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We study electromagentic form factors of hyperons using a chiral quark
model. In this model baryons are bound states of constituent quarks dressed by a
cloud of pseudoscalar mesons. In a first step, this Lagrangian can be used to perform a
dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other
heavy states using the calculational technique of infrared dimensional regularization
of loop diagrams. Then the dressed transition operators are used to calculate the
baryon matrix elements. We use the parameterization of baryon form factors in terms
of quark form factors in the SU(6). The parameters fitted from the nuclon
electromagnetic properties are used as an input for the calculation of hyperons

electromagenetic form factors and their magnetic moments.
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1. Introduction

The basic building blocks of the atomic nuclei, proton and neutron, play an
crucial role in subatomic physics. The fully understanding of their properties and
structure will probably lead us to a deeper understanding of the mechanism of the

strong interaction in nature. Since the masses of the proton (M, = 938.27 MeV) and

the neutron (M, = 939.57 MeV) are nearly identical, one considers both of them as

two different states of the same particle, the nucleon. Experiments point out that the
nucleon is not a point-like particle but contains a subtle structure. One of the very first
evidence came from the measurement of the magnetic moment of the proton. A
deviation of the proton magnetic moment from the value of the point-like particle was
observed, hence the introduction of an anomalous magnetic moment. Other evidence
for the structure of the nucleon arises from the rich nucleon excitation spectrum. An
important tool to study the electromagnetic structure of nucleon is an elastic electron
scattering. Deep inelastic scatterings of electrons on the nucleon lead to the evidence
for point-like scattering centers in the nucleon and the existence of quark and gluon
degrees of freedom.

The knowledge of the electromagnetic structure of the nucleon which tells us
how the charge and the current are distributed within the nucleon is very important.
The subject is actively studied both on theoretical and experimental sides. As a result
of a new technology, modern experiments [1, 2, 3], utilizing polarized beams and

targets significantly improved the previous data based on the Rosenbluth separation
technique. Recently, the improved measurement on low-Q? electromagnetic form

factors data of nucleon, which is one of the ongoing programs for the complete
measurement of the electromagnetic form factors of the nucleon, has reported the
improved data [4]. This will lead to more precise data, which is important for the
theoretical study.

Quarks were proposed by Gell-Mann [5] and, independently, by Zweig [6] as

an elementary particle within the strong interaction particle, hadrons. By assigning u,

d and s quarks and their antiparticles o, d and 5 as the fundamental

representations 3 and 3 of SU(3), respectively, hadrons can be constructed from
these representations. Therefore, hadrons are believed to be composed of quarks and

antiquarks. Baryons are composed of three valence quarks and mesons are composed



of a quark-antiquark pair. These quark-antiquark combinations are constructed such
that the correct quantum numbers associated with the corresponding hadrons are
achieved. For example, the quark flavor contents of the proton and the neutron are
uud and udd , respectively.

Experiments reveal the existence of heavier quarks, i.e. the ¢, b and t quarks.
Therefore, there are six quark flavors along with their antiquarks. However, the free
quark state, with the fractional electric charge, was never observed in nature. From
this fact it is deduced that there exists a mechanism, named confinement, preventing
that free quarks exist. This point is directly lead to a new degree of freedom called

“color”, originally introduced to restore the Pauli exclusion principle in the A™
system with the quark content uuu . For each quark favor there are three color degrees
of freedom, namely, “red”, “blue” and *“green”. The non-observation of free quarks is
therefore consistent with the proposal that hadrons contain no net color i.e they are
color singlets.

Quantum Chromodynamics (QCD) is believed to be the correct theory for
describing the physics of the strong interaction. The basic particles in QCD are quarks
and their interactions are mediated by exchange of gluons which are the gauge quanta
of the color fields. Two important properties of QCD are the asymptotic freedom and
the color confinement. The asymptotic freedom is related to the experimental result
that in the high energy regime or at small distances the interaction between the quarks
is small. In this regime the coupling constant between quarks and gluons is therefore
small and a perturbative method can be applied to evaluate QCD. However, in the low
energy regime where the strong running coupling constant is large, at the order of one,
the perturbative method cannot be applied and one has to deal with a non-perturbative
approach.

In QCD, at the scale of 1 GeV, the masses of the light quarks (u, d and
s quarks) are much smaller than the nucleon mass. When we neglect the small quark
masses and consider light quarks as massless particles, another important global
symmetry in the low energy regime arises in the strong interaction, the so-called
“chiral symmetry”. This symmetry is not perfect and spontaneously broken which
results in the existence of massless particles called the “Goldstone bosons”. Pions,

which considered as Goldstone bosons, however, are massive. Therefore, the finite



value for the pion mass is due to the explicit breaking of chiral symmetry when the
quarks has small physical mass values.

Perturbative technique works well for high-energy regime in QCD. However,
study of nucleon structure cannot be solved analytically from perturbative QCD.
Alternative approaches in order to study the nucleon structure were proposed, for
example, QCD sum rule, lattice QCD, 1/Nc expansion, etc. However, one of the most
method for the treatment of light hadrons at small energies is “Chiral Perturbation
Theory” (ChPT) [7, 8, 9], which is considered as an effective field theory of the
strong interaction. For mesons, ChPT works very well, especially in the description of
pion-pion interactions, but this is not the case for nucleon. Many versions of ChPT are
introduced, for example, Heavy Baryon Chiral Perturbation Theory (HBChPT) [10]
and even a manifestly Lorentz invariant version of ChPT [11, 12, 13, 14].

Note, that ChPT is formulated on the hadronic level, therefore the important
features of low-energy QCD, such as confinement and hadronization are not
considered in ChPT. Alternatively techniques formulated on the quark level and take
into account chiral symmetry argument are exist. One on these is the Chiral quark
models which describe the elementary baryon, the nucleon, as a bound state of
valence quarks supplied by the sea-quark excitation in form of the pions. Depending
on the philosophy for each quark model, both perterbative and non-perterbative
techniques are employed.

In this report, the so-called Perturbative Chiral Quark Model (PCQM) is used
as a tool in order to get the information for the description of low-energy properties of
baryons. The latest development of the PCQM is a manifestly Lorentz covariant
approach [15, 16]. The main idea is to dress the quark operators by using the chiral
Lagrangian taken from baryon ChPT. The dressed quark operators are calculated and
the physical observables are obtained from the matrix elements projected on the
baryonic level. Constraints of the model can be fixed by using the symmetries of the
system and the matching to the original ChPT. According to this matching, the Low
Energy Constants (LECs) which are parameters of the model and can be adjusted to
fit the wvarious related physical observables. Parameters obtained from the
consideration of electromagnetic form factors will be used to further analysis of the
electromagnetic form factors of hyperons.

We proceed as follows. First, in Section 2, we discuss the basic theory of

strong interaction, QCD and Chiral symmetry when light quark masses are vanish. In



addition, the basic idea of ChPT are presented. The chiral Lagrangian motivated by
baryon ChPT [17]-[24] and their formulation in terms of quark and mesonic degrees
of freedom are shown in Section 3, together with the discussion of the
electromagnetic form factors of nucleon and the extension to the case of hyperons.
Next, the results for electromagnetic properties of hyperons are present in Section 4,
together with a conclusion.



2. QCD, Chiral Symmetry and
Chiral Perturbation Theory

The elementary theory of the strong interaction is Quantum Chromodynamics
(QCD). QCD is a local gauge theory which describes the interaction of quarks and
gluons. The quarks and gluons possess color which is the basic quantum number
associated with QCD. Another important symmetry of the QCD Lagrangian is chiral
symmetry. This symmetry is only on the level of approximation and is fulfilled only
in the limit of massless quarks. Approximate chiral symmetry is widely manifest in
low-energy hadron phenomenology and is therefore an important constraint in the
derivation of phenomenological approaches motivated by QCD. We briefly discuss
the basic notions of the QCD Lagrangian and the aspects of chiral symmetry,
including its explicit and spontaneous breaking. Finally, the effective field theory for
the strong interaction at low energies— Chiral Perturbation Theory (ChPT)- will be

briefly reviewed.

2.1 The QCD Lagrangian
The quark fields qi(x) which are Dirac particles are the matter fields in QCD.

They have two specific quantum numbers, color (c) and flavor (f). Their free

Lagrangian is written as
£=qi()G@-m )as(x). (2.1)

The slash notation is defined as : #=0,y*. For each quark flavor f =u,d,s,c,b

and t, it contains three additional quantum numbers, the color charge, c=r, g, b.
The color charges of the quarks form a fundamental representation related to

the generators of SU(3). i.e. the Gell-Mann matrices A; . The explicit forms of £ are



010 0 -i 0 1 0 0
A4=[10 0| A4=li 0 0, A4=[0 -1 0}
000 0 0 0 0 0
001 00 —i 000
,=[0 0 0, A=/00 0] %001}
100 i 0 0 010
00 0 10 0
A =00 —il, zﬁz\/g01 0|,
0i 0 00 -2

where the color indices (c) are suppressed. The free Lagrangian of Eq. (2.1) is

invariant under the “global” transformation of the color degrees of freedom,

a5 (x) ~ U[6]a; (x), (2.2)
where
ule]= exp[— i i%eaj = exp(— i%&aj, (2.3)

and 9:(91,...,98) are arbitrary constants. Note, that we employ the Einstein

summation convention here i.e. summation over the same indices is implied.

The interaction of the matter fields with the gauge fields which are the
mediators of the interaction can be generated from the requirement of the local gauge
invariance principle applied to the free Lagrangian of the matter fields. Interactions in
QCD can be constructed by extension of the global transformations to the “local”

transformations according to
a5 (x) > U[o(x)]at (x), (2.4)

where 6(x) is now space-time dependent. In order to maintain the invariance of the

Lagrangian of Eq. (2.1) under this local gauge transformation one has to introduce the

gauge fields which interact with the quark fields. The usual way is to replace the

normal space-time derivative, ,q5(x), of the free quark Lagrangian by the so-called

“covariant derivative”, D,q(x)



0,05 (x)~ D, g5 (x). (2.5)

This covariant derivative is constructed such that it has the same transformation
property as the quark fields, i.e.

0,050 UIOID, ai () -exp{ - 20,00t (2

As in QED, Eq. (2.6) can be fulfilled by the introduction of the gauge fields ﬂi(x) in

the covariant derivative
D,q¢(x)= (0, ~igA, (x))as (x) 2.7)

A ()

A i . . .
where &Zl#(x)zaT“ and g is a coupling constant related the strong interaction.

These ﬂi(x) are the gluon fields which considered as the gauge fields of the strong

interaction. Under the gauge group SU(3)., the gluon fields transformation is

%(x)wu[e<x>]ﬂﬂ<x>u*[e<x>1—ga#u [o(x)] U [6(x)] (2.8)

One can defined the field strength tensor G, .(x) in QCD with the explicit

form
gyv,a(x) = ay‘ﬂv,a(x)_ av‘ﬂy,a(x)_'_ g fabc‘ﬂy,b(x)ﬂv,c(x) (29)

where f,. are the structure constants of SU(3)

f123 =1,
1
f147 == f156 = f246 = f257 = f345 == f367 = E’
J3
f458 = f678 = 7

The last term in Eq. (2.9) originates from the non-Abelian properties of SU(3). The

transformation of the field strength tensor is simpler if one defines the tensor gw(x)

such that



G, (x)

%g#v,a(x) U [H(X)]QW (X)U T[Q(x)]_ (2.10)

In terms of gw(x), the free gluonic Lagrangian can be written as

1 v
L= —ETr[gW(x)g’ (x)]. (2.12)
The full QCD Lagrangian is therefore

Low=  XaGNED-m o (0)-3T5, 06" (W] @12

f=u,d,s,c,b,t

As a consequence of the non-Abelian nature of the group SU(3), gluon fields
can interact with themselves in addition to the coupling between the quarks and

gluons. There exist the three- and four-gluonic self-coupling terms which are
proportional to g and g°, respectively. This is not the case for the electromagnetic

fields in QED, but in QCD the gluon fields are “charged” i.e. they carry “color”,
whereas the photon carries no (electric) charge.

2.2 Chiral Symmetry

In the limit where the light quark masses vanish, the QCD Lagrangian of Eq.
(2.12) has another important symmetry. This is the so-called “chiral symmetry”. This
symmetry is only approximate since in reality quarks possess a small but finite mass.
The sector of light quarks is composed of the u, d and s quarks with the estimated

masses [25]
m,=15-4MeV, m; =4-8MeV and m, =80-130 MeV .

The c¢,b and t quarks are considered as heavy quarks with masses > 1 GeV. In the

low-energy regime the heavy quarks do not play a role due to their large masses.

Since the u,d and s quarks are much lighter than the hadronic mass scale of 1 GeV
this suggests that one can treat the current quark masses as a small perturbation.

Therefore, for the low-energy regime and in the chiral limit, where m, my, m; -0,

the appropriate QCD Lagrangian reduced from Eq. (2.12) to becomes



L= ARG ()56, (06" (1) 2.13)

f=u,d,s

The symmetry of the Lagrangian (2.13) can be made explicit if one decomposes the
quark fields in terms of left- and right-handed components. This can be achieved

through the projection operators P; and P_ defined by

1 1
P :E(l"'?/s)’ P 25(1_75)’ (2.14)

where y, =iy°y'y*y°® is the usual gamma matrix in the Dirac theory. With these

operators the right- and left-handed components of the quark fields can be written as
Ors (X)=Peai(x)  af(x)=Pai(x). (2.15)
Consequently, Eqg. (2.13) can be rewritten as

Ll = G0 DG(0)+6, (i Do, (-3 TG, (06" (], 219

where we represent the right- and left-handed quark fields in terms of the column

vectors
Ur () Ay (%)
0()=] dea(¥) ], a(x)=| da(x)], (2.17)
O s (X) dus(x)

and we simplify the notation by dropping the color index. We consider the “global”

unitary transformation of the quark fields of Eq. (2.17) with
qL = ULqL7 qR = URqR ! (218)

and

U, :exp(—i%aj} Upg :exp(—i%ef) (2.19)



where H;(R) are independent, real parameters. The group of this transformation is
denoted by SU(3)rx SU(3).. Obviously, Eq. (2.16) is invariant under such
transformations and hence is referred to as the “chiral symmetry” of QCD. Since U
and U, contain altogether 16 real parameters, the symmetry, due to Noether’s

theorem, results in 16 conserved currents associated with the transformation of Eq.

(2.18). These conserved currents are

A Y
R =0z 7" 2 0g, Le =aq 7" 2q., (2.20)
2 2
with
8#R: =0, 8#L§=O. (2.21)

Instead of working with the left- and right-handed currents, one

conventionally considers the linear combinations

VA =R LY =" %q, (2.22)
and
. A
A=RI-L =070, (2.23)
together with
oV) =0, 0,Af =0 (2.24)

These are the vector and axial currents. Note, that a simple phase transformations of

g, and g also results in an invariance of LOQCD. The corresponding group of

transformations are referred to as U(1)y and U(1)a, if g, and g, transform with the

same and the opposite phases, respectively. Consequently, there exist two additional

conserved currents

VA=qyr“q, A =071, (2.25)

10



with 0 V# =0 A" =0.
Transition from classical fields consideration to the case of quantum fields,

there arises extra terms referred to as “anomalies”, which presented in the axial

currents as

3g°
0 A* =
# 3272

Epe Go Go (2.26)

where ¢, is the totally antisymmetric tensor with &,, =1. Therefore, A“ is no

(o}

longer conserved. Furthermore, nonvanishing current quark masses will contribute to

Eq. (2.26) as well. Moving from the level of classical to quantum fields the global
U(3)rxU(3)L symmetry of LgCD is reduced to a global SU(3)rxSU(3) xU(1)v
symmetry.

Finally, after quantization, we note that corresponding to the conserved

currents V), A and V* we have the conserved charge operators Q;, Qs and Q, .

These operators form the algebra

[chQ\k/)]:i fachxf’
[Qe,Q2]=i 1., Q5
QiQi]=if,.Q
[Qi.Q ]=[@z.Q.]=0

(2.27)

The algebra which is constructed from the currents themselves is known as “current
algebra”. Before QCD, where the elementary origin of chiral symmetry was not
understood yet, current algebra was already applied to the study of low-energy

hadronic processes.

2.3 Chiral Symmetry Breaking
Previously, we have shown that in the chiral limit the Lagrangian LOQCD has a

SUB)rxSU(3).xU(1)y symmetry which results in the conserved charge operators

Q. Qi and Q, . If H, is the Hamiltonian corresponding to L2, , this means that

[Wch’Q&]Z [ﬂgCDle]: [WOQCD’QV]:O (2.28)

11



By considering the symmetry of the vacuum state |0), above symmetry of the

Lagrangian can be realized in two modes. The first realization relies on the
assumption that the vacuum has exactly the same symmetry as the Lagrangian. As a

consequence the vacuum state is annihilated by the conserved charge operators
Q’|0)=Q4[0)=0 (2.29)

This realization in which the Lagrangian and the vacuum share the same symmetry is
called the “Wigner-Weyl” mode of chiral symmetry. As a consequence the hadronic
spectrum of positive and negative parity states built upon the vacuum is degenerate
resulting in parity doublets. However, this is not the case in the observed spectrum of
hadrons, e.g. the light pseudoscalar (J” =0") mesons have masses much lower than
those of the lightest scalar (J” =0") mesons.

Another realization of chiral symmetry is achieved when the vacuum state of
the system does not share the symmetry of the Lagrangian. This realization is called
the “Nambu-Goldstone” mode of chiral symmetry and the symmetry is said to be

“hidden” or “spontaneously broken”. Since the approximate validity of SU(3) flavor

symmetry suggests that Q\7|O> =0, in the Nambu-Golstone realization we are left

with
Q§|0> #0 (2.30)

As a result of the spontaneously broken symmetry there exist massless particles the
so-called “Goldstone bosons”, as evident from Goldstone’s theorem. In nature, chiral
symmetry is realized in the Nambu-Goldstone mode, since the observed hadron
spectrum contains the rather light pseudoscalar mesons (7, K, 77) in comparison to
the scale set by the nucleon mass of ~ 1 GeV. Hence the low-lying pseudoscalar
mesons are interpreted as Goldstone bosons. The finite but small masses of the 7, K
and 7 mesons arise from the fact that the quarks have a nonvanishing current mass.
Then, “explicit” symmetry breaking due to the quark masses is responsible for the
finite masses of the 7z, K and 7 mesons. Therefore, the SU(3)rx SU(3).x U(1)v

symmetry is spontaneously broken down to the SU(3)y x U(1)y symmetry.

12



The spontaneous breaking of chiral symmetry is closely related to the
nonvanishing of the order parameter, the “quark condensate”, which is defined as

(0[q[0) = (ga) = (wu) + (dd ) +(ss) (2.31)

results in
(Tu) =(dd)=(ss) =0 (2.32)

The spontaneous breaking of chiral symmetry induces a rearrangement of the ground
state such that it is populated by scalar quark-antiquark pairs with nonzero expectation
values.

Nevertheless, the current quark masses, although, they are small, do not
vanish. The finite values of the quark masses give rise to explicit breaking of chiral
symmetry due to the presence of a quark mass term in the QCD Lagrangian

£, =-q(x)Ma(x) (2.33)

where M= diag(m,,m,,m,) is the quark mass matrix. Including the explicit quark

mass terms the divergence of the various currents becomes

OV = iG[M,%}q,

. A
a/lA: = |Q{M,7a}}/5 a,
aﬂvﬂ =0,

2

e Sg Vv ~po
G#A”=2IqM}/5q+ﬁ€nggf 5 )

where the anomaly of Eq. (2.26) is taken into account for completeness. Note, that

V“ is always conserved, whereas V. is only conserved when all the quark masses are

equal. However, A! is not conserved and this is the microscopic origin of the so-

called Partially Conserved Axial-vector Current (PCAC).

13



2.4 Chiral Perturbation Theory

Unfortunately, perturbative methods in QCD cannot be applied directly to
hadronic systems in the low-energy regime due to the large coupling constant of the
strong interaction. However, phenomena in the low-energy region can be studied in
terms of Effective Field Theory (EFT) proposed by Weinberg [7] in 1979. The link
between QCD and the EFT can be employed through the generating functional. In the
presence of external fields the QCD Lagrangian in Eq. (2.13) reads

Lext = gCD + q}/#(vp +}/5a/1)q _q(s - I}/S p)q ' (2'34)

where, v,,a,,s and p are the external fields concerning vector, axial vector, scalar

and pseudoscalar currents, respectively. The generating functional Z is related to

L., and can be considered as the vacuum to vacuum transition amplitude in the

presence of external fields i.e.
exp(iz[v,a, s p])= (O[T expli[d*x Lo, (x)|0) =(0,,[0,), ..,  (235)

In terms of EFT with some asymptotic hadron fields as the relevant degrees of
freedom rather than the quark and gluon fields, the low-energy representation of the

generating functional Z can be obtained by the use of an effective Lagrangian £, .

In the path-integral formalism this can be written as
exp(iZ[v, a, s p])= N.f[dU]exp(i.fd“xLeff U,v,a,s p)) (2.36)

where U is a matrix containing the asymptotic fields. This leads to the development
of Chiral Perturabation Theory (ChPT) [7, 8, 9], which is the EFT of strong
interactions at low energies. ChPT was first applied to the study of the system of
Goldstone bosons which originate from the spontaneous breaking of chiral symmetry
of the QCD Lagrangian. In ChPT, instead of considering the quark and gluon fields as
the elementary degrees of freedom of the theory, the active degrees of freedom in
ChPT are the asymptotically observed states, the hadrons. In the mesonic sector, the

effective Lagrangian is composed of the string of terms as

14



Ly=L,+L,+ L+, (2.37)

where the subscripts refer to the order in the momentum and quark mass expansion.
The lowest-order effective Lagrangian £, which contains two derivatives and one

quark mass term is

F? o\
L,="Tr [Dﬂu(Dfu) U HU T (2.38)

The matrix U contains the Goldstone boson fields. The covariant derivative Dﬂ is

composed of the usual derivative and terms concerning the coupling of the Goldstone
boson fields to external fields. The current quark mass is hidden in the definition of

y, e y= ZB(S + ip), where B is related to the quark condensate parameter and F ,

in the SU(2) sector, is the pion decay constant in the chiral limit. Higher-order terms
in the Lagrangian can be constructed and each term contains coefficients, the so-
called Low Energy Constants (LEC). In case one could solve the fundamental theory
from first principles, one can map the LECs of the EFT to the fundamental parameters
of the underlying theory. However, since QCD cannot be solved analytically in the
low-energy region, we consider the LECs as free parameters, which at this point can
be extracted from physical observables.

After the most general effective Lagrangian is constructed one also needs a
method to classify the order of the diagram built from the effective Lagrangian.
Weinberg’s power counting scheme offers such a method for labelling the specific

order D, the chiral dimension, of the diagram of interest and it can be obtained from

D=2+2N, + > 2(k 1N,
k=1
where N, is the number of independent loop momenta and N,, is the number of
vertices originating from the Lagrangian £,, . In ChPT loop diagrams also contain a

divergent part, which has to be renormalized. However, ChPT is not a renormalizable
theory in the traditional sense since the infinities cannot be reabsorbed into parameters
of the lowest-order Lagrangian, e.g. B and F . A consistent removal of infinities can

be done by redefinition of the fields and the LECs. The extension to include the
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nucleon in ChPT is also possible and was done in Ref. [26]. In the SU(2) sector, the

effective Lagrangian describing the interaction of z and N can be written as
L£,=LY 4@ 4. (2.39)

The lowest order Lagrangian £, is of the form

nay 1g in
LY =7 |y 8#—m0—5%7/”757 0,72 |w, (2.40)

0

where w, and 7, denote a doublet and a triplet of bare nucleon and pion fields,

respectively. The constants m, g, and F denote the nucleon mass, the axial vector

coupling and the pion decay constant in the chiral limit, which arise after
renormalization. The new scale associated with the mass of the nucleon, which does
not vanish in the chiral limit as opposed to the case of the Goldstone bosons, brings a
new difficulty when demanding consistency in the power counting of the specific
diagram. Namely, loop diagrams involving the nucleon contribute also to lower order
diagrams and therefore a consistent perturbative picture collapses. The first attempt to
remedy this deficiency was formulated in terms of the Heavy Baryon Chiral
Perturbation Theory (HBChPT). The basic idea of HBChPT is the separation of the
nucleon momenta into a part which is close to the on-shell kinematics and a soft

residual part, i.e. p=mv+k, where v?=1v°<1. The nucleon field is then

expressed in terms of
w(x)=e™* (N, +H,)

where NV:e””‘V'X%(1+v)y/ and sze”mv'xé(l—v)«//. As a consequence in

HBChPT the power counting as in the mesonic sector is restored. The disadvantages
of HBChPT are that higher order terms in the Lagrangian due to the % expansion

become increasingly complicated and not all the scattering amplitudes resulting from

such a Lagrangian show the correct analytic behavior in the low-energy region.
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Recently, the formulation of the manifestly Lorentz-invariant baryon ChPT
was developed in Refs. [11, 12, 13, 14]. It is constructed to utilize the advantages of
the mesonic ChPT and HBChPT while at the same time avoiding their disadvantages.
The technique associated with this formulation is the so-called “infrared
regularization”. The basic idea of this technique is to separate the loop integral
containing the nucleon into two parts, an infrared singular and regular part. The
infrared singular part contains fractional powers of the meson masses, whereas the
infrared regular part involves fractional powers of the nucleon mass. The power
counting is valid for the infrared singular part, but not for the infrared regular part.
One therefore surmounts the problem of power counting by absorbing the infrared
regular part into a redefinition of the LECs. Another renormalization technique is also
available as proposed in Refs. [27, 28, 29], namely, the “Extended On-Mass-Shell”
(EOMS) formalism.

The mesonic ChPT, especially in the zz interaction, has achieved impressive
success as the EFT of the strong interaction at low energies. In baryonic ChPT, the
recent development of the manifestly Lorentz-invariant technique has tremendously
improved the previous analysis of ChPT. The electromagnetic form factors of baryons
as well as other baryonic properties have been studied. The further inclusion of vector

mesons in baryon ChPT successfully improved the description of the electromagnetic
nucleon form factors up to approximately Q® ~ 0.4 GeV? as shown in Ref. [29]. Open

questions concerning the inclusion of other additional degrees of freedom like the

A(1232) resonance are currently studied with the hope to further extend the kinematic

region, where ChPT is applicable.
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3. Electromagnetic Form Factors
of Nucleon and Hyperons

In this section, we present the approach used in order to study nucleon and
hyperons. Restricted to the electromagnetic interaction, the important observables that
can be studied are the electromagnetic form factors. Other observables, such as,
magnetic moment of baryons, the charge and magnetic radii are related to such form
factors. In case of nucleon, we follow the consideration in Ref. [30]. Extension to

hyperons cases are presented.

3.1 Electromagnetic Form Factors of Nucleon

The lowest-order elastic electron-nucleon scattering process as an important
tool in order to study the electromagnetic structure of nucleon is shown in Fig. 3.1.
The four-momenta of the incident and scattered electron are p=(g, p) and

p'=(e, p'), respectively. P =(E, I5) and P’ :(E', F3’) are the four-momenta of the

nucleon in the initial and final state. The four-momentum transfer carried by a photon
is q=p- p'=P —P. The characteristics of this scattering process is such that the

square of the four-momentum transfer is space-like, i.e. q*> <0. Usually one defines a
quantity Q?, which is positive, i.e. Q* =—q°>0.

e N

e~ N

Fig. 3.1 Lowest-order electron-nucleon scattering.

The invariant amplitude of this process is of the form

2

M~1,(p)y, ue<p>§<N<P'>|J:m<o)|N<P>>, (3.)
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! e
the nucleon current matrix element. From considerations of Lorentz covariance,
charge and parity conservation, the most general form of the nucleon current matrix
element is

where u,(p), T,(p’) refers to the electron Dirac spinors and (N(P")|J& (0)N(P)) is

(N(P)

140N (P) =5, (P)| 7 FlN(cfﬁﬁmFZN(Qz)}um (2)

N
where F,"(Q?) and F,"(Q?) are the Dirac and Pauli form factors, respectively. Their
normalizations are such that at zero recoil (Q?=0) F(Q?) is the charge of the

nucleon (in units of the elementary charge), whereas F," (QZ) is the anomalous
magnetic moment () of the nucleon

(3.3)

where «, is given in units of the nuclear magneton.

In the laboratory frame, where the target nucleon is at rest, and neglecting the
small mass of the electron, the energy &' of the outgoing electron scattered by an
angle @ off the target of mass M is

' &
1+§sinzg
M 2

with the momentum transfer squared as, Q* = 4gg’sin2§. For the simplest case of a

spinless, point-like target the differential cross section reduced to the “Mott”

!

differential cross section with the inclusion of the recoil factor £ as

2 i
(d_O-J = 0{— iCOSZ g (34)
dQ Mott 4.(928in4E & 2

Extension to the case of spin- 1/2 target particle, but still point-like, leads to the well-
known modification of the Mott formula

2
do _fdo} 1, Q 22tan2§ (3.5)
do (do) | 4Mm 2

The term proportional to tanzg results in an increase of the differential cross section

at backward angles. It is due to the magnetic scattering of the spin of both projectile
and target. For a spin-1/2 target with an extended structure and an anomalous
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magnetic moment, as is the case for the nucleon, the differential cross section is
referred to as “Rosenbluth cross section” [31]

dol5e) |REF e valre) e )| e

where F"(Q?) and F,"(Q?) are the Dirac and Pauli form factors.

Instead of working with F,"(Q?) and F,'(Q?), it is convenient to consider
linear combinations constructed as

6 (%)= R @) gz F (@) o

Gy (Q*)=F"(@*)+F"(Q?)

which are the “Sachs form factors”. With Eq. (3.3) the normalizations for the Sachs
form factors of the nucleon are

GE(0)=1  G}(0)=p,=2793

(3.8)
Gi(0)=0, G (0)=pu, =-1.913

where 4, are the nucleon magnetic moments. As for F,"(Q?) and F,"(Q?), the Sachs

form factors can be related to the current matrix elements of Eq. (3.2). The
interpretation of the Sachs form factors become simple when we restrict to a specific
frame of reference, namely, the “Breit frame”. For the elastic electronnucleon
scattering process the Breit frame coincides with the center-of-mass frame. In this
particular frame the energy transfer vanishes and thus the photon carries the four-

momentum q“ = (0, q) and therefore Q® = G*. The incoming electron has momentum

p :+% and the incoming nucleon has opposite momentum P =—%, while in the

final state the outgoing electron and nucleon have momenta p’ =—% and P'=+

N |

respectively. In the Breit frame, the corresponding matrix elements of Eq. (3.2) are

(g o3 s
A IRE B

where s and s' are the spin orientations of the incoming and outgoing nucleon,
respectively, while y, and y, refer to the two-component Pauli spinors. In terms of

the Sachs form factors the Rosenbluth formula for elastic scattering of an electron on
the nucleon target becomes

(3.9)
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er @)+, (i)

do :(daj
dQ dQ Vot

Elastic electron-nucleon scattering is the basic tool in order to extract the
electromagnetic form factors of the nucleon. Due to the finite lifetime of the neutron,
one faces the difficulty in constructing free neutron targets. Instead, deuteron or *He
targets have been used in which an additional subtraction of the effect due to the
presence of the protons is needed in the analysis. As known from early experiments,
the electromagnetic form factors of the nucleon, except for the neutron charge form

factor G} (QZ), are well described by the dipole parameterization

Q2 N 2 2 9
g (6N (Q?)f tan HEREL

oilor)~ S0). Gl g (g an
p n

where the dipole form factor is

6,(Q?)= ! (3.12)

 ren)
0.71 GeV

The electromagnetic proton form factors can be directly obtained by
measuring the differential cross section of the elastic electron-proton scattering
process. Alternatively, Hand, Miller and Wilson [32] suggested the extraction of
G (Qz) and G} (Qz) rather than the Dirac and Pauli form factors from the differential

cross section by rewritten Eq. (3.10) as

L AT Ty AT

QZ
2
p

where oy is the reduced cross section, 7 = and the linear polarization of the

virtual photon is
P -1
£= [1+ 2(1+ 7 )tan? ﬂ (3.14)
By fixing Q7, the plots of the measured quantities o, and & for different

combinations of (6?, g) can be fitted by a linear polynomial in which the slope is

(G,;’(QZ))2 and the intercept on the oq-axis is. This method is referred to as
“Rosenbluth separation technique”.
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However, at large Q? the Rosenbluth separation for G,;’(QZ) suffers from the

p
increasing systematic uncertainties with increasing values of Q°. Gg can be well
:up D
GP
measured up to Q ~30 GeV?, whereas the data for G—E scatter and have large
D

uncertainties for values above Q* ~1GeV?.

Akhiezer, Rozentsweig and Shumshkevich [33] already showed in 1958 that a
considerable increase in accuracy of the nucleon charge form factor measurement can
be achieved by scattering polarized electrons off a polarized nucleon target. However,
it took several decades before such experiments were technically feasible. In the
polarization transfer experiment, e.g. € p — ep, the polarization of the final proton is

measured in addition. The longitudinal part P, parallel to the proton momentum and
the transverse part P, of the proton polarization are given by

R =8 frliee) (G5 fan®d

P (3.15)

R:—%WM@+TiG£G&MH§
0

with
1, =(Ge) +{1+ 2(L+ r)tanzg} (A (3.16)
Both B, and P, can be measured by the polarimeter and their ratio gives rise to

G, 2M,

G _g+5 P
R 2

—J tan (4 (3.17)

. . T . . Gp L
In this way the systematic uncertainties in extracting the ratio of G_Ep are minimized.
M

Obviously, the polarization measurements lead to a significant improvement of the
experimental data. An important feature detected by the polarization transfer
#,Ge

Gy

contradiction to the results obtained by the Rosenbluth separation technique. Due to
occurence of large systematic errors of G@(Qz) at large Q* with the Rosenbluth

extraction, attempts have been made in order to improve the data. A careful reanalysis
of the old Rosenbluth data was done. Results from a high-precision Rosenbluth
extraction especially designed for the measurement in Hall A at Jefferson Lab were
reported by Qattan et al. [34]. All of these recent analyses of the Rosenbluth data
showed agreement with the previous Rosenbluth results. Therefore, the origin for the
discrepancy of results between Rosenbluth separation and polarization technique must

experiments is the observed linear decline of as Q” increases. This is in clear
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be due to other mechanisms. One believes that such mechanisms is the hard two-
photon exchange as shown in Fig. 3.2

Fig. 3.2 Feynman diagrams for the two-photon exchange.

3.2. Chiral Quark Lagrangian
Motivated from ChPT, the chiral quark Lagrangian £, (up to order p*),

which dynamically generates the dressing of the constituent quarks by mesonic

degrees of freedom, consists of two primary pieces £, and £, :

Ly=LytLy, Lo=LP+LP+LP v+ Ly=2P+.. (318)

q
The superscript (i) attached to £[,, denotes the low energy dimension of the
Lagrangian:
@ _F /e
L) = 2 <u u’ +;(+>,
b ofio-nedour

Ll

"= ~4m 2<U,,uv>(qD"DVq+h,c_)+%in#V[uw V]Q+—qa‘”F*q+

@ _ 14y o + Ipv
Ly _2—;‘;q [D”, FW]D g+hc.+...,

.Co(| ) =?6< >q o F,Lj—v q+ q o™ {F;tv’;2+}q+e_28qo-w<|:’”’l+>q
&

q [D“ [D W]]a‘”q +.

where 7, =y, —%{;@, the symbols ( ), [ ] and { } denotes the trace over flavor

matrices, commutator and anticommutator, respectively. We show here only the terms
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involved in the calculation of the dressed electromagnetic quark operator. Also we
have included the vector mesons and the detailed form of the chiral Lagrangian can be

found in Ref. [30]. The couplings m and g denote the quark mass and axial charge in
the chiral limit, c,, d, and d, are the second-, third- and fourth-order low-energy

coupling constants, respectively, which encode the contributions of heavy states.
Parameter m is counted as as quantity of order O(l) in the chiral expansion.

The quark field is g, and the octet of pseudoscalar fields are

w0 . :
AR
¢:ZM:J§ " —%+% K° (3.19)
- _ 2 e
K K \/E

which is contained in the non-linear representation of SU(3) matrix

U=u’ :exp(%j, where F is the octet decay constant. We introduce the standard
notations [35, 36, 37]

D,=0,+T,,
1 [ [
r, :E[uT,aﬂu]—EuTRﬂu —u Lu’,
T t
u,=iu’v uu,
7. =u"yu'+uy'u,
y=2BM+...
The fields R, and L, include external fields (electromagnetic A,, weak, etc.).
R,=eQA, +... , L,=eQA, +... where Q=diag{2/3-1/3-1/3} is the quark
charge matrix. The tensor F, is defined as F,, :uTFWQu +uFWQuT where
F.,=0,A -0,A, is the conventional photon field strength tensor. Here
M = diag{m,m,M_} is the mass matrix of current quarks (we work in the isospin
symmetry limit with m, =m, =m =7 MeV and the mass of the strange quark m, is

related to the nonstrange one as m, = 25m).
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The quark vacuum condensate parameter is denoted by B = —<0|Uu|0>/ F2. To

distinguish between constituent and current quark masses we attach the symbol ~
(“hat) when referring to the current quark masses. We rely on the standard picture of
chiral symmetry breaking (B >>F ). In leading order of the chiral expansion the

masses of pseudoscalar mesons are given by M?2=2MB, MZ=(f+mM,)B,
M,fzé(rﬁJrZrﬁs)B. In the numerical analysis we will use: M_=139.57 MeV,

M, =493.677 MeV (the charged pion and kaon masses), M, =574.75 MeV and the

Fi =1.22 and

canonical set of differentiated decay constants: F, =92.4 MeV, E

=1.3 [38].

3.3. Dressing of the Quark Operators
Any bare quark operator (both one- and two-body) can be dressed by a cloud
of pseudoscalar mesons and heavy states in a straightforward manner by use of the

effective chirally-invariant Lagrangian £,

To illustrate the idea of such a dressing we consider the Fourier-transform of

the electromagnetic quark operator:

Ii(@)=[axe 95 (0) 3.20)
357 (x)=alx),Qa(x)

In Fig. 3.3 we display the tree and loop diagrams which contribute to the dressed

electromagnetic operator J®** up to fourth order, which come from the chiral quark

M, em

Lagrangian. Additional diagrams including the vector-meson contributions are shown
in Fig.3.4.
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(1) (2) (3) (4)
(5) (6) (7)
(8) (9)

. . I .,

(10) (11) (12)

Fig. 3.3 Diagrams including pseudoscalar meson contributions to the electromagnetic
quark transition operator up to fourth order. Solid, dashed and wiggly lines refer to
quarks, pseudoscalar mesons and the electromagnetic field, respectively. Vertices
denoted by a black filled circle, box and diamond correspond to insertions from the
second, third and fourth order chiral Lagrangian.
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i T b

(10*) (11%) (12*)

Fig. 3.4 Diagrams including vector-meson contributions to the electromagnetic quark
transition operator. Double-dashed lines correspond to vector mesons. The symbols V
and T refer to the vectorial and tensorial couplings of vector mesons to quarks.

Note, here we restrict our consideration to the one-body quark operator. The dressed

quark operator J“**(x) and its Fourier transform J*(q) have the following forms

2,em 2,em

() - {fs<—621q<x>m<x>]+ﬂ‘ﬁ?av[mx)a,wq(x)]}

gq=u,d,s 2mq
145(0)= [d'xe 3 ()
:_[d“xe_in Z q(@{h@(&%ﬁ%quf;(qz)}Q(X)
q=u,d,s q

where m, is the dressed constituent quark mass generated by the chiral Lagrangian
(see details in Ref. [30]);
Here fi(q?) f2(a?) f(0?) and 2(q?) £2(q?) f3(g?) are the Dirac and

Pauli form factors of u, d and s quarks and can be calculated directly from
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diagrams in Fig. 3.3 and Fig. 3.4. Here we use the appropriate sub- and superscripts

with a definite normalization of the set of fJ(0)=e, (quark charges) due to charge

conservation. Note, that the dressed quark operator satisfies current conservation:

8"J"*(x)=0. Evaluation of the diagrams in Fig.3.3 is based on the infrared

4,em
dimensional regularization (IDR) suggested in Ref. [35] to guarantee a
straightforward connection between loop and chiral expansion in terms of quark

masses and small external momenta.

+ +

.1 .
To calculate the electromagnetic ) _)E transitions between baryons we

project the dressed quark operator between the corresponding baryon states. The

master formula is:

(B(p

)3r=(q)B(p)) = (27)'s*(p'~ p-0)g, (p’){n (qz) f(qz)}us(p)

=(27)'6*(p'-p-q) {f( )(B Jbare( O)|B )

o120’ )B(p q#q (p)>}

(3.21)

where F2(g?) and F2(g?) are the Dirac and Pauli baryon form factors, B(p) and

uB(p) are the baryon state and spinor, respectively, normalized as

(B(

JB(p))= 2E(27r) 5*(p-p)

p’
Us (P)us(p)=2m,,

(3.22)

with E; =,/m: + p*> being the baryon energy and m, the baryon mass. We express

the matrix elements of the dressed quark operator in terms of the matrix elements of

the bare operators for vector J%*(0) and tensor J™" (0) currents defined as

35 (0)=7(0)7,q(0),

(3.23)
32 (0)=q(0)o,, q(0)

In general, due to Lorentz and gauge invariance, the matrix elements in Eq. (3.21) can

be written as

28



Il

=
@
—~
=X

(B(p)9; O)B(p)

iZq,;q<B(p')IJZiTZ(0)|B(p)>=UB(p'>{7,,GF“(q2)+

(3.22)

where Flf‘zq)(qz) and Gf(‘g)(qz) are the Pauli and Dirac form factors describing the
distribution of quarks of flavor q=u,d,s in the baryon B. Finally, the baryon form
factors FiB(qZ) with i =1,2 can be separated into a bare part FiBb""'e(qz) and a meson

cloud part F®c (qz) as

FiB(qz): FiBbare(q2)+ FchIoud (qz)’
FiBbare(qZ): EequBq(qZ)’ (323)
Feme(ar)= Y [(15(e)-e )R (e)+ (oo (o)

where e, are the electric quark charges.

Egs. (3.21)-(3.23) contain our main result: we perform a model-independent

factorization of the effects of hadronization and confinement contained in the matrix

elements of the bare quark operators J"(0) and J® (0) and the effects dictated by

chiral symmetry (or chiral dynamics) which are encoded in the relativistic form

factors 2(g?) and f.9(g?). Due to this factorization the calculation of fd(g?) and

£9(q?), on one side, and the matrix elements of J®*(0) and J™" (0), on the other

AV, q
side, can be done independently. In particular, in a first step we derived a model-
independent formalism based on the ChPT Lagrangian, which is formulated in terms
of constituent quark degrees of freedom, for the calculation of fg(qz) and qu(qz)
(see their explicit forms in Appendix C of Ref. [30]).

The calculation of the matrix elements of the bare quark operators one can
utilized the quark models based on specific assumptions about hadronization and
confinement. Here we considered a treatment of valence quark degrees of freedom by
using a parameterization of the bare quark distributions in the baryon (nucleon) with

taking into account model-independent constraints dictated by certain symmetries:
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gauge, isospin and chiral invariance, as was done in Ref. [30]. Another possibility as
we have done is in Ref. [39] when we calculated valence quark form factors
explicitly with the use of relativistic quark model [40]-[42] based on a specific ansatz
of quarks in baryons. In this report we complete our analysis started in Ref. [30]
where we presented a comprehensive analysis of electromagnetic nucleon properties
including magnetic moments, radii and form factors. However, for the case of

hyperons we restricted only to the calculation of magnetic moments.

3.4. Matrix Elements of the Bare Quark Operators

We will modeled the matrix elements of the bare quark operators using certain
symmetry constraints leading to a set of relationships between the nucleon and
corresponding u-, d-and s-quark form factors at zero momentum transfer. This is
and extension of the original idea of Ref. [30] to be applied to the case of hyperon
form factors.

In case of nucleons one can derive the constraints on the form factors arising
from charge conservation, isospin invariance and infrared-singular structure of QCD
[30]:

Flpu (0) = Flnd (O) =2,
F"™(0)=F"(0)=1,
G(0)=0,

szu (O) = and (O)’
szd (0) = anu (O)’
G;*(0)=G;"(0),
G;*(0)=G;"(0),

and
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where g, and r;m are the axial charge and the mass of the nucleon in the chiral limit
and m=m, =m, is the dressed non-strange constituent quark mass in the isospin
limit.

Restricting our consideration to the one-body quark operator and by using

SU(6)-symmetry relations one can relate the Dirac and Pauli form factors describing

the distribution of quarks of flavor q=u,d,s in the baryon “B”, that is Fl(BQ) and
Gf(g) to the bare (or valence) quark form factors. In particular, one can introduce the

bare Dirac (F,G;') and Pauli (F,',G;) form factors of the quark of flavor g as

(a(p" )=o) a(p)) = Uq(p’%y,, ] (q2)+2Lm0WqVF;‘ (qz)}uq(p),

q

(3.24)
H qv are e I 14
o, (a(p)ja.50)alp)) =1, (p>{th(q )+ 3 GS(qZ)}uq(p),
The Sachs form factors of the quark of flavor g are
Fo =F, (t)+Gg (),
y “M( ) “M( ) (3.25)
Fo' =F"(t)+Gy (t)
where
t
FIGH ()= FlGH()- - FleEO)
FGI (1)=F{GJ({1)+F{GR() (3.26)
t=-q°

are the contributions to the Sachs form factors associated with the expectation values

of the vector and tensor currents, respectively. Finally, the baryonic form factors

F.%(t) are expressed in term of quark form factors F5™)(t) and GS™)(t) by :
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(3.27)

where FF(t) and F"(t) are the quark Sachs form factors and 7, =L2. In addition
4mg

to the strict evaluation of SU(6) we have introduced the additional parameter »®* for
each quark of flavor q. The interpretation for adding these factors is such that to
allow the quark distributions for hyperons to be different from that for the nucleons.
In the case of the nucleons we set y® =1. The values for o and «, for the

baryon octet as derived from SU(6)-symmetry relations are given in Table 3.1.

P 2 1 0 —i -i{ 0
n 1 2 0o |-+ 1| 3 0
A® 1 1 1 0 0 1
5 -1 A HER RS TRRE R (0
s 1EEEER D HREE RSO A AR
il oSt SEL-T DD R MR R
= 0 1 2 VAR M S
=hilli 000 TR0 R A0 o
AT 0 0 % % 0

Table 3.1 SU(6) couplings o' and o'
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4. Results and Conclusion

In Ref. [30] we considered only nucleon form factors and therefore, the Sachs
form factors of u - and d -quark. In particular, we modeled the u - and d -quark form
factors by the dipole characteristics with damping functions of an exponential form.
This phenomenological form is required to reproduce the deviation of the
electromagnetic form factors of the nucleon from the dipole fit as evident from recent
experimental measurements. In this paper we use the same parametrization for s-
quark. Therefore, for the Sachs form factors of u-, d- and s-quark we use the

parameterization

where pf (t)= exp[— %] and p)'(t)= exp[— /1: ] Note, that in Ref. [34] a similar

qE qM
parametrization of the nucleon form factors has been considered. In Ref. [35] the

damping functions ,o(t) have been parametrized with constant values. For

convenience we suppose that the quark Sachs form factors degenerate at zero recoil
according to SU(6) symmetry. In other words all effects of possible SU(6) symmetry-

breaking are encoded in the coefficients y® . Therefore, the parameters qu and yqG

are fixed by the SU(6) symmetry and and by the set of other symmetry constraints as:

.
3 m
=i =g |

The remaining parameters y,, A and Ag) are free parameters. In the case of
u-and d-quark the corresponding parameters (7,, 74, Ayem) and Agw)) have been

fixed from the consideration of the full momentum dependence of the nucleon
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electromagnetic form factors at intermediate and high value of momentum transfer

squared:

Age =2.0043, A,=0.9996, A, =7.3367, A, =2.2954,
A =0.8616, A, =0.9234, A, =0.9278, A,, =1.0722
7, =1.081, y,=2.596.

The remaining parameters relevant for the strange quark Ay, Ay, Ag, Ay and y,

can be fixed or varied using the following arguments. A general remark is that an
information about hyperon form factors (and as consequence about strange valence
form factors) is very poor: we know only their normalization due charge conservation
or from a knowledge of magnetic moments. Therefore, for some parameters we use

typical values. In particular, we fix y, =1 (which is typical for u and d quarks). For

the cutoff parameters A and A, we use typical value 1 GeV guaranteeing the
correct tiz scaling of the baryon form factors at large t. A more nontrivial situation is

with parameters A and A, controlling a deviation of strange quark (or hyperons)

form factors from the dipole fit. To our knowledge based on analysis of nucleon form
factors, these parameters can be roughly varied from 1 to 10 GeV. This gives a major
ambiguity in the description of hyperons form factors.

Finally we specify the parameters »®' encoding the effects of SU(6)

symmetry breaking and in the chiral quark Lagrangian. They have been fixed in Ref.
[30] from the description of magnetic moments of the baryon octet hyperons and
nucleon slopes. In particular, in Ref. [30] we considered two scenarious: SU(6)

symmetric case (Set I) and beyond SU(6) symmetry (Set Il). In case of the Set I the

couplings y™ are trivially equal to 1. For the Set Il we got:

7 =" =0.963, x> =0.259,
ZEU :sz 20.633, ZES 20.694,
ZZAU :ZZAd :0988

relying on isospin symmetry. In the isotriplet =, 2% and X~ shares the same set of

Agq for the quark of flavor g, while Z° and Z~ contains the same set of »*. The
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parameters y** and »*¢ are directly related to the £ —A magnetic transition

moment.
In the numerical calculations we use the same set of parameters in chiral quark

Lagrangian as fixed in Ref. [30]. In particular, for both sets (Set | and Set Il) we used

the unified set of parameters g, m, c,, c,,d,, and €,:

g=0.9,

m=0.42 GeV,

¢, =2.502 GeV™,
c, =1.693 GeV?,
d, =1.110 GeV?,
g, =0.039 GeV?

For the parameters C, € and & we used a slightly different values in Set | and Set I

because they have been fixed from the fit of the magnetic moments of proton, neutron
and A -hyperon:
Set |

¢, =0.593, g, =-0.473 GeV?, g, =0.013 GeV?
Set 11

Cs =0.569, g, =-0.649 GeV?, g =0.031 GeV™?®

Here G, =c, —16m(2 + M, )Be, and the couplings d,,, &, &, & and g, refer to the

renormalized coupling constants (see details in Ref. [30]).

We present here the obtained results for electromagnetic properties of hyperons. For
completeness we also present our results for magnetic moments and slopes of
nucleons. The resulting values for the magnetic moments of the baryon octet for this
case (Set 1) are shown in Table 4.1, where reasonable agreement with data is obtained.

35



Set I Set, TT Exp.

3q |Meson Cloud| Total 3q  |Meson Cloud| Total
tp 2.357 0.436 2.793 || 2.357 0.436 2.793 2.793
i -1.571 -0.342 -1.913 || -1.571 -0.342 -1.913 -1.913
pmao || -0.786 0.173 -0.613 || -0.518 -0.095 -0.613 || -0.613 £ 0.004
s+ 2.357 0.317 2.674 || 2.085 0.373 2.458 || 2.458 £ 0.010
50 0.786 0.005 0.791 || 0.570 0.073 0.643
px— || -0.786 -0.306 -1.092 || -0.935 -0.225 -1.160 || -1.160 + 0.025
p=o || -1.571 0.136 -1.435 || -1.058 -0.192 -1.250 || -1.250 £+ 0.014
n=— ||-0.7855 0.2921 -0.4934 || -0.5580 -0.0927  |-0.6507|-0.6507 £ 0.003

lptzopo]| 1.36 0.27 1.63 1.34 0.27 1.61 1.61 £ 0.08

Table 4.1 Magnetic moments of the baryon octet (in units of the nucleon magneton)

Due to our analysis, meson cloud contributions to the total values of the magnetic
moments are about 5 — 30% depending on the baryon.

Finally, the charged and magnetic form factors of hyperons are present in Fig.
4.1 and Fig. 4.2, respectively.

In conclusion, we have reported the study of the electromagnetic properties of
hyperons in the Perturbative Chiral Quark Model (PCQM). By following the same
technique as was done in Ref.[30] for the electromagnetic properties of nucleon, this
serves as an input for further study on hyperons where available data are not
completed. Meson cloud shows significant contribution as expected from previous
analysis, however, this contribution strongly dependent on the type of hyperons.

For the hyperons magnetic moments, two sets of parameters are reported. One
of these sets are chosen so that the exact total magnetic moments reproduced the
available experimental data, while another set relaxes these constrains. However,
results obtained from these two sets are not much different. Furthermore, we have
predicted the value of the magnetic moment of =°, which is not reported.

The electromagnetic form factors of hyperons are also reported. Due to the
lack of experimental data, the best we can do is to model the possibility of the form

factors by varying the cutoff parameters introduced in our analysis.
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Fig. 4.1 The charge form factors of *, 27, 2° A°, 2° and =~ baryons. The shaded
region shows the range of the form factors with the parameter A being varied in the
interval from 1 to 10 in units of GeV.
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I. INTRODUCTION

Analysis of the electromagnetic form factors of light baryons helps to understand their internal structure. In
particular, baryons as extended objects are characterized by a set of electromagnetic properties: magnetic moments,
radii and form factors. At present, most of these quantitie are well known for nucleons: proton and neutron. For
hyperons data rarely exist with the exception of the magnetic moments. A few years ago, the charge radius of the X~
has been measured by the SELEX Collaboration at FNAL [1] and WAS89 Collaboration at CERN [2]. It gave a first
estimate of the charge form factor of the hyperon at low momentum transfers. On the other hand, a systematic study
of electromagnetic radii and form factors of hyperons can help to investigate an impact of strangeness on the hadronic
properties. Therefore, a comprehensive theoretical study of electromagnetic properties of hyperons is important and
promising task. Calculation of electromagnetic properties of hyperons have been carried out in the framework of
different approaches: QCD sum rules [3], Lattice QCD [4], Chiral Perturbation Theory (ChPT) [5], QCD string
approach [6], 1/N.-expansion [7], different types of soliton and quark models [8]-[20], etc.

In the manuscript we proceed as follows. First, in Section II, we discuss basic notions of our approach. We
derive the chiral Lagrangian motivated by baryon ChPT [21]-[28], and formulate it in terms of quark and mesonic
degrees of freedom. Next, we use this Lagrangian to perform a dressing of the constituent quarks by a cloud of light
pseudoscalar mesons and by other heavy states, using the calculational technique developed in Ref. [21]. We derive
dressed transition operators within a proper chiral expansion, which are in turn relevant for the interaction of quarks
with external fields in the presence of a virtual meson cloud. Then we discuss the calculation of matrix elements of
dressed quark operators between baryons states using a model-independent formalism based on symmetry constraints
applied previously for the case of nucleon form factors [19]. In Section III, we present our results for electromagnetic
properties of hyperons. In Section IV we present a short summary of our results.

II. APPROACH
A. Chiral Lagrangian

The chiral quark Lagrangian L,y (up to order p*), which dynamically generates the dressing of the constituent
quarks by mesonic degrees of freedom, consists of two primary pieces £, and Ly:

Ly =Lo+Ly, Lo=LYO+LPD LD 4. Ly=rc+ . (1)

The superscript (¢) attached to Egi()U) denotes the low energy dimension of the Lagrangian:

F2 1
2 7 Jg |1
£ = Tl 4xa). L0 = afip—met 5aia| 0,

2 C2 ~ v C4 _. v 6 _ v
E((I) = 74—mQ<uuuy> (D" D" q + h..) + Zqza“ [up, un] g + %qcr“ Ef g+, (2)
@ _ idwo +1pv
Ly = %q[D“,FW]D g+ he +---
6 = pv €7 _ & €8 _ 5 €10 _rra v
£y = 5 ) @o" Bl g+ aot {FLx e + 5 a0 (Bl g — = D% [Da, FL N0 g + -,
where X4+ = x4 — +(x+), the symbols (), [] and { } occurring in Eq. (2) denotes the trace over flavor matrices,

commutator and anticommutator, respectively. In Eq. (2) we display only the terms involved in the calculation of
the dressed electromagnetic quark operator. Also include vector mesons (see details in Ref. [19]). The detailed form
of the chiral Lagrangian can be found in Ref. [19]. The couplings m and g denote the quark mass and axial charge
in the chiral limit, ¢;, d; and e; are the second-, third- and fourth-order low-energy coupling constants, respectively,
which encode the contributions of heavy states. Parameter m is counted as as quantity of order O(1) in the chiral
expansion.

Here ¢ is the quark field, and the octet of pseudoscalar fields

8 WO/\@+’I]/\/6 at Kt
o= didi=V2 - —m°/V2+n/V6 KO (3)
i=1 K- K° —2n/V/6



is contained in the SU(3) matrix U = u? = exp(i¢/F) where F is the octet decay constant. We introduce the standard
notations [21, 23, 25]

1 . ‘
D,=0,+T,, T,= i[uT,aﬂu} - %UTR#U - %uL#uT, (4)

Uy = iuTV#UuT, yi =ulyul £uyfu, y=2BM+---.

The fields R, and L, include external fields (electromagnetic A,,, weak, etc.): R, = eQA, +---, L, = eQA, +---
where @ = diag{2/3, —1/3, —1/3} is the quark charge matrix. The tensor F;j, is defined as Flﬁ, = u'F,, Qu+uF,,Qul
where F,,, = 0,A, — 0, A, is the conventional photon field strength tensor. Here M = diag{r,m, 7} is the mass
matrix of current quarks (we work in the isospin symmetry limit with 7, = g = m = 7 MeV and the mass of the
strange quark 7h is related to the nonstrange one as s = 25m).

The quark vacuum condensate parameter is denoted by B = —(0|au|0)/F? = —(0|dd|0)/F? . To distinguish between
constituent and current quark masses we attach the symbol ~(”hat”) when referring to the current quark masses. We
rely on the standard picture of chiral symmetry breaking (B > F). In leading order of the chiral expansion the masses
of pseudoscalar mesons are given by M? = 2mB, My = (i + 1ms)B, M? = (2/3)(1n + 2in,)B. In the numerical
analysis we will use: M, = 139.57 MeV, Mg = 493.677 MeV (the charged pion and kaon masses), M, = 574.75 MeV
and the canonical set of differentiated decay constants: F = 92.4 MeV, Fg /F; =1.22 and F,/F, = 1.3 [32].

B. Dressing of quark operators

Any bare quark operator (both one- and two-body) can be dressed by a cloud of pseudoscalar mesons and heavy
states in a straightforward manner by use of the effective chirally-invariant Lagrangian Lqy. To illustrate the idea of
such a dressing we consider the Fourier-transform of the electromagnetic quark operator:

Jbare (g) = / dhzemion e () jbare (0) — g() y, Qq(a). (5)

In Fig.1 we display the tree and loop diagrams which contribute to the dressed electromagnetic operator JdreSS up
to fourth order. Additional diagrams including the vector-meson contributions are shown in Fig.2 of Ref. [19]. Note
here we restrict our consideration to the one-body quark operator. An extension of our method to two-body quark
operators will be done in future.

The dressed quark operator ]Sr‘éffl( ) and its Fourier transform Jgr‘éffl( ) have the following forms
fp(=9%)

2my

e = Y {fy—a?)[q-(a:mq(xn

q=u,d,s

’) " [q’(x)crwq(x)]} (6)

—iqx ;dr —iqx _ 7 v
s = [eew o = [aeet S g | @) + g o 1) | ato).
q

q=u,d,s

where m, is the dressed constituent quark mass generated by the chiral Lagrangian (2) (see details in Ref. [19]);
(g%, f4(q%), f5(¢%) and f(q¢?), fi(q?), f3(q?) are the Dirac and Pauli form factors of u, d and s quarks. Here
we use the appropriate sub- and superscripts with a definite normalization of the set of f}(0) = e, (quark charges)
due to charge conservation. Note, that the dressed quark operator satisfies current conservation: O 3“;?;( ) =0.
Evaluation of the diagrams in Fig.1 is based on the infrared dimensional regularization (IDR) suggested in Ref. [21]
to guarantee a straightforward connection between loop and chiral expansion in terms of quark masses and small
external momenta. We relegate the discussion of the calculational technique to Ref. [19].

To calculate the electromagnetic transitions between baryons we project the dressed quark operator between the

corresponding baryon states. The master formula is:

B IR B0 = @00~ p— 0 w5 P + 5 o FP) bun(o)

= @' -p-q) ) {f%(q2)< @) 35 (0) [B(p) + i p(a*) (B()] g (0 )IB(p)>}, (7)

q=u,d,s

where FP(¢%) and FP(q?) are the Dirac and Pauli baryon form factors, B(p) and up(p) are the baryon state and
spinor, respectively, normalized as

(B(p")|B(p)) = 2Ep (27)*6*(— "),  us(p)us(p) = 2mp (8)



4
with Ep = /m% + p? being the baryon energy and mp the baryon mass. Eq. (7) deals with the diagonal %+ — %Jr
transitions. The extension to the nondiagonal transitions and transitions involving higher spin states like the A(1232)
isobar is straightforward (see Ref. [20]). In Eq. (7) we express the matrix elements of the dressed quark operator in

terms of the matrix elements of the bare operators for vector j;»(0) and tensor j227¢(0) currents defined as

Jrea(0) = (0) 7, q(0), Gt (0) = a(0) 9, 4(0) . 9)

In general, due to Lorentz and gauge invariance, the matrix elements in Eq. (7) can be written as

B0 1B6) = 180 { FEGP) + 5 o d FEG) fun). (10)
mp

v

q
2m

7

-pare = Z 17
(B jpirg (0) |B(p)) = uB(p/){w GY(@) + 5 GQBq(QQ)}UB(P)7
q
where Fﬁg)(qQ) and Gﬁ%)(qQ) are the Pauli and Dirac form factors describing the distribution of quarks of flavor
q = u,d, s in the baryon B. Finally, the baryon form factors F(¢?) with i = 1,2 can be separated into a bare part
FBPar(g2) and a meson cloud part FZcoud(g2) as

F'L'B (q2) — F'L'B bare (q2) + F'L'B cloud (qZ)

EFPe(q?) = 30 e (g, )
q=u,d,s

FPImd (@) = N [(£5(6?) — e FPU¢%) + £()GP (4]
q=u,d,s

where e, are the electric quark charges.

Egs. (7)-(11) contain our main result: we perform a model-independent factorization of the effects of hadronization
and confinement contained in the matrix elements of the bare quark operators j3%¢(0) and j227¢(0) and the effects
dictated by chiral symmetry (or chiral dynamics) which are encoded in the relativistic form factors f}(¢?) and fj(g?).

Due to this factorization the calculation of f§(¢?) and f#(g?), on one side, and the matrix elements of jB?qre(O) and

jB‘jfg(O), on the other side, can be done independently. In particular, in a first step we derived a model-independent

formalism based on the ChPT Lagrangian, which is formulated in terms of constituent quark degrees of freedom, for
the calculation of f3(¢%) and f(¢q?) (see their explicit forms in Appendix C of Ref. [19]).

The calculation of the matrix elements of the bare quark operators (10) can then be relegated to quark models
based on specific assumptions about hadronization and confinement. In preceding publications we considered two
possibilities for a treatment of valence quark degrees of freedom. In particular, in Ref. [19] we used a parametrization
of the bare quark distributions in the baryon (nucleon) with taking into account model-independent constraints
dictated by certain symmetries: gauge, isospin and chiral invariance. In Ref. [20] we calculated valence quark form
factors explicitly with the use of relativistic quark model [29]-[31] based on a specific ansatz of quarks in baryons. In
this paper we complete our analysis started in Ref. [19] where we presented a comprehensive analysis of electromagnetic
nucleon properties including magnetic moments, radii and form factors. For the case of hyperons we restricted to the
calculation of magnetic moments. Here we present the results for hyperon radii and form factors. As we said we will
use a parametrization for the bare quark distribution in baryons.

C. DMatrix elements of the bare quark operators

The matrix elements of the bare quark operators should be calculated using specific model-dependent assumptions
about hadronization and confinement. As we mentioned before this possibility has been considered by us in Ref. [20]
where we presented a detailed analysis of magnetic moments of light baryons and properties of N — A~ transition.
In preceding paper [19] we modelled matrix elements of the bare quark operators using certain symmetry constraints
leading to a set of relationships between the nucleon and corresponding u- and d-quark form factors at zero momentum
transfer. Here we extend the idea of Ref. [19] on the case of hyperon form factors.

In case of nucleons one can derive the constraints on the form factors arising from charge conservation, isospin
invariance and infrared-singular structure of QCD [19]:

FPU0) = Fpd0) =2, FPM0)=Fr(0) =1, G70)=0, (12)
FP(0) = F3(0),  F3'(0) = F3(0), G5“(0)=G5%(0), G5%(0) = G3"(0)



and
L F0) - B0 = 60 - 60 = () 2 (13)
L B0 - 1) = 630 - a0 = () 7 (1)

where g4 and my are the axial charge and the mass of the nucleon in the chiral limit and m = m, = my is the
dressed nonstrange constituent quark mass in the isospin limit.

Restricting our consideration to the one-body quark operator and by using SU(6)-symmetry relations one can relate
the Dirac and Pauli form factors describing the distribution of quarks of flavor ¢ = u, d, s in the baryon ” B”, that is
FlB()Qq) and Gﬁ%) to the bare (or valence) quark form factors (see details in Ref. [19]). In particular, one can introduce

the bare Dirac (FY,GY) and Pauli (Fy, G%) form factors of the quark of flavor ¢:

GO law) = 1,00 {3 PP + o o B ), (15)
i 27;1 (q®P)]3;2e(0) la(p)) = uq(p’){% Gi(¢*) + 27an o ¢ G%(qQ)}uq(p) :
The Sachs form factors of the quark of flavor ¢ are:
FEQ)=FF)+GE®t),  FMt)=FMt)+GY (1), (16)
where
F{G}{ (t) = F{G}{(t) — ﬁF{G}Z(t), F{G}g'(t) = F{GH () + F{G}5(),  t=—¢*, (17)

are the contributions to the Sachs form factors associated with the expectation values of the vector and tensor
currents, respectively. Finally, the baryonic form factors Fqu(t) are expressed in term of quark form factors Ff (M) (t)
and GQE(M)(t) by [19]:

FP) = o B RE @) + ol FY (|
) = a0 sl o),
GI0) = 1y { 0BG + B P G (rm |
G50 = o {—alaro sl e o), (19)

where Ff(t) and F,(t) are the quark Sachs form factors, 7p = t/(4m%). In addition to the strict evaluation of
SU(6) we have introduced the additional parameter x®? for each quark of flavor g. The interpretation for adding
these factors is such that to allow the quark distributions for hyperons to be different from that for the nucleons.
In the case of the nucleons we set x%¢ = 1. The values for agq
SU(6)-symmetry relations are given in Table I.

In Ref. [19] we considered only nucleon form factors and therefore, the Sachs form factors of u- and d-quark. In
particular, we modeled the u- and d-quark form factors by the dipole characteristics with damping functions of an
exponential form. This phenomenological form is required to reproduce the deviation of the electromagnetic form
factors of the nucleon from the dipole fit as evident from recent experimental measurements. In this paper we
use the same parametrization for s-quark. Therefore, for the Sachs form factors of u-, d- and s-quark we use the
parameterization

and aﬁq for the baryon octet as derived from

A0 B Py (t)
Ff(ﬂ*ma FqM(t)*ﬂgm,
t/A\2g Py (t)

Gy (t) = pg

E o E a0 T1 1 2/A2 19
Gy (8) =740, () (L+t/AZp]3 ! /AP

(19)



where py(t) = exp(=t/\2p) and p}'(t) = exp(—t/AZ;;). Note, that in Ref. [34] a similar parametrization of the
nucleon form factors has been considered. In Ref. [35] the damping functions p(t) have been parametrized with
constant values. For convenience we suppose that the quark Sachs form factors degenerate at zero recoil according
to SU(6) symmetry. In order words all effects of possible SU(6) symmetry-breaking are incoded in the coefficients
xP4 [see Eq. (18]. Thefore, the parameters p) and pu are fixed by the SU(6) symmetry and and by the set of other
symmetry constraints [see Eqs. (13, (12) and Ref. [19]] as:

2
3 (ga\ mn
F_ G _
Mq—ﬂq—5<g> - (20)

The remaining parameters 74, Aqg(ary and Agg(ar) are free parameters. In the case of u- and d-quark the corresponding
parameters (Vu, Y4, Aupar) and Agg(ar)) have been fixed from the consideration of the full momentum dependence
of the nucleon electromagnetic form factors at intermediate and high value of momentum transfer squared:

Aup = 2.0043, Agg = 0.9996, Auns = 7.3367, Aqn = 2.2954,
Aup = 0.8616, Agp = 0.9234, Auar = 0.9278, Agns = 1.0722 (21)
Yo = 1.081, ~4 = 2.596.

The remaining parameters relevant for the strange quark Asg, Aspr, Asg, Aspr and ;s can be fixed or varied using
the following arguments. A general remark is that an information about hyperon form factors (and as consequence
about strange valence form factors) is very poor: we know only their normalization due charge conservation or from
a knowledge of magnetic moments. Therefore, for some parameters we use typical values. In particular, we fix 74 = 1
(which is typical for w and d quarks). For the cutoff parameters A;p and Agps we use typical value 1 GeV guaranteeing
the correct 1/t2 scaling of the baryon form factors at large t. A more nontrivial situation is with parameters Az and
Asy controling a deviation of strange quark (or hyperon) form factors from the dipole fit. To our knowledge based
on analysis of nucleon form factors, these parameters can be roughly varied from 1 to 10 GeV. This gives a major
ambiguity in the description of hyperon form factors.

Finally we specify the parameters x®? encoding the effects of SU(6) symmetry breaking and in the chiral La-
grangian (2). They have been fixed in Ref. [19] from the description of magnetic moments of the baryon octet
hyperons and nucleon slopes. In particular, in Ref. [19] we considered two scenarious: SU(6) symmetric case (Set I)
and beyond SU(6) symmetry (Set II). In case of the Set I the couplings Y7 are trivially equal to 1. For the Set II
we got [19]:

qu = XZd = 0,963’ XZS = 0.2597

YU = x5 =0.633, x5 =0.694,
A = yFAd = 0,988 (22)

relying on isospin symmetry. In the isotriplet £+, X9 and ¥~ shares the same set of x> for the quark of flavor ¢,
while Z° and Z~ contains the same set of xZ¢. The parameters y>** and x**¢ are directly related to the ¥ — A
magnetic transition moment.

In the numerical calculations we use the same set of parameters in chiral Lagrangian (2) as fixed in Ref. [19]. In
particular, for both sets (Set I and Set II) we used the unified set of parameters g, m, ca, ¢4, dig and &1¢:

g=0.9, m=042 GeV, ¢ = 2.502 GeV !, ¢4 = 1.693 GeV ™!, dig=1.110 GeV 2, &9 = 0.039 GeV 2. (23)

For the parameters ég, €7 and ég we used a slightly different values in Set I and Set II because they have been fixed
from the fit of the magnetic moments of proton, neutron and A-hyperon:

Set I

G =0.593, & =-0473 GeV >, &g =0.013 GeV 2. (24)
Set 11

G =0.569, &7 =—0.649 GeV 3, &g=0.031 GeV 3. (25)

Here ¢g = ¢ — 16m(2m+7hs)Bég and the couplings dio, €, €7, és and &, refer to the renormalized coupling constants
(see details in Ref. [19]).



III. RESULTS

Now we discuss obtained results for electromagnetic properties of hyperons. For completeness we also present our
results for magnetic moments and slopes of nucleons. Detailed analysis of the nucleon electromagnetic form factors
done in Ref. [19]).

The resulting values for the magnetic moments of the baryon octet for this case (Set I) are shown in Table II, where
reasonable agreement with data is obtained. Meson cloud contributions to the total values of the magnetic moments
are about 5 — 30% depending on the baryon.

Finally, the charged and magnetic form factors of hyperons are present in Fig.2 and Fig.3, respectively.
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Table 1. SU(6) couplings a2? and aff.

4 1
2 | 1L L0 | 5 |-32]0

1 4
AT 1|10 ] 0|1
4 1
st 20| 1] 3|0 |-
00 1 1|1 | 222
sl o | 2| 1|0 | 35 |-3
= lo | 1| 2|0 |33
1o |2 |-2]0| 3

0AO 1 1
A0 | 0 | 0| gz ]-gs]| 0

Table II. Magnetic moments of the baryon octet (in units of the nucleon magneton py)

Set I Set 11 Exp.
3q |Meson Cloud| Total 3q ‘Meson Cloud| Total
p 2.357 0.436 2.793 || 2.357 0.436 2.793 2.793
L, -1.571 -0.342 -1.913 || -1.571 -0.342 -1.913 -1.913
o || -0.786 0.173 -0.613 || -0.518 -0.095 -0.613 || -0.613 £+ 0.004
s+ 2.357 0.317 2.674 || 2.085 0.373 2.458 || 2.458 + 0.010
0 0.786 0.005 0.791 || 0.570 0.073 0.643
- || -0.786 -0.306 -1.092 || -0.935 -0.225 -1.160 || -1.160 % 0.025
p=o || -1.571 0.136 -1.435 || -1.058 -0.192 -1.250 || -1.250 £ 0.014
pt=- ||-0.7855 0.2921 -0.4934||-0.5580 |  -0.0927  |-0.6507 ||-0.6507 £ 0.003
|sopol|| 1.36 0.27 1.63 1.34 0.27 1.61 1.61 £+ 0.08
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Fig.

1. Diagrams including pseudoscalar meson contributions to the EM quark transition operator up to fourth
order. Solid, dashed and wiggly lines refer to quarks, pseudoscalar mesons and the electromagnetic field, respectively.
Vertices denoted by a black filled circle, box and diamond correspond to insertions from the second, third and fourth
order chiral Lagrangian.
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Fig. 2. The charge form factors of ¥, ¥, X9, A, 0 and =~ baryons. The shaded region shows the range of the
form factors with the parameter Asg being varied in the interval from 1 to 10 in units of GeV.
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Fig. 3. The magnetic form factors of ¥+, ¥=, ¥ A% =% and =~ baryons. The shaded region shows the range of
the form factors with the parameter A;j; being varied in the interval from 1 to 10 in units of GeV.
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