

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาความเป็นไปได้ในการใช้กระบวนการเชื่อม TIG ในการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่นกับ อลูมิเนียมผสมแผ่น

โดย รัตน บริสุทธิกุล

พฤษภาคม 2553

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาความเป็นไปได้ในการใช้กระบวนการเชื่อม TIG ในการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่นกับ อลูมิเนียมผสมแผ่น

ผู้วิจัย

สังกัด

รัตน บริสุทธิกุล

มหาวิทยาลัยเทคโนโลยีสุรนารี

บทคัดย่อ (Abstract)

Project Code : MRG 5180100 (รหัสโครงการ) MRG 5180100

Project Title: Feasibility study of using TIG welding in dissimilar metals joining

between steel sheet and aluminum alloy sheet

(ชื่อโครงการ) การศึกษาความเป็นไปได้ในการใช้กระบวนการเชื่อม TIG ในการเชื่อมโลหะ

ต่างชนิดระหว่างเหล็กกล้าแผ่นกับอลูมิเนียมผสมแผ่น

Investigator: Dr. Rattana Borrisutthekul, Suranaree University of technology

(ชื่อนักวิจัย) ดร. รัตน บริสุทธิกุล มหาวิทยาลัยเทคโนโลยีสุรนารี

E-mail Address: rattana@g.sut.ac.th

Project Period :2 years(ระยะเวลาโครงการ)2 ปี

Abstract:

The main objective of the study was to evaluate the feasibility of using TIG welding process together with self-brazing technique in joining the dissimilar metals between steel/aluminum alloys. The experiments were divided into two parts: 1) Bead on the steel plate and on the aluminum alloy plate, and 2) Dissimilar metals joining between steel plate and aluminum alloy plate. From the experimental results, it indicated that TIG welding process together with self-brazing technique could produce the steel/aluminum alloy dissimilar metals joint. Moreover, in the dissimilar metals joints obtained by using the suitable welding conditions, the strength of bonding zone, which was the intermetallic reaction layer strength, was higher than the heat affected zone of aluminum alloy and higher than the yield load of both based metals. Furthermore, the 4 suitable steel/aluminum alloy welding conditions were found from this study such conditions were 1) Placing steel as the top plate in lap joint welding leads to the acceptable joint because of easily obtaining the joint 2) The higher the welding speed, the better strength of intermetallic reaction layer were. 3) The suitable arc length when using 3.2 mm of diameter of EWTh2 electrode was 2.4 mm 4) The heat input for joining should be controlled to as low as possible in order to obtain the thin intermetallic reaction layer. Finally it can be concluded that, TIG welding process together with self-brazing technique was one of the effective dissimilar metals joining processes.

(บทคัดย่อ)

การวิจัยนี้มุ่งที่จะศึกษาถึงความเป็นไปได้ในการนำกระบวนการเชื่อม TIG ร่วมกับ เทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเองมาประยุกต์ใช้ใน การเชื่อมเหล็กกล้าแผ่นกับอลูมิเนียม โดยในขั้นตอนของการศึกษาได้แบ่งการศึกษาทดลองออกเป็นสองช่วง ช่วงแรกจะทำการศึกษาการเชื่อมบนเหล็กกล้าแผ่นอย่างเดียวและอลูมิเนียมผสมแผ่นอย่างเดียว ส่วนช่วงที่สองจะทำ การศึกษาการเชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้าแผ่นกับอลูมิเนียม ผสมแผ่น จากการศึกษาพบว่ากระบวนการเชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะ พื้นเอง สามารถทำการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่นและอลูมิเนียมผสมแผ่นได้เป็น ยิ่งไปกว่านั้นในชิ้นงานเชื่อมโลหะต่างชนิดที่ได้จากการใช้สภาวะการเชื่อมที่เหมาะสม ความแข็งแรงของบริเวณเชื่อมติด หรือที่เรียกว่าบริเวณของชั้นสารประกอบเชิงโลหะจะสงกว่า บริเวณกระทบร้อนของอลูมิเนียมผสมแผ่น และสูงกว่าค่าความเค้น ณ จุดครากของโลหะพื้นทั้ง นอกจากนี้แล้วจากการศึกษายังให้ข้อมูลที่เป็นประโยชน์ในการกำหนดสภาวะการเชื่อมที่ เหมาะสมต่อการเชื่อมโลหะต่างชนิด ดังนี้ 1) ควรใช้เหล็กกล้าเป็นโลหะแผ่นบนในการเชื่อมแบบ ซ้อนเกยเพราะสามารถทำการเชื่อมได้ง่ายกกว่า 2) ควรใช้ความเร็วในการเชื่อมสูง ซึ่งจะมีผล ให้ความแข็งแรงของบริเวณของชั้นสารประกอบเชิงโลหะที่ก่อตัวขึ้นสูงกว่า การเชื่อมที่ความเร็ว ในการเชื่อมต่ำ 3) ระยะอาร์คที่เหมาะสมต่อการเชื่อมโดยการใช้อิเล็กโทรด EWth2 ขนาด 3.2 มิลลิเมตรในการเชื่อมโลหะต่างชนิด คือ 2.4 มิลลิเมตร 4) ควรใช้ความร้อนในการเชื่อมให้น้อย ที่สุดเพื่อให้ได้ชั้นสารประกอบเชิงโลหะที่บาง สุดท้ายสามารถสรุปได้ว่ากระบวนการเชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเอง เป็นวิธีการหนึ่งที่สามารถประยุกต์ใช้ในการ เชื่อมโลหะต่างชนิดได้

Keywords: Dissimilar metals welding, TIG welding, Steel, Aluminum alloy (คำหลัก) : การเชื่อมโลหะต่างชนิด การเชื่อมทิก เหล็กกล้า อลูมิเนียมผสม

บทสรุปผู้บริหาร

(Executive Summary)

ปัจจุบันปัญหาสภาวะโลกร้อนได้ทวีความรุนแรงขึ้นเป็นลำดับ อันเป็นผลมาจากการ หนึ่งในกิจกรรมของมนุษย์ที่มีการปล่อย ปล่อยก๊าซเรือนกระจกจากกิจกรรมต่างๆของมนุษย์ ้ก๊าซเรือนกระจกในปริมาณมากคือ การขนส่ง และเพื่อเป็นการลดการปล่อยก๊าซเรือนกระจกจาก การขนส่ง ผู้ผลิตรถยนต์จึงพยายามผลิตรถยนต์ที่มีน้ำหนักเบา สำหรับวิธีการที่ผู้ผลิตรถยนต์ เลือกใช้ในผลิตรถยนต์ที่มีน้ำหนักเบา คือ การเลือกใช้วัสดุเบาร่วมกับเหล็กกล้าซึ่งเป็นวัสดุหลัก ดั้งเดิมที่ใช้ในการผลิตรถยนต์ โดยโลหะเบาที่นิยมนำมาใช้ในการผลิตรถยนต์มากที่สุด แต่เมื่อมีการใช้วัสดุสองชนิดนี้ร่วมกันในการผลิตรถยนต์ทำให้เทคโนโลยีการ อลูมิเนียมผสม เชื่อมโลหะต่างชนิดระหว่างเหล็กกล้ากับอลูมิเนียมผสมจึงเข้ามามีบทบาทอย่างมาก เทคโนโลยีการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้า และอลูมิเนียมผสมยังเป็นเทคโนโลยีใหม่ เครื่องมือที่ใช้ในการเชื่อมที่เหมาะสมยังไม่นิยมแพร่หลายในประเทศ กอปรกับผู้วิจัยมีความเชื่อ ว่าวิธีการเชื่อมด้วยเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเองนั้น สามารถประยุกต์ใช้ร่วมกับ กระบวนการเชื่อมอื่นๆได้ โดยเฉพาะอย่างยิ่งกระบวนการเชื่อม TIG ดังนั้นการวิจัยนี้จึงได้ เกิดขึ้น โดยมีวัตถุประสงค์หลักเพื่อประเมินหาความเป็นไปได้ในการนำกระบวนการเชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเองมาประยุกต์ใช้ใน การเชื่อมเหล็กกล้าแผ่นกับ โดยในขั้นตอนของการศึกษาได้แบ่งการศึกษาทดลองออกเป็นสองช่วง อลูมิเนียมผสมแผ่น กล่าวคือ ช่วงแรกจะทำการศึกษาการเชื่อมบนเหล็กกล้าแผ่นอย่างเดียวและอลูมิเนียมแผ่นอย่าง เดียว เพื่อประเมินหาความสามารถของกระบวนการเชื่อม TIG ต่อการควบคุมการซึมลึกในขณะ ทำการเชื่อมผลการศึกษาพบว่ากระบวนการเชื่อม TIG สามารถควบคุมการซึมลึกได้ดี และ เหมาะสมต่อการนำมาใช้ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเอง ส่วนช่วงที่สองผู้วิจัย ได้ทำการศึกษาการเชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้าแผ่นกับอลูมิเนียมผสมแผ่น จาก การศึกษาพบว่ากระบวนการเชื่อม ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเอง TIG สามารถทำการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่น และอลูมิเนียมผสมแผ่นได้เป็นอย่างดี ยิ่งไปกว่านั้นในชิ้นงานเชื่อมโลหะต่างชนิดที่ได้จากการใช้สภาวะการเชื่อมที่เหมาะสม แข็งแรงของบริเวณเชื่อมติด หรือที่เรียกว่าบริเวณของชั้นสารประกอบเชิงโลหะจะสูงกว่าบริเวณ กระทบร้อนของโลหะอลูมิเนียมผสมแผ่นและสูงกว่าค่าความเค้น ณ จุดครากของโลหะพื้นทั้ง สองด้วย นอกจากนี้จากการศึกษายังให้ข้อมูลที่เป็นประโยชน์ใน การกำหนดสภาวะการเชื่อมที่ เหมาะสม ดังนี้

1) ในการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้ากับอลูมิเนียมผสมด้วย กระบวนการ เชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเองนั้น เมื่อมีการจับชิ้นงานขณะทำการ เชื่อมในลักษณะซ้อนเกย การใช้โลหะแผ่นบนเป็นเหล็กกล้าจะทำให้สามารถเชื่อมโลหะต่างชนิด ระหว่างเหล็กกล้ากับอลูมิเนียมผสมได้ผลดีกว่าการใช้อลูมิเนียมผสมเป็นโลหะแผ่นบน

- 2) ในการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้ากับอลูมิเนียมผสมด้วย กระบวนการ เชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเองนั้นควรใช้ความเร็วในการเชื่อมสูง เพื่อทำให้ชั้นสารประกอบเชิงโลหะมีความแข็งแรงมากขึ้น
- 3) ในการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้ากับอลูมิเนียมผสมด้วย กระบวนการ เชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเองนั้น ระยะอาร์คที่เหมาะสมต่อการ เชื่อมโดยการใช้อิเล็กโทรด EWth2 ขนาด 3.2 มิลลิเมตร คือ 2.4 มิลลิเมตร
- 4) ในการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้ากับอลูมิเนียมผสมด้วย กระบวนการ เชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะพื้นเองนั้น ควรใช้ความร้อนในการเชื่อมให้ น้อยที่สุดเพื่อให้ได้ชั้นสารประกอบเชิงโลหะที่บาง

สุดท้ายเราสามารถอ้างได้ว่ากระบวนการเชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วย ตัวโลหะพื้นเองเป็นวิธีการหนึ่งที่สามารถประยุกต์ใช้ในการเชื่อมโลหะต่างชนิดได้ อย่างไรก็ดีแม้ งานวิจัยนี้จะแสดงให้เห็นว่ากระบวนการเชื่อม TIG ร่วมกับเทคนิคการบัดกรีแข็งด้วยตัวโลหะ พื้นเองสามารถผลิตชิ้นงานเชื่อมที่แข็งแรงทนต่อแรงดึงได้ แต่ยังไม่มีการทดสอบความสามารถ ของชิ้นงานเชื่อมต่อการรับแรงซ้ำ ๆหรือความล้า ดังนั้นในอนาคตการศึกษาควรมุ่งไปที่การทำ ความเข้าใจในเรื่องความล้าของชิ้นงานเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้า กับอลูมิเนียมผสม ต่อไป

กิตติกรรมประกาศ

(Acknowledgment)

The investigator would like to acknowledge Prof. Dr. Yoshiharu Mutoh and Assist. Prof. Dr. Sirirat Rattanachan for their warming advices. Moreover, the investigator would like to thank to laboratory staffs, Mr. Pusit Misomwang, and Ms. Chawinee Pothong for their helping in using the equipments and helping in preparation of this report. Lastly, the investigator would like to acknowledge The Thailand Research Fund and Office of The Higher Education Commission, Kingdom of Thailand, for their financial supports.

Content

Abstract	i
Executive Summary	iii
Acknowledgment	٧
Content	vi
Table Content	vii
Figure Content	viii
Chapter 1 Introduction	
1.1 Backgrounds	1
1.2 Objectives	3
1.3 Theory	4
Chapter 2 Materials, Equipments, Chemical Reagents and Experimental Procedur	es
2.1 Materials	7
2.2 Equipments	8
2.3 Chemical Reagents	15
2.4 Experimental Procedures	16
Chapter 3 Results and Discussions	
3.1 Bead on the plate	21
3.2 Effects of top plate on the dissimilar metals joining	24
3.3 Effects of heat input on the quality of dissimilar metals joining	27
3.4 Effects of welding parameters on the quality of dissimilar metals joining	35
3.5 Dissimilar metals joining mechanism	40
Chapter 4 Conclusions and Recommendations	
4.1 Conclusions	41
4.2 Recommendations	42
References	43
Appendix A Project Outputs	A-1
Appendix B Results	B-1

Table content

Table 2.1 Chemical compositions of materials used	7
Table 2.2 Mechanical properties of materials used	7
Table 2.3 Specification of TIG welding Machine used	8
Table 2.4 Bead on the plate conditions	17
Table 2.5 Dissimilar metals welding conditions	17

Figure Content

Figure 1.1 Materials using in a typical automobile-historical perspective	2
Figure 1.2 TIG self-brazing technique	3
Figure 2.1 TIG welding mechine	9
Figure 2.2 Slide, speed controller, and specimen holder	9
Figure 2.3 Slide, TIG head holder, and specimen holder	10
Figure 2.4 Specimen holder	11
Figure 2.5 TIG head holder	11
Figure 2.6 Shear cutter	12
Figure 2.7 Wire cutter	12
Figure 2.8 The grinding machine	13
Figure 2.9 The Optical microscope with image analyzer	14
Figure 2.10 Scanning electron microscope	14
Figure 2.11 Universal testing machine	15
Figure 2.12 Welding configuration of bead on the steel plate	16
Figure 2.13 Welding configuration used	18
Figure 2.14 Schematic of definition of depth of weld	19
Figure 2.15 Tensile-shear specimen shape	20
Figure 3.1 TIG self-brazing technique	21
Figure 3.2 Example of cross-sectional observation of steel after beading on the	22
plate with 45 A of electrical current and 0.65 m/min of welding speed	
Figure 3.3 Depth of weld in case of bead on the steel plate obtained at various	22
heat inputs	
Figure 3.4 The beaded surface of A1100 aluminum alloy with DCEN mode and	23
with AC mode	
Figure 3.5 Example of cross-sectional observation of A1100 aluminum alloy	23
after beading on the plate with 40 A of electrical current, AC mode	
and 0.65 m/min of welding speed	
Figure 3.6 Depth of weld in case of bead on the aluminum alloy plate obtained	23
at various heat inputs used	
Figure 3.7 Welding windows in case of aluminum alloy as the top plate in	24
lap joint welding	

Figure Content (continue)

Figure 3.8 CI	haracteristic of welded specimen in case of aluminum alloy as the	25
to	op plate in lap joint welding	
Figure 3.9 V	Welding windows in case of steel as the top plate in lap joint welding	26
Figure 3.10 (Overview of the joint	26
Figure 3.11 I	Intermetallic reaction layer obtained at 0.65 m/min of welding speed	28
a	and (a) 90, (b) 110, (c) 130, (d) 150 A of electrical current used in	
j	joint between steel/A1100	
Figure 3.12 I	Intermetallic reaction layer obtained at 130 A of electrical current	28
a	and (a) 0.55 m/min, (b) 0.60 m/min, and (c) 0.65 m/min of welding	
S	speed in joint between steel/A1100	
Figure 3.13 7	The relationship between thickness of intermetallic reaction layer	29
a	and apparent heat input for joining of joint between steel/A1100	
Figure 3.14 T	The relationship between thickness of intermetallic reaction layer	29
a	and apparent heat input for joining of joint between steel/A5052	
Figure 3.15 7	The relationship between welding width and apparent heat input	30
	for joining of joint between steel/A5052	
Figure 3.16 7	The relationship between fracture load and apparent heat input	30
	for joining of the joint between steel/A1100	
Figure 3.17	The relationship between fracture load and apparent heat input	31
	In case of the joint between steel/A5052 with 2.4 mm of arc	
	length in case of joining steel/A5052	
Figure 3.18 F	Fracture path in joint between steel/A1100 with 0.65 m/min of	32
V	welding speed and 165 A of electrical current.	
Figure 3.19 E	Example of fracture path along intermetallic reaction layer in	32
C	case of joining between steel/A5052	
Figure 3.20 E	Example of fracture path along heat affected zone in case of	32
jo	joining between steel/A5052	
Figure 3.21 H	HAZ of A1100 aluminum alloy obtained with 0.65 m/min of welding	33
S	speed and (a) 100 A of electrical current and (b) 130 A of electrical	
C	current	

Figure Content (continue)

Figure 3.22	Relationship between the thickness of intermetallic reaction layer	36
	and the apparent heat input with various welding speeds at 2.4 mm	
	of arc length in case of joining steel/A5052	
Figure 3.23	Relationship between welding width and apparent heat input with	36
	various welding speeds at 2.4 mm of arc length in case of joining	
	steel/A5052	
Figure 3.24	The weldable condtions in case of joining between steel/A5052	37
	obtained with using various arc lengths	
Figure 3.25	Arc blow problems found in joint with 170 A of welding current,	39
	0.6 m/minute of welding speed and 3.2 mm of arc length	
Figure 3.26	Fracture load of dissimilar metal joints between steel/A5052 with	39
	various arc lengths used	

Chapter 1

Introduction

1.1 Backgrounds

Both statistical and estimated data have shown that about 60% of the global petroleum have been consumed by the transportation activity.[1-2] The un-limiting petroleum consumption has largely emitted unwanted gases, which are the main causes of environmental problems such as greenhouse effects, acid rain, climate change, and so on.[1-3] Moreover, the petroleum is one of the exhaustible natural resources. According to the estimation, there will be net shortage between global demand of petroleum and the normal supply of petroleum after the year 2020.[4] The problems have stimulated us to preserve our the world, to save the energy and to develop the new energy resources for our next generation. In order to reduce the effects of the problems, the development of eco-vehicles has been carried out in many countries such as Japan, USA, European country, and also Thailand. The main technological key for development of eco-vehicles is to produce high fuel consumption efficiency vehicle. In order to obtain high fuel consumption efficiency of vehicle, reduction of weight of vehicle has been suggested.[5-6] For the first idea of decreasing vehicle weight, the vehicle was down-sized with new designs. However, idea of down-size of vehicle was limited by the size of passenger. The vehicle producer shifted their idea from down-size of vehicle to applying the lighter materials as found the evident in Fig. 1.1.[7] application of light-weight materials could reduce weight of vehicle, it is impossible to replace all steel by lighter materials because unsuitable properties of the materials. Thus, in the present, hybrid-structure concept, which is concept of making a structural component from various materials, has been proposed to be the idea to decrease weight of vehicle. To meet the hybrid-structure concept requirements, the joining of different materials technology has been essentially needed, especially between steel, and aluminum combinations.

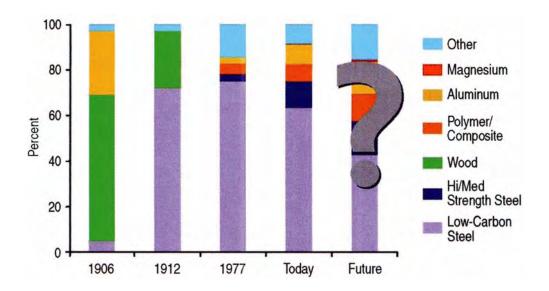
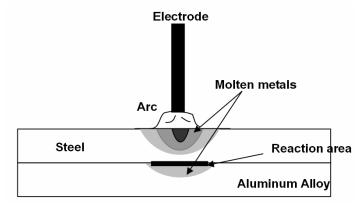
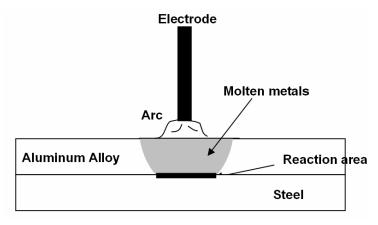



Fig. 1.1 Materials using in a typical automobile-historical perspective


Currently, many research works concerning with joining between steel/aluminum alloys have been carried out. [8-17] In those studies, the mainly welding processes that were applied to join steel and aluminum alloy were the high power intensity welding process (such as laser welding, and electron beam welding) and solid state welding (such as friction stir welding, magnetic seam pressure welding, ultrasonic welding and so on). The reason of using the welding processes is the ability of locally heating of the welding specimen, which is consequently in suppression of intermetallic reaction phase formation. However, we believes that conventional welding process, such as TIG, MIG and so on, is possible to produce the dissimilar metals joint, but we need suitable techniques.

It has been known that the difficulty of joining the dissimilar metals between steel and aluminum alloy is formation of the brittle intermetallic reaction phase.[9-11] In order to suppress the formation of intermetallic reaction phase, the self-brazing technique as shown in Fig. 1.2 was applied to join the steel sheet and aluminum alloy sheet. The fundamentals of self-brazing technique is based on the controlling the molten zone of steel to be a partial penetration in order to prevent the direct mixing of molten steel and molten aluminum alloy, which results in huge formation of intermetallic reaction phase. According to self brazing technique, if the welding processes could control partial penetration in steel sheet, those welding processes is possible to make the self brazing of aluminum alloy on steel. TIG welding process is one of the useful

welding processes for joining thin sheet. Also, it has been expected to be the welding process candidate to join dissimilar metals between steel/ aluminum alloy. Moreover, TIG is one of familiar welding processes in automotive industries. Thus, in the present study, feasibility of joining of dissimilar metals between steel and aluminum alloy with TIG welding process has been investigated.

a) steel as a top sheet

b) aluminum alloy as top sheet

Fig. 1.2 TIG self-brazing technique

1.2 Objectives of this research work

- To develop the technique for joining steel sheet and aluminum alloy sheet with TIG welding process
- 2. To understand the phenomena occurring during dissimilar metals joining between steel sheet and aluminum alloy sheet
- 3. To find the suitable welding conditions for joining dissimilar metals between steel and aluminum alloy

1.3 Theory

1.3.1 Dissimilar metals joining concepts

The production of the high quality dissimilar metals joint between steel and aluminum alloy is very difficult. It is due to the formation of Fe/Al intermetallic reaction phase that is very brittle and poor mechanical properties. In order to develop the new dissimilar metals welding technique, the concepts to reduce the effects of intermetallic reaction phase have been required. Based on human knowledge, there are only three effective concepts, which are discussed as following.

A. Suppression of the formation of intermetallic reaction phase

The principle of this concept is based on the behavior of the intermetallic reaction phase when it becomes thin layer. The thin intermetallic reaction layer may be plastically elongated under exerting load. Moreover, under loading, the stress distribution around the thin intermetallic reaction layer is dominated with base metals properties such as Young's modulus and so on. Thus, when this concept will be applied, the intermetallic reaction layer should be controlled to be as thin as possible. Due to trusty joining quality, many joining techniques have been developed with application of this concept such as laser self-brazing technique, direct diffusion welding and so on.

B. Using joining design

The principle of this concept is based on the high compression strength of intermetallic reaction phase. Therefore, in the joint design, the intermetallic reaction phase should be assigned to be formed at the compressive stress zone in order to avoid the failure of joint at intermetallic reaction phase. Although this concept has been used widely in application, few publications applied this concept in developing of the new dissimilar metals joining technology.

C. Modification of joining interface

The principle of this concept is based on miscibility of steel and aluminum alloy into the third metal. In application of this concept, the third metal that could fully dissociate to steel and aluminum alloy without formation of intermetallic reaction phase has to be searched. The third metal will be used to be the insert material in order to prevent direct mixing between steel and aluminum alloy. This concept has been used since diffusion bonding of steel/Al alloys as discussed in next section.

1.3.2 Literature survey

Based on our investigations, the joining between steel and aluminum alloy has been interested since 60 years ago. The first welding process, which was applied to join steel and aluminum, was diffusion welding.[18] During 1960 to 1980, only solid state welding processes such as diffusion welding, friction welding and so on were investigated for joining steel/aluminum alloy. Trutnev and Shorchorov [19] bonded stainless steel to pure aluminum by using induction heating under vacuum condition. They found that thickness of intermetallic reaction layer affected on joining strength of diffusion welding joint. Moreover, they proposed the mechanism of diffusion welding between steel and aluminum alloy. Due to low strength of the direct diffusion welding joint, C. J. Crance, et al.[20], and N. Iwamoto, et al.[21], tried to apply the interlayer made by silver or nickel or copper. They found that using multi-layer of interlayer could improve the joining quality of the dissimilar metals joint between steel/aluminum alloys. Although, diffusion welding showed the potential to join steel and aluminum alloys due to easily controlling the formation of the intermetallic reaction phase during joining, the diffusion welding was quit costly. Thus the new welding processes have still investigated such as ultrasonic welding [17, 22], magnetic pulse welding [16], friction stir welding, brazing [15, 23], resistance spot welding [24-25], and laser welding [8-11]. Furthermore, the mechanical fastening processes such as self piercing rivet also were studied for joining dissimilar metals between steel and aluminum alloys.[26]

The huge number of publications concerning with the joining of steel sheet and aluminum alloys sheet have been written down since the 2001 until now [8-11]. It was due to the successful of the laser welding process in joining steel sheet/Al sheet with high welding speed. The key to join steel sheet and aluminum alloys sheet by laser welding was base on prevention of direct mixing of molten aluminum alloy to molten steel. The joints were obtained when the molten aluminum alloy was brazed to the solid steel sheet. This joining technique was called as laser self-brazing technique. In application of laser welding to joining steel and aluminum alloy, various joining configurations were used such as the lap joint configuration [10], the edge lap joint configuration [27] and so on. Currently, many researches also tried to apply the self-brazing technique with other welding processes, such as MIG welding process [28], and TIG welding process [27], for joining steel and aluminum alloy. Finally, for the fundamental of formation of intermetallic reaction phase, M. V. Akdeniz et al.[29], and Kobayashi et al.[30], carried out the experiment and proposed the theory concerning

with the diffusion of Fe/Al during welding process. Moreover, almost publications indicated that Fe_2Al_5 intermetallic reaction phase was familiar to be formed during self-brazing. However, other types of Fe/Al intermetallic reaction phase, such as FeAl, FeAl $_3$ and so on, might be found

Chapter 2

Materials, Equipments, Chemical Reagents and Experimental Procedures

In this chapter, materials, equipments, chemical reagents used in this study were explained. Also, experimental procedures were given in details.

2.1 Materials

Materials used in the study were low carbon steel and aluminum alloys. The low carbon steel was the hot roll steel plate with 1 mm of thickness. The aluminum alloys used were A1100 and A5052. The thickness of A1100 and thickness of A5052 were 0.8 mm and 1 mm, respectively. Their chemical compositions and mechanical properties are shown in Table 2.1 and Table 2.2, respectively.

Table 2.1 Chemical compositions of materials used

Materials Chemical composi								
	Fe	С	Mn	Cu	Si	Mg	Zn	AI
1100 AI	0.581	-	-	0.073	0.110	<0.001	0.018	bal
5052 AI	0.40(max)	-	0.10(max)	0.10(max)	0.25(max)	2.2-2.8	0.10	bal
Steel	bal	0.077	0.277	<0.005	0.016	0.001	=	0.052

Table 2.2 Mechanical properties of materials used

Materials	Mechanical properties				
	Yield strength (MPa)	Tensile strength (MPa)	Elongation (%)		
1100 AI	105	110	12		
5052 AI	195	230	12		
Steel	275	380	21		

2.2 Equipments

The equipment used in this study could be classified into three groups, welding equipments group, specimen preparation equipments group, and characterization equipments group. The details of equipments were given as follow.

2.2.1 Welding equipments group

The equipments in the welding equipments group were consisted of TIG welding machine, slide, speed controller, specimen holder, and TIG head holder.

a) TIG welding machine

TIG welding machine as shown in Fig 2.1 was used as the heat source for joining dissimilar metals. Its model name is TIGWAVE 350 AC/DC and its specifications are shown in Table 2.3.

Table 2.3 Specification of TIG welding Machine used

Details	Specifications		
Maximum output current	350 A		
Output current potential	34 V		
Maximum duty cycle	40%		
Input current potential	380 V		
Power supply	17 kW		
Input current frequency	50/60 Hz		
Electrical phase	Single phase		
Gas shield duration before arc start	0.1-5 s		
Gas shield duration before arc finish	3-50 s		
Duration of decreasing current from	0.5-15 s		
maximum to zero	0.5-15 S		
Output current	DC/AC		
spot time	0.25-6 s		

Fig. 2.1 TIG welding mechine

b) Slide, speed controller, specimen holder, and TIG head holder

Slide, speed controller, specimen holder, and TIG head holder as shown in Fig. 2.2 was used for holding welding specimen, moving welding specimen at designed welding speed, and holding TIG head. Slide, speed controller, specimen holder, and TIG head holder was consisted of bench, moving slide, specimen holder, and TIG head holder. Their details of equipments were given below.

Fig. 2.2 Slide, speed controller, and specimen holder

- **Bench**: L bar steel was used for production the frame of bench. It was cut by saw and assembled by welding. Thick plywood was used to be welding work top. Bench size is $1.2 \times 0.8 \times 0.85 \text{ m}^3$.

- **Moving slide**: Moving slide is composed of 3 parts; slide, stepping motor, and driver. The slide used is 1 m of length. The motor used is the 5 phase stepping motor, which its model name is EM596-NB. The driver's model name is Vexta UDX5114. Figure 2.3 shows the moving slide, TIG head holder, and specimen holder.
- **Specimen holder**: Specimen holder as shown in Fig. 2.4 was made with aluminum alloy.
- **TIG head holder**: TIG head holder as shown in Fig. 2.5 was designed for highly precision adjustment of the distance between surface of specimen and tip of electrode. The accuracy of distance adjustment is 0.01 mm.

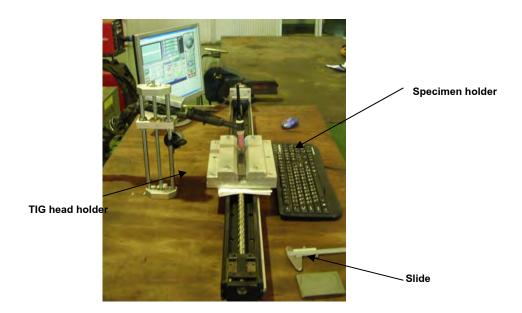


Fig. 2.3 Slide, TIG head holder, and specimen holder.

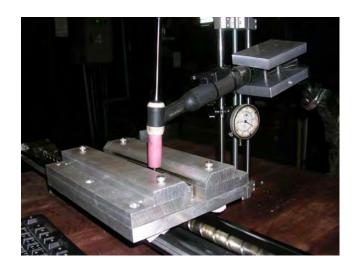


Fig. 2.4 Specimen holder.

Fig. 2.5 TIG head holder.

2.2.2 Specimen preparation equipments group

The equipments in specimen preparation equipments group were composed of the shear cutter, the wire cutter, and the grinding machine. Their details are discussed as following.

a) Shear cutter

The shear cutter as shown in Fig. 2.6 was used for cutting the materials to size of welding specimen.

Fig. 2.6 Shear cutter

b) Wire cutter

The wire cutter was used for cutting welded specimens to tensile-shear test specimens size and microstructural observation specimens size. Its model name is CHARMILLS TECHNOLOGIES ROBOFIL 190.

Fig. 2.7 Wire cutter

c) The grinding machine

The grinding machine as shown in Fig. 2.8 was used for manually polishing the welded specimens from rough surface to mirror surface.

Fig. 2.8 The grinding machine

2.2.3 Characterization equipments group

The equipments in characterization equipments group were used for characterization welded specimens. Their details are shown below.

a) Optical microscope with image analyzer

Optical microscope with image analyzer as shown in Fig. 2.9 was used for investigating welding microstructure, especially the intermetallic reaction layer. Its model name is ZEISS AX10.

Fig. 2.9 The Optical microscope with image analyzer

b) Scanning electron microscope

Scanning electron microscope as shown in Fig. 2.10 was used for investigation of intermetallic reaction layer composition. Its model name is JOEL JSM 6400.

Fig. 2.10 Scanning electron microscope

c) Universal testing machine.

Universal testing machine as shown in Fig. 2.11 was used for estimation the fracture load of welded specimens. Its model name is Instron 5528.

Fig. 2.11 Universal testing machine

2.3 Chemical Reagents

The chemical reagents were used for removing iron oxide on the hot roll steel plate and for etching the microstructural observation specimen surface. The chemical reagents used are discussed as following

2.3.1 The chemical reagent for removal oxide layer on steel plate

The chemical reagent for removal oxide layer on steel plate was the hot hydrochloric acid solution. It was composed of 12 ml of 37% hydrochloric acid and 88 ml of distilled water.

2.3.2 The etching agents

- Steel etching agent

The steel etching agent was the nital agent. The nital used in the study agent was consisted of 4 ml of 65% nitric acid and 96 ml of 95% ethanol.

- Aluminum alloy etching agent

The aluminum alloy etching agent was the mixed acid. The mixed acid used in the study was consisted of 60 ml of 37% hydrochloric acid, 30 ml of 65% nitric acid, 5 ml of 40% hydrofluoric acid, and 5 ml of distilled water.

2.4 Experimental Procedures

The experimental procedure could be divided into three steps.

2.4.1 Welding specimen preparation step

In welding specimen preparation, both alloys, steel and aluminum alloys, were cut to be 60X85 mm². After cutting, the steel was immerged into 80 °C of the hot hydrochloric acid solution in order to remove oxide layer formed during hot rolling process. After that, both steel and aluminum alloy was polished and cleaned by #180 emery paper and ethanol, respectively. After polishing and cleaning, the welding specimen was welded immediately in order to prevent re-oxidation of the faying surface.

2.4.2 Welding step

In welding step, two main welding experiments were carried out, bead on the plate and dissimilar metals welding.

- Bead on the plate of steel and aluminum alloy

The experiment was started by putting and clamping steel plate or aluminum alloy plate on the jig as shown in Fig. 2.12. After clamping, bead on the plate was conducted with the welding conditions as shown in Table. 2.4.

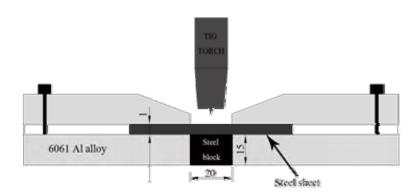
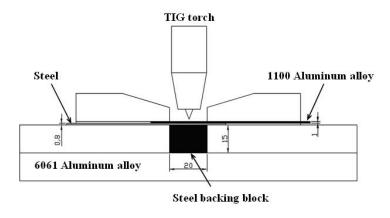


Fig 2.12 Welding configuration of bead on the steel plate

Table 2.4 Bead on the plate conditions

Item	Materials	Type of polarity	arc length (mm)	Welding speed (m/min)	Welding current (A)
1	Steel (1 mm)	DCEN	2.4	0.55,0.60,0.65	varied
2	A1100 (0.8 mm)	DCEN	2.4	0.55,0.60,0.65	varied
3	A1100 (0.8 mm)	AC	2.4	0.55,0.60,0.67	varied


- Dissimilar metals welding

According to welding plan, the investigation of the effects of top plate, type of polarity, heat input, and arc length on welding quality have to be conducted. However, in bead on the plate experiments, the effects of type of polarity were already investigated. Therefore, in current work, the effects of type of polarity was skipped in order reduce the less importance experimental work.

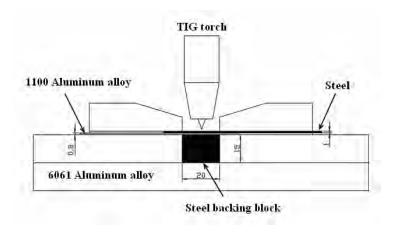

The dissimilar metals joining experiment was started by putting and clamping welding specimens on the jig as shown in Fig. 2.13. From Fig. 2.13, steel and aluminum alloy was clamped as lap joining configuration with 40 mm of lap width. After clamping, the welding was conducted with welding conditions as shown in Table. 2.5.

Table 2.5 Dissimilar metals welding conditions

Item	Top sheet material	Low sheet material	Type of polarity	arc length (mm)	Welding speed (m/min)	Welding current (A)
1	Steel (1 mm)	A1100 (0.8 mm)	DCEN	2.4	0.55,0.60,0.65	varied
2	A1100 (0.8 mm)	Steel (1 mm)	AC	3.4	0.55,0.60,0.66	varied
3	Steel (1 mm)	A5052 (1 mm)	DCEN	1.6	0.55,0.60,0.66	varied
4	Steel (1 mm)	A5052 (1 mm)	DCEN	2.4	0.55,0.60,0.67	varied
5	Steel (1 mm)	A5052 (1 mm)	DCEN	3.2	0.55,0.60,0.68	varied

a) Aluminum alloy as top plate

b) Steel as top plate

Fig. 2.13 Welding configuration used

2.4.3 Characterization

According to two main welding experiments, the welding specimens obtained in the bead on the plate experiment and obtained in the dissimilar metals joining experiment were differently characterized. In bead on the plate experiment, beaded specimens were characterized the welding pool shape and the bead surface. On another experiment, in dissimilar metals joining experiments, the dissimilar metals joints were characterized the welding pool microstructures, the intermetallic compound layer thickness, and the fracture load.

- Beaded specimen characterization
 - * Welding pool characterization

The beaded specimens were cut, mounted, polished, and etched in order to reveal the welding macrostructure. After etching, depth of weld was measured with

optical microscope. The depth of weld was defined as the maximum of depth of weld pool as shown in Fig. 2.14.

Fig. 2.14 Schematic of definition of depth of weld

* Bead surface observation

It was due to oxide of aluminum formation during bead on the plate of aluminum alloy, the beaded specimen surface of aluminum alloy was observed under natural light.

- Dissimilar metals joining specimen characterization

* Microstructural observation

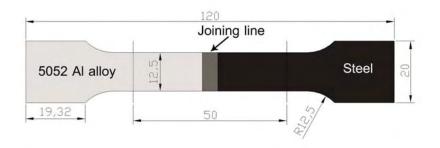
The microstructural specimens were prepared from welded specimens. It was started with cutting and mounting the welded specimens. After mounting, the microstructural specimens were polished with emery paper and were etched with the nital agent as well as mixed acid agent. After etching, the microstructures and chemical compositions of phases in the weld area of the welded specimens were observed with optical microscope and scanning electron microscope, respectively.

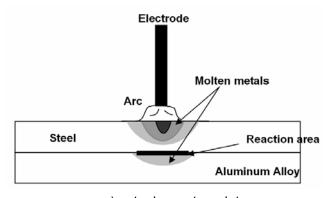
* Intermetallic reaction layer thickness measurement

The intermetallic reaction layer thickness was measured in the microstructural specimens after etching. Because, the thickness of intermetallic reaction layer was not constant for whole the length of intermetallic reaction layer, the thickness of intermetallic reaction layer in this study was defined as the maximum thickness of intermetallic reaction layer.

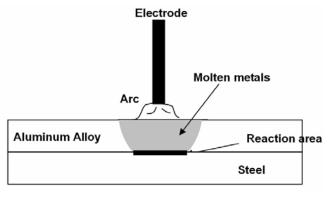
* Tensile-shear test

The fracture load of the welded specimen was realized by tensile-shear test. The welded specimens were cut to the tensile-shear specimen shape as shown in Fig. 2.15. The tensile-shear test of the welded specimens was conducted with universal testing machine at 0.5 mm/minute of cross head moving rate. After testing, the facture mode of welded specimens was also observed.




Fig. 2.15 Tensile-shear specimen shape

Chapter 3


Results and Discussions

3.1 Bead on the plate

In order to suppress the brittle intermetallic reaction layer phase formation during welding of dissimilar metals between steel/aluminum alloy, the prevention of direct mixing between molten aluminum alloy and steel has to be done. Thus, if the lap joining configuration is applied and the steel is the top plate during dissimilar metals welding, the penetration of the steel weld pool should be the partial penetration as shown in Fig. 3.1(a). On the other hand, if aluminum alloy is applied as the top plate during dissimilar metals welding, the molten pool of aluminum alloy should be the full penetration and the steel lower plate should not be melted as shown in Fig. 3.1(b). Therefore, in order to realize that TIG welding process could provide the basic requirements as discussion above, bead on the plate of the steel and the aluminum alloy with TIG welding process were investigated. And, in this section, the results and discussions of the bead on the plate are explained.

a) steel as a top plate

b) aluminum alloy as top sheet

Fig. 3.1 TIG self-brazing technique

- Bead on steel plate

Figure 3.2 shows example of cross-sectional observation of the steel after beading on the plate. Figure 3.3 shows the depth of weld in case of bead on the steel plate at various heat inputs. From both figures, it could be seen that the partial penetration weld of the steel molten metals was easily obtained by TIG welding process. The heat inputs used for production of partial penetration weld were in range between 4 to 11 kJ. When increasing heat input, the depth of weld increased.

Fig. 3.2 Example of cross-sectional observation of steel after beading on the plate with 45 A of electrical current and 0.65 m/min of welding speed.

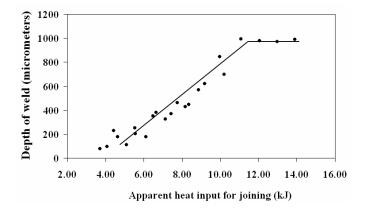


Fig. 3.3 Depth of weld in case of bead on the steel plate obtained at various heat inputs.

- Bead on A1100 aluminum alloys

From Fig. 3.4, it was found that the oxide layer was huge formed at the top surface of A1100 aluminum alloy after beading on the plate when using DCEN mode of TIG welding. On the other hand, when using AC mode TIG, no oxide layer on the top surface of A1100 aluminum alloy after beading on the plate was found. Thus, furthermore work, only AC mode of TIG welding was used for studying bead on the plate and dissimilar metals joining. Figure 3.5 and Figure 3.6 show cross-sectional observation of A1100 aluminum alloy after beading on the plate and depth of weld in case of beading on A1100 aluminum alloy plate at various heat inputs. From Fig. 3.5,

it could be seen that full penetration weld of aluminum alloy could be easily produced by AC mode of TIG welding process.

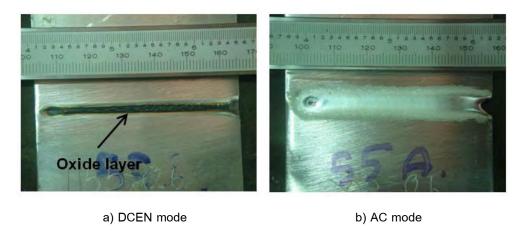


Fig. 3.4 The beaded surface of A1100 aluminum alloy with DCEN mode and with AC mode

Fig. 3.5 Example of cross-sectional observation of A1100 aluminum alloy after beading on the plate with 40 A of electrical current, AC mode, and 0.65 m/min of welding speed.

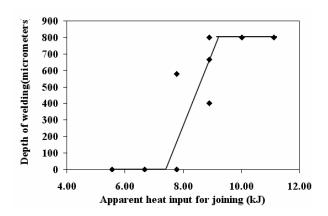


Fig. 3.6 Depth of weld in case of bead on the aluminum alloy plate obtained at various heat inputs used

From both bead on the plate results, it was indicated that TIG welding is feasible to joint steel/aluminum by using self-brazing technique as shown in Fig. 2.1.

3.2 Effects of top plate on the dissimilar metals joining

In study the effects of top plate, materials used were hot rolled steel and A1100 aluminum alloy. Thus, the results as shown this section are the results of the dissimilar metals joining between steel/A1100 aluminum alloy.

- Aluminum alloy top plate

Figure 3.7 shows welding windows in case of aluminum alloy as the top plate in lap joint welding. From Fig. 3.7, three characteristics of welded specimens after welding were found; unmelted, unweldable, and blow hole. Their characteristics features are shown in Fig. 3.8. From Fig. 3.8, it could be realized that the dissimilar metals joint between steel and aluminum alloy could not be obtained when using aluminum alloy as the top plate in lap joint welding. After investigating the specimens after welding, it was found that the oxide layer was formed at the aluminum alloy faying surface. It was believed that the oxide layer prevented the wetting of aluminum molten on steel plate, which results in unwelable the steel/aluminum alloy. From these results, it could be concluded that it is difficult to obtain dissimilar metals joint when aluminum alloy was the top plate in TIG lap joint welding.

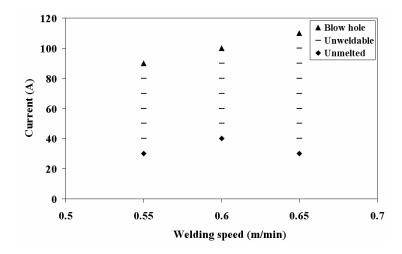
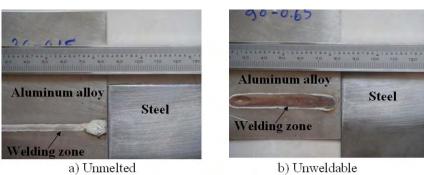



Fig. 3.7 Welding windows in case of aluminum alloy as the top plate in lap joint welding

c) Blow hole

Fig. 3.8 Characteristic of welded specimen in case of aluminum alloy as the top plate in lap joint welding

- Steel top plate

Figure 3.9 shows the weldble conditions in case of the steel as the top plate in lap joint welding. From Fig. 3.9, it could be found that using steel as the top plate in the lap-joint welding could join the steel/aluminum alloy. Figure 3.10 shows an example of half view of the joint between steel and aluminum alloy, which was the evident of the joint obtained by using TIG welding with steel on the top plate in lap joint welding. Moreover, from Fig. 3.10, it could be seen that TIG welding could make the dissimilar joint between steel/aluminum alloys by self-brazing technique. Furthermore, different zones in joining region were found; steel weld pool, HAZ of steel, steel base metal, intermettallic reaction layer, aluminum alloy weld pool, heat affected zone (HAZ) of aluminum alloy, and aluminum alloy base metal.

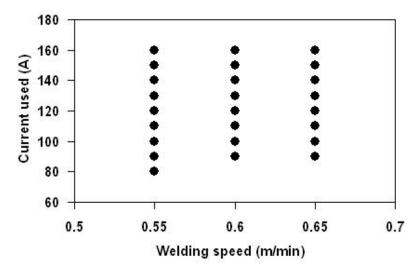


Fig. 3.9 Welding windows in case of steel as the top plate in lap joint welding

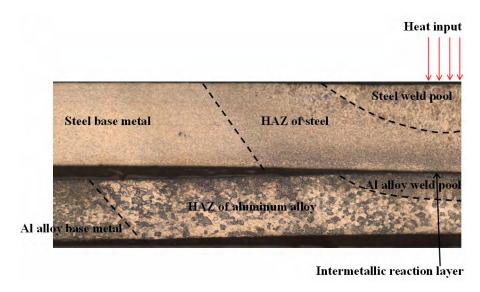


Fig. 3.10 Overview of the joint.

According to both results, it could realized that type of the top plate material in the lap joint welding affected in the weldability of the dissimilar metals welding. When using aluminum alloy as the top plate in the lap joint welding, the dissimilar metals joint between steel/A1100 could not be obtained. But, when using steel as the top plate, the dissimilar metals joint between steel/A1100 could be easily obtained.

3.3 Effects of heat input on the quality of dissimilar metals joining

In this section, both steel/A1100 dissimilar metals joining results and steel/A5052 dissimilar metals joining results are discussed together in order to clarify the effects of heat input on the quality of dissimilar metals joining. It is well know that heat input into welding specimen is one of the importance welding factors affecting the joining quality. Due to difficulty to assignment of welding heat efficiency, apparent heat input for joining, which defined as multiplication between electrical powers used for production the joint and total welding time was introduced. According to the definition, apparent heat input for joining in this study means the total energy provided by welding machine for welding. If welding heat input efficiency would not be significantly different in all welding conditions, we can assumed that increasing apparent heat input for joining will result in increasing in heat input for welding specimen.

According to previous results, the intermetallic reaction layer was formed at interface between steel/aluminum alloy as shown in Fig. 3.10. Figure 3.11 and Figure 3.12 show the intermetallic reaction layer formed at interface between steel and A1100 aluminum alloy under various welding speeds at constant electrical current used and under various electrical currents at a constant welding speed, respectively. From both figures, it was found that thickness of intermetallic reaction layer was decreased with increasing welding speed at a constant electrical current and with decreasing electrical current at a constant welding speed. Also, the variation of thickness of intermetallic reaction layer with welding speed and electrical current could be found in welding steel/A5052.

In order to clarify the effects of heat input, the plot between the thickness of intermetallic reaction layer and the apparent heat input was done. Figure 3.13 and Figure 3.14 show the thickness of intermetallic reaction layer(IMP) under various apparent heat inputs for joining of joint between steel/A1100 and between steel/A5052, respectively. From both figures, it was found that intermetallic reaction layer thickness was decreased with decreasing apparent heat input for joining. From these results, if the joint is produced at lower apparent heat input for joining, thinner intermetallic reaction layer should be found.

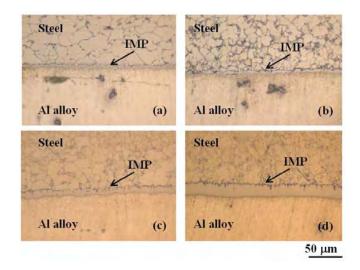


Fig. 3.11 Intermetallic reaction layer obtained at 0.65 m/min of welding speed and (a) 90, (b) 110, (c) 130, (d) 150 A of electrical current used in joint between steel/A1100.

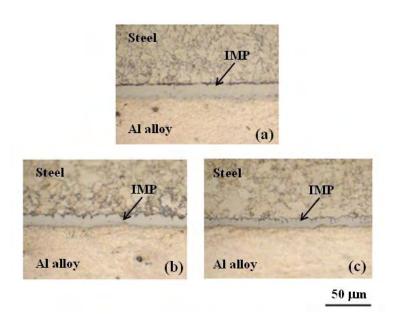


Fig. 3.12 Intermetallic reaction layer obtained at 130 A of electrical current and (a) 0.55 m/min, (b) 0.60 m/min, and (c) 0.65 m/min of welding speed in joint between steel/A1100.

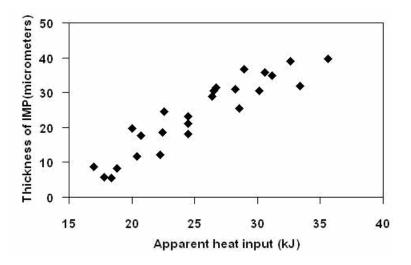


Fig. 3.13 The relationship between thickness of intermetallic reaction layer and apparent heat input for joining of joint between steel/A1100

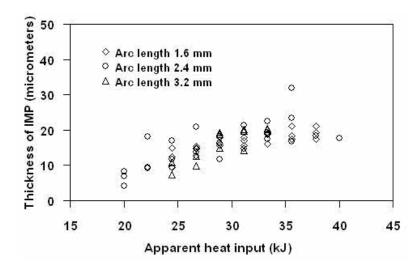


Fig. 3.14 The relationship between thickness of intermetallic reaction layer and apparent heat input for joining of joint between steel/A5052.

The bonding zone is the zone where the intermetallic reaction layer formed. Larger area of bonding zone affected in higher fracture load, if the strength of intermetallic reaction layer is not significantly changed with its thickness. In this study the bonding zone was defined as the width of intermetallic reaction layer, which was called as welding width. Figure 3.15 shows the welding width of joint between steel/A5052 in various apparent heat input. From Fig. 3.15, it was found that increasing apparent heat input resulted in increasing welding width.

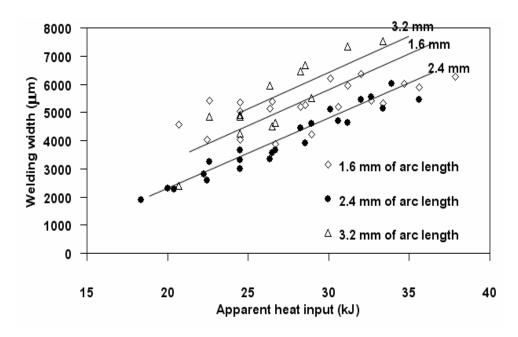


Fig. 3.15 The relationship between welding width and apparent heat input for joining of joint between steel/A5052

Fig. 3.16 The relationship between fracture load and apparent heat input for joining of the joint between steel/A1100

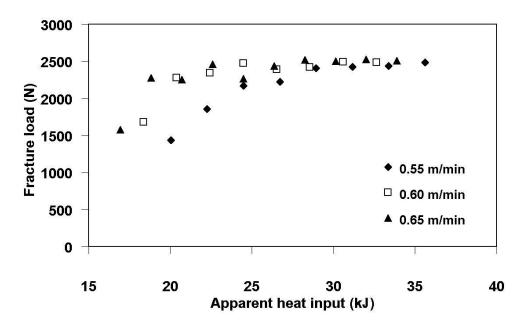


Fig. 3.17 The relationship between fracture load and apparent heat input in case of joining between steel/A5052 with 2.4 mm of arc length

Figure 3.16 and Figure 3.17 show the fracture load of joints obtained with various apparent heat inputs for joining steel/A1100 and for joining steel/A5052, respectively. From Fig. 3.16, it was found that the fracture load of joints was slightly decreased with increasing apparent heat input in case of joining between steel/A1100. On the other side, in case of joining between steel/A5052, it was found that the fracture load of joints was increased with increasing apparent heat input until 20-30 kJ of apparent heat input. Then, when apparent heat input was higher than 20-30 kJ, the fracture load of joints was not altered with the apparent heat input. Moreover, from tensile-shear results, in case of joining between steel/A1100, the fracture path of all joints was the heat affected zone of A1100 aluminum alloy (HAZ of A1100) as shown in Fig 3.18. On the other side, in case of joining between steel/A5052, the joints were broken at the intermetallic reaction layer zone as shown in Fig. 3.19 when apparent heat input for joining was lower than about 20-30 kJ. When apparent heat input was higher than 20-30 kJ, the joints were broken at the heat affected zone of A5052 aluminum alloy (HAZ of A5052) as shown in Fig. 3.20.

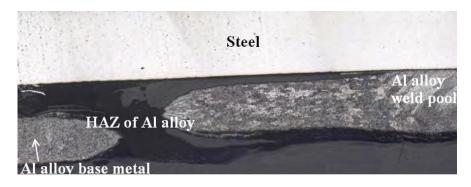


Figure 3.18 Fracture path of the joint between steel/A1100 obtained with 0.65 m/min of welding speed and 165 A of electrical current.

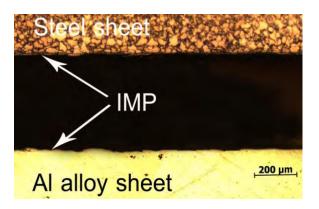


Fig. 3.19 Example of fracture path along intermetallic reaction layer in case of joining between steel/A5052

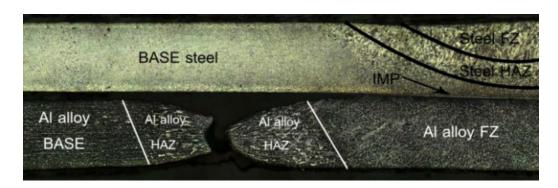


Fig. 3.20 Example of fracture path along heat affected zone in case of joining between steel/A5052

According to the results, it could be explained that in case of joining between steel/A1100, decreasing of fracture load with increasing apparent heat input for joining was due to larger grain of A1100 aluminum alloys at heat affected zone (HAZ). It is known that aluminum alloy can be strengthened by work hardening and precipitation hardening. However, 1100 aluminum alloy can be strengthened only by work hardening due to low content of precipitating alloying element. In this study, the grade of 1100 aluminum alloy used was the work hardened H12 aluminum alloy, grain structure of which deformed. The deformed microstructure is ready to recrystallize and grow when temperature is increased. In this study, the heat affected zone of A1100 aluminum alloy was heated up higher than recrystallization temperature and grain growth temperature. The deformed microstructure was recrystallized and followed by growth of grain, as shown in Fig. 3.18. From Fig. 3.18, it was found that microstructures in heat affected zone of A1100 and A1100 aluminum alloy base metal were different. The microstructure of heat affected zone of A1100 aluminum alloy was coarser compared to the base metal. From Fig. 3.21 it was found that the microstructure was slightly coarser when using higher electrical currents, which corresponded to higher apparent heat input for joining.

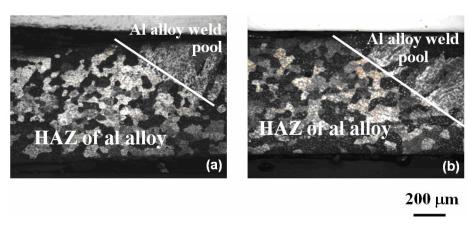


Fig. 3.21 HAZ of A1100 aluminum alloy obtained with 0.65 m/min of welding speed and (a) 100 A of electrical current and (b) 130 A of electrical current

In case of steel/A5052 joints, which fracture path was along intermetallic reaction layer, the fracture load of joint was dominated by the fracture load of intermetallic reaction layer. In lap-joint welding, the fracture load of the intermetallic reaction layer was relied on welding width and strength of intermetallic reaction layer. Rattana, et.al, [31] indicated that strength of the intermetallic reaction layer decreased with increasing its thickness. From Fig. 3.17, the fracture load of joint was increased with increasing apparent heat input. The positive trend of heat input on the fracture load

of joint indicated that the fracture load of intermetallic reaction layer was mainly controlled by welding width, not the strength of intermetallic reaction layer, which decreasing with increasing apparent heat input. In another case of steel/A5052 joints that fracture path was along the heat affected zone of A5052, the fracture load of joint was dominated by the fracture load of heat affected zone. From the previous discussion, the fracture load of heat affected zone of aluminum alloy was slightly decreased with increasing apparent heat input for joining. However, in case of joining steel/A5052, the slightly decreasing of fracture load of heat affected zone was not observed because the range of the apparent heat input, which was available for studying the effects of apparent heat input on fracture load was narrower.

In consideration of the transition of fracture path, it could be explained as following. The fracture load of intermetallic reaction layer was increased with increasing welding width which was increased with increasing apparent heat input. Thus, when apparent heat input was increased to appropriated level, the fracture load of intermetallic reaction layer became higher than that of heat affected zone A5052 aluminum alloy, which consequently in transition of fracture path from along intermetallic reaction layer to along heat affected zone of A5052.

Finally, from above results, it could be concluded that increase apparent heat input resulted in increasing intermetallic reaction layer thickness and increasing welding width. Increasing welding width affected to increase the fracture load of intermetallic reaction layer. When the fracture load of intermetallic reaction layer was hihger than that of heat affected zone of aluminum alloy, the broken path became along heat affected zone of aluminum alloy. The fracture load of heat affected zone was slightly reduced with increasing apparent heat input.

3.4 Effects of welding parameters on the quality of dissimilar metals joining

3.4.1 Welding speed & welding current

In previous section, the effects of welding speed and welding current on the joining quality were discussed in view of constant other welding parameters. In this section, the combination effects of welding speed and welding current at constant apparent heat input on the joining quality were discussed. Figure 3.22 shows the relationship between the intermetallic reaction layer thickness and apparent heat input with various welding speeds. Figure 3.23 shows the relationship between welding width and apparent heat input with various welding speeds. Before discussing Fig. 3.22 - 3.23 and Fig.3.17, it should be clearly understood that, if increasing welding speed at a constant apparent heat input is increased the electrical current has to increase. From Fig. 3.22 and Fig. 3.23, it was found that increasing welding speed at a constant apparent heat input was not affected to thickness of intermetallic reaction layer and welding width. On the other hand, from Fig. 3.17, increasing welding speed at a constant apparent heat input resulted in increasing the fracture load of intermetallic reaction layer. Due to no effects of variation of welding speed at a constant apparent heat input on welding width and thickness of intermetallic reaction layer, the strength of intermetallic reaction layer should be increased with increasing welding speed at a constant apparent heat input. The increasing in strength of intermetallic reaction layer might be caused by enrich iron Fe/Al intermetallic reaction phase (such as FeAI, and Fe3 AI) formed at intermetallic reaction layer. However, it was not found the enrich iron Fe/Al intermetallic reaction phase formed at intermetallic reaction layer during observation of intermetallic reaction layer by SEM with EDS. It was found only FeAl2 intermetallic reaction phase at intermetallic reaction layer. Thus, the reason of increasing strength of intermetallic reaction layer was still not clarified. It is needed more characterization of intermetallic reaction layer by electron probe micro-analyzer or by transmission electron microscope. From the results, it could be referred that high welding speed is recommended to use in dissimilar metals joining between steel/aluminum alloy.

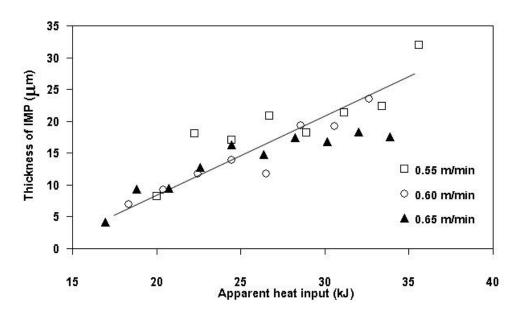


Fig. 3.22 Relationship between the thickness of intermetallic reaction layer and the apparent heat input with various welding speeds at 2.4 mm of arc length in case of joining steel/A5052

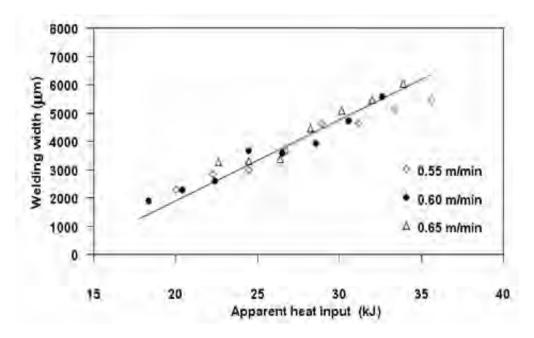


Fig. 3.23 Relationship between welding width and apparent heat input with various welding speeds at 2.4 mm of arc length in case of joining steel/A5052

3.4.2 Arc length

The effects of arc length on the quality of dissimilar metals joining were investigated in the dissimilar metals joining between steel/A5052. The arc lengths used were 1.6, 2.4, and 3.2 mm, respectively.

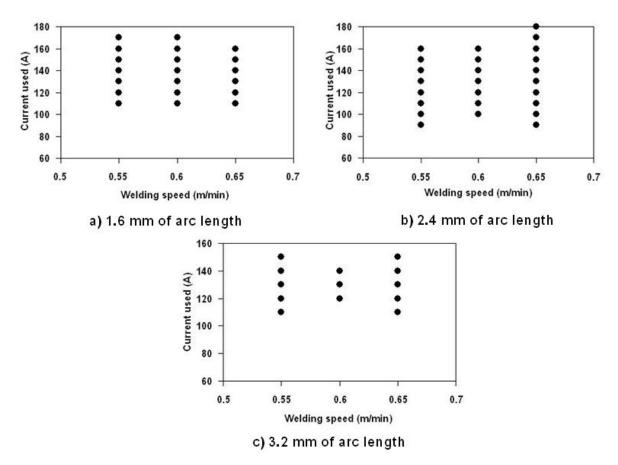


Fig. 3.24 The weldable condtions in case of joining between steel/A5052 obtained with using various arc lengths.

Firstly, the effect of arc length on the size of welding windows was explained. In this study, the size of welding windows could be evaluated with the number of weldable conditions. Large number of weldable conditions means large size of welding windows. Figure 3.24(a) - 3.24(c) show the weldable conditions in case of using 1.6, 2.4, and 3.2 mm of arc lengths, respectively. Comparing Fig. 3.24(a) – 3.24(c), it could be clearly seen that, the number of weldable conditions in case of 1.6 mm and 3.2 mm of arc length were smaller than in case of 2.4 mm of arc length. During welding, the arc was difficult to start when using 1.6 and 3.2 mm of arc length compared with using 2.4 mm of arc length. Moreover, it was found that the maximum electrical current, which was able to join steel/A5052 without directly mixing of welding, was not correlated with welding speed and

also was in the arrange of 140-180 A. Figure 3.25 shows the example of joint obtained with higher electrical current used for production of the joint without direct mixing of both molten metals. From Fig. 3.25, it was found that the arc blow was found. When the arc blow was started in joint, the directly mixing of the aluminum molten and the steel molten was partially found in joint, which led to the unacceptable joining quality. According to the results, it could be referred that arc length significantly affected to size of welding windows. Also, the arc blow problem dominantly limited the welding windows of all arc length used.

Figure 3.14 also shows the effects of arc length on intermetallic reaction layer. It was found that arc length did not significantly affect to intermetallic reaction layer formation. On the other hand, the arc length significantly affected to the welding width as shown in Fig. 3.15. Using 3.2 mm and 1.6 mm of arc length could expand the welding width when compared with using 2.4 mm of arc length.

Figure 3.26 shows the fracture load of dissimilar metals joints in case of joining steel/A5052. From Fig. 3.26, when using 2.4 mm of arc length, the fracture load of intermetallic reaction layer was highest compared with 1.6 mm and 3.2 mm of arc length. Due to the lowest of welding width in case of using 2.4 mm of arc length, the strength of intermetallic reaction layer should be highest with using 2.4 mm of arc length. The highest strength of intermetallic reaction layer in case of using 2.4 mm of arc length still was not clearly understood. It is needed more characterization of intermetallic reaction layer by electron probe micro-analyzer or by transmission electron microscope.

According to the results, it could be referred that using different arc length affected to size of welding windows, welding width, and strength of intermetallic reaction layer. Based on the results of this study, it could be recommended that 2.4 mm of arc length was suitable to joint dissimilar metals joining between steel plate and aluminum alloy plate.

Fig. 3.25 Arc blow problems found in joint with 170 A of welding current, 0.6 m/min of welding speed and 3.2 mm of arc length.

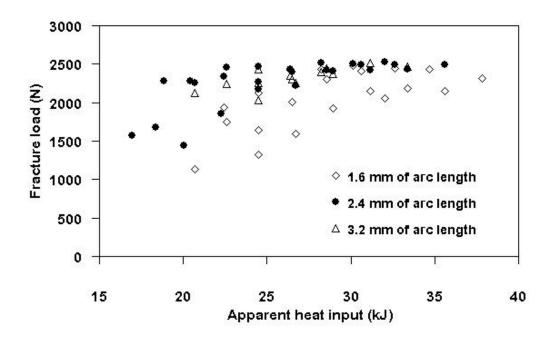


Fig. 3.26 Fracture load of dissimilar metals joints between steel/A5052 with various arc lengths used.

3.5 Dissimilar metals joining mechanism

From half view of microstructure as shown in Fig. 3.10, it could be seen that the molten penetration condition in steel plate was the partial penetration condition. Also, there were the evident of melting of aluminum alloy during welding. Furthermore, the width of intermetallic reaction layer was narrower than width of the top surface of aluminum alloy weld pool. From all of this, it was confirmed that the dissimilar metals joint between steel and aluminum alloy was obtained by the brazing of molten aluminum alloy on solid steel plate. This mechanism of joining by TIG welding process was similar with our proposed.

Chapter 4

Conclusions and Recommendations

4.1 Conclusions

According to all experimental results, it can conclude as following.

- 1. Based on the bead on the plate results, it was indicated that TIG welding process together with using self-brazing technique was feasible to join steel/aluminum alloys. Moreover, high fracture load of the steel/aluminum alloys dissimilar metals joints could be obtained with using TIG welding process together with self brazing technique. Thus, it could be referred that TIG welding process together with self brazing technique was one of the effective welding process for joining the dissimilar metals.
- 2. Placing steel as the top plate in dissimilar metals lap joint could easily produce the dissimilar metals joint compared with placing aluminum alloy as the top plate in dissimilar metals lap joint. The reason of difficulty in case of placing aluminum alloy as the top plate in dissimilar metals lap joint was due to the aluminum oxide layer formed at faying surface of aluminum alloy.
- 3. Increasing the apparent heat input resulted in increasing intermetallic reaction layer thickness and increasing welding width. The fracture load of joint was the fracture load of intermetallic reaction layer, when the fracture load of intermetallic reaction layer lower than that of heat affected zone of aluminum alloy. Increasing welding width seems to increase the fracture load of intermetallic reaction layer. When the fracture load of intermetallic reaction layer was higher than that of the heat affected zone of aluminum alloy, the broken path of the joint was at the heat affected zone of aluminum alloy. Also, the fracture load of heat affected zone was slightly reduced with increasing apparent heat input.
- 4. Increasing welding speed at a constant apparent heat input could improve the strength of intermatallic reaction layer. However, the reason of improve strength of intermatallic reaction layer with increasing welding speed at a constant heat input was still not clearly understood.
- 5. Using 1.6 mm and 3.2 mm of arc length caused unstable of the arc, which consequently limiting of the weldable conditions. Moreover, using 2.4 mm of arc length could produce the joints which had the narrowest welding width compared with 1.6 and 3.2 mm of arc length. Furthermore, using 2.4 mm of arc length could improve the

strength of intermatallic reaction layer compared with 1.6 and 3.2 mm of arc length. Thus, it was recommended that 2.4 mm of arc length should be used in dissimilar metals welding between steel/aluminum when using 3.2 mm of diameter of EWTh2 electrode.

4.2 Recommendations

Although, in this study, high fracture load of the dissimilar metals joint of steel/aluminum alloy can be obtained by using TIG welding process together with using self-brazing technique, the fatigue properties of dissimilar metals joint was not evaluated yet. Thus, in the future, the fatigue properties of dissimilar metals joint of steel/aluminum alloy should be investigated. Moreover, the reason of increasing strength of intermetallic reaction layer with increasing welding speed at a constant apparent heat input was still not clarified. Thus, in the future, more preciously characterization of intermetallic reaction layer by electron probe micro-analyzer or by transmission electron microscope should be done.

References

- 1. S.C. Davis, and S. W. Diegel, Transportation Energy Data Book, Edition 25, Available online at : cta.ornl.gov/data
- 2. H. Wang, and M. Ouyang, Transportation Strategy of The Transportation Energy and Power train in China, Energy Policy, V.35, 2007, 2313-2319.
- P. Poudenx, and W. Merida, Energy Demand and Greenhouse Gas Emissions from Urban Passenger Transportation Versus Availability of Renewable Energy: The Example of The Canadian Lower Fraser Valley, Energy 32, 2007,1-9.
- 4. A. Birky, D. Greene, T.Gross, et.,al. Future US Highway Energy Use: A Fifty year Perspective, 2001, 3.
- 5. A. Friedrich, and S.Schumann, Research for A "new age of magnesium" in The Automotive Industry, J. of Mat. Process. Tech., V.117, 2001, 276-281.
- 6. A. Schulmeyer, Finding The Automotive 'holy grail', Weld. & Metal. Fabrication, Nov./Dec.,2000.
- 7. A. I. Taub, P. E. Krajewski, A. A. Luo, and J. N. Owens, The Evaluation of Technology for Materials Processing over The Last 50 Years: The Automotive Example, JOM, 2007, 48-57.
- S. Katayama, Laser Welding of Aluminum Alloys and Dissimilar Metals, Weld. Inter.,
 V. 18, 2004, 618-625.
- K. J. Lee, S. Kumai, and T Arai, Interfacial Microstructure and Strength of Steel to Aluminum Alloy Lap Joints Welded by a Defocused Laser Beam, Mat. Trans., V. 46, 2005, 1847-1856.
- Y. Miyashita, N. Ikutaro, J.Q. Xu, Y. Mutoh, A. Masatoshi, and O Hayato, Laser Welding of Dissimilar Metals Joint Aided by Unsteady Thermal Convection Boundary Element Method Analysis, Quart. J. of Jpn. Weld. Soc., V. 23, 2005, 16-24.
- 11. J. P. Wagner, I. Zerner, M. Kreimeyer, T. Seefeld, and G. Sepold, Characterization and Properties of Dissimilar Metal Combination of Fe/Al and Ti/Al-sheet Materials, 20th Inter. Congress on ICALEO 2001 Applications of Laser 6 electro-optics, October, 2001, 365-374.
- P. Peyer, G. Sierra, F. D. Beaume, D. Stuart, and G. Fras, Generation of Aluminum-Steel Joints with Laser-Induced Reaction Wetting, Mat. Sci. Eng. A., V. 444, 2007, 327-338.
- 13. Z. Sun, and R. Karppi, The Application of Electron Beam Welding for Joining of Dissimilar Metals: and overview, J. of Mat. Process. Tech., V.59, 1996, 257-267.

- W.B. Lee, M. Schmuecker, U.A. Mercardo, G. Biallas, and S.B. Jung, Interfacial Reaction in Steel-Aluminum Joints Made by Friction Stir Welding, Scripta Mater., V. 55, 2006, 355-356.
- K. Tanaka, M. Kumagai, and H. Yoshida, Dissimilar Joints of Aluminum Alloy and Steel Sheet by Friction Stir Spot Welding, J. Jpn. Inst. of Light Met., V. 56, 2006, 317-322.
- 16. T. Aizawa, and Y. Utsumi, Magnetic Pressure Seam Welding of Aluminum /High Strength Steel Sheets, National Meeting of JWS, V. 77, 2005, 328-329.
- 17. S. Hideo, W. Takehiko, Y. Atsushi, and K.Shizuyo, Joining of Aluminum Alloy to Steel by Ultrasonic Welding, National Meeting of JWS, V.77, 2005, 348-349.
- V. W. Cooke, and A. Levy, Solid-Phase Bonding of Aluminum Alloys to Steel, J. of Met., 1949, 28-35.
- 19. V. V. Trutnev and M. K. Shorshorov, The Diffusion Welding of Austenitic Steel to Aluminum and Aluminum Alloys, Weld. Prod., 1967, 18-23.
- 20. C. J. Crance, P.T. Lovell, W. A. Baginski, and M. G. Olsen, Diffusion Welding of Dissimilar Metals, Weld. J., 1967, 23s-31s.
- 21. N. Iwamoto, M. Yoshida, S. Tabata, T. Tekeuchi, and M. Makino, Diffusion Welding of Mild Steel to Aluminum, Trans. of JWRI, V.4, No. 2, 1975, 67-70.
- 22. Takehiko Watanabe, Hideo Sakuyama, and Atsushi Yanagisawa, Ultrasonic welding between mild steel sheet and Al-Mg alloy sheet, J.of Mat. Process. Tech., V. 209, 2009, 5475-5480.
- 23. Takehiko Watanabe, Hirofumi Takayama, and Atsushi Yanagisawa, Joining of aluminum alloy to steel by friction stir welding, J. of Mat. Process. Tech., V. 178, 2006, 342-349.
- 24. Ranfeng Qiu, Chihiro Iwamoto, and Shinobu Satonaka, The influence of reaction layer on the strength of aluminum/steel joint welded by resistance spot welding, Mat. Characterization, V.60, 2009, 156-159.
- 25. Ranfeng Qiu, Chihiro Iwamoto, and Shinobu Satonaka, Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate, J. of Mat. Process. Tech., V. 209, 2009, 4186-4193.
- 26. Y. Abe, T. Kato, K. Mori, Self-piercing riveting of high tensile strength steel and aluminum alloy sheet using conventional rivet and die, J. of Mat. Process. Tech., V. 209, 2009, 3914-3922.

- 27. G. Sierra, P. Peyre, F. Deschaux Beaume, D. Stuart, and G. Fras, Galvanised steel to aluminum joining by laser and GTAW process, Mat. Characterization, V.59, 2008, 1705-1715.
- 28. Taichi Murakami, Kazuhiro Nakata, Hongjun Tong, and Masao Ushio, Dissimilar Metal Joining of Aluminum to Steel by MIG Arc Brazing Using Flux Cored Wire, ISIJ Inter. V.43, No.10, 2003, 1596-1602.
- 29. M. V. Akdeniz, and A. O. Mekhrabov, The Effect of Substitutional Impurities on The Evolution of Fe-Al Diffusion Layer, Acta. Mater., V.46, No. 4, 1185-1192.
- 30. S. Kobayashi, and T. Yakou, Control of Intermetallic Compound Layers at Interfcae between Steel and Aluminum by Diffusion-Treatement, Mat. Sci. and Eng. A, V. 338, 2002, 44-53.
- 31. Rattana Borrisutthekul, Taisei Yachi, Yukio Miyashita, and Yoshiharu Mutoh, Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy, Mat. Sci. and Eng. A, V. 467, No. 1-2, 2007, 108-113.

Appendix A

Project Outputs

Project outputs

1) Publications

- 1.1 Rattana Borrisutthekul, Pusit Mitsomwang, Sirirat Rattanachan, and Yoshiharu Mutoh, TIG Welding of Dissimilar Metals Between Steel/Aluminum Alloy, Welding in the World (special issue) 53, 2009, 585-588. (SJR: 0.037, SNIP: 0.103, H index: 9)
- 1.2 Rattana Borrisutthekul, Pusit Mitsomwang, Sirirat Rattanachan, and Yoshiharu Mutoh, Feasibility of Using TIG Welding of Dissimilar Metals between Steel/Aluminum Alloy, Energy Research Journal 1(2), 2010, 82-86. (New publication)

2) Benefits of Projects

2.1 Commercial benefits

(None)

2.2 Political benefits

(None)

2.3 Public benefits

(None)

- 2.4 Academics benefits
 - 1 person of the master degree (Thesis topic: Influences of magnesium and thickness of welded sheet on the feature of intermetallic reaction layer in steel/aluminum alloy dissimilar weld)

3) Other outputs

3.1 National Publications

- 3.1.1 ภูษิต มิตรสมหวัง และ **รัตน บริสุทธิกุล** การเชื่อมโลหะแผ่นระหว่างเหล็กกล้า กับอลูมิเนียมเกรด 5052 วารสาร การเชื่อมไทย ฉบับที่ 51 พ.ศ. 2010 หน้าที่ 21-25
- 3.1.2 ภูษิต มิตรสมหวัง และ **รัตน บริสุทธิกุล** อิทธิพลของตัวแปรงานเชื่อมต่อ คุณภาพของรอยเชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับอลูมิเนียมเกรด 5052 วารสาร การเชื่อมไทย ฉบับที่ 52 พ.ศ. 2010 หน้าที่ 13-18

3.2 International Conferences

- 3.2.1 Rattana Borrisutthekul, Pusit Mitsomwang, Sirirat Rattanachan, Yoshiharu Mutoh, TIG Welding of Dissimilar Metals Between Steel/Aluminum Alloy, IIW2009, Singapore, 15-16 July, 2009.
- 3.2.2 Rattana Borrisutthekul, Pusit Misomwang, Sirirat Rattanachan, Yoshiharu Mutoh, Feasibility Study of Using TIG Welding in Joining Dissimilar Metals Joint between Steel/Aluminum Alloy, International conference on science & engineering, Khonkaen, 23-24 July, 2009.
- 3.2.3 Rattana Borrisutthekul, Pusit Misomwang, Sirirat Rattanachan, Effects of TIG welding parameters on dissimilar metals welding between mild steel and 5052 aluminum alloy, International Conference on Aluminum alloys, Japan, 2010. (Abstract accepted)

3.3 National Conferences

- 3.3.1 Pusit Mitsomwang, Rattana Borrisutthekul, Sirirat Rattanachan, Yoshiharu Mutoh, Feasibility study of using GTAW process in dissimilar metal joining between low-carbon/5052 Al alloys sheet, TMETC#3, Bangkok, 26-27 October, 2009.
- 3.3.2 Pusit Mitsomwang, Rattana Borrisutthekul, Sirirat Rattanachan, Yoshiharu Mutoh, Application of TIG Welding in Joining Dissimilar Metals Between Steel and Aluminum Alloy, ME-NETT#23 , Chiangmai, 4-5 November, 2009.

TIG WELDING OF DISSIMILAR METALS BETWEEN STEEL/ALUMINUM ALLOY

Rattana Borrisutthekul¹, Pusit Mitsomwang¹, Sirirat Rattanachan¹, and Yoshiharu Mutoh²

Department of Engineering, Suranaree University of Technology, Muang, Nakhon-Ratchasima, Thailand, 30000 Department of System Safety, Nagaoka University of Technology, Nagaoka-shi, Niigata, Japan, 940-2188.
E-mail: rattana@sut.ac.th

Abstract

In joining dissimilar metals between steel and aluminum alloy, the difficulty is caused by formation of intermetallic reaction layer. There has been no report that indicates successful dissimilar metal welding by using conventional welding techniques, such as TIG, MIG welding and so on, except laser welding. In this research work, TIG welding of dissimilar metals between steel/A1100 aluminum alloy-H12 was studied in order to investigate the feasibility of application of TIG welding for joining dissimilar metals. The results showed that the present TIG welding as a self-brazing technique could join the dissimilar metal between steel and aluminum alloy. The load resistance of bonded zone, intermetallic reaction layer zone, was higher than the load resistance of A1100 aluminum alloy after welding. The joint was fractured at HAZ of A1100 aluminum alloy. It was found that using lower apparent heat input resulted in higher load resistance of joint due to slow grain growth of A1100 aluminum alloy at HAZ. The Fe/Al intermetallic reaction layer was decreased with decreasing heat input.

Introduction

Currently, techniques for joining between steel sheet and aluminum alloy sheet have been interested in order to fulfill the hybrid structural technology. Many research works concerning with joining between steel/aluminum alloys have been recently carried out [1-12]. In those studies, welding processes used are mainly high intensity welding such as laser welding, hybrid welding, solid state welding such as FSW, magnetic seam pressure welding, ultrasonic welding and so on. The reason of using those processes is the ability of those processes in localizing heating up the welding specimen which is consequently in low heat required for welding and in suppressing of intermetallic reaction layer formation. However, conventional welding process, such as TIG, MIG and so on, will be possible to produce the dissimilar metals joint, but they need some techniques.

It is well known that the difficulty of dissimilar metal joining between steel and aluminum alloy is formation of the brittle intermetallic reaction phase.[1-5] In order to suppress the formation of intermetallic reaction phase, laser welding process as a self-brazing technique as shown in Fig. 1 was applied to joining of steel sheet and aluminum alloy sheet [1-

4]. One of fundamentals of self-brazing technique is based on the controlling the molten zone of steel to be a partial penetration in order to prevent the direct mixing of molten steel and molten aluminum alloy, which results in formation of intermetallic reaction phase. According to the self brazing technique, if some welding processes could control partial penetration in steel sheet, those welding processes will be possible to make a self brazing of aluminum alloy on steel TIG is one of useful welding processes for joining thin sheet as referred in Ref.[13]. So that TIG welding may achieve the partial penetration of steel sheet during welding of steel/ aluminum alloy. Moreover, if conventional welding processes such as TIG welding could join steel and aluminum alloys, there is no need to introduce new joining machines for assembly of automotive parts. Thus, in the present study, the dissimilar joining between steel and aluminum alloy by application of TIG welding technique was carried out in order to investigate the feasibility to steel and aluminum alloy dissimilar joining by using TIG welding.

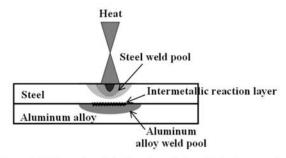


Figure 1: Schematic of the interface during dissimilar metals welding between steel and aluminum alloy.

Experimental procedures

The 1 mm thick hot roll steel sheet (steel) and 0.8 mm thick 1100 aluminum alloy-H12 sheet (aluminum alloy) were used in this study. Their chemical compositions and mechanical properties are shown in Table 1 and Table 2, respectively. Both steel and aluminum alloy were cut in size of 85x65 mm. The TIG lap joint welding configuration with steel top sheet was used as shown in Fig. 2. The arc distance, electrode size, and electrode type were 3.2 mm, 3.2 mm in

diameter, and EWTH-2, respectively. The direct current electrode negative (DCEN) was applied. Argon gas with 8 l/min was used for shielding the welding specimens. Welding speeds of 0.55, 0.60, and 0.65 m/min were used. In this study, welding current was varied in order to obtain the joint where steel and aluminum alloy were not directly mixed during welding. After welding the tensile shear test and microstructure observation were carried out in order to observe welding structures and load resistance of the joints.

TABLE 1 CHEMICAL COMPOSITIONS OF MATERIALS

Material	Chemical Composition (wt%)							
Material	Fe	C	Mn	Cu	Si	Mg	Zn	Al
1100 Al alloy	0.581			0.073	0.110	< 0.001	0.018	99.22
Steel	99.51	0.077	0.277	< 0.005	0.016	0.001		0.025

TABLE 2 MECHANICAL PROPERTIES OF MATERIALS

10.107 (0.107)	Mechanical Properties				
Material	Yield Strength (MPa)	Tensile strength (MPa)	Flongation (%)		
1100 aluminum alloy-H12	105	110	12		
Steel	275	380	21		

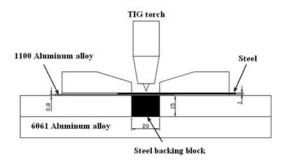


Figure 2: Welding configuration used

Results and Discussion

1. Apparent heat input

Heat input is one of the importance welding factors which affect the joining quality. Due to difficulty to assignment of welding heat efficiency, apparent heat input for joining, which defined as multiplication between electrical powers used for production the joint and total welding time was introduced. According to the definition, apparent heat input for joining in this study means the total energy provided by welding machine for welding. If welding heat input efficiency would not be significantly different in all welding conditions, we can assumed that increasing apparent heat input for joining will result in increase in heat input to welding specimen. Figure 3 shows minimum and maximum value of apparent heat input for joining with various welding speeds. From Fig. 3, it was found that the minimum apparent heat input for joining was slightly decreasing with increasing welding speed. Moreover, the maximum apparent heat input for joining was significantly decreasing with increasing welding speed. The possible reason, why the both apparent heat input for joining became lower when increasing welding speed, is that higher welding speed requires higher current for producing the joint. When required current is increased and we keep the arc distance constant, power density of arc will be increased and it will enhance the molten penetration. For the self brazing technique, the steel molten region should be controlled under partial penetration. Thus apparent heat input for joining was decreased with increasing welding speed.

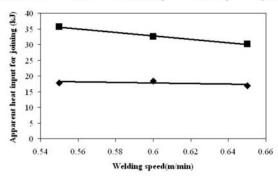


Figure 3: Apparent heat input for joining with various welding speeds used

2. Microstructural observations

- Microstructural observation

Figure 4 shows an example of half view of the joint between steel and aluminum alloy. From Fig. 4, seven different zones in joining region was found; steel weld pool, HAZ of steel, steel base metal, intermettallic reaction layer, aluminum alloy weld pool, heat affected zone (HAZ) of aluminum alloy, and aluminum alloy base metal. Among of these zones, two zones; intermetallic reaction layer zone and HAZ of aluminum alloy which have poor mechanical properties, will influence the quality of the joint.

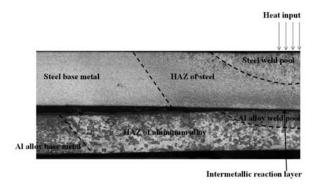


Figure 4: Overview of the joint.

Intermetallic reaction layer

Although, in this study, the weakest zone of joint was not at intermetallic reaction layer zone, several research works indicated that intermetallic reaction layer zone was always the weakest zone in dissimilar metals joint between steel and aluminum alloys [1-5]. Moreover, Rattana et al.[1] indicated that thinner intermetallic reaction layer resulted in higher bonding strength between steel/aluminum alloy. Thus, measurement of intermetallic reaction layer thickness is importance for understanding the formation of intermetallic reaction layer during TIG welding, which give an idea how to improve the strength of intermetallic reaction layer zone. Figure 5 and Figure 6 show intermetallic reaction layer formed at interface between steel and aluminum alloy under various welding speeds at constant electrical current used and under various electrical currents at a constant welding speed, respectively. From both figures, it was found that thickness of intermetallic reaction layer was increased with increasing welding speed and with decreasing electrical current. Figure 7 shows the thickness of intermetallic reaction layer(IMP) under various apparent heat input for joining. It was found that intermetallic reaction layer thickness was increasing with decreasing apparent heat input for joining. From these results, if the joint could be produced at lower apparent heat input for joining, thinner intermetallic reaction layer could be formed.

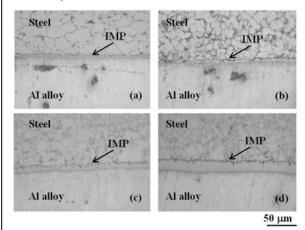


Figure 5: Intermetallic reaction layer obtained at welding speed of 0.65 m/min and (a) 90, (b) 110, (c) 130, (d) 150 A of electrical current used.

- Heat affected zone(HAZ) in aluminum alloy

In this study, the weakest zone of joint was HAZ of aluminum alloy. It is known that aluminum alloy can be strengthened by work hardening and precipitation hardening. However, 1100 aluminum alloy used in this study can be strengthened only by work hardening due to low content of precipitating alloying element such as copper. In this study, the grade of 1100 aluminum alloy used was the work hardened H12 aluminum alloy, grain structure of which deformed. The deformed microstructure is ready to recrystallize and grow when temperature is increased. In this study, the HAZ of aluminum alloy was heated up higher than recrystallization temperature and grain growth temperature.

The deformed microstructure was recrystallized and followed by growth of grain, as shown in Fig. 4. From Fig. 4, it was found that microstructures in HAZ of aluminum alloy and aluminum alloy base metal were different. The microstructure of HAZ of aluminum alloy was coarser compared to the base metal. Figure 8 shows the microstructure in HAZ of aluminum alloy under 0.65 m/min of welding speed and two electrical current used. From Fig. 8 it was found that the microstructure was slightly coarser when using higher electrical currents, which corresponded to higher apparent heat input for joining. Thus, it can be concluded that when using lower apparent heat input for joining, the finer grain in the HAZ of aluminum alloy is obtained. The coarser structure results in decrease of strength of the HAZ of aluminum alloy, which it will be discussed in the next section.

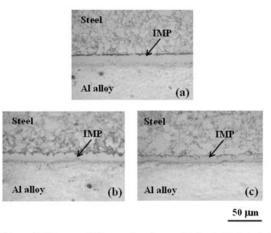


Figure 6: Intermetallic reaction layer obtained at electrical current of 130 A and welding speed of (a) 0.55 m/min, (b) 0.60 m/min, and (c) 0.65 m/min.

3. Mechanical properties of the joints

From tensile-shear tests, the joining strength was defined in term of the failure load. Figure 9 shows the failure load of all joints obtained in this study. From that figure, it was found that failure load of the joints were in the range of 500-800 N, which were lower than that of base metal, about 1090 N. It was also found that the failure load slightly decreased with increasing apparent heat input for joining. Figure 10 shows the fracture path of the joint which was common all the joints. From Fig. 10, it was found that the fracture path of the specimen was through the HAZ of aluminum alloy. From these results, it was concluded that intermetallic reaction layer zone was stronger than the HAZ of aluminum alloys in this study. Due to the grain growth in the HAZ of aluminum alloy, the HAZ of aluminum alloy showed the lowest strength compared to other zones.

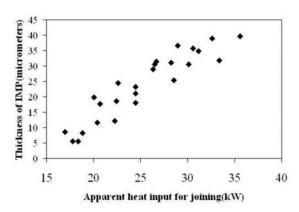
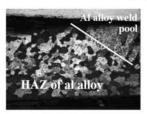
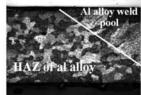




Figure 7: The relationship between thickness of intermetallic reaction layer and apparent heat input for joining

200 μm

Figure 8: HAZ of aluminum alloy obtained with 0.65 m/min of welding speed and (a) 100 A of electrical current and (b) 130 A of electrical current

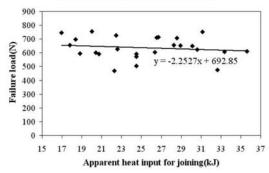


Figure 9: The relationship between failure load and apparent heat input for joining

Conclusion

Dissimilar joining between steel and aluminum alloy was investigated. From the results, it was found that TIG welding is possible to produce the joint between steel and aluminum alloy. Moreover, it is found that application of higher heat during TIG welding results in thicker intermetallic reaction layer and coarser microstructure in HAZ of aluminum alloy.

The coarser microstructure at HAZ of aluminum alloy was main reason of lower of load resistance of aluminum alloy at heat affected zone. Due to the lowest strength of the HAZ of aluminum alloy compared to other joining zones, the fractured occurred through the HAZ of A1100 aluminum alloy.

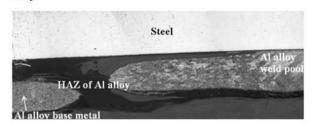


Figure 10: Fracture part in joint with 0.65 m/min of welding speed and 165 A of electrical current used

Acknowledgments

This work was supported by The Thailand Research Fund and Office of The Higher Education Commission, Kingdom of Thailand (Grant No. MRG5180100).

References

- R. Borrisutthekul, T. Yachi, Y. Miyashita, and Y. Mutoh, Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy, Materials Science and Engineering A, V. 467, Issues 1-2, 2007, 108-113.
- [2] Y. Miyashita, I. Nakagawa, J.Q. Xu, Y. Mutoh, M. Akahori, H. Okumura, Laser Welding of Dissimilar Metals Joint Aided by Unsteady Thermal Convection Boundary Element Method Analysis, Quart. J. Jpn. Weld. Soc., 23-1(2005) 16-24.(in Japanese)
- [3] K. J. Lee, S. Kumai, T Arai, Interfacial Microstructure and Strength of Steel to Aluminum Alloy Lap Joints Welded by a Defocused Laser Beam, Mater. Trans. 46 (2005) 1847-1856.
- [4] K. J. Lee, S. Kumai, Characterization of Intermetallic Compound Layer Formed at the Weld Interface of the Defocused Laser Welded Low Carbon Steel/6111 Aluminum Alloy Lap Joint, Mater. Trans. 47 (2006) 1178-1185.
- [5] M. J. Rathod, M. Kutsuna, Joining of aluminum alloy 5052 and lowcarbon steel by laser roll welding, Weld. J., (2004) 16s-26s.
- [6] F. Wagner, I. Zerner, M. Kreimeyer, T. Seefeld, G. Sepold, Characterization and properties of dissimilar metal combinations of Fe/aluminum and Ti/aluminum sheet materials, Proc. ICALEO 2001, (2001) 365-374.
- [7] S. Katayama, Laser welding of aluminum alloys and dissimilar metals, Weld. Inter., 18 (2004), 618-625.
- [8] K. Kimapong, T. Watanabe, Friction Stir Welding of Aluminum Alloy to Steel, Welding J., 2004, 227s-282s.
- W. B. Lee, M. Schmuecker, U. A. Mercardo, G. Biallas, S. B. Jung, Interfacial Reaction in Steel-Aluminum Joints made by Friction Stir Welding, Scripta Materialia, V. 55, 2006, 355-358.
 K. Tanaka, M. Kumagai, H. Yoshida, Dissimilar joining of aluminum
- [10] K. Tanaka, M. Kumagai, H. Yoshida, Dissimilar joining of aluminum alloy and steel sheets by friction stir spot welding, J. of Jpn. Inst. of Light Metals V.56(6), 2006, 317-322.
- [11] S. Sasabe and T. Iwase, Joining of Aluminum to Steel by Ultrasonic Welding, Preprints of the National Meeting of JWS, Vol. 74, 2004, 158-159
- [12] T. Aizawa, Magnetic pressure seam welding method for sheet metals, Journal of Japan Institute of Light Metals, V. 54, No.4, 2004,153-158.
- [13] R. W. Messler, Principles of Welding, John Wiley & Son, USA, 1999,

Energy Research Journal 1 (2): 82-86, 2010 ISSN 1949-0151 © 2010 Science Publications

Feasibility of Using TIG Welding in Dissimilar Metals between Steel/Aluminum Alloy

¹Rattana Borrisutthekul, ¹Pusit Mitsomwang, ¹Sirirat Rattanachan and ²Yoshiharu Mutoh ¹Department of Engineering, Suranaree University of Technology, Muang, Nakhon-Ratchasima, Thailand, 30000 ²Department of System Safety, Nagaoka University of Technology, Nagaoka-Shi, Niigata, Japan, 940-2188

Abstract: Problem statement: Currently, in order to suppress intermetallic reaction layer formation during dissimilar metals welding between steel/aluminum alloy, only laser beam welding as self-brazing technique has been applied. However, TIG welding process might be one of welding process candidate for joining dissimilar metals welding between steel/aluminum alloys due to its capability in joining thin section. In the present study, the feasibility of application of TIG welding process in joining dissimilar metals between steel/aluminum alloy was evaluated. Approach: In order to realize the feasibility of TIG welding process, bead on the steel sheet experiment and dissimilar metals welding experiment was carried out. Results: From bead on the steel sheet experimental results, TIG welding could produce the partial penetration welding in 1 mm thickness steel sheet. In dissimilar metals welding experiment, TIG welding process as a self-brazing technique could successfully join dissimilar metal between steel and aluminum alloy. Moreover, the load resistance of bonded zone of dissimilar metals joints was higher than the load resistance of A1100 aluminum alloy after welding. Conclusion: These results indicated that TIG welding process is feasible to be dissimilar metals welding candidate for joining steel/aluminum alloy.

Key words: Dissimilar metal joining, TIG welding, steel, aluminum alloy

INTRODUCTION

It has been known that the difficulty of dissimilar metals joining between steel and aluminum alloy is caused with the brittle intermetallic reaction phase formation. In order to suppress the formation of intermetallic reaction phase, self-brazing technique, which the molten zone of steel was controlled to be a partial penetration during lap-joint welding between steel/aluminum alloy as shown in Fig. 1, was used in many researches (Borrisutthekul et al., 2007; Miyashita et al., 2005; Lee et al., 2005; Lee and Kumai, 2006; Rathod and Kutsuna, 2004). TIG welding is suitable welding process for joining thin section. It is one of the possible welding processing for joining dissimilar metal between st/eel/aluminum alloys by using self-brazing technique due to its possibility to produce partial penetration weld in steel sheet. However, few researches were done in order to investigate the feasibility of using TIG welding process in joining steel and aluminum alloy by using self brazing process. Thus, in the present

study, the feasibility study in production partial penetration in steel by TIG welding was done firstly in order to examine the feasible in using self-brazing technique of TIG welding. Then, the feasibility study of using TIG welding in welding of dissimilar metals between steel and aluminum alloy was carried out.

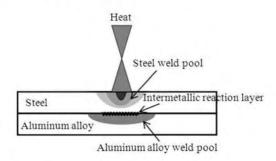


Fig. 1: Schematic of the interface during dissimilar metals welding between steel and aluminum alloy

Corresponding Author: Rattana Borrisutthekul, Department of Engineering, Suranaree University of Technology, Muang, Nakhon-Ratchasima, Thailand, 30000

Table 1: Chemical compositions of materials

Material	Chemical composition (wt%)									
	Fe	С	Mn	Cu	Si	Mg	Zn	Al		
1100 Al alloy	0.581	-	-	0.073	0.110	< 0.001	0.018	99.220		
Steel	99.51	0.077	0.277	< 0.005	0.016	0.001		0.025		

Table 2.	Machanical	properties of	Emotoriale
Table 2:	viecnanical	properties of	materials

	Mechanical properties					
Material	Yield strength (MPa)	Tensile strength (MPa)	Elongation (%)			
1100 aluminum alloy-H12	105	110	12			
Steel	275	380	21			

Materials used: The 1 mm thick hot roll steel sheet (steel) and 0.8 mm thick 1100 aluminum alloy-H12 sheet (aluminum alloy) were used. Their chemical compositions and mechanical properties are shown in Table 1 and 2, respectively. Both steel and aluminum alloy were prepared in size of 85×65 mm.

Bead on steel sheet: The bead on steel sheet experiment was carried out in order to study the feasibility to produce the partial molten penetration in 1 mm steel sheet, which is the basics requirement of application of self-brazing technique. The experiment was started by immerging steel sheet in 12% HCl for 2 min at 80°C in order to remove oxide layer formed during hot rolling process. The bead on the steel sheet was done by TIG welding process with welding speed of 0.55, 0.60 and 0.65 m min⁻¹. Welding current were varied from 20-75 A. The Direct Current Electrode Negative (DCEN) was used in this study. The arc distance, electrode type, electrode size and electrode tip angle was 2.4 mm, EWTh-2, 3.2 mm in diameter and 60° respectively. Pure argon gas with 8 L min⁻¹ was used for prevention the oxidation of molten steel. The macroscropic observations were carried out in order to obtain the depth of weld.

Figure 2 shows the macroscropic observation of steel weld pool obtained with electrical current of 45 A and 0.65 m min⁻¹ of welding speed. From the Fig. 2, it was found that the partial penetration of molten zone of steel sheet could be obtained by TIG welding process.

Figure 3 shows depth of weld obtained with various apparent heat input for joining. From Fig. 3, it was found that many welding conditions could be produced the partial penetration welding in 1.0 mm thickness steel sheet. Moreover, it was found that the depth of weld was increased when heat input was increased. Thus, it could be referred that TIG welding process is possible to join dissimilar metals by self-brazing process in limiting welding heat input.

Fig. 2: The macrostructure of steel weld with electrical current of 45 ampere current and 0.65 m min⁻¹ of welding speed

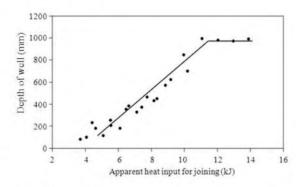


Fig. 3: The relation between heat input and weld pool depth

RESULTS AND DISCUSSION

Dissimilar metals welding between steel/aluminum alloy: Although, TIG welding process showed the potential to be the welding process for joining dissimilar metals between steel/aluminum alloy as discussion in bead on the steel sheet section, it is not confirmed that the dissimilar metals joint has well quality. Thus, in dissimilar metals welding between steel/aluminum alloy section, TIG welding together with self-brazing technique in joining dissimilar metals was investigated.

The experiment was started by removing oxide layer in steel sheet by dipping steel sheet in 12% HCl for 2 min at 80°C After that both steel and aluminum alloy was polished and cleaned with #180 emery paper and ethanol, respectively. The TIG lap joint welding configuration with steel top sheet was used as shown in Fig. 4. The arc distance, electrode size and electrode type were 2.4, 3.2 mm in diameter and EWTh-2,

Energy Rec. J. 1 (2): 82-86, 2010

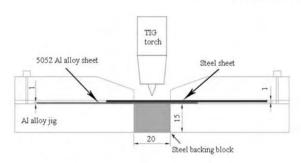


Fig. 4: Welding configuration used

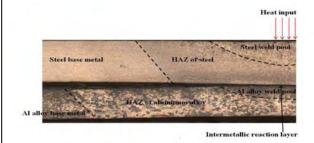


Fig. 5: Overview of the joint

respectively. The Direct Current Electrode Negative (DCEN) was applied. Argon gas with 8 L min⁻¹ was used for shielding the welding specimens. Welding speeds of 0.55, 0.60 and 0.65 m min⁻¹ were used. In this study, welding current was varied in order to obtain the joint where steel and aluminum alloy were not directly mixed during welding. After welding the tensile shear test and microstructure observation were carried out.

Figure 5 shows an example of half view of the joint between steel and aluminum alloy. From Fig. 5, it could be seen that TIG welding could make the dissimilar metals joint between steel/aluminum alloys by self-brazing technique. Moreover, different zones in joining region were found; steel weld pool, HAZ of steel, steel base metal, intermettallic reaction layer, aluminum alloy weld pool, Heat Affected Zone (HAZ) of aluminum alloy and aluminum alloy base metal.

Figure 6 and 7 show intermetallic reaction layer formed at interface between steel and aluminum alloy under various welding speeds at constant electrical current used and under various electrical currents at a constant welding speed, respectively. From both Fig. 6 and 7, it was found that thickness of intermetallic reaction layer was decreased with increasing welding speed and with decreasing electrical current. Figure 8 shows the thickness of intermetallic reaction layer (IMP) under various apparent heat input for joining.

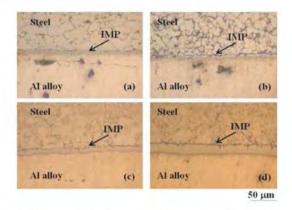


Fig. 6: Intermetallic reaction layer obtained at welding speed of 0.65 m min⁻¹ and (a) 90; (b) 110; (c) 130; (d) 150 A of electrical current used

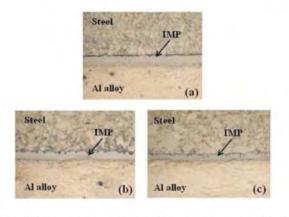


Fig. 7: Intermetallic reaction layer obtained at 130 A and welding speed of (a) 0.55 m min⁻¹; (b) 0.60 m min⁻¹; (c) 0.65 m min⁻¹

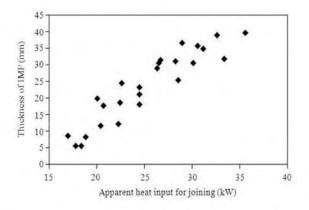
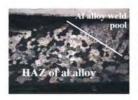



Fig. 8: The relationship between thickness of intermetallic reaction layer and apparent heat input for joining

Energy Rec. J. 1 (2): 82-86, 2010

200 µn

Fig. 9: HAZ of aluminum alloy obtained with 0.65 m min⁻¹ of welding speed and (a) 100 A of electrical current; (b) 130 A of electrical current

It was found that intermetallic reaction layer thickness was increased with increasing apparent heat input for joining. From these results, if the joint could be produced at lower apparent heat input for joining, thinner intermetallic reaction layer could be formed.

From Fig. 5, it also was found that microstructures in HAZ of aluminum alloy and aluminum alloy base metal were different. The microstructure of HAZ of aluminum alloy was coarser compared to the base metal. It is known that the aluminum alloy used in this study can be strengthened only by work hardening. The deformed microstructure is ready to recrystallize and grow when temperature is increased. Thus, when the HAZ of aluminum alloy was heated up higher than recrystallization temperature and grain growth temperature, the deformed microstructure was recrystallized and followed by growth, as shown in Fig. 5.

Figure 9 shows the microstructure in HAZ of aluminum alloy under 0.65 m min⁻¹ of welding speed and two electrical current used. From Fig. 9 it was found that the microstructure was slightly coarser when using higher electrical currents, which corresponded to higher apparent heat input for joining. Thus, it can be concluded that when using lower apparent heat input for joining, the finer grain in the HAZ of aluminum alloy is obtained.

Figure 10 shows the failure load of all dissimilar metals joints obtained in this study. From Fig. 10, it was found that failure load of the joints was in the range of 500-800 N, which were lower than that of base metal, about 1090 N. Moreover, it was found that the failure load slightly decreased with increasing apparent heat input for joining.

Figure 11 shows the fracture path of the joint which was common all the joints. From Fig. 11, it could be seen that the fracture path of the specimen was through the HAZ of aluminum alloy. According to microstructural observation and tensile-shear test results, it could be indicated that the weakest zone of joint was HAZ of aluminum alloy, which was due to the grain growth of aluminum alloy at HAZ.

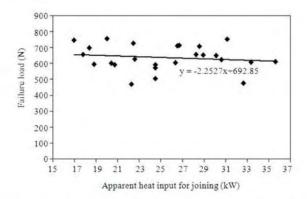


Fig. 10: The relationship between failure load and apparent heat input for joining

Fig. 11: Fracture part in joint with 0.65 m min⁻¹ of welding speed and 165 A of electrical current used

Moreover, higher apparent heat input for joining results in coarser structure of aluminum alloy at HAZ, which affects to decrease of strength of the HAZ of aluminum alloy as realized in slightly decreasing of load resistance of joint in Fig. 10.

CONCLUSION

From above results, it could be referred that TIG welding process could produce the partial penetration welding in 1 mm thickness steel sheet, which indicated its feasibility in applying together with self-brazing technique. Moreover, TIG welding as a self-brazing technique could successfully join steel and aluminum alloy. The load resistance of bonded zone, intermetallic reaction layer zone of joint, was higher than that of A1100-H12 aluminum alloy after welding. The lower load resistance of joint compared with base A1100-H12 aluminum alloy was caused by the grain growth during welding. Moreover, it is found that using higher heat during TIG welding resulted in thicker intermetallic reaction layer and coarser microstructure in HAZ of aluminum alloy. The coarser microstructure at HAZ of aluminum alloy was main reason of lower of load resistance of aluminum alloy at heat affected zone.

Energy Rec. J. 1 (2): 82-86, 2010

ACKNOWLEDGEMENT

This research was supported by The Thailand Research Fund and Office of The Higher Education Commission, Kingdom of Thailand (Grant No. MRG5180100).

REFERENCES

- Borrisutthekul, R., T. Yachi, Y. Miyashita and Y. Mutoh, 2007. Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy. Mater. Sci. Eng. A., 467: 108-113. DOI: 10.1016/j.stam.2004.11.014
- Lee, K.J. and S. Kumai, 2006. Characterization of intermetallic compound layer formed at the weld interface of the defocused laser welded low carbon steel/6111 aluminum alloy lap joint. Mater. Trans., 47: 1178-1185. DOI: 10.2320/matertrans.47.1178

- Lee, K.J., S. Kumai and T. Arai, 2005. Interfacial microstructure and strength of steel to aluminum alloy lap joints welded by a defocused laser beam. Mater. Trans., 46: 1847-1856. DOI: 10.2320/matertrans.46.1847
- Miyashita, Y., I. Nakagawa, J.Q. Xu, Y. Mutoh, M. Akahori and H. Okumura, 2005. Laser welding of dissimilar metals joint aided by unsteady thermal convection boundary element method analysis. Q. J. Jap. Weld. Soc., 23: 16-24. DOI: 10.2207/qjjws.23.16
- Rathod, M.J. and M. Kutsuna, 2004. Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding. Weld. J., 83: 16S-26S. http://files.aws.org/wj/supplement/01-2004-RATHOD-s.pdf

การเชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับอลูมิเนียมผสมเกรด 5052 Dissimilar metal joining between steel/5052 aluminum alloy sheet

ภูษิต มิตรสมหวัง¹และ รัตน บริสุทธิกุล^{1*}

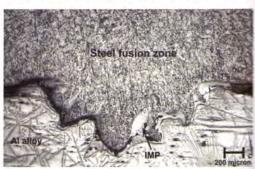
้ สาขาวิชาวิศวกรรมโลหการ สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี อ.เมือง จ.นครราชสีมา 30000 ผู้ติดต่อ: E-mail: rattana@g.sut.ac.th, โทรศัพท์: (66-44) 224487, โทรสาร: (66-44) 224482

บทคัดย่อ

ในการศึกษาครั้งนี้ใช้กระบวนการเชื่อมแก๊ส ทั้งสเตนอาร์คเวลดิ้งสำหรับเชื่อมโลหะแผ่นต่างชนิด ระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมเกรด 5052 โดยการศึกษาการเชื่อมกระทำในสองลักษณะดังนี้คือ การเชื่อมโดยทำให้โลหะแผ่นทั้งสองเกิดการหลอม รวมกัน และเชื่อมโดยอาศัยเทคนิค Self-brazing จาก ผลการทดลองพบว่าการเชื่อมโดยการทำให้โลหะแผ่น ทั้งสองหลอมรวมกันไม่สามารถทำให้เกิดรอยเชื่อม โลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับโลหะผสม อลูมิเนียมที่มีคุณภาพดีได้ กล่าวคือรอยเชื่อมที่ได้มี ความแข็งแรงต่ำ และผิวของรอยเชื่อมด้านบนมี ลักษณะไม่สวยงาม ในขณะที่การเชื่อมโดยอาศัย เทคนิค Self-brazing สามารถเชื่อมโลหะแผ่นด่างชนิด ระหว่างเหล็กกล้าและโลหะผสมอลูมิเนียมได้เป็นอย่าง ดี โดยผิวของรอยเชื่อมด้านบนที่ได้มีลักษณะสวยงาม และมีความแข็งแรงอยู่ในเกณฑ์ดีมาก เมื่อทำการดัดงอ ชิ้นงานเชื่อมด้วยมือไม่เกิดการแตกหักบริเวณรอย เชื่อม นอกจากนี้ได้ทำการทดสอบแรงดึงพบว่าเมื่อ ความกว้างของชั้นสารประกอบเชิงโลหะที่เกิดขึ้นอัน เนื่องมาจากการเพิ่มปริมาณความร้อนในการเชื่อมรอย เชื่อมจะสามารถทนต่อแรงที่ทำให้เกิดการแตกหักได้ มากขึ้นและพบว่าการแตกหักของชิ้นงานเกิดขึ้น บริเวณกระทบร้อนของโลหะผสมอลูมิเนียมเกรด 5052 โดยความแข็งแรงสูงสุดของชิ้นงานเชื่อมลดลงจาก ความแข็งแรงสูงสุดของโลหะผสมอลูมิเนียมเกรด 5052 ประมาณ 17 เปอร์เซ็นต์ อันเนื่องจากเกรนของโลหะ ผสมอลูมิเนียม ณ บริเวณกระทบร้อนเกิดการโตอย่าง มาก ส่งผลให้โลหะผสมอลูมิเนียมบริเวณนี้มีความ

แข็งแรงลดลง สุดท้ายจากผลการทดสอบด้วยวิธีการ ดัดงอด้วยมือและการทดสอบแรงตึงแสดงให้เห็นว่า กระบวนเชื่อมแก๊สทั้งสเตนอาร์คเวลดิ้งโดยอาศัย เทคนิค Self-brazing สามารถใช้สำหรับเชื่อมโลหะ แผ่นด่างชนิดระหว่างเหล็กกล้ากับอลูมิเนียมผสมเกรด 5052 ได้เป็นอย่างดี

1. บทน้ำ


ในยุคปัจจุบันวิกฤตการณ์ขาดแคลนเชื้อเพลิง และการเกิดสภาวะโลกร้อนเป็นปัญหาที่ส่งผลกระทบ ต่อมนุษย์และสิ่งแวดล้อมอย่างมาก การบริโภค เชื้อเพลิงในปริมาณมากขึ้นย่อมทำให้มลพิษทาง อากาศซึ่งเป็นสาเหตุของการเกิดสภาวะโลกร้อน เพิ่มขึ้นเป็นเงาตามตัว สาเหตุหลักประการหนึ่งของ การขาดแคลนเชื้อเพลิงและการเกิดสภาวะโลกร้อนคือ การบริโภคเชื้อเพลิงสำหรับยานพาหนะและภาคขนส่ง ที่มีการขยายตัวอย่างรวดเร็ว วิธีการหนึ่งในการลด ความรุนแรงของปัญหาดังกล่าวคือการผลิตยานยนต์ที่ มีน้ำหนักเบา โดยการนำโลหะที่มีความหนาแน่นต่ำ เช่น อลูมิเนียม แมกนีเซียม หรือไทเทเนียม มาใช้ ทดแทนเหล็กกล้าซึ่งเป็นวัสดุหลักที่ใช้ในการผลิต รถยนต์ วิธีการนี้สามารถช่วยลดน้ำหนักของรถยนต์ลง ได้อย่างมาก โลหะผสมอลูมิเนียมเป็นโลหะชนิดหนึ่งที่ นียมนำมาใช้ทดแทนเหล็กกลัาในอุตสาหกรรมการผลิต รถยนต์ด้วยข้อดีหลายประการ เมื่อเทียบกับโลหะที่มี ความหนาแน่นต่ำประเภทอื่น เช่น สามารถขึ้นรูปด้วย วิธีทางกลและการหล่อหลอมได้ง่าย ต้านทานต่อการผุ กร่อนในบรรยากาศปกติได้ดี และมีราคาถูก แต่ เนื่องจากซิ้นส่วนรถยนต์ทุกชิ้นไม่สามารถผลิตจาก

โลหะผสมอลูมิเนียมได้ทั้งหมด ทำให้กระบวนการเชื่อม เหล็กกล้ากับโลหะผสมอลูมิเนียมเข้ามามีบทบาทมาก ในการประกอบรถยนด์ซึ่งมีการใช้โลหะผสมอลูมิเนียม ร่วมกับเหล็กกล้า ในปัจจุบันการเชื่อมโลหะแผ่นต่าง ชนิดระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมสามารถ กระทำได้สำเร็จด้วยเทคนิคและกระบวนการต่างๆ เช่น การเชื่อมด้วยวิธี Laser roll welding การเชื่อมโดยใช้ แสงเลเซอร์ หรือการเชื่อมด้วยวิธี magnetic pressure seam welding[1-3] แต่กระบวนการเชื่อมเหล่านี้ล้วน ไม่เหมาะกับอุตสาหกรรมประกอบรถยนต์ของประเทศ ไทย เนื่องจากเครื่องจักรและอุปกรณ์มีราคาสูง ยังไม่ ถูกใช้อย่างแพร่หลายในอุตสาหกรรมประกอบรถยนต์ ของประเทศไทย หรือรูปร่างลักษณะของเครื่องมือไม่ สามารถประยุกต์ใช้กับอุตสาหกรรมการประกอบ รถยนด์ได้ กระบวนการเชื่อมแก๊สทั้งสเตนอาร์คเวล ดิ้งเป็นกระบวนการเชื่อมที่เหมาะกับการเชื่อมโลหะ แผ่นบาง จึงน่าจะเหมาะสมกับการนำมาประยุกด์ใช้ เชื่อมโลหะแผ่นต่างชนิดดังกล่าว นอกจากนี้ใน อุตสาหกรรมการประกอบรถยนต์ของประเทศไทย กระบวนการเชื่อมแก๊สทั้งสเตนอาร์คเวลดิ้งเป็นกระ บวนการเชื่อมที่ใช้กันอย่างแพร่หลาย และเพื่อ ตอบสนองต่อความต้องการของอุตสาหกรรมประกอบ รถยนต์ของประเทศไทย การศึกษานี้จึงได้พัฒนา กระบวนการเชื่อมแก๊สทั้งสเตนอาร์คเวลดิ้งสำหรับ เชื่อมโลหะต่างชนิดระหว่างเหล็กกล้ากับโลหะผสม อลมิเนียม

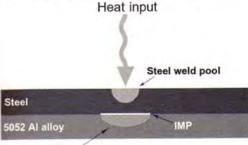
2. การเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่น และอลูมิเนียมผสมแผ่นโดยการทำให้โลหะทั้งสอง แผ่นหลอมรวมกันด้วยกระบวนการเชื่อมแก๊ส ทั้งสเตนอาร์คเวลดิ้ง

โลหะแผ่นเป็นโลหะรูปทรงหนึ่งที่ใช้กันมากใน การผลิตรถยนต์ ปัจจุบันความเข้าใจด้านการเชื่อม โลหะแผ่นสองแผ่นติดกันนั้นคือ ขณะเชื่อมต้องทำให้ โลหะทั้งสองหลอมรวมกัน ภายหลังจากโลหะ หลอมเหลวนี้แข็งตัว ก็จะเกิดการเชื่อมติดขึ้น ซึ่งความ เข้าใจดังกล่าวนี้ไม่สามารถนำมาใช้ในการเชื่อมโลหะ แผ่นต่างชนิดระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียม ได้ จากการทดลองเชื่อมโลหะแผ่นต่างชนิดระหว่าง เหล็กกล้ากับโลหะผสมอลมิเนียมด้วยวิธีการทำให้ โลหะแผ่นทั้งสองหลอมรวมกัน โดยจัดวางโลหะแผ่น ทั้งสองในลักษณะซ้อนเกย และใช้เหล็กกล้าแผ่นเป็น โลหะแผ่นบน พบว่าขณะทำการเชื่อมเหล็กกล้า หลอมเหลวจะทำปฏิกิริยากับโลหะผสมอลูมิเนียม หลอมเหลว แล้วเกิดสารประกอบเชิงโลหะระหว่าง เหล็กกับอลูมิเนียม(IMP) ขึ้นบริเวณรอยเชื่อมใน ปริมาณมากดังรูปที่ 1 ซึ่งสารประกอบเชิงโลหะ ประเภทนี้มีความเปราะมาก ส่งผลให้รอยเชื่อมที่ได้มี ความแข็งแรงต่ำ เมื่อทำการบิดงอชิ้นงานเชื่อมด้วยมือ จะเกิดการแตกหักอย่างง่ายดาย ณ บริเวณรอยต่อ ระหว่างโลหะแผ่นทั้งสอง นอกจากนี้พบว่าผิวของรอย เชื่อมด้านบนมีลักษณะไม่สวยงามดังรูปที่ 2 จากผล การทดลองชี้ให้เห็นว่ารอยเชื่อมที่ได้จากการเชื่อม โลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับโลหะผสม อลูมิเนียมโดยการทำให้โลหะทั้งสองแผ่นหลอมรวมกัน ไม่เหมาะสมต่อการนำไปใช้งานทางวิศวกรรม

รูปที่ 1 รอยเชื่อมที่เกิดจากการหลอมรวมกันระหว่างเหล็กกล้า แผ่นและโลหะผสมอลูมิเนียมแผ่น

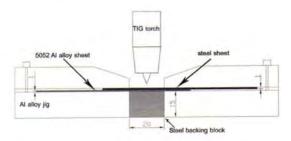
3. การเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่น กับอลูมิเนียมผสมแผ่นด้วยกระบวนการเชื่อมแก๊ส ทั้งสเตนอาร์คเวลดิ้งโดยอาศัยเทคนิค Selfbrazing

เนื่องจากกระบวนการเชื่อมโลหะแผ่นต่างชนิด ระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมไม่สามารถ กระทำได้ด้วยการเชื่อมแบบทำให้เกิดการหลอม รวมกันดังที่กล่าวไว้ในหัวข้อก่อนหน้านี้ เพราะมีการ ก่อตัวขึ้นของสารประกอบเชิงโลหะปริมาณมาก ดังนั้น



เพื่อยับยั้งการเกิดสารประกอบเชิงโลหะระหว่างเหล็ก กับอลูมิเนียม เทคนิค Self-brazing จึงถูกใช้สำหรับ

วูปที่ 2 รูปถ่ายรอยเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่น กับโลหะผสมอลูมิเนียมแผ่น (a) รอยเชื่อมด้านบนที่มีลักษณะ ใม่สวยงาม (b) รอยแตกหักของชิ้นงานเชื่อมเมื่อทำการบิดงอ

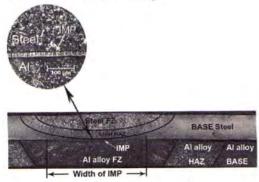


Al weld pool

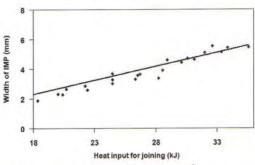
รูปที่ 3 แผนภาพการจัดวางชิ้นงานเชื่อมโลหะแผ่นต่างชนิด ระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมด้วยเทคนิค Selfbrazing

การเชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับโลหะ
ผสมอลูมิเนียมแผ่นโดยนำเหล็กกล้าแผ่นหนา 1
มิลลิเมตรกับโลหะอลูมิเนียมผสมแผ่นเกรด 5052 หนา
1 มิลลิเมตร มาทำการจัดวางในลักษณะซ้อนเกย และ
ใช้เหล็กกล้าแผ่นเป็นโลหะแผ่นบน ขณะทำการเชื่อม
ความร้อนจากแหล่งกำเนิดจะถ่ายเทลงสู่เหล็กกล้าแผ่น
และถ่ายเทต่อลงสู่อลูมิเนียมผสมแผ่นซึ่งเป็นโลหะแผ่น
ล่าง เมื่ออุณหภูมิบริเวณรอยต่อระหว่างเหล็กกล้ากับ
อลูมิเนียมสูงขึ้นจนถึงอุณหภูมิหลอมเหลวของโลหะ
ผสมอลูมิเนียม โลหะผสมอลูมิเนียมผสมแผ่นด้านล่าง
จะหลอมเหลวแล้วทำปฏิกิริยากับเหล็กกล้าแผ่น
ด้านบนซึ่งยังอยู่ในสถานะของแข็งเกิดเป็นชั้น

สารประกอบเชิงโลหะระหว่างเหล็กกับอลูมิเนียมขึ้น บริเวณรอยต่อของโลหะแผ่นทั้งสองและทำให้ เหล็กกล้าแผ่นกับโลหะผสมอลูมิเนียมแผ่นเกิดการ เชื่อมดิตกัน ดังรูปที่ 3 โดยวิธีการจัดวางชิ้นงานโลหะ แผ่นและอุปกรณ์จับยึดชิ้นงานสำหรับการศึกษาครั้งนี้ แสดงดังรูปที่ 4

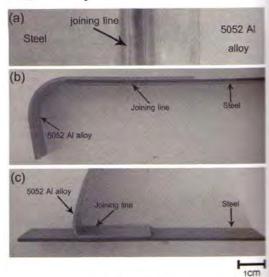

รูปที่ 4 ลักษณะการวางและจับยึดชิ้นงานขณะทำการเชื่อม

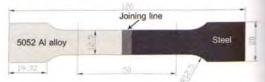
ภายหลังจากทำการเชื่อมโลหะแผ่นต่างชนิด ระหว่างเหล็กกล้าและโลหะผสมอลูมิเนียมเกรด 5052 ได้ทำการตรวจสอบโครงสร้างจุลภาคบริเวณรอยเชื่อม ด้วยกล้องจุลทรรศน์แบบแลง พบว่ามีบริเวณที่ แตกต่างกันดังนี้ คือบริเวณเหล็กกล้าหลอมเหลว (Steel FZ) บริเวณกระทบร้อนในเหล็กกล้า (Steel HAZ) บริเวณเหล็กกล้าที่ไม่ได้รับอิทธิพลจากความ ร้อน (Steel BASE) บริเวณอลูมิเนียมหลอมเหลว (Al FZ) บริเวณกระทบร้อนในโลหะผสมอลูมิเนียม HAZ) บริเวณโลหะอลูมิเนียมผสมที่ไม่ได้รับอิทธิพล จากความร้อน (Al BASE) และชั้นสารประกอบเชิง โลหะ (IMP) ดังแสดงในรูปที่ 5 และยังพบว่าเมื่อ ปริมาณความร้อนที่ใช้ในการเชื่อมเพิ่มขึ้นความกว้าง ของชั้นสารประกอบเชิงโลหะจะเพิ่มขึ้นจาก 1.4 ถึง เมื่อทำการทดสอบความ 6.0 มิลลิเมตร ดังรูปที่ 6 แข็งแรงของรอยเชื่อมด้วยการตัดงอชิ้นงานเชื่อมด้วย มือ พบว่าสามารถทำการดัดงอชิ้นงานเชื่อมได้ทั้ง ทิศทางเข้าหารอยเชื่อมและฉีกออกจากรอยเชื่อมโดย ไม่เกิดการแตกหักบริเวณรอยเชื่อมและพบว่าผิวของ รอยเชื่อมด้านบนมีลักษณะสวยงามดังรูปที่ 7 เมื่อนำ ชิ้นงานเชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับ โลหะผสมอลูมิเนียมไปทดสอบแรงดึง โดยชิ้นงาน ทดสอบแรงดึงมีลักษณะและขนาดดังรูปที่ 8 พบว่า



THAI WEIDING JOURNAL THE

ชิ้นงานเชื่อมมีความสามารถในการต้านทานต่อแรงที่ ทำให้เกิดการแตกหักเพิ่มขึ้นเมื่อความกว้างของ สารประกอบเชิงโลหะเพิ่มขึ้นดังรูปที่ 9


รูปที่ 5 ภาพถ่ายโครงสร้างภาคตัดขวางรอยเชื่อม


รูปที่ 6 ความสัมพันธ์ระหว่างความกว้างของชั้นสารประกอบ เชิงโลหะและปริมาณความร้อนในการเชื่อม

และในชิ้นงานเชื่อมที่มีความแข็งแรงสูงสุด ขณะทำการ
ทดสอบแรงดึงจะเกิดการแตกหักบริเวณโลหะผสม
อลูมิเนียมแผ่น ณ บริเวณท่างจากรอยเชื่อมเล็กน้อยดัง
แสดงในรูปที่ 10 โดยความแข็งแรงของโลหะผสม
อลูมิเนียมแผ่นบริเวณที่เกิดการแตกหักจากการ
ทดสอบแรงดึงนี้ลดลงจากความแข็งแรงสูงสุดของโลหะ
ผสมอลูมิเนียมแผ่นเกรต 5052 ประมาณ 17
เปอร์เซ็นด์ เนื่องจากโลหะผสมอลูมิเนียมแผ่นที่ใช้ใน
การทดลองครั้งนี้ผ่านการขึ้นรูปด้วยกระบวนการรีด มี
การเปลี่ยนแปลงรูปร่างโครงสร้างจุลภาคแบบถาวร
มาก เมื่อได้รับความร้อนจากการเชื่อมเพียงพอเกรนจึง
เกิดการตกผลึกใหม่และเกิดการโต ส่งผลให้โลหะผสม
อลูมิเนียมบริเวณนี้มีความแข็งแรงดำลงกว่าบริเวณที่
ไม่ได้รับอิทธิพลจากความร้อน หลังจากนำซิ้นงาน
เชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับโลหะ

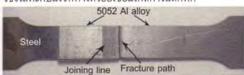
ผสมอลูมิเนียมที่เกิดการแตกหักเสียหายจากการ ทดสอบแรงดึงไปทำการตรวจสอบโครงสร้างจุลภาค ด้วยกล้องจุลทรรศน์แบบแสงบริเวณที่เกิดการแตกหัก พบว่าการแตกหักเสียหายเกิดขึ้นบริเวณกระทบร้อนใน โลหะผสมอลูมิเนียมแผ่น(Al HAZ) และแสดงให้เห็น อย่างชัดเจนว่าการแตกหักเสียหายของชิ้นงานเชื่อม เกิดขึ้นที่โลหะผสมอลูมิเนียมบริเวณที่เกรนมีขนาด ใหญ่ดังแสดงในรูปที่11

รูปที่ 7 รูปถ่ายรอยเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่น กับโลหะผสมอลูมิเนียมแผ่น (a) รอยเชื่อมด้านบนที่มีลักษณะ สวยงาม (b) ชิ้นงานเชื่อมที่ผ่านการดัดงอในทิศทางเข้าหารอย เชื่อม และ(c) ฉีกออกจากรอยเชื่อม

รูปที่ 8 ลักษณะและขนาดชิ้นงานทดสอบแรงดึง

5. สรุป

กระบวนการเชื่อมด้วยวิธีการทำให้เหล็กกล้า
แผ่นกับโลหะผสมอลูมิเนียมแผ่นหลอมรวมกันขณะ
เชื่อมไม่สามารถทำให้เกิดรอยเชื่อมโลหะแผ่นต่างชนิด
ระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมที่มีคุณภาพดี
ได้ แต่พบว่าการใช้กระบวนการเชื่อมทั้งเสตนอร์ค
เวลดิ้งโดยอาศัยเทคนิคSelf-brazing สามารถใช้ในการ



เชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับโลหะ ผสมอลูมิเนียมได้เป็นอย่างดี โดยรอยเชื่อมต่อที่ได้มี ความแข็งแรงดีมาก และความแข็งแรงของรอยเชื่อม เพิ่มขึ้นเมื่อความกว้างของชั้นสารประกอบเชิงโลหะ เพิ่มขึ้น และในชิ้นงานเชื่อมที่มีความแข็งแรงสูงสุด พบว่าเกิดการแตกหักเสียหายขึ้นที่บริเวณกระทบร้อน ของโลหะผสมอลูมิเนียม

(Na) Diologo of the policy of

รูปที่ 9 ความสัมพันธ์ระหว่างความกว้างของชั้นสารประกอบ เชิงโลหะกับแรงที่ทำให้รอยเชื่อมเกิดการแตกหัก

รูปที่ 10 รูปถ่ายชิ้นงานเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้า แผ่นกับโลหะผสมอลูมิเนียมแผ่นที่เกิดการแตกหักจากการ ทดสอบแรงดึง

6. กิตติกรรมประกาศ

ขอขอบพระคุณสำนักงานคณะกรรมการการ

อุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัยที่ให้ ทุนสนับสนุนงานงานวิจัยนี้ในรหัสทุน MRG 5180100 นอกจากนี้ขอขอบพระคุณ ผศ.ดร.ศิริรัตน์ รัตนจันทร์ และ ศ.ดร.โยชิฮารุ มูโต้ ที่ให้คำปรึกษาตลอดการทำ วิจัยครั้งนี้

รูปที่ 11 ภาพถ่ายโครงสร้างจุลภาคบริเวณที่เกิดการแตกหัก จากการทดสอบแรงดึง

7. เอกสารอ้างอิง

- [1] M. J. Rathod, M. Kutsuna, Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding, Weld. J., (2004) 16s-26s.
- [2] Alexandre Mathieu, Rajashekar Shabadi, Alexis Deschanps, Michel Suery, Simone Mattei, Dominique Grevey, Eugen Cicala, Dissimilar material joining using laser(aluminum to steel using zinc-based filler wire)
- [3] Kwang-Jin Lee, Shinji Kumai, Takashi Arai, Tomokatsu Aizawa, Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magenetic pressure seam welding

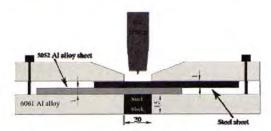
อิทธิพลของตัวแปรงานเชื่อมต่อคุณภาพของรอยเชื่อมโลหะแผ่นต่างชนิด ระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมเกรด 5052-H32

Effects of welding parameters on the quality of steel/5052-H32 aluminum alloy sheet dissimilar joint

ภูษิต มิตรสมหวัง และ รัตน บริสุทธิกุล **

์ สาขาวิชาวิศวกรรมโลหการ สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี อ.เมือง จ.นครราชสีมา 30000 ผู้ติดต่อ: E-mail: rattana@g.sut.ac.th, โทรศัพท์: (66-44) 224487, โทรสาร: (66-44) 224482

บทคัดย่อ


เนื่องจากตัวแปรที่ใช้ในการเชื่อมโลหะแผ่น ต่างชนิดระหว่างเหล็กกล้ากับโลหะผสมอลมีเนียมเกร**ด** 5052-H32 มีอิทชิพลต่อคุณภาพของรอยเชื่อม ดังนั้น ในการศึกษานี้จึงได้ศึกษาอิทธิพลของตัวแปรงาน เชื่อมต่อคุณภาพของรอยเชื่อมโลหะแผ่นต่างชนิด ระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมเกรด 5052-H32 จากการศึกษาพบว่าเมื่อทำการเชื่อมโลหะแผ่น ต่างชนิดระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมเกรด 5052-H32 ด้วยกระแสไฟฟ้ามากกว่าขีดจำกัดค่าหนึ่ง ผิวด้านบนของรอยเชื่อมที่ได้จะไม่มีความเรียบ ซึ่ง น่าจะเกิดจากปรากฏการณ์ arc blow นอกจากนี้จาก การตรวจสอบโครงสร้างจุลภาคพบว่าเมื่อปริมาณ ความร้อนที่ใช้ในการเชื่อมเพิ่มขึ้นชั้นสารประกอบเชิง โลหะที่เกิดขึ้นบริเวณรอยเชื่อมจะมีความหนาและ ความกว้างเพิ่มขึ้น โดยชั้นสารประกอบเชิงโลหะที่ หนาขึ้นจะทำให้ความแข็งแรงของรอยเชื่อมลดลง ขณะที่เมื่อความกว้างของชั้นสารประกอบเชิงโลหะ เพิ่มขึ้นจะทำให้มีพื้นที่รับแรงมากขึ้น รอยเชื่อมจึงทน ต่อแรงจึงได้เพิ่มขึ้น สุดท้ายในการศึกษานี้พบว่า บริเวณที่การแตกหักเสียหายของชิ้นงานเชื่อมขึ้นกับ ความกว้างของชั้นสารประกอบเชิงโลหะเป็นหลัก โดย ถ้าสารประกอบเชิงโลหะแคบจะเกิดการแตกหัก ณ รอยต่อ แต่ถ้าหากสารประกอบเชิงโลหะกว้างมากจะ เกิดการแตกหัก ณ บริเวณกระทบร้อนของโลหะผสม อลูมิเนียม

1. บทน้ำ

ในปัจจุบันวิศวกรผู้ผลิตรถยนต์ได้พยายามนำ โลหะผสมอลูมิเนียมแผ่นเข้ามาใช้ทดแทนเหล็กกล้า แผ่นมากขึ้น เพื่อให้สามารถผลิตรถยนต์ที่มีน้ำหนัก เบามากขึ้นกว่าเดิม ด้วยเหตุนี้จึงทำให้ในกระบวนการ ผลิตรถยนต์มีการใช้วัสดุหลายชนิด และต้องประสบกับ ความท้าทายในการเชื่อมโลหะแผ่นต่างชนิดระหว่าง เหล็กกล้ากับโลหะผสมอลูมิเนียม ในปัจจุบันพบว่า กระบวนการเชื่อมแก๊สทั้งสเตนอาร์คเวลดิ้งโดยอาศัย เทคนิค Self-brazing สามารถใช้เชื่อมโลหะแผ่นต่าง ชนิดระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมได้[1-2] ในการเชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับ โลหะผสมอลูมิเนียมด้วยกระบวนการเชื่อมแก๊ส ทั้งสเตนอาร์คเวลดิ้งโดยอาศัยเทคนิค self-brazing นั้น ตัวแปรที่ใช้ในการเชื่อมเช่น กระแสไฟฟ้าในการเชื่อม ความเร็วในการเชื่อม และตัวแปรอื่นๆ ล้วนส่งผลต่อ คุณภาพของรอยเชื่อมโลหะแผ่นด่างชนิดระหว่าง เหล็กกล้ากับโลหะผสมอลูมิเนียม ด้วยเหตุนี้เพื่อให้ เกิดความเข้าใจในอิทธิพลของตัวแปรในการเชื่อมและ เพื่อให้สามารถผลิตรอยเชื่อมโลหะแผ่นต่างชนิด ระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมที่มีคุณภาพดี ผู้วิจัยจึงได้ดำเนินการศึกษาอิทธิพลของตัวแปรที่ใช้ใน การเชื่อมต่อคุณภาพของรอยเชื่อม โดยในการศึกษา ครั้งนี้เน้นศึกษาตัวแปรงานเชื่อมเฉพาะกระแสไฟฟ้าที่ ใช้ในการเชื่อม และความเร็วในการที่ใช้ในการเชื่อม เท่านั้น

PISITE SIGNAL THAN WELDING JOURNAL THAN WELDING JOU

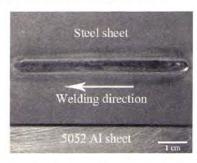
รูปที่ 1 ลักษณะการจัดวางชิ้นงานเชื่อมโลหะแผ่นต่างชนิด ระหว่างเหล็กกล้ากับโดหะผสมอลูมิเนียมเกรด 5052-H32 ด้วย กระบวนการเชื่อมแก็สทั้งสเตนอาร์คเวลดิ้งและอาศัยเทคนิค self-brazing

ดารางที่ 1 ส่วนผสมทางเคมีของโลหะแผ่น

Material	Chemical composition (wt%)									
	Fe	С	Mn	Cu	Si	Mg	Al			
5052- H32 AI	0.40 (max)	-	0.10 (max)	0.10 (max)	0.25 (max)	2.2-	Bal.			
Steel	Bal.	0.08	0.277	<0.005	0.016	0.001	0.05			

ตารางที่ 2 คุณสมบัติเชิงกลของโลหะแผ่น

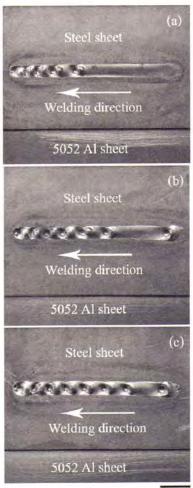
Material	Me	Mechanical properties							
	Yield strength(MPa)	Tensile strength(MPa)	Elongation (%)						
5052-H32 AI	195	230	12						
Steel	275	380	21						


2. วิธีการทดลอง

ในการศึกษานี้ได้ทำการเชื่อมโลหะแผ่นต่าง ชนิตระหว่างเหล็กกล้าแผ่นหนา 1 มิลลิเมตรกับโลหะ ผสมอลูมิเนียมเกรต 5052 - H32 หนา 1 มิลลิเมตร ด้วยกระบวนการเชื่อมแก๊สทั้งสเตนอาร์คเวลติ้งและ ซึ่งลักษณะการจัดวาง อาศัยเทคนิค self-brazing ชิ้นงานขณะทำการเชื่อมแสดงดังรูปที่ 1 โดยส่วนผสม ทางเคมีและคุณสมบัติเชิงกลของโลหะแผ่นที่ใช้ใน การศึกษาครั้งนี้แสดงดังตารางที่ 1และ2 ตามลำดับ ในการเชื่อมโลหะแผ่นต่างชนิดตั้งกล่าวใช้กระแสไฟฟ้า ในการเชื่อมอยู่ในช่วง 90 - 180 แอมแปร์ ความเร็วที่ ใช้ในการเชื่อมคือ 0.55 0.60 และ0.65 เมตรต่อนาที อิเล็กโทรดที่ใช้คือชนิด EWTh-2(สีแดง) มีขนาดเส้น ผ่านศูนย์กลาง 3.2 มิลลิเมตร มุมปลายอิเล็กโทรดคือ และใช้แก๊สอาร์กอนปกคลุมบ่อน้ำโลหะ หลอมเหลวขณะทำการเชื่อมด้วยอัตราการใหล 8 ลิตร

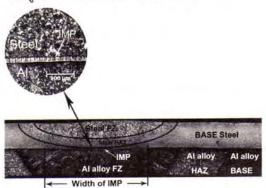
ต่อนาที ภายหลังจากการเชื่อมนำชิ้นงานเชื่อมที่ได้มา ทำการตรวจสอบผิวรอยเชื่อมโดยการดูด้วยตาเปล่า และนำชิ้นงานเชื่อมมาทำการเตรียมด้วยวิธีการทาง โลหะวิทยาเพื่อตรวจสอบโครงสร้างทางจุลภาคในแนว ตัดขวางบริเวณรอยเชื่อมด้วยกล้องจุลทรรศน์แบบแสง สะท้อน หลังจากนั้นนำชิ้นงานเชื่อมมาทำการเตรียมให้ มีลักษณะและขนาดดังรูปที่ 2 เพื่อทำการตรวจสอบ ความแข็งแรงของรอยเชื่อมด้วยวิธีการทดสอบแรงดึง

รูปที่ 2 ลักษณะและขนาดชิ้นงานทดสอบแรงดึง


รูปที่ 3 รอยเชื่อมที่ผ่านการเชื่อมด้วยความเร็วในการเชื่อม 0.60 เมตรต่อนาทีและกระแสไฟฟ้าในการเชื่อม 150 แอมแปร์

ผลการทดลองและวิเคราะห์ผลการทดลอง การตรวจสอบผิวของรอยเชื่อมด้วยตาเปล่า

ภายหลังจากการเชื่อมได้นำชิ้นงานเชื่อมโลหะ
แผ่นด่างชนิดระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียม
เกรด 5052-H32 มาทำการตรวจสอบลักษณะผิว
ด้านบนของรอยเชื่อมด้วยตาเปล่า จากการตรวจสอบ
พบว่าผิวด้านบนของรอยเชื่อมที่ได้จากการเชื่อมด้วย
ความเร็วในการเชื่อม 0.55 0.60 และ0.65 เมตรต่อ
นาที โดยกระแสไฟฟ้าในการเชื่อมอยู่ในช่วง 90 – 160
แอมแปร์มีความเรียบและมีความสม่ำเสมอดลอดแนว
รอยเชื่อมดี โดยลักษณะผิวด้านบนของรอยเชื่อม
ดังกล่าวแสดงดังรูปที่ 3 และยังพบว่าหากทำการเชื่อม
โลหะแผ่นต่างชนิดนี้ด้วยความเร็วในการเชื่อม 0.55
0.60 และ 0.65 เมตรต่อนาทีโดยที่กระแสไฟฟ้าในการ

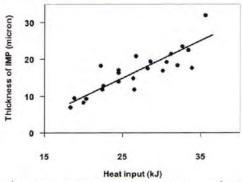

เชื่อมสูงกว่า 160 แอมแปร์ ผิวด้านบนของรอยเชื่อมที่ ใด้จะมีลักษณะไม่เรียบและไม่มีความสม่ำเสมอตลอด แนวรอยเชื่อม ยิ่งไปกว่านั้นเมื่อกระแสไฟฟ้าที่ใช้ใน การเชื่อมสูงมากยิ่งขึ้น ผิวด้านบนของรอยเชื่อมก็จะยิ่ง มีความไม่เรียบและไม่สม่ำเสมอตลอดแนวรอยเชื่อม มากยิ่งขึ้นดังแสดงในรูปที่ 4

1 cm

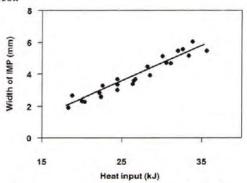
รูปที่ 4 รอยเชื่อมที่ได้จากความเร็วในการเชื่อม 0.60 เมตรต่อ นาที และกระแสไฟฟ้าในการเชื่อม 170(a) 175(b) และ 180(c)

โดยรอยเชื่อมที่มีลักษณะไม่เรียบและไม่สม่ำเสมอนี้ น่าจะเกิดจากปรากฏการณ์ arc blow เนื่องจากเป็น ปรากฏการณ์ที่เกิดขึ้นอันเป็นผลของปริมาณประแส ไฟฟ้าที่ใช้ในการเชื่อมเกินกว่าค่าจำกัดค่าหนึ่ง และยิ่ง ไปกว่านั้นเมื่อกระแสไฟฟ้าที่ใช้ยิ่งสูงกว่าค่าจำกัดมาก ขึ้น ปรากฏการณ์นี้จะยิ่งมีความรุนแรงมากขึ้น [3] ซึ่ง ผลความเรียบของผิวรอยเชื่อมด้านบนในการศึกษานี้ก็ ขึ้นอยู่กับกระแสไฟฟ้าในการเชื่อมเช่นกัน

รูปที่ 5 ภาพถ่ายโครงสร้างภาคตัดขวางรอยเชื่อม


3.2 โครงสร้างจุลภาคบริเวณรอยเชื่อม

ในการศึกษาครั้งนี้ได้ทำการเตรียมชิ้นงาน เชื่อมเพื่อตรวจสอบโครงสร้างจุลภาคในแนวตัดขวาง แนวเชื่อม รูปที่ 5 แสดงลักษณะของโครงสร้างมหภาค ในแนวตัดขวางแนวเชื่อม จากรูปที่ 5 โครงสร้างมหภาคของแนวตัดขวางแนวเชื่อมประกอบ ไปด้วย 7 บริเวณที่แตกต่างกัน คือบริเวณที่เหล็กกล้า FZ) บริเวณกระทบร้อนของ หลอมละลาย(Steel เหล็กกล้า(Steel HAZ) บริเวณเหล็กกล้าที่ไม่ได้รับ อิทธิพลจากความร้อน(BASE Steel) บริเวณโลหะผสม อลมีเนียมหลอมเหลว(Al alloy FZ) บริเวณกระทบร้อน ของโลหะผสมอลูมิเนียม(Al alloy HAZ) บริเวณโลหะ ผสมอลูมิเนียมที่ไม่ได้รับอิทธิพลจากความร้อน(Al BASE) และบริเวณชั้นสารประกอบเชิงโลหะ (IMP) แต่จากการศึกษาก่อนหน้านี้[1,2] พบว่า บริเวณกระทบร้อนของโลหะผสมอลูมิเนียม และ บริเวณชั้นสารประกอบเชิงโลหะเป็นบริเวณที่อ่อนแอ ของรอยเชื่อม ดังนั้นในบทความนี้จะศึกษาลึกลงไปใน บริเวณดังกล่าว จากการศึกษาพบว่าชั้น สารประกอบเชิงโลหะที่เกิดขึ้นบริเวณรอยเชื่อมมีความ หนาและความกว้างเพิ่มขึ้นเมื่อใช้ปริมาณความร้อนใน การเชื่อมเพิ่มขึ้นโดยการเพิ่มกระแสไฟฟ้าในการเชื่อม ขณะใช้ความเร็วในการเชื่อมคงที่ หรือเมื่อใช้ปริมาณ



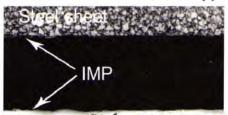
การเชื้อมใกศ

ความร้อนในการเชื่อมเพิ่มขึ้นโดยการลดความเร็วใน การเชื่อมขณะใช้กระแสไฟฟ้าในการเชื่อมคงที่ดังรูปที่ 6 และ 7 โดยปริมาณความร้อนที่ใช้ในการเชื่อมหาได้ จากสมการที่ 1

รูปที่ 6 ความสัมพันธ์ระหว่างปริมาณความร้อนในการเชื่อมกับ ความหนาของชั้นสารประกอบเชิงโลหะที่เกิดขึ้นบริเวณรอย เชื่อม

รูปที่ 7 ความสัมพันธ์ระหว่างปริมาณความร้อนในการเชื่อมกับ ความกว้างของชั้นสารประกอบเชิงโลหะที่เกิดขึ้นบริเวณรอย เชื่อม

$$q = \frac{I7s}{v} \tag{1}$$


เมื่อ q (W) คือ ปริมาณความร้อนในการเชื่อม

กระแสไฟฟ้าในการเชื่อม I(A)

ความยาวของระยะการเชื่อม 5 (m)

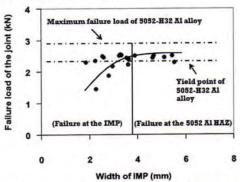
บ (m/s) ความเร็วในการเชื่อม

นอกจากนี้จากการตรวจสอบโครงสร้าง จุลภาค ณ บริเวณกระทบร้อนของโลหะผสมอลูมิเนียม แผ่น พบว่าเกรนของโลหะผสมอลูมิเนียมบริเวณนี้เกิด การโตขึ้นอย่างมากเมื่อเทียบกับเกรนของโลหะผสม อลูมิเนียมแผ่น ณ บริเวณที่ไม่ได้รับอิทธิพลจากความ ร้อน เนื่องจากโลหะผสมอลูมิเนียมแผ่นที่ใช้ในการ เชื่อมนี้ผ่านการขึ้นรูปด้วยกระบวนการรีดซึ่ง กระบวนการขึ้นรูปลักษณะนี้มีปริมาณการเปลี่ยนแปลง รูปร่างสูงมาก เมื่อโลหะผสมอลูมิเนียมนี้ได้รับความ ร้อนขณะทำการเชื่อมเกรนจึงเกิดการตกผลึกใหม่และ ขยายตัว และจากการศึกษาพบว่าขนาดเกรนที่โตขึ้น ของโลหะผสมอลูมิเนียมนี้จะมีขนาดขยายใหญ่ขึ้น เล็กน้อยเมื่อความร้อนที่ใช้ในการเชื่อมเพิ่มขึ้น [4]

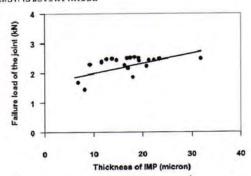
Al alloy sheet

200 µm

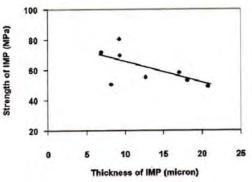
รูปที่ 8 ชิ้นงานเชื่อมที่เกิดการแตกหักบริเวณชั้นสารประกอบ เชิงโลหะ


รูปที่ 9 ชิ้นงานเชื่อมที่เกิดการแตกหักบริเวณกระทบร้อนอง โลหะผสมอลูมิเนียม

3.3 สมบัติเชิงกลของรอยเชื่อม


ภายหลังจากการนำชิ้นงานเชื่อมโลหะแผ่น ต่างชนิดระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียมเกรด 5052-H32 มาทำการทดสอบแรงดึงพบว่าซิ้นงานเชื่อม เกิดการแตกหักเสียหายขึ้น ณ บริเวณที่แตกต่างกัน สองบริเวณ ดังในรูปที่ 8 และรูปที่ 9 ซึ่งแสดงการ แตกหักของชิ้นงานเชื่อมบริเวณชั้นสารประกอบเชิง โลหะ และการแตกหักของชิ้นงานเชื่อมบริเวณกระทบ ร้อนของโลหะผสมอลูมิเนียมตามลำดับ เมื่อทำการ สร้างความสัมพันธ์ระหว่างความกว้างของชั้น สารประกอบเชิงโลหะที่เกิดขึ้นในชิ้นงานเชื่อมกับ ความสามารถในการต้านทานต่อการแตกหักเสียหาย เนื่องจากแรงดึงของชิ้นงานเชื่อม พบว่าชิ้นงานเชื่อม

กลุ่มที่ชั้นสารประกอบเชิงโลหะมีความกว้างอยู่ในช่วง ประมาณ 2 ถึง 4 มิลลิเมตร เมื่อทำการทดสอบแรงดึง ชั้นงานเชื่อมจะมีความสามารถในการต้านทานต่อการ แตกหักเสียหายเพิ่มขึ้นเมื่อชั้นสารประกอบเชิงโลหะมี ความกว้างมากขึ้น และขณะทำการทดสอบแรงดึง ชั้นงานเชื่อมกลุ่มนี้จะเกิดการแตกหักเสียหาย ณ บริเวณชั้นสารประกอบเชิงโลหะ



รูปที่ 10 ความสัมพันธ์ระหว่างความกว้างของชั้นสารประกอบ เชิงโลหะและความสามารถในการต้านทานต่อการแตกหัก เสียหายของชิ้นงานเชื่อม

รูปที่ 11 ความสัมพันธ์ระหว่างความหนาของชั้นสารประกอบ เชิงโลหะกับความสามารถในการต้านทานต่อการแตกหัก เสียหายของชิ้นงานเชื่อม

ขณะที่ชิ้นงานกลุ่มที่ชั้นสารประกอบเชิงโลหะ มีความกว้างอยู่ในช่วงประมาณ 4 ถึง 6 มิลลิเมตร เมื่อ ทำการทดสอบ แรง ดึงพบว่าชิ้นงานเชื่อมมี ความสามารถในการต้านทานต่อการแตกหักเสียหาย เนื่องจากแรงดึงไม่เปลี่ยนแปลงอย่างชัดเจน และการ แตกหักของชิ้นงานเชื่อมเกิดขึ้น ณ บริเวณกระทบร้อน ของโลหะผสมอลูมิเนียมดังแสดงในรูปที่ 10 การที่ ชิ้นงานเชื่อมสามารถรับแรงดึงได้ไม่เปลี่ยนแปลงนั้น เนื่องจากเกรนของโลหะผสมอลูมิเนียมที่ขยายใหญ่ขึ้น ในชิ้นงานเชื่อมแต่ละซิ้นเพิ่มขึ้นไม่มากนัก จึงทำให้ไม่ สามารถสังเกตเห็นผลของขนาดเกรนต่อความแข็งแรง ณ บริเวณกระทบร้อนของโลหะผสมอลูมิเนียมได้อย่าง ชัดเจน นอกจากนี้เมื่อทำการสร้างความสัมพันธ์ ระหว่างความหนาของชั้นสารประกอบเชิงโลหะกับ ความสามารถในการต้านทานต่อการแตกหักเสียหาย เนื่องจากแรงดึงของชิ้นงานเชื่อมพบว่าชิ้นงานเชื่อมมี ความสามารถในการต้านทานต่อการแตกหักเสียหาย จากแรงดึงเพิ่มขึ้นเมื่อความหนาของชั้นสารประกอบ เชิงโลหะเพิ่มขึ้นตังรูปที่ 11

รูปที่ 12 ความสัมพันธ์ระหว่างความหนาของชั้นสารประกอบ เชิงโลหะกับความแข็งแรงของชั้นสารประกอบเชิงโลหะ

เนื่องในการทดสอบแรงดึงมีชิ้นงานจำนวน หนึ่งเกิดการแตกหักบริเวณชั้นสารประกอบเชิงโลหะ ซึ่งชิ้นงานกลุ่มนี้สามารถนำมาคำนวณหาความแข็งแรง ของชั้นสารประกอบเชิงโลหะได้ จากการคำนวณหบว่า ชั้นสารประกอบเชิงโลหะจะมีความแข็งแรงลดลงเมื่อมี ความหนาเพิ่มขึ้นดังรูปที่ 12 ซึ่งหากเป็นเช่นนี้เมื่อ ความหนาของชั้นสารประกอบเชิงโลหะเพิ่มขึ้นและ ความกว้างของชั้นสารประกอบเชิงโลหะเพิ่มขึ้นและ ความกว้างของชั้นสารประกอบเชิงโลหะเพิ่มขึ้นและ ตัวมกว้างของชั้นสารประกอบเชิงโลหะไม่ เปลี่ยนแปลงก็ควรจะส่งผลให้ความสามารถในการ ตัวนทานต่อการแตกหักเสียหายจากแรงดึง ณ บริเวณ เชื่องจากแรงดึงใด้เพิ่มขึ้น นั่นแสดงให้เห็นว่าในการ เชื่อมนี้ความสามารถในการต้านทานต่อการแตกหัก

การเชื้อมไทย

เสียหายเนื่องจากแรงดึงขึ้นอยู่กับความกว้างของชั้น สารประกอบเชิงโลหะมากกว่าความหนาของชั้น สารประกอบเชิงโลหะ

5. สรุป

- 1. จากการศึกษาพบว่ากระแสไฟฟ้าที่ใช้ในการเชื่อมสูง เกินกว่าขีดจำกัดค่าหนึ่ง(160 แอมแปร์) จะทำให้ผิว ด้านบนของรอยเชื่อมไม่สวยงามอันเนื่องมากจากเกิด ปรากฏการณ์ arc blow
- 2. การเชื่อมโลหะแผ่นต่างชนิดระหว่างเหล็กกล้ากับ โลหะผสมอลูมิเนียมเกรด 5052-H32 ด้วยปริมาณ ความร้อนในการเชื่อมที่สูงขึ้น ทั้งในแง่ของการเพิ่ม กระแสไฟฟ้าในการเชื่อมโดยความเร็วในการเชื่อมคงที่ หรือในแง่ของการลดความเร็วในการเชื่อมโดย กระแสไฟฟ้าในการเชื่อมจงที่ ล้วนทำให้ชั้น สารประกอบเชิงโลหะที่เกิดขึ้นบริเวณรอยเชื่อมมีความ หนาและความกว้างเพิ่มขึ้น
- 3. ความหนาของชั้นสารประกอบเชิงโลหะมีผลต่อ ความแข็งแรงของชั้นสารประกอบเชิงโลหะ โดยความ หนาของชั้นสารประกอบเชิงโลหะที่มากจะทำให้ความ แข็งแรงของชั้นสารประกอบเชิงโลหะลดลง
- 4. ความสามารถในการรับแรงของชั้นสารประกอบเช็ง โลหะขึ้นอยู่กับสองปัจจัยคือ ความหนาและความกว้าง ของชั้นสารประกอบเชิงโลหะ และในการเชื่อมโลหะ แผ่นต่างชนิตระหว่างเหล็กกล้ากับโลหะผสมอลูมิเนียม เกรด 5052-H32 ครั้งนี้พบว่าความกว้างของชั้น สารประกอบเชิงโลหะมีบทบาทต่อความสามารถในการ รับแรงมากกว่าความหนา

6. กิตติกรรมประกาศ

ขอขอบพระคุณ ผศ.ตร.ศิริรัตน์ รัตนจันทร์ และ ศ.ตร.โยชิฮารุ มูโต้ ที่ให้คำปรึกษาตลอดการทำ วิจัยครั้งนี้

7. เอกสารอ้างอิง

- [1] G. Sierra, P. Peyre, F. Deschuax-Beaume, D. Stuart, G. Fras, Galvanised steel to aluminium joining by laser and GTAW processes, MATERIALS CHARACTRIZATION 59(2008)1705-1715
- [2] Rattana Borrisutthekul, Pusit Mitsomwang, Sirirat Rattanachan, Yoshiharu Mutoh, TIG WELDING OF DISSIMILAR METALS BETWEEN STEEL/ALUMINUM ALLOY, IIW International Conference on Advances in Welding and Allied Technologies,16-17 July 2009, Grand Copthorne waterfront Hotel, Singapore
- [3] Arc Welding and Magnetic Blow. Retrieved December25,2009,Website:http://www.ewf.be/media/documentosDocs/doc_41_arc_welding_and_magnetic_blow.pdf
- [4] Pusit Mitsomwang, Rattana Borrisutthekul, Sirirat Rattanachan, Yoshiharu Mutoh, Feasibility Study on Using TIG Welding for Dissimilar Metal Joining between Steel/1100Aluminum alloy sheet, The 23rd Conference of the Mechanical Engineering Network of Thailand, 4-7 November 2009, Chiang Mai ,Thailand

TIG WELDING OF DISSIMILAR METALS BETWEEN STEEL/ALUMINUM ALLOY

Rattana Borrisutthekul¹, Pusit Mitsomwang¹, Sirirat Rattanachan¹, and Yoshiharu Mutoh²

Department of Engineering, Suranaree University of Technology, Muang, Nakhon-Ratchasima, Thailand, 30000 Department of System Safety, Nagaoka University of Technology, Nagaoka-shi, Niigata, Japan, 940-2188.
E-mail: rattana@sut.ac.th

Abstract

In joining dissimilar metals between steel and aluminum alloy, the difficulty is caused by formation of intermetallic reaction layer. There has been no report that indicates successful dissimilar metal welding by using conventional welding techniques, such as TIG, MIG welding and so on, except laser welding. In this research work, TIG welding of dissimilar metals between steel/A1100 aluminum alloy-H12 was studied in order to investigate the feasibility of application of TIG welding for joining dissimilar metals. The results showed that the present TIG welding as a self-brazing technique could join the dissimilar metal between steel and aluminum alloy. The load resistance of bonded zone, intermetallic reaction layer zone, was higher than the load resistance of A1100 aluminum alloy after welding. The joint was fractured at HAZ of A1100 aluminum alloy. It was found that using lower apparent heat input resulted in higher load resistance of joint due to slow grain growth of A1100 aluminum alloy at HAZ. The Fe/Al intermetallic reaction layer was decreased with decreasing heat input.

Introduction

Currently, techniques for joining between steel sheet and aluminum alloy sheet have been interested in order to fulfill the hybrid structural technology. Many research works concerning with joining between steel/aluminum alloys have been recently carried out [1-12]. In those studies, welding processes used are mainly high intensity welding such as laser welding, hybrid welding, solid state welding such as FSW, magnetic seam pressure welding, ultrasonic welding and so on. The reason of using those processes is the ability of those processes in localizing heating up the welding specimen which is consequently in low heat required for welding and in suppressing of intermetallic reaction layer formation. However, conventional welding process, such as TIG, MIG and so on, will be possible to produce the dissimilar metals joint, but they need some techniques.

It is well known that the difficulty of dissimilar metal joining between steel and aluminum alloy is formation of the brittle intermetallic reaction phase.[1-5] In order to suppress the formation of intermetallic reaction phase, laser welding process as a self-brazing technique as shown in Fig. 1 was applied to joining of steel sheet and aluminum alloy sheet [1-

4]. One of fundamentals of self-brazing technique is based on the controlling the molten zone of steel to be a partial penetration in order to prevent the direct mixing of molten steel and molten aluminum alloy, which results in formation of intermetallic reaction phase. According to the self brazing technique, if some welding processes could control partial penetration in steel sheet, those welding processes will be possible to make a self brazing of aluminum alloy on steel TIG is one of useful welding processes for joining thin sheet as referred in Ref.[13]. So that TIG welding may achieve the partial penetration of steel sheet during welding of steel/ aluminum alloy. Moreover, if conventional welding processes such as TIG welding could join steel and aluminum alloys, there is no need to introduce new joining machines for assembly of automotive parts. Thus, in the present study, the dissimilar joining between steel and aluminum alloy by application of TIG welding technique was carried out in order to investigate the feasibility to steel and aluminum alloy dissimilar joining by using TIG welding.

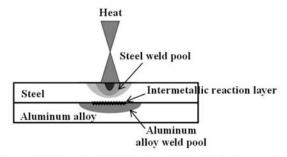


Figure 1: Schematic of the interface during dissimilar metals welding between steel and aluminum alloy.

Experimental procedures

The 1 mm thick hot roll steel sheet (steel) and 0.8 mm thick 1100 aluminum alloy-H12 sheet (aluminum alloy) were used in this study. Their chemical compositions and mechanical properties are shown in Table 1 and Table 2, respectively. Both steel and aluminum alloy were cut in size of 85x65 mm. The TIG lap joint welding configuration with steel top sheet was used as shown in Fig. 2. The arc distance, electrode size, and electrode type were 3.2 mm, 3.2 mm in

International Conference on Science, Technology and Innovation for Sustainable Well-Being (STISWB), 23-24 July 2009, Mahasarakham University, Thailand

IE32

Feasibility study of using tig welding in dissimilar metals between steel/ aluminum alloy

Rattana Borrisutthekul¹, Pusit Mitsomwang¹, Sirirat Rattanachan¹, and Yoshiharu Mutoh²

 Department of Engineering, Suranaree University of Technology, Muang, Nakhon-Ratchasima, Thailand, 30000
 Department of System Safety, Nagaoka University of Technology, Nagaoka-shi, Niigata, Japan, 940-2188.
 E-mail: rattana@sut.ac.th

Abstract

In joining dissimilar metals between steel and aluminum alloy, the difficulty is caused by intermetallic reaction phase formation. In order to suppress its formation, the self-brazing process has been applied. Previously, only laser welding process could be applied together with the self brazing process in joining dissimilar metals. However, in this research work, TIG welding, which could join the thin section, has been proposed to be welding process candidate for joining dissimilar metals welding between steel/aluminum alloys. The objective of this work is to evaluate the feasibility of application of TIG welding for joining dissimilar metals. The results showed that TIG welding could produce the partial penetration welding in 1 mm thickness steel sheet, which indicated the feasibility in application self-brazing technique by TIG welding process. Moreover, TIG welding as a self-brazing technique could successfully join dissimilar metal between steel and aluminum alloy. The load resistance of bonded zone, intermetallic reaction layer zone of joint, was higher than the load resistance of A1100 aluminum alloy after welding. The lower load resistance of joint compared with A1100-H12 was caused by the grain growth in A1100-H12 during welding.

Keywords: dissimilar metal joining, TIG welding, steel, aluminium alloy

Effects of TIG welding parameters on dissimilar metals welding between mild steel and 5052 aluminum alloy

Rattana Borrisutthekul^a, Pusit Mitsomwang^a, Sirirat Rattanachan^a

Department of Engineering, Suranaree University of Technology, Muang, Nakhon-Ratchasima,
Thailand, 30000.

In the present study, the effects of TIG welding conditions such as welding speed, arc length and welding current on the quality of steel/aluminum alloy dissimilar joint were examined. The obtained information is beneficial for extending the limitation of TIG welding in dissimilar metal joining between steels and aluminum alloys. Experimentally, the varied welding parameters involved welding speed, arc length and current used. It was found that at particular apparent heat input, increasing welding speed and current did not significantly affect the weld width and the thickness of intermetallic reaction layer. Moreover, using improper arc length resulted in increasing welding width and limiting welding windows, but it was not found to be a factor influencing the thickness variation of the intermetallic reaction layer. Finally, the variation of welding speed and arc length has the influence on the strength of intermetallic reaction layer.

Keywords: Dissimilar metals joining, TIG welding, Welding parameters, steel, A5052 aluminum alloy

1. Introduction

In production of eco-vehicle, automotive maker has applied the hybrid structure technology to reduce weight of vehicle, which is the effective method to reduce the emission of green house effects gas of vehicle during driving. In using hybrid structure, joining between automotive parts made by various metals has been encountered. Recently, many research works concerned with dissimilar metals joining, especially between steel and aluminum alloy, have been carried out [1-5]. One of potential welding processes for joining dissimilar metals is TIG welding process [1]. However, TIG welding process could produce the well dissimilar metals joint incase of joining dissimilar metals thin sheet. In order to extend the limitation of TIG welding in dissimilar metal joining, understanding of effects of welding parameters on the joining quality has been important. Thus, in this study, effects of welding speed, welding current, and arc length on size of welding windows, intermetallic reaction layer (IMP) formation, as well as failure load were investigated.

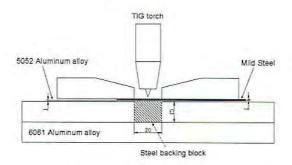


Fig. 1: Welding configuration used

Table 1 Chemical compositions of materials

Materials	Al	Si	Fe	Cu	Mn	Mg	Cr
Steel	0.025	0.016	Bal.	< 0.005	0.277	0.001	-
5052 Al alloy	Bal.	< 0.25	< 0.40	< 0.10	0.15 - 0.35	2.2 - 2.8	< 0.1

Table 2 Mechanical properties of materials

Materials	Yield strength (MPa)	Tensile strength (MPa)	Elongation (%)	
Steel	275	380	21	
5052 Al alloy	100	213	24	

2. Materials and Experimental Procedures

Mild steel and A5052 aluminum alloy plates were used in this study with their chemical compositions and mechanical properties being shown in Table 1 and 2, respectively. The plate dimensions of both metals were 85×65×1 mm³. Before welding, steel and aluminum alloy surface were cleaned. After cleaning, dissimilar metals welding between steel and aluminum alloy was carried out. A lap-joint weld configuration with steel being a top plate was used as shown in Fig. 1. The welding mode, the diameter of the EWTh-2 tungsten electrode, the electrode tip angle, and the flow rate of argon gas were DCEN, 3.2 mm, 60°, and 8 L.min⁻¹, respectively. The arc lengths used were 1.6, 2.4, and 3.2 mm. The welding speeds used were 0.55, 0.60 and 0.65 m.min⁻¹. Welding current was varied from 90-190 A in order to obtain the self-brazing joint. After welding, the tensile shear test, and microstructure observation were carried out.

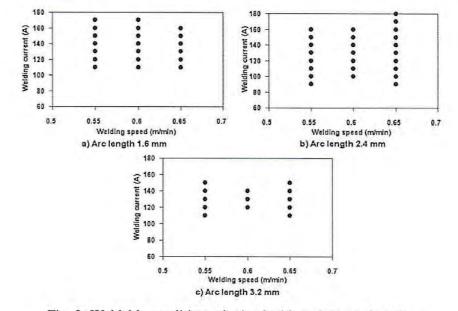


Fig. 2: Weldable conditions obtained with various arc lengths

3. Results and discussion

3.1 Effect of arc length on the size of welding windows

Based on welding conditions used in the study, only effect of arc length on the size welding windows could be discussed. In this study, the size of welding windows could be evaluated with number of weldable conditions. Large number of weldable condition means high large size of welding windows. Figure 3(a)-3(c) show the weldable conditions in case of using 1.6, 2.4, and 3.2 mm of arc lengths, respectively. Comparing Fig. 3(a)-3(c), it could be clearly seen that, the number of weldable conditions at 1.6 mm and 3.2 mm of arc length were become smaller than at 2.4 mm of arc length. During welding, the arc was difficult to start at 1.6 and 3.2 mm of arc length comparing with 2.4 mm of arc length. According to results, it could be referred that arc length significantly affected to size of welding windows.

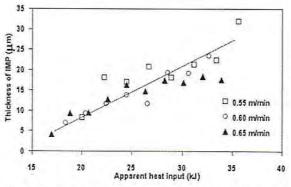


Fig. 3: Relationship between apparent heat input and thickness of intermetallic reaction layer with various welding speeds at 2.4 mm of arc length

Fig. 4: Relationship between apparent heat input and thickness of intermetallic reaction layer with various welding currents at 2.4 mm of arc length

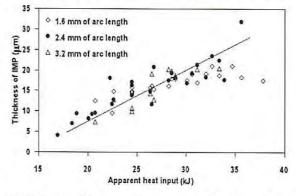


Fig. 5: Relationship between apparent heat input and thickness of intermetallic reaction layer with various arc lengths

3.2 Effect of welding parameters on intermetallic reaction layer thickness

Figure 3-5 show the relationship between apparent heat input and intermetallic reaction layer thickness with various welding speed, welding current, and arc length, respectively. From Fig. 3-5, it was found that increasing apparent heat input affected to increase thickness of intermetallic reaction layer.

Moreover, the effect of variation of welding speed, welding current and arc length at particular apparent heat input on thickness of intermetallic reaction layer was not found. Although, it was believed that they should affect to thickness of intermetallic reaction layer. The acceptable reason should be that variation of them rarely affected to the welding thermal cycle at the center of intermetallic reaction layer, where is the measured point of the intermetallic reaction layer.

3.3 Effect of welding parameters on welding width

Figure 6 and 7 show the relationship between apparent heat input and welding width with various welding speed and welding current at 2.4 mm of arc length respectively. Figure 8 shows the relationship between welding width and apparent heat input with various arc lengths. From Fig.6 and 7, it was found that the variation of welding speed and variation of welding current at particular apparent heat input was not led to vary welding width. On the contrary, the arc length significantly affected to the welding width as shown in Fig. 8. Using improper arc length expanded the welding width. No observation of variation of welding width in case of varying welding speed and welding current might be caused by few changing of thermal distribution in welding specimen during welding. On the other hand, the altering of arc length significantly affected to thermal distribution in welding specimen during welding.

3.4 Effect of welding parameters on failure loads of joints

Figure 9 and 10 reveal the relationship between apparent heat input and failure load of joint with various welding speed and arc length, respectively. Considering Fig. 10 and Fig. 11, it was found that failure load of joint was increased with increasing apparent heat input until about 20-30 kJ of apparent heat input. Then, when apparent heat input was higher than 20-30 kJ, the failure load of joint was not altered with apparent heat input. Moreover, in fracture path observation, it was found that the joint was broken at intermetallic reaction layer zone when apparent heat input was less than 20-30 kJ. When apparent heat input was higher than 20-30 kJ, broken zone became heat affected zone (HAZ) of aluminum alloy. According above results, it could be indicated that failure load of joint depended on the load resistance of intermetallic reaction layer and the load resistance of HAZ of aluminum alloy. Furthermore, it was found that increasing welding speed and using proper arc length, load resistance of joint was reached to load resistance of HAZ of aluminum alloy at lower apparent heat input as shown in Fig. 10 and Fig. 11. It might be caused by difference strength of intermetallic reaction layer when using different welding speed and different arc length.

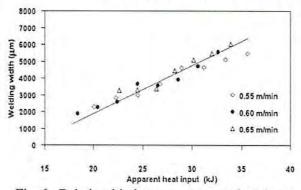


Fig. 6: Relationship between apparent heat input and welding width with various welding speeds at 2.4 mm of arc length

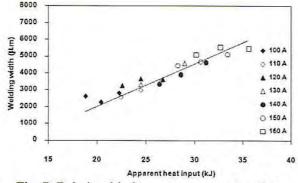


Fig. 7: Relationship between apparent heat input and welding width with various welding currents at 2.4 mm of arc length

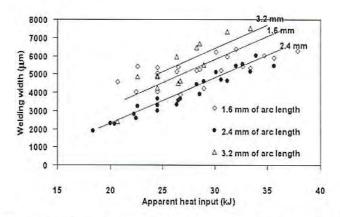


Fig. 8: Relationship between apparent heat input and and welding width with various arc lengths

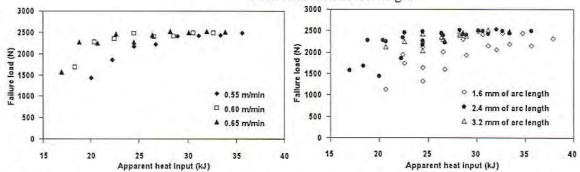


Fig. 9: Relationship between apparent heat input and welding width with various welding speeds at 2.4 mm of arc length

Fig. 10: Relationship between apparent heat input and welding width with various welding speeds at 2.4 mm of arc length

4. Conclusion

Finally, it could be summarized as following.

- 1. At particular heat input, increasing welding speed and current did not significantly affect the welding width and the thickness of intermetallic reaction layer.
- 2. Increasing arc length resulted in increasing weld width and limiting welding windows, but it was not found to be a factor influencing the thickness variation of the intermetallic reaction layer.
- The variation of welding speed and arc length has the influence on the strength of intermetallic reaction layer.

Acknowledgement

This research was supported by The Thailand Research Fund and Office of The Higher Education Commission, Kingdom of Thailand (Grant No. MRG5180100).

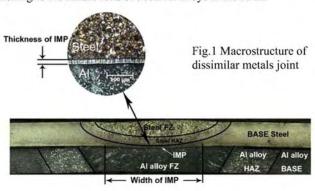
References

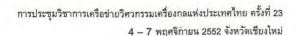
- [1] Borrisutthekul, R., T. Yachi, Y. Miyashita and Y. Mutoh: Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy. Mater. Sci. Eng. A., 467 (2007) pp. 108-113.
- [2] Y. Miyashita, I. Nakagawa, J.Q. Xu, Y. Mutoh, M. Akahori, H. Okumura, Laser Welding of Dissimilar Metals Joint Aided by Unsteady Thermal Convection Boundary Element Method Analysis, Quart. J. Jpn. Weld. Soc., 23-1(2005) 16-24.(in Japanese)
- [3] K. J. Lee, S. Kumai, T Arai, Interfacial Microstructure and Strength of Steel to Aluminum Alloy Lap Joints Welded by a Defocused Laser Beam, Mater. Trans. 46 (2005) 1847-1856.
- [4] M. J. Rathod, M. Kutsuna, Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding, Weld. J., (2004) 16s-26s.
- [5] F. Wagner, I. Zerner, M. Kreimeyer, T. Seefeld, G. Sepold, *Characterization and properties of dissimilar metal combinations of Fe/aluminum and Ti/aluminum sheet materials*, Proc. ICALEO 2001, (2001) 365-374.

Feasibility study of using GTAW process in dissimilar metal joining between low carbonsteel/5052 Al alloys sheet

P. Mitsomwang^a, R. Borrisutthekul^a, S. Rattanachan^a, Y. Mutoh^b

^aDepartment of Engineering, Suranaree University of Technology, Muang, Nakhon-Ratchasima, Thailand, 30000


Tel.: 044-224481 Fax:. 044-224482 E-mail: m5141296@g.sut.ac.th


bDepartment of System Safety, Nagaoka University of Technology, Nagaoka-shi, Niigata, Japan, 940-2188

Tel.: 81-258-48-9735 Fax. 81-258-47-9770

Abstract

Gas tungsten arc welding (GTAW) with self-brazing was applied for dissimilar metal joining between low carbon steel/5052 Al alloys. In this study, a lap joint configuration with steel sheet as the upper sheet was used. In order to successfully achieve a dissimilar metal joint with self-brazing technique, partial penetration in the upper steel sheet must be obtained. Therefore, the depth of the weld bead on the steel sheet was first studied to ensure the feasibility of using GTAW process with self-brazing technique. According to the weld depth results, the partial penetration of steel sheet could be obtained from various welding conditions, which indicated a good feasibility of using GTAW with self-brazing technique. Further results showed that dissimilar metal joint between low carbon steel/5052 Al alloys could be successfully obtained by GTAW process as self-brazing technique. The intermetallic compound layer was formed in the bonding area, which is called IMP zone as defined in fig.1. As the joining heat input was increased, the thickness and the width of the IMP zone were increased from 4.1 to 32 µm and from 1.44 to 6.02 mm respectively. From tensile shear testing results of dissimilar metal joint, load resistance of dissimilar metal joint seemed to depend on the width of IMP zone. When the width of IMP zone was increased, the load resistance of dissimilar metal joint was increased until reaching to the failure load of 5052 Al alloys at the HAZ.

E-AMM-006118

การศึกษาความเป็นไปได้ในการเชื่อมโลหะต่างชนิดระหว่างเหล็กกล้าแผ่นกับอลูมิเนียม ผสมแผ่นด้วยกระบวนการเชื่อมทิก

Feasibility Study on Using TIG Welding for Dissimilar Metal Joining between Steel/1100Aluminum alloy Sheet

<u>ภูษิต มิตรสมหวัง</u> 1, รัตน บริสุทธิกุล 1*, ศิริรัตน์ รัตนจันทร์² และ โยซิฮารุ มูโต้³ 1 สาขาภาควิชาวิศวกรรมโลหการ สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี อ.เมือง จ.นครราชสีมา 30000 2 สาขาภาควิชาวิศวกรรมเซรามก สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี อ.เมือง จ.นครราชสีมา 30000 3 คณะระบบความปลอดภัย มหาวิทยาลัยเทคโนโลยีแห่งนางะโอกะ จ.นิกะตะ ญี่ปุ่น 940-2188 ผู้ติดต่อ:E-mail: rattan@g.sut.ac.th, โทรศัพท์:(66-44)224482

บทคัดย่อ

ในการศึกษานี้กระบวนการเชื่อมทิกถูกนำมาประยุกต์ใช้เชื่อมเหล็กกล้าแผ่นผสมแผ่นเกรต 1100-H12 โดยอาศัย เทคนิค Self-brazing ซึ่งเทคนิคดังกล่าวจะจัดวางชิ้นงานเชื่อในลักษณะซ้อนเกยซึ่งใช้เหล็กกล้าแผ่นเป็นโลหะแผ่นบนและ ขณะเชื่อมต้องทำการควบคุมการหลอมเหลวให้เกิดเพียงบางส่วนในเหล็กกล้าแผ่นบน การศึกษาครั้งนี้ทำขึ้นเพื่อยืนยัน ความเป็นไปได้ในการเชื่อต่อโลหะต่างชนิดระหว่างเหล็กกล้าแผ่นกับอลูมีเนียมผสมแผ่นเกรด 1100-H12 ด้วยกระบวนการ เชื่อมทิก โดยในการศึกษานี้จะเริ่มจากการศึกษาศักยภาพในการควบคุมการหลอมเหลวในเหล็กกล้าเพียงแผ่นเดียวด้วย กระบวนการเชื่อมต่อทิกก่อน จากการศึกษาการควบคุมการหลอมเหลวพบว่ากระบวนการเชื่อมต่อทิกสามารถทำให้เกิด การหลอมเหลวเพียงบางส่วนบนเหล็กกล้าแผ่นได้ ซึ่งบ่งชี้ว่ากระบวนการเชื่อมทิกสามารถประยุกต์ใช้ร่วมกับเทคนิค Self-brazing ได้ จากผลการทดลองเชื่อโลหะต่างชนิดระหว่างเหล็กกล้าแผ่นและอลูมิเนียมผสมแผ่นเกรด 1100-H12 พบว่า กระบวนการเชื่อมต่อทิกกับเทคนิค Self-brazing สามารถเชื่อมเหล็กกล้าแผ่นและอลูมิเนียมผสมแกรด 1100-H12 ได้ ยิ่งไป กว่านั้นจากการทดสอบแรงดึงพบว่ารอยเชื่อมมีความสามารถในการต้านทานต่อแรงดึงมากกว่าบริเวณกระทบร้อนของ โลหะอลูมิเนียมผสมแผ่นเกรด 1100-H12 และพบว่าเมื่อปริมาณความร้อนที่ใช้ในการเชื่อมเพิ่มขึ้นความต้านทานต่อแรงดึง ของชิ้นงานเชื่อมจะลดลงเล็กน้อย

คำหลัก: การเชื่อมโลหะตางชนิด กระบวนการเชื่อมทิก อลูมิเนียมผสมแผ่น เหล็กกล้าแผ่น

Abstract

In the present study, Tungsten Inert Gas welding (TIG) process as self-brazing technique was applied for joining dissimilar metal between steel sheet and 1100-H12 aluminum alloy sheet. The aim of this study is to ensure the feasibility of dissimilar metal joining between steel sheet and 1100-H12 aluminum alloy sheet by TIG welding process. According to the self-brazing technique, lap joint configuration with steel sheet as top sheet and the partial penetration in steel top sheet are required. Therefore, depth of weld in steel sheet by TIG welding was carried out firstly in order to ensure the feasibility of using TIG welding process with self brazing technique. From depth of weld study, it was found that the partial penetration in steel sheet could be easily obtained which indicated the feasibility for using TIG welding process with self-brazing technique. The second study, dissimilar metal joining between steel sheet and 1100-H12 aluminum alloy was done. From dissimilar metal joining experimental results, the joint between steel sheet and aluminum alloy sheet could be successfully produced. Moreover, the load resistance of the bonding zone of dissimilar metal joint was higher than that of 1100-H12 aluminum alloy at heat affected zone and it was slightly decreased when heat input for joining was increased.

Keywords: Dissimilar metal joining TIG welding process Aluminum alloy sheet Steel sheet

Table B-1 Bead on the plate results

Item No.	Materials	Welding speed (m/min)	Welding mode	Welding current (A)	Depth of weld (μm)
1	Steel	0.55	DCEN	20	227.2
2	Steel	0.55	DCEN	25	252.8
3	Steel	0.55	DCEN	30	379.2
4	Steel	0.55	DCEN	35	462.8
5	Steel	0.55	DCEN	40	568.2
6	Steel	0.55	DCEN	45	844.8
7	Steel	0.55	DCEN	50	992
8	Steel	0.55	DCEN	55	1000
9	Steel	0.55	DCEN	60	1000
10	Steel	0.55	DCEN	65	975
11	Steel	0.6	DCEN	20	96.44
12	Steel	0.6	DCEN	25	111.4
13	Steel	0.6	DCEN	30	175.7
14	Steel	0.6	DCEN	35	325.7

Table B-1 Bead on the plate results (continue)

Item No.	Materials	Welding speed (m/min)	Welding mode	Welding current (A)	Depth of weld (μm)	
15	Steel	0.6	DCEN	40	426.5	
16	Steel	0.6	DCEN	45	621.4	
17	Steel	0.6	DCEN	50	696.7	
18	Steel	0.6	DCEN	55	1000.0	
19	Steel	0.6	DCEN	60	1000.0	
20	Steel	0.6	DCEN	65	1000.0	
21	Steel	0.6	DCEN	70	1000.0	
22	Steel	0.6	DCEN	75	1000.0	
23	Steel	0.65	DCEN	20	77.2	
24	Steel	0.65	DCEN	25	175.7	
25	Steel	0.65	DCEN	30	203.6	
26	Steel	0.65	DCEN	35	349.4	
27	Steel	0.65	DCEN	40	368.6	
28	Steel	0.65	DCEN	45	447.9	

Table B-1 Bead on the plate results (continue)

Item No.	Materials	Welding speed (m/min)	Welding mode	Welding current (A)	Depth of weld (μm)
29	Steel	0.65	DCEN	50	1000.0
30	Steel	0.65	DCEN	55	1000.0
31	Steel	0.65	DCEN	60	1000.0
32	Steel	0.65	DCEN	65	1000.0
33	Steel	0.65	DCEN	70	1000.0
34	Steel	0.65	DCEN	75	1000.0
35	A1100	0.55	AC	25	0.0
36	A1100	0.55	AC	30	0.0
37	A1100	0.55	AC	35	578.5
38	A1100	0.55	AC	40	800.0
39	A1100	0.55	AC	45	800.0
40	A1100	0.6	AC	35	0.0
41	A1100	0.6	AC	40	401.2
42	A1100	0.6	AC	45	800.0

Table B-1 Bead on the plate results (continue)

Item No.	Materials	Welding speed (m/min)	Welding mode	Welding current (A)	Depth of weld (μm)	
43	A1100	0.6	AC	50	800.0	
44	A1100	0.65	AC	25	0.0	
45	A1100	0.65	AC	30	0.0	
46	A1100	0.65	AC	35	0.0	
47	A1100	0.65	AC	40	666.4	
48	A1100	0.65	AC	45	800.0	

Table B-2 Dissimilar metals welding results

Item	Aluminum	Al Alloy	Arc	Welding	Welding	Thickness	Fracture	Welding	Fracture path
No.	alloy	thickness	length	speed	current (A)	of IMP	load	width (μm)	
		(mm)	(mm)	(m/min)		(μm)	(N)		
1	A1100	0.8	2.4	0.55	80	5.62	655		HAZ of Al Alloy
2	A1100	0.8	2.4	0.55	90	19.80	756		HAZ of Al Alloy
3	A1100	0.8	2.4	0.55	100	12.06	469		HAZ of Al Alloy
4	A1100	0.8	2.4	0.55	110	18.08	504		HAZ of Al Alloy
5	A1100	0.8	2.4	0.55	120	31.42	713		HAZ of Al Alloy
6	A1100	0.8	2.4	0.55	130	36.60	653		HAZ of Al Alloy
7	A1100	0.8	2.4	0.55	140	34.88	752		HAZ of Al Alloy
8	A1100	0.8	2.4	0.55	150	31.86	608		HAZ of Al Alloy
9	A1100	0.8	2.4	0.55	160	39.60	610		HAZ of Al Alloy
10	A1100	0.8	2.4	0.6	90	5.60	699		HAZ of Al Alloy
11	A1100	0.8	2.4	0.6	100	11.64	600		HAZ of Al Alloy
12	A1100	0.8	2.4	0.6	110	18.52	728		HAZ of Al Alloy
13	A1100	0.8	2.4	0.6	120	23.24	573		HAZ of Al Alloy

Table B-2 Dissimilar metals welding results (continue)

Item	Aluminum	Al Alloy	Arc	Welding	Welding	Thickness	Fracture	Welding	Fracture path
No.	alloy	thickness	length	speed	current (A)	of IMP	load	width (μm)	
		(mm)	(mm)	(m/min)		(μm)	(N)		
14	A1100	0.8	2.4	0.6	130	30.56	711		HAZ of Al Alloy
15	A1100	0.8	2.4	0.6	140	25.40	708		HAZ of Al Alloy
16	A1100	0.8	2.4	0.6	150	35.74	622		HAZ of Al Alloy
17	A1100	0.8	2.4	0.6	160	38.90	477		HAZ of Al Alloy
18	A1100	0.8	2.4	0.65	90	8.62	747		HAZ of Al Alloy
19	A1100	0.8	2.4	0.65	100	8.18	595		HAZ of Al Alloy
20	A1100	0.8	2.4	0.65	110	17.66	591		HAZ of Al Alloy
21	A1100	0.8	2.4	0.65	120	24.54	626		HAZ of Al Alloy
22	A1100	0.8	2.4	0.65	130	21.1	590		HAZ of Al Alloy
23	A1100	0.8	2.4	0.65	140	28.84	605		HAZ of Al Alloy
24	A1100	0.8	2.4	0.65	150	31.00	655		HAZ of Al Alloy
25	A1100	0.8	2.4	0.65	160	30.56	649		HAZ of Al Alloy
26	A5052	1	1.6	0.55	110	14.85	1637	5054	IMP

Table B-2 Dissimilar metals welding results (continue)

Item	Aluminum	Al Alloy	Arc	Welding	Welding	Thickness	Fracture	Welding	Fracture path
No.	alloy	thickness	length	speed	current (A)	of IMP	load	width (μm)	
		(mm)	(mm)	(m/min)		(μm)	(N)		
27	A5052	1	1.6	0.55	120	15.28	1598	3887	IMP
28	A5052	1	1.6	0.55	130	17.87	1928	4222	IMP
29	A5052	1	1.6	0.55	140	17.00	2150	5953	IMP
30	A5052	1	1.6	0.55	150	18.73	2183	5325	IMP
31	A5052	1	1.6	0.55	160	18.30	2152	5896	IMP
32	A5052	1	1.6	0.55	170	17.44	2314	6279	IMP
33	A5052	1	1.6	0.6	110	9.47	1942	4026	IMP
34	A5052	1	1.6	0.6	120	14.64	1319	4024	IMP
35	A5052	1	1.6	0.6	130	16.14	2006	5390	IMP
36	A5052	1	1.6	0.6	140	17.87	2298	5269	IMP
37	A5052	1	1.6	0.6	150	18.94	2412	5193	IMP
38	A5052	1	1.6	0.6	160	21.09	2440	5408	HAZ of Al Alloy
39	A5052	1	1.6	0.6	170	21.09	2436	6003	HAZ of Al Alloy

Table B-2 Dissimilar metals welding results (continue)

Item	Aluminum	Al Alloy	Arc	Welding	Welding	Thickness	Fracture	Welding	Fracture path
No.	alloy	thickness	length	speed	current (A)	of IMP	load	width (μm)	
		(mm)	(mm)	(m/min)		(μm)	(N)		
40	A5052	1	1.6	0.65	110	12.48	1136	4572	IMP
41	A5052	1	1.6	0.65	120	14.85	1747	5403	IMP
42	A5052	1	1.6	0.65	130	15.71	2129	5346	IMP
43	A5052	1	1.6	0.65	140	15.71	2422	5138	IMP
44	A5052	1	1.6	0.65	150	16.14	2437	5193	HAZ of Al Alloy
45	A5052	1	1.6	0.65	160	17.44	2476	6200	HAZ of Al Alloy
46	A5052	1	1.6	0.65	170	19.16	2054	6375	HAZ of Al Alloy
47	A5052	1	2.4	0.55	90	8.20	1437	2293	IMP
48	A5052	1	2.4	0.55	100	18.10	1858	2816	IMP
49	A5052	1	2.4	0.55	110	17.05	2168	2987	IMP
50	A5052	1	2.4	0.55	120	20.80	2221	3641	IMP
51	A5052	1	2.4	0.55	130	18.15	2409	4588	IMP
52	A5052	1	2.4	0.55	140	21.31	2423	4640	IMP

Table B-2 Dissimilar metals welding results (continue)

Item	Aluminum	Al Alloy	Arc	Welding	Welding	Thickness	Fracture	Welding	Fracture path
No.	alloy	thickness	length	speed	current (A)	of IMP	load	width (μm)	
		(mm)	(mm)	(m/min)		(μm)	(N)		
53	A5052	1	2.4	0.55	150	22.38	2436	5121	HAZ of Al Alloy
54	A5052	1	2.4	0.55	160	31.91	2487	5452	HAZ of Al Alloy
55	A5052	1	2.4	0.6	90	6.92	1678	1880	IMP
56	A5052	1	2.4	0.6	100	9.26	2277	2269	IMP
57	A5052	1	2.4	0.6	110	11.72	2343	2575	IMP
58	A5052	1	2.4	0.6	120	13.85	2473	3664	IMP
59	A5052	1	2.4	0.6	130	11.72	2392	3569	IMP
60	A5052	1	2.4	0.6	140	19.30	2416	3911	HAZ of Al Alloy
61	A5052	1	2.4	0.6	150	19.21	2491	4692	HAZ of Al Alloy
62	A5052	1	2.4	0.6	160	23.47	2487	5540	HAZ of Al Alloy
63	A5052	1	2.4	0.65	90	4.13	1575	3978	IMP
64	A5052	1	2.4	0.65	100	9.33	2276	2620	IMP
65	A5052	1	2.4	0.65	110	9.46	2251	4391	IMP

Table B-2 Dissimilar metals welding results (continue)

Item	Aluminum	Al Alloy	Arc	Welding	Welding	Thickness	Fracture	Welding	Fracture path
No.	alloy	thickness	length	speed	current (A)	of IMP	load	width (μm)	
		(mm)	(mm)	(m/min)		(μm)	(N)		
66	A5052	1	2.4	0.65	120	12.72	2459	3258	IMP
67	A5052	1	2.4	0.65	130	16.32	2267	3311	IMP
68	A5052	1	2.4	0.65	140	14.73	2435	3350	HAZ of Al Alloy
69	A5052	1	2.4	0.65	150	17.49	2518	4443	HAZ of Al Alloy
70	A5052	1	2.4	0.65	160	16.85	2501	5087	HAZ of Al Alloy
71	A5052	1	2.4	0.65	170	18.33	2525	5448	HAZ of Al Alloy
72	A5052	1	2.4	0.65	180	17.59	2510	6023	HAZ of Al Alloy
73	A5052	1	3.2	0.55	110	10.76	2029	4845	IMP
74	A5052	1	3.2	0.55	120	12.70	2259	4645	IMP
75	A5052	1	3.2	0.55	130	18.73	2380	5510	HAZ of Al Alloy
76	A5052	1	3.2	0.55	140	20.23	2518	7341	HAZ of Al Alloy
77	A5052	1	3.2	0.55	150	20.45	2473	7525	HAZ of Al Alloy
78	A5052	1	3.2	0.6	120	9.90	2258	4260	IMP

Table B-2 Dissimilar metals welding results (continue)

Item	Aluminum	Al Alloy	Arc	Welding	Welding	Thickness	Fracture	Welding	Fracture path
No.	alloy	thickness	length	speed	current (A)	of IMP	load	width (μm)	
		(mm)	(mm)	(m/min)		(μm)	(N)		
79	A5052	1	3.2	0.6	130	19.16	2300	4509	HAZ of Al Alloy
80	A5052	1	3.2	0.6	140	19.80	2449	6668	HAZ of Al Alloy
81	A5052	1	3.2	0.65	110	7.32	2128	2378	IMP
82	A5052	1	3.2	0.65	120	12.70	2247	4864	IMP
83	A5052	1	3.2	0.65	130	14.85	2431	4926	HAZ of Al Alloy
84	A5052	1	3.2	0.65	140	14.21	2352	5958	HAZ of Al Alloy
85	A5052	1	3.2	0.65	150	20.23	2397	6458	HAZ of Al Alloy

Remark : IMP = intermetallic reaction layer

HAZ of Al Alloy = heat affected zone of aluminum alloy