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We study electromagentic form factors of hyperons using a chiral quark 

model. In this model baryons are bound states of constituent quarks dressed by a 

cloud of pseudoscalar mesons. In a first step, this Lagrangian can be used to perform a 

dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other 

heavy states using the calculational technique of infrared dimensional regularization 

of loop diagrams. Then the dressed transition operators are used to calculate the 

baryon matrix elements. We use the parameterization of baryon form factors in terms 

of quark form factors in the SU(6). The parameters fitted from the nuclon 

electromagnetic properties are used as an input for the calculation of hyperons 

electromagenetic form factors and their magnetic moments. 
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ความสําคัญและที่มาของปัญหา 
 
แบริออน (baryon) คืออนุภาคที่ประกอบขึ้นมาจากควาร์ก (quark) จํานวนสามตัว ตัวอย่าง

ของแบริออนที่เรารู้จักคุ้นเคยกันดีก็คือ โปรตอน (proton) และนิวตรอน (neutron) ซึ่งมีช่ือเรียก
โดยรวมว่านิวคลีออน (nucleon) ในปัจจุบันเรามีข้อมูลเกีย่วกับสมบัติโดยรวมของแบริออนชนิดต่างๆ 
ซึ่งสามารถวัดได้จากการทดลองจากห้องปฏิบัติการต่างๆ ทั่วโลก อย่างไรก็ตามในทางทฤษฎีน้ัน เรา
ยังขาดซึ่งความเข้าใจในเชิงลกึถึงโครงสร้างของการกระจายตัวของควาร์กภายในแบริออน ความรู้
ความเข้าใจเก่ียวกับโครงสร้างของแบริออนจึงมีความสําคัญเป็นอย่างยิ่งเน่ืองจากในการนําเอาความรู้
ไปประยุกต์ใช้น้ัน เราจําเป็นต้องเข้าใจถึงรายละเอียดของโครงสร้างต่างๆ อย่างลึกซึ้ง 

ในทางทฤษฎีน้ันระบบของควาร์กจะสามารถอธิบายได้ด้วยทฤษฎีควอนตัมโครโมไดนามิกส์ 
(Quantum Chromodynamics หรือ QCD) อย่างไรก็ตาม QCD สามารถใช้ได้ดีเฉพาะในบริเวณที่
พลังงานของระบบมีค่าสูงมากๆ สําหรับระดับพลังงานในช่วงของนิวคลีออนน้ัน เราไม่สามารถใช้ 
QCD ได้เน่ืองจากปัญหาทางเทคนิคในการคํานวณที่เราไม่สามารถนําเอาวิธีการเพอร์เทอร์เบชัน 
(perturbation) ซึ่งใช้ได้ดีในกลศาสตร์ควอนตัมมาใช้ในการคํานวณได้ อย่างไรก็ตาม ยังมีวิธีอ่ืนๆ ใน
การที่จะศึกษาถึงสมบัติและโครงสร้างของแบริออน เช่น Lattice QCD, Effective Field Theory 
(EFT) หรือแบบจําลองควาร์ก (Quark Model) 

ในส่วนของแบบจําลองควาร์กน้ัน ได้มีการนําเสนอแบบจําลองต่างๆ ออกมามากมาย แต่ละ
แบบจําลองก็มีข้อดีและข้อเสยีที่แตกต่างกันไป แต่ผลโดยรวมท่ีสามารถสรุปได้ก็คือ ในการอธิบายถึง
สมบัติและโครงสร้างของแบริออนน้ัน นอกจากส่วนที่มาจากควาร์กแล้วยังมีส่วนสําคัญอีกส่วนหน่ึง
ที่มาจากกลุ่มหมอกของควาร์กและแอนติควาร์ก (antiquark) ซึ่งเราสามารถพิจารณาให้เป็นกลุ่ม
หมอกเมซอน (Meson Cloud) เน่ืองจาก 
เมซอนน้ันเป็นอนุภาคที่ประกอบขึ้นมาจากควาร์กและแอนติควาร์กน่ันเอง 

ในการทําการวิจัยคร้ังนี้จะศึกษาถึงบทบาทของกลุ่มหมอกเมซอนที่มีต่อแบบจําลองควาร์ก 
ซึ่งในปัจจุบันน้ียังไม่มีคําอธิบายที่ชัดเจนว่ากลุ่มหมอกเมซอนน้ีมีส่วนสําคัญต่อสมบัติต่างๆ ของแบริ
ออนมากน้อยแค่ไหน ความเข้าใจเก่ียวกับควาร์กและกลุม่หมอกเมซอนน้ีจะนําไปสู่แบบจําลองควาร์ก
ที่สมบูรณ์ย่ิงขึน้ และสามารถนําไปประยุกต์ใช้ในการคํานวณสมบัติอ่ืนๆ ที่แม่นยําได้ต่อไป 
 

วัตถุประสงค์ 
เพ่ือศึกษาและวิจัยถึงผลของกลุ่มหมอกเมซอนที่มีต่อสมบัติต่างๆ ของแบริออนชนิดต่างๆ เช่น นิวคลี
ออน ไฮเพอรอน และเดลตา(1232) เป็นต้น โดยใช้แบบจําลองควาร์กเป็นพ้ืนฐานในการศึกษา 
 
 
 
 
 
 
 
 
 



 1

1. Introduction 
 

The basic building blocks of the atomic nuclei, proton and neutron, play an 

crucial role in subatomic physics. The fully understanding of their properties and 

structure will probably lead us to a deeper understanding of the mechanism of the 

strong interaction in nature. Since the masses of the proton ( pM  = 938.27 MeV) and 

the neutron ( nM  = 939.57 MeV) are nearly identical, one considers both of them as 

two different states of the same particle, the nucleon. Experiments point out that the 

nucleon is not a point-like particle but contains a subtle structure. One of the very first 

evidence came from the measurement of the magnetic moment of the proton. A 

deviation of the proton magnetic moment from the value of the point-like particle was 

observed, hence the introduction of an anomalous magnetic moment. Other evidence 

for the structure of the nucleon arises from the rich nucleon excitation spectrum. An 

important tool to study the electromagnetic structure of nucleon is an elastic electron 

scattering. Deep inelastic scatterings of electrons on the nucleon lead to the evidence 

for point-like scattering centers in the nucleon and the existence of quark and gluon 

degrees of freedom. 

The knowledge of the electromagnetic structure of the nucleon which tells us 

how the charge and the current are distributed within the nucleon is very important. 

The subject is actively studied both on theoretical and experimental sides. As a result 

of a new technology, modern experiments [1, 2, 3], utilizing polarized beams and 

targets significantly improved the previous data based on the Rosenbluth separation 

technique. Recently, the improved measurement on low- 2Q  electromagnetic form 

factors data of nucleon, which is one of the ongoing programs for the complete 

measurement of the electromagnetic form factors of the nucleon, has reported the 

improved data [4]. This will lead to more precise data, which is important for the 

theoretical study. 

Quarks were proposed by Gell-Mann [5] and, independently, by Zweig [6] as 

an elementary particle within the strong interaction particle, hadrons. By assigning u , 

d  and s  quarks and their antiparticles u , d  and s  as the fundamental 

representations 3  and 3  of SU(3), respectively, hadrons can be constructed from 

these representations. Therefore, hadrons are believed to be composed of quarks and 

antiquarks. Baryons are composed of three valence quarks and mesons are composed 
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of a quark-antiquark pair. These quark-antiquark combinations are constructed such 

that the correct quantum numbers associated with the corresponding hadrons are 

achieved. For example, the quark flavor contents of the proton and the neutron are 

uud  and udd , respectively. 

Experiments reveal the existence of heavier quarks, i.e. the c , b  and t  quarks. 

Therefore, there are six quark flavors along with their antiquarks. However, the free 

quark state, with the fractional electric charge, was never observed in nature. From 

this fact it is deduced that there exists a mechanism, named confinement, preventing 

that free quarks exist. This point is directly lead to a new degree of freedom called 

“color”, originally introduced to restore the Pauli exclusion principle in the ++Δ  

system with the quark content uuu . For each quark favor there are three color degrees 

of freedom, namely, “red”, “blue” and “green”. The non-observation of free quarks is 

therefore consistent with the proposal that hadrons contain no net color i.e they are 

color singlets.  

Quantum Chromodynamics (QCD) is believed to be the correct theory for 

describing the physics of the strong interaction. The basic particles in QCD are quarks 

and their interactions are mediated by exchange of gluons which are the gauge quanta 

of the color fields. Two important properties of QCD are the asymptotic freedom and 

the color confinement. The asymptotic freedom is related to the experimental result 

that in the high energy regime or at small distances the interaction between the quarks 

is small. In this regime the coupling constant between quarks and gluons is therefore 

small and a perturbative method can be applied to evaluate QCD. However, in the low 

energy regime where the strong running coupling constant is large, at the order of one, 

the perturbative method cannot be applied and one has to deal with a non-perturbative 

approach.  

In QCD, at the scale of 1 GeV, the masses of the light quarks (u , d  and 

s quarks) are much smaller than the nucleon mass. When we neglect the small quark 

masses and consider light quarks as massless particles, another important global 

symmetry in the low energy regime arises in the strong interaction, the so-called 

“chiral symmetry”. This symmetry is not perfect and spontaneously broken which 

results in the existence of massless particles called the “Goldstone bosons”. Pions, 

which considered as Goldstone bosons, however, are massive. Therefore, the finite 
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value for the pion mass is due to the explicit breaking of chiral symmetry when the 

quarks has small physical mass values.  

Perturbative technique works well for high-energy regime in QCD. However, 

study of nucleon structure cannot be solved analytically from perturbative QCD. 

Alternative approaches in order to study the nucleon structure were proposed, for 

example, QCD sum rule, lattice QCD, 1/Nc expansion, etc. However, one of the most 

method for the treatment of light hadrons at small energies is “Chiral Perturbation 

Theory” (ChPT) [7, 8, 9], which is considered as an effective field theory of the 

strong interaction. For mesons, ChPT works very well, especially in the description of 

pion-pion interactions, but this is not the case for nucleon. Many versions of ChPT are 

introduced, for example, Heavy Baryon Chiral Perturbation Theory (HBChPT) [10]  

and even a manifestly Lorentz invariant version of ChPT [11, 12, 13, 14]. 

 Note, that ChPT is formulated on the hadronic level, therefore the important 

features of low-energy QCD, such as confinement and hadronization are not 

considered in ChPT. Alternatively techniques formulated on the quark level and take 

into account chiral symmetry argument are exist. One on these is the Chiral quark 

models which describe the elementary baryon, the nucleon, as a bound state of 

valence quarks supplied by the sea-quark excitation in form of the pions. Depending 

on the philosophy for each quark model, both perterbative and non-perterbative 

techniques are employed. 

In this report, the so-called Perturbative Chiral Quark Model (PCQM) is used 

as a tool in order to get the information for the description of low-energy properties of 

baryons. The latest development of the PCQM is a manifestly Lorentz covariant 

approach [15, 16]. The main idea is to dress the quark operators by using the chiral 

Lagrangian taken from baryon ChPT. The dressed quark operators are calculated and 

the physical observables are obtained from the matrix elements projected on the 

baryonic level. Constraints of the model can be fixed by using the symmetries of the 

system and the matching to the original ChPT. According to this matching, the Low 

Energy Constants (LECs) which are parameters of the model and can be adjusted to 

fit the various related physical observables. Parameters obtained from the 

consideration of electromagnetic form factors will be used to further analysis of the 

electromagnetic form factors of hyperons. 

We proceed as follows. First, in Section 2, we discuss the basic theory of 

strong interaction, QCD and Chiral symmetry when light quark masses are vanish. In 
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addition, the basic idea of ChPT are presented. The chiral Lagrangian motivated by 

baryon ChPT [17]-[24] and their formulation in terms of quark and mesonic degrees 

of freedom are shown in Section 3, together with the discussion of the 

electromagnetic form factors of nucleon and the extension to the case of hyperons. 

Next, the results for electromagnetic properties of hyperons are present in Section 4, 

together with a conclusion. 
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2. QCD, Chiral Symmetry and  
Chiral Perturbation Theory 

 

The elementary theory of the strong interaction is Quantum Chromodynamics 

(QCD). QCD is a local gauge theory which describes the interaction of quarks and 

gluons. The quarks and gluons possess color which is the basic quantum number 

associated with QCD. Another important symmetry of the QCD Lagrangian is chiral 

symmetry. This symmetry is only on the level of approximation and is fulfilled only 

in the limit of massless quarks. Approximate chiral symmetry is widely manifest in 

low-energy hadron phenomenology and is therefore an important constraint in the 

derivation of phenomenological approaches motivated by QCD. We briefly discuss 

the basic notions of the QCD Lagrangian and the aspects of chiral symmetry, 

including its explicit and spontaneous breaking. Finally, the effective field theory for 

the strong interaction at low energies– Chiral Perturbation Theory (ChPT)– will be 

briefly reviewed. 

 

2.1 The QCD Lagrangian 
The quark fields ( )xqc

f  which are Dirac particles are the matter fields in QCD.  

They have two specific quantum numbers, color ( )c  and flavor ( )f . Their free 

Lagrangian is written as 

( )( ) ( )xqmixq c
ff

c
f −∂/= .       (2.1) 

The slash notation is defined as : μ
μγ∂≡∂/ . For each quark flavor bcsduf ,,,,=  

and t , it contains three additional quantum numbers, the color charge, bgrc ,,= . 

The color charges of the quarks form a fundamental representation related to 

the generators of SU(3)c i.e. the Gell-Mann matrices c
aλ . The explicit forms of c

aλ  are 
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where the color indices ( )c  are suppressed. The free Lagrangian of Eq. (2.1) is 

invariant under the “global” transformation of the color degrees of freedom, 

( ) [ ] ( ),xqUxq c
f

c
f θa           (2.2) 

where 

[ ] ⎟
⎠
⎞

⎜
⎝
⎛−≡⎟

⎠

⎞
⎜
⎝

⎛
−= ∑

=
a

a

a
a

a iiU θλθλθ
2

exp
2

exp
8

1
,   (2.3) 

and ( )81 ,, θθθ K=  are arbitrary constants. Note, that we employ the Einstein 

summation convention here i.e. summation over the same indices is implied. 

The interaction of the matter fields with the gauge fields which are the 

mediators of the interaction can be generated from the requirement of the local gauge 

invariance principle applied to the free Lagrangian of the matter fields. Interactions in 

QCD can be constructed by extension of the global transformations to the “local” 

transformations according to 

( ) ( )[ ] ( )xqxUxq c
f

c
f θa ,           (2.4) 

where ( )xθ  is now space-time dependent. In order to maintain the invariance of the 

Lagrangian of Eq. (2.1) under this local gauge transformation one has to introduce the 

gauge fields which interact with the quark fields. The usual way is to replace the 

normal space-time derivative, ( )xqc
fμ∂ , of the free quark Lagrangian by the so-called 

“covariant derivative”, ( )xqD c
fμ  
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( ) ( )xqDxq c
f

c
f μμ a∂ .           (2.5) 

This covariant derivative is constructed such that it has the same transformation 

property as the quark fields, i.e. 

( ) [ ] ( ) ( ) ( )xqDxixqDUxqD c
fa

ac
f

c
f μμμ θλθ ⎟

⎠
⎞

⎜
⎝
⎛−=

2
expa .          (2.6) 

As in QED, Eq. (2.6) can be fulfilled by the introduction of the gauge fields ( )xa
μ  in 

the covariant derivative 

( ) ( )( ) ( )xqxgixqD c
f

c
f μμμ −∂=        (2.7) 

where ( ) ( )x
x a μ

μ

λ
=  and g  is a coupling constant related the strong interaction.  

These ( )xa
μ  are the gluon fields which considered as the gauge fields of the strong 

interaction. Under the gauge group SU(3)c, the gluon fields transformation is 

( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( )[ ]xUxU
g
ixUxxUx θθθθ μμμ

†† ∂−a   (2.8) 

One can defined the field strength tensor ( )xa,μν  in QCD with the explicit 

form 

( ) ( ) ( ) ( ) ( )xxfgxxx cbabcaaa ,,,,, νμμννμμν +∂−∂=   (2.9) 

where abcf  are the structure constants of SU(3)  

.
2
3

,
2
1

,1

678458

367345257246156147

123

==

=−====−=

=

ff

ffffff

f

 

The last term in Eq. (2.9) originates from the non-Abelian properties of SU(3). The 

transformation of the field strength tensor is simpler if one defines the tensor ( )xμν  

such that 
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( ) ( ) ( )[ ] ( ) ( )[ ]xUxxUxx a
a θθλ

μνμνμν
†

,2
a≡ .    (2.10) 

In terms of ( )xμν , the free gluonic Lagrangian can be written as 

( ) ( )[ ]xx μν
μνTr

2
1

−= .            (2.11) 

The full QCD Lagrangian is therefore 

( )( ) ( ) ( ) ( )[ ]xxxqmDixq
tbcsduf

c
ff

c
fQCD

μν
μνTr

2
1

,,,,,
−−/= ∑

=

.           (2.12) 

As a consequence of the non-Abelian nature of the group SU(3), gluon fields 

can interact with themselves in addition to the coupling between the quarks and 

gluons. There exist the three- and four-gluonic self-coupling terms which are 

proportional to g  and 2g , respectively. This is not the case for the electromagnetic 

fields in QED, but in QCD the gluon fields are “charged” i.e. they carry “color”, 

whereas the photon carries no (electric) charge. 

 

2.2 Chiral Symmetry 
In the limit where the light quark masses vanish, the QCD Lagrangian of Eq. 

(2.12) has another important symmetry. This is the so-called “chiral symmetry”. This 

symmetry is only approximate since in reality quarks possess a small but finite mass. 

The sector of light quarks is composed of the u, d and s quarks with the estimated 

masses [25] 

MeV84,MeV45.1 −=−= du mm  and MeV13080 −=sm . 

The bc,  and t  quarks are considered as heavy quarks with masses ≥ 1 GeV. In the 

low-energy regime the heavy quarks do not play a role due to their large masses. 

Since the du,  and s  quarks are much lighter than the hadronic mass scale of 1 GeV 

this suggests that one can treat the current quark masses as a small perturbation. 

Therefore, for the low-energy regime and in the chiral limit, where 0,, →sdu mmm , 

the appropriate QCD Lagrangian reduced from Eq. (2.12) to becomes 
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( ) ( ) ( ) ( )[ ]xxxqDixq
sduf

c
f

c
fQCD

μν
μνTr

2
1

,,

0 −/= ∑
=

.     (2.13) 

The symmetry of the Lagrangian (2.13) can be made explicit if one decomposes the 

quark fields in terms of left- and right-handed components. This can be achieved 

through the projection operators RP  and LP  defined by 

( ) ( )55 1
2
1,1

2
1 γγ −=+= LR PP ,      (2.14) 

where 3210
5 γγγγγ i=  is the usual gamma matrix in the Dirac theory. With these 

operators the right- and left-handed components of the quark fields can be written as 

( ) ( ) ( ) ( )xqPxqxqPxq c
fL

c
fL

c
fR

c
fR == ,, , .           (2.15) 

Consequently, Eq. (2.13) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( )[ ]xxxqDixqxqDixq LLRRQCD
μν

μνTr
2
10 −/+/= ,  (2.16) 

where we represent the right- and left-handed quark fields in terms of the column 

vectors 

( )
( )
( )
( )

( )
( )
( )
( )⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

xq
xq
xq

xq
xq
xq
xq

xq

sL

dL

uL

L

sR

dR

uR

R

,

,

,

,

,

,

, ,         (2.17) 

and we simplify the notation by dropping the color index. We consider the “global” 

unitary transformation of the quark fields of Eq. (2.17) with 

RRRLLL qUqqUq aa , ,             (2.18) 

and 

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛−= R

a
a

R
L
a

a
L iUiU θλθλ

2
exp,

2
exp ,   (2.19) 
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where ( )RL
aθ  are independent, real parameters. The group of this transformation is 

denoted by SU(3)R× SU(3)L. Obviously, Eq. (2.16) is invariant under such 

transformations and hence is referred to as the “chiral symmetry” of QCD. Since LU  

and RU  contain altogether 16 real parameters, the symmetry, due to Noether’s 

theorem, results in 16 conserved currents associated with the transformation of Eq. 

(2.18). These conserved currents are 

L
a

LaR
a

Ra qqLqqR
2

,
2

λγλγ μμμμ == ,         (2.20) 

with 

0,0 =∂=∂ μ
μ

μ
μ aa LR .          (2.21) 

Instead of working with the left- and right-handed currents, one 

conventionally considers the linear combinations 

,
2

qqLRV a
aaa

λγ μμμμ =+=             (2.22) 

and 

qqLRA a
aaa 25

λγγ μμμμ =−= ,              (2.23) 

together with 

0,0 =∂=∂ μ
μ

μ
μ aa AV           (2.24) 

These are the vector and axial currents. Note, that a simple phase transformations of 

Lq  and Rq  also results in an invariance of 0
QCD . The corresponding group of 

transformations are referred to as U(1)V and U(1)A, if Lq  and Rq  transform with the 

same and the opposite phases, respectively. Consequently, there exist two additional 

conserved currents 

qqAqqV 5, γγγ μμμμ == ,     (2.25) 
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with 0=∂=∂ μ
μ

μ
μ AV . 

Transition from classical fields consideration to the case of quantum fields, 

there arises extra terms referred to as “anomalies”, which presented in the axial 

currents as 

ρσμν
μνρσ

μ
μ ε

π 2

2

32
3gA =∂     (2.26) 

where μνρσε  is the totally antisymmetric tensor with 10123 =ε . Therefore, μA  is no 

longer conserved. Furthermore, nonvanishing current quark masses will contribute to 

Eq. (2.26) as well. Moving from the level of classical to quantum fields the global 

U(3)R×U(3)L symmetry of 0
QCD  is reduced to a global SU(3)R×SU(3)L×U(1)V 

symmetry. 

Finally, after quantization, we note that corresponding to the conserved 

currents μμ
aa AV ,  and μV  we have the conserved charge operators a

A
a
V QQ ,  and VQ . 

These operators form the algebra 

[ ]
[ ]
[ ]
[ ] [ ] 0,,

,,

,,

,,

==

=

=

=

V
a
AV

a
V

c
Vabc

b
A

a
A

c
Aabc

b
A

a
V

c
Vabc

b
V

a
V

QQQQ

QfiQQ

QfiQQ

QfiQQ

         (2.27) 

The algebra which is constructed from the currents themselves is known as “current 

algebra”. Before QCD, where the elementary origin of chiral symmetry was not 

understood yet, current algebra was already applied to the study of low-energy 

hadronic processes. 

 

2.3 Chiral Symmetry Breaking 
Previously, we have shown that in the chiral limit the Lagrangian 0

QCD  has a 

SU(3)R×SU(3)L×U(1)V symmetry which results in the conserved charge operators 
a
A

a
V QQ ,  and VQ . If 0

QCD  is the Hamiltonian corresponding to 0
QCD , this means that 

[ ] [ ] [ ] 0,,, 000 === VQCD
a
AQCD

a
VQCD QQQ            (2.28) 
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By considering the symmetry of the vacuum state 0 , above symmetry of the 

Lagrangian can be realized in two modes. The first realization relies on the 

assumption that the vacuum has exactly the same symmetry as the Lagrangian. As a 

consequence the vacuum state is annihilated by the conserved charge operators 

000 == a
A

a
V QQ        (2.29) 

This realization in which the Lagrangian and the vacuum share the same symmetry is 

called the “Wigner-Weyl” mode of chiral symmetry. As a consequence the hadronic 

spectrum of positive and negative parity states built upon the vacuum is degenerate 

resulting in parity doublets. However, this is not the case in the observed spectrum of 

hadrons, e.g. the light pseudoscalar ( −= 0πJ ) mesons have masses much lower than 

those of the lightest scalar ( += 0πJ ) mesons. 

Another realization of chiral symmetry is achieved when the vacuum state of 

the system does not share the symmetry of the Lagrangian. This realization is called 

the “Nambu-Goldstone” mode of chiral symmetry and the symmetry is said to be 

“hidden” or “spontaneously broken”. Since the approximate validity of SU(3) flavor 

symmetry suggests that 00 =a
VQ , in the Nambu-Golstone realization we are left 

with 

00 ≠a
AQ             (2.30) 

As a result of the spontaneously broken symmetry there exist massless particles the 

so-called “Goldstone bosons”, as evident from Goldstone’s theorem. In nature, chiral 

symmetry is realized in the Nambu-Goldstone mode, since the observed hadron 

spectrum contains the rather light pseudoscalar mesons ( ηπ ,, K ) in comparison to 

the scale set by the nucleon mass of ~ 1 GeV. Hence the low-lying pseudoscalar 

mesons are interpreted as Goldstone bosons. The finite but small masses of the π , K  

and η  mesons arise from the fact that the quarks have a nonvanishing current mass. 

Then, “explicit” symmetry breaking due to the quark masses is responsible for the 

finite masses of the π , K  and η  mesons. Therefore, the SU(3)R× SU(3)L× U(1)V 

symmetry is spontaneously broken down to the SU(3)V × U(1)V symmetry. 
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The spontaneous breaking of chiral symmetry is closely related to the 

nonvanishing of the order parameter, the “quark condensate”, which is defined as  

ssdduuqqqq ++=≡00         (2.31) 

The condition 00 =a
VQ  suggests that 0=== ssdduu , whereas 00 ≠a

AQ  

results in 

0≠== ssdduu          (2.32) 

The spontaneous breaking of chiral symmetry induces a rearrangement of the ground 

state such that it is populated by scalar quark-antiquark pairs with nonzero expectation 

values. 

Nevertheless, the current quark masses, although, they are small, do not 

vanish. The finite values of the quark masses give rise to explicit breaking of chiral 

symmetry due to the presence of a quark mass term in the QCD Lagrangian  

( ) ( )xqxqM −=         (2.33) 

where ( )sdu mmm ,,diag=  is the quark mass matrix. Including the explicit quark 

mass terms the divergence of the various currents becomes 

,
32
32

,0

,
2

,

,
2

,

2

2

5

5

ρσμν
μνρσ

μ
μ

μ
μ

μ
μ

μ
μ

ε
π

γ

γλ

λ

gqqiA

V

qqiA

qqiV

a
a

a
a

+=∂

=∂
⎭
⎬
⎫

⎩
⎨
⎧=∂

⎥⎦
⎤

⎢⎣
⎡=∂

 

where the anomaly of Eq. (2.26) is taken into account for completeness. Note, that 
μV  is always conserved, whereas μ

aV  is only conserved when all the quark masses are 

equal. However, μ
aA  is not conserved and this is the microscopic origin of the so-

called Partially Conserved Axial-vector Current (PCAC). 
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2.4 Chiral Perturbation Theory 
Unfortunately, perturbative methods in QCD cannot be applied directly to 

hadronic systems in the low-energy regime due to the large coupling constant of the 

strong interaction. However, phenomena in the low-energy region can be studied in 

terms of Effective Field Theory (EFT) proposed by Weinberg [7] in 1979. The link 

between QCD and the EFT can be employed through the generating functional. In the 

presence of external fields the QCD Lagrangian in Eq. (2.13) reads 

( ) ( )qpisqqavqQCDext 55
0 γγγ μμ

μ −−++= ,   (2.34) 

where, sav ,, μμ  and p  are the external fields concerning vector, axial vector, scalar 

and pseudoscalar currents, respectively. The generating functional Z  is related to 

ext  and can be considered as the vacuum to vacuum transition amplitude in the 

presence of external fields i.e. 

[ ]( ) ( )[ ]
psavinoutext xxdiTpsavZi

,,
4 000exp0,,exp == ∫ .  (2.35) 

In terms of EFT with some asymptotic hadron fields as the relevant degrees of 

freedom rather than the quark and gluon fields, the low-energy representation of the 

generating functional Z  can be obtained by the use of an effective Lagrangian eff . 

In the path-integral formalism this can be written as  

[ ]( ) [ ] ( )( )∫ ∫= psavUxdidUNpsavZi eff ,,,exp,,exp 4 ,          (2.36) 

where U  is a matrix containing the asymptotic fields. This leads to the development 

of Chiral Perturabation Theory (ChPT) [7, 8, 9], which is the EFT of strong 

interactions at low energies. ChPT was first applied to the study of the system of 

Goldstone bosons which originate from the spontaneous breaking of chiral symmetry 

of the QCD Lagrangian. In ChPT, instead of considering the quark and gluon fields as 

the elementary degrees of freedom of the theory, the active degrees of freedom in 

ChPT are the asymptotically observed states, the hadrons. In the mesonic sector, the 

effective Lagrangian is composed of the string of terms as 
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L+++= 642eff ,            (2.37) 

where the subscripts refer to the order in the momentum and quark mass expansion. 

The lowest-order effective Lagrangian 2  which contains two derivatives and one 

quark mass term is 

( )[ ]†††
2

2 Tr
4

χχμ
μ UUUDUDF

++=           (2.38) 

The matrix U  contains the Goldstone boson fields. The covariant derivative μD  is 

composed of the usual derivative and terms concerning the coupling of the Goldstone 

boson fields to external fields. The current quark mass is hidden in the definition of 

χ , i.e. ( )ipsB += 2χ , where B  is related to the quark condensate parameter and F , 

in the SU(2) sector, is the pion decay constant in the chiral limit. Higher-order terms 

in the Lagrangian can be constructed and each term contains coefficients, the so-

called Low Energy Constants (LEC). In case one could solve the fundamental theory 

from first principles, one can map the LECs of the EFT to the fundamental parameters 

of the underlying theory. However, since QCD cannot be solved analytically in the 

low-energy region, we consider the LECs as free parameters, which at this point can 

be extracted from physical observables. 

After the most general effective Lagrangian is constructed one also needs a 

method to classify the order of the diagram built from the effective Lagrangian. 

Weinberg’s power counting scheme offers such a method for labelling the specific 

order D , the chiral dimension, of the diagram of interest and it can be obtained from 

( )∑
∞

=

−++=
1

21222
k

kL NkND  

where LN  is the number of independent loop momenta and kN2  is the number of 

vertices originating from the Lagrangian k2 . In ChPT loop diagrams also contain a 

divergent part, which has to be renormalized. However, ChPT is not a renormalizable 

theory in the traditional sense since the infinities cannot be reabsorbed into parameters 

of the lowest-order Lagrangian, e.g. B  and F . A consistent removal of infinities can 

be done by redefinition of the fields and the LECs. The extension to include the 
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nucleon in ChPT is also possible and was done in Ref. [26]. In the SU(2) sector, the 

effective Lagrangian describing the interaction of π  and N  can be written as  

( ) ( ) L++= 21
πππN          (2.39) 

The lowest order Lagrangian ( )1
π  is of the form 

( )
005

0
00

1

2
1 ψπτγγγψ μ

μ
μ

μ
π ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∂−−∂= aaA

F
gmi
o

   (2.40) 

where 0ψ  and 0π
v  denote a doublet and a triplet of bare nucleon and pion fields, 

respectively. The constants m , Ag
o

 and F  denote the nucleon mass, the axial vector 

coupling and the pion decay constant in the chiral limit, which arise after 

renormalization. The new scale associated with the mass of the nucleon, which does 

not vanish in the chiral limit as opposed to the case of the Goldstone bosons, brings a 

new difficulty when demanding consistency in the power counting of the specific 

diagram. Namely, loop diagrams involving the nucleon contribute also to lower order 

diagrams and therefore a consistent perturbative picture collapses. The first attempt to 

remedy this deficiency was formulated in terms of the Heavy Baryon Chiral 

Perturbation Theory (HBChPT). The basic idea of HBChPT is the separation of the 

nucleon momenta into a part which is close to the on-shell kinematics and a soft 

residual part, i.e. pkmvp +=  where 1,1 02 ≤= vv . The nucleon field is then 

expressed in terms of 

( ) ( )vv
ximvex += ⋅−ψ  

where ( )ψve ximv
v /+= ⋅+ 1

2
1  and ( )ψve ximv

v /−= ⋅+ 1
2
1 . As a consequence in 

HBChPT the power counting as in the mesonic sector is restored. The disadvantages 

of HBChPT are that higher order terms in the Lagrangian due to the 
m
1  expansion 

become increasingly complicated and not all the scattering amplitudes resulting from 

such a Lagrangian show the correct analytic behavior in the low-energy region.  
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Recently, the formulation of the manifestly Lorentz-invariant baryon ChPT 

was developed in Refs. [11, 12, 13, 14]. It is constructed to utilize the advantages of 

the mesonic ChPT and HBChPT while at the same time avoiding their disadvantages. 

The technique associated with this formulation is the so-called “infrared 

regularization”. The basic idea of this technique is to separate the loop integral 

containing the nucleon into two parts, an infrared singular and regular part. The 

infrared singular part contains fractional powers of the meson masses, whereas the 

infrared regular part involves fractional powers of the nucleon mass. The power 

counting is valid for the infrared singular part, but not for the infrared regular part. 

One therefore surmounts the problem of power counting by absorbing the infrared 

regular part into a redefinition of the LECs. Another renormalization technique is also 

available as proposed in Refs. [27, 28, 29], namely, the “Extended On-Mass-Shell” 

(EOMS) formalism. 

The mesonic ChPT, especially in the ππ  interaction, has achieved impressive 

success as the EFT of the strong interaction at low energies. In baryonic ChPT, the 

recent development of the manifestly Lorentz-invariant technique has tremendously 

improved the previous analysis of ChPT. The electromagnetic form factors of baryons 

as well as other baryonic properties have been studied. The further inclusion of vector 

mesons in baryon ChPT successfully improved the description of the electromagnetic 

nucleon form factors up to approximately 22 GeV4.0≈Q  as shown in Ref. [29]. Open 

questions concerning the inclusion of other additional degrees of freedom like the 

( )1232Δ  resonance are currently studied with the hope to further extend the kinematic 

region, where ChPT is applicable. 
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3. Electromagnetic Form Factors  
of Nucleon and Hyperons 

 

 In this section, we present the approach used in order to study nucleon and 

hyperons. Restricted to the electromagnetic interaction, the important observables that 

can be studied are the electromagnetic form factors. Other observables, such as, 

magnetic moment of baryons, the charge and magnetic radii are related to such form 

factors. In case of nucleon, we follow the consideration in Ref. [30].  Extension to 

hyperons cases are presented. 

 

3.1 Electromagnetic Form Factors of Nucleon 
The lowest-order elastic electron-nucleon scattering process as an important 

tool in order to study the electromagnetic structure of nucleon is shown in Fig. 3.1. 
The four-momenta of the incident and scattered electron are ( )pp v,ε=  and 

( )pp ′′=′ v,ε , respectively. ( )PEP
v

,=  and ( )PEP ′′=′
v

,  are the four-momenta of the 
nucleon in the initial and final state. The four-momentum transfer carried by a photon 
is PPppq −′=′−= . The characteristics of this scattering process is such that the 
square of the four-momentum transfer is space-like, i.e. 02 <q . Usually one defines a 
quantity 2Q , which is positive, i.e. 022 >−= qQ . 

 

Fig. 3.1 Lowest-order electron-nucleon scattering. 
 

The invariant amplitude of this process is of the form 

( ) ( ) ( ) ( ) ( )PNJPN
q
epup eme 0u~ 2

2

e
μ

μγ ′′ ,    (3.1) 
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where ( ) ( )pupue ′e,  refers to the electron Dirac spinors and ( ) ( ) ( )PNJPN em 0μ′  is 
the nucleon current matrix element. From considerations of Lorentz covariance, 
charge and parity conservation, the most general form of the nucleon current matrix 
element is 

( ) ( ) ( ) ( ) ( ) ( ) ( )PuQFq
M
iQFPuPNJPN N

N

N

N
Nem ⎥

⎦

⎤
⎢
⎣

⎡
+′=′ 2

2
2

1 2
0 ν

μνμμ σγ , (3.2) 

where ( )2
1 QF N  and ( )2

2 QF N  are the Dirac and Pauli form factors, respectively. Their 
normalizations are such that at zero recoil ( )02 =Q  ( )2

1 QF N  is the charge of the 
nucleon (in units of the elementary charge), whereas ( )2

2 QF N  is the anomalous 
magnetic moment ( Nκ ) of the nucleon 

( ) ( )
( ) ( ) 913.10,00

,793.10,10

21

21

−===

===

n
nn

p
pp

FF

FF

κ

κ
   (3.3) 

where Nκ  is given in units of the nuclear magneton. 
In the laboratory frame, where the target nucleon is at rest, and neglecting the 

small mass of the electron, the energy ε ′  of the outgoing electron scattered by an 
angle θ  off the target of mass M  is 

2
sin21 2 θε
εε

M
+

=′  

with the momentum transfer squared as, 
2

sin4 22 θεε ′=Q . For the simplest case of a 

spinless, point-like target the differential cross section reduced to the “Mott” 

differential cross section with the inclusion of the recoil factor 
ε
ε ′  as 

2
cos

2
sin4

2

42

2

Mott

θ
ε
ε

θε

ασ ′
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ωd

d        (3.4) 

Extension to the case of spin- 1/2 target particle, but still point-like, leads to the well-
known modification of the Mott formula  

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ω

=
Ω 2

tan2
4

1 2
2

2

Mott

θσσ
M
Q

d
d

d
d    (3.5) 

The term proportional to 
2

tan2 θ  results in an increase of the differential cross section 

at backward angles. It is due to the magnetic scattering of the spin of both projectile 
and target. For a spin-1/2 target with an extended structure and an anomalous 
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magnetic moment, as is the case for the nucleon, the differential cross section is 
referred to as “Rosenbluth cross section” [31] 

( )( ) ( )( ) ( ) ( )( ) ⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ +++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ω

=
Ω 2

tan2
4

222
2

2
1

22
22

2
22

1
Mott

θσσ QFQFQF
M
QQF

d
d

d
d NNN

N

N    (3.6) 

where ( )2
1 QF N  and ( )2

2 QF N  are the Dirac and Pauli form factors.  
Instead of working with ( )2

1 QF N  and ( )2
2 QF N , it is convenient to consider 

linear combinations constructed as 

( ) ( ) ( )
( ) ( ) ( )2

2
2

1
2

2
22

2
2

1
2 ,

4

QFQFQG

QF
M
QQFQG

NNN
M

N

N

NN
E

+=

−=
        (3.7) 

which are the “Sachs form factors”. With Eq. (3.3) the normalizations for the Sachs 
form factors of the nucleon are 

( ) ( )
( ) ( ) 913.10,00

,793.20,10

−===

===

n
n
M

n
E

p
p
M

p
E

GG

GG

μ

μ
          (3.8) 

where Nμ  are the nucleon magnetic moments. As for ( )2
1 QF N  and ( )2

2 QF N , the Sachs 
form factors can be related to the current matrix elements of Eq. (3.2). The 
interpretation of the Sachs form factors become simple when we restrict to a specific 
frame of reference, namely, the “Breit frame”. For the elastic electronnucleon 
scattering process the Breit frame coincides with the center-of-mass frame. In this 
particular frame the energy transfer vanishes and thus the photon carries the four-
momentum ( )qq v,0=μ  and therefore 22 qQ v= . The incoming electron has momentum 

2
qp
v

v +=  and the incoming nucleon has opposite momentum 
2
qP
vv

−= , while in the 

final state the outgoing electron and nucleon have momenta 
2
qp
v

v −=′  and 
2
qP
vv

+=′ , 

respectively. In the Breit frame, the corresponding matrix elements of Eq. (3.2) are 
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where s  and s′  are the spin orientations of the incoming and outgoing nucleon, 
respectively, while sχ  and s′χ  refer to the two-component Pauli spinors. In terms of 
the Sachs form factors the Rosenbluth formula for elastic scattering of an electron on 
the nucleon target becomes 
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Elastic electron-nucleon scattering is the basic tool in order to extract the 
electromagnetic form factors of the nucleon. Due to the finite lifetime of the neutron, 
one faces the difficulty in constructing free neutron targets. Instead, deuteron or 3He 
targets have been used in which an additional subtraction of the effect due to the 
presence of the protons is needed in the analysis. As known from early experiments, 
the electromagnetic form factors of the nucleon, except for the neutron charge form 
factor ( )2QGN

E , are well described by the dipole parameterization 

( ) ( ) ( ) ( )2
22

2 QGQGQGQG D
n

n
M
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p
Mp

E ≈≈≈
μμ

         (3.11) 

where the dipole form factor is 
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The electromagnetic proton form factors can be directly obtained by 
measuring the differential cross section of the elastic electron-proton scattering 
process. Alternatively, Hand, Miller and Wilson [32] suggested the extraction of 

( )2QG p
E  and ( )2QG p

M  rather than the Dirac and Pauli form factors from the differential 
cross section by rewritten Eq. (3.10) as 

( ) ( ) ( )( ) ( )( )2222

Mott

1 QGQG
dd

dd p
E

p
MR εττε

σ
σσ +=+=

Ω
Ω

≡           (3.13) 

where Rσ  is the reduced cross section, 2

2

4 pM
Q

=τ  and the linear polarization of the 

virtual photon is 

( )
1

2

2
tan121

−

⎥⎦
⎤

⎢⎣
⎡ ++=

θτε            (3.14) 

By fixing 2Q , the plots of the measured quantities Rσ  and ε  for different 
combinations of ( )εθ ,  can be fitted by a linear polynomial in which the slope is 

( )( )22QG p
E  and the intercept on the Rσ -axis is. This method is referred to as 

“Rosenbluth separation technique”.  
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However, at large 2Q  the Rosenbluth separation for ( )2QG p
E  suffers from the 

increasing systematic uncertainties with increasing values of 2Q . ( )Dp

p
M

G
G
μ

 can be well 

measured up to 22 GeV30~Q , whereas the data for 
D

p
E

G
G  scatter and have large 

uncertainties for values above 22 GeV1~Q . 
Akhiezer, Rozentsweig and Shumshkevich [33] already showed in 1958 that a 

considerable increase in accuracy of the nucleon charge form factor measurement can 
be achieved by scattering polarized electrons off a polarized nucleon target. However, 
it took several decades before such experiments were technically feasible. In the 
polarization transfer experiment, e.g. pepe rr

→ , the polarization of the final proton is 
measured in addition. The longitudinal part lP  parallel to the proton momentum and 
the transverse part tP  of the proton polarization are given by 
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with 

( ) ( ) ( )222
0 2

tan121 p
M

p
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⎡ +++=

θττ           (3.16) 

Both lP  and tP  can be measured by the polarimeter and their ratio gives rise to  

2
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In this way the systematic uncertainties in extracting the ratio of p
M

p
E

G
G  are minimized. 

Obviously, the polarization measurements lead to a significant improvement of the 
experimental data. An important feature detected by the polarization transfer 

experiments is the observed linear decline of p
M

p
Ep

G
Gμ

 as 2Q  increases. This is in clear 

contradiction to the results obtained by the Rosenbluth separation technique. Due to 
occurence of large systematic errors of ( )2QG p

E  at large 2Q  with the Rosenbluth 
extraction, attempts have been made in order to improve the data. A careful reanalysis 
of the old Rosenbluth data was done. Results from a high-precision Rosenbluth 
extraction especially designed for the measurement in Hall A at Jefferson Lab were 
reported by Qattan et al. [34]. All of these recent analyses of the Rosenbluth data 
showed agreement with the previous Rosenbluth results. Therefore, the origin for the 
discrepancy of results between Rosenbluth separation and polarization technique must 
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be due to other mechanisms. One believes that such mechanisms is the hard two-
photon exchange as shown in Fig. 3.2 

 

Fig. 3.2 Feynman diagrams for the two-photon exchange. 

 

3.2. Chiral Quark Lagrangian 
Motivated from ChPT, the chiral quark Lagrangian qU  (up to order 4p ), 

which dynamically generates the dressing of the constituent quarks by mesonic 

degrees of freedom, consists of two primary pieces q  and U : 

( ) ( ) ( ) ( ) ( ) KK +=++++=+= 24321 ,, UUqqqqqUqqU      (3.18) 

The superscript ( )i  attached to ( )
( )i

Uq  denotes the low energy dimension of the 

Lagrangian:  

( )

( )

( ) ( ) [ ]

( ) [ ]
( ) { }

[ ][ ] ,,,
2

ˆ
2

ˆ,
42

,h.c.,
2

,
8

,
4

h.c.
4

,
2
1

,
4

10

8764

103

64
2

22

51

2
2

K

K

K

+−

++=

++=

++++−=

⎥⎦
⎤

⎢⎣
⎡

/+−/=

+=

+

+
+

+
++

+

+

+

+

qFDDqe

qFqeqFqeqFqe

qDFDq
m

di

qFq
m

cquuiqcqDDquu
m
c

qugmDiq

uuF

q

q

q

q

U

μν
μνα

α

μν
μν

μν
μν

μν
μν

ν
μν

μ

μν
μν

νμ
μννμ

νμ

μ
μ

σ

χσχσσχ

σσ

γ

χ

 

where +++ −= χχχ
3
1ˆ , the symbols , [ ] and { } denotes the trace over flavor 

matrices, commutator and anticommutator, respectively. We show here only the terms 
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involved in the calculation of the dressed electromagnetic quark operator. Also we 

have included the vector mesons and the detailed form of the chiral Lagrangian can be 

found in Ref. [30]. The couplings m  and g  denote the quark mass and axial charge in 

the chiral limit, ic , id  and id  are the second-, third- and fourth-order low-energy 

coupling constants, respectively, which encode the contributions of heavy states. 

Parameter m  is counted as as quantity of order ( )1O  in the chiral expansion. 

The quark field is q , and the octet of pseudoscalar fields are 
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which is contained in the non-linear representation of SU(3) matrix 

⎟
⎠
⎞

⎜
⎝
⎛==

F
iuU φexp2 , where F  is the octet decay constant. We introduce the standard 

notations [35, 36, 37]  

[ ]
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−−∂=Γ
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±

B
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The fields μR  and μL  include external fields (electromagnetic μA , weak, etc.): 

K+= μμ eQAR  , K+= μμ eQAL  where { }3/1,3/1,3/2diag −−=Q  is the quark 

charge matrix. The tensor +
μνF  is defined as †† uQuFQuFuF μνμνμν +=+  where 

μννμμν AAF ∂−∂=  is the conventional photon field strength tensor. Here 

{ }smmmdiag ˆ,ˆ,ˆ=  is the mass matrix of current quarks (we work in the isospin 

symmetry limit with MeV7ˆˆˆ === mmm du  and the mass of the strange quark sm̂  is 

related to the nonstrange one as mms ˆ25ˆ = ). 
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The quark vacuum condensate parameter is denoted by 2/00 FuuB −= . To 

distinguish between constituent and current quark masses we attach the symbol ˆ 

(“hat”) when referring to the current quark masses. We rely on the standard picture of 

chiral symmetry breaking ( FB >> ). In leading order of the chiral expansion the 

masses of pseudoscalar mesons are given by BmM ˆ22 =π , ( )BmmM sK ˆˆ2 += , 

( )BmmM sˆ2ˆ
3
22 +=η . In the numerical analysis we will use: MeV57.139=πM , 

MeV677.493=KM  (the charged pion and kaon masses), MeV75.574=ηM  and the 

canonical set of differentiated decay constants: MeV4.92=πF , 22.1=
πF

FK  and 

3.1=
π

η

F
F

 [38]. 

 

3.3. Dressing of the Quark Operators 
Any bare quark operator (both one- and two-body) can be dressed by a cloud 

of pseudoscalar mesons and heavy states in a straightforward manner by use of the 

effective chirally-invariant Lagrangian qU .  

To illustrate the idea of such a dressing we consider the Fourier-transform of 

the electromagnetic quark operator: 

( ) ( )
( ) ( ) ( )xqQxqxJ

xJexdqJ
bare

em

bare
em

iqxbare
em

μμ

μμ

γ=

=
−

∫
,

,
4

, ,
              (3.20) 

In Fig. 3.3 we display the tree and loop diagrams which contribute to the dressed 

electromagnetic operator dress
emJ ,μ  up to fourth order, which come from the chiral quark 

Lagrangian. Additional diagrams including the vector-meson contributions are shown 

in Fig.3.4. 
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Fig. 3.3 Diagrams including pseudoscalar meson contributions to the electromagnetic 
quark transition operator up to fourth order. Solid, dashed and wiggly lines refer to 
quarks, pseudoscalar mesons and the electromagnetic field, respectively. Vertices 
denoted by a black filled circle, box and diamond correspond to insertions from the 
second, third and fourth order chiral Lagrangian. 
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Fig. 3.4 Diagrams including vector-meson contributions to the electromagnetic quark 
transition operator. Double-dashed lines correspond to vector mesons. The symbols V 
and T refer to the vectorial and tensorial couplings of vector mesons to quarks. 

 

Note, here we restrict our consideration to the one-body quark operator. The dressed 

quark operator ( )xJ dress
em,μ  and its Fourier transform ( )qJ dress

em,μ  have the following forms 
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where qm  is the dressed constituent quark mass generated by the chiral Lagrangian 

(see details in Ref. [30]);  

Here ( ) ( ) ( )222 ,, qfqfqf s
D

d
D

u
D  and ( ) ( ) ( )222 ,, qfqfqf s

P
d

P
u

P  are the Dirac and 

Pauli form factors of u , d  and s  quarks and can be calculated directly from 
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diagrams in Fig. 3.3 and Fig. 3.4. Here we use the appropriate sub- and superscripts 

with a definite normalization of the set of ( ) q
q

D ef ≡0  (quark charges) due to charge 

conservation. Note, that the dressed quark operator satisfies current conservation: 

( ) 0, =∂ xJ dress
emμ

μ . Evaluation of the diagrams in Fig.3.3 is based on the infrared 

dimensional regularization (IDR) suggested in Ref. [35] to guarantee a 

straightforward connection between loop and chiral expansion in terms of quark 

masses and small external momenta. 

To calculate the electromagnetic 
++

→
2
1

2
1  transitions between baryons we 

project the dressed quark operator between the corresponding baryon states. The 

master formula is: 
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where ( )2
1 qF B  and ( )2

2 qF B  are the Dirac and Pauli baryon form factors, ( )pB  and 

( )puB  are the baryon state and spinor, respectively, normalized as 

( ) ( ) ( ) ( )
( ) ( ) ,2

,22 33

BBB

B

mpupu
ppEpBpB

=

′−=′ vvδπ
        (3.22) 

with 22 pmE BB
v+=  being the baryon energy and Bm  the baryon mass. We express 

the matrix elements of the dressed quark operator in terms of the matrix elements of 

the bare operators for vector ( )0,
bare

qJμ  and tensor ( )0,
bare

qJμν  currents defined as 
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In general, due to Lorentz and gauge invariance, the matrix elements in Eq. (3.21) can 

be written as  
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(3.22) 

where ( )( )2
21 qF Bq  and ( )( )2

21 qGBq  are the Pauli and Dirac form factors describing the 

distribution of quarks of flavor sduq ,,=  in the baryon B . Finally, the baryon form 

factors ( )2qF B
i  with 2,1=i  can be separated into a bare part ( )2qF bareB

i  and a meson 

cloud part ( )2qF cloudB
i  as 
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where qe  are the electric quark charges.  

Eqs. (3.21)-(3.23) contain our main result: we perform a model-independent 

factorization of the effects of hadronization and confinement contained in the matrix 

elements of the bare quark operators ( )0,
bare

qJμ  and ( )0,
bare

qJμν  and the effects dictated by 

chiral symmetry (or chiral dynamics) which are encoded in the relativistic form 

factors ( )2qf q
D  and ( )2qf q

P . Due to this factorization the calculation of ( )2qf q
D  and 

( )2qf q
P , on one side, and the matrix elements of ( )0,

bare
qJμ  and ( )0,

bare
qJμν , on the other 

side, can be done independently. In particular, in a first step we derived a model-

independent formalism based on the ChPT Lagrangian, which is formulated in terms 

of constituent quark degrees of freedom, for the calculation of ( )2qf q
D  and ( )2qf q

P  

(see their explicit forms in Appendix C of Ref. [30]). 

The calculation of the matrix elements of the bare quark operators one can 

utilized the quark models based on specific assumptions about hadronization and 

confinement. Here we considered a treatment of valence quark degrees of freedom by 

using a parameterization of the bare quark distributions in the baryon (nucleon) with 

taking into account model-independent constraints dictated by certain symmetries: 
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gauge, isospin and chiral invariance, as was done in Ref. [30]. Another possibility as 

we have done is in  Ref. [39] when we calculated valence quark form factors 

explicitly with the use of relativistic quark model [40]-[42] based on a specific ansatz 

of quarks in baryons. In this report we complete our analysis started in Ref. [30] 

where we presented a comprehensive analysis of electromagnetic nucleon properties 

including magnetic moments, radii and form factors. However, for the case of 

hyperons we restricted only to the calculation of magnetic moments. 

 

3.4. Matrix Elements of the Bare Quark Operators 
We will modeled the matrix elements of the bare quark operators using certain 

symmetry constraints leading to a set of relationships between the nucleon and 

corresponding u -, d - and s -quark form factors at zero momentum transfer. This is 

and extension of the original idea of Ref. [30] to be applied to the case of hyperon 

form factors. 

In case of nucleons one can derive the constraints on the form factors arising 

from charge conservation, isospin invariance and infrared-singular structure of QCD 

[30]: 
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where Ag  and Nm
o

 are the axial charge and the mass of the nucleon in the chiral limit 

and du mmm ==  is the dressed non-strange constituent quark mass in the isospin 

limit. 

Restricting our consideration to the one-body quark operator and by using 

SU(6)-symmetry relations one can relate the Dirac and Pauli form factors describing 

the distribution of quarks of flavor sduq ,,=  in the baryon “ B ”, that is ( )
BqF 21  and 

( )
BqG 21  to the bare (or valence) quark form factors. In particular, one can introduce the 

bare Dirac ( qF1 , qG1 ) and Pauli ( qF2 , qG2 ) form factors of the quark of flavor q  as 
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  (3.24) 

The Sachs form factors of the quark of flavor q are 
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are the contributions to the Sachs form factors associated with the expectation values 

of the vector and tensor currents, respectively. Finally, the baryonic form factors 

( )tF Bq
i  are expressed in term of quark form factors ( )( )tF ME

q  and ( )( )tG ME
q  by : 
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  (3.27) 

where ( )tF E
q  and ( )tF M

q  are the quark Sachs form factors and 24 B
B m

t
=τ . In addition 

to the strict evaluation of SU(6) we have introduced the additional parameter Bqχ  for 

each quark of flavor q . The interpretation for adding these factors is such that to 

allow the quark distributions for hyperons to be different from that for the nucleons. 

In the case of the nucleons we set 1=Bqχ . The values for Bq
Eα  and Bq

Mα  for the 

baryon octet as derived from SU(6)-symmetry relations are given in Table 3.1. 

 

 

Table 3.1 SU(6) couplings Bi
Eα  and Bi

Mα  
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4. Results and Conclusion 
 

In Ref. [30] we considered only nucleon form factors and therefore, the Sachs 

form factors of u - and d -quark. In particular, we modeled the u - and d -quark form 

factors by the dipole characteristics with damping functions of an exponential form. 

This phenomenological form is required to reproduce the deviation of the 

electromagnetic form factors of the nucleon from the dipole fit as evident from recent 

experimental measurements. In this paper we use the same parametrization for s-

quark. Therefore, for the Sachs form factors of u -, d - and s -quark we use the 

parameterization 
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where ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2exp

qE

E
q

tt
λ

ρ  and ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2exp

qM

M
q

tt
λ

ρ . Note, that in Ref. [34] a similar 

parametrization of the nucleon form factors has been considered. In Ref. [35] the 

damping functions ( )tρ  have been parametrized with constant values. For 

convenience we suppose that the quark Sachs form factors degenerate at zero recoil 

according to SU(6) symmetry. In other words all effects of possible SU(6) symmetry-

breaking are encoded in the coefficients Bqχ . Therefore, the parameters F
qμ  and G

qμ  

are fixed by the SU(6) symmetry and and by the set of other symmetry constraints as: 

m
m

g
g NAG

q
F
q

o2

5
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== μμ  

The remaining parameters ( )MqEq Λ,γ  and ( )MqEλ  are free parameters. In the case of 

u - and d -quark the corresponding parameters ( ( )MuEdu Λ,, γγ  and ( )MdEλ ) have been 

fixed from the consideration of the full momentum dependence of the nucleon 
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electromagnetic form factors at intermediate and high value of momentum transfer 

squared: 

. 2.596  1.081,  
1.0722  0.9278,   0.9234,   0.8616,  

2.2954,   7.3367,   0.9996,   2.0043,  

du ==
=Λ=Λ=Λ=Λ
====

γγ

λλλλ

dMuMdEuE

dMuMdEuE

 

The remaining parameters relevant for the strange quark sMsEsMsE λλ ,,, ΛΛ  and sγ  

can be fixed or varied using the following arguments. A general remark is that an 

information about hyperon form factors (and as consequence about strange valence 

form factors) is very poor: we know only their normalization due charge conservation 

or from a knowledge of magnetic moments. Therefore, for some parameters we use 

typical values. In particular, we fix 1=sγ  (which is typical for u  and d  quarks). For 

the cutoff parameters sEΛ  and sMΛ  we use typical value 1 GeV guaranteeing the 

correct 2
1
t

 scaling of the baryon form factors at large t . A more nontrivial situation is 

with parameters sEλ  and sMλ  controlling a deviation of strange quark (or hyperons) 

form factors from the dipole fit. To our knowledge based on analysis of nucleon form 

factors, these parameters can be roughly varied from 1 to 10 GeV. This gives a major 

ambiguity in the description of hyperons form factors. 

Finally we specify the parameters Bqχ  encoding the effects of SU(6) 

symmetry breaking and in the chiral quark Lagrangian. They have been fixed in Ref. 

[30] from the description of magnetic moments of the baryon octet hyperons and 

nucleon slopes. In particular, in Ref. [30] we considered two scenarious: SU(6) 

symmetric case (Set I) and beyond SU(6) symmetry (Set II). In case of the Set I the 

couplings Bqχ  are trivially equal to 1. For the Set II we got: 

 0.988    
0.694,  0.633,    
0.259, 0.963, 

==

===

===

ΣΛΣΛ

ΞΞΞ

ΣΣΣ

du

sdu

sdu

χχ

χχχ

χχχ

 

relying on isospin symmetry. In the isotriplet 0, ΣΣ+  and −Σ  shares the same set of 

Â§q for the quark of flavor q , while 0Ξ  and −Ξ  contains the same set of qΞχ . The 
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parameters uΣΛχ  and dΣΛχ  are directly related to the Λ−Σ  magnetic transition 

moment. 

In the numerical calculations we use the same set of parameters in chiral quark 

Lagrangian as fixed in Ref. [30]. In particular, for both sets (Set I and Set II) we used 

the unified set of parameters 1042 ,,,, dccmg  and 10e : 

3-
10

2-
10

1-
4

1-
2

GeV 0.039

,GeV 1.110 
,GeV 1.693

,GeV 2.502  
GeV, 0.42

,0.9 

=

=

=

=

=
=

e

d
c

c
m
g

 

For the parameters 76 ,~ ec  and 8e  we used a slightly different values in Set I and Set II 

because they have been fixed from the fit of the magnetic moments of proton, neutron 

and Λ -hyperon: 

Set I 

-3
8

-3
76 GeV 0.013,GeV 0.473,0.593 ~ =−== eec  

Set II 

-3
8

-3
76 GeV 0.031,GeV 0.649,0.569 ~ =−== eec  

Here ( ) 666 ˆˆ216~ eBmmmcc s+−=  and the couplings 87610 ,,, eeed  and 10e  refer to the 

renormalized coupling constants (see details in Ref. [30]). 

We present here the obtained results for electromagnetic properties of hyperons. For 

completeness we also present our results for magnetic moments and slopes of 

nucleons. The resulting values for the magnetic moments of the baryon octet for this 

case (Set I) are shown in Table 4.1, where reasonable agreement with data is obtained.  
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Table 4.1 Magnetic moments of the baryon octet (in units of the nucleon magneton) 

 

Due to our analysis, meson cloud contributions to the total values of the magnetic 

moments are about 5 − 30% depending on the baryon. 

 Finally, the charged and magnetic form factors of hyperons are present in Fig. 

4.1 and Fig. 4.2, respectively. 

 In conclusion, we have reported the study of the electromagnetic properties of 

hyperons in the Perturbative Chiral Quark Model (PCQM). By following the same 

technique as was done in Ref.[30] for the electromagnetic properties of nucleon, this 

serves as an input for further study on hyperons where available data are not 

completed. Meson cloud shows significant contribution as expected from previous 

analysis, however, this contribution strongly dependent on the type of hyperons.  

 For the hyperons magnetic moments, two sets of parameters are reported. One 

of these sets are chosen so that the exact total magnetic moments reproduced the 

available experimental data, while another set relaxes these constrains. However, 

results obtained from these two sets are not much different. Furthermore, we have 

predicted the value of the magnetic moment of 0Σ , which is not reported. 

 The electromagnetic form factors of hyperons are also reported. Due to the 

lack of experimental data, the best we can do is to model the possibility of the form 

factors by varying the cutoff parameters introduced in our analysis. 
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Fig. 4.1 The charge form factors of 000 ,,,, ΞΛΣΣΣ −+  and −Ξ  baryons. The shaded 
region shows the range of the form factors with the parameter sEλ  being varied in the 
interval from 1 to 10 in units of GeV. 
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Fig. 4.2 The magnetic form factors of 000 ,,,, ΞΛΣΣΣ −+  and −Ξ  baryons. The shaded 
region shows the range of the form factors with the parameter sMλ  being varied in the 
interval from 1 to 10 in units of GeV. 
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I. INTRODUCTION

Analysis of the electromagnetic form factors of light baryons helps to understand their internal structure. In
particular, baryons as extended objects are characterized by a set of electromagnetic properties: magnetic moments,
radii and form factors. At present, most of these quantitie are well known for nucleons: proton and neutron. For
hyperons data rarely exist with the exception of the magnetic moments. A few years ago, the charge radius of the Σ−

has been measured by the SELEX Collaboration at FNAL [1] and WA89 Collaboration at CERN [2]. It gave a first
estimate of the charge form factor of the hyperon at low momentum transfers. On the other hand, a systematic study
of electromagnetic radii and form factors of hyperons can help to investigate an impact of strangeness on the hadronic
properties. Therefore, a comprehensive theoretical study of electromagnetic properties of hyperons is important and
promising task. Calculation of electromagnetic properties of hyperons have been carried out in the framework of
different approaches: QCD sum rules [3], Lattice QCD [4], Chiral Perturbation Theory (ChPT) [5], QCD string
approach [6], 1/Nc-expansion [7], different types of soliton and quark models [8]-[20], etc.

In the manuscript we proceed as follows. First, in Section II, we discuss basic notions of our approach. We
derive the chiral Lagrangian motivated by baryon ChPT [21]-[28], and formulate it in terms of quark and mesonic
degrees of freedom. Next, we use this Lagrangian to perform a dressing of the constituent quarks by a cloud of light
pseudoscalar mesons and by other heavy states, using the calculational technique developed in Ref. [21]. We derive
dressed transition operators within a proper chiral expansion, which are in turn relevant for the interaction of quarks
with external fields in the presence of a virtual meson cloud. Then we discuss the calculation of matrix elements of
dressed quark operators between baryons states using a model-independent formalism based on symmetry constraints
applied previously for the case of nucleon form factors [19]. In Section III, we present our results for electromagnetic
properties of hyperons. In Section IV we present a short summary of our results.

II. APPROACH

A. Chiral Lagrangian

The chiral quark Lagrangian LqU (up to order p4), which dynamically generates the dressing of the constituent
quarks by mesonic degrees of freedom, consists of two primary pieces Lq and LU :

LqU = Lq + LU , Lq = L(1)
q + L(2)

q + L(3)
q + L(4)

q + · · · , LU = L(2)
U + · · · . (1)

The superscript (i) attached to L(i)
q(U) denotes the low energy dimension of the Lagrangian:

L(2)
U =

F 2

4
〈uµuµ + χ+〉 , L(1)

q = q̄

[
i /D −m+

1

2
g /u γ5

]
q ,

L(2)
q = − c2

4m2
〈uµuν〉 (q̄ DµDν q + h.c. ) +

c4
4
q̄ i σµν [uµ, uν ] q +

c6
8m

q̄ σµν F+
µν q + · · · , (2)

L(3)
q =

id10

2m
q̄ [Dµ, F+

µν ]Dν q + h.c. + · · · ,

L(4)
q =

e6

2
〈χ+〉 q̄ σµν F+

µν q +
e7

4
q̄ σµν {F+

µν χ̂+} q +
e8

2
q̄ σµν 〈F+

µν χ̂+〉 q −
e10

2
q̄ [Dα, [Dα, F

+
µν ]]σµν q + · · · ,

where χ̂+ = χ+ − 1
3 〈χ+〉 , the symbols 〈 〉, [ ] and { } occurring in Eq. (2) denotes the trace over flavor matrices,

commutator and anticommutator, respectively. In Eq. (2) we display only the terms involved in the calculation of
the dressed electromagnetic quark operator. Also include vector mesons (see details in Ref. [19]). The detailed form
of the chiral Lagrangian can be found in Ref. [19]. The couplings m and g denote the quark mass and axial charge
in the chiral limit, ci, di and ei are the second-, third- and fourth-order low-energy coupling constants, respectively,
which encode the contributions of heavy states. Parameter m is counted as as quantity of order O(1) in the chiral
expansion.

Here q is the quark field, and the octet of pseudoscalar fields

φ =
8∑
i=1

φiλi =
√

2

 π0/
√

2 + η/
√

6 π+ K+

π− −π0/
√

2 + η/
√

6 K0

K− K̄0 −2η/
√

6

 (3)
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is contained in the SU(3) matrix U = u2 = exp(iφ/F ) where F is the octet decay constant. We introduce the standard
notations [21, 23, 25]

Dµ = ∂µ + Γµ, Γµ =
1

2
[u†, ∂µu]− i

2
u†Rµu−

i

2
uLµu

†, (4)

uµ = iu†∇µUu†, χ± = u†χu† ± uχ†u, χ = 2BM+ · · · .

The fields Rµ and Lµ include external fields (electromagnetic Aµ, weak, etc.): Rµ = eQAµ + · · · , Lµ = eQAµ + · · ·
whereQ = diag{2/3,−1/3,−1/3} is the quark charge matrix. The tensor F+

µν is defined as F+
µν = u†FµνQu+uFµνQu

†

where Fµν = ∂µAν − ∂νAµ is the conventional photon field strength tensor. Here M = diag{m̂, m̂, m̂s} is the mass
matrix of current quarks (we work in the isospin symmetry limit with m̂u = m̂d = m̂ = 7 MeV and the mass of the
strange quark m̂s is related to the nonstrange one as m̂s = 25 m̂).

The quark vacuum condensate parameter is denoted by B = −〈0|ūu|0〉/F 2 = −〈0|d̄d|0〉/F 2 . To distinguish between
constituent and current quark masses we attach the symbol ˆ(”hat”) when referring to the current quark masses. We
rely on the standard picture of chiral symmetry breaking (B � F ). In leading order of the chiral expansion the masses
of pseudoscalar mesons are given by M2

π = 2m̂B , M2
K = (m̂ + m̂s)B , M

2
η = (2/3)(m̂ + 2m̂s)B . In the numerical

analysis we will use: Mπ = 139.57 MeV, MK = 493.677 MeV (the charged pion and kaon masses), Mη = 574.75 MeV
and the canonical set of differentiated decay constants: Fπ = 92.4 MeV, FK/Fπ = 1.22 and Fη/Fπ = 1.3 [32].

B. Dressing of quark operators

Any bare quark operator (both one- and two-body) can be dressed by a cloud of pseudoscalar mesons and heavy
states in a straightforward manner by use of the effective chirally-invariant Lagrangian LqU . To illustrate the idea of
such a dressing we consider the Fourier-transform of the electromagnetic quark operator:

Jbare
µ, em(q) =

∫
d4x e−iqx jbare

µ, em(x) , jbare
µ,em(x) = q̄(x) γµQq(x) . (5)

In Fig.1 we display the tree and loop diagrams which contribute to the dressed electromagnetic operator Jdress
µ, em up

to fourth order. Additional diagrams including the vector-meson contributions are shown in Fig.2 of Ref. [19]. Note,
here we restrict our consideration to the one-body quark operator. An extension of our method to two-body quark
operators will be done in future.

The dressed quark operator jdress
µ, em(x) and its Fourier transform Jdress

µ, em(q) have the following forms

jdress
µ, em(x) =

∑
q=u,d,s

{
fqD(−∂2) [q̄(x)γµq(x)] +

fqP (−∂2)

2mq
∂ν [q̄(x)σµνq(x)]

}
(6)

Jdress
µ, em(q) =

∫
d4x e−iqx jdress

µ, em(x) =

∫
d4x e−iqx

∑
q=u,d,s

q̄(x)

[
γµ f

q
D(q2) +

i

2mq
σµν q

ν fqP (q2)

]
q(x) ,

where mq is the dressed constituent quark mass generated by the chiral Lagrangian (2) (see details in Ref. [19]);
fuD(q2), fdD(q2), fsD(q2) and fuP (q2), fdP (q2), fsP (q2) are the Dirac and Pauli form factors of u, d and s quarks. Here
we use the appropriate sub- and superscripts with a definite normalization of the set of fqD(0) ≡ eq (quark charges)
due to charge conservation. Note, that the dressed quark operator satisfies current conservation: ∂µ jdress

µ, em(x) = 0.
Evaluation of the diagrams in Fig.1 is based on the infrared dimensional regularization (IDR) suggested in Ref. [21]
to guarantee a straightforward connection between loop and chiral expansion in terms of quark masses and small
external momenta. We relegate the discussion of the calculational technique to Ref. [19].

To calculate the electromagnetic transitions between baryons we project the dressed quark operator between the
corresponding baryon states. The master formula is:

〈B(p′)| Jdress
µ, em(q) |B(p)〉 = (2π)4 δ4(p′ − p− q) ūB(p′)

{
γµ F

B
1 (q2) +

i

2mB
σµνq

ν FB2 (q2)

}
uB(p)

= (2π)4 δ4(p′ − p− q)
∑

q=u,d,s

{
fqD(q2) 〈B(p′)| jbare

µ,q (0) |B(p)〉+ i
qν

2mq
fqP (q2) 〈B(p′)| jbare

µν,q (0) |B(p)〉
}
, (7)

where FB1 (q2) and FB2 (q2) are the Dirac and Pauli baryon form factors, B(p) and uB(p) are the baryon state and
spinor, respectively, normalized as

〈B(p′)|B(p)〉 = 2EB (2π)3 δ3(~p− ~p ′) , ūB(p)uB(p) = 2mB (8)
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with EB =
√
m2
B + ~p 2 being the baryon energy and mB the baryon mass. Eq. (7) deals with the diagonal 1

2

+ → 1
2

+

transitions. The extension to the nondiagonal transitions and transitions involving higher spin states like the ∆(1232)
isobar is straightforward (see Ref. [20]). In Eq. (7) we express the matrix elements of the dressed quark operator in
terms of the matrix elements of the bare operators for vector jbare

µ,q (0) and tensor jbare
µν,q (0) currents defined as

jbare
µ,q (0) = q̄(0) γµ q(0) , jbare

µν,q (0) = q̄(0)σµν q(0) . (9)

In general, due to Lorentz and gauge invariance, the matrix elements in Eq. (7) can be written as

〈B(p′)| jbare
µ,q (0) |B(p)〉 = ūB(p′)

{
γµ F

Bq
1 (q2) +

i

2mB
σµν q

ν FBq2 (q2)

}
uB(p) , (10)

i
qν

2mq
〈B(p′)| jbare

µν,q (0) |B(p)〉 = ūB(p′)

{
γµG

Bq
1 (q2) +

i

2mB
σµν q

ν GBq2 (q2)

}
uB(p) ,

where FBq1(2)(q
2) and GBq1(2)(q

2) are the Pauli and Dirac form factors describing the distribution of quarks of flavor

q = u, d, s in the baryon B. Finally, the baryon form factors FBi (q2) with i = 1, 2 can be separated into a bare part
FB bare
i (q2) and a meson cloud part FB cloud

i (q2) as

FBi (q2) = FB bare
i (q2) + FB cloud

i (q2)

FB bare
i (q2) =

∑
q=u,d,s

eq F
Bq
i (q2) , (11)

FB cloud
i (q2) =

∑
q=u,d,s

[(fqD(q2)− eq)FBqi (q2) + fqP (q2)GBqi (q2)]

where eq are the electric quark charges.
Eqs. (7)-(11) contain our main result: we perform a model-independent factorization of the effects of hadronization

and confinement contained in the matrix elements of the bare quark operators jbare
µ,q (0) and jbare

µν,q (0) and the effects

dictated by chiral symmetry (or chiral dynamics) which are encoded in the relativistic form factors fqD(q2) and fqP (q2).
Due to this factorization the calculation of fqD(q2) and fqP (q2), on one side, and the matrix elements of jbare

µ,q (0) and

jbare
µν,q (0), on the other side, can be done independently. In particular, in a first step we derived a model-independent

formalism based on the ChPT Lagrangian, which is formulated in terms of constituent quark degrees of freedom, for
the calculation of fqD(q2) and fqP (q2) (see their explicit forms in Appendix C of Ref. [19]).

The calculation of the matrix elements of the bare quark operators (10) can then be relegated to quark models
based on specific assumptions about hadronization and confinement. In preceding publications we considered two
possibilities for a treatment of valence quark degrees of freedom. In particular, in Ref. [19] we used a parametrization
of the bare quark distributions in the baryon (nucleon) with taking into account model-independent constraints
dictated by certain symmetries: gauge, isospin and chiral invariance. In Ref. [20] we calculated valence quark form
factors explicitly with the use of relativistic quark model [29]-[31] based on a specific ansatz of quarks in baryons. In
this paper we complete our analysis started in Ref. [19] where we presented a comprehensive analysis of electromagnetic
nucleon properties including magnetic moments, radii and form factors. For the case of hyperons we restricted to the
calculation of magnetic moments. Here we present the results for hyperon radii and form factors. As we said we will
use a parametrization for the bare quark distribution in baryons.

C. Matrix elements of the bare quark operators

The matrix elements of the bare quark operators should be calculated using specific model-dependent assumptions
about hadronization and confinement. As we mentioned before this possibility has been considered by us in Ref. [20]
where we presented a detailed analysis of magnetic moments of light baryons and properties of N → ∆γ transition.
In preceding paper [19] we modelled matrix elements of the bare quark operators using certain symmetry constraints
leading to a set of relationships between the nucleon and corresponding u- and d-quark form factors at zero momentum
transfer. Here we extend the idea of Ref. [19] on the case of hyperon form factors.

In case of nucleons one can derive the constraints on the form factors arising from charge conservation, isospin
invariance and infrared-singular structure of QCD [19]:

F pu1 (0) = Fnd1 (0) = 2 , F pd1 (0) = Fnu1 (0) = 1 , GNq1 (0) = 0 , (12)

F pu2 (0) = Fnd2 (0) , F pd2 (0) = Fnu2 (0) , Gpu2 (0) = Gnd2 (0) , Gpd2 (0) = Gnu2 (0)
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and

1 + F pu2 (0)− F pd2 (0) = Gpu2 (0)−Gpd2 (0) =

(
gA
g

)2
mN

m̄
, (13)

1 + Fnd2 (0)− Fnu2 (0) = Gnd2 (0)−Gnu2 (0) =

(
gA
g

)2
mN

m̄
(14)

where gA and
◦
mN are the axial charge and the mass of the nucleon in the chiral limit and m̄ = mu = md is the

dressed nonstrange constituent quark mass in the isospin limit.
Restricting our consideration to the one-body quark operator and by using SU(6)-symmetry relations one can relate

the Dirac and Pauli form factors describing the distribution of quarks of flavor q = u, d, s in the baryon ”B”, that is

FBq1(2) and GBq1(2) to the bare (or valence) quark form factors (see details in Ref. [19]). In particular, one can introduce

the bare Dirac (F q1 , G
q
1) and Pauli (F q2 , G

q
2) form factors of the quark of flavor q:

〈q(p′)| jbare
µ,q (0) |q(p)〉 = ūq(p

′)

{
γµ F

q
1 (q2) +

i

2mq
σµν q

ν F q2 (q2)

}
uq(p) , (15)

i
qν

2mq
〈q(p′)| jbare

µν,q (0) |q(p)〉 = ūq(p
′)

{
γµG

q
1(q2) +

i

2mq
σµν q

ν Gq2(q2)

}
uq(p) .

The Sachs form factors of the quark of flavor q are:

FEq (t) = FEq (t) +GEq (t) , FMq (t) = FMq (t) +GMq (t) , (16)

where

F{G}Eq (t) = F{G}q1(t)− t

4m2
F{G}q2(t) , F{G}Mq (t) = F{G}q1(t) + F{G}q2(t) , t = −q2 , (17)

are the contributions to the Sachs form factors associated with the expectation values of the vector and tensor

currents, respectively. Finally, the baryonic form factors FBqi (t) are expressed in term of quark form factors F
E(M)
q (t)

and G
E(M)
q (t) by [19]:

FBq1 (t) =
1

1 + τB

{
αBqE FEq (t) + αBqM χBq FMq (t)τB

}
,

FBq2 (t) =
1

1 + τB

{
−αBqE FEq (t) + αBqM χBq FMq (t)

}
,

GBq1 (t) =
1

1 + τB

{
αBqE GEq (t) + αBqM χBq GMq (t)τB

}
,

GBq2 (t) =
1

1 + τB

{
−αBqE GEq (t) + αBqM χBq GMq (t)

}
, (18)

where FEq (t) and FMq (t) are the quark Sachs form factors, τB = t/(4m2
B). In addition to the strict evaluation of

SU(6) we have introduced the additional parameter χBq for each quark of flavor q. The interpretation for adding
these factors is such that to allow the quark distributions for hyperons to be different from that for the nucleons.

In the case of the nucleons we set χBq = 1. The values for αBqE and αBqM for the baryon octet as derived from
SU(6)-symmetry relations are given in Table I.

In Ref. [19] we considered only nucleon form factors and therefore, the Sachs form factors of u- and d-quark. In
particular, we modeled the u- and d-quark form factors by the dipole characteristics with damping functions of an
exponential form. This phenomenological form is required to reproduce the deviation of the electromagnetic form
factors of the nucleon from the dipole fit as evident from recent experimental measurements. In this paper we
use the same parametrization for s-quark. Therefore, for the Sachs form factors of u-, d- and s-quark we use the
parameterization

FEq (t) =
ρEq (t)

[1 + t/Λ2
qE ]2

, FMq (t) = µFq
ρMq (t)

[1 + t/Λ2
qM ]2

,

GEq (t) = γq ρ
E
q (t)

t/Λ2
qE

[1 + t/Λ2
qE ]3

, GMq (t) = µGq
ρMq (t)

[1 + t/Λ2
qM ]2

, (19)
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where ρEq (t) = exp(−t/λ2
qE) and ρMq (t) = exp(−t/λ2

qM ). Note, that in Ref. [34] a similar parametrization of the

nucleon form factors has been considered. In Ref. [35] the damping functions ρ(t) have been parametrized with
constant values. For convenience we suppose that the quark Sachs form factors degenerate at zero recoil according
to SU(6) symmetry. In order words all effects of possible SU(6) symmetry-breaking are incoded in the coefficients
χBq [see Eq. (18]. Thefore, the parameters µFq and µGq are fixed by the SU(6) symmetry and and by the set of other
symmetry constraints [see Eqs. (13, (12) and Ref. [19]] as:

µFq = µGq =
3

5

(
gA
g

)2
mN

m̄
. (20)

The remaining parameters γq, ΛqE(M) and λqE(M) are free parameters. In the case of u- and d-quark the corresponding
parameters (γu, γd, ΛuE(M) and λdE(M)) have been fixed from the consideration of the full momentum dependence
of the nucleon electromagnetic form factors at intermediate and high value of momentum transfer squared:

λuE = 2.0043, λdE = 0.9996, λuM = 7.3367, λdM = 2.2954,

ΛuE = 0.8616, ΛdE = 0.9234, ΛuM = 0.9278, ΛdM = 1.0722 (21)

γu = 1.081, γd = 2.596 .

The remaining parameters relevant for the strange quark ΛsE , ΛsM , λsE , λsM and γs can be fixed or varied using
the following arguments. A general remark is that an information about hyperon form factors (and as consequence
about strange valence form factors) is very poor: we know only their normalization due charge conservation or from
a knowledge of magnetic moments. Therefore, for some parameters we use typical values. In particular, we fix γs = 1
(which is typical for u and d quarks). For the cutoff parameters ΛsE and ΛsM we use typical value 1 GeV guaranteeing
the correct 1/t2 scaling of the baryon form factors at large t. A more nontrivial situation is with parameters λsE and
λsM controling a deviation of strange quark (or hyperon) form factors from the dipole fit. To our knowledge based
on analysis of nucleon form factors, these parameters can be roughly varied from 1 to 10 GeV. This gives a major
ambiguity in the description of hyperon form factors.

Finally we specify the parameters χBq encoding the effects of SU(6) symmetry breaking and in the chiral La-
grangian (2). They have been fixed in Ref. [19] from the description of magnetic moments of the baryon octet
hyperons and nucleon slopes. In particular, in Ref. [19] we considered two scenarious: SU(6) symmetric case (Set I)
and beyond SU(6) symmetry (Set II). In case of the Set I the couplings χBq are trivially equal to 1. For the Set II
we got [19]:

χΣu = χΣd = 0.963, χΣs = 0.259,

χΞu = χΞd = 0.633, χΞs = 0.694,

χΣΛu = χΣΛd = 0.988 (22)

relying on isospin symmetry. In the isotriplet Σ+, Σ0, and Σ− shares the same set of χΣq for the quark of flavor q,
while Ξ0 and Ξ− contains the same set of χΞq. The parameters χΣΛu and χΣΛd are directly related to the Σ − Λ
magnetic transition moment.

In the numerical calculations we use the same set of parameters in chiral Lagrangian (2) as fixed in Ref. [19]. In
particular, for both sets (Set I and Set II) we used the unified set of parameters g, m, c2, c4, d̄10 and ē10:

g = 0.9 , m = 0.42 GeV, c2 = 2.502 GeV−1, c4 = 1.693 GeV−1, d̄10 = 1.110 GeV−2, ē10 = 0.039 GeV−3 . (23)

For the parameters c̃6, ē7 and ē8 we used a slightly different values in Set I and Set II because they have been fixed
from the fit of the magnetic moments of proton, neutron and Λ-hyperon:

Set I

c̃6 = 0.593 , ē7 = −0.473 GeV−3 , ē8 = 0.013 GeV−3 . (24)

Set II

c̃6 = 0.569 , ē7 = −0.649 GeV−3 , ē8 = 0.031 GeV−3 . (25)

Here c̃6 = c6−16m(2m̂+m̂s)Bē6 and the couplings d̄10, ē6, ē7, ē8 and ē10 refer to the renormalized coupling constants
(see details in Ref. [19]).
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III. RESULTS

Now we discuss obtained results for electromagnetic properties of hyperons. For completeness we also present our
results for magnetic moments and slopes of nucleons. Detailed analysis of the nucleon electromagnetic form factors
done in Ref. [19]).

The resulting values for the magnetic moments of the baryon octet for this case (Set I) are shown in Table II, where
reasonable agreement with data is obtained. Meson cloud contributions to the total values of the magnetic moments
are about 5− 30% depending on the baryon.

Finally, the charged and magnetic form factors of hyperons are present in Fig.2 and Fig.3, respectively.
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Table I. SU(6) couplings αBiE and αBiM .

αBuE αBdE αBdE αBuM αBdM αBsM

p 2 1 0 4
3 - 1

3 0

n 1 2 0 - 1
3

4
3 0

Λ0 1 1 1 0 0 1

Σ+ 2 0 1 4
3 0 - 1

3

Σ0 1 1 1 2
3

2
3 - 1

3

Σ− 0 2 1 0 4
3 - 1

3

Ξ− 0 1 2 0 - 1
3

4
3

Ξ0 1 0 2 - 1
3 0 4

3

Σ0Λ0 0 0 0 1√
3

- 1√
3

0

Table II. Magnetic moments of the baryon octet (in units of the nucleon magneton µN )

Set I Set II Exp.

3q Meson Cloud Total 3q Meson Cloud Total

µp 2.357 0.436 2.793 2.357 0.436 2.793 2.793

µn -1.571 -0.342 -1.913 -1.571 -0.342 -1.913 -1.913

µΛ0 -0.786 0.173 -0.613 -0.518 -0.095 -0.613 -0.613 ± 0.004

µΣ+ 2.357 0.317 2.674 2.085 0.373 2.458 2.458 ± 0.010

µΣ0 0.786 0.005 0.791 0.570 0.073 0.643 · · ·

µΣ− -0.786 -0.306 -1.092 -0.935 -0.225 -1.160 -1.160 ± 0.025

µΞ0 -1.571 0.136 -1.435 -1.058 -0.192 -1.250 -1.250 ± 0.014

µΞ− -0.7855 0.2921 -0.4934 -0.5580 -0.0927 -0.6507 -0.6507 ± 0.003

|µΣ0Λ0 | 1.36 0.27 1.63 1.34 0.27 1.61 1.61 ± 0.08
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Fig. 1. Diagrams including pseudoscalar meson contributions to the EM quark transition operator up to fourth

order. Solid, dashed and wiggly lines refer to quarks, pseudoscalar mesons and the electromagnetic field, respectively.

Vertices denoted by a black filled circle, box and diamond correspond to insertions from the second, third and fourth

order chiral Lagrangian.
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Fig. 2. The charge form factors of Σ+, Σ−, Σ0, Λ0, Ξ0 and Ξ− baryons. The shaded region shows the range of the

form factors with the parameter λsE being varied in the interval from 1 to 10 in units of GeV.
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Fig. 3. The magnetic form factors of Σ+, Σ−, Σ0, Λ0, Ξ0 and Ξ− baryons. The shaded region shows the range of
the form factors with the parameter λsM being varied in the interval from 1 to 10 in units of GeV.
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