

บทคัดย่อ

การเพิ่มผลผลิตของน้ำยางพาราทำได้โดยการใช้อีเธรลซึ่งเป็นสารเคมีเร่งน้ำยางที่บริเวณเปลือกลำต้นใกล้รอยกรีดของต้นยางพารา อีเธรลสามารถปลดปล่อยแก๊สเอธิลีนซึ่งทำให้เกิดการเปลี่ยนแปลงทั้งทางด้านสรีรวิทยาและกระบวนการเมแทบอลิซึมภายในเซลล์ท่อน้ำยาง งานวิจัยนี้ใช้เทคนิค Suppression Subtractive Hybridization (SSH) ในการเปรียบเทียบการแสดงออกของยีนที่ระดับ transcriptome ของเซลล์ท่อน้ำยางและเปลือกลำต้นระหว่างต้นยางพาราที่ไม่ได้ถูกกระตุ้นและต้นยางพาราที่ถูกกระตุ้นด้วยเอธิลีน เพื่อทำความเข้าใจเกี่ยวกับชีววิทยาระดับโมเลกุล ของกระบวนการเพิ่มผลผลิตของน้ำยางหลังกระตุ้นด้วยสารเคมีเร่งน้ำยาง จากผลการวิเคราะห์ยืนที่มีการแสดงออกที่ต่างกัน พบว่าสามารถแบ่งยีนดังกล่าวออกได้เป็น 4 กลุ่ม คือ known function, unknown function with information, unknown และ no hit จากการวิเคราะห์การแสดงออกของยีนโดยวิธี SSH และ macroarray พบว่ามีจำนวนมากในเซลล์ท่อน้ำยางมีการแสดงออกลดลงเมื่อต้นยางถูกกระตุ้นด้วยเอธิลีน โดยในการทดลองได้เลือกศึกษา yin ที่มีการแสดงออกสูงขึ้นหรือต่ำลงอย่างมีนัยสำคัญ ยีน *Abscisic Acid Stress Ripening (ASR)* จำนวน 2 ยีน คือ ASR2 และ ASR3 มีการแสดงออกที่จำเพาะต่อเซลล์ท่อน้ำยางและเปลือกลำต้นตามลำดับ โดยทั้ง 2 ยีนมีการแสดงออกลดลงเมื่อต้นยางพาราถูกกระตุ้นด้วยเอธิลีน ในขณะที่ yin *sucrose transporter* มีการแสดงออกเพิ่มขึ้น ดังนั้นโปรตีน ASR อาจทำหน้าที่เป็น negative regulator ของ yin *sucrose transporter* ยีน *1-aminocyclopropane-1-carboxylic oxidase* ที่เกี่ยวข้องกับการสังเคราะห์เอธิลีนมีการแสดงออกเพิ่มขึ้นในเปลือกลำต้นบ่งชี้ถึงการเกิด autocatalytic production ของเอธิลีน ยีน *lipoxygenase* ที่เกี่ยวข้องกับการสังเคราะห์สไมโนเอนท์มีการแสดงออกเพิ่มขึ้นในเปลือกลำต้น ซึ่งสนับสนุนการทำงานร่วมกันของเอธิลีนและสไมโนเอนท์ในการควบคุมการแสดงออกของยีน การแสดงออกที่ลดลงของยีน non-phosphorylating *glyceraldehyde-3-phosphate dehydrogenase (GAPDH)* อาจเป็นไปได้ว่าเซลล์เลือกที่จะใช้เอนไซม์ในกระบวนการที่ให้พลังงานมากกว่าโดยเพิ่มการแสดงออกของยีน phosphorylating GAPDH การแสดงออกของยีน *(1-4)-beta-mannan endohydrolase* ลดลงอาจส่งผลให้ผนังเซลล์ของเซลล์ท่อน้ำยางแข็งแรงขึ้นเนื่องจากเอนไซม์นี้ทำหน้าที่ย่อยสลายผนังเซลล์ ยีน *b-keto acyl reductase* มีการแสดงออกลดลงอาจส่งผลให้เซลล์ท่อน้ำยางสร้างกรดไขมันลดลง ซึ่งสอดคล้องกับการแสดงออกของยีน *cis-prenyltransferase* ที่เกี่ยวข้องกับการสังเคราะห์ *polyisoprene unknown gene (singleton no. 353)* และ *no similarity gene (singleton no. 823)* ซึ่งมีการแสดงออกเพิ่มขึ้น อาจเป็นยีนที่มีความจำเพาะต่อต้นยาง ดังนั้นจึงควรที่จะทำการโคลน full-length cDNAs และศึกษาหน้าที่ของยีนดังกล่าว ความรู้ทั้งหมดที่ได้จากการศึกษานี้ช่วยทำให้เข้าใจกลไกของเอธิลีนในการเพิ่มผลผลิตของน้ำยางมากขึ้น และควรมีการศึกษาเพิ่มเติมต่อไป

คำสำคัญ: เปลือกลำต้น เอธิลีน *Hevea brasiliensis* น้ำยางพารา ต้นยางพารา Suppression Subtractive Hybridization

Abstract

Rubber tree latex yield can be improved through bark stimulation with Ethylene. Ethrel[®], an ethylene releaser, induces marked changes in the physiology and metabolism of the latex cells. In this study, the Suppression Subtractive Hybridization (SSH) technique was performed to compare the *Hevea* latex and bark transcriptomes between control and Ethrel[®] stimulated trees. After Expressed Sequence Tag (EST) sequencing, the differentially enriched cDNA fragments were analyzed and classified into four groups including known function, unknown function with information, unknown and no hit. The SSH and macroarray analysis confirmed that the transcript levels of numerous genes in latex cells decreased after the ethylene treatment. Several candidate genes which were significantly up- or down-regulated by ethylene were selected for further analysis. *Abscisic Acid Stress Ripening* (ASR) genes, ASR2 in latex and ASR3 in bark, were specifically down-regulated thus proposed to act as the negative regulator and participate in the up-regulation of some plasmalemma sucrose transporter genes in response to bark ethylene treatment. The up-regulation of *1-aminocyclopropane-1-carboxylic oxidase* involved in ethylene biosynthesis confirmed autocatalytic ethylene production. Up-regulation of *lipoxygenase* gene involved in jasmonate biosynthesis confirmed the hormones crosstalk between ethylene and jasmonate in plants. The down-regulation of the non-phosphorylating *glyceraldehyde-3-phosphate dehydrogenase* (GAPDH) gene may lead to more energy production via the activity of the phosphorylating GAPDH. The down-regulation of the *(1-4)-beta-mannan endohydrolase* gene by ethylene may reduce the depolymerization of the cell wall polysaccharides leading to the strengthening of the cell wall of the laticifers. The lower expression of *b-keto acyl reductase* in stimulated trees may lead to the reduction of fatty acid biosynthesis in laticifers which is corresponded to the lower expression of *cis-prenyltransferase* gene involved in polyisoprene synthesis. The *unknown* gene (singleton no. 353) and the *no similarity* gene (singleton no. 823) were up-regulated by ethylene. The relevant information of these two genes might represent *Hevea* specific genes. Therefore, their full-length cDNAs should be cloned and characterized. The knowledge gained from this study gives further insight into the understanding of ethylene effect in the increase in latex yield and further investigations needs to be performed.

Keywords: Bark, Ethylene, *Hevea brasiliensis*, Latex, Rubber tree, Suppression Subtractive Hybridization