 − βn − εnγ

)‖kn − θn‖2

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)
τn‖kn − θn‖

∥∥Bkn − Bp
∥∥ + cn.

(3.71)

It follows that

(
1 − εnγ

)(
1 − βn − εnγ

)‖kn − θn‖2 ≤
∥∥xn − p

∥∥2 − ∥∥xn+1 − p
∥∥2

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)
τn‖kn − θn‖

∥∥Bkn − Bp
∥∥ + cn

≤ ‖xn − xn+1‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)
+ 2

(
1 − εnγ

)(
1 − βn − εnγ

)
τn‖kn − θn‖

∥∥Bkn − Bp
∥∥ + cn.

(3.72)

Applying ‖xn+1 − xn‖ → 0, ‖Bkn − Bp‖ → 0 and cn → 0 as n → ∞ to the last inequality, we
have

lim
n→∞

‖kn − θn‖ = 0. (3.73)

On the other hand, we have

∥∥Wnθn − p
∥∥2 ≤ ∥∥PE(kn − τnBkn) − PE(p − τnBp)

∥∥2

=
∥∥PE(I − τnB)kn − PE(I − τnB)p

∥∥2

≤ 〈(I − τnB)kn − (I − τnB)p,Wnθn − p〉

=
1

2

{∥∥(I − τnB)kn − (I − τnB)p
∥∥2 +

∥∥Wnθn − p
∥∥2

−∥∥(I − τnB)kn − (I − τnB)p −
(
Wnθn − p

)∥∥2
}
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≤ 1

2

∥∥kn − p
∥∥2 +

∥∥Wnθn − p
∥∥2 − ∥∥(kn −Wnθn) − τn(Bkn − Bp)

∥∥2

≤ 1

2

{∥∥xn − p
∥∥2 +

∥∥Wnθn − p
∥∥2 − ‖kn −Wnθn‖2

−τ2n
∥∥Bkn − Bp

∥∥2 + 2τn
〈
kn −Wnθn, Bkn − Bp

〉}
,

(3.74)

which yields that

∥∥Wnθn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖kn −Wnθn‖2 + 2τn‖kn −Wnθn‖
∥∥Bkn − Bp

∥∥. (3.75)

Similarly, we can prove

∥∥Wnφn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ∥∥yn −Wnφn

∥∥2 + 2λn
∥∥yn −Wnφn

∥∥∥∥Byn − Bp
∥∥, (3.76)

∥∥Wnψn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ∥∥un −Wnψn

∥∥2 + 2δn
∥∥un −Wnψn

∥∥∥∥Bun − Bp
∥∥. (3.77)

Substituting (3.75) into (3.56), we have

∥∥xn+1 − p
∥∥2 ≤ (

1 − εnγ
)(
1 − βn − εnγ

)∥∥Wnθn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

)
×

{∥∥xn − p
∥∥2 − ‖kn −Wnθn‖2 + 2τn‖kn −Wnθn‖

∥∥Bkn − Bp
∥∥}

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)2∥∥xn − p
∥∥2 − (

1 − εnγ
)(
1 − βn − εnγ

)‖kn −Wnθn‖2

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)
τn‖kn −Wnθn‖

∥∥Bkn − Bp
∥∥ + cn

≤ ∥∥xn − p
∥∥2 − (

1 − εnγ
)(
1 − βn − εnγ

)‖kn −Wnθn‖2

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)
τn‖kn −Wnθn‖

∥∥Bkn − Bp
∥∥ + cn,

(3.78)

which yields that

(
1 − εnγ

)(
1 − βn − εnγ

)‖kn −Wnθn‖2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + 2
(
1 − εnγ

)(
1 − βn − εnγ

)
τn‖kn −Wnθn‖

∥∥Bkn − Bp
∥∥ + cn

≤ ‖xn − xn+1‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)
+ 2

(
1 − εnγ

)(
1 − βn − εnγ

)
τn‖kn −Wnθn‖

∥∥Bkn − Bp
∥∥ + cn.

(3.79)
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Applying (3.48) and (3.61) to the last inequality, we have

lim
n→∞

‖kn −Wnθn‖ = 0. (3.80)

Using (3.64) again, we have

∥∥xn+1 − p
∥∥2 ≤ (

1 − εnγ
)(
1 − βn − εnγ

)∥∥kn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

){∥∥αn(xn − p) + (1 − αn)(Wnφn − p)
∥∥2

}
+

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

){
αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥Wnφn − p
∥∥2

}
+

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

)
αn

∥∥xn − p
∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)

∥∥Wnφn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

)
αn

∥∥xn − p
∥∥2 +

(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)

×
{∥∥xn − p

∥∥2 − ∥∥yn −Wnφn

∥∥2 + 2λn
∥∥yn −Wnφn

∥∥∥∥Byn − Bp
∥∥}

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

)
αn

∥∥xn − p
∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)

∥∥xn − p
∥∥2

− (
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)

∥∥yn −Wnφn

∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)2λn

∥∥yn −Wnφn

∥∥∥∥Byn − Bp
∥∥

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

)∥∥xn − p
∥∥2

− (
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)

∥∥yn −Wnφn

∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)2λn

∥∥yn −Wnφn

∥∥∥∥Byn − Bp
∥∥

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)2∥∥xn − p
∥∥2 − (

1 − εnγ
)(
1 − βn − εnγ

)
(1 − αn)

∥∥yn −Wnφn

∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)2λn

∥∥yn −Wnφn

∥∥∥∥Byn − Bp
∥∥ + cn

≤ ∥∥xn − p
∥∥2 − (

1 − εnγ
)(
1 − βn − εnγ

)
(1 − αn)

∥∥yn −Wnφn

∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)2λn

∥∥yn −Wnφn

∥∥∥∥Byn − Bp
∥∥ + cn,

(3.81)
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which implies that

(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)

∥∥yn −Wnφn

∥∥2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)λn

∥∥yn −Wnφn

∥∥∥∥Byn − Bp
∥∥ + cn

≤ ‖xn − xn+1‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)
+ 2

(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)λn

∥∥yn −Wnφn

∥∥∥∥Byn − Bp
∥∥ + cn.

(3.82)

From (3.48) and (3.67), we obtain

lim
n→∞

∥∥yn −Wnφn

∥∥ = 0. (3.83)

By using the same argument, we can prove that

lim
n→∞

∥∥un −Wnψn

∥∥ = 0. (3.84)

Note that

kn −Wnφn = αn

(
xn −Wnφn

)
,

yn −Wnψn = ϕn

(
un −Wnψn

)
.

(3.85)

Since αn → 0 and ϕn → 0 as n → ∞, respectively, we also have

lim
n→∞

∥∥kn −Wnφn

∥∥ = lim
n→∞

∥∥yn −Wnψn

∥∥ = 0. (3.86)

On the other hand, we observe

‖un − θn‖ ≤
∥∥un −Wnψn

∥∥ +
∥∥Wnψn − yn

∥∥ +
∥∥yn −Wnφn

∥∥ +
∥∥Wnφn − kn

∥∥ + ‖kn − θn‖.
(3.87)

Applying (3.73), (3.83), (3.84), and (3.86), we have

lim
n→∞

‖un − θn‖ = 0. (3.88)
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On the other hand, we have

∥∥kn − p
∥∥2 ≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥Wnφn − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥φn − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥yn − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

{
ϕn

∥∥un − p
∥∥2 +

(
1 − ϕn

)∥∥Wnψn − p
∥∥}

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

{
ϕn

∥∥un − p
∥∥2 +

(
1 − ϕn

)∥∥ψn − p
∥∥}

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

{
ϕn

∥∥un − p
∥∥2 +

(
1 − ϕn

)∥∥un − p
∥∥}

= αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥un − p
∥∥2

= αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥Trn(I − rnD)xn − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥(I − rnD)xn − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

{∥∥xn − p
∥∥2 − rn

(
2η − rn

)∥∥Dxn −Dp
∥∥2

}

=
∥∥xn − p

∥∥2 − (1 − αn)rn
(
2η − rn

)∥∥Dxn −Dp
∥∥2
.

(3.89)

Substituting (3.89) into (3.64) and using conditions (C2) and (C7), we have

∥∥xn+1 − p
∥∥2 ≤ (

1 − εnγ
)(
1 − βn − εnγ

)∥∥kn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

){∥∥xn − p
∥∥2 − (1 − αn)rn

(
2η − rn

)∥∥Dxn −Dp
∥∥2

}

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

)
(1 − αn)rn

(
2η − rn

)∥∥Dxn −Dp
∥∥2

+
(
1 − εnγ

)2∥∥xn − p
∥∥2 + cn

≤ ∥∥xn − p
∥∥2 − (1 − αn)rn

(
2η − rn

)∥∥Dxn −Dp
∥∥.

(3.90)

This implies that

(1 − αn)rn
(
2η − rn

)∥∥Dxn −Dp
∥∥ ≤ ∥∥xn − p

∥∥2 − ∥∥xn+1 − p
∥∥2 + cn. (3.91)

In view of the restrictions (C2) and (C7), we obtain that

lim
n→∞

∥∥Dxn −Dp
∥∥ = 0. (3.92)
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Let p ∈ Θ :=
⋂∞

n=1 F(Tn) ∩ EP(F,D) ∩ VI(E, B). Since un = Trn(xn − rnDxn) and Trn is firmly
nonexpansive (Lemma 2.6), then we obtain

∥∥un − p
∥∥2 =

∥∥Trn(xn − rnDxn) − Trn(p − rnDp)
∥∥2

≤ 〈Trn(xn − rnDxn) − Trn
(
p − rnDp

)
, un − p〉

= 〈xn − rnDxn −
(
p − rnDp

)
, un − p〉

=
1

2

{∥∥(xn − rnDxn) −
(
p − rnDp

)∥∥2 +
∥∥un − p

∥∥2

−∥∥(xn − rnDxn) −
(
p − rnDp

) − (
un − p

)∥∥2
}

≤ 1

2

{∥∥xn − p
∥∥2 +

∥∥un − p
∥∥2 − ∥∥xn − un − rn

(
Dxn −Dp

)∥∥2
}

=
1

2

{∥∥xn − p
∥∥2 +

∥∥un − p
∥∥2 − ‖xn − un‖2 + 2rn

〈
xn − un,Dxn −Dp

〉

−r2n
∥∥Dxn −Dp

∥∥2
}
.

(3.93)

So, we obtain

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖xn − un‖2 + 2rn‖xn − un‖
∥∥Dxn −Dp

∥∥. (3.94)

Therefore, we have

∥∥xn+1 − p
∥∥2 =

(
1 − εnγ

)(
1 − βn − εnγ

)∥∥Wnθn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

)∥∥θn − p
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)(
1 − βn − εnγ

)∥∥(θn − un) + (un − p)
∥∥2 +

(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

){‖θn − un‖2 +
∥∥un − p

∥∥2 + 2〈θn − un, un − p〉
}

+
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖2 +
(
1 − εnγ

)(
1 − εnγ − βn

)∥∥un − p
∥∥2

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖
∥∥un − p

∥∥ +
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

≤ (
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖2

+
(
1 − εnγ

)(
1 − βn − εnγ

){∥∥xn − p
∥∥2 − ‖xn − un‖2 + 2rn‖xn − un‖

∥∥Dxn −Dp
∥∥}

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖
∥∥un − p

∥∥ +
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn
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=
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖2 +
(
1 − εnγ

)(
1 − βn − εnγ

)∥∥xn − p
∥∥2

− (
1 − εnγ

)(
1 − βn − εnγ

)‖xn − un‖2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
2rn‖xn − un‖

∥∥Dxn −Dp
∥∥

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖
∥∥un − p

∥∥ +
(
1 − εnγ

)
βn

∥∥xn − p
∥∥2 + cn

=
(
1 − εnγ

)2∥∥xn − p
∥∥2 − (

1 − εnγ
)(
1 − βn − εnγ

)‖xn − un‖2

+
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
2rn‖xn − un‖

∥∥Dxn −Dp
∥∥

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖
∥∥un − p

∥∥ + cn

=
(
1 − 2εnγ +

(
εnγ

)2)∥∥xn − p
∥∥2 − (

1 − εnγ
)(
1 − βn − εnγ

)‖xn − un‖2

+
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
2rn‖xn − un‖

∥∥Dxn −Dp
∥∥

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖
∥∥un − p

∥∥ + cn

≤ ∥∥xn − p
∥∥2 +

(
εnγ

)2∥∥xn − p
∥∥2 +

(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖2

− (
1 − εnγ

)(
1 − βn − εnγ

)‖xn − un‖2

+
(
1 − εnγ

)(
1 − βn − εnγ

)
2rn‖xn − un‖

∥∥Dxn −Dp
∥∥

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖
∥∥un − p

∥∥ + cn. (3.95)

It follows that

(
1 − εnγ

)(
1 − βn − εnγ

)‖xn − un‖2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 +
(
εnγ

)2∥∥xn − p
∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖2 +
(
1 − εnγ

)(
1 − βn − εnγ

)
2rn‖xn − un‖

∥∥Dxn −Dp
∥∥

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖
∥∥un − p

∥∥ + cn

≤ ‖xn − xn+1‖
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)
+

(
εnγ

)2∥∥xn − p
∥∥2

+
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖2 +
(
1 − εnγ

)(
1 − βn − εnγ

)
2rn‖xn − un‖

∥∥Dxn −Dp
∥∥

+ 2
(
1 − εnγ

)(
1 − βn − εnγ

)‖θn − un‖
∥∥un − p

∥∥ + cn.

(3.96)

Using εn → 0, cn → 0 as n → ∞, (3.48), (3.88), and (3.92), we obtain

lim
n→∞

‖xn − un‖ = 0. (3.97)
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Since lim infn→∞rn > 0, we obtain

lim
n→∞

∥∥∥∥xn − un

rn

∥∥∥∥ = lim
n→∞

1

rn
‖xn − un‖ = 0. (3.98)

Note that

‖xn − θn‖ ≤ ‖xn − un‖ + ‖un − θn‖, (3.99)

and thus from (3.88) and (3.97), we have

lim
n→∞

‖xn − θn‖ = 0. (3.100)

Observe that

‖Wnθn − θn‖ ≤ ‖Wnθn − xn‖ + ‖xn − θn‖. (3.101)

Applying (3.53) and (3.100), we obtain

lim
n→∞

‖Wnθn − θn‖ = 0. (3.102)

Let W be the mapping defined by (2.11). Since {θn} is bounded, applying Lemma 2.10 and
(3.102), we have

‖Wθn − θn‖ ≤ ‖Wθn −Wnθn‖ + ‖Wnθn − θn‖ −→ 0 as n −→ ∞. (3.103)

Step 5. We claim that lim supn→∞〈(A − γf)z, z − xn〉 ≤ 0, where z is the unique solution of
the variational inequality 〈(A − γf)z, x − z〉 ≥ 0, for all x ∈ Θ.

Since z = PΘ(I − A + γf)(z) is a unique solution of the variational inequality (3.5), to
show this inequality, we choose a subsequence {θni} of {θn} such that

lim
i→∞

〈(A − γf
)
z, z − θni〉 = lim sup

n→∞
〈(A − γf

)
z, z − θn〉. (3.104)

Since {θni} is bounded, there exists a subsequence {θnij
} of {θni} which converges weakly to

w ∈ E. Without loss of generality, we can assume that θni ⇀ w. From ‖Wθn − θn‖ → 0, we
obtain Wθni ⇀ w. Next, We show that w ∈ Θ, where Θ :=

⋂∞
n=1 F(Tn) ∩ EP(F,D) ∩ VI(E, B).

(a) First, we prove w ∈ EP(F,D).
Since un = Trn(xn − rnDxn), we know that

F
(
un, y

)
+ 〈Dxn, y − un〉 + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ E. (3.105)



Journal of Inequalities and Applications 35

From (A2), we also have

〈Dxn, y − un〉 + 1

rn
〈y − un, un − xn〉 ≥ −F

(
un, y

) ≥ F
(
y, un

)
. (3.106)

Replacing n by ni, we have

〈
Dxni , y − uni

〉
+

〈
y − uni ,

uni − xni

rni

〉
≥ F

(
y, uni

)
. (3.107)

For any twith 0 < t ≤ 1 and y ∈ E, let ϕt = ty+(1− t)z. Since y ∈ E and z ∈ E,we have ϕt ∈ E.
So, from (3.107)we have

〈ϕt − uni ,Dϕt〉 ≥ 〈ϕt − uni ,Dϕt〉 − 〈Dxni , ϕt − uni〉 −
〈
ϕt − uni ,

uni − xni

rni

〉
+ F

(
ϕt, uni

)
≥ 〈ϕt − uni ,Dϕt −Duni〉 + 〈ϕt − uni ,Duni −Dxni〉

− 〈ϕt − uni ,
uni − xni

rni

〉 + F
(
ϕt, uni

)
.

(3.108)

Since D is Lipschitz continuous, from (3.97), we have ‖Duni −Dxni‖ → 0 as i → ∞.
Further, from the monotonicity of D, we get that

〈ϕt − uni ,Dϕt −Duni〉 ≥ 0. (3.109)

It follows from (A4) and (3.108) that

〈ϕt − z,Dϕt〉 ≥ F
(
ϕt, z

)
. (3.110)

From (A1), (A4), and (3.110), we also have

0 = F
(
ϕt, ϕt

) ≤ tF
(
ϕt, y

)
+ (1 − t)F

(
ϕt, z

)
≤ tF

(
ϕt, y

)
+ (1 − t)

〈
ϕt − z,Dϕt

)
= tF

(
ϕt, y

)
+ (1 − t)t

〈
y − z,Dϕt

)
,

(3.111)

and hence

F
(
ϕt, y

)
+ (1 − t)

〈
y − z,Dϕt

) ≥ 0. (3.112)
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Letting t → ∞ in the above inequality, we have, for each y ∈ E,

F
(
z, y

)
+

〈
y − z,Dz

) ≥ 0. (3.113)

Thus z ∈ EP(F,D).
(b) Next, we show that w ∈ ⋂∞

n=1 F(Tn).
By Lemma 2.9, we have F(W) =

⋂∞
n=1 F(Tn). Assume w/∈F(W). Since ‖xn − θn‖ →

0, we know that θni ⇀ w (i → ∞) and w/=Ww, and it follows by the Opial’s condition
(Lemma 2.3) that

lim inf
i→∞

‖θni −w‖ < lim inf
i→∞

‖θni −Ww‖

≤ lim inf
i→∞

(‖θni −Wθni‖ + ‖Wθni −Ww‖)

< lim inf
i→∞

‖θni −w‖,

(3.114)

that is a contradiction. Thus, we have w ∈ F(W) =
⋂∞

n=1 F(Tn).
(c) Finally, Now we prove that w ∈ VI(E, B). Define,

Tw1 =

⎧⎨
⎩
Bw1 +NEw1, if w1 ∈ E,

∅, if w1 /∈E.
(3.115)

Since B is relaxed (u, v)-cocoercive and condition (C6), we have

〈
Bx − By, x − y

〉 ≥ (−u)∥∥Bx − By
∥∥2 + v

∥∥x − y
∥∥2 ≥

(
v − uξ2

)∥∥x − y
∥∥2 ≥ 0, (3.116)

which yields that B is monotone. Then, T is maximal monotone. Let (w1, w2) ∈ G(T). Since
w2 − Bw1 ∈ NEw1 and θn ∈ E, we have 〈w1 − θn,w2 − Bw1〉 ≥ 0. On the other hand, from
θn = PE(kn − τnBkn), we have

〈w1 − θn, θn − (kn − τnBkn)〉 ≥ 0, (3.117)

and hence

〈
w1 − θn,

(θn − kn)
τn

+ Bkn

〉
≥ 0. (3.118)
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Therefore, we have

〈w1 − θni , w〉 ≥ 〈w1 − θni , Bw1〉

≥ 〈w1 − θni , Bw1〉 −
〈
w1 − θni ,

(θni − kni)
τni

+ Bkni

〉

=
〈
w1 − θni , Bw1 − Bkni −

(θni − kni)
τni

〉

= 〈w1 − θni , Bv − Bθni〉 + 〈w1 − θni , Bθni − Bkni〉 −
〈
w1 − θni ,

(θni − kni)
τni

〉

≥ 〈w1 − θni , Bθni − Bkni〉 −
〈
w1 − θni ,

(θni − kni)
τni

〉
,

(3.119)

which implies that

〈w1 −w,w2〉 ≥ 0. (3.120)

Since T is maximal monotone, we have w ∈ T−10 and hence w ∈ VI(E, B). That is, w ∈ Θ,
where Θ :=

⋂∞
n=1 F(Tn) ∩ EP(F,D) ∩ VI(E, B). Since z = PΘ(I −A + γf)(z), it follows that

lim sup
n→∞

〈(A − γf
)
z, z − xn〉 = lim sup

n→∞
〈(A − γf

)
z, z − θn〉

= lim
i→∞

〈(A − γf
)
z, z − θni〉

= 〈(A − γf
)
z, z −w〉 ≤ 0.

(3.121)

On the other hand, we have

〈(A − γf
)
z, z −Wnθn〉 = 〈(A − γf

)
z, xn −Wnθn〉 + 〈

(
A − γf

)
z, z − xn〉

≤ ∥∥(
A − γf

)
z
∥∥‖xn −Wnθn‖ + 〈

(
A − γf

)
z, z − xn〉.

(3.122)

From (3.53) and (3.121), we obtain that

lim sup
n→∞

〈γf(z) −Az,Wnθn − z〉 ≤ 0. (3.123)

Step 6. Finally, we show that {xn} and {un} converge strongly to z = PΘ(I −A + γf)(z).
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Indeed, from (3.4) and Lemma 2.4, we obtain

‖xn+1 − z‖2 = ∥∥εnγf(Wnxn) + βnxn + ((1 − βn)I − εnA)Wnθn − z
∥∥2

=
∥∥((1 − βn)I − εnA)(Wnθn − z) + βn(xn − z) + εn(γf(Wnxn) −Az)

∥∥2

=
∥∥((1 − βn)I − εnA)(Wnθn − z) + βn(xn − z)

∥∥2 + ε2n
∥∥γf(Wnxn) −Az

∥∥2

+ 2βnεn〈xn − z, γf(Wnxn) −Az〉
+ 2εn〈

((
1 − βn

)
I − εnA

)
(Wnθn − z), γf(Wnxn) −Az〉

≤ ((
1 − βn − εnγ

)‖Wnθn − z‖ + βn‖xn − z‖)2 + ε2n
∥∥γf(Wnxn) −Az

∥∥2

+ 2βnεnγ〈xn − z, f(Wnxn) − f(z)〉 + 2βnεn〈xn − z, γf(z) −Az〉
+ 2

(
1 − βn

)
γεn〈Wnθn − z, f(Wnxn) − f(z)〉

+ 2
(
1 − βn

)
εn〈Wnθn − z, γf(z) −Az〉 − 2ε2n〈A(Wnθn − z), γf(z) −Az〉,

≤ ((
1 − βn − εnγ

)‖Wnθn − z‖ + βn‖xn − z‖)2 + ε2n
∥∥γf(Wnxn) −Az

∥∥2

+ 2βnεnγ‖xn − z‖∥∥f(Wnxn) − f(z)
∥∥ + 2βnεn〈xn − z, γf(z) −Az〉

+ 2
(
1 − βn

)
γεn‖Wnθn − z‖∥∥f(Wnxn) − f(z)

∥∥
+ 2

(
1 − βn

)
εn〈Wnθn − z, γf(z) −Az〉 − 2ε2n〈A(Wnθn − z), γf(z) −Az〉,

≤ ((
1 − βn − εnγ

)‖θn − z‖ + βn‖xn − z‖)2 + ε2n
∥∥γf(Wnxn) −Az

∥∥2

+ 2βnεnγ‖xn − z‖∥∥f(Wnxn) − f(z)
∥∥ + 2βnεn〈xn − z, γf(z) −Az〉

+ 2
(
1 − βn

)
γεn‖θn − z‖∥∥f(Wnxn) − f(z)

∥∥ + 2
(
1 − βn

)
εn〈Wnθn − z, γf(z) −Az〉

− 2ε2n〈A(Wnθn − z), γf(z) −Az〉

≤ ((
1 − βn − εnγ

)‖xn − z‖ + βn‖xn − z‖)2 + ε2n
∥∥γf(Wnxn) −Az

∥∥2

+ 2βnεnγα‖xn − z‖2 + 2βnεn〈xn − z, γf(z) −Az〉

+ 2
(
1 − βn

)
γεnα‖xn − z‖2

+ 2
(
1 − βn

)
εn〈Wnθn − z, γf(z) −Az〉 − 2ε2n〈A(Wnθn − z), γf(z) −Az〉

=
[(
1 − εnγ

)2 + 2βnεnγα + 2
(
1 − βn

)
γεnα

]
‖xn − z‖2 + ε2n

∥∥γf(Wnxn) −Az
∥∥2

+ 2βnεn〈xn − z, γf(z) −Az〉 + 2
(
1 − βn

)
εn〈Wnθn − z, γf(z) −Az〉

− 2ε2n〈A(Wnθn − z), γf(z) −Az〉

≤ [
1 − 2

(
γ − αγ

)
εn

]‖xn − z‖2 + γ2ε2n‖xn − z‖2 + ε2n
∥∥γf(Wnxn) −Az

∥∥2

+ 2βnεn〈xn − z, γf(z) −Az〉 + 2
(
1 − βn

)
εn〈Wnθn − z, γf(z) −Az〉

+ 2ε2n‖A(Wnθn − z)‖∥∥γf(z) −Az
∥∥
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=
[
1 − 2

(
γ − αγ

)
εn

]‖xn − z‖2

+ εn
{
εn

(
γ2‖xn − z‖2 + ∥∥γf(Wnxn) −Az

∥∥2 + 2‖A(Wnθn − z)‖∥∥γf(z) −Az
∥∥)

+2βn〈xn − z, γf(z) −Az〉 + 2
(
1 − βn

)〈Wnθn − z, γf(z) −Az〉}. (3.124)

Since {xn}, {f(Wnxn)}, and {Wnθn} are bounded, we can take a constant M > 0 such that

γ2‖xn − z‖2 + ∥∥γf(Wnxn) −Az
∥∥2 + 2‖A(Wnθn − z)‖∥∥γf(z) −Az

∥∥ ≤ M (3.125)

for all n ≥ 0. It then follows that

‖xn+1 − z‖2 ≤ (1 − ln)‖xn − z‖2 + εnσn, (3.126)

where

ln = 2
(
γ − αγ

)
εn,

σn = εnM + 2βn〈xn − z, γf(z) −Az〉 + 2
(
1 − βn

)〈Wnθn − z, γf(z) −Az〉.
(3.127)

Using (C1), (3.121), and (3.123), we get ln → 0,
∑∞

n=1 ln = ∞ and lim supn→∞(σn/ln) ≤ 0.
Applying Lemma 2.13 to (3.126), we conclude that xn → z in norm. Finally, noticing ‖un −
z‖ = ‖Trn(xn − rnDxn) − Trn(z − rnDz)‖ ≤ ‖xn − z‖, we also conclude that un → z in norm.
This completes the proof.

Corollary 3.4. Let E be a nonempty closed convex subset of a real Hilbert spaceH. Let F : E×E → R

be a bifunction satisfying (A1)–(A4), let B : E → H be relaxed (u, v)-cocoercive and ξ-Lipschitz
continuous mappings, and let {Tn} be an infinite family of nonexpansive mappings of E into itself
such that Θ :=

⋂∞
n=1 F(Tn) ∩ EP(F) ∩ VI(E, B)/= ∅. Let f be a contraction mapping of E into itself

with α ∈ (0, 1). Let {xn}, {yn}, {kn}, and {un} be sequences generated by

x1 ∈ E chosen arbitrary,

F
(
un, y

)
+

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ E,

yn = ϕnun +
(
1 − ϕn

)
WnPE(un − δnBun),

kn = αnxn + (1 − αn)WnPE

(
yn − λnByn

)
,

xn+1 = εnf(Wnxn) + βnxn + γnWnPE(kn − τnBkn), ∀n ≥ 1,

(3.128)

where {Wn} is the sequence generated by (1.24) and {εn}, {αn}, {ϕn}, and {βn} are sequences in
(0, 1) and {rn} is a real sequence in (0,∞) satisfying the following conditions:

(C1) εn + βn + γn = 1,

(C2) limn→∞εn = 0,
∑∞

n=1 εn = ∞,
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(C4) limn→∞αn = limn→∞ϕn = 0,

(C5) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

(C6) limn→∞|λn+1 − λn| = limn→∞|δn+1 − δn| = limn→∞|τn+1 − τn| = 0,

(C7) {τn}, {λn}, {δn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v − uξ2)/ξ2, v > uξ2.

Then, {xn} and {un} converge strongly to a point z ∈ Θ, where z = PΘf(z).

Proof. PutA = I, γ ≡ 1, γn = 1−εn−βn,D = 0 (:the zero mapping) and {εn} = 0 in Theorem 3.3.
Then yn = vn = un, and for any η > 0, we see that

〈Dx −Dy, x − y〉 ≥ η
∥∥Dx −Dy

∥∥2
, ∀x, y ∈ E. (3.129)

Let {rn} be a sequence satisfying the restriction: c ≤ rn ≤ d, where c, d ∈ (0,∞). Then we can
obtain the desired conclusion easily from Theorem 3.3.

Corollary 3.5. Let E be a nonempty closed convex subset of a real Hilbert space H. Let {Tn} be an
infinite family of nonexpansive mappings of E into itself and let B : E → H be relaxed (u, v)-
cocoercive and ξ-Lipschitz continuous mappings such that Θ :=

⋂∞
n=1 F(Tn) ∩ VI(E, B)/= ∅. Let f :

E → E be a contraction mapping with 0 < α < 1 and let A be a strongly positive linear bounded
operator on H with coefficient γ > 0 and 0 < γ < γ/α. Let {xn},{yn}, and {kn} be sequences
generated by

x1 ∈ E chosen arbitrary,

yn = ϕnxn +
(
1 − ϕn

)
WnPE(xn − δnBxn),

kn = αnxn + (1 − αn)WnPE

(
yn − λnByn

)
,

xn+1 = εnγf(Wnxn) + βnxn +
((
1 − βn

)
I − εnA

)
WnPE(kn − τnBkn), ∀n ≥ 1,

(3.130)

where {Wn} is the sequence generated by (1.24) and {εn}, {αn}, {ϕn}, and {βn} are sequences in
(0, 1) satisfying the following conditions:

(C1) limn→∞εn = 0,
∑∞

n=1 εn = ∞,

(C2) limn→∞αn = limn→∞ϕn = 0,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

(C4) limn→∞|λn+1 − λn| = limn→∞|δn+1 − δn| = limn→∞|τn+1 − τn| = 0,

(C5) {τn}, {λn}, {δn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v − uξ2)/ξ2, v > uξ2.

Then, {xn} converges strongly to a point z ∈ Θ, where z = PΘ(I − A + γf)(z), which solves the
variational inequality

〈(
A − γf

)
z, x − z

〉 ≥ 0, ∀x ∈ Θ, (3.131)
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which is the optimality condition fot the minimization problem

min
x∈Θ

{
1

2
〈Ax, x〉 − h(x)

}
, (3.132)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

Proof. Put D = 0, F(x, y) = 0 for all x, y ∈ E and rn = 1 for all n ∈ N in Theorem 3.3. Then, we
have un = PCxn = xn. So, by Theorem 3.3, we can conclude the desired conclusion easily.
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[13] A. Moudafi and M. Théra, “Proximal and dynamical approaches to equilibrium problems,” in
Ill-Posed Variational Problems and Regularization Techniques (Trier, 1998), vol. 477 of Lecture Notes in
Economics and Mathematical Systems, pp. 187–201, Springer, Berlin, Germany, 1999.



42 Journal of Inequalities and Applications

[14] X. Qin, Y. J. Cho, and S. M. Kang, “Viscosity approximation methods for generalized equilibrium
problems and fixed point problems with applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 72, no. 1, pp. 99–112, 2010.

[15] Y. J. Cho, X. Qin, and S. M. Kang, “Some results for equilibrium problems and fixed point problems
in Hilbert spaces,” Journal of Computational Analysis and Applications, vol. 11, no. 2, pp. 294–316, 2009.

[16] Y. J. Cho, X. Qin, and J. I. Kang, “Convergence theorems based on hybrid methods for generalized
equilibrium problems and fixed point problems,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 71, no. 9, pp. 4203–4214, 2009.

[17] C. S Hu and G. Cai, “Viscosity approximation schemes for fixed point problems and equilibrium
problems and variational inequality problems,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 72, no. 3-4, pp. 1792–1808, 2010.

[18] N.-J. Huang, H.-Y. Lan, and K. L. Teo, “On the existence and convergence of approximate solutions
for equilibrium problems in Banach spaces,” Journal of Inequalities and Applications, vol. 2007, Article
ID 17294, 14 pages, 2007.

[19] C. Jaiboon and P. Kumam, “Strong convergence theorems for solving equilibrium problems and fixed
point problems of ξ-strict pseudo-contraction mappings by two hybrid projection methods,” Journal
of Computational and Applied Mathematics. In press.

[20] C. Jaiboon and P. Kumam, “A hybrid extragradient viscosity approximation method for solving
equilibrium problems and fixed point problems of infinitely many nonexpansive mappings,” Fixed
Point Theory and Applications, vol. 2009, Article ID 374815, 32 pages, 2009.

[21] C. Jaiboon, W. Chantarangsi, and P. Kumam, “A convergence theorem based on a hybrid relaxed
extragradient method for generalized equilibrium problems and fixed point problems of a finite
family of nonexpansive mappings,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 1, pp. 199–215,
2010.

[22] A. Kangtunyakarn and S. Suantai, “A new mapping for finding common solutions of equilibrium
problems and fixed point problems of finite family of nonexpansive mappings,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 71, no. 10, pp. 4448–4460, 2009.

[23] Q.-Y. Liu, W.-Y. Zeng, and N.-J. Huang, “An iterative method for generalized equilibrium problems,
fixed point problems and variational inequality problems,” Fixed Point Theory and Applications, vol.
2009, Article ID 531308, 20 pages, 2009.

[24] A. Moudafi, “Weak convergence theorems for nonexpansive mappings and equilibrium problems,”
Journal of Nonlinear and Convex Analysis, vol. 9, no. 1, pp. 37–43, 2008.

[25] J.-W. Peng, Y. Wang, D. S. Shyu, and J.-C. Yao, “Common solutions of an iterative scheme for
variational inclusions, equilibrium problems, and fixed point problems,” Journal of Inequalities and
Applications, vol. 2008, Article ID 720371, 15 pages, 2008.

[26] X. Qin, M. Shang, and Y. Su, “A general iterative method for equilibrium problems and fixed point
problems in Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 11, pp.
3897–3909, 2008.

[27] S. Takahashi and W. Takahashi, “Strong convergence theorem for a generalized equilibrium problem
and a nonexpansive mapping in a Hilbert space,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 69, no. 3, pp. 1025–1033, 2008.

[28] W.-Y. Zeng, N.-J. Huang, and C.-W. Zhao, “Viscosity approximation methods for generalized mixed
equilibrium problems and fixed points of a sequence of nonexpansive mappings,” Fixed Point Theory
and Applications, vol. 2008, Article ID 714939, 15 pages, 2008.

[29] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of
Nonlinear and Convex Analysis, vol. 6, pp. 117–136, 2005.

[30] W. Takahashi and M. Toyoda, “Weak convergence theorems for nonexpansive mappings and
monotone mappings,” Journal of Optimization Theory and Applications, vol. 118, no. 2, pp. 417–428,
2003.

[31] M. Shang, Y. Su, and X. Qin, “Strong convergence theorem for nonexpansive mappings and relaxed
cocoercive mappings,” International Journal of Applied Mathematics and Mechanics, vol. 3, no. 4, pp. 24–
34, 2007.

[32] F. Deutsch and I. Yamada, “Minimizing certain convex functions over the intersection of the fixed
point sets of nonexpansive mappings,” Numerical Functional Analysis and Optimization, vol. 19, no.
1-2, pp. 33–56, 1998.



Journal of Inequalities and Applications 43

[33] I. Yamada, “The hybrid steepest descent method for the variational inequality problem over the
intersection of fixed point sets of nonexpansive mappings,” in Inherently Parallel Algorithms in
Feasibility and Optimization and Their Applications (Haifa, 2000), D. Butnariu, Y. Censor, and S. Reich,
Eds., vol. 8 of Studies in Computational Mathematics, pp. 473–504, North-Holland, Amsterdam, The
Netherlands, 2001.

[34] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society,
vol. 66, no. 1, pp. 240–256, 2002.

[35] H. K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory and
Applications, vol. 116, no. 3, pp. 659–678, 2003.

[36] G. Marino and H.-K. Xu, “A general iterative method for nonexpansive mappings in Hilbert spaces,”
Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43–52, 2006.

[37] S.-S. Chang, H.W. J. Lee, and C. K. Chan, “A newmethod for solving equilibrium problem fixed point
problem and variational inequality problem with application to optimization,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 70, no. 9, pp. 3307–3319, 2009.

[38] Y. Yao, M. A. Noor, and Y.-C. Liou, “On iterative methods for equilibrium problems,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp. 497–509, 2009.

[39] Y. J. Cho and X. Qin, “Generalized systems for relaxed cocoercive variational inequalities and
projection methods in Hilbert spaces,” Mathematical Inequalities & Applications, vol. 12, no. 2, pp. 365–
375, 2009.

[40] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive
mappings,” Bulletin of the American Mathematical Society, vol. 73, pp. 591–597, 1967.

[41] K. Shimoji and W. Takahashi, “Strong convergence to common fixed points of infinite nonexpansive
mappings and applications,” Taiwanese Journal of Mathematics, vol. 5, no. 2, pp. 387–404, 2001.

[42] T. Suzuki, “Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter non-
expansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications,
vol. 305, no. 1, pp. 227–239, 2005.

[43] H.-K. Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of Mathematical
Analysis and Applications, vol. 298, no. 1, pp. 279–291, 2004.



JAMCJ Appl Math Comput (2009) 29: 263–280
DOI 10.1007/s12190-008-0129-1

A new hybrid iterative method for solution
of equilibrium problems and fixed point problems
for an inverse strongly monotone operator
and a nonexpansive mapping

Poom Kumam

Received: 21 May 2008 / Revised: 21 July 2008 / Published online: 9 August 2008
© Korean Society for Computational and Applied Mathematics 2008

Abstract In this paper, we introduce an iterative scheme by a new hybrid method
for finding a common element of the set of fixed points of a nonexpansive map-
ping, the set of solutions of an equilibrium problem and the set of solutions of the
variational inequality for α-inverse-strongly monotone mappings in a real Hilbert
space. We show that the iterative sequence converges strongly to a common element
of the above three sets under some parametric controlling conditions by the new
hybrid method which is introduced by Takahashi et al. (J. Math. Anal. Appl., doi:
10.1016/j.jmaa.2007.09.062, 2007). The results are connected with Tada and Taka-
hashi’s result [A. Tada and W. Takahashi, Weak and strong convergence theorems for
a nonexpansive mappings and an equilibrium problem, J. Optim. Theory Appl. 133,
359–370, 2007]. Moreover, our result is applicable to a wide class of mappings.
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1 Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let C be
a closed convex subset of H and let PC be the metric projection of H onto C. Let F
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be a bifunction of C×C into R, where R is the set of real numbers. The equilibrium
problem for F : C ×C→R is to find x ∈ C such that

F(x, y)≥ 0 for all y ∈ C. (1.1)

The set of such solutions is denoted by EP(F ). This problem contains fixed point
problems, includes as special cases numerous problems in physics, optimization, and
economics. Some methods have been proposed to solve the equilibrium problem,
please consult [3, 4, 21]. Let A of C in to H be a nonlinear mapping. The classical
variational inequality problem is to find u ∈ C such that 〈v−u,Au〉 ≥ 0 for all v ∈ C.

We denoted by VI(A,C) the set of solutions of this variational inequality problem.
The variational inequality has been extensively studied in the literature; see [27, 28]
and the references therein.
The above formulation (1.1) was shown in [1] to cover monotone inclusion prob-

lems, saddle point problems, variational inequality problems, minimization problems,
optimization problems, variational inequality problems, vector equilibrium problems,
Nash equilibria in noncooperative games. In addition, there are several other prob-
lems, for example, the complementarity problem, fixed point problem and optimiza-
tion problem, which can also be written in the form of an EP(F ). In other words,
the EP(F ) is an unifying model for several problems arising in physics, engineer-
ing, science, optimization, economics, etc. In the last two decades, many papers have
appeared in the literature on the existence of solutions of EP(F ); see, for example
[1, 4, 10, 21] and references therein. Some solution methods have been proposed
to solve the EP(F ); see, for example, [3, 4, 18, 19, 21] and references therein. In
2005, Combettes and Hirstoaga [3] introduced an iterative scheme of finding the best
approximation to the initial data when EP(F ) is nonempty and they also proved a
strong convergence theorem. They also studied the strong convergence of the se-
quences generated by their algorithm to a solution of EP(F ) which is also a fixed
point of a nonexpansive mapping on a closed convex subset of a Hilbert space.
Recall, a mapping S : C→ C is said to be nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖,
for all x, y ∈ C. We denote by F(S) the set of fixed points of S. If C is bounded closed
convex and S is a nonexpansive mapping of C into itself, then F(S) is nonempty
(see [8]). We write xn → x (xn ⇀ x, resp.) if {xn} converges (weakly, resp.) to x.
A mapping A of C into H is called monotone if

〈Au−Av,u− v〉 ≥ 0.
A mapping A of C into H is called α-inverse-strongly-monotone if there exists a
positive real number α such that

〈Au−Av,u− v〉 ≥ α‖Au−Av‖2, (1.2)

for all u,v ∈ C. It is obvious that any α -inverse-strongly-monotone mapping A is
monotone and Lipschitz continuous.
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In 1953, Mann [9] introduced the iteration as follows: a sequence {xn} defined by

xn+1 = αnxn + (1− αn)Sxn, (1.3)

where the initial guess element x0 ∈ C is arbitrary and {αn} is a real sequence in
[0,1]. The Mann iteration has been extensively investigated for nonexpansive map-
pings. One of the fundamental convergence results is proved by Reich [12]. In an
infinite-dimensional Hilbert space, the Mann iteration can conclude only weak con-
vergence [5]. Attempts to modify the Mann iteration method (1.3) so that strong
convergence is guaranteed have recently been made. Generally speaking, the algo-
rithm suggested by Takahashi and Toyoda [22] is based on two well-known types
of methods, namely, on the projection-type methods for solving variational inequal-
ity problems and so-called hybrid or outer-approximation methods for solving fixed
point problems. The idea of “hybrid” or “outer-approximation” types of methods was
originally introduced by Haugazeau in 1968; see [2] for more details.
Recently, for finding an element of EP(F ) ∩ F(S), Tada and Takahashi [19] in-

troduced the following iterative scheme by the hybrid method in a Hilbert space:
x0 = x ∈H and let

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un ∈ C such that F(un, y)+ 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

wn = (1− αn)xn + αnSun,

Cn = {z ∈H : ‖wn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(1.4)

for every n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0,1) and {rn} ⊂ (0,∞) sat-
isfies lim infn→∞ rn > 0. Further, they proved {xn} and {un} converge strongly to
z ∈ F(S)∩ EP(F ), where z= PF(S)∩EP(F )x0.

On the other hand, for finding an element of F(S)∩VI(C,A) under the assumption
that a set C ⊂H is closed and convex, a mapping S of C into itself is nonexpansive
and a mappingA of C intoH is α-inverse-strongly-monotone, Takahashi and Toyoda
[22] introduced the following iterative scheme:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn) (1.5)

for every n= 0,1,2, . . . , where x0 = x ∈ C, {αn} is a sequence in (0,1) and {λn} is a
sequence in (0,2α). They shown that, if F(S)∩ VI(C,A) �= ∅, then such a sequence
{xn} converges weakly to some z ∈ PF(S)∩VI(C,A)x.

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see [24–26] and the references therein. Convex min-
imization problems have a great impact and influence in the development of almost
all branches of pure and applied sciences.
Very recently, Takahashi, Takeuchi and Kubota [23] proved the following strong

convergence theorem by using the hybrid method in mathematical programming. For
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C1 = C and x1 = PC1x0, define a sequence as follows:⎧⎨
⎩

yn = αnxn + (1− αn)Sxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,

(1.6)

where 0≤ αn < α < 1 for all n ∈N. They proved a strongly convergence theorem in
a Hilbert space.
In this paper, motivated and inspired by the above results, we introduce a new

following iterative scheme: For C1 = C, x1 = PC1x0, and let⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un ∈ C such that F(un, y)+ 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)SPC(un − λnAun),

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,

(1.7)

for finding a common element of the set of fixed points of a nonexpansive map-
ping, the set of solutions of an equilibrium problem and the set of solutions of the
variational inequality for α-inverse-strongly monotone mappings in a Hilbert space.
Consequently, we prove a strong convergence theorem by the new hybrid iterative
algorithm method in the mathematical programming which solves some fixed point
problems, variational inequality problems and equilibrium problems. Using this the-
orem, we can apply to a wide class of mappings. Our results are connected with Tada
and Takahashi’s result [19] and Takahashi’s et al. result [23].

2 Preliminaries

Let H be a real Hilbert space. Then

‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉 (2.1)

and

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x − y‖2 (2.2)

for all x, y ∈ H and λ ∈ [0,1]. It is also known that H satisfies the Opial’s condi-
tion [11], that is, for any sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn − x‖< lim inf

n→∞ ‖xn − y‖

holds for every y ∈H with y �= x. Hilbert space H satisfies the Kadec-Klee property
[6, 20], that is, for any sequence {xn} with xn ⇀ x and ‖xn‖→ ‖x‖ together imply
‖xn − x‖→ 0.
Let C be a closed convex subset ofH . For every point x ∈H , there exists a unique

nearest point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C.
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PC is called the metric projection of H onto C. It is well known that PC is a nonex-
pansive mapping of H onto C and satisfies

〈x − y,PCx − PCy〉 ≥ ‖PCx − PCy‖2 (2.3)

for every x, y ∈ H. Moreover, PCx is characterized by the following properties:
PCx ∈ C and

〈x − PCx,y − PCx〉 ≤ 0, (2.4)

‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2 (2.5)

for all x ∈H,y ∈ C.
In the context of the variational inequality problem, this implies that

u ∈ VI(A,C)⇔ u= PC(u− λAu), for all λ > 0. (2.6)

We also have that, for all u,v ∈ C and λ > 0,

‖(I − λA)u− (I − λA)v‖2 = ‖(u− v)− λ(Au−Av)‖2
= ‖u− v‖2 − 2λ〈u− v,Au−Av〉
+ λ2‖Au−Av‖2

≤ ‖u− v‖2 + λ(λ− 2α)‖Au−Av‖2. (2.7)

So, if λ≤ 2α, then I − λA is a nonexpansive mapping from C to H .
A set valued mapping T : H → 2H is called monotone if for all x, y ∈ H,f ∈

T x and g ∈ Ty imply 〈x − y,f − g〉 ≥ 0. A monotone mapping T : H → 2H is
maximal if the graph G(T ) of T is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping T is maximal if and only if
for (x, f ) ∈H ×H, 〈x− y,f −h〉 ≥ 0 for every (y, g) ∈G(T ) implies f ∈ T x. Let
A be an inverse-strongly monotone mapping of C into H and let NCv be the normal
cone to C at v ∈ C, i.e.,

NCv = {w ∈H : 〈v − u,w〉 ≥ 0,∀u ∈ C}
and define

T v =
{

Av+NCv, v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and 0 ∈ T v if and only if v ∈ VI(C,A); see [13, 14].
For solving the equilibrium problem, let us assume that the bifunction F satisfies

the following conditions (see [1]):

(A1) F(x, x)= 0 for all x ∈ C;
(A2) F is monotone, i.e., F(x, y)+ F(y, x)≤ 0 for any x, y ∈ C;
(A3) F is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

F(tz+ (1− t)x, y)≤ F(x, y);
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(A4) F(x, ·) is convex and lower semicontinuous for each x ∈ C.

The following lemma appears implicitly in [1]

Lemma 2.1 ([1]) Let C be a nonempty closed convex subset of H and let F be a
bifunction of C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈H . Then, there
exists z ∈ C such that

F(z, y)+ 1
r
〈y − z, z− x〉 ≥ 0 for all y ∈ C.

The following lemma was also given in [3].

Lemma 2.2 ([3]) Assume that F : C × C → R satisfies (A1)–(A4). For r > 0 and
x ∈H , define a mapping Tr :H → C as follows:

Tr(x)=
{
z ∈ C : F(z, y)+ 1

r
〈y − z, z− x〉 ≥ 0, ∀y ∈ C

}

for all z ∈H . Then, the following hold:

1. Tr is single-valued;
2. Tr is firmly nonexpansive, i.e., for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx − Try,

x − y〉;
3. F(Tr)= EP(F );
4. EP(F ) is closed and convex.

3 Strong convergence theorems

In this section, we show a strong convergence theorem which solves the problem
of finding a common element of the set of fixed points of a nonexpansive mapping,
the set of solutions of an equilibrium problem and the set of solutions of the varia-
tional inequality of an α-inverse-strongly monotone mapping in a Hilbert space by
the hybrid method in the mathematical programming.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H .
Let F be a bifunction from C × C into R satisfying (A1)–(A4) and let A be an α-
inverse-strongly monotone mapping of C into H . Let S be a nonexpansive mappings
from C into H such that F(S) ∩ VI(C,A) ∩ EP(F ) �= ∅. For C1 = C, x1 = PC1x0,

define sequences {xn} and {un} of C as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un ∈ C such that F(un, y)+ 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)SPC(un − λnAun),

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,
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for every n ∈ N, where {αn} ⊂ (0,1) such that limn→∞ αn = 0 and {λn} ⊂ [a, b] ⊂
(0,2α) and {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0. Then {xn} converges strongly
to PF(S)∩VI(C,A)∩EP(F )x0.

Proof We show first that the sequence {xn} is well defined. By induction we can show
that

F(S)∩ VI(C,A)∩ EP(F )⊂ Cn for all n ∈N.

It is obvious that F(S)∩VI(C,A)∩EP(F )⊂ C = C1. Suppose that F(S)∩VI(C,A)∩
EP(F )⊂ Ck for each k ∈ N. Hence, for v ∈ F(S) ∩ VI(C,A) ∩ EP(F )⊂ Ck and let
{Trn} be a sequence of mappings defined as in Lemma 2.2. Then v = PC(v−λnAv)=
Trnv. Put vn = PC(un − λnAun) and from un = Trnxn, we have

‖vn − v‖ = ‖PC(un − λnAun)− PC(v − λnAv)‖
≤ ‖(un − λnAun)− (v − λnAv)‖
≤ ‖un − v‖
= ‖Trnxn − Trnv‖
≤ ‖xn − v‖ (3.1)

for every n ∈N. Thus, we obtain

‖yn − v‖ = ‖αnxn + (1− αn)SPC(un − λnAun)− v‖
≤ αn‖xn − v‖ + (1− αn)‖Svn − v‖
≤ αn‖xn − v‖ + (1− αn)‖vn − v‖
≤ αn‖xn − v‖ + (1− αn)‖xn − v‖
= ‖xn − v‖. (3.2)

So, we have v ∈ Cn. This implies that

F(S)∩ VI(C,A)∩ EP(F )⊂ Cn for all n ∈N. (3.3)

Next, we prove that Cn is closed and convex for all n ∈ N. From the definition of
Cn, it is obvious that Cn is closed for all n ≥ 0. Since Cn = {z ∈ C : ‖yn − xn‖2 +
2〈yn − xn, xn − z〉 ≤ 0}, we deduce that Cn is convex for all n≥ 0. This implies that
{xn} is well-defined. From Lemma 2.1, the sequence {un} is also well defined. From
xn = PCnx0, we obtain

〈x0 − xn, xn − y〉 ≥ 0
for each y ∈ Cn. Using F(S)∩ VI(C,A)∩ EP(F )⊂ Cn, we also have

〈x0 − xn, xn − u〉 ≥ 0 for each u ∈ F(S)∩ VI(C,A)∩ EP(F ) and n ∈N.

Hence, for u ∈ F(S)∩ VI(C,A)∩ EP(F ), we obtain

0≤ 〈x0 − xn, xn − u〉



270 P. Kumam

= 〈x0 − xn, xn − x0 + x0 − u〉
= −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − u‖.

This implies that

‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈ F(S)∩ VI(C,A)∩ EP(F ) and n ∈N.

From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we obtain

〈x0 − xn, xn − xn+1〉 ≥ 0. (3.4)

It follow that, for n ∈N,

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖

and hence

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.
Since {‖xn − x0‖} is bounded, limn→∞‖xn − x0‖ exists. Next, we can show that
limn→∞‖xn+1 − xn‖ = 0. In deed, from (3.4) we have
‖xn − xn+1‖2 = ‖xn − x0 + x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖2
= −‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖2
≤ −‖xn − x0‖2 + ‖x0 − xn+1‖2.

Since limn→∞‖x0 − xn‖ exists, this implies that
lim

n→∞‖xn − xn+1‖ = 0. (3.5)

Since xn+1 ∈ Cn, we obtain that

‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ ≤ 2‖xn − xn+1‖.
By (3.5), we have

lim
n→∞‖xn − yn‖ = 0. (3.6)

For v ∈ F(S)∩ VI(A,C)∩ EP(F ) and from Lemma 2.2, we get

‖vn − v‖2 = ‖PC(un − λnAun)− PC(v − λnAv)‖2
≤ ‖(un − λnAun)− (v − λnAv)‖2



A new hybrid iterative method for solution of equilibrium problems 271

= ‖(I − λnA)un − (I − λnA)v‖2
≤ ‖un − v‖2 = ‖Trnxn − Trnv‖2
≤ 〈Trnxn − Trnv, xn − v〉
= 〈un − v, xn − v〉
= 1
2
(‖un − v‖2 + ‖xn − v‖2 − ‖xn − un‖2)

and hence ‖vn − v‖2 ≤ ‖xn − v‖2 − ‖xn − un‖2.
From this, we obtain

‖yn − v‖2 ≤ αn‖xn − v‖2 + (1− αn)‖Svn − v‖2
≤ αn‖xn − v‖2 + (1− αn)‖vn − v‖2
≤ αn‖xn − v‖2 + (1− αn){‖xn − v‖2 − ‖xn − un‖2}
= ‖xn − v‖2 − (1− αn)‖xn − un‖2.

Since {αn} ⊂ (0,1), we get

‖xn − un‖2 ≤ ‖xn − v‖2 − ‖yn − v‖2
≤ ‖xn − yn‖{‖xn − v‖ − ‖yn − v‖}.

From this and (3.6), implies

lim
n→∞‖xn − un‖ = 0. (3.7)

Since lim infn→∞ rn > 0, we also have

lim
n→∞

∥∥∥∥xn − un

rn

∥∥∥∥= lim
n→∞

1

rn
‖xn − un‖ = 0. (3.8)

Next, we show that ‖un − vn‖→ 0. For v ∈ F(S) ∩ VI(A,C) ∩ EP(F ), from (2.7),
we compute that

‖yn − v‖2 ≤ αn‖xn − v‖2 + (1− αn)‖Svn − v‖2
≤ αn‖xn − v‖2 + (1− αn)‖vn − v‖2
= αn‖xn − v‖2 + (1− αn)‖PC(un − λnAun)− PC(v − λnAv)‖2
≤ αn‖xn − v‖2 + (1− αn)‖(I − λnA)un − (I − λnA)v‖2
≤ αn‖xn − v‖2 + (1− αn)(‖un − v‖2 + λn(λn − 2α)‖Aun −Av‖2)
≤ αn‖xn − v‖2 + ‖un − v‖2 + (1− αn)a(b− 2α)‖Aun −Av‖2.

Therefore, we have
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−(1− αn)a(b− 2α)‖Aun −Av‖2
≤ αn‖xn − v‖2 + ‖un − v‖2 − ‖yn − v‖2
≤ αn‖xn − v‖2 + (‖un − v‖ + ‖yn − v‖)‖un − yn‖. (3.9)

From (3.6) and (3.7), we get ‖un − yn‖ ≤ ‖un − xn‖ + ‖xn − yn‖→ 0. Since αn →
0, a, b ∈ (0,2α) and ‖un − yn‖ → 0, we obtain ‖Aun − Av‖ → 0. From (2.3), we
have

‖vn − v‖2 = ‖PC(un − λnAun)− PC(v − λnAv)‖2
≤ 〈(un − λnAun)− (v − λnAv), vn − v〉
= (1/2){‖(un − λnAun)− (v− λnAv)‖2 + ‖vn − v‖2
− ‖[(un − λnAun)− (v− λnAv)] − (vn − v)‖2}

≤ (1/2){‖un − v‖2 + ‖vn − v‖2 − ‖(un − vn)− λn(Aun −Av)‖2}
= (1/2){‖un − v‖2 + ‖vn − v‖2 − ‖(un − vn)‖2
+ 2λn〈un − vn,Aun −Av〉 − λ2n‖Aun −Av‖2}.

So, we obtain

‖vn − v‖2 ≤ ‖un − v‖2 − ‖un − vn‖2
+ 2λn〈un − vn,Aun −Av〉 − λ2n‖Aun −Av‖2

and hence

‖yn − v‖2 = ‖αnxn + (1− αn)Svn − v‖2
≤ αn‖xn − v‖2 + (1− αn)‖vn − v‖2
≤ αn‖xn − v‖2 + ‖un − v‖2 − ‖un − vn‖2
+ 2λn〈un − vn,Aun −Av〉 − λ2n‖Aun −Av‖2.

Thus, we get

‖un − vn‖2 ≤ αn‖xn − v‖2 + ‖un − v‖2 − ‖yn − v‖2
+ 2λn〈un − vn,Aun −Av〉 − λ2n‖Aun −Av‖2

≤ αn‖xn − v‖2 + (‖un − v‖2 − ‖yn − v‖2)
+ 2λn〈un − vn,Aun −Av〉 − λ2n‖Aun −Av‖2

≤ αn‖xn − v‖2 + (‖un − v‖ − ‖yn − v‖)‖un − yn‖
+ 2λn〈un − vn,Aun −Av〉 − λ2n‖Aun −Av‖2.

Since αn→ 0,‖un − yn‖→ 0 and ‖Aun −Av‖→ 0, we obtain

‖un − vn‖→ 0. (3.10)
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From (3.7) and (3.10), we also have

‖xn − vn‖ ≤ ‖xn − un‖ + ‖un − vn‖→ 0. (3.11)

Since yn − un = αnxn + (1− αn)Svn − un, we obtain

(αn − 1)‖Svn − un‖ ≤ αn‖xn − un‖ + ‖yn − un‖
≤ αn‖xn − un‖ + ‖yn − un‖.

From αn→ 0 and ‖yn−un‖→ 0, we get ‖Svn−un‖→ 0 as n→∞. Since ‖Svn−
vn‖ ≤ ‖Svn − un‖ + ‖un − vn‖ and from (3.10) that

lim
n→∞‖Svn − vn‖ = 0. (3.12)

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} which converges

weakly to z. From (3.11), we obtain also that vni
⇀ z. Since vni

⊂ C and C is closed
and convex, we obtain z ∈ C. From ‖Svn − vn‖ → 0, we obtain Svni

⇀ z. Let us
show that z ∈ EP(F ). Since un = Trnxn, we have

F(un, y)+ 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

1

rn
〈y − un,un − xn〉 ≥ F(y,un)

and hence 〈
y − uni

,
uni
− xni

rni

〉
≥ F(y,uni

).

From ‖un− xn‖→ 0,‖un−Svn‖→ 0, and ‖Svn− vn‖→ 0, we get uni
⇀ z. Since

uni
−xni

rni
→ 0, it follows by (A4) that 0≥ F(y, z) for all y ∈ C. For t with 0< t ≤ 1

and y ∈ C, let yt = ty + (1− t)z. Since y ∈ C and z ∈ C, we have yt ∈ C and hence
F(yt , z)≤ 0. So, from (A1) and (A4) we have

0= F(yt , yt )≤ tF (yt , y)+ (1− t)F (yt , z)≤ tF (yt , y)

and hence 0≤ F(yt , y). From (A3), we have 0≤ F(z, y) for all y ∈ C and hence z ∈
EP(F ). Let us show that z ∈ F(S).Assume z /∈ F(S). FromOpial’s condition, we have

lim inf
n→∞ ‖vni

− z‖< lim inf
i→∞ ‖vni

− Sz‖

= lim inf
i→∞ ‖vni

− Svni
+ Svni

− Sz‖

= lim inf
i→∞ ‖Svni

− Sz‖

≤ lim inf
i→∞ ‖vni

− z‖.
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This is a contradiction. Thus, we obtain z ∈ F(S). Finally, we can show that
z ∈ VI(A,C). Defined

T v =
{

Av+NCv, v ∈ C,

∅, v /∈ C.

Then T is maximal monotone. Let (u, v) ∈G(T ). Since u−Av ∈NCv and vn ∈ C,

we have 〈v − vn,u−Av〉 ≥ 0. On the other hand, from vn = PC(un − λnAun), we
have

〈v− vn, vn − (un − λnAun)〉 ≥ 0,
and hence, 〈

v− vn,
(vn − un)

λn

+Aun

〉
≥ 0.

Therefore, we have

〈v− vni
, u)〉 ≥ 〈v− vni

,Av〉

≥ 〈v− vni
,Av〉 −

〈
v− vni

,
(vni

− uni
)

λni

+Auni

〉

=
〈
v− vni

,Av −Auni
− (vni

− uni
)

λni

〉

= 〈v− vni
,Av−Avni

〉 + 〈v− vni
,Avni

−Auni
〉

−
〈
v− vni

,
(vni

− uni
)

λni

〉

≥ 〈v− vni
,Avni

−Auni
〉 −

〈
v − vni

,
(vni

− uni
)

λni

〉
,

which together with ‖vn − un‖→ 0 and A is Lipschitz continuous implies that

〈v− z,u〉 ≥ 0.

Since T is maximal monotone, we have z ∈ T −10 and hence z ∈ VI(C,A). Hence
z ∈ F(S)∩ VI(A,C)∩ EP(F ).

Finally, we show that xn → z, where z= PF(S)∩VI(C,A)EP(F )x0. Since xn = PCnx0
and z ∈ F(S)∩ VI(C,A)∩ FP(F )⊂ Cn, we have

‖xn − x0‖ ≤ ‖z− x0‖.

It follows from z′ = PF(S)∩VI(C,A)∩EP(F )x0 and the lower semicontinuity of the norm
that

‖z′ − x0‖ ≤ ‖z− x0‖ ≤ lim inf
i→∞ ‖xni

− x0‖ ≤ lim sup
i→∞

‖xni
− x0‖ ≤ ‖z′ − x0‖.
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Thus, we obtain that limk→∞‖xni
− x0‖ = ‖z− x0‖ = ‖z′ − x0‖. Using the Kadec-

Klee property of H , we obtain that

lim
k→∞xni

= z= z′.

Since {xni
} is an arbitrary subsequence of {xn}, we can conclude that {xn} converges

strongly to z, where z= PF(T )∩VI(C,A)∩EP(F )x0. �

As direct consequences of Theorem 3.1, we can obtain the following results.

Theorem 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H .
Let F be a bifunction from C×C into R satisfying (A1)–(A4). Let S be a nonexpan-
sive mappings from C into H such that F(S)∩EP(F ) �= ∅. For C1 = C, x1 = PC1x0,

define sequences {xn} and {un} of C as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un ∈ C such that F(un, y)+ 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)Sun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,

for every n ∈ N, where {αn} ⊂ (0,1) such that limn→∞ αn = 0 and {rn} ⊂ (0,∞)

satisfies lim infn→∞ rn > 0. Then {xn} converges strongly to PF(S)∩EP(F )x0.

Proof Putting PC(I − λnA)= I, by Theorem 3.1, we obtain the desired result eas-
ily. �

Theorem 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H .
Let F be a bifunction from C ×C into R satisfying (A1)–(A4) such that EP(F ) �= ∅.
For C1 = C, x1 = PC1x0, define sequences {xn} and {un} of C as follows:

⎧⎪⎪⎨
⎪⎪⎩

un ∈ C such that F(un, y)+ 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,

for every n ∈ N, where {αn} ⊂ (0,1) such that limn→∞ αn = 0 and {rn} ⊂ (0,∞)

satisfies lim infn→∞ rn > 0. Then {xn} converges strongly to PEP(F )x0.

Proof Putting S = I, and αn = 0 in Theorem 3.2, we obtain the Theorem 3.3. �

Theorem 3.4 Let C be a nonempty closed convex subset of a real Hilbert space H .
Let F be a bifunction from C × C into R satisfying (A1)–(A4) and let A be an α-
inverse-strongly monotone mapping of C into H . Let S be a nonexpansive mappings
from C into H such that F(S) ∩ VI(C,A) �= ∅. For C1 = C, x1 = PC1x0, define
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sequences {xn} and {un} of C as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un ∈ C such that 〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)SPC(un − λnAun),

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,

for every n ∈ N, where {αn} ⊂ (0,1) such that limn→∞ αn = 0 and {λn} ⊂ [a, b] ⊂
(0,2α). Then {xn} converges strongly to PF(S)∩VI(C,A)x.

Proof Putting F(x, y)= 0 for all x, y ∈ C and rn = 1 in Theorem 3.1, the conclusion
follows. �

Remark 3.5 (i) Our results generally improve and extend the results of Tada and
Takahashi [19] by the new hybrid method in the mathematical programming.
(ii) The hybrid iterative algorithm in Theorem 3.1 solves some variational inequal-

ity problems and equilibrium problems. It follows that from Theorem 3.2 and 3.3, we
can replace by using the CQ-hybrid method (see [16, 17, 19]) for finding a com-
mon element of fixed point problems, equilibrium problems. For example to solving
a linear system of two equations in two unknowns by hybrid methods (see an exam-
ple in [17]). More example for projection algorithm for solving variational inequality
problems by MATLAB see [15, pp. 772–774].

4 Applications

4.1 Maximal monotone operators

Let H be a Hilbert space and T be a maximal monotone operator on H . Consider
the problem find x ∈ H such that 0 ∈ T (x). We shall denote the solution set of this
problem by

S = {x ∈H : 0 ∈ T (x)} = T −1(0).

Then S is a closed convex nonempty subset of H and thus the projection PS from H

onto F(S) is well-defined. One of the fundamental problems in the theory of maximal
monotone operators is to find a solution of T , that is, a point is S. Rockafellar’s
proximal point algorithm [14] provides us with a powerful numerical tool to find a
point in S.
The following theorem is connected with the problem of obtaining of a common

element of the sets of zeroes of a maximal monotone operator and an α-inverse-
strongly monotone operator.

Theorem 4.1 Let C be a nonempty closed convex subset of H . Let F be a bifunction
from C ×C to R satisfying (A1)–(A4) and let A be an α-inverse-strongly monotone
operator in H and B :H → 2H be a maximal monotone operator such that A−1(0)∩
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B−1(0)∩EP(F ) �=∅. Let JB
r be the resolvent of B for each r > 0. Let {xn} and {un}

be sequences generated by x0 = u ∈H and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(un, y)+ 1
rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1− αn)J
B
r (un − λnAun),

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0,

(4.1)

where {αn}, {λn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [0,1], ∑∞
n=0 αn = ∞, αn → 0 and {λn} ⊂ [c, d] for some [c, d] ⊂

(0,2α);
(ii) {rn} ⊂ (0,∞), lim infn→∞ rn > 0

then, {xn} and {un} converge strongly to z ∈ A−1(0) ∩ B−1(0) ∩ EP(F ), where z =
PA−1(0)∩B−1(0)EP(F )x0.

Proof Since JB
r is nonexpansive, we have the following

A−10= V (I,A) and F(JB
r )= B−1(0).

Putting PH = I then, by Theorem 3.1, we obtain the desired result. �

Motivated by above results, we consider the following algorithm:

Algorithm 1 Let {xn} and {un} be sequences generated by x0 = u ∈H and

un ∈ C such that 〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = un − λnAun,

xn+1 = αnxn + (1− αn)J
B
r yn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0,

where JB
r be the resolvent of B for each r > 0.

Theorem 4.2 Let C be a nonempty closed convex subset of H . Let A be an α-inverse-
strongly monotone operator in H and B :H → 2H be a maximal monotone operator
such that A−1(0) ∩ B−1(0) �= ∅. Let JB

r be the resolvent of B for each r > 0. Let
{xn} be a sequence generated by Algorithm 1 suppose that {αn} and {λn} satisfy the
conditions (i) and (iii) in Theorem 4.1. Then, {xn} converges strongly to z ∈A−1(0)∩
B−1(0), where z= PA−1(0)∩B−1(0)x0.

4.2 Strictly pseudocontractive maps

A mapping T : C→ C is called strictly pseudocontractive on C if there exists k with
0≤ k < 1 such that

‖T x − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x + (I − T )y‖2, for all x, y ∈ C.
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If k = 0, then T is nonexpansive. Put A = I − T , where T : C → C is a strictly
pseudocontractive mapping with k. Then we have, for all x, y ∈ C,

‖(I −A)x − (I −A)y‖2 ≤ ‖x − y‖2 + k‖Ax −Ay‖2.

On the other hand, we have

‖(I −A)x − (I −A)y‖2 = ‖x − y‖2 − 2〈x − y,Ax −Ay〉 + ‖Ax −Ay‖2.

Hence we have

〈x − y,Ax −Ay〉 ≥ 1− k

2
‖Ax −Ay‖2.

Then, A is 1−k
2 -inverse strongly monotone and A−1(0)= F(T ) (see [7]).

Now, using Theorem 3.1, we state a strong convergence theorem for a pair of a
nonexpansive mapping and strictly pseudocontractive mapping.

Theorem 4.3 Let C be a closed convex subset of a real Hilbert space H . Let F be a
bifunction from C ×C→R satisfying (A1)–(A4) and let S be a nonexpansive map-
ping of C into itself and let T be a strictly pseudocontractive mapping with constant
k of C into itself such that F(S)∩F(T )∩EP(F ) �= ∅. For C1 = C, x1 = PC1x0, define
sequences {xn} and {un} of C as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un ∈ C such that F(un, y)+ 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1− αn)xn + αnS((1− λn)un + λnT un),

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,

for every n ∈ N, where {αn} ⊂ (0,1) such that limn→∞ αn = 0 and {λn} ⊂ [a, b] ⊂
(0,2α) and {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0. Then {xn} converges strongly
to PF(S)∩F(T )∩EP(F )x0.

Proof Put A= I − T . Then A is 1−k
2 -inverse-strongly monotone. We have that F(T )

is the solution set of VI(A,C) i.e., F(T )= VI(A,C) and

PC(un − λnAun)= (1− λn)un + λnT un.

Therefore, by Theorem 3.1, the conclusion follows. �

Corollary 4.4 Let C be a closed convex subset of a real Hilbert space H . Let S be
a nonexpansive mapping of C into itself and let T be a strictly pseudocontractive
mapping with constant k of C into itself such that F(S) ∩ F(T ) �= ∅. For C1 = C,
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x1 = PC1x0. Let {xn} and {un} be sequences generated⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un ∈ C such that 〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1− λn)xn + λnT xn

xn+1 = αnxn + (1− αn)Syn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,

for every n ∈ N, where {αn} ⊂ (0,1) such that limn→∞ αn = 0 and {λn} ⊂ [a, b] ⊂
(0,2α). Then {xn} converges strongly to PF(S)∩F(T )x0.

Proof Put F(x, y)= 0 for all x, y ∈ C, rn = 1 for all n ∈ N and A= I − T , we get
un = PCxn = xn and A is 1−k

2 -inverse-strongly monotone. We have that F(T ) is the
solution set of VI(A,C) i.e., F(T )= VI(A,C) and

PC(xn − λnAxn)= (1− λn)xn + λnT xn.

Therefore, by Theorem 3.2, the conclusion follows. �

Theorem 4.5 Let H be a real Hilbert space. Let F be a bifunction from H ×H →R
satisfying (A1)–(A4) and let A be an α-inverse-strongly monotone mapping of H into
itself and let S be a nonexpansive mapping of H into itself such that F(S)∩A−1(0)∩
EP(F ) �= ∅. Suppose C1 = C, x1 = PC1x0, and {xn}, {yn} and {un} are given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F(un, y)+ 1
rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈;

yn = (un − λnAun),

xn+1 = αnxn + (1− αn)Syn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈N,

for every n ∈ N, where {αn} ⊂ (0,1) such that limn→∞ αn = 0 {rn} ⊂ (0,∞) satis-
fies lim infn→∞ rn > 0 and {λn} ⊂ [a, b] ⊂ (0,2α). Then {xn} converges strongly to
PF(S)∩A−1(0)∩EP(F )u.

Proof Since A−1(0) is the solution set of VI(A,H), we can obtain the conclusion by
Theorem 3.1 and by noting that PH is the identity mapping on H . This completes the
proof. �
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let E be a nonempty closed convex subset of H . Let
A be a strongly positive linear bounded operator on H if there is a constant γ̄ > 0 with property

〈Ax, x〉 ≥ γ̄ ‖x‖2, ∀x ∈ H. (1.1)

Now, we consider the following optimization problem (for short, OP):

OP : min
x∈̂F

μ

2
〈Ax, x〉 + 1

2
‖x− u‖2 − h(x), (1.2)

where F̂ = ∩∞n=1 En, E1, E2, . . . are infinitely many closed convex subsets of H such that ∩∞n=1 En �= ∅, u ∈ H , μ ≥ 0 is a
real number, A is a strongly positive linear bounded operator on H and h is a potential function for γ f (i.e., h′(x) = γ f (x)
for x ∈ H). This kind of optimization problem has been studied extensively by many authors, see, for example, [1–4] when
F̂ = ∩∞n=1 En and h(x) = 〈x, b〉, where b is a given point in H .
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Let ϕ : E −→ R be a real-valued function and Θ : E × E −→ R be an equilibrium bifunction, i.e., Θ(u, u) = 0 for each
u ∈ E. The mixed equilibrium problem (for short, MEP) which is to find z ∈ E such that

MEP : Θ(z, y)+ ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ E. (1.3)

In particular, if ϕ ≡ 0, this problem reduces to the equilibrium problems (for short, EP), which is to find z ∈ E such that

EP : Θ(z, y) ≥ 0, ∀y ∈ E. (1.4)

The set of solutions of MEP (1.3) is denoted by Ω . The mixed equilibrium problems include Nash equilibrium problems,
fixed point problems, saddle point problems, variational inequality problems, optimization problems and the equilibrium
problems as special cases; see, for example, [5–13]. Some methods have been proposed to solve the MEP and EP; see, for
instance [14–27]. Recently, Combettes and Hirstoaga [15] introduced an iterative scheme of finding the best approximation
to the initial data when EP is nonempty and proved a strong convergence theorem. On the other hand, Gao and Guo [17]
studied strong convergence by using the hybrid iterative scheme for finding a commonelement of the set of solutions ofMEP,
the set of common fixed points of finitelymany nonexpansivemappings and the set of solution of variational inequalities for
relaxed cocoercive mappings in a real Hilbert space. In 2009, Yao et al. [27] introduced and analyzed a new hybrid iterative
algorithm for finding a common element of the set of solutions of MEP and the set of fixed points of an infinite family
of nonexpansive mappings. Furthermore, they proved that the sequences generated by the new hybrid iterative scheme
converge strongly to a common element of the set of solutions of MEP and the set of common fixed points of finitely many
nonexpansive mappings, which solves optimization problem (OP).

Let B : E −→ H be a nonlinear mapping. The classical variational inequality problem is to find u ∈ E such that

〈Bu, v − u〉 ≥ 0, ∀v ∈ E. (1.5)

We denoted by VI(E, B) the set of solutions of the variational inequality problem. The variational inequality problem has
been extensively studied in literature, see, e.g. [28,29] and reference therein.

We now recall some well-known concepts and results as follows.

Lemma 1.1. The function u ∈ E is a solution of the variational inequality (1.5) if and only if u ∈ E satisfies the relation u =
PE(u− λBu), where λ > 0 is a constant.

It is clear from Lemma 1.1 that the variational inequality and fixed point problem are equivalent. This alternative equivalent
formulation has played a significant role in the studies of the variational inequalities and related optimization problems.

Definition 1.2. Let B : E −→ H be a mapping. Then B is called

(1) monotone if

〈Bx− By, x− y〉 ≥ 0, ∀x, y ∈ E,

(2) v-strongly monotone if there exists a positive real number v such that

〈Bx− By, x− y〉 ≥ v‖x− y‖2, ∀x, y ∈ E,

for constant v > 0. This implies that

‖Bx− By‖ ≥ v‖x− y‖,
that is, B is v-expansive and when v = 1, it is expansive.

(3) ξ -Lipschitz continuous if there exists a positive real number ξ such that

‖Bx− By‖ ≤ ξ‖x− y‖, ∀x, y ∈ E,

(4) m-cocoercive, [30,13] if there exists a positive real numberm such that

〈Bx− By, x− y〉 ≥ m‖Bx− By‖2, ∀x, y ∈ E.

Clearly, everym-cocoercive map A is 1
m
-Lipschitz continuous.

(5) Relaxedm-cocoercive, if there exists a positive real numberm such that

〈Bx− By, x− y〉 ≥ (−m)‖Bx− By‖2, ∀x, y ∈ E.

(6) Relaxed (m, v)-cocoercive, if there exists a positive real numberm, v such that

〈Bx− By, x− y〉 ≥ (−m)‖Bx− By‖2 + v‖x− y‖2, ∀x, y ∈ E,

for m = 0, B is v-strongly monotone. This class of maps is more general that the class of strongly monotone maps. It is
easy to see that we have the following implication: v-strongly monotonicity implying relaxed (m, v)-cocoercivity.

(7) A mapping T of E into itself is called nonexpansive (see [31]) if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ E.

We denote by F(T ) = {x ∈ E : Tx = x} the set of fixed points of T .
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(8) Let f : E −→ E is said to be a α-contraction if there exists a coefficient α (0 < α < 1) such that

‖f (x)− f (y)‖ ≤ α‖x− y‖, ∀x, y ∈ E.

(9) A set-valued mapping T : H −→ 2H is called monotone if for all x, y ∈ H , f ∈ Tx and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0.
A monotone mapping T : H −→ 2H is maximal if the graph of G(T ) of T is not properly contained in the graph of
any other monotone mapping. It is known that a monotone mapping T is maximal if and only if for (x, f ) ∈ H × H ,
〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx. Let B be a monotone map of E into H and let NEw1 be the
normal cone to E at w1 ∈ E, i.e.,

NEw1 = {w ∈ H : 〈u− w1, w〉 ≥ 0,∀u ∈ E}.
Define

Tw1 =
{
Bw1 + NEw1, w1 ∈ E;
∅, w1 �∈ E.

Then T is the maximal monotone and 0 ∈ Tw1 if and only if w1 ∈ VI(E, B); see [32,33]

This paper is inspired and motivated by ongoing research in this field, so we will introduce an iterative scheme by the
new hybrid iterative method (3.1) for finding a common element of the set of solutions of (1.3), the set of fixed points of
an infinite family of nonexpansive mappings and the set of solutions of variational inequalities for a ξ -Lipschitz continuous
and relaxed (m, v)-cocoercive mappings in Hilbert spaces. The results shown in this paper improve and extend the recent
ones announced by Gao and Guo [17], Yao et al., [27] and many others.

2. Preliminaries

LetH be a real Hilbert space and let E be a nonempty closed convex subset ofH . We denote weak convergence and strong
convergence by notations ⇀ and−→, respectively. In a real Hilbert space H , it is well known that

‖λx− (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2,
for all x, y ∈ H and λ ∈ [0, 1]. Recall that the (nearest point) projection PE from H onto E assigns to each x ∈ H the unique
point in PE ∈ E satisfying the property

‖x− PEx‖ = min
y∈E ‖x− y‖.

The following characterizes the projection PE .
In order to prove our main results, we need the following lemmas.

Lemma 2.1. For a given z ∈ H, u ∈ E,

u = PEz ⇔ 〈u− z, v − u〉 ≥ 0, ∀v ∈ E.

It is well known that PE is a firmly nonexpansive mapping of H onto E and satisfies

‖PEx− PEy‖2 ≤ 〈PEx− PEy, x− y〉, ∀x, y ∈ H. (2.1)

Moreover, PEx is characterized by the following properties: PEx ∈ E and for all x ∈ H, y ∈ E,

〈x− PEx, y− PEx〉 ≤ 0. (2.2)

Using Lemma 2.1 one can see that the variational inequality (1.5) is equivalent to a fixed point problem.

Lemma 2.2 ([34]). Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n−→∞ ‖xn − x‖ < lim inf

n−→∞ ‖xn − y‖,
hold for each y ∈ H with y �= x.

Lemma 2.3 ([35]). Assume A be a strongly positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1.
Then ‖I − ρA‖ ≤ 1− ργ̄ .

For solving the mixed equilibrium problem for an equilibrium bifunction Θ : E×E −→ R, let us assume that Θ satisfies
the following conditions:

(H1) Θ is monotone, i.e., Θ(x, y)+Θ(y, x) ≤ 0, ∀x, y ∈ E;
(H2) for each fixed y ∈ E, x �→ Θ(x, y) is convex and upper semicontinuous;
(H3) for each x ∈ E, y �→ Θ(x, y) is convex.
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Definition 2.4. Let η : E × E −→ H , which is called Lipschitz continuous if there exists a constant δ > 0 such that

‖η(x, y)‖ ≤ δ‖x− y‖, ∀x, y ∈ E.

Definition 2.5. Let K : E −→ R be a differentiable functional on a convex set E, which is called:

(K1) η-convex [16] if

K(y)− K(x) ≥
〈
K ′(x), η(y, x)

〉
, ∀x, y ∈ E,

where K ′(x) is the Fréchet derivative at x;
(K2) η-strongly convex [36] if there exists a constant σ > 0 such that

K(y)− K(x)−
〈
K ′(x), η(y, x)

〉
≥ σ

2
‖x− y‖2, ∀x, y ∈ E.

In particular, if η(x, y) = x− y for all x, y ∈ E, then K is said to be strongly convex.

Definition 2.6. Let E be a nonempty closed convex subset of a real Hilbert spaceH , let ϕ : E −→ R be a real-valued function
and Θ : E × E −→ R be an equilibrium bifunction. Let r be a positive parameter. For a given point x ∈ E, the auxiliary
problem for MEP consists of finding y ∈ E such that

Θ(y, z)+ ϕ(z)− ϕ(y)+ 1

r

〈
K ′(y)− K ′(x), η(z, y)

〉
≥ 0, ∀z ∈ E.

Definition 2.7. Let Sr : E −→ E be the mapping such that for each x ∈ E, Sr(x) is the solution set of the auxiliary problem
MEP, that is,

Sr(x) =
{
y ∈ E : Θ(y, z)+ ϕ(z)− ϕ(y)+ 1

r

〈
K ′(y)− K ′(x), η(z, y)

〉
≥ 0, ∀z ∈ E

}
, ∀x ∈ E.

The following lemma appears implicitly in [16].

Lemma 2.8 ([16]). Let E be a nonempty closed convex subset of a real Hilbert space H and let ϕ be a lower semicontinuous and
convex functional from E to R. Let Θ be a bifunction from E × E to R satisfying (H1)–(H3). Assume that

(i) η : E × E −→ H is Lipschitz continuous with constant λ > 0 such that;
(a) η(x, y)+ η(y, x) = 0, ∀x, y ∈ E,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ E, x �→ η(y, x) is sequentially continuous from the weak topology to the weak topology;

(ii) K : E −→ R is η-strongly convex with constant σ > 0 and its derivative K ′ is sequentially continuous from the weak
topology to the strong topology;

(iii) for each x ∈ E, there exist a bounded subset Dx ⊂ E and zx ∈ E such that for any y ∈ E \ Dx,

Θ(y, zx)+ ϕ(zx)− ϕ(y)+ 1

r

〈
K ′(y)− K ′(x), η(zx, y)

〉
< 0.

Then, there exists y ∈ E such that

Θ(y, z)+ ϕ(z)− ϕ(y)+ 1

r

〈
K ′(y)− K ′(x), η(z, y)

〉
≥ 0, ∀z ∈ E.

Lemma 2.9 ([16]). Assume that Θ satisfies the same assumptions as Lemma 2.8 for r > 0 and x ∈ E, the mapping Sr : E −→ E
can be defined as follows:

Sr(x) =
{
y ∈ E : Θ(y, z)+ ϕ(z)− ϕ(y)+ 1

r

〈
K ′(y)− K ′(x), η(z, y)

〉
≥ 0, ∀z ∈ E

}
.

Then, the following hold:

(i) Sr is single-valued;

(ii) (a)

〈
K ′(x1)− K ′(x2), η(u1, u2)

〉
≥
〈
K ′(u1)− K ′(u2), η(u1, u2)

〉
,∀(x1, x2) ∈ E × E, where ui = Sr(xi), i = 1, 2;

(b) Sr is nonexpansive if K ′ is Lipschitz continuous with constant ν > 0 such that σ > λν;
(iii) F(Sr) = Ω; and
(iv) Ω is closed and convex.
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Remark 2.10. From Lemma 2.9 in particular, whenever K(x) = ‖x‖2
2

and η(x, y) = x− y for each (x, y) ∈ E × E, then Sr is
firmly nonexpansive, that is,

‖Sr(x1)− Sr(x2)‖2 ≤
〈
x1 − x2, Sr(x1)− Sr(x2)

〉
.

Definition 2.11 ([8]). Let {Tn} be a sequence of nonexpansive mappings of E into itself and let {μn} be a sequence of
nonnegative numbers in [0,1]. For each n ≥ 1, define a mappingWn of E into itself as follows:

Un,n+1 = I,

Un,n = μnTnUn,n+1 + (1− μn)I,

Un,n−1 = μn−1Tn−1Un,n + (1− μn−1)I,

...

Un,k = μkTkUn,k+1 + (1− μk)I,

Un,k−1 = μk−1Tk−1Un,k + (1− μk−1)I,

...

Un,2 = μ2T2Un,3 + (1− μ2)I,

Wn = Un,1 = μ1T1Un,2 + (1− μ1)I.

(2.3)

Such a mapping Wn is nonexpansive from E to E and it is called the W -mapping generated by T1, T2, . . . , Tn and
μ1, μ2, . . . , μn.

For each n, k ∈ N, let themappingUn,k be defined by (2.3). Thenwe can have the following crucial conclusions concerning
Wn. You can find them in [37]. Now we only need the following similar version in Hilbert spaces.

Lemma 2.12 ([37]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let T1, T2, . . . be nonexpansive mappings
of E into itself such that ∩∞n=1 F(Tn) is nonempty, let μ1, μ2, . . . be real numbers such that 0 ≤ μn ≤ b < 1 for every n ≥ 1.
Then, for every x ∈ E and k ∈ N, the limit limn−→∞ Un,kx exists.

Using Lemma 2.12, one can define a mappingW of E into itself as follows:

Wx = lim
n−→∞Wnx = lim

n−→∞Un,1x, (2.4)

for every x ∈ E. Such aW is called theW -mapping generated by T1, T2, . . . and μ1, μ2, . . . . Throughout this paper, we will
assume that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then, we have the following results.

Lemma 2.13 ([37]). Let E be a nonempty closed convex subset of a real Hilbert space H. Let T1, T2, . . . be nonexpansive mappings
of E into itself such that ∩∞n=1 F(Tn) is nonempty, let μ1, μ2, . . . be real numbers such that 0 ≤ μn ≤ b < 1 for every n ≥ 1.
Then, F(W ) = ∩∞n=1 F(Tn).

Lemma 2.14 ([24]). If {xn} is a bounded sequence in E, then limn−→∞ ‖Wxn −Wnxn‖ = 0.

Lemma 2.15 ([38]). Let {xn} and {vn} be bounded sequences in a Banach space X and let {βn} be a sequence in [0, 1] with
0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1. Suppose xn+1 = (1 − βn)vn + βnxn for all integers n ≥ 0 and
lim supn−→∞(‖vn+1 − vn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖vn − xn‖ = 0.

Lemma 2.16. Let H be a real Hilbert space. Then the following inequalities hold:

(1) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;
(2) ‖x+ y‖2 ≥ ‖x‖2 + 2〈y, x〉;

for all x, y ∈ H.

Lemma 2.17 ([39]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− ln)an + σn, ∀n ≥ 0,

where {ln} is a sequence in (0, 1) and {σn} is a sequence in R such that

(1)
∑∞

n=1 ln = ∞
(2) lim supn−→∞ σn

ln
≤ 0 or

∑∞
n=1 |σn| <∞.

Then limn−→∞ an = 0.
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Lemma 2.18 ([27]). Let E be a nonempty closed convex subset of a real Hilbert space H, and g : E −→ R ∪ {∞} be a proper
lower-semicontinuous differentiable convex function. If z is a solution to the minimization problem

g(z) = inf
x∈E g(x),

then 〈
g ′(x), x− z

〉
≥ 0, x ∈ E.

In particular, if z solves problem OP, then〈
u+ [

γ f − (I + μA)
]
z, x− z

〉
≤ 0.

3. Main results

In this section, we prove a strong convergence theorem of a new hybrid iterative method (3.1) to compute the
approximate solutions of the mixed equilibrium problems and optimization problems in a real Hilbert space.

Theorem 3.1. Let E be a nonempty closed convex subset of a real Hilbert space H and let ϕ be a lower semicontinuous and convex
functional from E to R. Let Θ be a bifunction from E× E to R satisfying (H1)–(H3), let {Tn} be an infinite family of nonexpansive
mappings of E into itself and let B be a ξ -Lipschitz continuous and relaxed (m, v)-cocoercive map E into H such that

Γ := ∩∞n=1 F(Tn) ∩Ω ∩ VI(E, B) �= ∅.
Let μ > 0, γ > 0 and r > 0, which are three constants. Let f be a contraction of E into itself with α ∈ (0, 1) and let A be a

strongly positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ <
(1+μ)γ̄

α
. For given x1 ∈ H arbitrarily and

fixed u ∈ H, suppose the {xn}, {yn} and {zn} are generated iteratively by⎧⎪⎨
⎪⎩

Θ(zn, x)+ ϕ(x)− ϕ(zn)+ 1

r

〈
K ′(zn)− K ′(xn), η(x, zn)

〉
≥ 0, ∀x ∈ E,

yn = αnzn + (1− αn)WnPE(zn − λnBzn),

xn+1 = εn
(
u+ γ f (Wnxn)

)+ βnxn +
(
(1− βn)I − εn(I + μA)

)
WnPE(yn − τnByn),

(3.1)

for all n ∈ N, where Wn be the W-mapping defined by (2.3) and {εn}, {αn} and {βn} are three sequences in (0, 1). Assume the
following conditions are satisfied:

(C1) η : E × E −→ H is Lipschitz continuous with constant λ > 0 such that;

(a) η(x, y)+ η(y, x) = 0, ∀x, y ∈ E

(b) η(·, ·) is affine in the first variable,

(c) for each fixed y ∈ E, x �→ η(y, x) is sequentially continuous from the weak topology to the weak topology;

(C2) K : E −→ R is η-strongly convex with constant σ > 0 and its derivative K ′ is not only sequentially continuous from the
weak topology to the strong topology but also Lipschitz continuous with constant ν > 0 such that σ > λν;

(C3) for each x ∈ E, there exist a bounded subset Dx ⊂ E and zx ∈ E such that for any y ∈ E \ Dx,

Θ(y, zx)+ ϕ(zx)− ϕ(y)+ 1

r

〈
K ′(y)− K ′(x), η(zx, y)

〉
< 0;

(C4) limn−→∞ αn = 0, limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞;
(C5) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(C6) limn−→∞ |λn+1 − λn| = limn−→∞ |τn+1 − τn| = 0;

(C7) {τn}, {λn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v−mξ2)

ξ2
.

Then, {xn} and {zn} converge strongly to z ∈ Γ := ∩∞n=1 F(Tn)∩Ω ∩ VI(E, B) provided that Sr is firmly nonexpansive, which
solves the following optimization problem:

OP : min
x∈Γ

μ

2
〈Ax, x〉 + 1

2
‖x− u‖2 − h(x). (3.2)

Proof. Since εn −→ 0 by the condition (C4) and (C5), we may assume, without loss of generality, that εn ≤ (1 − βn)(1 +
μ‖A‖)−1 for all n ∈ N. First, we show that I − τnB is nonexpansive. Indeed, B : E −→ H be a ξ -Lipschitz continuous and
relaxed (m, v)-cocoercive mappings, we note that
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‖(I − τnB)x− (I − τnB)y‖2 = ‖(x− y)− τn(Bx− By)‖2
= ‖x− y‖2 − 2τn〈x− y, Bx− By〉 + τ 2

n ‖Bx− By‖2
≤ ‖x− y‖2 − 2τn

{−m‖Bx− By‖2 + v‖x− y‖2}+ τ 2
n ‖Bx− By‖2

≤ ‖x− y‖2 + 2τnmξ 2‖x− y‖2 − 2τnv‖x− y‖2 + τ 2
n ξ 2‖x− y‖2

= (1+ 2τnmξ 2 − 2τnv + τ 2
n ξ 2)‖x− y‖2

= θ2‖x− y‖2,
where

θ =
√
1+ 2τnmξ 2 − 2τnv + τ 2

n ξ 2.

It follows (C7) that θ < 1. Hence

‖(I − τnB)x− (I − τnB)y‖ ≤ ‖x− y‖,
which implies that the mapping I − τnB is nonexpansive, and so is I − λnB.

Since A is a strongly positive bounded linear operator on H , we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}.
Observe that〈(

(1− βn)I − εn(I + μA)
)
x, x

〉
= 1− βn − εn − εnμ〈Ax, x〉
≥ 1− βn − εn − εnμ‖A‖
≥ 0,

so this shows that (1− βn)I − εn(I + μA) is positive. It follows that

‖(1− βn)I − εn(I + μA)‖ = sup

{∣∣∣〈((1− βn)I − εn(I + μA)
)
x, x

〉∣∣∣ : x ∈ H, ‖x‖ = 1

}
= sup {1− βn − εn − εnμ〈Ax, x〉 : x ∈ H, ‖x‖ = 1}
≤ 1− βn − εn − εnμγ̄ .

We shall divide the proof into five steps.

Step 1. We claim that {xn} is bounded.
Indeed, let p ∈ Γ := ∩∞n=1 F(Tn) ∩ Ω ∩ VI(E, B) and let {Sr} be a sequence of mappings defined as in Lemma 2.9. Then

zn = Srxn. So, we have

‖zn − p‖ = ‖Srxn − Srp‖ ≤ ‖xn − p‖.
Because I − λnB, I − δnB, PE andWn are nonexpansive mappings and p = WnPE(p− λnBp), we have

‖yn − p‖ = ‖αn(zn − p)+ (1− αn)(WnPE(zn − λnBzn)− p)‖
≤ αn‖zn − p‖ + (1− αn)‖PE(zn − λnBzn)− PE(p− λnBp)‖
≤ αn‖zn − p‖ + (1− αn)‖(zn − λnBzn)− (p− λnBp)‖
= αn‖zn − p‖ + (1− αn)‖(I − λnB)zn − (I − λnB)p‖
≤ αn‖zn − p‖ + (1− αn)‖zn − p‖ = ‖zn − p‖ ≤ ‖xn − p‖,

which yields that

‖xn+1 − p‖ = ‖εnu+ εn
(
γ f (Wnxn)− (I + μA)p

)+ βn(xn − p)

+ (
(1− βn)I − εn(I + μA)

)
(WnPE(kn − τnBkn)− p)‖

≤ (
1− βn − εn(1+ μ)γ̄

)‖PE(I − τnB)kn − p‖ + βn‖xn − p‖ + εn‖u‖ + εn‖γ f (Wnxn)− (I + μA)p‖
≤ (

1− βn − εn(1+ μ)γ̄
)‖kn − p‖ + βn‖xn − p‖ + εn‖u‖ + εn‖γ f (Wnxn)− (I + μA)p‖

≤ (
1− βn − εn(1+ μ)γ̄

)‖kn − p‖ + βn‖xn − p‖ + εn‖u‖
+ εnγ ‖f (Wnxn)− f (p)‖ + εn‖γ f (p)− (I + μA)p‖

≤ (
1− βn − εn(1+ μ)γ̄

)‖xn − p‖ + βn‖xn − p‖ + εn‖u‖
+ εnγα‖xn − p‖ + εn‖γ f (p)− (I + μA)p‖

≤ (
1− εn(1+ μ)γ̄ + εnγα

)‖xn − p‖ + εn
(‖γ f (p)− (I + μA)p‖ + ‖u‖)
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=
(
1− (

(1+ μ)γ̄ − γα
)
εn

)
‖xn − p‖ + εn

(‖γ f (p)− (I + μA)p‖ + ‖u‖)
=

(
1− (

(1+ μ)γ̄ − γα
)
εn

)
‖xn − p‖ + (

(1+ μ)γ̄ − γα
)
εn
‖γ f (p)− (I + μA)p‖ + ‖u‖

(1+ μ)γ̄ − γα
. (3.3)

It follows that (3.3) and induction that

‖xn − p‖ ≤ max

{
‖x1 − p‖, ‖γ f (p)− (I + μA)p‖ + ‖u‖

(1+ μ)γ̄ − γα

}
, n ≥ 1. (3.4)

Hence, {xn} is bounded, so are {yn} and {zn}.
Step 2.We claim that limn−→∞ ‖xn+1 − xn‖ = 0 and limn−→∞ ‖Wnθn − xn‖ = 0.

Observing that zn = Srxn and zn+1 = Srxn+1, by the nonexpansiveness of Sr , we get

‖zn+1 − zn‖ = ‖Srxn+1 − Srxn‖ ≤ ‖xn+1 − xn‖. (3.5)

Put θn = PE(yn − τnByn) and φn = PE(zn − λnBzn). Since I − τnB and I − λnB are nonexpansive mappings, we have the
following estimates:

‖φn+1 − φn‖ ≤ ‖PE(zn+1 − λn+1Bzn+1)− PE(zn − λnBzn)‖
≤ ‖(zn+1 − λn+1Bzn+1)− (zn − λnBzn)‖
= ‖(zn+1 − λn+1Bzn+1)− (zn − λn+1Bzn)+ (λn − λn+1)Bzn‖
≤ ‖(zn+1 − λn+1Bzn+1)− (zn − λn+1Bzn)‖ + |λn − λn+1|‖Bzn‖
= ‖(I − λn+1B)zn+1 − (I − λn+1B)zn‖ + |λn − λn+1|‖Bzn‖
≤ ‖zn+1 − zn‖ + |λn − λn+1|‖Bzn‖ ≤ ‖xn+1 − xn‖ + |λn − λn+1|‖Bzn‖ (3.6)

and

‖θn+1 − θn‖ ≤ ‖PE(yn+1 − τn+1Byn+1)− PE(yn − τnByn)‖
≤ ‖(yn+1 − τn+1Byn+1)− (yn − τnByn)‖
≤ ‖(yn+1 − τn+1Byn+1)− (yn − τn+1Byn)‖ + |τn − τn+1|‖Byn‖
= ‖(I − τn+1B)yn+1 − (I − τn+1B)yn‖ + |τn − τn+1|‖Byn‖
≤ ‖yn+1 − yn‖ + |τn − τn+1|‖Byn‖. (3.7)

Since Ti and Un,i are nonexpansive, we have

‖Wn+1φn −Wnφn‖ = ‖μ1T1Un+1,2φn − μ1T1Un,2φn‖
≤ μ1‖Un+1,2φn − Un,2φn‖
= μ1‖μ2T2Un+1,3φn − μ2T2Un,3φn‖
≤ μ1μ2‖Un+1,3φn − Un,3φn‖
...

≤ μ1μ2 · · ·μn‖Un+1,n+1φn − Un,n+1φn‖

≤ M2

n∏
i=1

μi, (3.8)

whereM2 ≥ 0 is a constant such that ‖Un+1,n+1φn − Un,n+1φn‖ ≤ M2 for all n ≥ 0.

Similarly, we obtain that there exist nonnegative numbersM3 such that

‖Un+1,n+1θn − Un,n+1θn‖ ≤ M3,

and so is

‖Wn+1θn −Wnθn‖ ≤ M3

n∏
i=1

μi. (3.9)

Observing that{
yn = αnzn + (1− αn)Wnφn

yn+1 = αn+1zn+1 + (1− αn+1)Wnφn+1,
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we obtain

yn − yn+1 = αn(zn − zn+1)+ (1− αn)(Wnφn −Wn+1φn+1)+ (Wn+1φn+1 − zn+1)(αn+1 − αn),

which yields that

‖yn − yn+1‖ ≤ αn‖zn − zn+1‖ + (1− αn)‖Wnφn −Wn+1φn+1‖ + |αn+1 − αn|‖Wn+1φn+1 − zn+1‖
≤ αn‖xn − xn+1‖ + (1− αn)

{
‖Wn+1φn+1 −Wn+1φn‖ + ‖Wn+1φn −Wnφn‖

}
+ |αn+1 − αn|‖Wn+1φn+1 − zn+1‖

≤ αn‖xn − xn+1‖ + (1− αn)‖φn+1 − φn‖ + ‖Wn+1φn −Wnφn‖
+ |αn+1 − αn|‖Wn+1φn+1 − zn+1‖. (3.10)

Substitution of (3.6) and (3.8) into (3.10) yields that

‖yn − yn+1‖ = αn‖xn − xn+1‖ + (1− αn)
{
‖xn+1 − xn‖ + |λn − λn+1|‖Bzn‖

}

+M2

n∏
i=1

μi + |αn+1 − αn|‖Wn+1φn+1 − zn+1‖
= αn‖xn − xn+1‖ + (1− αn)‖xn+1 − xn‖ + (1− αn)|λn − λn+1|‖Bzn‖
+M2

n∏
i=1

μi + |αn+1 − αn|‖Wn+1φn+1 − zn+1‖

≤ ‖xn − xn+1‖ +M2

n∏
i=1

μi +M4

(|λn − λn+1| + |αn+1 − αn|
)
, (3.11)

whereM4 is an appropriate constant such thatM4 = max

{
supn≥1 ‖Bzn‖, supn≥1 ‖Wnφn − zn‖

}
.

Substitution of (3.11) into (3.7), we obtain

‖θn+1 − θn‖ ≤ ‖yn+1 − yn‖ + |τn − τn+1|‖Byn‖
≤ ‖xn − xn+1‖ +M2

n∏
i=1

μi +M4

(||λn − λn+1| + |αn+1 − αn||
)+ |τn − τn+1|‖Byn‖

≤ ‖xn − xn+1‖ +M2

n∏
i=1

μi +M5

(|λn − λn+1| + |αn+1 − αn| + |τn − τn+1|
)
, (3.12)

whereM5 is an appropriate constant such thatM5 = max
{
supn≥1 ‖Byn‖,M4

}
.

Let xn+1 = (1− βn)vn + βnxn, n ≥ 1; therefore,

vn = xn+1 − βnxn

1− βn

= εn
(
u+ γ f (Wnxn)

)+ (
(1− βn)I − εn(I + μA)

)
Wnθn

1− βn

.

Then we have

vn+1 − vn = εn+1

(
u+ γ f (Wn+1xn+1)

)+ (
(1− βn+1)I − εn+1(I + μA)

)
Wn+1θn+1

1− βn+1

− εn
(
u+ γ f (Wnxn)

)+ (
(1− βn)I − εn(I + μA)

)
Wnθn

1− βn

= εn+1

1− βn+1

(
u+ γ f (Wn+1xn+1)

)− εn

1− βn

(
u+ γ f (Wnxn)

) + Wn+1θn+1 −Wnθn

+ εn

1− βn

(I + μA)Wnθn − εn+1

1− βn+1

(I + μA)Wn+1θn+1

= εn+1

1− βn+1

((
u+ γ f (Wn+1xn+1)

)− (I + μA)Wn+1θn+1

)
+ εn

1− βn

(
(I + μA)Wnθn − u− γ f (Wnxn)

)
+Wn+1θn+1 −Wn+1θn +Wn+1θn −Wnθn. (3.13)
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It follows from (3.9), (3.12) and (3.13) that

‖vn+1 − vn‖ − ‖xn+1 − xn‖ (3.14)

≤ εn+1

1− βn+1

(
‖u‖ + ‖γ f (Wn+1xn+1)‖ + ‖(I + μA)Wn+1θn+1‖

)
+ εn

1− βn

(
‖(I + μA)Wnθn‖ + ‖u‖ + ‖γ f (Wnxn)‖

)
+‖Wn+1θn+1 −Wn+1θn‖ + ‖Wn+1θn −Wnθn‖ − ‖xn+1 − xn‖

≤ εn+1

1− βn+1

(
‖u‖ + ‖γ f (Wn+1xn+1)‖ + ‖(I + μA)Wn+1θn+1‖

)
+ εn

1− βn

(
‖(I + μA)Wnθn‖ + ‖u‖ + ‖γ f (Wnxn)‖

)
+ ‖θn+1 − θn‖

+‖Wn+1θn −Wnθn‖ − ‖xn+1 − xn‖
≤ εn+1

1− βn+1

(
‖u‖ + ‖γ f (Wn+1xn+1)‖ + ‖(I + μA)Wn+1θn+1‖

)

+ εn

1− βn

(
‖(I + μA)Wnθn‖ + ‖u‖ + ‖γ f (Wnxn)‖

)
+M3

n∏
i=1

μi

+M2

n∏
i=1

μi +M5

(|λn − λn+1| + |αn+1 − αn| + |τn − τn+1|
)

≤ εn+1

1− βn+1

(
‖u‖ + ‖γ f (Wn+1xn+1)‖ + ‖(I + μA)Wn+1θn+1‖

)

+ εn

1− βn

(
‖(I + μA)Wnθn‖ + ‖u‖ + ‖γ f (Wnxn)‖

)
+ 2L

n∏
i=1

μi

+M5

(|λn − λn+1| + |αn+1 − αn| + |τn − τn+1|
)
, (3.15)

where L is an appropriate constant such that L = max{M2,M3}.
It follows from condition (C4), (C5), (C6) and 0 < μi ≤ b < 1,∀i ≥ 1, we have

lim sup
n−→∞

(‖vn+1 − vn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 2.15, we obtain

lim
n−→∞‖vn − xn‖ = 0.

It follows that

lim
n−→∞‖xn+1 − xn‖ = lim

n−→∞(1− βn)‖vn − xn‖ = 0. (3.16)

Applying (3.16) and condition in Theorem 3.1 to (3.5), (3.6), (3.11) and (3.12), we obtain that

lim
n−→∞‖zn+1 − zn‖ = lim

n−→∞‖yn+1 − yn‖ = lim
n−→∞‖φn+1 − φn‖ = lim

n−→∞‖θn+1 − θn‖ = 0.

Since xn+1 = εn
(
u+ γ f (Wnxn)

)+ βnxn +
(
(1− βn)I − εn(I + μA)

)
Wnθn, we have

‖xn −Wnθn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 −Wnθn‖
= ‖xn − xn+1‖ + ‖εn

(
u+ γ f (Wnxn)

)+ βnxn +
(
(1− βn)I − εn(I + μA)

)
Wnθn −Wnθn‖

= ‖xn − xn+1‖ +
∥∥∥εn((u+ γ f (Wnxn)

)− (I + μA)Wnθn

)
+ βn(xn −Wnθn)

∥∥∥
≤ ‖xn − xn+1‖ + εn

(‖u‖ + ‖γ f (Wnxn)‖ + ‖(I + μA)Wnθn‖
)+ βn‖xn −Wnθn‖,

that is

‖xn −Wnθn‖ ≤ 1

1− βn

‖xn − xn+1‖ + εn

1− βn

(‖u‖ + ‖γ f (Wnxn)‖ + ‖(I + μA)Wnθn‖
)
.

By (C4), (C5) and (3.16) it follows that

lim
n−→∞‖Wnθn − xn‖ = 0. (3.17)
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Step 3. We claim that limn−→∞ ‖xn − θn‖ = 0 and limn−→∞ ‖Wnθn − θn‖ = 0.
Since B is a ξ -Lipschitz continuous and relaxed (m, v)-cocoercive mappings by the assumptions imposed on {τn} for any

p ∈ Γ := ∩∞n=1 F(Tn) ∩Ω ∩ VI(E, B), we have

‖Wnθn − p‖2 ≤ ‖PE(yn − τnByn)− PE(p− τnBp)‖2
≤ ‖(yn − τnByn)− (p− τnBp)‖2
= ‖(yn − p)− τn(Byn − Bp)‖2
≤ ‖yn − p‖2 − 2τn〈yn − p, Byn − Bp〉 + τ 2

n ‖Byn − Bp‖2
≤ ‖xn − p‖2 − 2τn〈yn − p, Byn − Bp〉 + τ 2

n ‖Byn − Bp‖2
≤ ‖xn − p‖2 − 2τn{−m‖Byn − Bp‖2 + v‖yn − p‖2} + τ 2

n ‖Byn − Bp‖2
≤ ‖xn − p‖2 + 2τnm‖Byn − Bp‖2 − 2τnv‖yn − p‖2 + τ 2

n ‖Byn − Bp‖2

≤ ‖xn − p‖2 + 2τnm‖Byn − Bp‖2 − 2τnv

ξ 2
‖Byn − Bp‖2 + τ 2

n ‖Byn − Bp‖2

= ‖xn − p‖2 +
(
2τnm+ τ 2

n −
2τnv

ξ 2

)
‖Byn − Bp‖2. (3.18)

Similarly, we have

‖Wnφn − p‖2 ≤ ‖xn − p‖2 +
(
2λnm+ λ2

n −
2λnv

ξ 2

)
‖Bzn − Bp‖2. (3.19)

Observe that

‖xn+1 − p‖2 = ‖((1− βn)I − εn(I + μA)
)
(Wnθn − p)+ βn(xn − p)+ εn

(
u+ γ f (Wnxn)− (I + μA)p

)‖2
= ‖((1− βn)I − εn(I + μA)

)
(Wnθn − p)+ βn(xn − p)‖2 + ε2

n‖u+ γ f (Wnxn)− (I + μA)p‖2

+ 2βnεn

〈
xn − p, u+ γ f (Wnxn)− (I + μA)p

〉
+ 2εn

〈(
(1− βn)I − εn(I + μA)

)
(Wnθn − p), u+ γ f (Wnxn)− (I + μA)p

〉
≤

[(
(1− βn)I − εn(I + μA)

)‖Wnθn − p‖ + βn‖xn − p‖
]2
+ ε2

n‖u+ γ f (Wnxn)− (I + μA)p‖2

+ 2βnεn

〈
xn − p, u+ γ f (Wnxn)− (I + μA)p

〉
+ 2εn

〈(
(1− βn)I − εn(I + μA)

)
(Wnθn − p), u+ γ f (Wnxn)− (I + μA)p

〉
≤

[
(1− βn − εn − εnμγ̄ )‖Wnθn − p‖ + βn‖xn − p‖

]2
+ cn

= (1− βn − εn − εnμγ̄ )2‖Wnθn − p‖2 + β2
n‖xn − p‖2

+ 2(1− βn − εn − εnμγ̄ )βn‖Wnθn − p‖‖xn − p‖ + cn

≤ (1− βn − εn − εnμγ̄ )2‖Wnθn − p‖2 + β2
n‖xn − p‖2

+ (1− βn − εn − εnμγ̄ )βn(‖Wnθn − p‖2 + ‖xn − p‖2)+ cn

=
[
(1− εn − εnμγ̄ )2 − 2(1− εn − εnμγ̄ )βn + β2

n

]
‖Wnθn − p‖2 + β2

n‖xn − p‖2

+ ((1− εn − εnμγ̄ )βn − β2
n )(‖Wnθn − p‖2 + ‖xn − p‖2)+ cn

=
[
(1− εn − εnμγ̄ )2 − (1− εn − εnμγ̄ )βn

]
‖Wnθn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖Wnθn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn, (3.20)

where

cn = ε2
n‖u+ γ f (xn)− (I + μA)p‖2 + 2βnεn

〈
xn − p, u+ γ f (Wnxn)− (I + μA)p

〉
+ 2εn

〈(
(1− βn)I − εn(I + μA)

)
(Wnθn − p), u+ γ f (Wnxn)− (I + μA)p

〉
.

It follows from condition (C4) that

lim
n−→∞ cn = 0. (3.21)
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Substituting (3.18) into (3.20), and using condition (C7), we have

‖xn+1 − p‖2 ≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )
{
‖xn − p‖2 +

(
2τnm+ τ 2

n −
2τnv

ξ 2

)
‖Byn − Bp‖2

}
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )2‖xn − p‖2

+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )

(
2τnm+ τ 2

n −
2τnv

ξ 2

)
‖Byn − Bp‖2 + cn

≤ ‖xn − p‖2 +
(
2τnm+ τ 2

n −
2τnv

ξ 2

)
‖Byn − Bp‖2 + cn.

It follows that(
2av

ξ 2
− 2bm− b2

)
‖Byn − Bp‖2 ≤

(
2τnv

ξ 2
− 2τnm− τ 2

n

)
‖Byn − Bp‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + cn

= (‖xn − p‖ − ‖xn+1 − p‖)(‖xn − p‖ + ‖xn+1 − p‖)+ cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖)+ cn.

Since cn −→ 0 as n −→∞ and (3.16), we obtain

lim
n−→∞‖Byn − Bp‖ = 0. (3.22)

Note that

‖yn − p‖2 ≤ αn‖zn − p‖2 + (1− αn)‖Wnφn − p‖2

≤ αn‖xn − p‖2 + (1− αn)
{
‖xn − p‖2 +

(
2λnm+ λ2

n −
2λnv

ξ 2

)
‖Bzn − Bp‖2

}

= ‖xn − p‖2 + (1− αn)

(
2λnm+ λ2

n −
2λnv

ξ 2

)
‖Bzn − Bp‖2. (3.23)

Using (3.20) again, we have

‖xn+1 − p‖2
≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖Wnθn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖yn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn. (3.24)

Substituting (3.23) into (3.24), and using condition (C4) and (C7), we have

‖xn+1 − p‖2 ≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )
{
‖xn − p‖2 + (1− αn)

(
2λnm+ λ2

n −
2λnv

ξ 2

)
‖Bzn − Bp‖2

}
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)

(
2λnm+ λ2

n −
2λnv

ξ 2

)
‖Bzn − Bp‖2

+ (1− εn − εnμγ̄ )2‖xn − p‖2 + cn

≤ ‖xn − p‖2 + (1− αn)

(
2λnm+ λ2

n −
2λnv

ξ 2

)
‖Bzn − Bp‖2 + cn.

It follows that

(1− αn)

(
2av

ξ 2
− 2bm− b2

)
‖Bzn − Bp‖2 ≤ (1− αn)

(
2λnv

ξ 2
− 2λnm− λ2

n

)
‖Bzn − Bp‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖)+ cn.

Since cn −→ 0 as n −→∞ and (3.16), we obtain

lim
n−→∞‖Bzn − Bp‖ = 0. (3.25)
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By (2.1), we also have

‖θn − p‖2 = ‖PE(yn − τnByn)− PE(p− τnBp)‖2
= ‖PE(I − τnB)yn − PE(I − τnB)p‖2
≤

〈
(I − τnB)yn − (I − τnB)p, θn − p

〉
= 1

2

{
‖(I − τnB)yn − (I − τnB)p‖2 + ‖θn − p‖2 − ‖(I − τnB)yn − (I − τnB)p− (θn − p)‖2

}
≤ 1

2

{
‖yn − p‖2 + ‖θn − p‖2 − ‖(yn − θn)− τn(Byn − Bp)‖2

}
≤ 1

2

{
‖xn − p‖2 + ‖θn − p‖2 − ‖yn − θn‖2 − τ 2

n ‖Byn − Bp‖2 + 2τn〈yn − θn, Byn − Bp〉
}
,

which yields that

‖θn − p‖2 ≤ ‖xn − p‖2 − ‖yn − θn‖2 + 2τn‖yn − θn‖‖Byn − Bp‖. (3.26)

Substituting (3.26) into (3.20), we have

‖xn+1 − p‖2 ≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖Wnθn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )
{
‖xn − p‖2 − ‖yn − θn‖2

+ 2τn‖yn − θn‖‖Byn − Bp‖
}
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )2‖xn − p‖2 − (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖yn − θn‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )τn‖yn − θn‖‖Byn − Bp‖ + cn

≤ ‖xn − p‖2 − (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖yn − θn‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )τn‖yn − θn‖‖Byn − Bp‖ + cn.

It follows that

(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖yn − θn‖2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )τn‖yn − θn‖‖Byn − Bp‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖)
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )τn‖yn − θn‖‖Byn − Bp‖ + cn.

Applying ‖xn+1 − xn‖ −→ 0, ‖Byn − Bp‖ −→ 0 and cn −→∞ as n −→∞ to the last inequality, we get

lim
n−→∞‖yn − θn‖ = 0. (3.27)

On the other hand, we have

‖Wnφn − p‖2 ≤ ‖PE(zn − λnBzn)− PE(p− λnBp)‖2
= ‖PE(I − λnB)zn − PE(I − λnB)p‖2
≤

〈
(I − λnB)zn − (I − λnB)p,Wnφn − p

〉
= 1

2

{
‖(I − λnB)zn − (I − λnB)p‖2 + ‖Wnφn − p‖2 − ‖(I − λnB)zn − (I − λnB)p− (Wnφn − p)‖2

}
≤ 1

2

{
‖zn − p‖2 + ‖Wnφn − p‖2 − ‖(zn −Wnφn)− λn(Bzn − Bp)‖2

}
≤ 1

2

{
‖xn − p‖2 + ‖Wnφn − p‖2 − ‖zn −Wnφn‖2 − λ2

n‖Bzn − Bp‖2 + 2λn〈zn −Wnφn, Bzn − Bp〉
}
,

which yields that

‖Wnφn − p‖2 ≤ ‖xn − p‖2 − ‖zn −Wnφn‖2 + 2λn‖zn −Wnφn‖‖Bzn − Bp‖. (3.28)
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Using (3.24) again, we have

‖xn+1 − p‖2 ≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖yn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )
{
αn‖zn − p‖2 + (1− αn)‖Wnφn − p‖2

}
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )
{
αn‖xn − p‖2 + (1− αn)‖Wnφn − p‖2

}
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )αn‖xn − p‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)‖Wnφn − p‖2
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )αn‖xn − p‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)

{
‖xn − p‖2 − ‖zn −Wnφn‖2

+ 2λn‖zn −Wnφn‖‖Bzn − Bp‖
}
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )αn‖xn − p‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)‖xn − p‖2
− (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)‖zn −Wnφn‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)2λn‖zn −Wnφn‖‖Bzn − Bp‖
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖xn − p‖2
− (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)‖zn −Wnφn‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)2λn‖zn −Wnφn‖‖Bzn − Bp‖
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )2‖xn − p‖2 − (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)‖zn −Wnφn‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)2λn‖zn −Wnφn‖‖Bzn − Bp‖ + cn

≤ ‖xn − p‖2 − (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)‖zn −Wnφn‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)2λn‖zn −Wnφn‖‖Bzn − Bp‖ + cn

which implies that

(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)‖zn −Wnφn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)λn‖zn −Wnφn‖‖Bzn − Bp‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖)
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )(1− αn)λn‖zn −Wnφn‖‖Bzn − Bp‖ + cn.

From (3.16) and (3.25), we obtain

lim
n−→∞‖zn −Wnφn‖ = 0. (3.29)

Note that

yn −Wnφn = αn(zn −Wnφn).

Since αn −→∞ as n −→∞, we also have

lim
n−→∞‖yn −Wnφn‖ = 0. (3.30)

From (3.29) and (3.30), we have

lim
n−→∞‖yn − zn‖ = 0. (3.31)

On the other hand, we observe that

‖zn − θn‖ ≤ ‖zn − yn‖ + ‖yn − θn‖.
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Applying (3.27) and (3.31), we have

lim
n−→∞‖zn − θn‖ = 0. (3.32)

Let p ∈ Γ := ∩∞n=1 F(Tn) ∩Ω ∩ VI(E, B). Since zn = Srxn and Sr is firmly nonexpansive (Remark 2.10), we obtain

‖zn − p‖2 = ‖Srxn − Srp‖2
≤ 〈Srxn − Srp, xn − p〉
= 〈zn − p, xn − p〉
= 1

2
(‖zn − p‖2 + ‖xn − p‖2 − ‖xn − zn‖2).

So, we have

‖zn − p‖2 ≤ ‖xn − p‖2 − ‖xn − zn‖2.
Therefore, we have

‖xn+1 − p‖2 ≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − p‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖(θn − zn)+ (zn − p)‖2 + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )
{
‖θn − zn‖2 + ‖zn − p‖2 + 2〈θn − zn, zn − p〉

}
+ (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖2 + (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖zn − p‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖‖zn − p‖ + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

≤ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )

{
‖xn − p‖2 − ‖xn − zn‖2

}
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖‖zn − p‖ + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖xn − p‖2
− (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖xn − zn‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖‖zn − p‖ + (1− εn − εnμγ̄ )βn‖xn − p‖2 + cn

= (1− εn − εnμγ̄ )2‖xn − p‖2 − (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖xn − zn‖2
+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖‖zn − p‖ + cn

= (
1− 2εn(1+ μ)γ̄ + ε2

n(1+ μ)2γ̄ 2
)‖xn − p‖2 − (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖xn − zn‖2

+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖‖zn − p‖ + cn

≤ ‖xn − p‖2 + ε2
n(1+ μ)2γ̄ 2‖xn − p‖2 − (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖xn − zn‖2

+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖‖zn − p‖ + cn.

It follows that

(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖xn − zn‖2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ε2

n(1+ μ)2γ̄ 2‖xn − p‖2 + (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖‖zn − p‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖)+ ε2
n(1+ μ)2γ̄ 2‖xn − p‖2

+ (1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖2
+ 2(1− εn − εnμγ̄ )(1− βn − εn − εnμγ̄ )‖θn − zn‖‖zn − p‖ + cn.

Using εn −→ 0, cn −→ 0 as n −→∞, (3.16) and (3.32), we obtain

lim
n−→∞‖zn − xn‖ = 0. (3.33)
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Note that

‖xn − θn‖ ≤ ‖xn − zn‖ + ‖zn − θn‖
from (3.32) and (3.33), and we have

lim
n−→∞‖xn − θn‖ = 0. (3.34)

Observe that

‖Wnθn − θn‖ ≤ ‖Wnθn − xn‖ + ‖xn − θn‖.
Applying (3.17) and (3.34), we obtain

lim
n−→∞‖Wnθn − θn‖ = 0. (3.35)

LetW be the mapping defined by (2.4). Since {θn} is bounded, applying Lemma 2.14 and (3.35), we have

‖Wθn − θn‖ ≤ ‖Wθn −Wnθn‖ + ‖Wnθn − θn‖ −→ 0 as n −→∞. (3.36)

Step 4.We claim that

lim sup
n−→∞

〈
u+ [

γ f − (I + μA)
]
z, xn − z

〉
≤ 0,

where z is a solution of the optimization problem:

OP : min
x∈Γ

μ

2
〈Ax, x〉 + 1

2
‖x− u‖2 − h(x).

To show this inequality, we can choose a subsequence {θni} of {θn} such that

lim
i−→∞

〈
u+ [

γ f − (I + μA)
]
z, θni − z

〉
= lim sup

n−→∞

〈
u+ [

γ f − (I + μA)
]
z, θn − z

〉
. (3.37)

Since {θni} is bounded, there exists a subsequence {θnij } of {θni}which convergesweakly tow ∈ E. Without loss of generality,

we can assume that θni ⇀ w. From ‖Wθn − θn‖ −→ 0, we obtain Wθni ⇀ w. Next, we show that w ∈ Γ where Γ :=
∩∞n=1 F(Tn) ∩Ω ∩ VI(E, B). First, we prove w ∈ Ω . Since zn = Srxn, we derive

Θ(zn, x)+ ϕ(x)− ϕ(zn)+ 1

r

〈
K ′(zn)− K ′(xn), η(x, zn)

〉
≥ 0, ∀x ∈ E.

From (H1), we also have

1

r

〈
K ′(zn)− K ′(xn), η(x, zn)

〉
+ ϕ(x)− ϕ(zn) ≥ −Θ(zn, x) ≥ Θ(x, zn),

and hence〈K ′(zni)− K ′(xni)
r

, η(x, zni)
〉
+ ϕ(x)− ϕ(zni) ≥ Θ(x, zni).

Since
K ′(zni )−K ′(xni )

r
−→ 0 and zni ⇀ w, from the weak lower semicontinuity of ϕ and Θ(x, y) in the second variable y, we

also have Θ(x, w)+ ϕ(w)− ϕ(x) ≤ 0 for all x ∈ E. For t with 0 < t ≤ 1 and x ∈ E, let xt = tx+ (1− t)w. Since x ∈ E and
w ∈ E, we have xt ∈ E and hence Θ(xt , w) + ϕ(w) − ϕ(xt) ≤ 0. From the convexity of equilibrium bifunction Θ(x, y) in
the second variable y, we have

0 = Θ(xt , xt)+ ϕ(xt)− ϕ(xt)

≤ tΘ(xt , x)+ (1− t)Θ(xt , w)+ tϕ(x)+ (1− t)ϕ(w)− ϕ(xt)

≤ t
[
Θ(xt , x)+ ϕ(x)− ϕ(xt)

]
,

and hence Θ(xt , x)+ ϕ(x)− ϕ(xt) ≥ 0. Then, we have Θ(w, x)+ ϕ(x)− ϕ(w) ≥ 0 for all x ∈ E and hence w ∈ Ω.
Next, we show that w ∈ ∩∞n=1 F(Tn). By Lemma 2.13, we have F(W ) = ∩∞n=1 F(Tn). Assume that w �∈ F(W ). Since

‖xn − θn‖ −→ 0, we know that θni ⇀ w (i −→∞) and w �= Ww, it follows by the Opial’s condition (Lemma 2.2) that

lim inf
i−→∞ ‖θni − w‖ < lim inf

i−→∞ ‖θni −Ww‖
≤ lim inf

i−→∞ (‖θni −Wθni‖ + ‖Wθni −Ww‖)
< lim inf

i−→∞ ‖θni − w‖,
which is a contradiction. Thus, we get w ∈ F(W ) = ∩∞n=1 F(Tn).
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Finally, we show that w ∈ VI(E, B).

Define

Tw1 =
{
Bw1 + NEw1, w1 ∈ E,
∅, w1 �∈ E.

Since B is relaxed (m, v)-cocoercive and condition (C7), we have

〈Bx− By, x− y〉 ≥ (−m)‖Bx− By‖2 + v‖x− y‖2 ≥ (v −mξ 2)‖x− y‖2 ≥ 0,

which yields that B is monotone. Thus T is maximal monotone. Let (w1, w2) ∈ G(T ). Since w2 − Bw1 ∈ NEw1 and θn ∈ E,
we have

〈w1 − θn, w2 − Bw1〉 ≥ 0.

On the other hand, from θn = PC (yn − τnByn), we have〈
w1 − θn, θn − (yn − τnByn)

〉 ≥ 0,

and hence〈
w1 − θn,

θn − yn

τn
+ Byn

〉
≥ 0.

Therefore, we have

〈w1 − θni , w〉 ≥ 〈w1 − θni , Bw1〉

≥ 〈w1 − θni , Bw1〉 −
〈
w1 − θni ,

θni − yni

τni
+ Byni

〉

=
〈
w1 − θni , Bw1 − Byni −

θni − yni

τni

〉

= 〈w1 − θni , Bw1 − Bθni〉 + 〈w1 − θni , Bθni − Byni〉 −
〈
w1 − θni ,

θni − yni

τni

〉

≥ 〈w1 − θni , Bθni − Byni〉 −
〈
w1 − θni ,

θni − yni

τni

〉
. (3.38)

Noting that ‖θni − yni‖ −→ 0 as n −→∞ and B is Lipschitz continuous, hence from (3.38), we obtain

〈w1 − w, w2〉 ≥ 0.

Since T is maximal monotone, we have w ∈ T−10 and hence w ∈ VI(E, B). That is w ∈ Γ := ∩∞n=1 F(Tn) ∩ Ω ∩ VI(E, B).
Therefore, from Lemma 2.18, ‖xn − θn‖ −→ 0 as n −→∞ and (3.37), we have

lim sup
n−→∞

〈
u+ [

γ f − (I + μA)
]
z, xn − z

〉
= lim sup

n−→∞

〈
u+ [

γ f − (I + μA)
]
z, θn − z

〉
= lim

i−→∞

〈
u+ [

γ f − (I + μA)
]
z, θni − z

〉
=

〈
u+ [

γ f − (I + μA)
]
z, w − z

〉
≤ 0. (3.39)

By using (3.17), (3.34) and (3.39), we obtain

lim sup
n−→∞

〈
u+ [

γ f − (I + μA)
]
z,Wnθn − z

〉
≤ 0. (3.40)

Step 5. Finally, we prove that {xn} and {zn} converge strongly to z ∈ Γ .

From (3.1), we obtain

‖xn+1 − z‖2 = ‖εn
(
u+ γ f (Wnxn)

)+ βnxn +
(
(1− βn)I − εn(I + μA)

)
Wnθn − z‖2

= ‖((1− βn)I − εn(I + μA)
)
(Wnθn − z)+ βn(xn − z)+ εn

(
u+ γ f (Wnxn)− (I + μA)z

)‖2
= ‖((1− βn)I − εn(I + μA)

)
(Wnθn − z)+ βn(xn − z)‖2 + ε2

n‖u+ γ f (Wnxn)− (I + μA)z‖2
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+ 2βnεn

〈
xn − z, u+ γ f (Wnxn)− (I + μA)z

〉
+ 2εn

〈(
(1− βn)I − εn(I + μA)

)
(Wnθn − z), u+ γ f (Wnxn)− (I + μA)z

〉
≤

[(
1− βn − εn(1+ μ)γ̄

)‖Wnθn − z‖ + βn‖xn − z‖
]2
+ ε2

n‖u+ γ f (Wnxn)− (I + μA)z‖2

+ 2βnεnγ
〈
xn − z, f (Wnxn)− f (z)

〉
+ 2βnεn

〈
xn − z, u+ γ f (z)− (I + μA)z

〉
+ 2(1− βn)γ εn

〈
Wnθn − z, f (Wnxn)− f (z)

〉
+ 2(1− βn)εn

〈
Wnθn − z, u+ γ f (z)− (I + μA)z

〉
− 2ε2

n

〈
(I + μA)(Wnθn − z), u+ γ f (z)− (I + μA)z

〉
≤

[(
1− βn − εn(1+ μ)γ̄

)‖Wnθn − z‖ + βn‖xn − z‖
]2
+ ε2

n‖u+ γ f (Wnxn)− (I + μA)z‖2

+ 2βnεnγ ‖xn − z‖‖f (Wnxn)− f (z)‖ + 2βnεn

〈
xn − z, u+ γ f (z)− (I + μA)z

〉
+ 2(1− βn)γ εn‖Wnθn − z‖‖f (Wnxn)− f (z)‖ + 2(1− βn)εn

〈
Wnθn − z, u+ γ f (z)− (I + μA)z

〉
− 2ε2

n

〈
(I + μA)(Wnθn − z), u+ γ f (z)− (I + μA)z

〉
≤

[(
1− βn − εn(1+ μ)γ̄

)‖θn − z‖ + βn‖xn − z‖
]2
+ ε2

n‖u+ γ f (Wnxn)− (I + μA)z‖2

+ 2βnεnγ ‖xn − z‖‖f (Wnxn)− f (z)‖ + 2βnεn

〈
xn − z, u+ γ f (z)− (I + μA)z

〉
+ 2(1− βn)γ εn‖θn − z‖‖f (Wnxn)− f (z)‖ + 2(1− βn)εn

〈
Wnθn − z, u+ γ f (z)− (I + μA)z

〉
− 2ε2

n

〈
(I + μA)(Wnθn − z), u+ γ f (z)− (I + μA)z

〉
≤

[(
1− βn − εn(1+ μ)γ̄

)‖xn − z‖ + βn‖xn − z‖
]2
+ ε2

n‖u+ γ f (Wnxn)− (I + μA)z‖2

+ 2βnεnγα‖xn − z‖2 + 2βnεn

〈
xn − z, u+ γ f (z)− (I + μA)z

〉
+ 2(1− βn)γ εnα‖xn − z‖2 + 2(1− βn)εn

〈
Wnθn − z, u+ γ f (z)− (I + μA)z

〉
− 2ε2

n

〈
(I + μA)(Wnθn − z), u+ γ f (z)− (I + μA)z

〉
=

[(
1− εn(1+ μ)γ̄

)2 + 2βnεnγα + 2(1− βn)γ εnα
]
‖xn − z‖2 + ε2

n‖u+ γ f (Wnxn)− (I + μA)z‖2

+ 2βnεn

〈
xn − z, u+ γ f (z)− (I + μA)z

〉
+ 2(1− βn)εn

〈
Wnθn − z, u+ γ f (z)− (I + μA)z

〉
− 2ε2

n

〈
(I + μA)(Wnθn − z), u+ γ f (z)− (I + μA)z

〉
≤

[
1− 2

(
(1+ μ)γ̄ − αγ

)
εn]‖xn − z‖2 + ε2

n(1+ μ)2γ̄ 2‖xn − z‖2 + ε2
n‖u+ γ f (Wnxn)− (I + μA)z‖2

+ 2βnεn

〈
xn − z, u+ γ f (z)− (I + μA)z

〉
+ 2(1− βn)εn

〈
Wnθn − z, u+ γ f (z)− (I + μA)z

〉
+ 2ε2

n‖(I + μA)(Wnθn − z)‖‖u+ γ f (z)− (I + μA)z‖

=
[
1− 2

(
(1+ μ)γ̄ − αγ

)
εn

]
‖xn − z‖2 + εn

{
εn

[
(1+ μ)2γ̄ 2‖xn − z‖2 + ‖u+ γ f (Wnxn)

− (I + μA)z‖2 + 2‖(I + μA)(Wnθn − z)‖‖u+ γ f (z)− (I + μA)z‖
]

+ 2βn

〈
xn − z, u+ γ f (z)− (I + μA)z

〉
+ 2(1− βn)

〈
Wnθn − z, u+ γ f (z)− (I + μA)z

〉}
.

Since {xn},
{
f (Wnxn)

}
and {Wnθn} are bounded, we can take a constantM > 0 such that

(1+ μ)2γ̄ 2‖xn − z‖2 + ‖u+ γ f (Wnxn)− (I + μA)z‖2 + 2‖(I + μA)(Wnθn − z)‖‖u+ γ f (z)− (I + μA)z‖ ≤ M,
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for all n ≥ 0. It follows that

‖xn+1 − z‖2 ≤ (1− ln)‖xn − z‖2 + εnσn, (3.41)

where

ln = 2
(
(1+ μ)γ̄ − αγ

)
εn,

σn = εnM + 2βn

〈
xn − z, u+ γ f (z)− (I + μA)z

〉
+ 2(1− βn)

〈
Wnθn − z, u+ γ f (z)− (I + μA)z

〉
.

By using (C4), (3.39) and (3.40), we get ln −→ 0,
∑∞

n=1 ln = ∞ and lim supn−→∞ σn
ln
≤ 0. Applying Lemma 2.17 and (3.39)

to (3.41), we conclude that xn −→ z in norm. Finally, noticing ‖zn − z‖ = ‖Srxn − Srz‖ ≤ ‖xn − z‖. We also conclude that
zn −→ z in norm. This completes the proof. �

Corollary 3.2. Let E be a nonempty closed convex subset of a real Hilbert space H and let ϕ be a lower semicontinuous and convex
functional from E to R. Let Θ be a bifunction from E × E to R satisfying (H1)–(H3) and let B be a ξ -Lipschitz continuous and
relaxed (m, v)-cocoercive map E into H such that

Γ := Ω ∩ VI(E, B) �= ∅.
Let μ > 0, γ > 0 and r > 0, which are three constants. Let f be a contraction of E into itself with α ∈ (0, 1) and let A be a

strongly positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ <
(1+μ)γ̄

α
. For given x1 ∈ H arbitrarily and

fixed u ∈ H, suppose the {xn}, {yn} and {zn} are generated iteratively by⎧⎪⎨
⎪⎩

Θ(zn, x)+ ϕ(x)− ϕ(zn)+ 1

r

〈
K ′(zn)− K ′(xn), η(x, zn)

〉
≥ 0, ∀x ∈ E,

yn = αnzn + (1− αn)PE(zn − λnBzn),

xn+1 = εn
(
u+ γ f (xn)

)+ βnxn +
(
(1− βn)I − εn(I + μA)

)
PE(yn − τnByn),

for all n ∈ N, where {εn}, {αn} and {βn} are three sequences in (0, 1). Assume the following conditions are satisfied:

(C1) η : E × E −→ H is Lipschitz continuous with constant λ > 0 such that;
(a) η(x, y)+ η(y, x) = 0, ∀x, y ∈ E,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ E, x �→ η(y, x) is sequentially continuous from the weak topology to the weak topology;

(C2) K : E −→ R is η-strongly convex with constant σ > 0 and its derivative K ′ is not only sequentially continuous from the
weak topology to the strong topology but also Lipschitz continuous with constant ν > 0 such that σ > λν;

(C3) for each x ∈ E, there exist a bounded subset Dx ⊂ E and zx ∈ E such that for any y ∈ E \ Dx

Θ(y, zx)+ ϕ(zx)− ϕ(y)+ 1

r

〈
K ′(y)− K ′(x), η(zx, y)

〉
< 0;

(C4) limn−→∞ αn = 0, limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞;
(C5) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(C6) limn−→∞ |λn+1 − λn| = limn−→∞ |τn+1 − τn| = 0;

(C7) {τn}, {λn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v−mξ2)

ξ2
.

Then, {xn} and {zn} converge strongly to z ∈ Γ := Ω ∩ VI(E, B) provided that Sr is firmly nonexpansive, which solves the
following optimization problem:

OP : min
x∈Γ

μ

2
〈Ax, x〉 + 1

2
‖x− u‖2 − h(x).

Proof. Put Tn = I for all n ∈ N and for all x ∈ E. Then Wn = I for all x ∈ E. The conclusion follows from Theorem 3.1. This
completes the proof. �

Corollary 3.3. Let E be a nonempty closed convex subset of a real Hilbert space H, let {Tn} be an infinite family of nonexpansive
mappings of E into itself and let B be a ξ -Lipschitz continuous and relaxed (m, v)-cocoercive map E into H such that

Γ :=
∞⋂
n=1

F(Tn) ∩ VI(E, B) �= ∅.

Let μ > 0 and γ > 0, which are two constants. Let f be a contraction of E into itself with α ∈ (0, 1) and let A be a strongly

positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ <
(1+μ)γ̄

α
. For given x1 ∈ H arbitrarily and fixed u ∈ H,

suppose the {xn} and {yn} are generated iteratively by{
yn = αnxn + (1− αn)WnPE(xn − λnBxn),

xn+1 = εn
(
u+ γ f (Wnxn)

)+ βnxn +
(
(1− βn)I − εn(I + μA)

)
WnPE(yn − τnByn),
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for all n ∈ N, where Wn be the W-mapping defined by (2.3) and {εn}, {αn} and {βn} are three sequences in (0, 1). Assume the
following conditions are satisfied:

(C1) limn−→∞ αn = 0, limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞;
(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(C3) limn−→∞ |λn+1 − λn| = limn−→∞ |τn+1 − τn| = 0;

(C4) {τn}, {λn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v−mξ2)

ξ2
.

Then, {xn} converge strongly to z ∈ Γ := ∩∞n=1 F(Tn) ∩ VI(E, B), which solves the following optimization problem:

OP : min
x∈Γ

μ

2
〈Ax, x〉 + 1

2
‖x− u‖2 − h(x).

Proof. Put Θ(x, y) = ϕ(x) = 0 for all x, y ∈ E and r = 1. Take K(x) = ‖x‖2
2

and η(y, x) = y − x, for all x, y ∈ E. Then, we
get zn = PExn = xn in Theorem 3.1. Hence, the conclusion follows. This completes the proof.

Corollary 3.4. Let E be a nonempty closed convex subset of a real Hilbert space H. Let {Tn} be an infinite family of nonexpansive
mappings of E into itself such that

Γ :=
∞⋂
n=1

F(Tn) �= ∅.

Let μ > 0 and γ > 0, which are two constants. Let f be a contraction of E into itself with α ∈ (0, 1) and let A be a strongly

positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ <
(1+μ)γ̄

α
. For given x1 ∈ H arbitrarily and fixed u ∈ H,

suppose the {xn} be generated iteratively by

xn+1 = εn
(
u+ γ f (Wnxn)

)+ βnxn +
(
(1− βn)I − εn(I + μA)

)
Wnxn,

for all n ∈ N, where Wn be the W-mapping defined by (2.3) and {εn} and {βn} are two sequences in (0, 1). Assume the following
conditions are satisfied:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞;
(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Then, {xn} converge strongly to z ∈ Γ := ∩∞n=1 F(Tn), which solves the following optimization problem:

OP : min
x∈Γ

μ

2
〈Ax, x〉 + 1

2
‖x− u‖2 − h(x).
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Abstract. In this paper, we introduce a new iterative scheme for
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into R, where R is the set of real numbers. The equilibrium problem for
F : C × C −→ R is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (1)

The set of solutions of (1) is denoted by EP (F ). Given a mapping T : C −→
H, let F (x, y) = 〈Tx, y−x〉 for all x, y ∈ C. Then z ∈ EP (F ) if and only if
〈Tz, y − z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of the variational inequal-
ity problems. Numerous problems in physics, optimization, saddle point
problems, complementarity problems, mechanics and economics reduce to
find a solution of (1). In 1997, Combettes and Hirstoaga [4] introduced
an iterative scheme of finding the best approximation to initial data when
EP (F ) is nonempty and proved a strong convergence theorem. The clas-
sical variational inequality is denoted by V I(C,A), is to find u ∈ C such
that

〈Au, v − u〉 ≥ 0, for all v ∈ C.

The variational inequality has been extensively studied in the literature,
see [18, 20] and the references therein.

Recall that the following definitions.

(1) A mapping A of C into H is called monotone if

〈Au−Av, u− v〉 ≥ 0, for all u, v ∈ C. (2)

(2) A is called α-inverse-strongly monotone [3, 6] if there exists a positive
real number α such that

〈Au−Av, u− v〉 ≥ α‖Au−Av‖2, for all u, v ∈ C. (3)

Clearly, every α-inverse-strongly monotone is monotone.

(3) A is said to be β-strongly monotone if there exists a positive real number
β such that

〈Au−Av, u− v〉 ≥ β‖u− v‖2, for all u, v ∈ C. (4)

(4) A is called L-Lipschitz-continuous if there exists a positive real number
L such that

‖Au−Av‖ ≤ L‖u− v‖, for all u, v ∈ C. (5)
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It is easy to see that if A is an α-inverse-strongly monotone mapping of C

into H, then A is 1
α–Lipschitz continuous.

(5) A mapping f : C −→ C is said to be a contraction if there exists a
coefficient k (0 < k < 1) such that

‖f(x) − f(y)‖ ≤ k‖x− y‖, for all x, y ∈ C. (6)

To find an element of F (S) ∩ V I(C,A), Takahashi and Toyoda [14] intro-
duced the following iterative scheme:

xn+1 = αnxn + (1 − αn)SPC(xn − λnAxn), (7)

for every n ≥ 0 where x1 = x ∈ C, {αn} is a sequence in (0, 1) and {λn}
is a sequence in (0, 2α). Recently, Nadezhkina and Takahashi [7] and Zeng
and Yao [21] proposed some new iterative schemes for finding elements in
F (S)∩V I(C,A). In 2007, Chen et al. [5] introduced the following iterative
scheme:

xn+1 = αnf(xn) + (1 − αn)SPC(xn − λnAxn), (8)

for every n ≥ 0, where x0 = x ∈ C, {αn} is a sequence in (0, 1), {λn} is
a sequence in (0, 2α), f is a contraction on C, S is a nonexpansive self-
mapping of a closed convex subset C of a Hilbert space H. They proved
that such a sequence {xn} converges strongly to a common element of the
set of fixed points of nonexpansive mapping and the set of solutions of
the variational inequality for an inverse-strongly-monotone mapping which
solves some variational inequality problems. Recently, many authors stud-
ied the problem of finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of an equilibrium problem
in the framework of Hilbert spaces and Banach spaces, respectively; see,
for instance, [1, 8, 9, 14, 15, 16] and the references therein.

On the other hand, for finding an element of F (S)∩V I(C,A)∩EP (F ),
Su et al. [13] introduced the following iterative scheme by the viscosity
approximation method in a Hilbert space: x1 ∈ H⎧⎨

⎩
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)SPC(un − λnAun),
(9)
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for all n ∈ N, where {αn} ⊂ [0, 1) and {rn} ⊂ (0,∞) satisfy some
appropriate conditions. Furthermore, they proved {xn} and {un} con-
verge strongly to the same point z ∈ F (S) ∩ V I(C,A) ∩ EP (F ) where
z = PF (S)∩V I(C,A)∩EP (F )f(z).

Very recently, Yao et al. [19] also introduced the following iterative
scheme:

xn+1 = βxn + (1 − β)S[αnu + (1 − αn)PC(xn − λnAxn)], (10)

for every n ≥ 0, where x1 = u ∈ C, β ∈ (0, 1), {αn} is a sequence in (0, 1)
and {λn} is a sequence in (0, 2α). They proved that, if F (S)∩V I(C,A) 
= ∅,
then the sequence {xn} generate by (10) converges strongly to F (S) ∩
V I(C,A).

In this paper motivated by the iterative schemes considered in (8), (9)
and (10), we will introduce a new iterative schemes for finding a common
element of the set of solutions, the fixed points of a nonexpansive mapping,
an equilibrium problem and the variational inequality problem for an α-
inverse-strongly monotone mapping by the viscosity approximation method
in a real Hilbert space. Then, we prove a strong convergence theorem under
the some mild conditions on parameters. The results is connected with
Chen et al. [5], Su et al. [13] and Yao et al. [19].

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉
and let C be a closed convex subset of H. It is well known that for all
x, y ∈ H and λ ∈ [0, 1] there holds

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x− y‖2. (11)

For every point x ∈ H, there exists a unique nearest point in C, denoted
by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is
a nonexpansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, (12)
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for every x, y ∈ H. Moreover, PCx is characterized by the following prop-
erties: PCx ∈ C and

〈x− PCx, y − PCx〉 ≤ 0, (13)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 (14)

for all x ∈ H, y ∈ C. It is easy to see that the following is true:

u ∈ V I(A,C) ⇔ u = PC(u− λAu), λ > 0. (15)

We note that, for all u, v ∈ C and λ > 0,

‖(I − λA)u− (I − λA)v‖2 = ‖(u− v) − λ(Au−Av)‖2

= ‖u− v‖2 − 2λ〈u− v,Au−Av〉
+λ2‖Au−Av‖2

≤ ‖u− v‖2

+λ(λ− 2α)‖Au−Av‖2. (16)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping from C to H.

A set-valued mapping T : H −→ 2H is called monotone if for all
x, y ∈ H, f ∈ Tx and g ∈ Ty imply 〈x−y, f−g〉 ≥ 0. A monotone mapping
T : H −→ 2H is maximal if the graph of G(T ) of T is not properly contained
in the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if and only if for (x, f) ∈ H×H, 〈x−y, f−g〉 ≥ 0 for
every (y, g) ∈ G(T ) implies f ∈ Tx. Let A be an inverse-strongly monotone
mapping of C into H and let NCv be the normal cone to C at v ∈ C, i.e.,
NCv = {w ∈ H : 〈u− v, w〉 ≥ 0, ∀u ∈ C}. Define

Tv =
{

Av + NCv, v ∈ C;
∅, v /∈ C.

Then T is the maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A);
see [10, 11]. It is also known that H satisfies the Opial condition; for any
sequence {xn} with xn ⇀ x, the inequality

lim inf
n−→∞ ‖xn − x‖ < lim inf

n−→∞ ‖xn − y‖, (17)

holds for every y ∈ H with y 
= x.
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The following lemmas will be useful with proving the convergence result of
this paper.

Lemma 2.1 [12]. Let {xn} and {yn} be bounded sequences in a Banach
space X and let {αn} be a sequence in [0, 1] with 0 < lim inf

n−→∞αn ≤ lim sup
n−→∞

αn <

1. Suppose xn+1 = (1−αn)yn+βnxn for all integers n ≥ 0 and lim sup
n−→∞

(‖yn+1−
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, lim

n−→∞‖yn − xn‖ = 0.

Lemma 2.2 [17]. Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1 − γn)an + δn, n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(a)
∞∑

n=1

γn = ∞,

(b) lim sup
n−→∞

δn

γn
≤ 0 or

∞∑
n=1

|δn| < ∞.

Then lim
n−→∞an = 0.

For solving the equilibrium problem for a bifunction F : C×C −→ R,
let us assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt−→0 F (tz + (1 − t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y �→ F (x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [2]:

Lemma 2.3 [2]. Let C be a nonempty closed convex subset of H and let
F be a bifunction of C × C into R satisfying (A1)-(A4). Let r > 0 and
x ∈ H. Then, there exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.



Convergence theorems by the viscosity approximation method 35

The following lemma was also given in [4].

Lemma 2.4 [4]. Assume that F : C × C −→ R satisfies (A1)-(A4). For
r > 0 and x ∈ H, define a mapping Tr : H −→ C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = EP (F ); and

(4) EP (F ) is closed and convex.

3. Main Results

In this section, we prove a strong convergence theorem for finding a
common element of the set of solutions for an equilibrium problem, the set
variational inequality and the set of fixed points of a nonexpansive mapping
by the viscosity approximation method in Hilbert spaces.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space
H. Let F be a bifunction from C × C −→ R satisfying (A1)-(A4) and
A : C −→ H be an α-inverse-strongly monotone mapping. Let f : C −→ C

be a contraction with coefficient k (0 ≤ k < 1) and S be a nonexpansive
mappings of C into itself such that F (S)∩V I(C,A)∩EP (F ) 
= ∅. Suppose
x1 ∈ C and {xn}, {yn} and {un} are given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1 − αn)yn,

yn = βnf(xn) + (1 − βn)SPC(un − λnAun), ∀n ≥ 1,

(18)

where {αn}, {βn} are two sequence in [0, 1] and {λn} is a sequence in
[0, 2α]. If {αn}, {βn} and {λn} are chosen so that λn ∈ [a, b] for some a, b

with 0 < a ≤ λn ≤ b < 2α and {rn} ⊂ (0,∞) satisfying the conditions:
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(C1) lim
n−→∞βn = 0 and

∞∑
n=1

βn = ∞,

(C2) 0 < lim inf
n−→∞αn ≤ lim sup

n−→∞
αn < 1,

(C3)
∞∑

n=1

|λn+1 − λn| < ∞ and
∞∑

n=1

|βn+1 − βn| < ∞,

(C4) lim inf
n−→∞rn > 0 and

∞∑
n=1

|rn+1 − rn| < ∞.

Then {xn} and {un} converge strongly to q ∈ F (S) ∩ V I(C,A) ∩ EP (F ),
where q = PF (S)∩V I(C,A)∩EP (F )f(q).

Proof. Let Q = PF (S)∩V I(C,A)∩EP (F ). Then Qf is a contraction of H into
itself. In fact, there exists k ∈ [0, 1) such that ‖f(x) − f(y)‖ ≤ k||x − y‖
for all x, y ∈ H. So, we have that

‖Qf(x) −Qf(y)‖ ≤ ‖f(x) − f(y)‖ ≤ k||x− y‖,

for all x, y ∈ H. This implies that Qf is a contraction on H into itself.
Since H is complete, there exists a unique q ∈ H, such that q = Qf(q).
Such a q is an element of C. The unique fixed point of the mapping Qf

is denoted by q in the statement of Theorem 3.1. Further, we take x∗ ∈
F (S)∩V I(C,A)∩EP (F ) and let {Trn

} be a sequence of mappings defined
as in Lamma 2.4. Then x∗ = PC(x∗ − λnAx∗) = Trn

x∗ and un = Trn
xn.

Setting vn = PC(un − λnAun), we have

‖un − x∗‖ = ‖Trn
xn − Trn

x∗‖ ≤ ‖xn − x∗‖. (19)

and hence

‖vn − x∗‖ = ‖PC(un − λnAun) − PC(x∗ − λnAx∗)‖
≤ ‖(un − λnAun) − (x∗ − λnAx∗)‖
≤ ‖(I − λnA)un − (I − λnA)x∗‖
≤ ‖un − x∗‖ ≤ ‖xn − x∗‖,
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Put M= max {‖x1−x∗‖, ‖f(x∗) − x∗‖
1 − k

}. It is obvious that ‖x1−x∗‖ ≤ M .

Suppose ‖xn − x∗‖ ≤ M . Then, we obtain

‖xn+1 − x∗‖ ≤ αn‖xn − x∗‖ + (1 − αn)‖vn − x∗‖
≤ αn‖xn − x∗‖ + (1 − αn){βn‖f(xn) − x∗‖

+(1 − βn)‖vn − x∗‖}
≤ αn‖xn − x∗‖ + (1 − αn)βn‖f(xn) − x∗‖

+(1 − αn)(1 − βn)‖vn − x∗‖
≤ αn‖xn − x∗‖ + (1 − αn)βn[‖f(xn) − f(x∗)‖

+‖f(x∗) − x∗‖] + (1 − αn)(1 − βn)‖xn − x∗‖
≤ αn‖xn − x∗‖ + (1 − αn)βn‖f(xn) − f(x∗)‖

+(1 − αn)βn‖f(x∗) − x∗‖ + (1 − αn)(1 − βn)‖xn − x∗‖
≤ αn‖xn − x∗‖ + (1 − αn)βnk‖xn − x∗‖

+(1 − αn)βn‖f(x∗) − x∗‖
+(1 − αn)(1 − βn)‖xn − x∗‖

≤ {αn + (1 − αn)βnk + (1 − αn)(1 − βn)}‖xn − x∗‖
+(1 − αn)βn‖f(x∗) − x∗‖

= {1 − (1 − k)(1 − αn)βn}‖xn − x∗‖
+(1 − k)(1 − αn)βn

‖f(x∗) − x∗‖
1 − k

≤ {1 − (1 − k)(1 − αn)βn}M + (1 − k)(1 − αn)βnM = M.

So, we have that ‖xn − x∗‖ ≤ M for all n ∈ N and {xn} is bounded. Con-
sequently, the sequences {yn}, {un}, {Svn} and {f(xn)} are also bounded.

Next, we show that limn→∞‖xn+1 − xn‖ = 0. Since I − λnA and PC

are nonexpansive, we have

‖vn+1 − vn‖ = ‖PC(un+1 − λn+1Aun+1) − PC(un − λnAun)‖
≤ ‖(un+1 − λn+1Aun+1) − (un − λnAun)‖
= ‖(un+1 − λn+1Aun+1) − (un − λn+1Aun)

+(λn − λn+1)Aun‖
= ‖(I − λn+1A)un+1 − (I − λn+1A)un + (λn − λn+1)Aun‖
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≤ ‖un+1 − un‖ + |λn − λn+1|‖Aun‖. (20)

On the other hand, from un = Trn
xn and un+1 = Trn+1xn+1, we have

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C (21)

and

F (un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0, ∀y ∈ C. (22)

Substituting y = un+1 in to (21) and y = un in to (22), we have

F (un, un+1) +
1
rn

〈un+1 − un, un − xn〉 ≥ 0

and
F (un+1, un) +

1
rn+1

〈un − un+1, un+1 − xn+1〉 ≥ 0.

So, from (A2) we have

〈un+1 − un,
un − xn

rn
− un+1 − xn+1

rn+1
〉 ≥ 0

and hence

〈un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)〉 ≥ 0.

Without the loss of generality, let us assume that there exists a real number
c such that rn > c > 0 for all n ∈ N. Then, we have

‖un+1 − un‖2 ≤ 〈un+1 − un, xn+1 − xn + (1 − rn

rn+1
)(un+1 − xn+1)〉

≤ ‖un+1 − un‖{‖xn+1 − xn‖ + |1 − rn

rn+1
|‖un+1 − xn+1‖}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖ +
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖ +
M1

c
|rn+1 − rn|, (23)

where M1 = sup{‖un − xn‖ : n ∈ N}. Substituting (20) into (21) we have

‖vn+1 − vn‖ ≤ ‖xn+1 − xn‖ +
M1

c
|rn+1 − rn|

+|λn − λn+1|‖Aun‖. (24)
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Note that

‖yn − yn+1‖ = ‖βnf(xn) + (1 − βn)Svn − βn+1f(xn+1)

−(1 − βn+1)Svn+1‖
= ‖βn(f(xn) − f(xn+1)) − (1 − βn)(Svn+1 − Svn)

+(βn − βn+1)f(xn+1) − (βn − βn+1)Svn+1‖
≤ βn‖f(xn) − f(xn+1)‖ + (1 − βn)‖Svn+1 − Svn‖

+ |βn − βn+1|‖f(xn+1)‖ + |βn − βn+1|‖Svn+1‖
= βn‖f(xn) − f(xn+1)‖ + (1 − βn)‖Svn+1 − Svn‖

+ |βn − βn+1|(‖f(xn+1)‖ + ‖Svn+1‖)

≤ βnk‖xn − xn+1‖ + (1 − βn)‖vn+1 − vn‖
+|βn − βn+1|(‖f(xn+1)‖ + ‖Svn+1‖)

≤ βnk‖xn − xn+1‖ + (1 − βn){ ‖xn+1 − xn‖
+

M1

c
|rn+1 − rn| + |λn − λn+1|‖Aun‖}

+ |βn − βn+1|(‖f(xn+1)‖ + ‖Syn+1‖)

≤ βnk‖xn − xn+1‖ + ‖xn+1 − xn‖ +
M1

c
|rn+1 − rn|

+ |λn − λn+1|‖Aun‖ + |βn − βn+1|(‖f(xn+1)‖
+‖Syn+1‖). (25)

It follows that

‖yn − yn+1‖ − ‖xn+1 − xn‖ ≤ βnk‖xn − xn+1‖ +
M1

c
|rn+1 − rn|

+|λn − λn+1|‖Aun‖
+|βn − βn+1|(‖f(xn+1)‖ + ‖Syn+1‖),

this together with βn −→ 0 as n −→ ∞ and condition (C3), (C4) imply
that

lim sup
n−→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Since xn+1 = αnxn +(1−αn)yn and 0 < lim inf
n−→∞αn ≤ lim sup

n−→∞
αn < 1. Hence

by Lemma 2.1, we obtain

lim
n−→∞ ‖yn − xn‖ = 0. (26)
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It follows that

lim
n−→∞ ‖xn+1 − xn‖ = lim

n−→∞(1 − αn)‖yn − xn‖ = 0. (27)

From
∞∑

n=1

|rn+1 − rn| < ∞, (23) and (27) we have

lim
n−→∞ ‖un+1 − un‖ = 0. (28)

From
∞∑

n=1

|λn+1 − λn| < ∞ and (27), we obtain

lim
n−→∞ ‖vn+1 − vn‖ = 0. (29)

Observing condition (C1), (C3), (C4) and ‖xn+1 − xn‖ −→ 0 as n −→ ∞,
we also have

lim
n−→∞ ‖kn+1 − kn‖ = 0. (30)

Notice that
yn − Svn = βn(f(xn) − Svn).

we can easily get

lim
n−→∞ ‖yn − Svn‖ = 0. (31)

On the other hand, we observe

‖yn − Svn‖ ≤ ‖xn − yn‖ + ‖yn − Svn‖.

Applying (26) and (31), we have

lim
n−→∞ ‖xn − Svn‖ = 0. (32)

Next we show that ‖xn − un‖ −→ 0, as n → ∞. For each x∗ ∈ F (S) ∩
V I(C,A) ∩ EP (F ), note that Trn

is firmly nonexpansive, then we have

‖un − x∗‖2 = ‖Trn
xn − Trn

x∗‖2 ≤ 〈Trn
xn − Trn

x∗, xn − x∗〉
= 〈un − x∗, xn − x∗〉
=

1
2

(‖un − x∗‖2 + ‖xn − x∗‖2 − ‖un − xn‖2). (33)
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Then from (33) become

‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2. (34)

Therefore, from the convexity of ‖ · ‖2, (18) and (34), we have

‖yn − x∗‖2 ≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖Svn − x∗‖2

≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖vn − x∗‖2

≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖un − x∗‖2

≤ βn‖f(xn) − x∗‖2 + (1 − βn){‖xn − x∗‖2 − ‖xn − un‖2}
≤ βn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 − (1 − βn)‖xn − un‖2.

Observe that

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1 − αn)‖yn − x∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn){βn‖f(xn) − x∗‖2

+‖xn − x∗‖2 − (1 − βn)‖xn − un‖2}
≤ ‖xn − x∗‖2 + (1 − αn)βn‖f(xn) − x∗‖2

−(1 − αn)(1 − βn)‖xn − un‖2.

That is,

(1 − αn)(1 − βn)‖xn − un‖2 ≤ (1 − αn)βn‖f(xn) − x∗‖2 + ‖xn − x∗‖2

−‖xn+1 − x∗‖2

= (1 − αn)βn‖f(xn) − x∗‖2 + (‖xn − x∗‖
+‖xn+1 − x∗‖)(‖xn − x∗‖ −
‖xn+1 − x∗‖)

≤ (1 − αn)βn‖f(xn) − x∗‖2

+‖xn − xn+1‖(‖xn − x∗‖
+‖xn+1 − x∗‖).

Since ‖xn+1 − xn‖ −→ 0, αn −→ 0 and βn −→ 0, then, we have

lim
n−→∞ ‖xn − un‖ = 0. (35)
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Since lim inf
n−→∞ rn > 0, we obtain

lim
n−→∞ ‖xn − un

rn
‖ = lim

n−→∞
1
rn

‖xn − un‖ = 0. (36)

For x∗ ∈ F (S) ∩ EP (F ) ∩ V I(A,C), we have

‖yn − x∗‖2 ≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖Svn − x∗‖2

≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖vn − x∗‖2

= βn‖f(xn) − x∗‖2 + (1 − βn)‖PC(un − λnAun)

−PC(x∗ − λnAx∗)‖2

≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖(un − λnAun)

−(x∗ − λnAx∗)‖2

≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖(un − x∗)

−λn(Aun −Ax∗)‖2

= βn‖f(xn) − x∗‖2 + (1 − βn){‖un − x∗‖2

−2λn〈un − x∗, Aun −Ax∗〉 + λ2
n‖Aun −Ax∗‖2}

≤ βn‖f(xn) − x∗‖2 + (1 − βn){‖un − x∗‖2

−2λnα‖Aun −Ax∗‖2 + λ2
n‖Aun −Ax∗‖2}

≤ βn‖f(xn) − x∗‖2 + (1 − βn){‖un − x∗‖2

+λn(λn − 2α)‖Aun −Ax∗‖2}
≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖un − x∗‖2

+(1 − βn)λn(λn − 2α)‖Aun −Ax∗‖2

≤ βn‖f(xn) − x∗‖2 + ‖xn − x∗‖2

+(1 − βn)λn(λn − 2α)‖Aun −Ax∗‖2. (37)

Using (18) and (38), we get

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1 − αn)‖yn − x∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn){βn‖f(xn) − x∗‖2

+‖xn − x∗‖2

+(1 − βn)λn(λn − 2α)‖Aun −Ax∗‖2}
= ‖xn − x∗‖2 + (1 − αn)βn‖f(xn) − x∗‖2
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+(1 − αn)(1 − βn)λn(λn − 2α)‖Aun −Ax∗‖2

Then we have

(1 − αn)(1 − βn)a(2α− b)‖Aun −Ax∗‖2 ≤ (1 − αn)(1 − βn)

λn(2α− λn)

‖Aun −Ax∗‖2

≤ (1 − αn)βn‖f(xn) − x∗‖2

+‖xn − x∗‖2

−‖xn+1 − x∗‖2

≤ (1 − αn)βn‖f(xn) − x∗‖2

+‖xn+1 − xn‖(‖xn − x∗‖
+‖xn+1 − x∗‖).

From conditions (C1), (C2), (C3), {λn} ⊂ [a, b] ⊂ (0, 2α) and lim
n−→∞‖xn+1−

xn‖ = 0, we obtain
lim

n−→∞‖Aun −Ax∗‖ = 0. (38)

From (18) and (12), we have

‖vn − x∗‖2 = ‖PC(un − λnAun) − PC(x∗ − λnAx∗)‖2

≤ 〈(un − λnAun) − ((x∗ − λnAx∗), vn − x∗〉
=

1
2
{‖(un − λnAun) − (x∗ − λnA)x∗‖2 + ‖vn − x∗‖2

−‖(un − λnAun) − (x∗ − λnAx∗) − (vn − x∗)‖2}
=

1
2
{‖un − x∗‖2 + +‖vn − x∗‖2

−‖(un − vn) − λn(Aun −Ax∗)‖2}
≤ 1

2
{‖un − x∗‖2 + ‖vn − x∗‖2 − ‖un − vn‖2}

+2λn〈un − yn, Aun −Ax∗〉 − λ2
n‖Aun −Ax∗‖2

≤ 1
2
{‖xn − x∗‖2 + ‖vn − x∗‖2 − ‖un − vn‖2}

+2λn〈un − vn, Aun −Ax∗〉 − λ2
n‖Aun −Ax∗‖2,

and hence

‖vn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖un − vn‖2
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+2λn〈un − vn, Aun −Ax∗〉 − λ2
n‖Aun −Ax∗‖2. (39)

Therefore, from (18) and (39), we have

‖yn − x∗‖2 ≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖Svn − x∗‖2

≤ βn‖f(xn) − x∗‖2 + (1 − βn)‖vn − x∗‖2

≤ βn‖f(xn) − x∗‖2 + (1 − βn){‖xn − x∗‖2 − ‖un − vn‖2

+2λn〈un − vn, Aun −Ax∗〉 − λ2
n‖Aun −Ax∗‖2}

≤ βn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 − (1 − βn)‖un − vn‖2

+2λn(1 − βn)〈un − vn, Aun −Ax∗〉
−λ2

n(1 − βn)‖Aun −Ax∗‖2,

and hence

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1 − αn)‖yn − x∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn){βn‖f(xn) − x∗‖2

+‖xn − x∗‖2 − (1 − βn)‖un − yn‖2

+2λn(1 − βn)〈un − vn, Aun − Ax∗〉
−λ2

n(1 − βn)‖Aun −Ax∗‖2}
≤ ‖xn − x∗‖2 + (1 − αn)βn‖f(xn) − x∗‖2

−(1 − αn)(1 − βn)‖un − vn‖2

+2λn(1 − βn)(1 − αn)‖un − vn‖‖Aun −Ax∗‖
−λ2

n(1 − βn)(1 − αn)‖Aun −Ax∗‖2,

which implies that

(1 − αn)(1 − βn)‖un − yn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+(1 − αn)βn‖f(xn) − x∗‖2

+2λn(1 − βn)(1 − αn)

‖un − vn‖‖Aun −Ax∗‖
≤ (1 − αn)βn‖f(xn) − x∗‖2

+‖xn+1 − xn‖(‖xn − x∗‖ + ‖xn+1 − x∗‖)

+2λn(1 − βn)(1 − αn)‖un − vn‖
‖Aun −Ax∗‖.
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Since lim
n−→∞‖xn+1 − xn‖ = 0, (C1), (C2) and (38), imply that

lim
n−→∞ ‖un − vn‖ = 0. (40)

Since

‖Svn − vn‖ ≤ ‖Svn − xn‖ + ‖xn − un‖ + ‖un − vn‖,

By (32), (35) and (40) we conclude that

lim
n−→∞ ‖Svn − vn‖ = 0. (41)

Next, we show that

lim sup
n−→∞

〈f(q) − q, Svn − q〉 ≤ 0.

Indeed, we choose a subsequence {vni
} of {vn} such that

lim sup
n−→∞

〈f(q) − q, Svn − q〉 = lim
i−→∞

〈f(q) − q, Svni
− q〉,

where q = PF (S)∩V I(C,A)∩EP (F )f(q). Without loss of generality, we may
assume that {vni

} converges weakly to z ∈ C. From ‖Svn − vn‖ −→ 0, we
obtain Svni

⇀ z. Now, we will show that z ∈ F (S) ∩ V I(C,A) ∩ EP (F ).
Firstly, we will show z ∈ F (S). Assume that z 
∈ F (S). Since vni

⇀ z and
Sz 
= z, By the Opial’s condition, we obtain

lim inf
n−→∞ ‖vni

− z‖ < lim inf
i−→∞

‖vni
− Sz‖

= lim inf
i−→∞

‖vni
− Syni

+ Svni
− Sz‖

≤ lim inf
i−→∞

‖vni
− Syni

‖ + ‖Svni
− Sz‖

= lim inf
i−→∞

‖Svni
− Sz‖

≤ lim inf
i−→∞

‖vni
− z‖.

This is a contradiction. Thus, we have z ∈ F (S).

Next, let us show that z ∈ V I(C,A). Let

Tw1 =
{

Aw1 + NCw1, w1 ∈ C;
∅, w1 /∈ C.
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Then T is maximal monotone (see [11]). Let (w1, w2) ∈ G(T ). Since
w2 −Aw1 ∈ NC(w1) and vn ∈ C, we have 〈w1 − vn, w2 −Aw1〉 ≥ 0. On the
other hand, from vn = PC(un − λnAun), we have

〈w1 − vn, vn − (un − λnAun)〉 ≥ 0 (42)

that is,

〈w1 − vn,
vn − un

λn
+ Aun〉 ≥ 0. (43)

Therefore, we obtain

〈w1 − vni
, w2〉 ≥ 〈w1 − vni

, Aw1〉 ≥ 〈w1 − vni
, Aw1〉

−〈w1 − vni
,
vni

− uni

λni

+ Auni
〉

= 〈w1 − vni
, Aw1 −Auni

− vni
− uni

λni

〉
= 〈w1 − vni

, Aw1 −Ayni
〉 + 〈w1 − vni

, Avni
−Auni

〉
−〈w1 − vni

,
vni

− uni

λni

〉

≥ 〈w1 − vni
, Avni

〉 − 〈w1 − vni
,
vni

− uni

λni

+ Auni
〉

= 〈w1 − vni
, Avni

−Auni
〉

−〈w1 − vni
,
vni

− uni

λni

〉, (44)

which together lim
n−→∞‖vn − un‖ = 0 and A is α-inverse-strongly monotone

implies that

〈w1 − z, w2〉 ≥ 0.

Since T is maximal monotone, we have z ∈ T−10, and hence z ∈ V I(C,A).
Finally, we show that z ∈ EP (F ). Since un = Trn

xn, we have

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

1
rn

〈y − un, un − xn〉 ≥ F (y, un)
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and hence
〈y − uni

,
uni

− xni

rni

〉 ≥ F (y, uni
).

From ‖un − vn‖ −→ 0 and vni
⇀ z, we have uni

⇀ z. Since uni
−xni

rni
−→ 0,

it follows by (A4) that 0 ≥ F (y, z) for all y ∈ C. For t with 0 < t ≤ 1 and
y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have yt ∈ C and
hence F (yt, z) ≤ 0. So, from (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1 − t)F (yt, z) ≤ tF (yt, y)

and hence 0 ≤ F (yt, y). From (A3), we have 0 ≤ F (z, y) for all y ∈ C

and hence z ∈ EP (F ). Therefore z ∈ F (S) ∩ V I(C,A) ∩ EP (F ). Since
q = PF (S)∩V I(C,A)∩EP (F )f(q), which implies that

lim sup
n−→∞

〈f(q) − q, Svn − q〉 = lim
i−→∞

〈f(q) − q, Svni
− q〉

= 〈f(q) − q, z − q〉 ≤ 0. (45)

Finally, we prove that {xn} converge strongly to q. From (18), we also have

‖yn − q‖2 ≤ ‖βn(f(xn) − q) + (1 − βn)‖Svn − q‖2

≤ (1 − βn)2‖Svn − q‖2 + 2βn〈f(xn) − q, yn − q〉
≤ (1 − βn)2‖vn − q‖2 + 2βn[〈f(xn) − f(q), yn − q〉

+〈f(q) − q, yn − q〉]
≤ (1 − βn)2‖xn − q‖2 + 2βnk‖xn − q‖‖yn − q‖

+2βn〈f(q) − q, yn − q〉
≤ (1 − βn)2‖xn − q‖2 + βnk(‖xn − q‖2 + ‖yn − q‖2)

+2βn〈f(q) − q, yn − q〉
= ((1 − βn)2 + βnk)‖xn − q‖2 + βnk‖yn − q‖2

+2βn〈f(q) − q, yn − q〉,

that is

‖yn − q‖2 ≤ (1 − βn)2 + βnk

1 − βnk
‖xn − q‖2

+
2βn

1 − βnk
〈f(q) − q, yn − q〉. (46)
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From (18) and (47), we obtain

‖xn+1 − q‖2 ≤ αn‖xn − q‖2 + (1 − αn)‖yn − q‖2

≤ αn‖xn − q‖2 + (1 − αn){ (1 − βn)2 + βnk

1 − βnk
‖xn − q‖2

+
2βn

1 − βnk
〈f(q) − q, yn − q〉}

= αn‖xn − q‖2 + (1 − αn)
(1 − βn)2 + βnk

1 − βnk
‖xn − q‖2

+ (1 − αn)
2βn

1 − βnk
〈f(q) − q, yn − q〉

≤ αn‖xn − q‖2 + {(1 − αn) − 2(1 − k)(1 − αn)βn

1 − βnk

+
(1 − αn)β2

n

1 − βnk
}‖xn − q‖2

+ (1 − αn)
2βn

1 − βnk
〈f(q) − q, yn − q〉

≤ (1 − 2(1 − k)(1 − αn)βn

1 − βnk
)‖xn − q‖2

+
2(1 − k)(1 − αn)βn

1 − βnk
{ βn

2(1 − k)
‖xn − q‖2

+
1

1 − k
〈f(q) − q, yn − q〉}.

Put
γn =

2(1 − k)(1 − αn)βn

1 − βnk

and
δn =

βn

2(1 − k)
‖xn − q‖2 +

1
1 − k

〈f(q) − q, yn − q〉.

That is

‖xn+1 − q‖2 ≤ (1 − γn)‖xn − q‖2 + γnδn, (47)

It is easy to seen that γn −→ 0,
∞∑

n=1

γn = ∞, and lim sup
n−→∞

δn ≤ 0. Ap-

plying Lemma 2.2 to (47), the sequence {xn} converges strongly to q =
PF (S)∩V I(C,A)∩EP (F )f(q). Consequently, also {un} converge strongly to q.
This completes the proof. �
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Corollary 3.2. Let C be a closed convex subset of a real Hilbert space
H. Let F be a bifunction from C × C −→ R satisfying (A1)-(A4) and
let f : C −→ C be a contraction with coefficient k (0 ≤ k < 1) and S be
a nonexpansive mappings of C into itself such that F (S) ∩ EP (F ) 
= ∅.
Suppose x1 ∈ C and {xn}, {yn} and {un} are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1 − αn)yn,

yn = βnf(xn) + (1 − βn)Sun, ∀n ≥ 1,

where {αn}, {βn} are two sequence in [0, 1] and {rn} ⊂ (0,∞) satisfying
the conditions:

(C1) lim
n−→∞βn = 0,

∞∑
n=1

βn = ∞, and
∞∑

n=1

|βn+1 − βn| < ∞,

(C2) 0 < lim inf
n−→∞αn ≤ lim sup

n−→∞
αn < 1,

(C3) lim inf
n−→∞rn > 0 and

∞∑
n=1

|rn+1 − rn| < ∞.

Then {xn} and {un} converge strongly to q ∈ F (S) ∩ EP (F ), where q =
PF (S)∩EP (F )f(q).

Proof. Putting PH = I, by Theorem 3.1, we have the desired result easily.�

4. Applications

In this section, we prove two theorem in Hilbert spaces by using The-
orem 3.1. A mapping T : C −→ C is called strictly pseudo-contraction if
there exists a constant 0 ≤ ϕ < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ϕ‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

If ϕ = 0, then T is nonexpansive. Put A = I − T . Then, we have

‖(I −A)x− (I −A)y‖2 ≤ ‖x− y‖2 + ϕ‖Ax−Ay‖2, ∀x, y ∈ C.
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Observe that

‖(I −A)x− (I −A)y‖2 = ‖x− y‖2 + ‖Ax−Ay‖2

−2〈x− y,Ax−Ay〉, ∀x, y ∈ C.

Hence we obtain

〈x− y,Ax−Ay〉 ≥ 1 − ϕ

2
‖Ax−Ay‖2, ∀x, y ∈ C. (48)

Then, A is
1 − ϕ

2
-inverse-strongly monotone.

Now we get the following result.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let
F be a bifunction from C×C −→ R satisfying (A1)-(A4) and T : C −→ C

be a ϕ-strict pseudo-contraction mapping. Let f : C −→ C be a contraction
with coefficient k (0 ≤ k < 1) and S be a nonexpansive mappings of C into
itself such that F (S)∩F (T )∩EP (F ) 
= ∅. Suppose x1 ∈ C and {xn}, {yn}
and {un} are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1 − αn)yn,

yn = βnf(xn) + (1 − βn)S((1 − λn)un + λnTun), ∀n ≥ 1,

where {αn}, {βn} are two sequence in [0,1] and {λn} is a sequence in
[0, 2α]. If {αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with
0 < a ≤ λn ≤ b < 2α and {rn} ⊂ (0,∞) satisfying the conditions:

(C1) lim
n−→∞βn = 0 and

∞∑
n=1

βn = ∞,

(C2) 0 < lim inf
n−→∞αn ≤ lim sup

n−→∞
αn < 1,

(C3)
∞∑

n=1

|λn+1 − λn| < ∞ and
∞∑

n=1

|βn+1 − βn| < ∞,

(C4) lim inf
n−→∞rn > 0 and

∞∑
n=1

|rn+1 − rn| < ∞.
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then {xn} and {un} converge strongly to q ∈ F (S)∩F (T )∩EP (F ), where
q = PF (S)∩F (T )∩EP (F )f(q).

Proof. Put A = (I − T ) : C −→ H, from (48) we know that A is
1 − ϕ

2
-

inverse-strongly monotone mapping. We have F (T ) = V I(C,A) and

PC(un − λnAun) = PC((1 − λn)un + λnTun) = (1 − λn)un + λnTun ∈ C.

So, from Theorem 3.1, we obtain the desired result. �

Corollary 4.2. Let C be a closed convex subset of a real Hilbert space H

and T : C −→ C be a ϕ-strict pseudo-contraction mapping. Let f : C −→ C

be a contraction with coefficient k (0 ≤ k < 1) and S be a nonexpansive
mappings of C into itself such that F (S) ∩ F (T ) 
= ∅. Suppose x1 ∈ C and
{xn} is given by

xn+1 = αnxn+(1−αn)[βnf(xn)+(1−βn)S((1−λn)xn+λnTxn)], ∀n ≥ 1,

where {αn}, {βn} are two sequence in [0, 1] and {λn} is a sequence in
[0, 2α]. If {αn}, {βn} and {λn} are chosen so that λn ∈ [a, b] for some a, b

with 0 < a ≤ λn ≤ b < 2α satisfying the conditions:

(C1) lim
n−→∞βn = 0 and

∞∑
n=1

βn = ∞,

(C2) 0 < lim inf
n−→∞αn ≤ lim sup

n−→∞
αn < 1,

(C3)
∞∑

n=1

|λn+1 − λn| < ∞ and
∞∑

n=1

|βn+1 − βn| < ∞,

then {xn} converges strongly to q ∈ F (S)∩F (T ), where q = PF (S)∩F (T )f(q).

Proof. Put F (x, y) = 0 for all x, y ∈ C, rn = 1 for all n ∈ N and A =
(I − T ) : C −→ H in Theorem 3.1. Then, we have un = PCxn = xn and A

is
1 − ϕ

2
-inverse-strongly monotone. we have that F (T ) is the solution set

of V I(C,A) i.e. F (T ) = V I(C,A) and

PC(xn − λnAxn) = PC((1 − λn)xn + λnTxn) = (1 − λn)xn + λnTxn ∈ C.

Therefore, by Theorem 3.1, the conclusion follows. �
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Theorem 4.3. Let C be a closed convex subset of a real Hilbert space
H. Let F be a bifunction from C × C −→ R satisfying (A1)-(A4) and
A : C −→ H be an α-inverse-strongly monotone mapping. Let f : C −→ C

be a contraction with coefficient k (0 ≤ k < 1) and S be a nonexpansive
mappings of C into itself such that F (S) ∩ A−1(0) ∩ EP (F ) 
= ∅. Suppose
x1 ∈ C and {xn}, {yn} and {un} are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1 − αn)yn,

yn = βnf(xn) + (1 − βn)S(un − λnAun), ∀n ≥ 1,

where {αn}, {βn} are two sequence in [0, 1] and {λn} is a sequence in
[0, 2α]. If {αn}, {βn} and {λn} are chosen so that λn ∈ [a, b] for some a, b

with 0 < a ≤ λn ≤ b < 2α and {rn} ⊂ (0,∞) satisfying the conditions:

(C1) lim
n−→∞βn = 0 and

∞∑
n=1

βn = ∞,

(C2) 0 < lim inf
n−→∞αn ≤ lim sup

n−→∞
αn < 1,

(C3)
∞∑

n=1

|λn+1 − λn| < ∞ and
∞∑

n=1

|βn+1 − βn| < ∞,

(C4) lim inf
n−→∞rn > 0 and

∞∑
n=1

|rn+1 − rn| < ∞.

Then {xn} and {un} converge strongly to q ∈ F (S) ∩ A−1(0) ∩ EP (F ),
where q = PF (S)∩A−1(0)∩EP (F )f(q).

Proof. Since A−1(0) is the solution set of V I(H,A) i.e, A−1(0) = V I(H,A),
we can obtain the conclusion by Theorem 3.1 and by noting that PH = I

is the identity on H. It is noted that F (S) ∩A−1(0) ⊂ V I(F (S), A). This
completes the proof. �
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1. Introduction

Throughout the paper, let E be a real Banach space, E∗ the dual space of E. Let C be a nonempty closed convex subset of
E. Recall that a mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖,∀x, y ∈ C . A point x ∈ C is a fixed
point of T provided Tx = x. Denote by F(T ) the set of fixed points of T ; that is, F(T ) = {x ∈ C : Tx = x}. Let f be a bifunction
from C × C to R, where R denotes the set of numbers. The equilibrium problem is to find p ∈ C such that

f (p, y) ≥ 0, ∀y ∈ C . (1.1)

The set of solutions of (1.1) is denoted by EP(f ). Given a mapping T : C → E∗, let f (x, y) = 〈Tx, y− x〉 for all x, y ∈ C . Then
p ∈ EP(f ) if and only if 〈Tp, y − p〉 ≥ 0 for all y ∈ C; i.e., p is a solution of the variational inequality. Numerous problems
in physics, optimization, and economics reduce to find a solution of (1.1). Some methods have been proposed to solve the
equilibrium problem; see, for instance, [4,9,15]. In 1997 Combettes and Hirstoaga [10] introduced an iterative scheme of
finding the best approximation to initial data when EP(F) is nonempty and proved a strong convergence theorem.

Recently, many authors studied the problem of finding a common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of an equilibrium problem in the framework of Hilbert spaces and Banach spaces,
respectively; see, for instance, [7,8,14,17,20,21,23,26,28–30] and the references therein. Matsushita and Takahashi [14]
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introduced the following iteration: a sequence {xn} defined by

xn+1 = ΠC J
−1(αnJxn + (1− αn)JTxn) (1.1)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], T is a relatively nonexpansive mapping
and ΠC denotes the generalized projection from E onto a closed convex subset C of E. They prove that the sequence {xn}
converges weakly to a fixed point of T .

Very recently, Takahashi and Zembayashi [28], proposed the following modification of iteration (1.1) for a relatively
nonexpansive mapping:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 = x ∈ C, C0 = C,

yn = J−1(αnJxn + (1− αn)JSzn),

un ∈ C such that f (un, y)+ 1

rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1

x0,

(1.2)

where J is the duality mapping on E, and ΠC is the generalized projection from E onto a closed convex subset C of E and
proved that the sequence {xn} converges strongly to ΠF(S)∩EP(f )x0.

In 2008, Qin et al. [19], introduced the following iterative scheme for two closed relatively quasi-nonexpansivemappings
in a Banach space:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = ΠC1x0,

yn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f (un, y)+ 1

rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1

x0.

(1.3)

Under suitable conditions. Some strong convergence theorems are proved which extend and improve the results of
Takahashi and Zembayashi [27,28].

Employing the ideas of Qin et al. [19] and Plubtieng andUngchittrakool [18], wemodify iterations (1.2) and (1.3) to obtain
strong convergence theorems for finding a common element of the set of solutions of an equilibrium problem and the set of
common fixed points of two relatively quasi-nonexpansivemappings in the framework Banach spaces. The results obtained
in this paper improve and extend the recent ones announced by Qin et al.’s result [19] and Takahashi and Zembayashi’s
result [28] and many others.

2. Preliminaries

In this section we discuss some results based on the basic properties of a generalized projection, and then we derive
some results of relatively quasi-nonexpansive mappings and the equilibrium problem.

Let E be a real Banach space with norm ‖ · ‖ and let J be the normalized duality mapping from E into 2E∗ given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}
for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing between E and E∗. It is well
known that if E∗ is uniformly convex, then J is uniformly continuous on bounded subsets of E.

As we all know that if C is a nonempty closed convex subset of a Hilbert space H and PC : H → C is the metric projection
of H onto C , then PC is nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it is not available
in more general Banach spaces. In this connection, Alber [2] recently introduced a generalized projection operator ΠC in a
Banach space E which is an analogue of the metric projection in Hilbert spaces.

Consider the functional defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E. (2.1)

Observe that, in a Hilbert space H , (2.1) reduces to φ(x, y) = ‖x− y‖2, x, y ∈ H . The generalized projection ΠC : E → C is
a map that assigns to an arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x̄, where x̄ is the
solution to the minimization problem:

φ(x̄, x) = inf
y∈C φ(y, x). (2.2)

The existence anduniqueness of the operatorΠC follows from theproperties of the functionalφ(x, y) and strictmonotonicity
of the mapping J (see, for example, [1,2,6,12,25]). In Hilbert spaces, ΠC = PC . It is obvious from the definition of function φ
that:

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2, ∀x, y ∈ E. (2.3)
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We note that, if E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0 if and only if x = y. It
is sufficient to show that if φ(x, y) = 0 then x = y. From (2.3), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2.
From the definition of J , one has Jx = Jy. Therefore, we have x = y; see [6,25] for more details.

Let C be a closed convex subset of E, and let T be a mapping from C into itself. A point p in C is said to be an asymptotic
fixed point of T [22] if C contains a sequence {xn}which converges weakly to p such that limn→∞ ‖xn− Txn‖ = 0. The set of

asymptotic fixed points of T will be denoted by F̃(T ). A mapping T from C into itself is said to be relatively nonexpansive [16,

24,31] if F̃(T ) = F(T ) andφ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T ). The asymptotic behavior of a relatively nonexpansive
mapping was studied in [3,5]. T is said to be φ-nonexpansive, if φ(Tx, Ty) ≤ φ(x, y) for x, y ∈ C . T is said to be relatively
quasi-nonexpansive if F(T ) �= ∅ and φ(p, Tx) ≤ φ(p, x) for x ∈ C and p ∈ F(T ) (see also [16]).

Remark 2.1. The class of relatively quasi-nonexpansive mappings is more general than the class of relatively nonexpansive

mappings [3,5,13] which requires the strong restriction: F(T ) = F̃(T ).

Next, we give some examples which are closed relatively quasi-nonexpansive; (see [19] for more details).

Example 2.2. Let E be a uniformly smooth and strictly convex Banach space and A ⊂ E × E∗ is a maximal monotone mapping
such that its zero set A−10 is nonempty. Then, Jr = (J + rA)−1J is a closed relatively quasi-nonexpansive mapping from E onto
D(A) and F(Jr) = A−10.

Example 2.3. Let ΠC be the generalized projection from a smooth, strictly convex, and reflexive Banach space E onto a nonempty
closed convex subset C of E. Then, ΠC is a closed relatively quasi-nonexpansive mapping from E onto C with F(ΠC ) = C.

A Banach space E is said to be strictly convex if ‖ x+y

2
‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x �= y. It is said to

be uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖ xn+yn

2
‖ = 1. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be smooth

provided

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ U . It is also said to be uniformly smooth if the limit is attained uniformly for x, y ∈ E. It is well known
that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

The following lemmas will be needed in proving our main results:

Lemma 2.4 (Kamimura and Takahashi [12]). Let E be a uniformly convex and smooth Banach space and let {xn} and {yn} be two
sequences of E. If φ(xn, yn)→ 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Concerning the generalized projection, the following are well known.

Lemma 2.5 (Alber [2]). Let C be a nonempty closed convex subset of a smooth Banach space E and x ∈ E. Then, x0 = ΠCx if and
only if

〈x0 − y, Jx− Jx0〉 ≥ 0 ∀y ∈ C .

Lemma 2.6 (Alber [2]). Let E be a reflexive, strictly convex and smooth Banach space, let C be a nonempty closed convex subset
of E and let x ∈ E. Then

φ(y, ΠCx)+ φ(ΠCx, x) ≤ φ(y, x) ∀y ∈ C .

Lemma 2.7 (Qin et al. [19, Lemma 2.4.]). Let E be a uniformly convex and smooth Banach space, let C be a closed convex subset
of E, and let T be a closed and relatively quasi-nonexpansive mapping from C into itself. Then F(T ) is a closed convex subset of C.

Lemma 2.8 (Cho et al. [11]). Let X be a uniformly convex Banach space and Br(0) be a closed ball of X. Then there exists a
continuous strictly increasing convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ μy+ γ z‖2 ≤ λ‖x‖2 + μ‖y‖2 + γ ‖z‖2 − λμg(‖x− y‖)
for all x, y, z ∈ Br(0) and λ, μ, γ ∈ [0, 1] with λ+ μ+ γ = 1.

Lemma 2.9 (Kamimure and Takahashi [12]). Let E be a smooth and uniformly convex Banach space and let r > 0. Then there
exists a strictly increasing, continuous, and convex function g : [0, 2r] → R such that g(0) = 0 and g(‖x − y‖) ≤ φ(x, y) for
all x, y ∈ Br .

For solving the equilibrium problem for a bifunction f : C × C → R, let us assume that f satisfies the following conditions:

(A1) f (x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f (x, y)+ f (y, x) ≤ 0 for all x, y ∈ C;
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(A3) for each x, y, z ∈ C ,

lim
t↓0 f (tz + (1− t)x, y) ≤ f (x, y);

(A4) for each x ∈ C , y �→ f (x, y) is convex and lower semi-continuous.

Lemma 2.10 (Blum and Oettli [4]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space E, let
f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

f (z, y)+ 1

r
〈y− z, Jz − Jx〉 ≥ 0, ∀y ∈ C .

Lemma 2.11 (Qin et al. [19, Lemma 2.8.]). Let C be a closed convex subset of a uniformly smooth, strictly convex, and reflexive
Banach space E, and let f be a bifunction from C×C to R satisfying (A1)–(A4). For r > 0 and x ∈ E, define amapping Tr : E → C
as follows:

Trx =
{
z ∈ C : f (z, y)+ 1

r
〈y− z, Jz − Jx〉, ∀y ∈ C

}
.

Then the following hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx− Tr , JTrx− JTry〉 ≤ 〈Trx− Tr , Jx− Jy〉
(3) F(Tr) = EP(f );
(4) EP(f ) is closed and convex.

Lemma 2.12 (Takahashi and Zembayashi [28]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach
space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0. Then, for x ∈ E and q ∈ F(Tr),

φ(q, Trx)+ φ(Trx, x) ≤ φ(q, x).

3. Main results

In this section, we establish strong convergence theorems for finding a common element of the set of common fixed
points of two relatively quasi-nonexpansivemappings and the set of solutions of an equilibrium in the framework of Banach
spaces.

Theorem 3.1. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth Banach space E. Let f
be a bifunction from C×C to R satisfying (A1)–(A4) and let T , S : C → C be two closed relatively quasi-nonexpansive mappings
such that F := F(T ) ∩ F(S) ∩ EP(f ) �= ∅. Let {xn}, {yn}, {zn} and {un} be the sequences generated by the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)Jzn),

zn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f (un, y)+ 1

rn
〈y− un, Jun − Jzn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ΠCn+1

x0,

(3.1)

where J is the duality mapping on E. Suppose that {αn}, {βn} and {γn} are three sequences in [0, 1] satisfying the restrictions:

(a) αn + βn + γn = 1;
(b) 0 ≤ αn < 1 for all n ∈ N ∪ {0} and lim supn−→∞ αn < 1;
(c) lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0;
(d) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} and {un} converge strongly to z ∈ F , where z = ΠF x0.

Proof. First, we show that Cn is closed and convex for all n ≥ 0. It is obvious that C1 = C is closed and convex. Suppose that
Ck is closed and convex for some k ∈ N. For z ∈ Ck, one obtains that

φ(z, yk) ≤ φ(z, xk)

is equivalent to

2(〈z, Jxk〉 − 2〈z, Jyk〉) ≤ ‖xk‖2 − ‖yk‖2.
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It is easy to see that Ck+1 is closed and convex. Then, for all n ≥ 0, Cn is closed and convex. This shows that ΠCn+1
x0 is well

defined. Notice that un = Trnzn for all n ≥ 0.
On the other hand, from Lemma 2.11, one has Trn is relatively quasi-nonexpansive mapping. Next, we prove F ⊂ Cn for

all n ≥ 0. F ⊂ C1 = C is obvious. Suppose F ⊂ Ck for some k ∈ N. Then, for ∀w ∈ F ⊂ Ck, one has:

φ(w, zk) = φ(w, J−1(αkJxk + βkJTxk + γkJSxk))

= ‖w‖2 − 2αk〈w, Jxk〉 − 2βk〈w, JTxk〉 − 2γk〈w, JSxk〉 + ‖αkJxk + βkJTxk + γkJSxk‖2
≤ ‖w‖2 − 2αk〈w, Jxk〉 − 2βk〈w, JTxk〉 − 2γk〈w, JSxk〉 + αk‖Jxk‖2 + βk‖JTxk‖2 + γk‖JSxk‖2
= αkφ(w, xk)+ βkφ(w, Txk)+ γkφ(w, Sxk)

≤ φ(w, xk), (3.2)

and then

φ(w, yk) = φ(w, J−1(δkJxk + (1− δk)Jzk))

= ‖w‖2 − 2 〈w, δkJxk + (1− δk)Jzk〉 + ‖δkJxk + (1− δk)Jzk‖2
≤ ‖w‖2 − 2δk 〈w, Jxk〉 − 2(1− δk) 〈w, Jzk〉 + δk‖xk‖2 + (1− δk)‖zk‖2
= δk(‖w‖2 − 2 〈w, Jxk〉 + ‖xk‖2)+ (1− δk)(‖w‖2 − 2 〈w, Jzk〉 + ‖zk‖2)
= δkφ(w, xk)+ (1− δk)φ(w, zk)

≤ δkφ(w, xk)+ (1− δk)φ(w, xk)

= φ(w, xk), (3.3)

that is w ∈ Ck+1. This implies that F ⊂ Cn for all n ≥ 0. From xn = ΠCnx0, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn (3.4)

and

〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ F . (3.5)

From Lemma 2.6, we obtain

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(w, x0)− φ(w, xn) ≤ φ(w, x0),

for each w ∈ F ⊂ Cn and n ≥ 1. Then, the sequence {φ(xn, x0)} is bounded. Since xn = ΠCnx0, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ∈ N ∪ {0}.
Therefore, {φ(xn, x0)} is nondecreasing. It follows that the limit of {φ(xn, x0)} exists. By the construction of Cn, one has that
Cm ⊂ Cn and xm = ΠCmx0 ∈ Cn for any positive integerm ≥ n. It follows that:

φ(xm, xn) = φ(xm, ΠCnx0)

≤ φ(xm, x0)− φ(ΠCnx0, x0)

= φ(xm, x0)− φ(xn, x0). (3.6)

Letting m, n −→ ∞ in (3.6), one has φ(xm, xn) −→ 0. It follows from Lemma 2.4, that xm − xn −→ 0 as m, n −→ ∞.
Hence, {xn} is a cauchy sequence. Since E is a Banach space and C is closed and convex, one can assume that xn −→ p ∈ C
as n −→∞.

Since

φ(xn+1, xn) = φ(xn+1, ΠCnx0) ≤ φ(xn+1, x0)− φ(ΠCnx0, x0) = φ(xn+1, x0)− φ(xn, x0),

for all n ∈ N ∪ {0}, we have limn−→∞ φ(xn+1, xn) = 0. From Lemma 2.5, we get limn−→∞ ‖xn+1 − xn‖ = 0. Since
xn+1 = ΠCn+1

x ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}.
Therefore, we also have

lim
n−→∞φ(xn+1, un) = 0.

Since limn−→∞ φ(xn+1, xn) = limn−→∞ φ(xn+1, un) = 0 and E is uniformly convex and smooth, we have from Lemma 2.4
that

lim
n−→∞‖xn+1 − xn‖ = lim

n−→∞‖xn+1 − un‖ = 0.

So, we have

lim
n−→∞‖xn − un‖ = 0. (3.7)
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Since J is uniformly norm-to-norm continuous on bounded sets and limn−→∞ ‖xn − un‖ = 0, we have

lim
n−→∞‖Jxn − Jun‖ = 0.

Since xn −→ p as n −→∞, we also have un −→ p as n −→∞.
Since E is uniformly smooth Banach space, we known that E∗ is a uniformly convex Banach apace.
Let r = supn∈N∪{0}{‖xn‖, ‖Txn‖, ‖Sxn‖}. From Lemma 2.8, we have

φ(w, un) = φ(w, Trnzn) ≤ φ(w, zn)

= φ(w, J−1(αnJxn + βnJTxn + γnJSxn))

= ‖w‖2 − 2αn 〈w, Jxn〉 − 2βn 〈w, JTxn〉 − 2γn 〈w, JSxn〉
≤ ‖w‖2 − 2α 〈w, Jxn〉 − 2βn 〈w, JTxn〉 − 2γn 〈w, JSxn〉
+αn‖Jxn‖2 + βn‖JTxn‖2 + γn‖JSxn‖2 − αnβng(‖JTxn − Jxn‖)

= αnφ(w, xn)+ βnφ(w, Txn)+ γnφ(w, Sxn)− αnβng(‖JTxn − Jxn‖)
≤ φ(w, xn)− αnβng(‖JTxn − Jxn‖). (3.8)

It follows that

αnβng(‖JTxn − Jxn‖) ≤ φ(w, xn)− φ(w, un).

On the other hand, we have

φ(w, xn)− φ(w, un) = ‖xn‖2 − ‖un‖2 − 2 〈w, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖ + ‖un‖)+ 2‖w‖‖Jxn − Jun‖.

It follow from ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0 that

φ(w, xn)− φ(w, un) −→ 0, as n −→∞. (3.9)

Observing that assumption lim infn−→∞ αnβn > 0 and by Lemma 2.9, we also

lim
n−→∞ (g‖Jxn − JTxn‖) = 0.

It follows from the property of g that

lim
n−→∞‖Jxn − JTxn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we see that

lim
n−→∞‖xn − Txn‖ = 0.

Similarly, one can obtain

lim
n−→∞‖xn − Sxn‖ = 0.

From the closedness of S and T , we have p ∈ F(T ) ∩ F(S). Next, we show p ∈ EF(f ) = F(Tr). On the other hand, from (3.3),
we have

φ(u, yn) ≤ φ(u, xn). (3.10)

From un = Trnzn and Lemma 2.12, we obtain

φ(un, zn) = φ(Trnzn, zn)

≤ φ(w, zn)− φ(w, Trnzn)

≤ φ(w, xn)− φ(w, Trnzn)

= φ(w, xn)− φ(w, un).

It follows from (3.9) that

φ(un, zn)→ 0, as n→∞.

Noticing that Lemma 2.4, we get

‖un − zn‖ → 0, as n→∞.

Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞‖Jun − Jzn‖ = 0.
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From the assumption rn ≥ a, we have

lim
n→∞

‖Jun − Jzn‖
rn

= 0.

Noticing that un = Trnzn, we obtain

f (un, y)+ 1

rn
〈y− un, Jun − Jzn〉 ≥ 0, ∀y ∈ C .

By condition (A2), we note that

‖y− un‖‖Jun − Jzn‖
rn

≥ 1

rn
〈y− un, Jun − Jzn〉 ≥ −f (un, y) ≥ f (y, un), ∀y ∈ C .

By taking the limit as n→∞ in above inequality and from (A4) and un −→ p, we have f (y, p) ≤ 0, ∀y ∈ C . For 0 < t < 1
and y ∈ C , define yt = ty + (1 − t)p. Noticing that y, p ∈ C , we obtains yt ∈ C , which yields that f (yt , p) ≤ 0. It follows
from (A1) that 0 = f (yt , yt) ≤ tf (yt , y) + (1 − t)f (yt , p) ≤ tf (yt , y). Hence, f (yt , y) ≥ 0. From condition (A3), we obtain
f (p, y) ≥ 0, for ∀y ∈ C . This implies that p ∈ EP(f ). This shows that p ∈ F =: F(S) ∩ F(T ) ∩ EP(f ). Finally, we prove
p = ΠF x0. By taking limit in (3.4), one has

〈p− w, Jx0 − Jp〉 ≥ 0, ∀w ∈ F .

At this point, in view of Lemma 2.5, we see that p = ΠF x0. By (3.7), un −→ p as n −→∞ also. This completes the proof of
Theorem 3.1. �

Corollary 3.2 (Qin et al. [19], Theorem 3.1). Let C be a nonempty and closed convex subset of a uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let T , S : C → C be two closed relatively
quasi-nonexpansive mappings such that F := F(T ) ∩ F(S) ∩ EP(f ) �= ∅. Let {xn} be a sequence generated by the following
manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = ΠC1x0,

yn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f (un, y)+ 1

rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1

x0,

(3.11)

where J is the duality mapping on E. Assume that {αn}, {βn} and {γn} are three sequences in [0, 1] satisfying the restrictions:

(a) αn + βn + γn = 1;
(b) 0 ≤ αn < 1 for all n ∈ N ∪ {0} and lim supn−→∞ αn < 1;
(c) lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0;
(d) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠF x0.

Proof. Setting δn = 0 for all n ∈ N ∪ {0}, then (3.1) reduced to (3.11) and putting un = Trnyn for z ∈ F , we have
φ(z, un) = φ(z, Trnyn) ≤ φ(z, yn). Therefore, the conclusion follows immediately from Theorem 3.1. �

Corollary 3.3. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth Banach space E. Let
f be a bifunction from C × C to R satisfying (A1)–(A4) and let T : C → C be a closed relatively quasi-nonexpansive mappings
such that F := F(T ) ∩ EP(f ) �= ∅. Let {xn} be a sequence generated by the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)Jzn),

zn = J−1(αnJxn + (1− αn)JTxn),

un ∈ C such that f (un, y)+ 1

rn
〈y− un, Jun − Jzn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ΠCn+1

x0,

(3.12)

where J is the duality mapping on E. Assume that {αn}, is a sequences in [0, 1] such that 0 ≤ αn < 1 for all n ∈ N ∪
{0}, lim supn−→∞ αn < 1, lim infn−→∞ αn(1 − αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly
to ΠF x0.
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Proof. In Theorem 3.1 if S = I , the identity mapping, then (3.1) reduced to (3.12). �

Corollary 3.4. Let C be a nonempty and closed convex subset of a uniformly convex and uniformly smooth Banach space E. Let f
be a bifunction from C × C to R satisfying (A1)–(A4) and let S : C → C be two closed relatively quasi-nonexpansive mappings
such that F := F(S) ∩ EP(f ) �= ∅. Let {xn} be a sequence generated by the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = PC1x0,

yn = J−1(αnJxn + (1− αn)JSxn),

un ∈ C such that f (un, y)+ 1

rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = PCn+1

x0,

(3.13)

where J is the duality mapping on E, {αn}∞n=0 is a sequence in [0, 1] such that lim infn−→∞ αn(1 − αn) > 0 and {rn} ⊂ [a,∞)
for some a > 0. Then {xn} converges strongly to PF x0.

Remark 3.5. Corollary 3.4 improves Theorem 3.1 of Takahashi and Zembayashi [28] in the following senses:

(1) from relatively nonexpansive mappings to more general relatively quasi-nonexpansive mappings; that is, we relax the

strong restriction: F̃(T ) = F(T );
(2) the algorithm in Theorem 3.1 is also more general than the one given by Qin et al. [19] and Takahashi and

Zembayashi [27].

4. Applications

In Hilbert spaces, we obtain the following results:

Theorem 4.1. Let C be a nonempty and closed convex subset of a Hilbert space H. Let f be a bifunction from C × C to R

satisfying (A1)–(A4) and let T , S : C → C be two closed relatively nonexpansivemappings such that F := F(T )∩F(S)∩EP(f ) �=
∅. Let {xn} and {un} be the sequences generated by the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = PC1x0,
yn = δnxn + (1− δn)zn,
zn = αnxn + βnTxn + γnSxn,

un ∈ C such that f (un, y)+ 1

rn
〈y− un, Jun − Jzn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ‖z − yn‖ ≤ ‖z − xn‖},
xn+1 = PCn+1

x0,

(4.1)

where P is a projection from H into its subset. Assume that {αn}, {βn} and {γn} are three sequences in [0, 1] satisfying the
restrictions:

(a) αn + βn + γn = 1;
(b) 0 ≤ αn < 1 for all n ∈ N ∪ {0} and lim supn−→∞ αn < 1;
(c) lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0;
(d) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} and {un} converge strongly to PF x0.

Proof. Since J is an identity operator, we have

φ(x, y) = ‖x− y‖2
for every x, y ∈ H . Therefore

‖Sx− p‖ ≤ ‖x− p‖ ⇔ φ(p, Sx) ≤ φ(p, x)

and

‖Tx− p‖ ≤ ‖x− p‖ ⇔ φ(p, Tx) ≤ φ(p, x)

for every x ∈ C and p ∈ F(S) and p ∈ F(T ) respectively. Hence, S and T are relatively nonexpansive if and only if S and T are
relatively quasi-nonexpansive. Then, by Theorem 3.1, we obtain the result. �
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Corollary 4.2. Let C be a nonempty and closed convex subset of a Hilbert space H. Let f be a bifunction from C × C to R

satisfying (A1)–(A4) and let T , S : C → C be two closed relatively nonexpansivemappings such that F := F(T )∩F(S)∩EP(f ) �=
∅. Let {xn} be a sequence generated by the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = PC1x0,
yn = αnxn + βnTxn + γnSxn,

un ∈ C such that f (un, y)+ 1

rn
〈y− un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ‖z − yn‖ ≤ ‖z − xn‖},
xn+1 = PCn+1

x0,

(4.2)

where P is a projection from H into its subset. Assume that {αn}, {βn} and {γn} are three sequences in [0, 1] satisfying the
restrictions:

(a) αn + βn + γn = 1;

(b) 0 ≤ αn < 1 for all n ∈ N ∪ {0} and lim supn−→∞ αn < 1;
(c) lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0;

(d) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to PF x0.
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STRONG CONVERGENCE THEOREMS OF MODIFIED
ISHIKAWA ITERATIONS FOR TWO FAMILY OF

RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN
BANACH SPACES

K. WATTANAWITOON, P. KUMAM∗, AND U. W. HUMPHRIES

Abstract. In this paper, we prove strong convergence theorems of mod-
ified Ishikawa iterations for a countable family of two relatively quasi-

nonexpansive mappings in Banach spaces. Moreover, we discuss the prob-

lem of strong convergence of relatively nonexpansive mappings and we
also apply our results to generalize, extend and improve those announced

by Qin and Su’s result [Strong convergence theorems for relatively non-

expansive mapping in a Banach space, Nonlinear Anal. 67 (2007) 1958–
1965.], Nilsrakoo and Saejung’s result [Strong convergence to common

fixed points of countable relatively quasi-nonexpansive mappings, Fixed

Point Theory and Appl. (2008), doi:10.1155/2008/312454.] and Su et
al.’s result [Strong convergence of monotone hybrid algorithm for hemi-

relatively nonexpansive mappings, Fixed Point Theory and Appl. (2008),

doi:10.1155/2008/284613.].

1. Introduction

Let E be a real Banach space, C be a nonempty closed convex subset of E,
and T : C → C be a mapping. Recall that T is nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.

We denote by F (T ) the set of fixed points of T , that is F (T ) = {x ∈ C : x =
Tx}. A mapping T is said to be quasi-nonexpansive if F (T ) �= ∅ and

‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F (T ).

It is easy to see that if T is nonexpansive with F (T ) �= ∅, then it is quasi-
nonexpansive. Some iteration processes are often used to approximate a fixed

2000 Mathematics Subject Classification. 46C05, 47D03, 47H09, 47H10, 47H20.
Key words and phrases. Strong convergence, nonexpansive mappings, Ishikawa iterations;

countable family, relatively quasi-nonexpansive mappings.
∗Corresponding author.
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point of a nonexpansive mapping. The Mann’s iterative algorithm was intro-
duced by Mann [9] in 1953. This iteration process is now known as Mann’s
iteration process, which is defined as

(1.1) xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0

is in the interval [0, 1].
In 1967, Halpern [5] first introduced the following iteration scheme:

(1.2)
{

x0 = x ∈ C chosen arbitrarily,
xn+1 = αnu+ (1− αn)Txn,

see also Browder [3]. He pointed out that the conditions limn−→∞αn = 0 and
Σ∞

n=1αn = ∞ are necessary in the sence that, if the iteration 1.2 converges to
a fixed point of T , then these conditions must be satisfied.
In 1974, Ishikawa [6] introduced a new iteration scheme, which is defined

recursively by

(1.3)
{

yn = βnxn + (1− βn)Txn,
xn+1 = αnxn + (1− αn)Tyn,

where the initial guess x0 is taken in C arbitrarily and the sequences {αn} and
{βn} are in the interval [0, 1].
Matsushita and Takahashi [10] introduced the following iteration: a sequence

{xn} defined by
(1.4) xn+1 = ΠCJ−1(αnJxn + (1− αn)JTxn),

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in
[0, 1], T is a relatively nonexpansive mapping and ΠC denotes the generalized
projection from E onto a closed convex subset C of E. They prove that the
sequence {xn} converges weakly to a fixed point of T . Moreover, Matsushita
and Takahashi [11] proposed the following modification of iteration (1.4):

(1.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTxn),
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0), n = 0, 1, 2, . . . .

and proved that the sequence {xn} converges strongly to ΠF (T )(x0).
Many authors have appeared in the literature on Ishikawa’s iteration process,

see, for example [13, 14, 15] and references therein.
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In 2007, Qin and Su [15] proved the following iteration for relatively nonex-
pansive mappings T in a Banach space E:

(1.6)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C, chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTzn),
zn = J−1(βnJxn + (1− βn)JTxn),
Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)φ(v, zn),
Qn = {v ∈ C : 〈Jxo − Jxn, xn − v〉 ≥ 0},
xn+1 = ΠCn∩Qn

(x0),

the sequence {xn} generated by (1.6) converges to ΠF (T )x0,
and

(1.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 ∈ C, chosen arbitrarily,
yn = J−1(αnJx0 + (1− αn)JTxn),
Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)φ(v, zn),
Qn = {v ∈ C : 〈Jxo − Jxn, xn − v〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0),

the sequence {xn} generated by (1.7) converges to ΠF (T )x0.

In 2008, Takahashi et al. [17] proved the following theorem by a hybrid
method. We call such a method the shrinking projection method.

Theorem 1.1. (Takahashi et al. [17]). Let H be a Hilbert space and let C be
a nonempty closed convex subset of H. Let T be a nonexpansive mapping of
C into H such that F (T ) �= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0,
define a sequence {un} of C as follows:

(1.8)

⎧⎨⎩
yn = αnun + (1− αn)Tun,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then, {un} converges strongly to
z0 = PF (T )x0.

Nilsrakoo and Saejung [12] proved the following Mann’s iteration process,
with C a closed convex bounded subset of Banach spaces:

(1.9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 ∈ C, and C−1 = Q−1 = C,
yn = J−1(αnJxn + (1− αn)JTnxn),
Cn = {v ∈ Cn : φ(v, yn) ≤ αnφ(v, xn),
Qn = {v ∈ C : 〈Jxo − Jxn, xn − v〉 ≥ 0},
xn+1 = ΠCn∩Qn(x), n = 0, 1, 2, . . . .

converges strongly to a common fixed point of a countable family of relatively
nonexpansive mappings.
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Recently, Qin and Su [15] and Su et al. [16] extended Takahashi et al.’s
theorem [17] to a closed hemi-relatively nonexpansive mapping. They proved
a strong convergence theorem by the (CQ) hybrid method. Very recently,
Nilsrakoo and Saejung [12], generalized theorem of Su et al. [16, Theorem
3.1]. It is noted that relative quasi-nonexpansiveness considered in the paper
and hemi-relative nonexpansiveness of [16] are the same. They do prefer the
former name because in a Hilbert space setting, relatively quasi-nonexpansive
mappings are just quasi-nonexpansive mappings.
In this paper, motivated by Qin and Su’s result [15] and Nilsrakoo and

Saejung’s result [12] the idea is to modify Ishikawa’s iteration process (1.6) and
(1.7) for two countable relatively quasi-nonexpansive mappings to have strong
convergence theorems in a Banach space by using the shrinking projection
method. Our result extends and improves the recent results by Nilsrakoo and
Saejung’s result [12], Qin and Su [15], Su et al. [16] and Takahashi et al.’s
theorem [17] and many other authors.

2. Preliminaries

Let E be a real Banach space with dual E∗. Denote by 〈·, ·〉 the duality
product. The normalized duality mapping J from E to E∗ is defined by

(2.1) Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},
for all x ∈ E.

If C is a nonempty closed convex subset of real Hilbert space H and PC :
H → C is the metric projection, then PC is nonexpansive. Alber [1] has
recently introduced a generalized projection operator ΠC in a Banach space E
which is an analogue representation of the metric projection in Hilbert spaces.
Let E be a smooth Banach space. The function φ : E × E → R is defined

by

(2.2) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E.

The generalized projection ΠC : E → C is a map that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(y, x), that is, ΠCx = x∗,
where x∗ is the solution to the minimization problem

φ(x∗, x) = min
y∈C

φ(y, x),

existence and uniqueness of the operator ΠC follows from the properties of the
functional φ(y, x) and strict monotonicity of the mapping J . In the Hilbert
space, ΠC = PC . It is obvious from the definition of the function φ that

(2.3) (‖ y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 for all x, y ∈ E.



STRONG CONVERGENCE THEOREMS . . . 5

Remark 2.1. (Matsushita and Takahashi [11]). If E is a strictly convex and
a smooth Banach space, then for all x, y ∈ E, φ(y, x) = 0 if and only if x = y.
It is sufficient to show that if φ(y, x) = 0 then x = y. From (2.3), we have
‖x‖ = ‖y‖. This implies 〈y, Jx〉 = ‖y‖2 = ‖Jx‖2. From the definition of J , we
have Jx = Jy. Since J is one-to-one, we have x = y

Lemma 2.2. (Kamimura and Takahashi [7]). Let E be a uniformly convex
and smooth Banach space and let r > 0. Then there exists continuous, strictly
increasing, and convex function g : [0, 2r]→ [0,∞) such that g(0) = 0 and

g(‖x − y‖) ≤ φ(x, y)

for all x, y ∈ Br = {z ∈ E : ‖z‖ ≤ r}.
Let C be a closed convex subset of E, and let T be a mapping from C into

itself. The set of fixed points of T is denoted by F (T ). A mapping T is said to
be relatively quasi-nonexpansive if

φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ).

A point p in C is said to be an asymptotic fixed point of T [4] if C contains a
sequence {xn} which converges weakly to p such that the strong limn→∞(xn −
Txn) = 0. The set of asymptotic fixed points of T will be denoted by F̂ (T ). A
relatively quasi-nonexpansive mapping T from C into itself is called relatively
nonexpansive if F̂ (T ) = F (T ). We say that the mapping T is relatively non-
expansive if the following conditions are satisfied:
(R1) F (T ) �= ∅;
(R2) φ(p, Tx) ≤ φ(p, x) for each x ∈ C, p ∈ F (T );
(R3) F (T ) = F̂ (T ).

Lemma 2.3. (Kamimura and Takahashi [7]). Let E be a uniformly convex
and smooth real Banach space and let {xn}, {yn} be two sequences of E. If
φ(xn, yn)→ 0 and either {xn} or {yn} is bounded, then ‖xn − yn‖ → 0.

Lemma 2.4. (Alber [1]). Let C be a nonempty closed convex subset of a
smooth real Banach space E and x ∈ E. Then, x0 = ΠCx if and only if

(2.4) 〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.5. (Alber [1]). Let E be a reflexive, strict convex, and a smooth
real Banach space, let C be a nonempty closed convex subset of E and let x ∈ E.
Then

(2.5) φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C.
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Lemma 2.6. (Nilsrakoo and Saejung [12, Lemma 2.5]. Let E be a strictly
convex and a smooth real Banach space, let C be a closed convex subset of E,
and let T be a relatively quasi-nonexpansive mapping from C into itself. Then
F(T) is closed and convex.

Lemma 2.7. (Plutieng and Ungchittrakool [14]). Let E be a uniformly convex
and uniformly smooth Banach space and let C be a closed convex subset of E.
Then, for points w, x, y, z ∈ E and a real number a ∈ R, the set K := {v ∈ C :
φ(v, y) ≤ φ(v, x) + 〈v, Jz − Jw〉+ a} is closed and convex.

Let C be a subset of Banach space E and let {Tn} be a family of mappings
from C into E. For a subset B of C, we say that
(i) ({Tn}, B) satisfies condition AKTT if

∞∑
n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞;

(ii) ({Tn}, B) satisfies condition *AKTT if
∞∑

n=1

sup{‖JTn+1z − JTnz‖ : z ∈ B} < ∞;

Aoyama et al. [2] prove the following result which is very useful for our main
result.

Lemma 2.8. (Nilsrakoo and Saejung [12]). Let C be a nonempty subset of
Banach space E and let {Tn} be a sequence of mappings from C into E. Let B
be a subset of C with ({Tn}, B) satisfying condition AKTT, then there exists a
mapping T̃ : B → E such that

T̃ x = lim
n−→∞Tnx for all x ∈ B

and lim supn−→∞{‖T̃ z − Tnz‖ : z ∈ B} = 0.
Inspired by the preceding Lemma, we have the following result.

Lemma 2.9. (Nilsrakoo and Saejung [12]). Let E be a reflexive and strictly
convex Banach space whose norm is Fréchet differentiable, let C be a nonempty
subset of Banach space E and let {Tn} be a sequence of mappings from C into
E. Let B be a subset of C with ({Tn}, B) satisfies condition *AKTT, then
there exists a mapping T̂ : B → E such that

T̂ x = lim
n−→∞Tnx for all x ∈ B

and lim supn−→∞{‖JT̂ z − JTnz‖ : z ∈ B} = 0.
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Lemma 2.10. (Nilsrakoo and Saejung [12]). Let E be a reflexive and strictly
convex Banach space whose norm is Fréchet differentiable, let C be a nonempty
subset of Banach space E and let {Tn} be a sequence of mappings from C into
E. Suppose that for each bounded subset B of C, the ordered pair ({Tn}, B)
satisfies either condition AKTT or condition *AKTT. Then there exists a map-
ping T : C → E such that

Tx = lim
n−→∞Tnx for all x ∈ C

Recall that an operator T in a Banach space is closed if xn → x and Txn → y,
then Tx = y.

3. Modify Ishikawa iteration scheme

In this section, we establish a strong convergence theorem for finding com-
mon fixed points of a countable family of relatively quasi-nonexpansive mapping
in a Banach space. This theorem generalizes recent theorems by Nilsrakoo and
Saejung [12] and Su et al. [16].

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach
space, and let C be a nonempty bounded closed convex subset of E. Let {Sn} and
{Tn} be two sequences of relatively quasi-nonexpansive mappings from C into
itself, where F (S) =

⋂∞
n=0 F (Sn) and F (T ) =

⋂∞
n=0 F (Tn); F (T ) = F (S) ∩

F (T ) is nonempty. Assume that {αn}∞n=0 and {βn}∞n=0 are sequence in [0,1]
such that lim supn−→∞αn < 1 and limn−→∞βn = 1, and let {xn} be a sequence
in C by the following algorithm:

(3.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 ∈ C, C0 = C,
yn = J−1(αnJxn + (1− αn)JSnzn),
zn = J−1(βnJxn + (1− βn)JTnxn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1(x0),

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose
that for each bounded subset B of C the ordered pair ({Sn}, B) and ({Tn}, B)
satisfies either condition AKTT or condition *AKTT. Let S and T be two map-
pings from C into itself defined by Sv = limn−→∞Snv and Tv = limn−→∞Tnv
for all v ∈ C and suppose that S and T are closed. If Sn is uniformly contin-
uous for all n ∈ N, then {xn} converges strongly to ΠF (T )x0, where ΠF (T ) is
the generalized projection from C onto F (T ).
Proof. We first show that Cn+1 is closed and convex for each n ≥ 0. From the
definition of Cn+1 it is obvious that Cn+1 is closed for each n ≥ 0. By Lemma
2.7, Cn+1 is convex for any n ≥ 0.
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Next, we show that
⋂∞

n=0 F (Tn) ⊂ Cn for all n ≥ 0. Indeed, let p ∈⋂∞
n=0 F (Tn), we have

(3.2)

φ(p, yn) = φ(p, J−1(αnJxn + (1− αn)JSnzn))
= ‖p‖2 − 2〈p, αnJxn + (1− αn)JSnzn〉

+‖αnJxn + (1− αn)JSnzn‖2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2(1− αn)〈p, JSnzn〉
+αn‖xn‖2 + (1− αn)‖Snzn‖2

= αn(‖p‖2 − 2〈p, Jxn〉+ ‖xn‖2)
+(1− αn)(‖p‖2 − 2〈p, JSnzn〉+ ‖Snzn‖2)

≤ αnφ(p, xn) + (1− αn)φ(p, Snzn)
≤ αnφ(p, xn) + (1− αn)φ(p, zn).

and

(3.3)

φ(p, zn) = φ(p, J−1(βnJxn + (1− βn)JTnxn))
= ‖p‖2 − 2〈p, βnJxn + (1− βn)JTnxn〉

+‖βnJxn + (1− βn)JTnxn‖2

≤ ‖p‖2 − 2βn〈p, Jxn〉 − 2(1− βn)〈p, JTnxn〉
+βn‖xn‖2 + (1− βn)‖Tnxn‖2

= βn(‖p‖2 − 2〈p, Jxn〉+ ‖xn‖2)
+(1− βn)(‖p‖2 − 2〈p, JTnxn〉+ ‖Tnxn‖2)

≤ βnφ(p, xn) + (1− βn)φ(p, Tnxn)
≤ βnφ(p, xn) + (1− βn)φ(p, xn)
≤ φ(p, xn).

Substituting (3.3) into (3.2), we have

(3.4) φ(p, yn) ≤ φ(p, xn).

This means that, p ∈ Cn+1 for all n ≥ 0. Thus, {xn} is well defined. Since
xn+1 = ΠCn+1x0 and xn+1 ∈ Cn+1 ⊂ Cn, we get

φ(xn, x0) ≤ φ(xn+1, x0),

for all n ≥ 0. Therefore, {φ(xn, x0)} is nondecreasing.
By definition of xn and Lemma 2.5, we have

(3.5) φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(p, x0)− φ(p,ΠCnx0) ≤ φ(p, x0),

for all p ∈ F (T ) ⊂ Cn. Thus, φ(xn, x0) is bounded. Moreover, by (2.3), we
have that {xn} is bounded. So, limn−→∞φ(xn, x0) exists. By again Lemma
2.5, we have

φ(xn+1, xn) = φ(xn+1,ΠCn
x0)

≤ φ(xn+1, x0)− φ(ΠCnx0, x0)
= φ(xn+1, x0)− φ(xn, x0),
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for all n ≥ 0. Thus, φ(xn+1, xn)→ 0 as n → ∞.
Next, we show that {xn} is a Cauchy sequence. Using Lemma 2.2, we have,

for m,n such that m > n,

g(‖xm − xn‖) ≤ φ(xm, xn) ≤ φ(xm, x0)− φ(xn, x0),

where g : [0,∞) → [0,∞) is a continuous, stricly increasing, and convex func-
tion with g(0) = 0. then the properties of the function g yield that {xn} is a
Cauchy sequence, such that {xn} converges strongly to p for some point p in
C. However, since limn−→∞βn = 1 and {xn} is bounded, we obtain
(3.6)

φ(xn+1, zn) = φ(xn+1, J
−1(βnJxn + (1− βn)JTnxn))

= ‖xn+1‖2 − 2〈xn+1, βnJxn + (1− βn)JTnxn〉
+‖βnJxn + (1− βn)JTnxn‖2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jxn〉 − 2(1− βn)〈xn+1, JTnxn〉
+βn‖xn‖2 + (1− βn)‖Tnxn‖2

= βnφ(xn+1, xn) + (1− βn)φ(xn+1, Tnxn).

Therefore, φ(xn+1, zn)→ 0 as n → ∞.
Since xn+1 = ΠCn+1(x0) ∈ Cn+1, from the definition of Cn, we have

φ(xn+1, yn) ≤ φ(xn+1, xn),

for all n ≥ 0. Thus
φ(xn+1, yn)→ 0, as n → ∞.

By using Lemma 2.3, we also have

(3.7) lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = lim
n→∞ ‖xn+1 − zn‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have

(3.8) lim
n→∞ ‖Jxn+1−Jyn‖ = lim

n→∞ ‖Jxn+1−Jxn‖ = lim
n→∞ ‖Jxn+1−Jzn‖ = 0.

For each n ∈ N ∪ {0}, we observe that
‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (αnJxn + (1− αn)JSnzn)‖

= ‖αn(Jxn+1 − Jxn) + (1− αn)(Jxn+1 − JSnzn)‖
= ‖(1− αn)(Jxn+1 − JSnzn)− αn(Jxn − Jxn+1)‖
≥ (1− αn)‖Jxn+1 − JSnzn‖ − αn‖Jxn − Jxn+1‖.

It follows that

‖Jxn+1 − JSnzn‖ ≤ 1
1− αn

(‖Jxn+1 − Jyn‖+ αn‖Jxn − Jxn+1‖).

By (3.8) and lim supn−→∞αn < 1, we obtain

lim
n→∞ ‖Jxn+1 − JSnzn‖ = 0.
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Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

(3.9) lim
n→∞ ‖xn+1 − Snzn‖ = 0.

Since
‖zn − xn‖ ≤ ‖zn − xn+1‖+ ‖xn+1 − xn‖.

By (3.7), we obtain

(3.10) lim
n−→∞ ‖zn − xn‖ = 0.

By using the triangle inequality, we get

‖xn − Snxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Snzn‖+ ‖Snzn − Snxn‖.
Since Sn is uniformly continuous for all n ∈ N. It follow from (3.7), (3.9) and
(3.10) that limn−→∞ ‖xn − Snxn‖ = 0 and so

lim
n−→∞‖Jxn − JSnxn‖ = 0.

From (3.8), we obtain

‖Jxn+1 − Jzn‖ = ‖Jxn+1 − (βnJxn + (1− βn)JTnxn)‖
= ‖βn(Jxn+1 − Jxn) + (1− βn)(Jxn+1 − JTnxn)‖
= ‖(1− βn)(Jxn+1 − JTnxn)− βn(Jxn − Jxn+1)‖
≥ (1− βn)‖Jxn+1 − JTnxn‖ − βn‖Jxn − Jxn+1‖.

It follows that

‖Jxn+1 − JTnxn‖ ≤ 1
1− βn

(‖Jxn+1 − Jzn‖+ βn‖Jxn − Jxn+1‖).

By (3.8) and βn → 1, we have

lim
n−→∞‖Jxn+1 − JTnxn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n−→∞‖xn+1 − Tnxn‖ = 0.

It follows from (3.7) that

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tnxn‖ → 0,

and so
lim

n−→∞‖Jxn − JTnxn‖ = 0.
Case 1: ({Tn}, {xn}) satisfies condition *AKTT. We apply Lemma 2.9 to get
‖Jxn − JTxn‖ ≤ ‖Jxn − JTnxn‖+ ‖JTnxn − JTxn‖,

≤ ‖Jxn − JTnxn‖+ sup{‖JTnz − JTz‖ : z ∈ {xn}} → 0.
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Case 2: ({Tn}, {xn}) satisfies condition AKTT. We apply Lemma 2.8 to get
‖xn − Txn‖ ≤ ‖xn − Tnxn‖+ ‖Tnxn − Txn‖,

≤ ‖xn − Tnxn‖+ sup{‖Tnz − Tz‖ : z ∈ {xn}} → 0.

Hence

lim
n−→∞‖xn − Txn‖ = lim

n−→∞‖J−1(Jxn)− J−1(JTxn)‖ = 0.

From both cases, we obtain

lim
n−→∞‖xn − Txn‖ = 0.

Similarly, we also have limn−→∞ ‖xn − Sxn‖ = 0.
Since T, S are closed and xn → p, we have p ∈ F (T ). Moreover, by (3.5), we
obtain

φ(p, x0) = lim
n−→∞φ(xn, x0) ≤ φ(p, x0),

for all p ∈ F (T ). Therefore, p = ΠF (T )x0. This completes the proof. �

4. Applications in Hilbert spaces

In Hilbert spaces, relatively quasi-nonexpansive mappings and quasi-
nonexpansive mappings are the same. We obtain the following results:

Theorem 4.1. Let H be a Hilbert space, and let C be a nonempty bounded
closed convex subset of E. Let {Sn} and {Tn} be two sequences of relatively
quasi-nonexpansive mappings from C into itself F (S) =

⋂∞
n=0 F (Sn) and

F (T ) =
⋂∞

n=0 F (Tn); F (T ) = F (S) ∩ F (T ) is nonempty. Assume that
{αn}∞n=0 and {βn}∞n=0 are sequences in [0,1] such that lim supn−→∞αn < 1 and
limn−→∞βn = 1, and let a sequence {xn} in C by the following algorithm:

(4.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 ∈ C, C0 = C,
yn = αnxn + (1− αn)Snzn,
zn = βnxn + (1− βn)Tnxn,
Cn+1 = {v ∈ Cn : ‖yn − v‖ ≤ ‖xn − v‖},
xn+1 = PCn+1(x0),

for n ∈ N∪{0}. Suppose that for each bounded subset B of C the ordered pair
({Sn}, B) and ({Tn}, B) satisfies condition AKTT. Let S and T be two map-
pings from C into itself defined by Sv = limn−→∞Snv and Tv = limn−→∞Tnv
for all v ∈ C and suppose that S and T is closed. Then {xn} converges strongly
to PF (T )x0.
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Proof. Since J is an identity operator, we have

φ(x, y) = ‖x − y‖2

for every x, y ∈ H. Therefore,

‖Snx − p‖ ≤ ‖x − p‖ ⇔ φ(p, Snx) ≤ φ(p, x)

and
‖Tnx − p‖ ≤ ‖x − p‖ ⇔ φ(p, Tnx) ≤ φ(p, x)

for every x ∈ C and p ∈ F (T ). Hence, Sn and Tn are quasi-nonexpansive if
and only if Sn and Tn are relatively quasi-nonexpansive. Then, by Theorem
3.1, we obtain the result. �

Theorem 4.2. Let H be a Hilbert space, and let C be a nonempty bounded
closed convex subset of E. Let {Tn} be a sequence of quasi-nonexpansive
mapping from C into itself such that

⋂∞
n=0 F (Tn) is nonempty. Assume that

{αn}∞n=0 is a sequence in [0,1] such that lim supn−→∞αn < 1 and let a sequence
{xn} in C be defined by the following algorithm:

(4.2)

⎧⎪⎪⎨⎪⎪⎩
x0 ∈ C, C0 = C,
yn = αnxn + (1− αn)Snxn,
Cn+1 = {v ∈ Cn : ‖yn − v‖ ≤ ‖xn − v‖},
xn+1 = PCn+1(x0),

for n ∈ N∪ {0}. Suppose that for each bounded subset B of C the ordered pair
({Tn}, B) satisfies condition AKTT. Let T be the mapping from C into itself
defined by Tv = limn−→∞Tnv for all v ∈ C and suppose that T is closed and
F (T ) =

⋂∞
n=0 F (Tn). Then {xn} converges strongly to PF (T )x0.

Proof. In Theorem 4.1 if Tn = I and βn = 1 for all n ∈ N ∪ {0}, then (4.1)
reduced to (4.2). �
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