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Abstract
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Project Title : Two Extensions of Classical Sets: Capacity-Based Rough Integrals

and Roughness Bounds
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Abstract:

Rough set theory, a modern mathematical tool, has recently attracted researcher
attention. Rough set theory can be viewed as a soft computing technique. Thus, less
resources, computational costs and time are required, when compared to traditional
data analysis techniques. It is also tolerant to uncertainty and large scale data. For
these reasons, we propose to build new bridges between rough set theory and various
branches of other disciplines as follows. (i) We establish several important properties
and roughness bounds for fuzzy set operations. (ii) We invent a capacity-based definite
rough integral (DRI) and prove it satisfies many natural properties. By experiment, the
integral provides a means of measuring the relevance of functions representing features
useful in the classification of sets of objects. (iii) Based on flow graph contexts, we
define several fundamental measurements for rough sets. To illustrate, we apply these
measures to analyze data successfully with supportive interpretations. Furthermore, we
propose entropy measures of flow graphs, used to identify predictablilty and quality of a
flow graph. More practically, we create an efficient new construction for decision trees

from a flow graph, using our new information theoretic measure.

Keywords :

Rough set theory, Fuzzy set theory, Roughness measure, Capacity-Based Rough

Integrals, Flow graphs, Entropy, Decision trees
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4. Research Methodology, Results and Discussion

We discuss roughness measure of fuzzy sets in Section 4.1, capacity-based
rough definite integral in Section 4.2 and rough set flow graphs in Section 4.3,
respectively.

4.1 Roughness Measures of Fuzzy Sets

Introduction

Rough set theory (RST or RS) was invented by Pawlak [1,2] and fuzzy set
theory (FST or FS) by Zadeh [3,4]. Both are extensions of classical set theory.
In practice, classical set theory permits the membership of elements in relation
to a set with precise condition: an element either belongs or does not belong
to the given set. Thus, this concept requires a sharp boundary. In fact, real
situations involve complex problems which cannot be represented and solved
using simple models. Several traditional mathematical tools we found unsatis-
factory for this purpose [5]. Contrarily, rough sets and fuzzy sets approximate
the given sets and consider non-sharp boundaries. Rough sets approximation
is carried out in terms of two sets that are lower and upper approximations
[1,2]. Alternatively, fuzzy sets approximation is carried out by a predefined
membership funcion [4-6].

Rough sets approaches have recently attracted researcher attention [8-13,16,51].
The given set (data set or information system), which is the target of the
study, typically contains vagueness, data uncertainty, imprecision and incom-
pleteness that all require tuning and adjustments. In order to accommodate
such difficulties, use of approximation is required and thus rough set theory
is expedient. According to Pawlak [2], the power of rough sets “.. is that it
does not need any preliminary or additional information about the data, such
as probability distributions in statistics, basic probability assignment in the
Dempster-Shafer theory, or grade of membership or the value of possibility in
fuzzy set theory”. The rough sets approach can be viewed as a soft comput-
ing technique rather than hard computing technique in general mathematics
[19]. Research in soft computing demonstrated successes because it worked
synergistically with other methods to provide flexible analytical tools in real
situations. Medsker [19] stated that soft computing differs from traditional
computing in that it is tolerant of imprecision, uncertainty and partial truth.
For this reason, mathematical rough sets approaches are effective to fields
of data analysis, machine learning, artificial intelligent, pattern recognition,
information retrieval, survival analysis etc. [8-14,27,16,51,18]. The bridges be-
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Fig. 1. A perspective of rough sets hybrid intelligent system.

tween rough set theory and various branches of other disciplines have been
built [1,2,7-11]. Fig. 1 depicts the sample components of a hybrid intelligent
system in soft computing i.e., rough sets, relational algebra and other scientific
areas. The reinforcement step increases the intelligence to a high level hybrid
intelligent system.

Proposal of fuzzy set theory by Zadeh attracted researchers since the 1965 and
one most crucial discovery is the emergence of fuzzy control theory. The first
fuzzy controllers were built in the 1980s and play important role regarding
natural language, pattern recognition, clustering, image processing, robotics
etc. [5,19]. Dubois and Prade (1990) proposed rough fuzzy sets and fuzzy rough
sets, theoretical rough sets and fuzzy sets integrations were then established
[20]. The study by Banerjee et al. (1996) strengthens the connection between
rough set theory and fuzzy set theory with the roughness measure of fuzzy
sets [21]. Yang and John (2006) have investigated the roughness bounds under
different set operations for rough sets [24].

Not only were the theoretical development of these theories expanded but
practical applications of such discoveries were studied as well. Measures of
the roughness of fuzzy sets were useful for applications in pattern recognition
field [21] and more recently (2004) by Zhang et al. in [25]. Janardhan Rao
et al. (2005) proposed to use the rough fuzzy set as the model for images
[26]. Roughness measures of fuzzy sets can be optimized for object extraction
to determine the intensity threshold of images. The experimental results show
that objects are extracted with their approach with higher accuracy compared
to Shannon’s probabilistic entropy. In [23] (2005), the relational database was
analyzed by Huynh and Nakamori’s roughness measure.



Nevertheless, when we focus on data mining, machine learning, bioinformatics,
computer security, natural language processing, etc., data sets are usually
huge. For this reason, we investigate the bounds of roughness measures for
fuzzy set operations, namely, union and intersection.

Rough Sets and Fuzzy Sets

The following definitions are taken from the studies of Pawlak [1,2], Zadeh
[4], Dubois et al. [20] and Banerjee et al. [21] and will form the basis of this
research. We begin with the introduction to basic definitions of rough set
theory.

Definition 1 (Approximation Space) Let U be a non-empty finite set called
universe (or domain that we interested in) and R be an equivalence relation
on U (R is reflexive, symmetric and transitive), we define (U, R) as an ap-
proximation space.

A set A can be approximated in two ways that are lower approximation and
upper approzimation in the following definition.

Definition 2 (Lower and Upper Approximations) Let (U, R) be an ap-
proximation space, A C U and X1, Xo, ..., X,, denote the equivalence classes in
U with respect to R (X1, X2, ..., X, partition U into a family of disjoint subsets
U/R). The lower approzimation A and upper approzimation A are defined as:

A= U{Xz 1 X; C A}7

A=J{X:: X, A#0),

where i € {1,2,...,n}, respectively.
Pawlak’s roughness measure of rough sets follows.

Definition 3 (Roughness Measure of Rough Sets) Let (U, R) be an ap-
proximation space and A C U, a measure of roughness of A in (U, R), pa,
defined as:

S

pa=1-

N

where | X| denotes the cardinality of a the set X.



Yao [27] interpreted Pawlak’s accuracy measure [2] in terms of Marczewski-
Steinhaus metric. Consequently, he stated that the roughness measure can be
understood as the distance between the lower and upper approximations. We
next come to some basic concepts of fuzzy sets which will be necessary fo our
present bounds.

Let A: U — [0,1] be a fuzzy set in U, A(z), x € U, giving the degree of
membership of x in A.

Definition 4 (Lower and Upper Approximations of Fuzzy Sets)ﬁ The
lower and upper approximations of fuzzy set A in U, denoted A and A, re-
spectively, are defined as fuzzy sets in U/R — |0, 1], such that

A(X;) =inf,ex,Alr) and

A(X;) = suprex,Az), i=1,...,n,

where inf (sup) denotes minimum (mazimum,).

When A is a crisp set, A and A reduce to the collection of equivalence classes
constituting its lower and upper approximation in (U, R), respectively [21].

Definition 5 (Fuzzy Set) Fuzzy sets o , o/ : U — [0, 1] are defined as fol-
lows:

A (x) =A(X;) and

ifve X;,1e{l,...,n}.

Roughness Measure of Fuzzy Sets

In this section, we consider the roughness measure of a fuzzy set associated
with the parameters a and 3 taken from [21] .

Definition 6 [21] Suppose «, 3 are two given parameters, where 0 < [ <
a < 1. The a-cut set, B-cut set of fuzzy sets @, o are defined as o o = {x :
A (z) > a} and o 5= {x: o (x) > B}, respectively.

o, and o 3 can be considered as the collection of objects with « as the
minimum degree of definite membership, and § as the minimum degree of
possible membership in the fuzzy set o/ [21].



We next come to definition of roughness measure of fuzzy set.

Definition 7 [21] A roughness measure piﬁ of fuzzy set A in U with respect
to parameters «, 3, where 0 < 8 < o < 1, and the approzimation space (U, R),
1s defined as

o, |g06|
pa =1— "=
EZ]

This roughness measure depends strongly on parameters a and (3. The studies
of parameter free roughness measure of fuzzy set can be found in [23]. There
are several crucial properties of piﬁ introduced in [21] as follows.

Proposition 1 Let a, : U — [0,1] be two fuzzy sets in universe U and
0< B <a<l, wehave

R

U%ﬁzggugg,
NA .

aUBa0CAUB,,

A
S
]

(d) ﬁfﬂ%g ggg ﬁ@/@.
Property 1 For fuzzy sets A and B, it holds that

a, |Mo¢| ’MCM' |¢auza|
() palp=1- = =1 [Z =Tl oy o P
|/ U A |5 U B |5 U Bl

| L0Fa| _ | |ZaNZo| | |ZLaNZa|
|\ N ABg| |\ N Al — |7 5N Bs|

For more relations between roughness measures of fuzzy sets A, B, A UB and
A N B please refer to [21].

The properties of the roughness measure in Definition 7, Proposition 1, Prop-
erty 1 and etc. will be used to derive the bounds in this research.

Certain Increment and Uncertain Decrement Operators

The pioneering studies of fuzzy rough sets [2,21] derived Propositions 1(c)
and (d). They perform subset instead of set equal. This cannot be analyzed
quantitatively. Successive roughness measures also depend on the parameters

10



a, 3, and these two difficulties restrict some computations [25]. Thus, two new
parameter-free operators of fuzzy sets were devised [25].

Definition 8 [25] Let U be the universe and let R be an equivalence relation
onU. Let X, Y C U. When X is extended by Y (i.e., XUY ), Z(y(-) : UxU —
U defined by Zx,\(Y) = U{lz]r |z € L(X), Ix(z) € Yand hx(r) C Y},
is called the certain increment operator of X, where L(X) = U{lx(z)|z €
BNp(X)N X}, hx(z) = [z]r — X, and Ix(z) = [x]r — hx(x).

Definition 9 [25] Let U be the universe and let R be an equivalence relation
onU. Let X, Y CU. When X is cut by Y (i.e., XNY), Zy(-): UxU = U
defined by Z(x\(Y) = U{[z]r |2z € L(X), Ix(x) NY =0 and hx(z) NY # 0},
is called the uncertain decrement operator of X, where L(X) = U{lx(z)|z €
BNp(X)N X}, hx(z) = [z]gr — X, and Ix(z) = [x]r — hx(x).

The certain increment operator is the collection of objects for which the certain
information of X UY is larger than the union of the certain information of X
and Y [25]. The uncertain decrement operator is the collection of objects for
which the uncertain information of X NY is less than the intersection of the
uncertain information of X and Y [25].

Property 2 [25] For crisp sets X, Y C U, it holds that
(a) Zx)(Y)=Zy)(X),

b) Zx)(Y)=Zy)(X).

Theorem 1 [25] Let a, : U — [0,1] be two fuzzy sets in universe U and
0<p < a<l, where Zy(Ba), Z2.(H), Z o,(Bs) and Z »,(3) are
certain increment operators of <, B . and the uncertain decrement operators
of A, By, respectively. We have

(o) IBo=AF UBNIZL oy (Bo) =S UBIZ 5 (),

(b) dﬂ%ﬁzygﬂgg—f%(%’g) :gﬂm@ﬁ—7ﬁﬁ<dﬁ).

Property 3 [25] For fuzzy sets A and B, it holds that

(a) pa,ﬁ — 1 _ [#aUBa0Z iy, (B)| _ | _ | LaVB UL 3, (o)
AUB |/ 3V 5 |/ 3UZ 5 ’
() poB —1— — lgafal _ _q_ |0l
ANB LW/@O%Q—Z'dﬂ(%gH ‘,ﬂﬁﬂ«%ﬁ—Z@ﬂ (Wg”

Some New Bounds of Roughness Measures of Fuzzy Set

The roughness measure is an important indicator of the uncertainty and ac-
curacy associated with a given set [24]. Since data sets are usually huge in
most applications, operations on these data sets are time and space consum-
ing. Thus, before completing large volume operations involving two fuzzy sets,

11



we must know the bounds of such results. In this section, we propose new the-
orems on roughness lower and upper bounds of the fuzzy set operations as the
following.

Theorem 2 An upper bound of the roughness measure pAUB of fuzzy sets
A, B in U with respect to «, (3, is given by

1 — o’ pg”
2= (px” + pg")

a?ﬁ
PAUB =

where 0 < < a < 1.

Proof From Property 1(a) and a basic set property, we have p} AUB

| o|,| B o .0
W. If |/ o > |24l (or vice versa), then we obtain p g

(17 61/12 o) +(1251/1Z )"

Thus, pA’gB < ;(fﬁ% by Definition 7. O

Theorem 2 illustrates that upper bound of the union of two fuzzy sets depends
solely on the roughness measures of fuzzy sets A and B.

Theorem 3 An upper bound of the roughness measure pAmB of fuzzy sets
A, B in U with respect to o, (3, is given by

s < AR 14U

where 0 < < a<1and U* = L P o]

. , LA
Proof From Property 1(b) and a basic set property, p57g = 1 — |m|7|’1%?|5| -
Bl | aUZ o
N

With respect to Proposition 1(d), @ N B3 C o 5 (and C HBp) implies | o/ N Bg| <

— — A ol | o] |8 | ZM
< |70‘ < o = < .
|e7 5| (and < |Zpl|), we therefore have Za S Tess and Fal S sl
‘&7&‘ _ |@o¢‘ + ‘J‘{U%CX‘

ol T T T sy by Proposition 1(c).

Then p5P5 < 1 -

|AUB |
‘.Sz‘/ﬁ%g ’

According to Definition 7, pigB < pfﬁ"ﬂ + paB’ﬁ -1+

o o o . . |dUB.,
We finally have piyip < p3” + pg” — 1+ U*, where U* = |‘Wiﬁg‘| -

12



The bound in Theorem 2 depends on the roughness measures of fuzzy sets A
and B while the bound in Theorem 3 depends on the roughness measures of
fuzzy sets A and B in addition to |/ U % | and |/ N HAj|.

Theorem 4 A lower bound on the roughness measure pi’@B of fuzzy sets A, B
i U with respect to «, 3, is given by

P&l > o+ o’ —1 - L.,

|Z ot ($a)
< o< = 1&do o)l
where 0 < f < a <1 and U, max{|< s,|% 5|}

Proof From Property 3(a) and a basic set property, we have that piﬁB >
1 — |%a|+\in+|Zga(%a)‘
max{|# g|,|%|}

For 157 ol > (B 4l 000 > 1 Lol BalHZ wy (Bl _ | _|Lal _|Bal |2y (Bl
| 5| 2 |2 5l PalB = 72 sl sl |/l

In accordance with Definition 7 and Lﬁ || < || @ﬂ; , we have palp > 1— ‘ém‘
I’éal_@afi(ﬁa”:l_ 1— a8y 1— a8 _%ﬂ

7] EZ] (1= px") = (1= r") gl

Therefore, p4lgs > p&° + po” — 1 — LealZell Gimilarly, for | 5| < | B s,

|7 ]
a, A o+ Bal+|Z Z oy (Ba
,OAEB >1-— | o|+|Z Ivl;l cto (%)l . Therefore, pAuB > pA’G—i—p —-1- 7|*‘T%;| I

From (1) and (2), we finally have pX’5 > p%° + p° — 1 — L,, where L, =
|Z o1o (Bo)]
max{|/ g|,|% |} *

Theorem 5 A lower bound of the roughness measure pAmB of fuzzy sets A, B
in U with respect to «, (3, is given by

1—,0A — 5+ px s

2—pa" =’ — L(1—p3%)(1 = p5”)’

PAmB >1-

| gURB5|+Z 1y (%)

where 0 < f <a <1 and I, = — s

Proof From Property 3(b), and basic set properties, then we have that p3°5

__ |HaNBa| 1 |ZaNHa] >1_ _ _ min{|# o|,|Zal}
7 M55~ oay ()] [T 5B\~ 1Z oty (B — 1 51 H B~ 1 0B |~ oty ()]
< >1-— S S ,
For |« .| < |8 4|, we have that p%75 > 1 S B mam, Fay @
Zal t&Zal - 1Zal  1&al
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|85 | sl apB 1
From Definition 7 and > >1-— -

o] = 1Za] PANB = Tyl Byl TPyl Zeyy(Bp)

=2 ‘gcﬂ; ‘%OA : (=2

|7 gUB 4| +|Z oy 5 (B)]
=1- é - 5 p . We define [|Q{a| = ﬂy{ E s

1 1 | gu: 5|+\Zg¢5(=3g)\ = | o
1—p O"ﬁ 1— pgﬁ =2
«, aﬁ

1-p" =P+
2—px =R I o (1— PAB)(l py?)

thus pAmB >1-

| U 3| +|Z o75 ()]

Similarly, for |&/ | > |Z 4|, if we define Iz, = Z] , therefore
B_ 6 o, aﬁ o
a,3 1-p% +pN
we have pAhp > 1 — A -
pAl"‘IB - 2_pAﬁ_pBﬂ [Iga\(l p )(1 e ﬁ)
1—p% P —p%P 4 paP P | gUBI+|Z o1 (B)

Thus, pyfs > 1— where [, =

2-p " —py” —L(1— Aﬁ)( PO (ol 2]

The lower bounds for pA’nB differ from the upper bounds on p AOB, in that
they depend on the roughness measures of the fuzzy sets A and B and also

|Eﬁ’a ‘@,@L ’gah ’ga’ and ’Z&ﬁg(‘@ﬁ”

Concluding Remarks

The roughness measure is an important indicator of uncertainty and accuracy
associated with a given fuzzy set. More importantly are the propagations of
these roughness measures through various set operations. Thus, before com-
pleting large volume operations involving two large fuzzy sets, we should have
bounds on the roughness measure of the result as were proven in this work.
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4.2 Capacity-Based Definite Rough Integral

This section introduces an extension of the original capacity-based rough in-
tegral defined over a specific interval. The approach hearkens back to the
pioneering work on capacities and the generalization of the Lebesgue integral
by Gustav Choquet during the 1950s. Variations in the definition of the ca-
pacity function has led to various forms of the discrete Choquet integral. In
particular, it is the rough capacity function (also called a rough membership
function) introduced by Zdzistaw Pawlak and Andrzej Skowron during the
1990s that led to the introduction of a capacity-based rough integral.

By extension of the original work on the rough integral introduced in 2000, a
discrete form of a capacity-based definite rough integral is introduced in this
section. This new form of the rough integral provides a means of measuring
the relevance of functions representing features useful in the classification of
sets of sample objects.

Introduction

During the early 1990s, Zdzistaw Pawlak introduced a discrete form of the
definite Riemann integral of a continuous, real function defined over intervals
representing equivalence classes [30]. Since that time, work on various forms
of rough integrals has continued fairly steadily (see, e.g., [39,41,37,31]). The
original integral was called a rough integral because it was defined over inter-
vals represented equivalence classes in a partition of sequences of reals defined
by an equivalence relation.

Based on work on the Choquet integral (C') [ fdu considered in the context
of rough sets [32], a new form of discrete rough integral [ fdu? was intro-
duced [39,41,41,37] and elaborated in [37]. The Choquet integral is a general-
ization of the Lebesgue integral defined relative to a capacity u [34,33].

A capacity is a function p that assigns a non-negative real number to every
subset of a finite set X and satisfies f()) = 0 [35]. When the discrete form
of the Choquet integral (C') [ fdu is defined relative to a finite universe, the
Lebesgue integral reduces to a (convex) linear combination, where each indi-
vidual integrand function value is weighted with a capacity function value [34].

This section will introduces a new form of the Choquet integral called a
capacity-based definite rough integral because its capacity is a function de-
fined relative to equivalence classes. The extension of the capacity-based rough
integral has a number applications. In particular, we show later how this in-
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tegral can be used in feature selection with the DRI tool implemented in
MATLAB®).

Rough Capacity Function

This section gives a brief introduction to one form of additive set functions
in measure theory from [37]. Let X be a finite set, we denote card(X) as the
cardinality of X.

Definition 10 (Set Function) Let X be a finite, non-empty set. A function
Ao — R where N is the set of all real numbers is called a set function on X.

Definition 11 (Additive) Let X be a finite, non-empty set and let X be a
set function on X. The function X is called to be additive on X if and only if
MAUB = XA) + X(B) for every A, B € p(X) such that AN B = {).

Definition 12 (Non-negative) Let X be a finite, non-empty set and let A
be a set function on X. A function X\ is called to be non-negative on X if and
only if A\(Y) >0 for any Y € p(X).

Definition 13 (Monotonic) Let X be a set and let X be a set function on
X. A function X\ is called to be monotonic on X if and only if A C B implies
that \(A) < X(B) for every A, B € p(X).

Rough capacity functions were introduced during the mid-90s [38]. A rough
capacity function returns the degree of overlap between a fixed set containing
objects of interest and a set of sample objects.

Definition 14 (Rough Capacity Function) Let S = (O, F) denote an in-
formation system. Assume X C p(O), BC F, z € X and [z]p C X/ ~p.
The capacity u? : p(O) — [0,1] is defined (1).

X N [z]g]
e x) =g Tl XD )

0, otherwise,

The capacity 2 is an example of a set function, i.e., a function whose domain
is a family of sets [36]. This set function measures the degree of overlap between
the set X and the class [z]g, i.e., the extent that X is covered by [z].

Recall that [z] is a set of objects having matching descriptions. This is im-

portant in evaluating the set X, since u? (X) is a measure of the extent that
the objects in X are part of the classification represented by [z] . In the con-
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text of capacity-based integrals, the function u? is a source of weights, i.e.,
degree of importance of each set X in a weighted sum for the discrete form of
the integral.

It can also be observed that u? is a real-valued set function that is additive.
That is, for X, X’ in p(0O), it can be shown that

e (X U X)) = g (X) + ) (X7).

Rough Set Theory

In the early 1980’s, Pawlak [2] introduced rough set theory. Mathematical
rough set theory provides system designers with the capability to handle the
uncertainty that commonly exists in data, especially in real world data. Rough
sets make balanced approaches between theory and practice possible, and also
form a framework for building hybrid systems with pertinent soft computing
techniques. In this research rough sets will be theoretically combined to a
certain type of discrete integral and illustrate their performance in the example
problem.

Let S = (U, A) be an information system where U is a finite, non-empty set
of objects and A is a finite, non-empty set of attributes, where a : U — V, for

every a € A. For each B C A, let there is associated an equivalence relation
ind4(B) such that

inda(B) = {(z,2") € U*|Va € B,a(z) = a(z')},

[z] g refers equivalence classes of ind4(B), U/inda(B) refers the family of all
equivalence classes of relation ind4(B) on U [37,2].

Definition 15 (Rough Membership Function) (Pawlak et al. [38]) Let
S = (U, A) be an information system, o(U) be the powerset of U, B C A,
u € U and let [x]g be an equivalence class of an object u € U of inds(B). The
set function, rough membership function is defined by

8 o(U) — [0, 1), where pf(X) = Boel,
The form of rough membership function in Definition 15 is different from

classical definition in which the argument of the rough membership function
is an object = and the set X is fixed [2].

Definition 16 (Rough Measure) (Pawlak et al. [38]) Let uw € U. A non-
negative, additive set function p, : p(X) — [0,00) defined by p,(Y) = p (Y N
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[ulg) forY € p(X), where p’ : p(X) — [0,00) is called a rough measure rela-
tive to UJinda(B) and u on the indiscernibility space (X, p(X),U/inda(B)).

Furthermore, the rough membership function p? : o(X) — [0,1] is a non-
negative set function [38].

Proposition 2 (Pawlak et al. [38]) The rough membership function u2 as
defined in Definition 16 is additive on U.

Proposition 3 (Pawlak et al. [39]) (X, p(X),U/ind(B),{u2}ucv) is a rough
measure space over X and B.

Capacity-Based Discrete Integrals

This section gives a brief introduction to the Choquet integral, which eventu-
ally led to the introduction of a capacity-based rough integral.

Discrete Choquet Integral

Recall that the Choquet integral (C) [ fdu is a generalization of the Lebesgue
integral defined with respect to a non-classical measure p called a capacity.
Also recall that a capacity is a real-valued set function

2 p<X) - §R+7

such that (@) = 0 and X' € X” C p(X) implies pu(X’) < p(X"”) (monotonic-
ity). When the Choquet integral is defined relative to a finite sets, then the
Choquet integral reduces to a weighted sum that has a variety of applications,
especially in multi-criteria decision-making (see, e.g., [34,33]).

Definition 17 (Discrete Choquet Integral [34]) Let p be a capacity de-

fined on a finite set X. The discrete Choquet integral of a function f: X —
R with respect to capacity p is defined by

(C)/fdu = il [f (x(i)) —f (%-1))} (X i),

where -;y denotes a permuted index so that 0 < f ($(1)> <f (:B(z)) <,...,
f <:L'(Z-)) <,....,<f (:E(n)) < 1. Also, X3 = {ﬁ(i), e ,x(n)}, and f([B(o)) = 0.
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Discrete Rough Integral

The introduction of the rough capacity function u? paved the way for a dis-
crete rough integral (P) [ fduZ named after Zdzistaw Pawlak. This rough
integral is a variation of the discrete Choquet integral [34,33,39,41,43].

Definition 18 (Discrete Rough Integral) Let i be a rough capacity func-
tion defined on a finite set X. The discrete rough integral of a function f :
X — R with respect to capacity pP is defined by

(P) [ fayt = z | (z0) = £ (w6-0)] -1 (X0,

1=

where -;) denotes a permuted index so that 0 < f (az(l)> < f (x(z)) <,...,
f <:E(Z-)) <,....,<f (x(n)) < 1. Also, X = {ﬁ(i), . ,l‘(n)}, and f([E(o)) = 0.

If f is non-negative, then (P) [ fduP represents the lower approximation of
the area under the graph of f.

Proposition 4 If Miny < p5 (X)) < Mazp, 1 <i<n, then0 < (P) [ fdul <
Mazp.

< Maxp (because f(x()) =0 and f (x(n)) <1).
It can be proven in a straightforward way that (P) [ f du? > 0.
Consider a specialized capacity plf} defined in terms of a single function f €

B, where B is a set of functions representing features of objects in a finite set
X.

Proposition 5 [41] Let 0 < s < r and f € B. If f(x) € [s,r] for all z €
X, then (P) [ f dulPt € (0,7].
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Definite Discrete Rough Integral

In this section we introduce a discrete form of definite rough integral (DRI) of
a function f denoted by ff [ duB, where “(#) is a permuted index and a, b such
that z() < a < b < z(,) are the lower and upper integral limits, respectively.
The limits on the rough integral specify the interval over which a function f
is integrated. This integral is defined in terms of an upper integral f;’ [ du?
and a lower integral [°f duZ.

b b b
/fdufszduf—/fduf~

The discrete forms of the lower and upper integral are defined w.r.t [x1]p in
(2) and (3), respectively.

b b
/f dpy, = Z {f(%‘—l))} Ay (2)
b b
/f dpy, = 2 [fa)] Apns, (3)

where A2 is defined in (4).

1P (X)) = 1 (X)) (4)

Aoy =

Definition 19 (Definite Discrete Rough Integral) Let uZ denote a rough
capacity function with domain Xy that is the set

X = {%)a T(it1)s - - - ’x(m} >

where - ;) is a permuted index, Xy =0, and a,b such that x1y < a <b <z,
are the lower and upper integral limits, respectively. The difference A(i)uf 18
defined in (4) relative to the set X(;. The discrete definite rough integral of
f: X — R is defined by

b b b
[ 7 dud = [fau? [ 1 au?,
where the lower and upper integrals are defined in (2) and (3), respectively.
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Interpretation

Observe that the capacity function u2 is defined in terms of a set of functions
B representing the features of sample objects of interest. The set B provides
a basis for the relation ~p that defines a partition of the sample objects X
(source of integral limits). Then a function f is integrated with respect to u?.
In the discrete form of the DRI, u? provides a weight on each summand X (i}
a set of sample objects uZ computes the degree of overlap between a class
[z] 5 representing objects that have been classified relative to the features
represented by B. In effect, B is a source of criteria for grouping together
objects matching the criteria represented by B. Hence, the definite rough
integral indicates the importance and relevance of a function integrated with
respect to puZ. Hence, if a function representing an object feature is integrated
with respect to uZ, the DRI provide effective means of selecting features that
used to discriminate objects. In effect, the definite rough integral is useful for
feature selection within the prescribed limits of the integral.

Feature Selection

In this section, we briefly illustrate an application of the discrete definite rough
integral (DRI). For simplicity, we assume that each vector of function values
used to describe a sample object is evaluated, e.g., acceptable (d = 1) vs.
unacceptable (d = 0). Put B = {d}, where d € {0, 1} in defining the capacity
pB. Then any set of objects X can be partitioned using the set B.

Hllustration

Next, consider, for example, a set of objects described with two functions,
namely, ¢, ¢o representing features of objects in a sample X. For the pur-
poses of illustration, we treat ¢, ¢, abstractly i.e., without considering spe-
cific functions. Here is a partial, sample description table with the evaluation
(decision) column d included. Note that x(; indicates a permuted object with
values in ascending order.

We now compute the DRI relative to {x(l)] starting with integration of

{d=0}
¢1 where B = {d = 0}. The lower integral f;((11>0>¢1 dpl?=0" is

Z(10)

/ o1 dplt™" = d1(x() - Ayl + dn(zy) - Apuls ... =017,

e
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Table 1
Sample data

X & | g2 1Al X | 1 | g2 [d]
z) = x4 [0.79224129.988 |02 (11) = 211]0.92282]13.787 | 1
() = w3 |0.79467[30.114|0|z(19) = 212|0.93357 | 11.387| 1
(3 = T2 | 0.80596 |27.402| 0| z(13) = 13| 0.94553 |9.7302 | 1
21y = o5 |0.81286|27.633|0 |21y = x14|0.90996 | 13.979 | 1
(5 = o1 |0.85808|21.754 |0 | 215, = 215 | 0.95608 | 7.1776 | 1
1’(6) = Tg 0.86020|22.866 |0 .%'(16) = T16 0.94722(11.387|1
:B(7) = X7 0.84569| 24.43 |0 $(17) = 17 0.94467(9.0222 |1
x(g) = g 0.87886| 20.16 |0 33(18) = I18 0.96424(6.3259 |1
() = To | 0.88235(19.945| 0| z(19) = 19 |0.92804 | 12.398 |1
(10) = 10| 0.8809419.227 | 0| 259 = 20| 0.93925 |9.9671 | 1
Z(21) = T21|0.99435 | 2.3081 | 1
and the upper integral fx<1°>¢1 d,u{d 0} ig
Z(10)
/¢ dpl=" = g1 (z)) - Ayl + di () - Apdi=" +... = 1.45.
(1)
Using these results, the definite integral f x“”) D1 du{d 0} ig
Z(10) Z(10) Z(10)
/ Grdpdd=o = /¢ dpl=0) — /gb dpl=" = 0.75.
(1) (1) (1)
Next, integrate ¢, with respect to u{d 0} using class [Qz(l)}{dfo}’ and obtain
(10) (10) Z(10)
[ éaan= = [ 6y a0~ [ 6y dplt=" = 23,
(1) (1) (1)

This means that for class [m(l)hd , the feature represented by ¢, is more

—0}
important than the feature represented by ¢;. The computations have been

performed using the DRI tool (see Fig. 2) implemented in MATLAB ®.

From the plots in Fig. 3, notice that there is less dispersion of the values for
the plot for f m(w) o du{dzo} i.e., the values for the successive lower and upper

values are tlghtly groups around the f x(“’) 01 du{d 0} values compared with the
J2 80 ¢a dpl?=" values.

Similarly, consider the case for class [m(l)}{dﬂ} and use the DRI to discover
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Fig. 3. DRI for ¢1, ¢ for class [$1]{d:0}-
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which function has greater importance, i.e., carries more weight. Then the
DRI computed relative to ¢; is

(21)

(21)

(21)

/ prdpli=t = / 1 duli=" — / o1 duli™" =0.

T(11)

(1)

T(11)

Next, integrate ¢ for the same class, and obtain

(21)

[ oaduli™ = [ 6n auli -

Z()

We now calculate the DRI over the entire data set, for both classes [ac(g)}

Z(21)

T(11)
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and {x(g)]{ ) for the two features ¢; and ¢, respectively:

(21) (21) (21)
[ ol = [ onauli=t = [ o1 dpli=" = o7
Z(1) Z(1) Z)
Z(21) Z(21) Z(21)
d=0} __ d=0 d=0} __
[ éaan= = [ 6y apdi= — [ 6y aplt=" =63,
Z(1) Z(1) Z(1)
1B
35
lower Rl
Tep —+—upper Rl lower Rl
—+— DRI a0k —— upper RI e
12l — & proble ¢1 ! DRI \—.-’.'/
5 probe 42 b
25+ Pt

20+
08r

06+

04r

02r

. . \ \ I 1
o 5 10 15 20 25 0 [ 10 15 20 25
Integration boundaries Integration boundaries

(a) DRI ¢4 (b) DRI ¢

Fig. 4. DRI for ¢, ¢2 for class [z2].

From this, we can conclude that the feature represented by ¢ is more impor-
tant than the feature represented by ¢; with respect to both classes and for
different equivalence classes. The plots in Figures 3 and 4 reveal an interesting
feature of the sample objects that are a source of limits on the DRI, i.e., at
T(12) there is a sharp change in DRI values (this is especially evident in the
plot). This suggests a place to begin experimenting with different limits on the
integral. This break in the DRI values also indicates a change in the evaluation
of the functions representing object features.

Conclusion

This section introduces the definite rough integral defined relative to a rough
capacity function. It is the capacity uZ that distinguishes the rough integral
from the original capacity-based integral introduced by Choquet during the
1950s. In addition to the the geometric interpretation of the definite rough
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integral already mentioned, this integral is highly significant because it offers
a measure of the importance and relevance of features of sample objects. This
measurement of the relevance of a feature is a byproduct of the rough ca-
pacity function that provides the basis for the rough integral. Now, with the
introduction of rough integral limits, it possible to measure the relevance of
features relative to selected ranges of objects. In effect, the definite rough in-
tegral provides a new basis for feature selection in the classification of objects.
Future work includes a study of the properties of the definite rough integral
and its applications.
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4.3 Rough Sets and Flow Graphs Integrations

4.3.1 Rough Sets Approximations in Terms of a Flow Graph

A mathematical flow graph, invented by Pawlak in 2002, is an extension of
rough set theory [2]. A flow graph represents the information flow from the
given data set [52-54,68,56]. The branches of a flow graph can be constructed
as decision rules, with every decision rule, there are three associated coeffi-
cients: strength, certainty and coverage [56]. These coefficients satisfy Bayes’
theorem. Inference in flow graphs has polynomial time and flow conservation
comes with probabilistic conditional independencies in the problem domain
[44]. Flow graphs have led to many interesting applications and extensions
such as preference analysis [53], decision tree [68], survival analysis [63], asso-
ciation rule [46], data mining [56], search engines [45], fuzzy set [47,49], entropy
measures [51] and granular computing [48]. More studies involving rough sets
are discussed and provided in [57].

Flow distribution in flow graphs can be exploited for approximation and rea-
soning. Based on flow graph contexts, we define fundamental definitions for
rough sets: four categories of vagueness, accuracy of approximation, roughness
of approximation and dependency degree. In addition, we state formulas to
conveniently compute these measures for inverse flow graphs. To illustrate,
a possible car dealer preference analysis is provided to support our proposi-
tions. New categories and measures assist and alleviate some limitations in
flow graphs to discover new patterns and explanations.

Rough Set Theory

The following rough sets preliminary is taken from [2] . Rough sets are based
on an information system. An information system is a decision table, whose
columns are labeled by attributes, rows are labeled by objects of interest and
entries of the table are attribute values. Formally, it is a pair S = (U, A),
where U is a nonempty finite set of objects called the universe and A is a
nonempty finite set of attributes such that a: U — V, for every a € A. The
set V, is called the domain of a.

If we partition an information system into two disjoint classes of attributes,
called condition and decision attributes, then the information system will be
called a decision system, denoted by S = (U,C, D), where C N D = (). Any
subset B of A determines a binary relation I(B) on U called an indiscernibility
relation. It is defined as (z,y) € I(B) if and only if a(z) = a(y) for every a € A,
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where a(z) denotes the attribute value of element z. Equivalence classes of the
relation I(B) are referred to as B-elementary sets or B-elementary granules
denote by B(X), i.e., B(X) describes X in the terms of attribute values from
B [53]. Below, we recall key feature definitions of approximations in rough
sets.

Definition 20 [57] Let S = (U, A) be an information system. For X C U,
B C A. The B-lower approximations, B-upper approximations and B-boundary
region of X are defined as B(X) = U,y {B(X)|B(X) C X}, B(X) =
Uzer {B(X)] B(X)N X # 0} and BNp(X) = B(X) — B(X), respectively.

If the boundary region of X is the empty set (i.e., BNg(z) = @), then X
is crisp. On the contrary, if BNg(X) # 0, then X is rough. In what follows
we recall four basic classes of rough sets, i.e., four categories of vagueness. If
BNg(z) = 0, then X is crisp. On the contrary, if BNg(X) # ), then X is
rough. In what follows we recall four basic classes of rough sets.

Definition 21 [57] Let S = (U, A) be an information system. For X C U,
B C A, the four categories of vagueness are defined as

- B(X) # 0 and B(X) # U iff X is roughly B-definable,

- B(X) =0 and B(X) # U iff X is internally B-indefinable,
- B(X) # 0 and B(X) = U iff X is externally B-definable,

- B(X) =0 and B(X) = U iff X is totally B-indefinable.

Approximation of a rough set can be characterized numerically by some mea-
surements as follows.

Definition 22 [57] Let S = (U, A) be an information system. For X C U,
B C A, the accuracy of approrimation, ag(X), and roughness of approxi-

mation, yg(X), are defined respectively as ag(X) = % and yp(X) =

l—ap(X)=1- %%83;, where card(X) denotes the cardinality of X.

Let us observe that, 0 < ap(X) < 1. If ap(X) = 1, then X is crisp with
respect to B and otherwise, if ap(X) < 1, then X is rough with respect to B.

Definition 23 Let S = (U, A) be an information system and F = {X;, Xo, ...,
X} be a partition of the universe U. For B C A, F' depends on B to a degree

" card(B(X,))
kp(F) = ZTU)

Definitions 2 — 4 will be stated in the context of flow graphs later.
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Flow Graphs

Flow graphs were introduced by Pawlak in 2002 [52]. In this section, we re-
call some concepts of flow graphs which were introduced by Pawlak in [52—
54,68,56].

A flow graphis a directed, acyclic, finite graph G = (N, B, ¢), where N is a set
of nodes, B C N x N is a set of directed branches, p: B — R* is a flow function
and R™ is the set of non-negative real numbers. If (z,y) € B then z is an input
of node y denoted by I(y) and y is an output of node x denoted by O(z). The
input and output of a flow graph G are defined by I(G) = {z e N |I(z) = 0}
and O(G) = {x € N |O(x) = 0}. These inputs and outputs of G are called
external nodes of G whereas other nodes are called internal nodes of G. If
(x,y) € B then we call (x,y) a throughflow from = to y. We will assume in
what follows that ¢(x,y) # 0 for every (x,y) € B. With every node x of a
flow graph G, we have its associated inflow and outflow respectively as: ¢, (z)

= Zye](a:) ¢(y,z) and Spf(x):ZyEO(x) o(x,y).

Similarly, an inflow and an outflow for the flow graph G are defined as:
2+(C) = Tocriey #-(x) and ¢ (G) = Lreoe) ¢+ (x). We assume that for
any internal node z, p_(z) = ¢, (z) = ¢(x), where p(z) is a throughflow of
node z. Similarly then, ¢_(G) = ¢ (G) = ¢(G) is a throughflow of graph G.
As discussed by Pawlak [53], the above equations can be considered as flow
conservation equations (or pairwise consistent [44]).

Normalized Flow Graphs, Paths and Connections

In order to demonstrate interesting relationships between flow graphs and
other disciplines (e.g., statistics), we come to the normalized version of flow
graphs.

A normalized flow graph is a directed, acyclic, finite graph G = (N, B,0),
where N is a set of nodes, B C N x N is a set of directed branches and o:
B — [0, 1] is a normalized flow function of (z,y). The strength of (z,y) where
0<o(z,y) <1iso(z,y) =2y

©(G) -
With every node z of a flow graph G, the associated normalized inflow and
outflow are defined as: o, (r) = fj((Gx)) = Yyei@ oy, ), o_(z) = *‘;*(g)) —

> yeo() o(r,y). For any internal node x, it holds that o (v) = o_(7) = o(z),

where o(x) is a normalized throughflow of z. Similarly, normalized inflow and
outflow for the flow graph G are defined as: 0, (G) = ‘f;((GC;) = Ysen 0 (1),

o_(G) = “f;((GC;) = Y zeo() 0+ (7). It also holds that o (G) = 0_(G) = 0(G) =
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1. With every branch (z,y) of a flow graph G, the certainty and the coverage
of (z,y) are defined respectively as: cer(z,y) = og(fg’g), cov(x,y) = ”O(,Z’f’)’),
o(x),o(y) # 0. Properties of these coefficients were studied by Pawlak in [52—-

54,68,56).

where

Next, if we focus on sequence of nodes in a flow graph, we can find them by
using the concept of a directed simple path. A (directed) path from z to y
(x # y) in G, denoted by [z ...y], is a sequence of nodes zy,...,x, such that
x1 = x and z, = y and (z;,x;.1) € B for every i, 1 < i < n — 1. The cer-
tainty, coverage and strength of the path [z ... x,| are defined respectively as:
cerlay ... x,) = [11 cer(ms, wi41), covlay ... 2] = [105 cov(xi, zign), olw . .. Y]
= o(x)cer|x...y] = o(y)cov[z ...y].

The set of all paths from x to y (x # y) in G, denoted by (z,y), is a con-
nection of G determined by nodes x and y. For every connection (x,y), the
associated certainty, coverage and strength of the connection (x,y) are defined
as: cer (T,Y) = Do yle(wy) COTT Y], covlm,y) = X ey cOVT Y],
o <LU, y> = Z[x...y]e(x,y) O'[;C s ] = O'(SL’)CG?” <37, Z/> = J(:y)COU <SL’, y)

If [z...y] is a path such that z and y are the input and output of G, then
[z...y] will be referred to as a complete path. The set of complete paths from
x to y will be called a complete connection from z to y in G.

If we substitute every complete connection (z,y) in GG, where x and y are an
input and an output of a graph GG with a single branch (z,y) such that o(x,y)
= o (x,y), cer(z,y) = cer (x,y) and cov(z,y) = cov (x,y) then we have a new
flow graph G’ with the property: o(G) = o(G’). G’ is called a combined flow
graph. A combined flow graph represents the relationship between its inputs
and outputs more precisely.

Starting from a flow graph, if we invert the direction of all branches in G,
then the resulting graph G=! will be called the inverted graph of G (or the
inverse flow graph of G) [56]. Essentially, three coefficients of an inverse flow
graph can be computed from its flow graph as follows: og-1(y, z) = o¢(z,y),

cerg-1(y,x) = covg(x,y) and covg-1(y, x) = cerg(z,y).

Rough Set Approximations and Flow Graphs

In this section, we provide a bridge between flow graphs and rough approxi-
mation. From standard definitions of approximations made by rough sets, we
give these definitions in the context of flow graphs below.

Suppose we are given a normalized flow graph G = (A, B,0), where A =
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{A, A, ..., A} is aset of attributes®, B is a set of directed branches and
o is a normalized flow function. A set of nodes in a flow graph G correspond-
ing to A;, is referred to as a layer i. For A = C' U D, we have that every
layer corresponding to C' will be called a condition layer whereas every layer
corresponding to D will be called a decision layer. If an attribute A;, contains
n;, values, we say that it contains n;, nodes.

We now consider how to approximate an attribute value Y € A;,,, from at-
tribute values of A;, where A;, = {X 1, Xo,...,Xp, t, to indicate lower approx-
imation, upper approximation and boundary regién of Y. In Definition 24, we
recall Pawlak’s definitions of lower approximation, upper approximation and
boundary region for flow graphs.

Definition 24 [53] Let G = (A,B,0) be a normalized flow graph, A;, =
{X1, Xs, ...,Xmi}, 1 <i < k—1, be an attribute in layer i and Y be a
node in Ay, . For any branch (X;,Y), j € {1,...,n}, of the flow graph G,
the union of all inputs X; of Y is the upper approximation of Y (denoted
A, (Y), the union of all inputs X; of Y, such that cer(X;,Y) = 1, is the
lower approzimation of Y (denoted A;,(Y)). Moreover, the union of all in-
puts X; of Y, such that cer(X;,Y) < 1, is the boundary region of Y (denoted
AliNAli (Y))

In Definition 25, we state four categories of rough sets mentioned in Definition
21 in terms of flow graph.

Definition 25 Let G = (A, B,0) be a flow graph, A;, = {Xl,XQ, o ,ani},
1 <i < k—1, be an attribute in layer i and Y be a node in A, . For any
branch (X;,Y), j € {1,...,n,}, of G, we define four categories of vagueness
as

- 3X; [cer(X;,Y) = 1] and 3X; [X; ¢ I(Y)] iff Y is roughly A;,-definable,

- VX [cer(X;,Y) # 1] and 3X; [X; ¢ 1(Y)] iff Y is internally A;,-indefinable,
- 3X [cer(X;,Y) =1] and VX, [X; € I(Y)] iff Y is externally A, -definable,
- VX [cer(X;,Y) # 1] and VX; [ X; € I(Y)] iff Y is totally A;,-indefinable.

From the definition we obtain the following interpretation:

- if Y is roughly A;,-definable, this means that we are able to decide for some
elements of U whether they belong to Y or —Y 2 using 4,,,

- if Y is internally Aj,-indefinable, this means that we are able to decide
whether some elements of U belong to —Y, but we are unable to decide for
any element of U, whether it belongs to Y or not, using 4.,

I In what follows, we regard N as A for simplicity.
2 Where -Y =U Y.
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- if Y is externally A, -indefinable, this means that we are able to decide for
some elements of U whether they belong to Y, but we are unable to decide,
for any element of U whether it belongs to —Y or not, using A4,

- it Y is totally A;,-indefinable, we are unable to decide for any element of U
whether it belongs to Y or =Y, using A;,.

Property 4 Let G = (A,B,0) be a flow graph, A, = {Xl,Xz,...,ani},
2 < i < k, be an attribute in layer i and W be a node in A,,_,. For any
branch (X;,W), 7 € {1,...,n,} in the inverse flow graph of G, the union
of all output X; of W in flow graph G is the upper approzimation of W, the
union of all outputs X; of W in a flow graph G, such that cov(W, X;) =1, is
the lower approximation of W. Moreover, the union of all outputs X; of W,
such that cov(W, X;) < 1, is the boundary region of Y.

PROQOF. It can be proved in a straightforward way according to definition
and property of inverse flow graph and Definition 24. O

The following example illustrates the four basic categories.

Example Suppose we are given the flow graph for the preference analysis
problem depicted in Fig. 5, that describes four disjoint models of cars X =
{X1, X5, X3, X,}. They are sold to four disjoint groups of customers Z =
{Z1, Zy, Z3, Z4} through three dealers Y = {Y1, Y5, Y3}.

By Definition 24, when we consider customer Z;: the lower approximation of
7y is an empty set, the upper approximation of Z; is Y; UY5 and the boundary
region 77 is Y1 UY5. Hence, by Definition 25, we conclude that Z; is internally
Y-indefinable. In Fig. 5 (only limited information is available), by using the set
of dealers (Y') to approximate the customer group Z; together with the flow
distribution visualized in layers two and three, our results can be summarized
as the following.

- Since no branch connects Y3 and Z;, there is no customer Z; buys a car from
dealer Y3. As a result if dealer Y3 plans to run new promotional campaigns,
they do not need to pay attention to customer group Z; in these campaigns.

- If a customer buys a car through dealer Y; or Ys, then we cannot conclude
whether this is a customer in group Z; or not. Thus, if dealers Y} and Y5
plan to run promotional campaigns, then they should, at least, target at
customer group Z; in their campaigns.

Similarly, we can approximate all attribute values (node) in the inverse flow
graph of G' by using Property 4.

However, the flow graph perspective on rough sets’ categories in Definition 25
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Car Dealer Customer Group
cer=.48 5=.15 cov=.71

o(x4)=.30 o(ys)=.24 o(24)=.36

Fig. 5. A normalized flow graph.

do not provide approximations quantitively. Hence, in Definitions 26 and 27,
we define two measures for flow graphs, the accuracy of approximation and
the roughness of approximation.

Definition 26 Let G = (A,B,0) be a flow graph, A, = {Xl,Xg, o ,Xmi},
1 <1< k—1, be an attribute in layer i and Y be a node in Ay, . For any
branch (X;,Y), 7 € {1,...,n}, of G, the accuracy of approximation, o, (Y),

- card(A;,; (Y))
is defined as: a, (Y) = W%(Y))'

We can use the accuracy of approximation to specify the quality of an ap-
proximation. Obviously, 0 < ap(X) < 1. If au, (Y) =1, then Y is crisp with
respect to A;;, and otherwise, if ayu, (V) < 1, then Y is rough with respect to
A 1
Definition 27 Let G = (A, B, o) be a flow graph, A, = {Xl,Xg,...,Xmi},
1 <4 < k—1, be an attribute in layer i and Y be a node in A, . For
any branch (X;,Y), i € {1,...,n;,}, of G, the roughness of approzimation,

. card(Aili(Y))—card(Ali (Y))
Ya, (Y), is defined as: ya, (Y)=1—ayu, (V)= T

We have that 0 < 4, (V) < 1. If 4, (Y) = 0, then Y is crisp with respect to
Ay;, and otherwise, if 74, (V) <1, then Y is rough with respect to A;,.

Property 5 Let G = (A, B, o) be a flow graph, Ali:{Xl,X% . ,Xmi}, 1<
i < k—1, be an attribute in layer i and Y be a node in A, . For any branch
(X;,Y), 5e{1,....,n,}, of G, we have

Zcer‘(X— yy=19(X5) > cer(X;,v)<19(X3)
1)« Y) = L V) = i
& Ali( ) ZX]'EI(Y) o(X;) and (2) ’YALZ-( ) ZX]'EI(Y) o(Xs)

32



PROOF. (1) From Definition 24, we have card(A;,(Y')) = Xeer(x,,v)=1 card(X;)
and card(A;,(Y)) =X x,er(v) card(X;). Since card(X;)=¢(X;) = 0(X;)@(G) =
Zcer(Xj,Y):1 o (X;)

ijez(y) o(Xj) -

o(X;)p(U) and by Definition 26, then ap(Y) =

(2) It can be proved similarly to (1). O

Let us briefly comment on Property 2(1) that the greater the boundary of Y,
the lower is the accuracy. If ay, (V) = 1, the boundary region of Y is empty.

Property 6 Let G = (A,B,0) be a flow graph, A;, = {Xl,XQ,...,ani},
2 <i <k, be an attribute in layer ¢ and W be a node in A;,_,. For any branch
(X;, W), je {1, e ,nlj} in the inverse flow graph of G, we have

zcov(W,Xj):l J(Xj) ZCOU(W,X]»)<1 O'(Xj)
o(X;) and (2) ,YAlj (W) - ijeo(W) o(Xj)

(1) aAzj (W) = ZX-eO(W)

PROOF. (1) From Property 4, we have card(Ay, (W)= cou(x, w)=1card(X;)
and card(A;,; (Y)) =X x,eow) card(X;). Since ccTrd(Xj) =p(X;) =0(X;)p(G) =
Zce'r'(Xj,W):l o(X;)

ZX]EO(W) a(X;) -

o(X;)¢(U) and by Definition 26, then a, (W) =

(2) It can be proved similarly to (1). O

Example (Cont.) Consider the branches between dealer and customer group
in Fig. 5. We can read from our flow graph that 24% of all customers buy cars
through dealer Y3 (o(Y3) = 0.24) and all of them are in customer group Zs
(cer(Ys, Z,) = 1). There is only one branch (Y3, Z4) with cer(Ys, Z,) = 13.
Thus, by Property 5(1), we have ay (Z1) = ay(Z) =ay(Z3) = 0 and ay (Z,)

v
cer(Y;,Z4)=1 _ O'(Y ) _
W) T e re( ey = 024

Y;E€1(Zy) o

These results imply that we should not make decisions involving customer
groups 4y, Zs and Zs solely by using dealers due to high imprecision. Nev-
ertheless, we can partly check that it will be customer group Z; with low
accuracy by using dealers. Similarly, if we consider the roughness of approx-
imation between dealer and customer group, then by Property 5(2), we have
Ww(Z1) = v (Z2) =y (Z3) = 1 and vy (Z4) = 0.76. We can draw a conclusion
in a similar manner as we did for the roughness measure.

3 By employing the approach presented in our previous study [46], we can extract
some interesting association rules. If the model of car X5 (or X4) is bought through
dealer Y3 then the customer group is Z; with support 0.12 and confidence 1.

33



Please note that we can calculate the accuracy and the roughness of approx-
imation between attributes in the inverse flow graph by using Property 6.
Another important topic in data analysis is dependency between attributes.
We introduce dependency degree between any two attributes in Definition 28.

Definition 28 Let G = (A,B,0) be a flow graph, A= {Xl,Xz, . ,anz}
and Ay, = {Yl,YQ, e ,Ynlm}, 1 <i <k, be any two adjacent layers. Ay,

O card(Ar, (1)

i+1 ) - card(U)

depends on A, to a degree kAli (4

If ka, (Ai,,,) = 1, we say that A;,,, depends totally on Ay, and if ks, (Ar,,,)
< 1, we say that A, , depends partially in a degree kya, (A;,,,) on A, It is
worth pointing out that our dependency measure is different to the one given
by Pawlak [56]. The former gives dependency degree between two adjacent
attributes (layers) while the latter gives dependency degree between two nodes
connected by directed branch.

Property 7 Let G = (A, B,0) be a flow graph, A;,= {Xl,XQ, . ,ani} and
A =X, X, Xmiﬂ}, 1 < i < k, be any two adjacent layers. Ay,
depends on A, to a degree ka, (Ay,,,) = Xeer(x,,x,)=1 0(Xi).

PROOF. From Definition 24, Z?ﬁfcard(&()@)): Yoo Dcer(X,,v;)=1card(X;).

j
Since X, N X, = 0, 1 < n # m < ny, then A, (X,) N A, (X,,) = 0. Thus

2

S0y card(AL (X)) = Yeer(xivy)—1 card(X;). Since p(X;) = o(Xi)p(G) =
o(X;)p(U) and by Definition 28, we can write yg(D) = Dcer(Xi,X;)=1 o(X;). O

Property 8 Let G = (A, B, o) be a flow graph, A, = {Xth, . ,ij} and
Ay = { X1, Xo, . ,anjil}, 1 <j < Ek+1, be any two adjacent layers in
the inverse flow graph of G. A;,_, depends on A, to a degree kAlj (Ay,_,) =
D cov(x,x,)=1 0 (Xi)-

PROQOF. It can be proved similarly as Property 7 O

Example (Cont.) Consider model of car and dealer in the flow graph G in
Fig. 5. By Property 7, dealer depends on model of car to a degree vx(Y) =
Dcer(X,,v;)=1 0(X;) = 0(X3) = 0.17. On the other hand, if we consider customer
and dealer in the inverse flow graph of G, then by Property 8, we obtain that
dealer depends on customer group to a degree vz(Y) = Y cou(v;,z,)=10(Zi) =
0(Z3) = 0.21. These results give a conclusion that dealers depend on customer
groups more than models of cars.
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In what follows, we aim to approximate a specific attribute value by some
attribute values such that they are not in adjacent layers. We can use the
concept of a connection to do this. More specifically, if we aim to approximate
an attribute value in an output layer by attribute values in an input layer,
then we will use the concept of complete connection.

Car Customer Group

Fig. 6. A combined flow graph.

Example (Cont.) For model of car and customer group in Fig. 5, we give
a combined flow graph in Fig. 6. By Definition 24, for Z4, the lower approx-
imation of Z; is an empty set, the upper approximation and the boundary
region of Z, are X; U X5 U X3 U Xy4. Hence, by Definition 25, Z, is totally
X-indefinable.

By Property 5, we have the accuracy and the roughness approximation of
customer Z, by model of car as: ax(Z;) = 0 and yx(Z4) = 1. Additionally,
we can use Property 7 to compute the dependency between model of car and
customer group, and the result is 0. From these results due to the imprecision
and dependency, we should not make decisions involving customer group Z,
by using only model of car. As before, we can approximate and measure them
for the inverse flow graph in the same way. Comparing the obtained accuracy
and roughness measures, we can draw a conclusion that from this population
dealer is a better indicator for analyzing customer group Z, than model of car.

Conclusion

In this research, we introduce definitions and properties of rough set approxi-
mations, accuracy and roughness of approximation which are defined in terms
of a flow graph. They can be useful when the initial data is in the form of
flow graph and contains some limitations. We illustrate a car dealer preference
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analysis to support our propositions. Our future work is to explore relation-
ships between flow graphs and three-way decision rules.
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4.3.2 Flow Graphs and Decision Trees

Flow graphs, invented by Pawlak as an extention of rough set theory [64],
model the information flow of a given data set [65-68]. When starting from
a large data set (as in databases around the world), reasoning is referred to
as inductive reasoning. Reasoning using flow graphs is included in inductive
reasoning. This is in contrast to deductive reasoning, where axioms expressing
some universal truths are used as a departure point of reasoning [65]. We
can discover dependencies, correlations and decision rules within a data set
without reference to its probabilistic nature by using flow graphs [65]. It is an
efficient method for uncertainty management, partly because the branches of
a flow graph are interpreted as decision rules. Flow graphs play an important
role in reasoning from uncertain data and have been successfully applied in
many areas e.g., fuzzy sets [60], search engines [61], rule analysis [63], conflict
analysis [67] and data mining [68].

We look at two developments here. One concerns the quality of an individual
flow graph. A promising measure considered in this paper is entropy. A decision
tree can be constructed as a unique flow graph by removing the root while its
nodes are labeled by the same attribute [68]. We further investigate decision
tree generation from flow graphs, which is the inverse problem. Thus, creation
of decision trees can be accomplished without referring to decision tables but
using the information flow about the problem we are interested in.

Flow Graphs

In this section we breifly review and discuss basic definitions and some math-
ematical properties of flow graphs from the studies of Pawlak [66,68].

Flow graphs have traditionally been used for managing uncertainty [58,60,61,63,65—
68]. In order to demonstrate interesting relationships between flow graphs and
other disciplines, we consider the normalized version of flow graphs.

A normalized flow graph is a directed, acyclic, finite graph G = (N, B, o),
where N is a set of nodes, B C N x N is a set of directed branches p: B — R™
is a flow function, ¢(G) is a throughflow of flow graph G, o: B — [0,1] is a
normalized flow of (z,y) and o(x) is a normalized throughflow of x.

With every decision rule, there are three associated coefficients: strength, cer-
tainty and coverage. The strength of (x,y) is given by

_w(r,y)
o(z,y) = -G (5)
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For every node z of a flow graph G, the associated normalized inflow and out-
flow are defined respectively as o (¥) = X c1) (Y, ), 0-(7) = Xyeow) o(2, ).
For every branch (z,y) of a flow graph G, the certainty and the coverage of
(x,y) are defined respectively as:

cer(z,y) = o(z.y)
(5.9) = 220, )

_o(r,y)
cov(z,y) = o) (7)

where o(x),0(y) # 0. As a consequence of the previous definitions, the fol-
lowing properties hold: 3, cow)cer(z,y) = Yyere) cov(r,y) = 1, o(z) =
ZyEO(ax) cer(x, y)O’(J}) = ZyEO(:p) U(‘T? y) = Z:}cel(:p) COU(J,’, y)O'(y) = er[(x) O'(l’, y)
and cer(z,y) = %?)U(y) and cov(z,y) = % [66,68]. The two last
equations are Bayes’ rules [65] which simplifies computation. Furthermore,
flow conservations of flow graphs are discussed in [66].

Example 1 Consider the well known weather data set for data mining, given
in Table 2 [62], where Outlook, Temperature, Humidity, Wind are condition
attributes and PlayTennis is the decision attribute. Fig. 7 depicts the flow
graph corresponding to this data set. Each group of nodes (vertically) in the
flow graph is referred to as a layer, for example, Fig. 7 has five layers. Every
layer corresponds to a particular attribute, and all nodes of a layer correspond
to possible values of the attribute. We can interpret some patterns e.g., the
database shows 36% sunny outlook, 29% overcast outlook and 36% rain out-
look. We also know that 40% of sunny days are high, 40% are mild and 20%
are low, etc. Briefly, the flow graph visualizes the information of the data given
in Table 2.

If we focus on Wind and the decision PlayTennis, then we can construct a
flow graph to analyze its information flow and decision rules as shown in Fig.
8(a)?. Nodes in the first layer are the possible values of Wind labelled by
Weak and Strong with their normalized throughflow, o(z), (calculated from
£ and ) indicate there are 57% and 43% of days which have weak and strong
wind, respectively. The nodes in the second layer are the possible values of
PlayTennis, labelled by No and Yes. These nodes indicate that 64% and 36%
of the days they do and do not play tennis, respectively.

All branches are interpreted as decision rules with certainty, strength and
coverage coefficients computed by (5)—(7). In the branches starting from Wealk,
o =0.14 and o = 0.43, there are 14% and 43% of days that wind is weak but

4 The computations may contain roundoff errors.
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Table 2
Weather data set [62].

Day Outlook  Temperature Humidity Wind  PlayTennis

D1 Sunny Hot High Weak  No
D2  Sunny Hot High Strong No
D3 Overcast Hot High Weak  Yes
D4  Rain Mild High Weak  Yes
D5  Rain Cool Normal Weak  Yes
D6  Rain Cool Normal Strong No
D7  Overcast Cool Normal Strong  Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak  Yes
D10 Rain Mild Normal Weak  Yes
D11 Sunny Mild Normal Strong  Yes
D12 Overcast Mild High Strong  Yes
D13 Overcast Hot Normal Weak  Yes
D14 Rain Mild High Strong No
Outlook Temperature Humidity Wind PLayTennis
er = 0.4, 0 =0.14, cov = 0, Hot r=0.75, 0 = 0.21, cov = 0. @ r=0.57,0=0.28, cov = ek er =0.25, 0 =0.14, cov =0
CA AN ZAN AN
Yo, & Yo g Yo, & K o7
‘OZ”\N %’\O,‘\ 0(19‘00 qo..‘\ O(fr )k?o,‘\ oq'\ ’
;g?;: YOOP\\O QQ';\ ‘0/ 40%00” N /Qé\ ’ .%’OOL //Q?J‘O/ .7‘? (N
g o ) - oe}// 0~77 & ” %o & X 0‘6')
@40.25, o =\\?0')7, cov?@m{- 0.33, 0 = 0.14, cov :99@ r=0.43,0=0.22, covk@ 04 0.5,0=0.21, cov = 0}3
\\0 //Q' ‘0
]

Fig. 7. Flow graph weather data.

they do not play tennis and play tennis, respectively. Accordingly, cer = 0.25
and cer = 0.75 indicate that there are 25% and 75% of the weak wind days that
they do not play tennis and play tennis, respectively. Finally, for the branches
ending at No, cov = 0.4 and cov = 0.6 indicate that there are 40% and 60%
of the do not play tennis days which are weak and strong wind, respectively.
Similarly, Fig. 8(b) illustrates the flow graph of Humidity and PlayTennis.
Traditionally, decision rules from flow graphs with large values of certainty
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are included in the classifier system e.g., IF Wind = Weak THEN PlayTennis
= Yes or IF Humidity = High THEN PlayTennis = No. The respective values
of coverage are useful to give explanations (reasons) for these decision rules.

Wind PLayTennis Humidity PLayTennis

To q:\ oy e‘
o 20 é/
,

06)
Strong Yes Yes
@/ 05,6=021, c =0.86, 0= 0.43, cov = 0.67

(a) Wind and PlayTennis (b) Humidity and PlayTennis

@9

Fig. 8. Flow graphs of weather data.

Entropy

Entropy-based measurements of uncertainty and predictability of flow graphs
are considered in this paper. The entropy of a random variable measures the
uncertainty associated with that variable (sometimes called the Shannon en-

tropy [69]).

Definition 29 If X is a discrete random variable and p(x) is the value of
probability distribution, then the entropy of X is H(X) = — Y cx p(z) log, p(z).

Definition 30 If X and Y are discrete random variables and p(x,y) is the
value of their joint probability distribution at (z,vy), then the joint entropy of
X andY is HX,Y) = =Y ,ex Yyey P(x,y) logy p(x,y).

Joint entropy is the amount of information in two (or more) random variables
whereas conditional entropy is the amount of information in one random vari-
able given we already know the other.

Definition 31 If X and Y are discrete random variables and p(z,y) and

p(y|z) are the values of their joint and conditional probability distributions,
then the conditional entropy of Y given X is

HY|X) = =Y ex Yyey p(x,y) log, p(y|x).

Entropy Measures of Flow Graphs

Similar to the standard definition of entropy, we give definitions of the entropy
of a flow graph in this section (measured in bits).
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Traditionally, given a collection (training data) S, the entropy is defined rel-
ative to its classification to characterizes the purity of this collection of ex-
amples. This is essentially the entropy of the probability distribution defined
by the data set for the decision attribute Y. We define the entropy of a flow
graph by replacing this probability with the normalized throughflow of value
y, which is natural, since o(y) = p(Y =y).

Definition 32 The entropy, H(G), of a flow graph G is defined as

H(G) == o(y)logya(y)

yey

where o(y) is the normalized throughflow of the decision attribute value Y = y.

The joint entropy and conditional entropy between attributes X and Y are
also defined similar to existing definitions.

Definition 33 If X and Y are attributes in the flow graph G then the joint
entropy of X and Y is

H(X = > Y oz, y)logyo(z,y)

zeX yeyY

where o(x,y) is the strength coefficient of the attribute values X = x and
Y =y.

The task of inference in knowledge discovery is related to computing p(Y =
y|X = z) where x and y are values of condition and decision attributes. This
how the entropy measures of a flow graph describe the predictive performance
of an attribute. Recall that cer(z,y) = p(Y = y|X = z). We define the
conditional entropy of attributes in a flow graph below.

Definition 34 If X and Y are attributes in the flow graph G then the condi-
tional entropy of Y given X is defined as

HY|X) ==Y > o(z,y)log, cer(z,y).

rzeX yeY
where o(x,y) and cer(x,y) are the strength and certainty coefficients of the
attribute values X = x and 'Y =y, respectively.
Next, we give a formula to compute the information gain, Gain(G, X) of a

particular condition attribute X. It is the original entropy of the flow graph
(Definition 32) minus the conditional entropy of Y given X.
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Definition 35 If X and Y are attributes in the flow graph G then the in-
formation gain, Gain(G, X) of an attribute X, relative to a flow graph G, is
defined as

Gain(G,X) = H(G) — HY|X).

Information gain can serve as a tool for predictive performance discovery. It
measures the effectiveness of an attribute to classify the given (training) flow
graph. In other words, it indicates the best prediction attribute (having highest
Gain(G, X)) of decision attributes in flow graph. Using these new definitions,
we will analyze flow graphs not in probabilistic flavor but in deterministic
flavor in detail in the next sections.

Illustrative Example

The attributes of the data® given in Fig. 8, can be regarded as discrete ran-
dom variables where Wind takes values w = {Weak, Strong}, Humidity—h =
{High, Normal} and PlayTennis—t = {Yes, No}.

First let us focus on Wind and PlayTennis in the flow graph in Fig. 8(a), their
normalized throughflows are:

- o(z) of Wind are o(Weak) = 0.57 and o(Strong) = 0.43, and
- o(y) of PlayTennis are o(No) = 0.36 and o(Yes) = 0.64.

The strength coefficients o(z,y) of Wind and PlayTennis are:

- 0(Weak, No) = 0.14, - o(Weak,Yes) = 0.43,
- o(Strong, No) = 0.21, - o(Strong,Yes) = 0.21.

First, let us calculate the entropy of the flow graph G in Fig. 8(a) by using
Definition 32.

HG)=- Y  oy)loga(y)

y€PlayTennis

— —(0.3610g, 0.36 + 0.64log, 0.64)
=0.94.

> Wind and PlayTennis are not independent since p(Wind = w, PlayTennis =
t) # p(Wind = w) x p(PlayTennis = t), c.f. [58] for dependency issue.
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We calculate the certainty coefficients cer(x,y) of Wind and PlayTennis as

- cer(Weak, No) = % =0.25, - cer(Weak,Yes) = 0.75,
- cer(Strong, No) = 0.5, - cer(Strong,Yes) = 0.5.

According to Definition 34, conditional entropy of PlayTennis given Wind is

H(PlayTennis|Wind)=— Y > oz, y)log, cer(z,y)
zeWind yePlayTennis
— (0.1410g, 0.25 + 0.21log, 0.5
+0.43 log, 0.75 + 0.21log, 0.5)
=0.89.

Thus, the information gain of attribute Wind, relative to the flow graph G
given in Fig. 8(a) is

Gain(G,Wind) = H(G) — H(PlayTennis|Wind)
=0.94 - 0.89
=0.05.

Similarly, the information gain of Humidity, relative to a flow graph G in Fig.
8(b) is Gain(G, Humidity) = 0.15

According to the discussion provided in [62], our definition of information
gain of a particular attribute relative to a flow graph G is similar to the
information gain they used to build decision trees. Gain(G, Wind) is less than
Gain(G, Humidity) indicates condition attribute Wind has less predictive
power than Humadity. In other words, knowing the Humidity value helps to
predict outcome better than knowing the Wind value. This is thus referring
to the quality of the flow graph in Fig. 8(a) as a classifier is not as predictive
as the flow graph in Fig. 8(b).

An Application to Decision Trees

Entropy in machine learning has been successful in computing information
gain in decision trees [62]. In further discussion, we adopt standard terminology
concerning decision trees like root, branches, etc. Starting from a decision
tree, it can be constructed as a unique flow graph by removing the root while
its nodes are labeled by the same attribute [68]. Theoretically, Butz et al.
showed that a flow graph is a special case of chain Bayesian network [58]. On
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Fig. 9. Predictive decision tree from weather data set.

the contrary, in some situations, such as voting analysis and supply—demand
problems (discussed in [65]), the available format is not a decision table or a
database but is a flow graph. Hence, a classifier system constructed directly
from a flow graph instead of a decision table is required. It is shown that
classification of objects in flow graph representation boils down to finding the
maximal output flow [65]. For these reasons, flow graph information gain is
applied to solve this problem.

In this section, a new construction for decision trees from a flow graph is es-
tablished. It is not sufficient to just precede in the inverse order as a (unique)
flow graph construction from a decision tree, since a flow graph can be re-
arranged its layer order. Thus, it can construct several decision trees with
distinct predictabilities.

Example 2 We are given the initial flow graph in Fig. 7 and we aim to con-
struct a decision tree classifier. We can construct the decision tree by adding
its root. All corresponding nodes and branches are inherited from the flow
graph. Although, a decision tree constituted directly from this graph will have
the level of nodes as appeared in the flow graph which has less predictive per-
formance as discussed in [62]. Alternatively, from Section 4, the information
gain (predictive) order of condtional attributes is Outlook, Humidity, Wind
and Temperature. Then we can generate a decision tree classifier (Fig. 9). Its
levels are determined according to their flow graph information gains. As one
can see, this flow graph can be used as a classifier for PlayTennis. Hence, a
more predictive decision tree can be constructed by using the proposed flow
graph entropy and information gain.
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Concluding Remarks

We propose flow graphs’ analysis based on entropy computation. We have
shown a new mathematical relationship between flow graphs and entropy,
which can be used for data analysis. In particular, an information gain derived
from entropy is suitable for creating and analyzing decision trees from flow
graphs when starting from a specified format. The entropy of flow graphs
may have applications not necessarily associated with decision trees, but these
require further study. Future works are an exploration of such problems and
a more formal scheme for decision tree generation.
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1. Introduction

Rough set theory was invented by Pawlak [1] and fuzzy set theory by Zadeh [2]. The given set, which is the target of
the study, typically contains vagueness and data uncertainty that all require adjustments. In order to accommodate such
difficulties, approximation is required and thus rough sets and fuzzy sets are expedient. Rough sets approximation is carried
out in terms of two sets: the lower and upper approximations [ 1]. Alternatively, fuzzy sets approximation is carried out using
a membership function [2,3]. According to Pawlak [ 1], “A rough set represents a new mathematical approach to vagueness and
uncertainty, the emphasis being on the discovery of patterns in data”. The rough sets approach is viewed as a soft, rather
than hard, computing technique. Thus, rough sets approaches are effective in the fields of data analysis, machine learning,
information retrieval, survival analysis [4-8]. Fuzzy set theory has attracted researchers and played an important role in
natural language, image processing, robotics, etc. [3]. Dubois et al. proposed rough fuzzy sets and fuzzy rough sets, and then
established theoretical rough sets and fuzzy sets integrations [9]. The study by Banerjee et al. strengthens the connections
between rough sets and fuzzy sets with the roughness measure of fuzzy sets [10]. Huynh et al. introduced a new roughness
measure of fuzzy sets based on mass assignment [11]. The roughness of a fuzzy set was then interpreted as the weighted
sum of the roughness measures of nested focal subsets. Yang et al. have investigated roughness bounds under different set
operations for rough sets [12].

Not only has the theoretical development expanded, but practical applications were studied as well. Banerjee et al.
and Zhang et al. found measures of the roughness of fuzzy sets useful for applications in pattern recognition [10,13]. The
authors proposed using rough fuzzy sets as the model for images [14]. The results show that objects are extracted with
higher accuracy using their approach, compared to Shannon’s probabilistic entropy. In the work of Huynh et al. [11], a new
roughness measure was used to analyze relational databases. Yang et al. reported that roughness measures are important
indicators for decision making applications [ 12]. When we focus on data mining, machine learning, bioinformatics, network
security, natural language processing, etc., data sets are usually huge. Thus, we investigate bounds on roughness measures
for the fuzzy set operations. This work is organized as follows. Sections 2 and 3 contain requisite notions of rough sets,
fuzzy sets and roughness measures. The theoretical background for important operators and new bounds on the roughness
measure for fuzzy set operations are provided in Sections 4 and 5.
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2. Rough sets and fuzzy sets

Definition 1 ([1]). Let U be a non-empty finite set called the universe and R be an equivalence relation on U. We call (U, R)
an approximation space.

Definition 2 ([1]). Let (U, R) be an approximation space,A € U and X1, X,, . .., X, denote the equivalence classes in U with
respect to R. The lower approximation A, upper approximation A and boundary region BN, are defined as A = | J{X; : X; C
A},A=UJ{X;: XiNA# @}, and BNy = A — Awherei € {1,2, ..., n}, respectively.

Definition 3 ([1]). Let (U, R) be an approximation space and A € U. A measure of roughness of A in (U, R) is defined as

pa=1-— %, where |X| denotes the cardinality of the set X.

Yao [7] stated that the roughness measure can be understood as the distance between the lower and upper
approximations. Next, let A : U — [0, 1] be a fuzzy set in U, A(x), x € U, giving the degree of membership of x in A [10].

Definition 4 ([10]). The lower and upper approximations of fuzzy set A in U, A and A, are defined as fuzzy sets in U/R —

[0, 1]and A(X;) = infxeX,- Ax), AX;) = SUPyex, A(x), 1 =1, ..., n, where inf (sup) denotes infimum (supremum).

Definition 5 ([10]). Fuzzy sets «/,« : U — [0, 1] are defined as follows: &(x) = A(X;) and &(x) = A(X)), if
xeX;,ie{l,...,n}.

3. Roughness measure of fuzzy sets

Definition 6 ([10]). Suppose «, 8 are two given parameters, where 0 < 8 < o < 1.The «-cut set and the 8-cut set of fuzzy
sets o7, o/ are defined as «/ , = {x: &/(x) > a}and & y = {x : o/ (x) > B}, respectively.

o o and o/ g can be considered as the collection of objects with o as the minimum degree of definite membership, and
B as the minimum degree of possible membership in the fuzzy set oz [10].

Definition 7 ([10]). A roughness measure p:’ﬂ of fuzzy set A in U with respect to parameters «, 8, where0 < 8 <« < 1,

and the approximation space (U, R), is defined as pf\"ﬂ =1- %Z\"

This roughness measure depends strongly on parameters « and 8. There are several crucial properties of pf\"ﬂ introduced
in [10] as follows.

Proposition 1 ([10]). Let «, B be two given parameters, where 0 < B < o < 1and let & , and /g be the a-cut set and B-cut
set of fuzzy sets </, «/; we have

@ FUBg=dpgVU%Bg, b)) YNBy=oqNRBq,
© F,UB,CoUB,, (d) “NBg CdpgNBg.

Property 1 ([10]). For fuzzy sets A and B, it holds that

(a) /OZJ; -1— |Mo¢| —1_ WOA <1-— |%Ot U%Cd,
|=07U93ﬁ| |!7ff; Uﬂﬂ' |JZV[5U,@/;|

(b) p:r,‘/i:l_LQ/mf%al: _|%am%a| S]_l%am%all
|%ﬂ<@5| |4a7ﬂ33/3| |Mﬁm‘%ﬂ|

4. Certain increment and uncertain decrement operators

The pioneering studies of fuzzy rough sets [ 1,10] derived Proposition 1(c) and (d). They perform subset instead of set equal.
This cannot be analyzed quantitatively. Successive roughness measures also depend on the parameters «, 8, and these two
difficulties restrict some computations [13]. Thus, two new parameter-free operators of fuzzy sets were devised [13].

Definition 8 ([13]). Let U be the universe and let R be an equivalence relation on U. Let X, Y C U. When X is extended by
Y (ie,XUY),Z,():UxU— U,definedbyZy,(Y) = {1k | x € L(X), Ix(x) € Yand hy(x) C Y}, is called the certain
increment operator of X, where L(X) = | {lx(x)|x € BNg(X) N X}, hx(x) = [x]zr — X, and Ix(x) = [x]g — hx (x).

Definition 9 ([13]). Let U be the universe and let R be an equivalence relation on U. Let X, Y € U. When X is cut by Y
(e, XNY),Z(-) : Ux U — U,defined by Zx)(Y) = [J{[xIr | x € LX), Ix(x) N Y = P and hy(x) N'Y # @}, is called the
uncertain decrement operator of X, where L(X) = [ J{Ix (x)|x € BNg(X) N X}, hx (x) = [x]g — X, and Ix(x) = [x]g — hx(X).
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Property 2 ([13]). For crisp sets X, Y C U, it holds that
(a) Z(x)(y) = Z(y) (X)! (b) Z(X) (Y) = Z(Y) (X)

Theorem 1 ([13]). Let a, B : U — [0, 1] be two fuzzy sets in universe U and 0 < B < o < 1, where Z o4, (%),
Z 3, (), Z oy (#g) and 7% 5 («7g) are certain increment operators of <7, # , and the uncertain decrement operators of <7,
g, respectively. We have

(a) I By =doUBy UZQ{Q(%&) =dUB, UZ:%O((’Q{DZ)5
(b)) TNBg=dpNBp—Z.gy(Bp) = g N Bp—Z 5, (p).

Property 3 ([13]). For fuzzy sets A and B, it holds that

|%aU@aU;a¢a(=@a)| 1 |%QU$aUZ%a(£{a>|

¥
@ paog=1- ——— =1 == ,
AvB |75 U Zg| |5 U Bg|
Ay NB S o N B
(b) pzr,]%zl_ _ |:a ja| —1— — |:a ja| )
[/ p N B — Z o1y (%) [o/s N Bp — Z g, (c7p)]

5. Some new bounds of roughness measures of fuzzy sets
The roughness measure is an important indicator of the uncertainty and accuracy associated with a given set [12]. Since
data sets in most applications are usually huge, operations on these data sets are time- and space-consuming. Thus, before

completing large volume operations involving two fuzzy sets, we must know the bounds of such results.

Theorem 2. An upper bound of the roughness measure ,o:(ﬁ; of fuzzy sets A, B in U with respect to «, § is given by pzﬁ <

lfpa'ﬂpa'ﬁ
g Where0 < 8 <a < 1.
2—(py""+pg")
; a.p _ max{| ¢|.| B al} P ;
Proof. From Property 1(a) and a basic set property, we have p e < 1 ETET If |« «| > |2 | (Or vice versa), then
1 1-p3F o ?

we obtain pjih < 1 Thus, ity < 7, by Definition 7. 0

IR T2 2-(op P +og

Theorem 3. An upper bound of the roughness measure ch% of fuzzy sets A, B in U with respect to «, 8 is given by pﬁh’i <

a,p a.p * x _ | AUB|

P+ pg —1—|—U,whereO<ﬂ§o¢§1andU_Wn%ﬂl.
: ap _ | ol _ | B ol | «UB o] :
Proof. From Property 1(b) and a basic set property, p4ng = 1 wni ] ni ] + EaCT With respect to
s — — — . — — - o o o o

Proposition 1(d), & N %p € /g (and € Bg) implies | N Bg| < || (and < |#Bg|); we therefore have ﬁ < \.;mgalm
and %;: < |£L%;‘ﬂ|' Then pifh < 1 — l‘%;: - :%;" l‘%;" by Proposition 1(c). According to Definition 7, piry <

o,p o,p | VB o - o,p o,p o,p _ |1 HUB |
pn + gt — 14+ |Mm%ﬂ‘.Wefmallyhave,omﬂ <py" +pgt —14+U*, whereU* = EaCik

The bound in Theorem 2 depends on the roughness measures of fuzzy sets A and B while the bound in Theorem 3 depends
on the roughness measures of fuzzy sets A and B in addition to |« U # | and |« N Zg].

Theorem 4. A lower bound on the roughness measure P:O% of fuzzy sets A, B in U with respect to «, B is given by pzb’i >

pz'ﬁ—kpg’ﬁ—l—L*,whereO<,8§a§ 1and&=%.

Proof. From Property 3(a) and a basic set property, we have that /’Xﬁﬁs >1- ‘g“r':;!fg;%%;‘(?“”. For |« 4| > [Bpl,
pzdi >1- @“H@%‘%W(@“)' =1- —'%;“ — —%;l‘ — 7|Z“7%j“)l .In accordance with Definition 7 and :%;II =< I%Z} ,we have
o.p Lol |Bal |2ty (Bl _ o.p o,p 1Z o7y (Ba)| o.p a.p o,p |Z oty (Ba)|
PauB > 1—@—@—?}%' = 1_(1_/0A )—(1—,03 )—W.ThQYEfore,pAUB > Pa +pB —I—W
Similarly, for |7 4| < |7 4|, pieh > 1 — 'iﬂﬂ@%'%%‘ Pl Therefore, piif > pif + pdf —1— %. We finally

1Z oty (Ba)|

have /’X(ﬁ; = Pz’ﬂ + pg’ﬂ —1—L,, whereL, = e B
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Theorem 5. A lower bound of the roughness measure pf“r’]‘i of fuzzy sets A, B in U with respect to «, B is given by p:h';
T Bal+1Z

_ 1— 'OX +05° /JB < < |<Qfﬁu-@ﬁ|+|zdﬁ(-@ﬁ)‘

1 TP —1*(1 P where0 < B <o < landl, = R

min{|. ¢|,| B al}

Proof. From Property 3(b), and basic set properties, we have > 1— =————t=ar=al . For |& 4| <
perty 3(b), prop Pae = g1l pUppl oy @ 0T Ll =
|% |, we have that p; 5, > 1 — ! _ From Definition 7 and |_; l“g”‘ > 1%l O 1-
¢ A = gl Byl (7pudgl Eary@pl > (G Pae =
[ Fal Lol Ll | «l
[ pUBB|+|Z oy (B i
1 _ _ 1 3 _ BYFB B\ FB
EREE 2 1 L 1 pUmp ey )l We define Iz, = [ ol » thus
[Zal T Bal Lol | Zal 1—p% ﬁ 1-p% a,p [ ol
@by b b A ° (o7 gUB | +|Z v 5 ()]
a,B 1—pp +pa L _ . . pYULBI+|Z g (%
> 1-— . Similarly, for |<r > |%,/|, if we define | = —t
Pang = 2-p P pP - lwa\(l p‘*ﬂ)m e F) v for | ul > 12l |2l Bl
B_ aﬁ aﬁ ﬁ apf  ap, af op
1—py +pp 1—pa " —pg " +03" p
therefore we have p,~7 > 1 — A Thus, 1-— A__ B A B , Where
Pavw = 2-p3 7 - “”—u@mu pAﬁ)m -0gH)’ Phi 2 2-pp P g Pl 1-pg Pya-pg P

[ UBGIHIZ ey (28p)
* T min{[Z ol [Za)

The lower bounds for ,oj‘r’ﬁ, differ from the upper bounds on pf;‘r’f;, in that they depend on the roughness measures of the
fuzzy sets A and Band also [/|, [Z4l, | 4|, |2 | and |Z PACHI

6. Concluding remarks

The roughness measure is an important indicator of uncertainty and accuracy associated with a given fuzzy set. More
importantly, these roughness measures propagate through various set operations. Thus, before completing large volume
operations involving two large fuzzy sets, we should have bounds on the roughness measure of the result, as proven in this
work.
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Capacity-Based Definite Rough Integral
and Its Application

Puntip Pattaraintakorn, James F. Peters, and Sheela Ramanna

Abstract. This paper introduces an extension of the original capacity-based rough
integral defined over a specific interval. The approach hearkens back to the pioneer-
ing work on capacities and the generalization of the Lebesgue integral by Gustav
Choquet during the 1950s. Variations in the definition of the capacity function has
led to various forms of the discrete Choquet integral. In particular, it is the rough ca-
pacity function (also called a rough membership function) introduced by Zdzistaw
Pawlak and Andrzej Skowron during the 1990s that led to the introduction of a
capacity-based rough integral. By extension of the original work on the rough inte-
gral introduced in 2000, a discrete form of a capacity-based definite rough integral
is introduced in this paper. This new form of the rough integral provides a means of
measuring the relevance of functions representing features useful in the classifica-
tion of sets of sample objects.

Keywords: capacity, Choquet integral, feature selection, rough set theory, rough
membership function, definite rough integral.

1 Introduction

During the early 1990s, Zdzistaw Pawlak introduced a discrete form of the definite
Riemann integral of a continuous, real function defined over intervals representing
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equivalence classes [6]. Since that time, work on various forms of rough integrals has
continued fairly steadily (see, e.g., [5,18,19, [10]). The original integral was called a
rough integral because it was defined over intervals represented equivalence classes
in a partition of sequences of reals defined by an equivalence relation.

Based on work on the Choquet integral (C) [ f du considered in the context of
rough sets [12], a new form of discrete rough integral [ f du? was introduced [8, 9]
and elaborated in [10]. The Choquet integral is a generalization of the Lebesgue
integral defined relative to a capacity u [1,12]. A capacity is a function u that assigns
a non-negative real number to every subset of a finite set X and satisfies f(0) =0
[4]. When the discrete form of the Choquet integral (C) [ f du is defined relative
to a finite universe, the Lebesgue integral reduces to a (convex) linear combination,
where each individual integrand function value is weighted with a capacity function
value [2].

This article introduces a new form of the Choquet integral called a capacity-
based definite rough integral because its capacity is a function defined relative to
equivalence classes. The extension of the capacity-based rough integral has a num-
ber applications. In particular, we show in this article how this integral can be used
in feature selection with the DRI tool implemented in MATLAB®.

This article is organized as follows. A capacity-based rough integral is defined in
Sect.[3l A discrete form of the definite rough integral (DRI) is defined in Sect.[dl An
illustration of the application of the DRI is presented in Sect.

2 Rough Capacity Function

Rough capacity functions were introduced during the mid-90s [[11]. A rough capac-
ity function returns the degree of overlap between a fixed set containing objects of
interest and a set of sample objects.

Definition 1 (Rough Capacity Function). Let S = (¢,.%) denote an information
system. Assume X C @(0), BC #, x € X and [x]p C X/ ~p. The capacity u? :
#£(0) — [0,1] is defined:

[XN[xg] if X 75 0
B(x)=1{ IRl ' ’ 1
He (X) 0, otherwise. )

The capacity u? is an example of a set function, i.e., a function whose domain is
a family of sets [3]. This set function measures the degree of overlap between the
set X and the class [x]z, i.e., the extent that X is covered by [x],. Recall that [x]
is a set of objects having matching descriptions. This is important in evaluating
the set X, since u? (X) is a measure of the extent that the objects in X are part of
the classification represented by [x] . In the context of capacity-based integrals, the
function p? is a source of weights, i.e., degree of importance of each set X in a
weighted sum for the discrete form of the integral.
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It can also be observed that u? is a real-valued set function that is additive. That
is, for X, X’ in g2( &), it can be shown that

HP(X U X)) = uB () + b (x)).

3 Capacity-Based Discrete Integrals

This section gives a brief introduction to the Choquet integral, which eventually led
to the introduction of a capacity-based rough integral.

3.1 Discrete Choquet Integral

Recall that the Choquet integral (C) [ f du is a generalization of the Lebesgue inte-
gral defined with respect to a non-classical measure p called a capacity. Also recall
that a capacity is a real-valued set function

p:p(X) — R,

such that g(@) =0 and X’ C X" C @(X) implies u(X") < p(X”) (monotonicity).
When the Choquet integral is defined relative to a finite sets, then the Choquet in-
tegral reduces to a weighted sum that has a variety of applications, especially in
multi-criteria decision-making (see, e.g., [1,12]).

Definition 2 (Discrete Choquet Integral [2]). Let u be a capacity defined on a
finite set X. The discrete Choquet integral of a function f : X — R with respect
to capacity U is defined by

(C)/f du = ; [f (@) = f () | - (X)),

where (i) denotes a permuted index so that 0 < f (x(l)) <f x(z)) <. <f (x(l-)) <
e < f (X(n)) < 1. AlSO, X(z) = {X(i), ces ,X(n) }, and f(X(O))

3.2 Discrete Rough Integral

The introduction of the rough capacity function u? paved the way for a discrete
rough integral (P) [ f du® named after Zdzistaw Pawlak. This rough integral is a
variation of the discrete Choquet integral [1,2,17,19, 10].

Definition 3 (Discrete Rough Integral). Let 12 be a rough capacity function de-
fined on a finite set X. The discrete rough integral of a function f : X — R* with
respect to capacity u? is defined by
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n

m/w@:zvmmﬁvmm+ﬂ%m

i=1

where - ;) denotes a permuted index so that 0 < f (x(1)) < f (x 2 ) <f(xp) <
< f () < 1L Also, Xy = {x(,- - X } andf( )

If f is non-negative, then (P) [ fduB represents the lower approximation of the
area under the graph of f.

Proposition 1. If Minp < puf (X)) < Maxp, 1 <i<n, then 0 < (P) [ f duf <
Maxyl.

Proof

ZMaxH[f( ) ( )]
< Maxu (because f(x()) = 0and f (x(,)) <1).

It can be proven in a straightforward way that (P) [ f duZ > 0. O
{

Consider a specialized capacity /.qu)} defined in terms of a single function ¢ € B,
where B is a set of functions representing features of objects in a finite set X.

Proposition 2. [9] Let 0 < s < r and ¢ € B. If f(x) € [s,r] forallx € X, then
(P) [ f aui® € (0.1].

4 Definite Discrete Rough Integral

In this section, we introduce a discrete form of definite rough integral (DRI) of a
function f denoted by jf f du®, where () 18 a permuted index and a,b such that
x(1) < a < b < x,) are the lower and upper integral limits, respectively. The limits
on the rough integral specify the interval over which a function f is integrated and
it is assumed that f is continuous over [a,b]. This integral is defined in terms of an

upper integral E f duf and a lower integral ﬁ fduB.

b b b
/fduf:/fduff/fduf-
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The discrete forms of the lower and upper integral are defined w.r.t. [x]p in @) and
@), respectively.

b b
/a fdul = 2 [fxion)] Agu?, (2)
b 5 b 5
/a f g =2 [f (k)] A e 3)
where A(;u? is defined in @).
Apud = |1d (X)) — X1 - 4)

Definition 4 (Definite Discrete Rough Integral). Let u? denote a rough capacity
function with domain X(;) that is the set

X = {0 X (1) %)

where (i) is a permuted index, X(()) =0, and a, b such that X(1) <a<b< X(n) are
the lower and upper integral limits, respectively. It is assumed that f (x(o)) =0.The

difference A w8 is defined in (@) relative to the set X(i)- The discrete definite rough
integral of f : X — R is defined by

b b b
| ranf= [ raul~ [ raut,

where the lower and upper integrals are defined in () and (), respectively.

4.1 Interpretation

Observe that the capacity function u2 is defined in terms of a set of functions B
representing the features of sample objects of interest. The set B provides a basis for
the relation ~p that defines a partition of the sample objects X (source of integral
limits). Then a function f is integrated with respect to uZ. In the discrete form
of the DRI, u? provides a weight on each summand X{iy, a set of sample objects.
The capacity u? computes the degree of overlap between a set X and a class [x] B
representing objects that have been classified relative to the features represented
by B (see Sect. 2). In effect, B is a source of criteria for grouping together objects
matching the criteria represented by B. Hence, the definite rough integral indicates
the importance and relevance of a function integrated with respect to u2. Hence, if
a function ¢ representing an object feature is integrated with respect to %, the DRI
provides an effective means of selecting features that can be used to discriminate
objects. In effect, the definite rough integral is useful for feature selection within the
prescribed limits of the integral. The novelty here is that the limits on the DRI can
be varied to measure varying importance of an individual feature represented by a
function ¢.
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5 Feature Selection

In this section, we briefly illustrate an application of the discrete definite rough
integral (DRI). For simplicity, we assume that each vector of function values used
to describe a sample object is evaluated, e.g., acceptable (d = 1) vs. unacceptable
(d =0). Put B={d}, where d € {0,1} in defining the capacity u5. Then any set of
objects X can be partitioned using the set B.

5.1 Illustration

Next, consider, for example, a set of objects described with two functions, namely,
o1, ¢, representing features of objects in a sample X. For the purposes of illustra-
tion, we treat ¢, ¢ abstractly, i.e., without considering specific functions. Here is a
partial, sample description table with the evaluation (decision) column d included.
Note that x(;) indicates a permuted object with values in ascending order.

Table 1 Sample data

X 1 ¢ d X (od} (033 d
X(1) = X4 0.79224 29.988 0 X(11) = X1 0.92282 13.787 1
X(2) = X3 0.79467 30.114 0 X(12) =X12 0.93357 11.387 1
X(3) = X2 0.80596 27.402 0 X(13) = X13 0.94553 97302 1
X(4) = X5 0.81286 27.633 0 X(14) = X14 0.90996 13.979 1
X(5) = X1 0.85808 21.754 0 X(15) = X15 0.95608 7.1776 1
X(6) = X6 0.86020 22.866 0 X(16) = X16 0.94722 11.387 1
X(7) = X7 0.84569 2443 0 X(17) = X17 0.94467 9.0222 1
X(g) = X8 0.87886 20.16 O X(18) = X18 0.96424 6.3259 1
X(9) = X9 0.88235 19.945 0 X(19) = X19 0.92804 12.398 1

X(10) = X10 0.88094 19.227 0 X(20) = X20 0.93925 9.9671 1
X(21) = X21 0.99435 2.3081 1

We now compute the DRI relative to [x ] starting with integration of ¢

) {a=0}
where B = {d = 0}. The lower integral [x(<110) o du{d 0 is

/ ¢du{d o — g (X)) - A (1)%51[] 0}+¢1(x<1) ()Hild My =07,
Xy

and the upper integral jx((m o d,u{d % is

T IX(10)
o duy {d 0}*¢1(x( ) A Hxl}+¢1( ) ()N,é{ld Oy =145
X(1)

Using these results, the definite integral fx((lo o d,u{d % is
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[ oraud= = [ audi = - [ o1 ault= <075
X(1) X(1) *(1)

Next, integrate ¢, with respect to ,u/g{l 0} using class [x(l)] (d=0}° and obtain

[ o auld = [ g i [ s

X(1) X *()

This means that for class [x( 1)] {d=0p’ the feature represented by ¢, is more important
than the feature represented by ¢;. The computations have been performed using
the DRI tool (see Fig. [[) implemented in MATLAB ®. From the plots in Fig. 2l
notice that there is less dispersion of the values for the plot for jx((m & duy {d O}
i.e., the values for the successive lower and upper values are tightly groups around
the [x((m o d,u)f1 % values compared with the [x((m 1053 d,u{d % values.

- 1l [ [B]%]
Discrete Rough ntegrel, Macie) Borkewsk, ver. 115
Erter filz name: Lower limit: Upper limit:
crrmiciata et 1 [
icrmmideta<t [ Detamesh B

Loaa fie 01 [T Debug Info (use only for smal taklest)

Choose column for calculating Rl
1 [~ Nl Plot Column ] ( Show Table ]

Chaose squivalence columns: Shorw foorGedieta)
2 table it
2 Calculate Itegrals
Save Discr Table |
Plot Graph
Piot Meshes

Choose equivalence class:
07

Fig. 1 DRI Tool interface

Similarly, consider the case for class [x(l)] (d=1} and use the DRI to discover
which function has greater importance, i.e., carries more weight. Then the DRI
computed relative to @ is

/, (21) q)l d.u)fld:l} :/ (21)¢l d‘u)jldzl} . X(21) q) d {d l}

JX(11) X(11) X(11)

Next, integrate ¢, for the same class, and obtain

*(21) 0 du! {d 1}7/*(21(]) d‘u{d 1} (e ¢2d {d _p

X(11) X(11) X(11)
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Fig. 3 DRI for ¢y, ¢ for class [X(Z)] (d=1}

‘We now calculate the DRI over the entire data set, for both classes [x(z)]

aDRI¢;,d=1.bDRI ¢»,d = 1

and [xy)] (a1, for the two features ¢; and ¢, respectively:
(21 _ (1) - (21 _
[ ot = T o0l [, apid =0
X 7 )

(1) )

*21) - *21) =
[ e auld= = [ g aul= -

/ 6, auli=" = 6.3.

*)

{d=0}

From this, we can conclude that the feature represented by ¢, is more important
than the feature represented by ¢; with respect to both classes and for different
equivalence classes. The plots in Figs. 2] and [ reveal an interesting feature of the
sample objects that are a source of limits on the DRI, i.e., at x(;5) there is a sharp
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change in the difference between ¢ and DRI values (this is especially evident in
the plot). This suggests a place to begin experimenting with different limits on the
integral. This break in the DRI values also indicates a change in the evaluation of
the functions representing object features.

6 Conclusion

This paper introduces the definite rough integral defined relative to a rough capacity
function. It is the capacity u? that distinguishes the rough integral from the original
capacity-based integral introduced by Choquet during the 1950s. In addition to the
geometric interpretation of the definite rough integral already mentioned, this inte-
gral is highly significant because it offers a measure of the importance and relevance
of features of sample objects. This measurement of the relevance of a feature is a
byproduct of the rough capacity function that provides the basis for the rough inte-
gral. Now, with the introduction of rough integral limits, it is possible to measure
the relevance of features relative to selected ranges of objects. In effect, the definite
rough integral provides a new basis for feature selection in the classification of ob-
jects. Future work includes a study of the properties of the definite rough integral
and its applications.
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Abstract. Entropy is a fundamental principle in many disciplines such as
information theory, thermodynamics, and more recently, artificial intelli-
gence. In this article, a measure of entropy on Pawlak’s mathematical flow
graph is introduced. The predictability and quality of a flow graph can be
derived directly from the entropy. An application to decision tree gener-
ation from a flow graph is examined. In particular, entropy measures on
flow graphs lead to a new methodology of reasoning from data and shows
rigorous relationships between flow graphs, entropy and decision trees.

Keywords: Flow graphs, Entropy, Decision trees.

1 Introduction

Flow graphs, invented by Pawlak as an extention of rough set theory [7], model the
information flow of a given data set [SJ9ITO/TT]. When starting from a large data set
(as in databases around the world), reasoning is referred to as inductive reasoning.
Reasoning using flow graphs is included in inductive reasoning. This is in contrast
to deductive reasoning, where axioms expressing some universal truths are used as
a departure point of reasoning [§]. We can discover dependencies, correlations and
decision rules within a data set without reference to its probabilistic nature by us-
ing flow graphs [§]. It is an efficient method for uncertainty management, partly
because the branches of a flow graph are interpreted as decision rules. Flow graphs
play an important role in reasoning from uncertain data and have been success-
fully applied in many areas e.g., fuzzy sets [3], search engines [4], rule analysis [6],
conflict analysis [10] and data mining [11].

We look at two developments here. One concerns the quality of an individual
flow graph. A promising measure considered in this paper is entropy. A decision
tree can be constructed as a unique flow graph by removing the root while its
nodes are labeled by the same attribute [I1]. We further investigate decision
tree generation from flow graphs, which is the inverse problem. Thus, creation
of decision trees can be accomplished without referring to decision tables but
using the information flow about the problem we are interested in.

This paper is organized as follows. Section 2] introduces preliminary defini-
tions of flow graphs. Section [3] describes basic notions of entropy. Next, we state
entropy measures of flow graphs (Section H). Section [H contains an illustrative
data analysis example, followed by an application to decision trees (Section []).

P. Wen et al. (Eds.): RSKT 2009, LNCS 5589, pp. 618-[625] 2009.
© Springer-Verlag Berlin Heidelberg 2009
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2 Flow Graphs

In this section we breifly review and discuss basic definitions and some mathe-
matical properties of flow graphs from the studies of Pawlak [9I1T].

Flow graphs have traditionally been used for managing uncertainty
graphs and other disciplines, we consider the normalized version of flow graphs.

A normalized flow graph is a directed, acyclic, finite graph G = (N, B, o),
where N is a set of nodes, B C N x N is a set of directed branches ¢: B — R
is a flow function, ¢(G) is a throughflow of flow graph G, o: B — [0,1] is a
normalized flow of (x,y) and o(z) is a normalized throughflow of x.

With every decision rule, there are three associated coefficients: strength, cer-
tainty and coverage. The strength of (x,y) is given by

p(z,y)
ota) = S (1)
For every node z of a flow graph G, the associated normalized inflow and outflow
are defined respectively as ¢ (z) = 3 c 1) 0, 2), - (2) = X cow) o, y).
For every branch (z,y) of a flow graph G, the certainty and the coverage of (z,y)
are defined respectively as:

_o(z,y)
cer(z,y) = @) (2)

cov(z,y) = o(z,y)
(z,y) o (3)

where o(x),0(y) # 0. As a consequence of the previous definitions, the fol-
lowing properties hold: ZyeO(m) cer(xz,y) = Zye](w) cov(z,y) = 1, cer(z,y) =

cov(z,y)o(y) cer(z,y)o(x)

o) ) [OT1]. The two last equations are Bayes’

rules [8] which simplifies computation. Furthermore, flow conservations of flow
graphs are discussed in [9].

and cov(z,y) =

Example 1. Consider the well known weather data set for data mining, given
in Table [ [5], where Outlook, Temperature, Humidity, Wind are condition at-
tributes and PlayTennis is the decision attribute. Fig. [] depicts the flow graph
corresponding to this data set. Each group of nodes (vertically) in the flow graph
is referred to as a layer, for example, Fig. [Il has five layers. Every layer corre-
sponds to a particular attribute, and all nodes of a layer correspond to possible
values of the attribute. We can interpret some patterns e.g., the database shows
36% sunny outlook, 29% overcast outlook and 36% rain outlook. We also know
that 40% of sunny days are high, 40% are mild and 20% are low, etc. Briefly,
the flow graph visualizes the information of the data given in Table [I}

If we focus on Wind and the decision PlayTennis, then we can construct
a flow graph to analyze its information flow and decision rules as shown in
Fig. (a. Nodes in the first layer are the possible values of Wind labelled by

Weak and Strong with their normalized throughflow, o(z), (calculated from -2

! The computations may contain roundoff errors.
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Table 1. Weather data set [5]

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny  Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
Outlook Temperature Humidity Wind PLayTennis
er=0.4,0=0.14, cov = :g; ce{= Ov75‘c=0v21,cov=0/.$3/r-(|)ig? r=0.57,0=0.28, cov)S 057 \ 0.25,0=0.14, cov‘o/o\g
%o s %o g %o ™o g
Yoj t\,;“ e@‘o\‘;&‘@ ‘fio\ @FP )‘?OQO{L\‘&
Q 7z 29, P
i ¢ o ‘o "»0% @° vzg K 7\;
(Je' O
@ =025.0 \\00:\17 wv}m =033, 0=0.14, cov }\}erm\an =043,0=0.22, covs}‘SStmng ce/r 0.5,0=021, cov= oés
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L
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14, cov

T

Fig. 1. Flow graph weather data

and %) indicate there are 57% and 43% of days which have weak and strong
wind, respectively. The nodes in the second layer are the possible values of
PlayTennis, labelled by No and Yes. These nodes indicate that 64% and 36% of
the days they do and do not play tennis, respectively.

All branches are interpreted as decision rules with certainty, strength and
coverage coefficients computed by ([I)—(3]). In the branches starting from Weak,
o = 0.14 and o = 0.43, there are 14% and 43% of days that wind is weak but
they do not play tennis and play tennis, respectively. Accordingly, cer = 0.25
and cer = 0.75 indicate that there are 25% and 75% of the weak wind days that
they do not play tennis and play tennis, respectively. Finally, for the branches
ending at No, cov = 0.4 and cov = 0.6 indicate that there are 40% and 60% of the
do not play tennis days which are weak and strong wind, respectively. Similarly,
Fig. 2(b) illustrates the flow graph of Humidity and PlayTennis. Traditionally,
decision rules from flow graphs with large values of certainty are included in the
classifier system e.g., IF Wind = Weak THEN PlayTennis = Yes or IF Humidity
= High THEN PlayTennis = No. The respective values of coverage are useful to
give explanations (reasons) for these decision rules.
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Wind PLayTennis  Humidity PLayTennis
Ce,\\ % L\@r\\ . Q\
%y & %% G
To 4 0“0‘6\ B
.0
” 5 LY
58 g 4

&
Lo 0y o v

& 2N & "o
Sér-igg cer=05,0=0.21, cov=0.3 (;(Zj =0.86, 0 = 0.43, cov = 0.67- JZZ

(a) Wind and PlayTennis (b) Humidity and PlayTennis
Fig. 2. Flow graphs of weather data
3 Entropy

Entropy-based measurements of uncertainty and predictability of flow graphs are
considered in this paper. The entropy of a random variable measures the uncer-
tainty associated with that variable (sometimes called the Shannon entropy [12]).

Definition 1. If X is a discrete random variable and p(x) is the value of prob-
ability distribution, then the entropy of X is H(X) = — 3"\ p(x)logy p(x).

Definition 2. If X andY are discrete random variables and p(x,y) is the value
of their joint probability distribution at (x,y), then the joint entropy of X and

Y 18 H<X7Y) = _ZzGX Zyeyp<$7y) 10g2p(way)

Joint entropy is the amount of information in two (or more) random variables
whereas conditional entropy is the amount of information in one random variable
given we already know the other.

Definition 3. If X and Y are discrete random variables and p(zx,y) and p(y|x)
are the values of their joint and conditional probability distributions, then the
conditional entropy of Y given X is H(Y |X)= —3_ x> cy P(z,y) logy p(y|z).

4 Entropy Measures of Flow Graphs

Similar to the standard definition of entropy, we give definitions of the entropy
of a flow graph in this section (measured in bits).

Traditionally, given a collection (training data) S, the entropy is defined rela-
tive to its classification to characterizes the purity of this collection of examples.
This is essentially the entropy of the probability distribution defined by the data
set for the decision attribute Y. We define the entropy of a flow graph by replac-
ing this probability with the normalized throughflow of value y, which is natural,
since o(y) = p(Y = y).

Definition 4. The entropy, H(G), of a flow graph G is defined as
H(G) == a(y)log;o(y)

yey
where o(y) is the normalized throughflow of the decision attribute value Y = y.

The joint entropy and conditional entropy between attributes X and Y are also
defined similar to existing definitions.
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Definition 5. If X and Y are attributes in the flow graph G then the joint
entropy of X andY is

H(Xv Y) - = Z Z U(Ivy) log, U(xvy)

rzeX yeYy

where o(x,y) is the strength coefficient of the attribute values X = x and Y = y.

The task of inference in knowledge discovery is related to computing p(Y =
y|X = z) where z and y are values of condition and decision attributes. This
how the entropy measures of a flow graph describe the predictive performance of
an attribute. Recall that cer(z,y) = p(Y = y|X = z). We define the conditional
entropy of attributes in a flow graph below.

Definition 6. If X andY are attributes in the flow graph G then the conditional
entropy of Y given X is defined as

HY|X)=- Z Z o(x,y)logy cer(x,y).

zeX yeYy

where o(x,y) and cer(x,y) are the strength and certainty coefficients of the at-
tribute values X = x and Y =y, respectively.

Next, we give a formula to compute the information gain, Gain(G,X) of a
particular condition attribute X. It is the original entropy of the flow graph
(Definition M) minus the conditional entropy of ¥ given X.

Definition 7. If X and Y are attributes in the flow graph G then the in-
formation gain, Gain(G,X) of an attribute X, relative to a flow graph G, is
defined as

Gain(G,X) = H(G) — H(Y|X).

Information gain can serve as a tool for predictive performance discovery. It
measures the effectiveness of an attribute to classify the given (training) flow
graph. In other words, it indicates the best prediction attribute (having highest
Gain(G, X)) of decision attributes in flow graph.

5 Illustrative Example

The attributes of the data given in Fig. 2 can be regarded as discrete random
variables where Wind takes values w = {Weak, Strong}, Humidity—h = {High,
Normal} and PlayTennis—t = {Yes, No}.

First let us focus on Wind and PlayTennis in the flow graph in Fig.[J(a), their
normalized throughflows are:

- o(z) of Wind are o(Weak) = 0.57 and o(Strong) = 0.43, and
- o(y) of PlayTennis are o(No) = 0.36 and o(Yes) = 0.64.

2 Wind and PlayTennis are not independent since p(Wind = w, PlayTennis = t) #
p(Wind = w) x p(PlayTennis = t), c.f. [I] for dependency issue.



Entropy Measures of Flow Graphs with Applications to Decision Trees 623

The strength coefficients o(x,y) of Wind and PlayTennis are:

- o(Weak,No) = 0.14, - o(Weak,Yes) = 0.43,
- o(Strong, No) = 0.21, - o(Strong,Yes) = 0.21.

First, let us calculate the entropy of the flow graph G in Fig. 2l(a) by using
Definition @

HG =- Y oly)logyoly)

yePlayTennis
= —(0.3610g, 0.36 + 0.64 log, 0.64)
=0.94.
We calculate the certainty coefficients cer(z,y) of Wind and PlayTennis as
- cer(Weak,No) = % =0.25, - cer(Weak,Yes) = 0.75,
- cer(Strong, No) = 0.5, - cer(Strong,Yes) = 0.5.

According to Definition [ conditional entropy of PlayTennis given Wind is

H(PlayTennis|Wind) = — Z Z o(z,y)logy cer(x,y)
zeWind ye PlayTennis

= —(0.141og, 0.25 + 0.21 log, 0.5
+0.431og, 0.75 4+ 0.21 log, 0.5)
= 0.89.

Thus, the information gain of attribute Wind, relative to the flow graph G given
in Fig. [2a) is
Gain(G,Wind) = H(G) — H(PlayTennis|Wind)
=0.94-0.89
= 0.05.

Similarly, the information gain of Humidity, relative to a flow graph G in Fig.
B(b) is Gain(G, Humidity) = 0.15

According to the discussion provided in [5], our definition of information
gain of a particular attribute relative to a flow graph G is similar to the in-
formation gain they used to build decision trees. Gain(G, Wind) is less than
Gain(G, Humidity) indicates condition attribute Wind has less predictive power
than Humadity. In other words, knowing the Humzdity value helps to predict
outcome better than knowing the Wind value. This is thus referring to the qual-
ity of the flow graph in Fig. Bl(a) as a classifier is not as predictive as the flow
graph in Fig. 2(b).

6 An Application to Decision Trees

Entropy in machine learning has been successful in computing information gain
in decision trees [5]. In further discussion, we adopt standard terminology con-
cerning decision trees like root, branches, etc. Starting from a decision tree, it
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can be constructed as a unique flow graph by removing the root while its nodes
are labeled by the same attribute [II]. Theoretically, Butz et al. showed that
a flow graph is a special case of chain Bayesian network [I]. On the contrary,
in some situations, such as voting analysis and supply—demand problems (dis-
cussed in [8]), the available format is not a decision table or a database but is
a flow graph. Hence, a classifier system constructed directly from a flow graph
instead of a decision table is required. It is shown that classification of objects
in flow graph representation boils down to finding the maximal output flow [§].
For these reasons, flow graph information gain is applied to solve this problem.
In this section, a new construction for decision trees from a flow graph is estab-
lished. It is not sufficient to just precede in the inverse order as a (unique) flow graph
construction from a decision tree, since a flow graph can be rearranged its layer or-
der. Thus, it can construct several decision trees with distinct predictabilities.

Example 2. We are given the initial flow graph in Fig.[Iland we aim to construct
a decision tree classifier. We can construct the decision tree by adding its root. All
corresponding nodes and branches are inherited from the flow graph. Although,
a decision tree constituted directly from this graph will have the level of nodes
as appeared in the flow graph which has less predictive performance as discussed
in [5]. Alternatively, from Section [ the information gain (predictive) order of
condtional attributes is Outlook, Humidity, Wind and Temperature. Then we can
generate a decision tree classifier (Fig. B]). Its levels are determined according to
their flow graph information gains. As one can see, this flow graph can be used
as a classifier for PlayTennis. Hence, a more predictive decision tree can be
constructed by using the proposed flow graph entropy and information gain.

Outlook

Humidity

@ o e PIayTenniS

Fig. 3. Predictive decision tree from weather data set

7 Concluding Remarks

We propose flow graphs’ analysis based on entropy computation. We have shown
a new mathematical relationship between flow graphs and entropy, which can be
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used for data analysis. In particular, an information gain derived from entropy is
suitable for creating and analyzing decision trees from flow graphs when starting
from a specified format. The entropy of flow graphs may have applications not
necessarily associated with decision trees, but these require further study. Future
works are an exploration of such problems and a more formal scheme for decision
tree generation.
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Abstract. This paper concerns some aspects of mathematical flow
graph based data analysis. In particular, taking a flow graph view on
rough sets’ categories and measures leads to a new methodology of in-
ductively reasoning form data. This perspective shows interesting rela-
tionships and properties among rough set, flow graphs and inverse flow
graphs. A possible car dealer application is outlined and discussed. Ev-
idently, our new categories and measures assist and alleviate some limi-
tations in flow graphs to discover new patterns and explanations.

Key words: Flow graphs, rough sets and decision rules

1 Introduction

A mathematical flow graph, invented by Pawlak in 2002, is an extension of
rough set theory [9]. A flow graph represents the information flow from the given
data set [10-14]. The branches of a flow graph can be constructed as decision
rules, with every decision rule, there are three associated coefficients: strength,
certainty and coverage [14]. These coefficients satisfy Bayes’ theorem. Inference in
flow graphs has polynomial time and flow conservation comes with probabilistic
conditional independencies in the problem domain [1]. Flow graphs have led to
many interesting applications and extensions such as preference analysis [11],
decision tree [13], survival analysis [7], association rule [3], data mining [14],
search engines [2], fuzzy set [4, 6], entropy measures [8] and granular computing
[5]. More studies involving rough sets are discussed and provided in [15].

Flow distribution in flow graphs can be exploited for approximation and
reasoning. Based on flow graph contexts, we define fundamental definitions for
rough sets: four categories of vagueness, accuracy of approximation, roughness of
approximation and dependency degree. In addition, we state formulas to conve-
niently compute these measures for inverse flow graphs. To illustrate, a possible
car dealer preference analysis is provided to support our propositions. New cat-
egories and measures assist and alleviate some limitations in flow graphs to
discover new patterns and explanations.

This paper is organized as follows. In Section 2, we present the basic concepts
of rough sets. In Section 3, we recall preliminary definitions of flow graphs. In
Section 4, we present a new bridge between rough sets and flow graphs with an
example throughout, followed by a conclusion in the last section.
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2 Rough Set Theory

The following rough sets preliminary is taken from [9]. Rough sets are based on
an information system. Formally, it is a pair S = (U, A), where U is a nonempty
finite set of objects called the universe and A is a nonempty finite set of attributes
such that a: U — V, for every a € A. The set V, is called the domain of a.

If we partition an information system into two disjoint classes of attributes,
called condition and decision attributes, then the information system will be
called a decision system, denoted by S = (U,C, D), where C N D = (). Any
subset B of A determines a binary relation I(B) on U called an indiscernibility
relation. It is defined as (z,y) € I(B) if and only if a(x) = a(y) for every
a € A, where a(x) denotes the attribute value of element z. Equivalence classes
of the relation I(B) are referred to as B-elementary sets or B-elementary granules
denote by B(X), i.e., B(X) describes X in the terms of attribute values from B
[11]. Below, we recall key feature definitions of approximations in rough sets.

Definition 1 [15] Let S = (U, A) be an information system. For X C U, B C
A. The B-lower approximations, B-upper approzimations and B-boundary region

of X are defined as B(X) = U,y {B(X)|B(X) C X}, B(X) = U,cp {B(X)]
B(X)NX # 0} and BNg(X) = B(X) — B(X), respectively.
If the boundary region of X is the empty set (i.e., BNg(z) = ), then X

is crisp. On the contrary, if BNp(X) # ), then X is rough. In what follows we
recall four basic classes of rough sets, i.e., four categories of vagueness.

Definition 2 [15] Let S = (U, A) be an information system. For X C U, B C
A, the four categories of vagueness are defined as

- B(X) # 0 and B(X) # U iff X is roughly B-definable,

-BX)=0 cmd B(X) # U iff X is internally B-indefinable,
- B(X) 7é nd B(X) = U iff X is externally B-definable,
- B(X) =0 and B(X) = U 4ff X is totally B-indefinable.

Approximation of a rough set can be characterized numerically by some mea-
surements as follows.

Definition 3 [15] Let S = (U, A) be an information system. For X C U,
B C A, the accuracy of approximation, ap(X), and roughness of approrima-

tion, yp(X), are defined respectively as ap(X) = % and vp(X) =

l—ap(X)=1- %, where card(X) denotes the cardinality of X .

Let us observe that, 0 < ap(X) < 1. If ag(X) = 1, then X is crisp with
respect to B and otherwise, if ap(X) < 1, then X is rough with respect to B.

Definition 4 Let S = (U, A) be an information system and F = {X1, Xs,...,
Xn} be a partition of the universe U. For B C A, F depends on B to a degree

™ card(B(X;
kB(F) = 2:L_lcard((Ui)( ))

Definitions 2 — 4 will be stated in the context of flow graphs in Section 4.



An Extension of Rough Set Approximation to Flow Graph Based Data 3

3 Flow Graphs

In this section, we recall some concepts of flow graphs which were introduced by
Pawlak in [10-14].

A flow graphis a directed, acyclic, finite graph G = (N, B, ), where N is a set
of nodes, BC N x N is a set of directed branches, ¢: B — R7T is a flow function
and R7 is the set of non-negative real numbers. If (z,y) € B then x is an input
of node y denoted by I(y) and y is an output of node = denoted by O(x). The
input and output of a flow graph G are defined by I(G) = {z € N |I(z) = 0} and
O(G) = {x € N |O(z) = 0}. These inputs and outputs of G are called external
nodes of G whereas other nodes are called internal nodes of G. If (z,y) € B then
we call (z,y) a throughflow from x to y. We will assume in what follows that
o(z,y) # 0 for every (z,y) € B. With every node z of a flow graph G, we have
its associated inflow and outflow respectively as: ¢4 (x) = Zyel(x) »(y,z) and
go,(x)zzyeo(m) o(z,y). Similarly, an inflow and an outflow for the flow graph
G are defined as: ¢ (G) = 3, c e p-(2) and _(G) = X, coq) p+(2). We
assume that for any internal node z, p_(z) = py(x) = (x), where p(z) is a
throughflow of node z. Similarly then, ¢_(G) = ¢4 (G) = ¢(G) is a throughflow
of graph G. As discussed by Pawlak [11], the above equations can be considered
as flow conservation equations (or pairwise consistent [1]).

Normalized Flow Graphs, Paths and Connections

In order to demonstrate interesting relationships between flow graphs and other

disciplines (e.g., statistics), we come to the normalized version of flow graphs.
A normalized flow graph is a directed, acyclic, finite graph G = (N, B, o),

where N is a set of nodes, B C N x N is a set of directed branches and o: B —

[0,1] is a normalized flow function of (x,y). The strength of (z,y) is o(z,y) =

2@y VWith every node x of a flow graph G, the associated normalized inflow

#(G)
and outflow are defined as: o4 (z) = %(G‘T;) =2 er@ oy, x), o-(z) = fo’(ig)) =

>_yeo(x) 0(@,y). For any internal node z, it holds that o (z) = o_(z) = o(z),
where o(z) is a normalized throughflow of x. Similarly, normalized inflow and

outflow for the flow graph G are defined as: 01 (G) = f;((é’;) =2 wer(e) o- (),

0 (G) = &8 = 3 () 04 (2). Tt also holds that 4. (G) = 0 (G) = o(G)
= 1. With every branch (z,y) of a flow graph G, the certainty and the coverage
of (z,y) are defined respectively as: cer(z,y) = ”ﬁ?j)’), cov(z,y) = Ué?{;)’), where
o(x),o0(y) # 0. Properties of these coefficients were studied by Pawlak in [10-14].

Next, if we focus on sequence of nodes in a flow graph, we can find them
by using the concept of a directed simple path. A (directed) path from z to
y (x # y) in G, denoted by [z...y], is a sequence of nodes z1,...,z, such
that 1 = x and x, = y and (z;,2;41) € B for every 4, 1 < i < n — 1. The

certainty, coverage and strength of the path [z . .. x,] are defined respectively as:

cer[zy ...an) = [10 cer(ai, zivr), covlar ... x,] = [[1=) cov@i, ziv1), olz . ..y

= o(x)cer[z...y] = o(y)cov]z...y)].
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The set of all paths from z to y (z # y) in G, denoted by (z,y), is a con-
nection of G determined by nodes x and y. For every connection (x,y), the
associated certainty, coverage and strength of the connection (x,y) are defined
ast cer (2,Y) = Yo ye(ey CETIT - Yl covlTy) = Do ieiany covlT Y,
(T, Y) = Yo yleey OlT -yl = o(z)cer (z,y) = o(y)cov(z,y). If [z...y] is
a path such that z and y are the input and output of G, then [z...y] will be
referred to as a complete path. The set of complete paths from x to y will be
called a complete connection from x to y in G.

If we substitute every complete connection {(x,y) in G, where z and y are an
input and an output of a graph G with a single branch (x, y) such that o(z,y) =
o {(x,y), cer(z,y) = cer (x,y) and cov(z,y) = cov (x,y) then we have a new flow
graph G’ with the property: o(G) = o(G’). G’ is called a combined flow graph.

Starting from a flow graph, if we invert the direction of all branches in G,
then the resulting graph G~! will be called the inverted graph of G (or the
inverse flow graph of G) [14]. Essentially, three coefficients of an inverse flow
graph can be computed from its flow graph as follows: og-1(y,z) = og(z,y),
cerg-1(y,x) = covg(z,y) and covg-1(y,x) = cerg(z,y).

4 Rough Set Approximations and Flow Graphs

In this section, we provide a bridge between flow graphs and rough approxima-
tion. From standard definitions of approximations made by rough sets, we give
these definitions in the context of flow graphs below.

Suppose we are given a normalized flow graph G = (A, B,0), where A =
{A;,, Ay, ..., A, }is aset of attributes!, B is a set of directed branches and o is
a normalized flow function. A set of nodes in a flow graph G corresponding to A;,
is referred to as a layeri. For A = C'UD, we have that every layer corresponding
to C will be called a condition layer whereas every layer corresponding to D will
be called a decision layer. If an attribute A;, contains n,;, values, we say that it
contains n;, nodes.

We now consider how to approximate an attribute value Y € A, , from

attribute values of A;, where A;, = {Xl,Xg, .. .,Xmi }, to indicate lower ap-

proximation, upper approximation and boundary region of Y. In Definition 5,
we recall Pawlak’s definitions of lower approximation, upper approximation and
boundary region for flow graphs.

Definition 5 [11] Let G = (A, B, o) be a normalized flow graph, A;, = {X1, Xa,

.,Xmi}, 1 <1 <k—1, be an attribute in layer i and Y be a node in Ay, .
For any branch (X;,Y), j € {1,...,n,}, of the flow graph G, the union of all
inputs X; of Y is the upper approzimation of Y (denoted A;,(Y)), the union
of all inputs X; of Y, such that cer(X;,Y) = 1, is the lower approzimation
of Y (denoted A, (Y)). Moreover, the union of all inputs X; of Y, such that
cer(X;,Y) <1, is the boundary region of Y (denoted Aj;;Na, (Y)).

! In what follows, we regard A as A for simplicity.
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In Definition 6, we state four categories of rough sets mentioned in Definition
2 in terms of flow graph.

Definition 6 Let G = (A,B,0) be a flow graph, A;, = {Xl,XQ,...,ani},
1 <i < k-1, be an attribute in layer i and Y be a node in Ay, . For any
branch (X;,Y), j € {1,...,n,}, of G, we define four categories of vagueness as

- 33X [cer(X;,Y) =1] and 3X,; [X; ¢ I(Y)] iff Y is roughly A;,-definable,

- VX [cer(X,;,Y) # 1] and HX (X, ¢ I(Y)] iff Y is internally Ay, -indefinable,
- EIX [cer(X;,Y) =1] and VX [X e I(Y)] iff Y is externally A;,-definable,
- VX [cer(X,;,Y) # 1] and VX (X, € I(Y)] iff Y is totally A, -indefinable.

From the definition we obtain the following interpretation:

- it Y is roughly A;,-definable, this means that we are able to decide for some
elements of U whether they belong to Y or —Y?, using A;,,

- it Y is internally Aj, -indefinable, this means that we are able to decide
whether some elements of U belong to —Y, but we are unable to decide
for any element of U, whether it belongs to Y or not, using A4;,,

- it Y is externally A;, -indefinable, this means that we are able to decide for
some elements of U whether they belong to Y, but we are unable to decide,
for any element of U whether it belongs to —Y or not, using A;,,

- if Y is totally A;,-indefinable, we are unable to decide for any element of U
whether it belongs to Y or —Y, using A;,.

Property 1 Let G = (A, B,0) be a flow graph, A;, = {Xl,Xg, s Xy, }, 2 <
i < k, be an attribute in layer i and W be a node in A;, ,. For any branch
(X;,W), je{l,...,n,} in the inverse flow graph of G, the union of all output
X; of W in flow graph G is the upper approximation of W, the union of all
outputs X; of W in a flow graph G, such that cov(W,X;) = 1, is the lower
approximation of W. Moreover, the union of all outputs X; of W, such that
cov(W, X;) < 1, is the boundary region of Y.

Proof. It can be proved in a straightforward way according to definition and
property of inverse flow graph and Definition 5. a

Example Suppose we are given the flow graph for the preference analy-
sis problem depicted in Fig. 1, that describes four disjoint models of cars X
= {X;1, X2, X3,X4}. They are sold to four disjoint groups of customers Z =
{Z1, 25, Z3, Z4} through three dealers Y = {Y1, Y5, Y3}.

By Definition 5, when we consider customer Z;: the lower approximation of
Z1 is an empty set, the upper approximation of Z; is Y7 U Y5 and the boundary
region Z; is Y7 U Y5. Hence, by Definition 6, we conclude that Z; is internally
Y-indefinable. In Fig. 1 (only limited information is available), by using the set
of dealers (Y) to approximate the customer group Z; together with the flow
distribution visualized in layers two and three, our results can be summarized
as the following.

2 Where —-Y =U - Y.
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- Since no branch connects Y3 and Z, there is no customer Z; buys a car from
dealer Y3. As a result if dealer Y3 plans to run new promotional campaigns,
they do not need to pay attention to customer group Z; in these campaigns.

- If a customer buys a car through dealer Y7 or Y5, then we cannot conclude
whether this is a customer in group Z; or not. Thus, if dealers Y7 and Y3
plan to run promotional campaigns, then they should, at least, target at
customer group Z; in their campaigns.

Car Dealer Customer Group
cer=.48 c=.15 cov=.71

o(x4)=.30 olya)=.24 (24)=.36

Fig. 1. A normalized flow graph.

Similarly, we can approximate all attribute values (node) in the inverse flow
graph of G by using Property 1.

However, the flow graph perspective on rough sets’ categories in Definition
6 do not provide approximations quantitively. Hence, in Definitions 7 and 8,
we define two measures for flow graphs, the accuracy of approximation and the
roughness of approximation.

Definition 7 Let G=(A,B,0) be a flow graph, Ali:{Xl,Xg,...7Xmi}, 1<
i < k—1, be an attribute in layer i and Y be a node in Ay, . For any branch
(X;,Y), je{l,...,n,}, of G, the accuracy of approximation, o, (Y), is de-

card(A, (Y))
fined as: aa, (V) = card(AL (V)

We can use the accuracy of approximation to specify the quality of an approxi-
mation. Obviously, 0 < ap(X) < 1.If as, (Y) =1, then Y is crisp with respect
to Aj,, and otherwise, if a4, (Y) <1, then Y is rough with respect to A4;,.

Definition 8 Let G=(A,B,o) be a flow graph, Ali:{Xl,Xg,...,ani}, 1<

i < k—1, be an attribute in layer i and Y be a node in Ay, . For any branch
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(X;,Y), i€ {l,...,n,}, of G, the roughness of approzimation, YA, (Y), is de-

card(Aili(Y))—card(Ali (Y))
fined as: v, (V) =1— 04, (Y) = card(Ar, (V)

Property 2 Let G = (A,B,0) be a flow graph, Ali:{Xl,XQ,...7ani}, 1<

1 < k—1, be an attribute in layer i and Y be a mode in A; For any branch

(X;,Y), je{1,...,n,}, of G, we have

cer(x;,v)=1 7(X4) Dcer(x;,7)<1 7(X5)

(1) A, (Y) = ZXJEI(Y)U(XJ') and (2) ’yAli(Y) = ijeI(Y)U(Xi)

i+1°

Proof. (1) From Definition 5, we have card(Ay, (Y)) = 3 e (x, v)=1 card(X;)
and card(4;,(Y)) :ZXjeI(Y) card(X;). Since card(X;)=¢(X;) = 0(X;)p(G) =

- o Zcer(X-,Y):l o(X;)
0(X;)p(U) and by Definition 7, then ap(Y) = . E”I(Y) ooy

(2) It can be proved similarly to (1). O

Let us briefly comment on Property 2(1) that the greater the boundary of
Y, the lower is the accuracy. If « Ay, (Y) = 1, the boundary region of Y is empty.

Property 3 Let G = (A, B,0) be a flow graph, A;, = {Xl,Xg, .. .,ani}, 2<
i < k, be an attribute in layer i and W be a node in A;,_,. For any branch
(X;, W), j e {1, e 77%} in the inverse flow graph of G, we have

o ) o Ecov(w,xv)<1‘7(Xj)
(1) O‘Azj (W) - and (2) ’YAzj (W) - ijgo(‘i/v)U(X]’) :

cov(W, X j)=1 U(Xj
ij €eo(w) a(X;)

Proof. (1) From Property 1, we have card(Ay, (W))=>_,,(x, w)=icard(X;) and
card(A;; (Y)) :ijeO(W) card(X;). Since card(X;) = o(X;) = 0(X;)(G) =

.. Y cer(x; wy=10(Xj)
0(X;)p(U) and by Definition 7, then aa, (W) = ZXJ-GJO(W) SOGT

(2) It can be proved similarly to (1). O

Example (Cont.) Consider the branches between dealer and customer
group in Fig. 1. We can read from our flow graph that 24% of all customers
buy cars through dealer Y3 (o(Y3) = 0.24) and all of them are in customer group
Z3 (cer(Ys, Z4) = 1). There is only one branch (Y3, Z,) with cer(Ys, Z,) = 13.
Thus, by Property 2(1), we have ay (Z1) = ay(Z2) =ay(Z3) = 0 and ay(Zy)
— zcer(Yi,Z4)=1 o(Yi) _ o(Y3) - 0.24

Zyiel(z4)g(1/i) o(Y1)+o(Y2)+0o(Y3) o

These results imply that we should not make decisions involving customer
groups Z1, Zo and Zs3 solely by using dealers due to high imprecision. Neverthe-
less, we can partly check that it will be customer group Z, with low accuracy by
using dealers. Similarly, if we consider the roughness of approximation between
dealer and customer group, then by Property 2(2), we have vy (Z1) = vy (Z2)

3 By employing the approach presented in our previous study [3], we can extract some
interesting association rules. If the model of car X5 (or X4) is bought through dealer
Y3 then the customer group is Z4 with support 0.12 and confidence 1.
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=7y (Z3) =1 and vy (Z4) = 0.76. We can draw a conclusion in a similar manner
as we did for the roughness measure.

Please note that we can calculate the accuracy and the roughness of ap-
proximation between attributes in the inverse flow graph by using Property 3.
Another important topic in data analysis is dependency between attributes. We
introduce dependency degree between any two attributes in Definition 9.

Definition 9 Let G = (A, B,0) be a flow graph, A;,= {Xl,Xg, e ,ani} and

depends

i+1

A= {Yl,Yg,...,Y . }, 1 < i <k, be any two adjacent layers. A;

L
ny,
it card(Ag; (V7))

on A, to a degree ka,, (4 card(0)

1+1)

Ifka, (Ai,,,) =1, wesay that A, , depends totally on A,,, and if ka, (A, ,,)
< 1, we say that A;,,, depends partially in a degree ka, (A, ,)on Aj,. It is worth
pointing out that our dependency measure is different to the one given by Pawlak
[14]. The former gives dependency degree between two adjacent attributes (lay-
ers) while the latter gives dependency degree between two nodes connected by
directed branch.

Property 4 Let G = (A,B,0) be a flow graph, A;,= {Xl,Xg, e 7Xm,»,} and

A ={X1,Xs,..., X
depends on Ay, to a degree ka, (Ai,,) =3 cer(x,, x,)=1 7 (Xi)-

N [ 1 <i < Kk, be any two adjacent layers. Ay,

Proof. From Definition 5, Z ”lcard(ﬂ(Xj)) Z i D cer(xXe,y;)=1card(X. )
Since X, N X, —®1<n7ém<nl,thenAl( )ﬂAl( m) = 0. Thu

Z?:l Card(ﬂ(XJ)) = Zcer(X Y )= 1card( ) Since QO( ) ( )90( ) =
0(X;)¢(U) and by Definition 9, we can write y5(D) =3 _ ., (x, x;)=1 0(Xi). O

Property 5 Let G = (A,B,0) be a flow graph, A;; = {Xl,Xg, e ,anj} and

Al]',1: {leXQ) s 7X7’Ll
the inverse flow graph of G. A;,_, depends on A;, to a degree k'Azj (A,_,) =
Zcov(Xi,Xj)zl U(Xl)

Proof. Tt can be proved similarly as Property 4 a

, 1 <3 < k+1, be any two adjacent layers in

J—1

Example (Cont.) Consider model of car and dealer in the flow graph G
in Fig. 1. By Property 4, dealer depends on model of car to a degree yx(Y) =
> cer(x:,v;)=1 0(Xi) = 0(X3) = 0.17. On the other hand, if we consider customer
and dealer in the inverse flow graph of G, then by Property 5, we obtain that
dealer depends on customer group to a degree vz(Y) = 3. 0, (v, 7,)=1 0(Zi) =
0(Z3) = 0.21. These results give a conclusion that dealers depend on customer
groups more than models of cars.

In what follows, we aim to approximate a specific attribute value by some
attribute values such that they are not in adjacent layers. We can use the concept
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of a connection to do this. More specifically, if we aim to approximate an attribute
value in an output layer by attribute values in an input layer, then we will use
the concept of complete connection.

(x)=.30 o(2:)=.36

Fig. 2. A combined flow graph.

Example (Cont.) For model of car and customer group in Fig. 1, we give a
combined flow graph in Fig. 2. By Definition 5, for Z4, the lower approximation
of Z, is an empty set, the upper approximation and the boundary region of Z,
are X7 U X5 U X3 U Xy4. Hence, by Definition 6, Z, is totally X-indefinable.

By Property 2, we have the accuracy and the roughness approximation of
customer Z; by model of car as: ax(Z4) = 0 and vx(Z4) = 1. Additionally,
we can use Property 4 to compute the dependency between model of car and
customer group, and the result is 0. From these results due to the imprecision
and dependency, we should not make decisions involving customer group Z, by
using only model of car. As before, we can approximate and measure them for
the inverse flow graph in the same way. Comparing the obtained accuracy and
roughness measures, we can draw a conclusion that from this population dealer
is a better indicator for analyzing customer group Z, than model of car.

5 Conclusion

In this paper, we introduce definitions and properties of rough set approxima-
tions, accuracy and roughness of approximation which are defined in terms of a
flow graph. They can be useful when the initial data is in the form of flow graph
and contains some limitations. We illustrate a car dealer preference analysis to
support our propositions.
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