

รายงานวิจัยฉบับสมบูรณ์

โครงการ : การปรับปรุงสมบัติทางไฟฟ้าของเซรามิกเฟร์โรอิเล็กทริกที่มีเลดซิงค์ในโอลูบีตเป็นองค์ประกอบหลักด้วยการใช้สารตั้งต้นแบบโคลัมไบด์และการเติมสารออกไซด์

โดย อาจารย์ ดร. อธิพงศ์ งามจารุโรจน์ และคณะ

เดือน ปี ที่เสร็จโครงการ พฤษภาคม 2553

รายงานวิจัยฉบับสมบูรณ์

โครงการ : การปรับปรุงสมบัติทางไฟฟ้าของเซรามิกเฟิร์โรอิเล็กทริกที่มีเลดซิงค์ในโอบอเป็นองค์ประกอบหลักด้วยการใช้สารตั้งต้นแบบโคลัมไบเดอร์และการเติมสารออกไซต์

คณะผู้วิจัย

ดร. อธิพงศ์ งามจaruโรจน์

ภาควิชาฟิสิกส์และวัสดุศาสตร์

ผศ. ดร. รัตติกร ยิ่มนิรัณ

คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

รศ. ดร. สุพล อนันตตา

สาขาวิชาฟิสิกส์ คณะวิทยาศาสตร์

มหาวิทยาลัยเทคโนโลยีสุรนารี

ภาควิชาฟิสิกส์และวัสดุศาสตร์

คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา

และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สมอ. และ สกอ. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

ผู้จัดโครงการขอขอบพระคุณ สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) และสำนักงานกองทุนสนับสนุนการวิจัย (สกสว.) ที่ได้ให้การสนับสนุนงานวิจัยทุนพัฒนาศักยภาพการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปี พ.ศ. 2551 ขอขอบคุณ พศ. ดร. รัตติกร ยิ่งโนรัตน์ และ รศ. ดร. สุพล อนันดา ที่ปรึกษาโครงการที่ได้ให้การสนับสนุนและคำแนะนำในทุกด้านเพื่อช่วยให้อาชีพนักวิจัยของผู้วิจัยเริ่มต้นได้ ขอขอบคุณภาควิชาฟิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่ช่วยอำนวยความสะดวกในการใช้เครื่องมือ อุปกรณ์ และ สถานที่ ขอขอบคุณผู้ร่วมงานทุกท่าน ที่มีส่วนช่วยเหลือผู้วิจัยให้ดำเนินงานโครงการนี้สำเร็จลุล่วงได้ดี ที่ขาดไม่ได้อย่างยิ่ง ก็คือการสนับสนุนและกำลังใจ คุณ ศรินยารัตน์ งามจารุโรจน์ ภารรยาผู้เป็น กำลังใจ เป็นที่ปรึกษากันเสมอในการทำวิจัย โดยผ่านทางความรัก ความเข้าใจ และการดูแล ตลอดจนกำลังใจที่มอบให้ผู้วิจัยตลอดมา

(อาจารย์ ดร. อธิพงศ์ งามจารุโรจน์)
หัวหน้าโครงการ

บทคัดย่อ

รหัสโครงการ : MRG5180105

ชื่อโครงการ : การปรับปรุงสมบัติทางไฟฟ้าของเซรามิกเฟอร์โรอิเล็กทริกที่มีเลดซิงค์ในโอบตเป็นองค์ประกอบของหลักด้วยการใช้สารตั้งต้น แบบโคลัมไบเดร์และการเติมสารออกไซด์

ชื่อนักวิจัย : อาจารย์ ดร. อธิพงษ์ งามจารุโรจน์

ภาควิชาพิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

ผู้ช่วยศาสตราจารย์ ดร. รัตติกร ยิ้มนิรันดร์

สาขาวิชาพิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี

รองศาสตราจารย์ ดร. สุพล อนันดา

ภาควิชาพิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

E-mail Address : Ngamjarurojana@yahoo.com

ระยะเวลาโครงการ : 15 พฤษภาคม 2551 ถึง 14 พฤษภาคม 2553

โครงการวิจัยนี้ได้พัฒนากระบวนการปรับปรุงสมบัติทางไฟฟ้าของเซรามิกเฟอร์โรอิเล็กทริกที่มีเลดซิงค์ในโอบตเป็นองค์ประกอบของหลักด้วยการใช้สารตั้งต้น แบบโคลัมไบเดร์และการเติมสารออกไซด์ โดยอาศัยวิธีผสมผสานกระบวนการเตรียมสารแบบ mixed oxide อย่างง่ายๆเข้ากับเทคนิคการบดอย่างแบบสั่นกระแทกอย่างรวดเร็ว ซึ่งการควบคุมเงื่อนไขในการเผาแคลไชน์และการเผาชินເກອງ ได้แสดงให้เห็นถึงอิทธิพลของปัจจัยในกระบวนการเตรียมที่มีต่อลักษณะเฉพาะของ การก่อเกิดเฟส พัฒนาการของโครงสร้างจุลภาคและสมบัติทางไฟฟ้าของสารเซรามิกเซรามิกเฟอร์โรอิเล็กทริกที่มีเลดซิงค์ในโอบตเป็นองค์ประกอบของหลัก

คำหลัก: เฟอร์โรอิเล็กทริก, การเผาชินເກອງ, สมบัติทางไฟฟ้า, โคลัมไบเดร์ และ เลดซิงค์ในโอบต

Abstract

Project Code : MRG5180105

Project Title : Modification of Electrical Properties of Lead Zinc Niobate Based Ferroelectric Ceramics by Using Columbite Precursor and Oxide Additives

Investigators : Dr. Athipong Ngamjarurojana

Department of Physics and Materials Science, Faculty of Science,
Chiang Mai University

Assistant Professor Dr. Rattikorn Yimnirun

Department of Physics, Faculty of Science, Suranaree University of
Technology

Associate Professor Dr. Supon Ananta

Department of Physics and Materials Science, Faculty of Science,
Chiang Mai University

E-mail Address : Ngamjarurojana@yahoo.com

Project Period : May 15, 2008 to May 14, 2010

In this research, study in modification of electrical properties of Lead Zinc Niobate based ferroelectric ceramics by using Columbite precursor and oxide Additives, that were synthesized by using a mixed oxide via a rapid vibro-milling technique which have been investigated as a function of calcination conditions and sintering conditions. It has been found that effect on relationships between chemical compositions, sintering conditions, phase formation, densification, microstructure and electrical properties of the sintered products reflect to developing on Lead Zinc Niobate based ferroelectric ceramics.

Keywords: Ferroelectrics, Sintering, Electrical properties, Columbite and Lead Zinc Niobate

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ. และ สกว.

บทความวิชาการที่ได้ตوبرับหรือเสนอเพื่อตีพิมพ์ในวารสารวิชาการนานาชาติ (International publications) ที่จัดอยู่ในฐานข้อมูล ISI หรือ Scopus จำนวน 5 เรื่อง โดยเป็นผู้วิจัยหลักทั้ง 5 เรื่อง คือ

ผลงานวิจัยที่ตีพิมพ์ในวารสารระดับนานาชาติ โดยเป็นผู้วิจัยหลักทั้ง 5 เรื่อง(แสดงในภาคผนวก)

- 1.1 **Ngamjarurojana A.**, Ananta, S., Yimnirun, R., "Effect of Al_2O_3 addition on dielectric, piezoelectric and ferroelectric properties of $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramics" *Adv Mats Res* 55-57, pp. 89-92 (2008) **ไม่มี impact factor** อญี่ใน Scopus
- 1.2 **Ngamjarurojana, A.**, "Effect of Addition of CuO and Bi_2O_3 on Low Temperature Sintering of $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$ - $\text{PbZn}_{1/3}\text{Nb}_{2/3}\text{O}_3$ - $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ Based Ceramics" *CHIANG MAI JOURNAL OF SCIENCE* ,36 (1) pp 50-58 (2009) **ไม่มี impact factor** อญี่ใน ISI
- 1.3 **Ngamjarurojana, A.**, Ananta, S., "Effect of MnO_2 Addition on Dielectric, Piezoelectric and Ferroelectric Properties of $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ Ceramics" *CHIANG MAI JOURNAL OF SCIENCE* ,36 (1) pp 59-68 (2009). **ไม่มี impact factor** อญี่ใน ISI
- 1.4 **Ngamjarurojana, A.**, Yimnirun, R., Ananta, S., "Vibro-Milling Time on Phase Formation and Particle Size of ZnNb_2O_6 Nano- powders" *Key Eng Mats* (2010) 421-422, pp. 550-553 (2010) **มี impact factor** 0.224
- 1.5 **Ngamjarurojana A.**, Srisombat L., Yimnirun R., Ananta S. "Extended X-ray Absorption Fine Structure and X-ray Diffraction Studies of Mn-Doped PZN-PZT Ceramics," *Ferroelectrics* (accepted) **มี impact factor** 0.427

โดยเป็นผู้วิจัยร่วม

- 2.1. Wongdamnern N., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R., Scaling Behavior of Dynamic Hysteresis in Hard PZT Bulk Ceramics under Influence of Compressive Stress, "Impedance and dielectric properties of Nb-doped $\text{Pb}(\text{Zr}_{0.52}\text{Ti}_{0.48})\text{O}_3$ ceramics" *Adv Mats Res* 55-57, pp. 281-284 (2008) **ไม่มี impact factor** อญี่ใน Scopus

- 2.2. Ketsuwan P., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R., Cann D.P., "Impedance and dielectric properties of Nb-doped $Pb(Zr_{0.52}Ti_{0.48})O_3$ ceramics" *Adv Mats Res* 55-57, pp. 129-132 (2008) ไม่มี impact factor อยู่ใน Scopus
- 2.3. Silawongsawat C., Chandarak S., Sareein T., **Ngamjarurojana A.**, Maensiri S., Laoratanakul P., Ananta S., Yimnirun R., "Effect of calcination conditions on phase formation and characterization of $BiFeO_3$ powders synthesized by a solid-state reaction" *Adv Mats Res* 55-57, pp. 237-240 (2008) ไม่มี impact factor อยู่ใน Scopus
- 2.4. Chandarak S., Sareein T., **Ngamjarurojana, A.**, Maensiri S., Laoratanakul P., Ananta S., Yimnirun R., "Effect of Calcination Conditions on Phase Formation and Characterization of $BiFeO_3$ - $BaTiO_3$ powders synthesized by a solid-state reaction" *Adv Mats Res* 55-57, pp. 241-244 (2008) ไม่มี impact factor อยู่ใน Scopus
- 2.5. **Ngamjarurojana, A.**, "Effect of Addition of CuO and Bi_2O_3 on Low Temperature Sintering of $Pb(Zr,Ti)O_3$ - $PbZn_{1/3}Nb_{2/3}O_3$ - $Pb(Ni_{1/3}Nb_{2/3})O_3$ Based Ceramics" CHIANG MAI JOURNAL OF SCIENCE ,36 (1) pp 50-58 (2009) ไม่มี impact factor อยู่ใน ISI
- 2.6. Yimnirun R., Triamnak N., Unruan M., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S. Ferroelectric Properties of $Pb(Zr_{1/2}Ti_{1/2})O_3$ - $Pb(Zn_{1/3}Nb_{2/3})O_3$ Ceramics Under Compressive Stress *Curr Appl Phys* 2009; **9**: 249-252. มี impact factor 1.291
- 2.7. Yimnirun R., Triamnak N., Unruan M., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S. Stress-Dependent Ferroelectric Properties of $Pb(Zr_{1/2}Ti_{1/2})O_3$ - $Pb(Zn_{1/3}Nb_{2/3})O_3$ Ceramic Systems *Ceram Int* 2009; **35**: 185-189. มี impact factor 1.360
- 2.8. Wongdamnern N., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R. Dynamic Ferroelectric Hysteresis Scaling in $BaTiO_3$ Single Crystals *J Appl Phys* 2009; **105**: 044109. มี impact factor 2.171
- 2.9. Prasatkhetragarn A., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R., Cann D. Effects of Zr/Ti ratio on phase formation and electrical properties of $0.8Pb(Zr_{1/2}Ti_{1/2})O_3$ - $0.2Pb(Co_{1/3}Nb_{2/3})O_3$ ceramics *Curr Appl Phys* 2009; **9**: 802-806. มี impact factor 1.291
- 2.10. Sareein T., Unruan M., **Ngamjarurojana A.**, Jiansirisomboon S., Watcharapasorn A., Yimnirun R. Influences of Compressive Stress and Aging on Dielectric Properties of Sodium Bismuth Titanate Ceramics *Phys Lett A* 2009; **373**: 1583-1587. มี impact factor 1.711

2.11. Unruan M., Prasatkhetragarn A., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R. Dielectric and ferroelectric properties of lead zirconate titanate-lead nickel niobate ceramics under compressive stress *J Appl Phys* 2009; **105**: 084111-1-5. ມີ impact factor 2.171

2.12. Prasatkhetragarn A., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R., Cann D. Dielectric and ferroelectric properties of 0.8PZT-0.2PCN ceramics under sintering conditions variation *Curr Appl Phys* 2009; **9**: 1165-1169. ມີ impact factor 1.2

2.13. Ketsuwan P., Prasatkhetragarn A., Triamnak N., Huang C. C., **Ngamjarurojana A.**, Ananta S., Cann D. P., Yimnirun R. Electrical Conductivity and Dielectric and Ferroelectric Properties of Chromium Doped Lead Zirconate Titanate Ceramic *Ferroelectrics* 2009; **382**: 49-55. ມີ impact factor 0.427

2.14. Sareein T., **Ngamjarurojana A.**, Ananta S., Yimnirun R. Effect of Sb_2O_5 Addition on Phase Formation and Characterization of $(Bi_{1/2}Na_{1/2})TiO_3-(K_{1/2}Na_{1/2})NbO_3$ Ceramics *Ferroelectrics* 2009; **382**: 173-181. ມີ impact factor 0.427

2.15. Prasertpalichatr S., Unruan M., Sareein T., Tangsritrakool J., Dechakupta T., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R. Physical Properties and Electrical Aging Effect in Fe^{3+}/Nb^{5+} Hybrid-Doped Barium Titanate Ceramics *Ferroelectrics* 2009; **384**: 146-152. ມີ impact factor 0.427

2.16. Unruan M., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R. Dielectric Properties of $Pb(Zr_{1/2}Ti_{1/2})O_3-Pb(Zn_{1/3}Nb_{2/3})O_3$ Ceramics Under Compressive Stress Applied Perpendicular to Electric Field *Ferroelectrics* 2009; **384**: 84-92. ມີ impact factor 0.427

2.17. Prasatkhetragarn A., Ketsuwan P., Unruan M., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R., Cann D. P. Effect of Zr/Ti Ratio on Phase Formation and Dielectric Properties of $0.2Pb(Co_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_xTi_{1-x})O_3$ Ceramics *Ferroelectrics* 2009; **380**: 122-129. ມີ impact factor 0.427

2.18. Unruan M., Prasatkhetragarn A., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R. Change in Dielectric Properties of $Pb(Zr_{1/2}Ti_{1/2})O_3-Pb(Co_{1/3}Nb_{2/3})O_3$ Ceramics Under Compressive Stress Applied Perpendicular to Electric Field *Ferroelectrics* 2009; **384**: 174-182. ມີ impact factor 0.427

2.19. Ketsuwan P., Prasatkhetragarn A., Triamnak N., Huang C. C., **Ngamjarurojana A.**, Ananta S., Cann D. P., Yimnirun R. Effects of Niobium Doping on Dielectric and

Ferroelectric Properties of Chromium Modified Lead Zirconate Titane Ceramics *Ferroelectrics* 2009; **380**: 183-189. ມີ impact factor 0.427

2.20. Prasatkhetragarn A., Ketsuwan P., Unruan M., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R., Cann D. P. Effects of Sintering Conditions on Phase Formation and Dielectric Properties of $0.2\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ Ceramics *Ferroelectrics* 2009; **382**: 100-109. ມີ impact factor 0.427

2.21. Wongdamnern N., Triamnak N., **Ngamjarurojana A.**, Ananta S., Laosiritaworn Y., Yimnirun R. Stress-Dependent Scaling Behavior of Sub-Coercive Field Dynamic Hysteresis in $\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ Ceramic Systems *Ferroelectrics* 2009; **384**: 1-9. ມີ impact factor 0.427

2.22. Sareein T., Muanjai Unruan M., **Ngamjarurojana, A.**, Ananta, S., Yimnirun, R., "Effects of Compressive Stress on Dielectric Properties of Lead-Free $(\text{Bi}_{1/2}\text{Na}_{1/2})\text{TiO}_3$ - $(\text{K}_{1/2}\text{Na}_{1/2})\text{NbO}_3$ Ceramic Systems" *Key Eng Mats* (2010) 54-57, pp. 550-553 (2010). ມີ impact factor 0.224

2.23. Wongdamnern N., **Ngamjarurojana, A.**, Ananta, S., Laosiritaworn Y., Yimnirun, R., "Dynamic Hysteresis Scaling in BaTiO_3 Bulk Ceramics" *Key Eng Mats* (2010) 421-422, pp. 399-402 (2010) ມີ impact factor 0.224

2.24. Chandarak S., Unruan M., Sareein T., **Ngamjarurojana A.**, Maensiri S., Laoratanakul P., Ananta S., Yimnirun R. Fabrication and Characterization of $(1-x)\text{BiFeO}_3$ - $x\text{BaTiO}_3$ Ceramics Prepared by Solid State Reaction Method *J Mater Sci* 2009 *in press*. ມີ impact factor 1.081

2.25. Wongdamnern N., Triamnak N., Unruan M., **Ngamjarurojana A.**, Ananta S., Laosiritaworn Y., Yimnirun R. Stress-Dependent Scaling Behavior of Sub-Coercive Field Dynamic Ferroelectric Hysteresis in $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ Ceramic *Phys Lett A* 2009 *in revision*. ມີ impact factor 1.71

2.26. Prasatkhetragarn A., Ketsuwan P., **Ngamjarurojana A.**, Ananta S., Yimnirun R., Cann D. P. Synthesis and dielectric properties of $0.9\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ - $0.1\text{Pb}(\text{Fe}_{1/3}\text{Nb}_{2/3})\text{O}_3$ nanoceramics *Curr Appl Phys* 2009 submitted. ມີ impact factor 1.291

2.27. Wongdamnern N., **Ngamjarurojana A.**, Laosiritaworn Y., Ananta S., Yimnirun R. Dynamic Ferroelectric Hysteresis Scaling in BaTiO_3 Ceramics *Mater Chem Phys* 2009 submitted. ມີ impact factor 1.871

การเชื่อมโยงทางวิชาการอื่น ๆ ทั้งในและต่างประเทศ

นอกจาก ผศ.ดร. รัตติกร ยิ่มนิรัญ แล้ว รศ.ดร. สุพล อนันดา ผู้เป็นนักวิจัย ที่ปรึกษา ยังมีความร่วมมือกับ ผศ.ดร. ยงยุทธ เหลาศิริถาวร อาจารย์ประจำภาควิชา พลังงานและวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ซึ่งมีผลงานในส่วน ของ ข้อมูลการทดลองจริงทางยิสเทอร์ชีส ที่ได้ไปเบริ่งเกทีบกับการศึกษาพัฒนาทาง คณิตศาสตร์

อีกทั้งมีความร่วมมือกับอาจารย์ต่างมหาวิทยาลัยภายในประเทศ ได้แก่

- อ. ดร. ปิยชนน์ เกษสุวรรณ อาจารย์ประจำสาขาวิชาพลังงาน คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร วิทยาเขต พระยาฯ
- อ. ดร. อนุรักษ์ ประสาทเขตต์การ อาจารย์ประจำสาขาวิชาสัตวศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร วิทยาเขต พระยาฯ
- อ. ดร. สุพัตรา วงศ์แสนใหม่ อาจารย์ประจำภาควิชาพลังงาน คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้
- อ. ดร. เรวดี วงศ์ณีรุ่ง อาจารย์ประจำภาควิชาพลังงาน คณะวิทยาศาสตร์ มหาวิทยาลัย มหาวิทยาลัยแม่โจ้

ซึ่งความร่วมมือดังกล่าวได้แสดงในผลงานวิจัยที่ตีพิมพ์ในวารสารระดับนานาชาติ

Executive Summary

1. ที่มาและความสำคัญของปัญหา

การวิจัยเพื่อพัฒนาวัสดุชนิดใหม่ๆ ที่มีสมบัติสำคัญๆ ดียิ่งขึ้น มีข้อด้อยลดน้อยลง มีความหลากหลาย ในการทำงานหรือประยุกต์ใช้งานเพิ่มมากขึ้น สามารถนำมาทดแทนหรือใช้งานร่วมกับวัสดุชนิดเดิมๆ ที่มีขีดจำกัด หรือมีอายุการใช้งานน้อย ตลอดจนถึงการปรับปรุงประสิทธิภาพของวิธีการผลิตที่ใช้กันอยู่ให้ดียิ่งขึ้น ต่างก็ล้วนแล้วแต่เป็นหัวใจสำคัญของการพัฒนา คุณภาพผลิตภัณฑ์ทางด้านชิ้นส่วนและอุปกรณ์อิเล็กทรอนิกส์ทั้งสิ้น และก็ยังคงเป็นหนึ่งในประเด็นสำคัญที่มีความท้าทายต่อบรรดานักวิจัยในวงการนี้ มาโดยตลอด ซึ่งการศึกษาวิจัยเพื่อนำไปสู่การพัฒนาคุณภาพในส่วนนี้มีความจำเป็นอย่างยิ่งที่จะต้องอาศัยความรู้ความเข้าใจในธรรมชาติหรือ ศาสตร์ของตัววัสดุ กระบวนการผลิตที่เลือกใช้ และความสัมพันธ์ระหว่างปัจจัยในกระบวนการผลิต ที่มีผลต่อการเกิดเฟส โครงสร้าง และสมบัติสำคัญๆ ของวัสดุที่ได้

วัสดุในกลุ่มเพอรอพสไกร์แลกเซอร์เฟรโรอิเล็กทริก อย่างเช่น $Pb(Mg_{1/3}Nb_{2/3})O_3$ หรือ PMN, $Pb(Ni_{1/3}Nb_{2/3})O_3$ หรือ PNN, และ $Pb(Zn_{1/3}Nb_{2/3})O_3$ หรือ PZN นั้น จัดได้ว่าเป็นวัสดุในกลุ่มเพรโรอิเล็กทริก ที่ได้รับความสนใจในการศึกษาค้นคว้าวิจัยกันอย่างกว้างขวางทั้งในเชิงวิชาการและใน เชิงพาณิชย์ เพื่อสนับสนุนงานทางด้านอุตสาหกรรม การพาณิชย์ การผลิตแบบ mass production ที่ต้องอาศัยเครื่องจักรกลอัตโนมัติที่ทันสมัยและมีความแม่นยำสูง ตลอดจนถึงเรื่องของการอำนวย ความสะดวกให้แก่มนุษย์ ในการดำเนินชีวิตประจำวันในรูปแบบต่างๆ ที่ครอบคลุมไปแทบทุกด้าน ไม่ว่าจะเป็นอุปกรณ์ภายในบ้าน ในที่ทำงาน อุปกรณ์ทางการแพทย์ ทางการกีฬาและบันเทิง ทางการคมนาคมติดต่อสื่อสาร ทางการศึกษาและทางเศรษฐกิจ โดยเฉพาะอย่างยิ่ง การจ้างงานใน แบบเอเชียดังตัวอย่างที่ปรากฏอยู่ตามนิคมอุตสาหกรรมต่างๆ เป็นต้น สำหรับตัวอย่างของการนำ วัสดุเหล่านี้มาประยุกต์ใช้เป็นชิ้นส่วนและอุปกรณ์อิเล็กทรอนิกส์ ประเภทต่างๆ ได้แก่ ตัวเก็บประจุ ไฟฟ้า (capacitors) เซนเซอร์ (sensors) ทรานส์ดิวเซอร์ (transducers) หม้อแปลงไฟฟ้า (transformers) อุปกรณ์ตรวจสอบตำแหน่งหรือรอยแตกร้าวในวัสดุแบบไม่ทำลาย (non-destructive testing detectors) และอุปกรณ์ทางการแพทย์ชนิดต่างๆ เช่น หัวตรวจอัลตราซาวด์ (ultrasonic probe) หัวตรวจความดันโลหิต (blood pressure probes) และหุ่นยนต์ขนาดจิ๋ว (microrobots) สำหรับใช้ในการตรวจวินิจฉัยอวัยวะภายในร่างกายแบบไร้สาย เป็นต้น

สารเฟร์โรอิเล็กทริกที่มีการนำไปประยุกต์ใช้ทางด้านอิเล็กทรอนิคเมจิก (electroceramics) ส่วนมากจะมีโครงสร้างผลึกเป็นแบบเพอรอพสไกร์ (perovskite structure) โดยมีทั้งแบบเพอรอพสไกร์อย่างง่าย (simple perovskite: สูตร ABO_3) เช่น $BaTiO_3$, $PbTiO_3$ และ $SrTiO_3$ เป็นต้น และ แบบเพอรอพสไกร์ซึ่งซ่อน (complex perovskite: สูตร $(A,A')(B,B')O_3$) เช่น $Pb(Zr_xTi_{1-x})O_3$, $Pb(Fe_{1/2}Nb_{1/2})O_3$, $Pb(Fe_{1/2}Ta_{1/2})O_3$, $(Ba,Sr)TiO_3$ และ $(Pb,La)(Zr,Ti)O_3$ เป็นต้น [1-3]

โดยทั่วไปแล้ว สารเฟร์โรอิเล็กทริกสามารถแบ่งย่อยออกได้เป็น 2 ประเภทใหญ่ๆ โดยการพิจารณาจากลักษณะของการเปลี่ยนสถานะของเฟสและการตอบสนองต่อความถี่ของสัญญาณไฟฟ้า คือสารเฟร์โรอิเล็กทริก แบบปกติ (normal ferroelectrics) และสารเฟร์โรอิเล็กทริกแบบบริแลกเซอร์ (relaxor ferroelectrics) ซึ่งสารในกลุ่มแรกจะมีการเปลี่ยนสถานะของเฟสเกิดขึ้นอย่างรวดเร็ว (sharp phase-transition) บริเวณอุณหภูมิคิรี (Curie temperature: T_C) และมีสมบัติไดอิเล็กทริกที่ไม่ค่อยเปลี่ยนแปลงไปตามความถี่ ในขณะที่สารในกลุ่มที่สองนั้นจะแสดงพฤติกรรมการเปลี่ยนสถานะของเฟสแบบช้าๆ และแผ่อออก เป็นแบบกว้าง (diffuse and disperse phase-transition) และที่สำคัญต้องแสดงพฤติกรรมการเปลี่ยนแปลงสมบัติไดอิเล็กทริก (ทั้งค่า dielectric constant และค่า dielectric loss) ไปตามความถี่ในลักษณะที่คล้ายคลึงกันอย่างชัดเจน [4-6] ตัวอย่างสารเฟร์โรอิเล็กทริกแบบปกติที่สำคัญ ได้แก่ BaTiO_3 หรือ BT ซึ่งถูกจัดให้เป็นต้นแบบของสารพิโซอิเล็กทริก [7-13] สำหรับตัวอย่างของสารเฟร์โรอิเล็กทริกแบบบริแลกเซอร์ที่สำคัญ ได้แก่ $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3$ หรือ PMN, $\text{Pb}(\text{In}_{1/2}\text{Nb}_{1/2})\text{O}_3$ หรือ PIN, $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ หรือ PNN, $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ หรือ PZN และ $\text{Pb}(\text{Co}_{1/3}\text{Nb}_{2/3})\text{O}_3$ หรือ PCN เป็นต้น [4-6]

สำหรับสารเพอร์อโพสไกเดอร์แลกเซอร์เฟร์โรอิเล็กทริกในกลุ่มที่มีตัวกว่าเป็นองค์ประกอบหลัก (Lead-based perovskite relaxor ferroelectrics) นั้น มีสูตรทั่วไปคือ $\text{Pb}(B,B')\text{O}_3$ โดย B เป็นแคตไอออนชนิดที่มีเวลนชีค่าต่ำ (Mg^{2+} , Zn^{2+} , Ni^{2+} และ Fe^{3+} เป็นต้น) ส่วน B' เป็นแคตไอออนชนิดที่มีเวลนชีค่ามาก (Ti^{4+} , Nb^{5+} , Ta^{5+} และ W^{5+} เป็นต้น) และถือได้ว่าเป็นสารรีแลกเซอร์เฟร์โรอิเล็กทริกชนิดที่ได้รับความนิยมสูงมาก โดยเฉพาะอย่างยิ่ง สำหรับการนำไปประยุกต์ใช้ในตัวเก็บประจุไฟฟ้าแบบหลายชั้น (multilayer capacitors หรือ MLC) อุปกรณ์ชุดคู่ความไฟฟ้าเชิงกล (electro-mechanical coupling devices) และตัวขับเร้า (actuators) เป็นต้น [1-5] อย่างไรก็ตาม สารรีแลกเซอร์ก็ยังมีข้อจำกัดหรือปัญหาที่ก่อให้เกิดประเด็นที่สำคัญมาก ก็คือ ปัญหาในเรื่องของการควบคุมปริมาณสารสัมพันธ์ของสารเป้าหมายในกระบวนการผลิต ทั้งในขั้นตอนการสังเคราะห์ผงและในการประดิษฐ์เป็นเซรามิก เนื่องจากในการสังเคราะห์ผงสารรีแลกเซอร์มักจะพบกับปัญหาการเกิด เฟสไฟโรคลอร์ (เฟสที่ไม่ต้องการ) ซึ่งมีเสถียรภาพสูงกว่าปะปนอยู่กับเฟสเพอร์อโพสไกเดอร์ของสารเป้าหมายอยู่เสมอ ส่วนปัญหาสำคัญๆ ในขั้นตอนการประดิษฐ์เป็นเซรามิก ก็คือ การที่สารรีแลกเซอร์มีสมบัติไดอิเล็กทริกที่อ่อนไหวไปตามการเปลี่ยนแปลงของเงื่อนไขในการเผาชิ้นเทอร์ได้ค่อนข้างมาก และต้องมีการควบคุมบรรยายการเผาที่อุณหภูมิสูงๆ เพื่อป้องกันปัญหารีองการเกิด PbO -loss ที่มักจะนำไปสู่การเกิดเฟสแปลกปลอมรวมทั้งเฟสไฟโรคลอร์ที่สามารถจะส่งผลเสียต่อสมบัติทางไฟฟ้าของเซรามิกได้ อย่างรุนแรง เป็นต้น [1-6] ซึ่งโครงการวิจัยนี้มีพิษทางการวิจัยที่มุ่ง

แก้ไขปัญหาหรือตอบคำถามสำคัญ 2 ข้อที่เกิดขึ้นในขั้นตอนการผลิตสารรีแลกเซอร์เฟร์โรอิเล็กทริกในกลุ่มที่มีตะกั่วเป็นองค์ประกอบหลัก ก็คือ

1) ทำอย่างไรจึงสามารถทำการสังเคราะห์พลาสติกเหล่านี้ให้ปราศจากเฟลไซไฟคลอร์หรือให้มีเหลือน้อยที่สุดได้สำเร็จ และ

2) ทำอย่างไรจึงสามารถรักษาเสถียรภาพของสารเพอโรอพสไกค์ที่ได้มาให้คงอยู่ในเชรามิกที่มีความหนาแน่นสูงหลังจากต้องผ่านกระบวนการเผาชินแทร์ที่อุณหภูมิสูงๆได้สำเร็จ

เลดซิงค์ในโอเบตสูตร $Pb(Zn_{1/3}Nb_{2/3})O_3$ หรือ PZN ซึ่งเป็นสารเฟร์โรอิเล็กทริกกลุ่มรีแลกเซอร์ ที่มีอุณหภูมิคริปปะมาณ $140^{\circ}C$ มีรายงานว่าผลึกเชิงเดี่ยวของ PZN สามารถแสดงค่าคงที่ไดอิเล็กทริกสูงสุด ที่ความถี่ 1 kHz ได้ถึงประมาณ 60,000 [14] นอกจากนี้ยังมีค่าสัมประสิทธิ์สมบัติพิโซอิเล็กทริก (d_{33}) ค่าความเครียดที่ถูกเหนี่ยวนำจากสนามไฟฟ้า (s) และค่าคงที่ไฟฟ้าเชิงกลคู่ค่า (k_{33}) ที่สูงถึงประมาณ $2,500\text{ pm/V}$, 1.7% และ 90% ตามลำดับ [12,14] เพราะความที่มีทั้งสมบัติไดอิเล็กทริก สมบัติพิโซอิเล็กทริกและสมบัติอิเล็กโทรสทธิกที่ฟโอดคเด่นมากๆ PZN จึงเป็นสารที่ยังคงได้รับความสนใจอย่างต่อเนื่องยาวนานและจัดได้ว่าเป็นสารที่มีศักยภาพสูงมากสำหรับการนำไปประยุกต์ใช้ที่อุณหภูมิสูงๆ เช่น ในตัวขับเร้า หัวตรวจวัดอัลตราซาวด์ รวมถึงอุปกรณ์อิเล็กทรอนิกส์ที่ต้องการความแม่นยำและความละเอียดอ่อนมากๆ เป็นต้น [1,12,13] ซึ่ง PZN ที่เตรียมด้วยในรูปของผลึกเชิงเดี่ยวเท่านั้น แต่อย่างไรก็ตาม การปลูกผลึกเชิงเดี่ยวของสาร PZN ก็ยังไม่เป็นที่นิยม เพราะหลายเนื้องจาก มีข้อจำกัดหลายอย่าง โดยเฉพาะอย่างยิ่ง เรื่องของเครื่องมือที่มีความ слับซับซ้อน และมีค่าใช้จ่ายสูง [1,13]

ในโครงการวิจัยนี้ ได้เลือกสาร PZN ซึ่งเป็นที่ทราบกันในวงการสารเพอโรอพสไกค์รีแลกเซอร์เฟร์โรอิเล็กทริกว่าเป็นสารที่เตรียมได้ความบริสุทธิ์มากที่สุด [17] มาเป็นตัวแทนของสารในกลุ่ม เพอโรอพสไกค์รีแลกเซอร์เฟร์โรอิเล็กทริกชนิดที่มีตะกั่วเป็นองค์ประกอบหลักสำหรับการศึกษาวิจัย โดยมีข้อมูลของผลงานวิจัยที่เกี่ยวข้องกับประเด็นปัญหาในการผลิตสารดังต่อไปนี้

ประเด็นการค้นคว้าวิจัยในเรื่องของการผลิตวัสดุในกลุ่มเพอโรอพสไกค์รีแลกเซอร์เฟร์โรอิเล็กทริกนั้นก็ได้ว่าเป็นเรื่องใหญ่ที่ได้รับความสนใจมาอย่างนาน เหตุเพราะว่าการผลิตสารในกลุ่มนี้มักจะมีปัญหารื่องการควบคุมปริมาณสารสัมพันธ์ (stoichiometry) ของสารเป้าหมาย โดยมีปัจจัยหลายประการที่เข้ามาเกี่ยวข้อง นับตั้งแต่ขั้นตอนในการคัดเลือกชนิดและคุณภาพของสารตั้งต้นที่นำมาใช้ วิธีการสังเคราะห์ผงที่นำมาใช้ ประสิทธิภาพของแต่ละวิธีการในการทำให้สารองค์ประกอบสามารถเข้ากันได้ดีจนก่อเกิดเป็นเฟลที่มีสูตรตรงตามที่ได้ออกแบบเอาไว้ เนื่องจากสารที่เป็นองค์ประกอบในวัสดุกลุ่มนี้สามารถที่จะทำปฏิกิริยากันแล้ว ก่อเกิดเป็นเฟลต่างๆได้หากหลากรายชนิดมากตามแผนภาพเฟล (phase diagram) ของสารแต่ละระบบ โดยมีเรื่องของอุณหภูมิที่เลือกใช้ใน

การสังเคราะห์เป็นหนึ่งในปัจจัยตัวสำคัญ นอกจากนี้ ก็ยังมีเรื่องของความยากง่ายในการยึดเกาะกันของไอออนเพื่อก่อเกิดเป็นโครงสร้างรูปแบบต่างๆเข้ามาเกี่ยวข้องด้วย โดยเป็นที่ทราบกันดีในวงการนี้ว่า สารที่เป็นองค์ประกอบของหลักในวัสดุกลุ่มนี้มักชอบที่จะก่อเกิดเป็นสารที่มีโครงสร้างไฟโรคลอร์ (pyrochlores) ซึ่งส่วนใหญ่จะมีสารในระบบ $PbO-Nb_2O_5$ เป็นองค์ประกอบของหลัก (สารเหล่านี้ไม่ใช่สารเพร์โตรอเลียมที่เป็นตัวบอนทำลายสมบัติทางไฟฟ้าของสารเป้าหมาย) เหตุเพราะว่าสารเหล่านี้สามารถจะเกิดการก่อรูปขึ้นมาได้ง่ายกว่า มีเสถียรภาพสูงกว่าและใช้พลังงานในการก่อเกิดน้อยกว่า การเกิดเป็นโครงสร้างแบบเพอรอฟส์ไกต์นั้นเอง หรือถ้ากล่าวใน อีกแง่หนึ่งก็คือสารองค์ประกอบ $Pb(Zn_{1/3}Nb_{2/3})O_3$ นั้นมีความสามารถในการเข้าทำปฏิกิริยาด้วยกว่าสารองค์ประกอบตัวอื่น ซึ่งถ้าหากจะทำการแก้ไขด้วยการเพิ่มอุณหภูมิที่ใช้ให้สูงขึ้นจนเพียงพอที่จะทำให้สาร Zn เกิดการเข้าทำปฏิกิริยากับสารอื่นได้ดีขึ้น ก็มักจะต้องเจอกับปัญหาใหม่ที่สามารถเกิดขึ้นได้ง่ายเมื่ออุณหภูมิเริ่มสูงเกิน $900^{\circ}C$ ขึ้นไปนั่นก็คือ เรื่องการสูญเสียสารองค์ประกอบชนิด Pb (PbO -loss) ระหว่างออกไประบบส่วนทำให้เกิดสภาวะขาดแคลน Pb ขึ้นมาอีก และส่งผลต่อการควบคุมปริมาณสารสัมพันธ์โดยรวมของสารเป้าหมายในที่สุด นักวิจัยเป็นจำนวนมากจึงได้หันไปให้ความสนใจกับการพัฒนาวิธีการสังเคราะห์สารในกลุ่มนี้ที่เน้นการควบคุมปริมาณสารสัมพันธ์โดยใช้วิธีทางเคมีแทน ในขณะที่วิธีการเตรียมสาร PZN ในรูปของผงผลึกเชิงซ้อนก็มีชื่อเดิมมากๆในเรื่องของปัญหาการไม่สามารถเตรียมให้ได้ไฟสเพอร์รอฟส์ไกต์ในปริมาณสูงๆและขาดความชื่อถือได้ของการทำซ้ำใหม่หรือการผลิตในปริมาณมากๆ เนื่องจากว่ามีไฟสเปลคปลอมและพากไฟโรคลอร์ เช่น $Pb_3Nb_4O_{13}$ หรือ $Pb(Zn_{0.42}Nb_{0.75})O_{3.24}$ หรือ $Pb_{1.83}(Nb_{1.7}Zn_{0.29})O_{6.39}$ ปรากฏร่วมอยู่ด้วยเสมอ รวมทั้งไฟสเพอร์รอฟส์ไกต์ PZN เองเมื่อได้รับความร้อนสูงเกิน $700^{\circ}C$ ภายใต้ความดันบรรยายกาศ ก็สามารถจะเกิดการแยกสลายขององค์ประกอบของเป็น PbO , ZnO และ $Pb_2Nb_2O_7$ ได้เช่นกัน [14,15,16] ซึ่งเมื่อเปรียบเทียบ ความยากง่ายกับการสังเคราะห์สาร PMN และ PNN แล้ว มีรายงานว่า PZN เป็นสารที่เตรียมได้ยากที่สุด [17] โดยคาดกันว่า เพราะ PZN เป็นสารที่มีค่า tolerance factor และค่า electronegativity ต่ำมาก [18] และที่สำคัญ แคตไอออน Pb^{2+} ซึ่งมีความสามารถในการเกิดขึ้นสูงและการเกิดอันตรกิริยากับ Zn^{2+} จะก่อให้เกิดอันตรกิริยาทั้งแบบ steric และแบบ electrostatic ขึ้นมา ทำลายเสถียรภาพของไฟสเพอร์รอฟส์ไกต์ ให้เป็นไฟโรคลอร์ที่มีความเสถียรสูงกว่าและส่งผลเสียต่อสมบัติทางไฟฟ้าของเซรามิก ในที่สุด [19,20] และถึงแม้ว่าจะมีการพัฒนาเทคนิคแบบ columbite เข้ามาช่วย โดยทำการสังเคราะห์ สาร $ZnNb_2O_6$ ขึ้นมาก่อนแล้วจึงนำไปใช้เป็นสารตัวกลางเพื่อทำปฏิกิริยากับ PbO ต่อในภายหลัง [18,20,21] แต่ก็ยังไม่เป็นที่ยืนยันแน่ชัดว่าวิธีการเหล่านี้สามารถแก้ปัญหาดังกล่าวได้จริงและสามารถทำซ้ำใหม่ได้ สำหรับวิธีการแก้ไขปัญหานี้ในรูปแบบอื่นๆที่มีอยู่ ก็ได้แก่ การใช้วิธีเตรียมภายใต้สภาวะที่มีความดันสูงๆ [22] การใช้กระบวนการทางเคมีอย่างโซล-เจล [23] การใช้ $Pb_3Nb_2O_8$ เป็นสารตั้งต้นร่วมกับการเติม excess ZnO ไป [24]

และที่นิยมกันมาก ก็คือ การใช้สารเฟร์โรอิเล็กทริกชนิดอื่นๆ ที่เตรียมได้ง่ายกว่า เช่น PZT หรือ PT หรือ BT เข้ามาช่วยในการสร้างเสถียรภาพของเฟสเพอรอพส์ไกค์ให้แก่ระบบเพื่อจะได้นำสักยภาพของสาร PZN ไปใช้ประโยชน์ได้ เป็นต้น [16,25,26]

สำหรับงานวิจัยที่เกี่ยวข้องโดยตรงกับเรื่องสาร $ZnNb_2O_6$ นั้นก็เริ่มนิปปากฎอุกามาบังแล้ว แต่ส่วนมากจะเน้นไปที่เรื่องของการศึกษาสมบัติในโครงเฟร์โรอิเล็กทริกของสารชนิดนี้เป็นหลัก [27-29] ทางผู้วิจัยจึงมีความสนใจที่จะทำการศึกษาและพัฒนาระบวนการสังเคราะห์สาร $ZnNb_2O_6$ ด้วยเทคนิค solid-state reaction ซึ่งก็จะรวมไปถึงการศึกษาวิจัยในเรื่องของการประดิษฐ์เซรามิก PZN โดยใช้ $ZnNb_2O_6$ เป็นสารตั้งต้นด้วย นอกจากนี้การปรับปรุงและพัฒนาสมบัติทางไฟฟ้าของสารเซรามิก เฟร์โรอิเล็กทริกเพื่อนำไปประยุกต์ใช้ทางด้านอิเล็กทรอเซรามิก ส่วนใหญ่มักนิยมเติมสารออกไซด์ ชนิดต่างๆ [30-35] เช่น Nb_2O_5 , Fe_2O_3 , MnO_2 รวมไปถึงสารเฟร์โรอิเล็กทริกชนิดอื่นๆ ที่เตรียมได้ ง่ายกว่า เช่น BT [36] หรือ PT [37] หรือ PZT [38] เข้าไปเพื่อช่วยพัฒนาสมบัติทางไฟฟ้าอีกทั้ง ยังมีรายงานว่าวิธีดังกล่าวสามารถทำให้เฟสเพอรอพส์ไกค์มีความเสถียรภาพ [18,36-39] ซึ่งผู้วิจัยเอง ก็มีประสบการณ์ในการทำงานวิจัยที่เกี่ยวข้องกับการพัฒนาสารในระบบ PZN-PZT มาบังแล้ว [40-41] ทางผู้วิจัยมีความสนใจที่ทำการศึกษาพัฒนาระบวนการเกิดของเฟสเพอรอพส์ไกค์ โครงสร้างจุลภาคและสมบัติทางไฟฟ้าของสาร PZN ที่มีการเติมสารออกไซด์ชนิดต่างๆ เช่น MnO_2 , Fe_2O_3 และ Al_2O_3 ลงไปด้วย โดยคาดว่าจะได้ข้อมูลใหม่ๆ ที่สามารถนำไปใช้ในการพัฒนาแนวทางการวิจัยเพื่อเสริมกับองค์ความรู้พื้นฐานเดิมที่มีอยู่ และมีผลลัพธ์เนื่องต่อการนำไปพิมพ์เผยแพร่ ใช้งานต่อไป เนื่องจากยังไม่มีรายงานผลการศึกษาในประเด็นนี้มาก่อน

เอกสารอ้างอิง

- [1] A.J. Moulson and J.M. Herbert, *Electroceramics*, 2nd ed., Wiley-Interscience, Chichester, 2003.
- [2] R.C. Buchanan, *Ceramic Materials for Electronics*, 3rd ed., Marcel Dekker, New York, 2004.
- [3] A.S. Bhalla, R. Guo and R. Roy, *Mater. Res. Innov.* **4**, 3 (2000).
- [4] L.E. Cross, *Ferroelectrics*. **151**, 305 (1994).
- [5] N. Setter and R. Waser, *Acta Mater.* **48**, 151 (2000).
- [6] S.E. Park and T.R. Shrout, *Mater. Res. Innov.* **1**, 20 (1997).
- [7] สุพล อนันดา, การพัฒนาระบวนการเตรียมสาร PZT โดยวิธีการประยุกต์กระบวนการผลผลิตแบบ 2 ขั้นตอน, รายงานฉบับสมบูรณ์โครงการทุนวิจัยหลังปริญญาเอก, สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) พ.ศ. 2545.
- [8] W. Chaisan, S. Ananta and T. Tunkasiri, *Curr. Appl. Phys.* **4**, 182 (2004).
- [9] A. Udomporn and S. Ananta, *Mater. Lett.* **58**, 1154 (2004).

- [10] W. Chaisan, R. Yimnirun, S. Ananta and D.P. Cann, *Mater. Lett.* **59**, 3732 (2005).
- [11] R. Wongmaneerung, R. Yimnirun and S. Ananta, *Mater. Lett.* **60**, 1452 (2006).
- [12] K. Uchino, *Ferroelectric Devices*, Marcel Dekker, New York, 2000.
- [13] G.H. Haertling, *J. Am. Ceram. Soc.* **82**, 797 (1999).
- [14] K. Uchino, *Solid State Ionics*. **108**, 43 (1998).
- [15] J. wang, J. Xue and D. Wan, *Solid State Ionics*. **127**, 169 (2000).
- [16] A. Halliyal, U. Kumar, R.E. Newnham and L.E. Cross, *Am. Ceram. Soc. Bull.* **66**, 671 (1987).
- [17] M.M.A. Sekar and A. Halliyal, *J. Am. Ceram. Soc.* **81**, 380 (1998).
- [18] T.R. Shrout and A. Halliyal, *Am. Ceram. Soc. Bull.* **66**, 704 (1987).
- [19] N. Wakiya, N. Ishizawa, K. Shinazaki and N. Mizutani, *Mater. Res. Bull.* **30**, 1121 (1995).
- [20] M. Villegas, A.C. Caballerc, C. Moure, P. Duran, J.F. Fernandez and R.E. Newnham, *J. Am. Ceram. Soc.* **83**, 141 (2000).
- [21] C.L. Li and C.C. Chou, *Integr. Ferroelectr.* **55**, 955 (2003).
- [22] Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamura and M. Koizumi, *J. Am. Ceram. Soc.* **52**, 516 (1969).
- [23] J.M. Hayes, T.R. Gururaja, G.L. Geoffroy and L.E. Cross, *J. Mater. Sci. Lett.* **5**, 396 (1987).
- [24] R. Palai, S. Sharma and R.N.P. Choudhary, *J. Mater. Sci. Lett.* **20**, 1237 (2001).
- [25] N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan and D.P. Cann, *Mat. Sci. Eng. B* **108**, 258 (2004).
- [26] W. Zhu, A.L. Kholkin, P.Q. Mantas and J.L. Baptista, *J. Am. Ceram. Soc.* **84**, 1740 (2001)
- [27] L.B. Kong, J. Ma, H. Huang, R.F. Zhang and T.S. Zhang, *J. Alloy. Compd.* **347**, 308 (2002).
- [28] Y.C. Zhang, Z.X. Yue, Z.L. Gui and L.T. Li, *Ceram. Int.* **29**, 555 (2003).
- [29] R.C. Pullar, J.D. Breeze and N. McN. Alford, *J. Am. Ceram. Soc.* **88**, 2466 (2005).
- [30] T. Kala, *Phase Transitions*, **36**, 65 (1991).
- [31] T.K. Vasileva, M.M. Nadoliisky and S.D. Toshev, *Phys. Status Solidi. (a)*, **86**, 109 (1984).
- [32] S. Takahashi and M. Takahashi, *Jpn. J. Appl. Phys.*, **11**, 31 (1972)
- [33] K. Toshio, S. Toshimasa and T. Takaaki, *Jpn. J. Appl. Phys.*, **31**, 3058 (1992)
- [34] J. S. Kim, K. H. Yoon, B. H. Choi, J. O. Park, and J. M. Lee, *J. Kor. Ceram. Soc.*, **27**, 187 (1990).
- [35] H. Yudong, Z. Mankang and G. Feng, *J. Am. Ceram. Soc.*, **87**, 847 (2004).
- [36] A. Halliyal, U. Kumar, and R. E Newnham, *Am. Ceram. Soc. Bull.* **66**, 671 (1987).
- [37] J. R. Belsick, A. Halliyal, U. Kumar, and. R. E. Newnham, *Am. Ceram. Soc. Bull.* **66**, 664 (1987).
- [38] H.Q. Fan and H.E. Kim, *J. Am. Ceram. Soc.*, **84**, 636 (2001).
- [39] N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, D.P. Cann, *J. Mater. Sci. and Eng. B.*, **108**, 258 (2004).

2. วัตถุประสงค์

- 2.1 เพื่อศึกษาอิทธิพลของปัจจัยในกระบวนการสังเคราะห์สารเฟร์โรอิเล็กทริก $Pb(Zn_{1/3}Nb_{2/3})O_3$ ด้วยเทคนิค mixed oxide แบบคัดแปลงที่ใช้ $ZnNb_2O_6$ เป็นสารตั้งต้น ที่มีต่อพฤติกรรมการก่อเกิดเฟส สัมฐานวิทยาและองค์ประกอบทางเคมีระดับจุลภาค เปรียบเทียบกับวิธีการตีบีมแบบดั้งเดิม
- 2.2 เพื่อศึกษาอิทธิพลของการเผาชินเทอร์ที่มีต่อพฤติกรรมการก่อเกิดเฟส โครงสร้างจุลภาค และสมบัติทางไฟฟ้าของเซรามิก $Pb(Zn_{1/3}Nb_{2/3})O_3$
- 2.3 เพื่อศึกษาอิทธิพลของการเติมสารออกไซด์ชนิดต่างๆ ที่มีต่อพฤติกรรมการก่อเกิดเฟส โครงสร้างจุลภาคและสมบัติทางไฟฟ้าของเซรามิก $Pb(Zn_{1/3}Nb_{2/3})O_3$
- 2.4 เพื่อตีพิมพ์เผยแพร่ผลการวิจัยลงในวารสารวิชาการระดับนานาชาติ รวมทั้งการนำเสนอในที่ประชุมวิชาการทั้งในและต่างประเทศ

3. วิธีทดลอง

โครงการวิจัยนี้ประกอบด้วยระเบียบวิธีวิจัย 2 ส่วนหลัก คือ

- [1] การประดิษฐ์และตรวจสอบเซรามิก $Pb(Zn_{1/3}Nb_{2/3})O_3$ ที่เติมสารตั้งต้นแบบดั้งเดิม ด้วยการตีบีมแบบดั้งเดิม
- [2] การประดิษฐ์และตรวจสอบเซรามิก $Pb(Zn_{1/3}Nb_{2/3})O_3$ ที่มีการเติมสารออกไซด์ลงไปโดยมีรายละเอียดของแต่ละส่วนดังนี้

1. ศึกษาเก็บรวบรวมข้อมูลจากเอกสารทางวิชาการที่เกี่ยวข้อง
2. ทำการสังเคราะห์สาร $Pb(Zn_{1/3}Nb_{2/3})O_3$ ด้วยวิธีการ mixed oxide แบบดั้งเดิม โดยใช้ PbO , ZnO และ Nb_2O_5 เป็นสารตั้งต้น (ชุดควบคุม)
3. ทำการสังเคราะห์สาร columbite $ZnNb_2O_6$ ด้วยเทคนิค solid-state reaction
4. ทำการสังเคราะห์สาร $Pb(Zn_{1/3}Nb_{2/3})O_3$ ด้วยวิธี mixed oxide แบบคัดแปลงที่ใช้ $ZnNb_2O_6$ (จากข้อที่ 3) เป็นสารตั้งต้น (columbite route)
5. ศึกษาอิทธิพลของปัจจัยในกระบวนการสังเคราะห์สารที่ได้จากข้อ 2-4 ด้วยเทคนิค solid-state reaction ได้แก่ เทคนิคการบดย่อยระยะเวลาในการบดย่อยและเจ่อน้ำในการเผา calcination (อุณหภูมิที่ใช้ในการเผา ระยะเวลาในการเผาและอัตราการขึ้น/ลงอุณหภูมิ) ที่มีต่อพฤติกรรมการก่อเกิดเฟสและสัมฐานวิทยา (รูปร่าง ขนาดและการแยกแจงของขนาดอนุภาค)

6. ทำการตรวจวิเคราะห์สารที่เตรียมได้ด้วยการใช้เทคนิคต่างๆร่วมกัน เช่น TGA, DTA, XRD, SEM, TEM, EDX และ laser diffraction เป็นต้น
7. ทำการประดิษฐ์เซรามิก $Pb(Zn_{1/3}Nb_{2/3})O_3$ จากผงที่เตรียมได้ในข้อ 2 และ 4 ด้วยวิธีการเผาซินเตอร์แบบบกติ (pressureless sintering)
8. ทำการคำนวณหาปริมาณเฟสเพอรอพส์ไกค์และความหนาแน่นสัมพัทธ์ที่ได้จากการเผา sintering ในแต่ละเงื่อนไข นำเสนอคลายเพื่อขอข่ายพุติกรรมการก่อเกิดเฟส การแน่นตัว และสมบัติทางไฟฟ้าของสารเซรามิก PZN พร้อมทั้งวิเคราะห์เบรี่ยนเพียบผลการทดลองที่ได้
9. ทำการสังเคราะห์สารที่มี $Pb(Zn_{1/3}Nb_{2/3})O_3$ เป็นองค์ประกอบหลักด้วยวิธีการ mixed oxide โดยการเติมสารออกไซด์ชนิดต่างๆ เช่น $Pb(Zr,Ti)O_3$, MnO_2 , Fe_2O_3 และ Al_2O_3 เป็นต้น
10. ทำการประดิษฐ์เซรามิก $Pb(Zn_{1/3}Nb_{2/3})O_3$ จากผงที่เตรียมได้ในข้อ 8.9 ด้วยวิธีการเผาซินเตอร์แบบบกติ
11. ทำการตรวจสอบเซรามิกที่เตรียมได้ทุกสูตรด้วยการใช้เทคนิคต่างๆร่วมกัน เช่น XRD, SEM, TEM, EDX และ dielectric, piezoelectric, ferroelectric measurements เป็นต้น
12. ทำการคำนวณหาปริมาณเฟสเพอรอพส์ไกค์และความหนาแน่นสัมพัทธ์ที่ได้จากการเผา sintering ในแต่ละเงื่อนไข นำเสนอคลายเพื่อขอข่ายพุติกรรมการก่อเกิดเฟส การแน่นตัว โครงสร้างจุลภาคและสมบัติทางไฟฟ้าของเซรามิกที่มี $Pb(Zn_{1/3}Nb_{2/3})O_3$ เป็นองค์ประกอบหลัก
13. สรุปผลการศึกษาอิทธิพลของการเติมสารออกไซด์ชนิดต่างๆที่มีต่อพุติกรรมการก่อเกิดเฟส โครงสร้างจุลภาคและสมบัติทางไฟฟ้าของเซรามิกที่มี $Pb(Zn_{1/3}Nb_{2/3})O_3$ เป็นองค์ประกอบหลัก พร้อมทั้งสรุปความสัมพันธ์ระหว่างปัจจัยในกระบวนการเตรียม การก่อเกิดเฟส โครงสร้างและสมบัติทางไฟฟ้าของวัสดุเหล่านี้
14. นำความรู้ที่ได้จากการวิจัยตีพิมพ์เผยแพร่ผลการวิจัยลงในวารสารวิชาการระดับนานาชาติ รวมทั้งการนำเสนอในที่ประชุมวิชาการทั้งในและต่างประเทศ

แผนดำเนินงาน	ปีที่ 1											
	1	2	3	4	5	6	7	8	9	10	11	12
1. ศึกษาค้นควาระรวมข้อมูลที่เกี่ยวข้อง												
2. สร้างชื่อสารเคมีและวัสดุอุปกรณ์ต่างๆ												
3. ทำการสังเคราะห์สาร $ZnNb_2O_6$ และ PZN พร้อมกับการหาเงื่อนไขที่เหมาะสมในการ เตรียมผงคุณภาพสูง												
4. ศึกษาอิทธิพลของปัจจัยหลักในกระบวนการ สังเคราะห์ที่มีต่อพฤติกรรมการก่อเกิดเฟส และสัมฐานวิทยาของสารแต่ละสูตร												
5. วิเคราะห์ผลและเขียนรายงานความก้าวหน้า												
6. ทำการประดิษฐ์เซรามิก PZN โดยใช้ $ZnNb_2O_6$ เป็นสารตั้งต้นด้วยวิธีการ เมชินเตอร์แบบปกติ												
7. ศึกษาอิทธิพลของปัจจัยหลักในกระบวนการ เผา sintering ที่มีต่อพฤติกรรมการก่อเกิดเฟส โครงสร้างจุลภาคและสมบัติทางไฟฟ้าของ เซรามิกทุกสูตร												
8. วิเคราะห์ผล เตรียมต้นฉบับเพื่อส่งตีพิมพ์ เผยแพร่และเขียนรายงานประจำปีที่ 1												

แผนดำเนินงาน	ปีที่ 2											
	1	2	3	4	5	6	7	8	9	10	11	12
9. ทำการสังเคราะห์สารที่มี PZN เป็นองค์ประกอบหลัก ด้วยวิธีการ mixed oxide โดยการเติมสารออกไซด์ชนิดต่างๆ												
10. ศึกษาอิทธิพลของปัจจัยหลักในกระบวนการสังเคราะห์ที่มีต่อพฤติกรรมการก่อเกิดเฟสและสัมฐานวิทยาของสารแต่ละสูตร												
11. วิเคราะห์ผลและเปียนรายงานความก้าวหน้า												
12. ทำการประดิษฐ์เซรามิกที่มี PZN เป็นองค์ประกอบหลักด้วยวิธีการเผาชินเตอร์แบบปกติ												
13. ศึกษาอิทธิพลของปัจจัยหลักในกระบวนการเผา sintering ที่มีต่อพฤติกรรมการก่อเกิดเฟส โครงสร้างจุลภาคและสมบัติทางไฟฟ้าของเซรามิกทุกสูตร												
14. วิเคราะห์ผล เตรียมต้นฉบับเพื่อส่งตีพิมพ์เผยแพร่และเปียนรายงานฉบับสมบูรณ์												

4. สรุปและวิจารณ์ผลการทดลอง และข้อเสนอแนะสำหรับงานวิจัยในอนาคต

โครงการวิจัยนี้ได้พัฒนากระบวนการปรับปรุงสมบัติทางไฟฟ้าของเซรามิกเฟอร์โรอิเล็กทริกที่มี เลดซิงค์ในโอบตเป็นองค์ประกอบหลักด้วยการใช้สารตั้งต้น แบบโคลัมไบต์และการเติมสารออกไซด์ โดยอาศัยวิธีการควบคุมปัจจัยในกระบวนการเตรียมให้มีความเหมาะสม โดยเฉพาะอย่างยิ่ง เงื่อนไขในการเผาแคลไชน์และการเผาชินเทอร์ ซึ่งโครงการนี้ได้แสดงให้เห็นถึงอิทธิพลของปัจจัยในกระบวนการเตรียมที่มีต่อลักษณะเฉพาะของการก่อเกิดไฟฟ้า พัฒนาการของโครงสร้างจุลภาคและสมบัติทางไฟฟ้าของสารเซรามิกที่มี PZN เป็นองค์ประกอบหลัก

ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

- (I) การศึกษาวิจัยเพื่อหาวิธีการควบคุมพัฒนาระบบในการก่อเกิดไฟฟ้าของสารเหล่านี้ที่เหมาะสมเป็นสิ่งที่น่าสนใจมากสำหรับการวิจัยในอนาคต
- (II) การปรับปรุงคุณภาพของชิ้นงานจากกระทำได้โดยการเลือกใช้เทคโนโลยีที่สูงขึ้นในการเพิ่มความหนาแน่นของผลิตภัณฑ์ อย่างเช่น การเผาชิ้นงานภายใต้บรรยายกาศของออกซิเจน
- (III) งานวิจัยในอนาคตที่มุ่งเน้นเรื่องการตรวจสอบสมบัติทางไฟฟ้าของวัสดุเหล่านี้ โดยเฉพาะอย่างยิ่ง สมบัติทางพิโซอิเล็กทริกและสมบัติทางไฟฟ้าเชิงกล น่าจะช่วยเสริมสร้างความรู้ความเข้าใจในเรื่องของสารเฟอร์โรอิเล็กทริกกลุ่มเพอร์อพสไกด์ให้มีความลึกซึ้งมากยิ่งขึ้น

5. ภาคผนวก

Effect of Al_2O_3 Addition on Dielectric, Piezoelectric and Ferroelectric Properties of $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ Ceramics

A. Ngamjarurojana*, S. Ananta and R. Yimnirun

Department of Physics, Faculty of Science, Chiang Mai University, 50200, Thailand.

*Corresponding author. Tel.: +66-53-941921 ext 445; fax: +66-53-943445.

E-mail address: Ngamjarurojana@yahoo.com

Keywords: Dielectric properties, Piezoelectric properties, Ferroelectric properties and Hard doping

Abstract. The structure and electrical properties of Al_2O_3 -doped $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramic, which is the morphotropic phase boundary composition of the PZN-PZT system, were investigated. The addition of Al_2O_3 content transformed the crystal structure from coexisting with rhombohedral to purely tetragonal structure. Furthermore, addition of Al_2O_3 decreased ϵ_r , d_{33} and k_p , but increased Curie temperature and enhanced the mechanical quality factor. Finally, the P - E and s - E loops demonstrated decreased P_c , E_c and strain level with addition of Al_2O_3 .

Introduction

Lead zirconate titanate, $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$ or PZT, is a well known piezoelectric that has been widely employed in a large number of sensing and actuating devices. PZT ceramics have very high Curie temperature (~ 390 °C). Lead zinc niobate, $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ or PZN, which exhibits a perovskite structure and a Curie temperature of ~ 140 °C, is one of the most important relaxor ferroelectric materials with a high dielectric constant and large electrostrictive coefficient. They have excellent dielectric, piezoelectric and elastic properties suitable for wide range of practical applications [1-3]. Though the PZN-PZT based ceramics have excellent electrical properties, poor mechanical properties such as fracture strength and toughness have been reported [4]. In some applications at high power and high stress, mechanical properties of this material become critically important. Recently, it is reported that the mechanical properties of structural ceramics can be improved by an addition of second phase nanoparticles such as SiC and Al_2O_3 [5]. It is therefore of interest to explore the possibility of using Al_2O_3 as both electrical properties modification with possible mechanical properties benefit.

Thus, in this study $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramics were prepared and the influences of Al_2O_3 addition on structure, and electrical properties of the ceramics were investigated, which are especially important from the viewpoint of the development of practical piezoelectric materials.

Experimental

The specimens studies were fabricated according to the formula: $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ + x wt% Al_2O_3 , where $x = 0.1, 0.3, 0.5, 0.7$ and 0.9 . Raw materials of PbO , ZrO_2 , TiO_2 , ZnO , Nb_2O_5 and Al_2O_3 with $>99\%$ purity were used to prepare samples by a conventional mixed oxide process. The starting powders were mixed by zirconia ball media with isopropanol as a medium in a polyethylene jar for 30 min via vibro-milling technique. The mixed slurry was dried and calcined at 900 °C for 2 h. The calcined powders were ball-milled again with additives and consolidated into disks of 12.5 mm diameter using isostatic pressing about 150 MPa. PbO -rich atmosphere sintering of the ceramics was performed in a high-purity alumina crucible at 1200 °C for 2 h. The crystal structure and symmetry of the sintered bodies were examined by X-ray diffraction (XRD) and densities were measured by Archimedes method. Surface morphologies of sintered ceramics were directly imaged, using scanning electron microscopy (SEM; JEOL JSM-840A). Grain size was determined from SEM micrographs by a linear intercept method.

For electrical properties characterizations, silver electrode (Dupont, QS 171) was printed on the lapped surfaces. The electrode was fired at 850 °C for 45 min. The specimens were poled in silicone oil at 150 °C by applying a DC field of 3 kV/mm for 30 min. The dielectric properties of the sintered ceramics were studied as functions of both temperature and frequency with an automated dielectric measurement system. The computer-controlled dielectric measurement system consists of a precision LCR-meter (Hewlett Packard, model 4284A), a temperature chamber, and a computer system. The capacitance and the dielectric loss tangent are determined over the temperature range of 50 and 450 °C with the frequency ranging from 100 Hz to 100 kHz. The Curie temperature (T_c) was determined by the temperature dependence of the dielectric constant at 1 kHz. The piezoelectric constant (d_{33}) was measured using a quasi-static piezoelectric d_{33} meter (Model ZJ-3d, Institute of Acoustics Academic Sinica, China). The planar coupling coefficient (k_p) and the mechanical quality factor (Q_m) were determined by the resonance and anti-resonance technique [6] using an impedance analyzer (Model HP4294A, Hewlett-Packard). Ferroelectric switching measurements were made using a modified Sawyer-Tower circuit with a linear variable differential transducer (LVDT) for strain measurement, DSP lock-in amplifier (SR830, Stanford Research), high voltage power supply (TREK 609C-6, Trek), and computerized control and data acquisition.

Results and Discussion

Figure 1 shows the XRD patterns of Al_2O_3 -doped 0.2Pb($\text{Zn}_{1/3}\text{Nb}_{2/3}$)O₃-0.8Pb($\text{Zr}_{1/2}\text{Ti}_{1/2}$)O₃ ceramics sintered at 1200 °C for 2 h. In these patterns, the crystal structure of the specimens is modified by the addition of Al_2O_3 , as revealed by the evolution of (200) and (002) peaks. The perovskite structure appears to change from coexisting with rhombohedral to purely tetragonal structure. Slight shift in diffraction angle by doping Al^{3+} ions indicates their substitution (solid solution) into the lattice of PZN-PZT. Al^{3+} ions are expected to substitute B-sites of the perovskite structure because ionic radius of Al^{3+} is closer to that of Zr^{4+} , Ti^{4+} , Zn^{2+} and Nb^{5+} than that of Pb^{2+} [7].

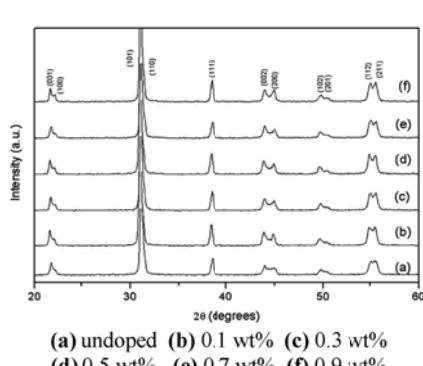


Figure 1. XRD patterns of Al_2O_3 -doped PZN-PZT ceramics sintered at 1200 °C for 2 h.

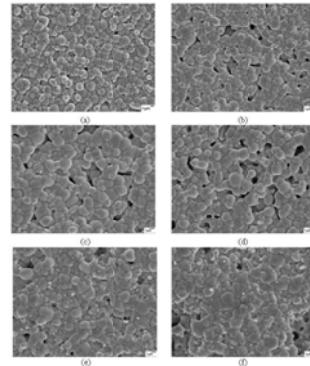


Figure 2. SEM photographs of the surfaces of Al_2O_3 -doped PZN-PZT ceramics

Figure 2 shows SEM photographs of the surfaces of 0.2Pb($\text{Zn}_{1/3}\text{Nb}_{2/3}$)O₃-0.8Pb($\text{Zr}_{1/2}\text{Ti}_{1/2}$)O₃ ceramics doped with 0.1–0.9 wt% Al_2O_3 . As shown in Fig. 2, the grain sizes of ceramics are slightly increased with increasing amount of Al_2O_3 addition. However, the SEM micrographs in Fig. 2(e-f) show that a higher porosity level is observed when the amount of Al_2O_3 is increased, which indicates that the specimens are not sintered effectively. The above results are obviously consistent with the change in the bulk density with Al_2O_3 content for Al_2O_3 -doped 0.2Pb($\text{Zn}_{1/3}\text{Nb}_{2/3}$)O₃-0.8Pb($\text{Zr}_{1/2}\text{Ti}_{1/2}$)O₃ ceramics. It can be seen from Fig. 2 that Al ions are mainly

accumulated at the grain boundaries [8]. Atkim *et al.* [9] reported that dopant ions were concentrated at grain boundaries and took excess impurities by diffusion when grain boundaries moved, which in turn reduced grain boundary mobility and size. These inferences are obviously consistent with the changes mentioned above in the microstructures. The micrographs also show that the grain size of the ceramics varies considerably.

The temperature dependences of the dielectric constant (ϵ_r) at 1 kHz for 0.2PZN-0.8PZT + x wt% Al_2O_3 , $x = 0, 0.1, 0.3, 0.5, 0.7$ and 0.9 are plotted in Fig. 3. The observed broadening of the dielectric peaks may be caused from decreasing of density of ceramics and higher porosity. The variation of the Curie temperature (T_c) as a function of composition x is displayed, which shows an increase in T_c with increasing Al_2O_3 content. Thus, the Curie temperature of 0.2PZN-0.8PZT + x wt% Al_2O_3 system can be varied over a range of 340 and 360°C by controlling the content of Al_2O_3 addition in the system.

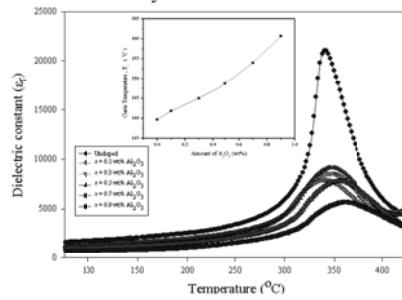


Figure 3. The temperature dependences of the dielectric constant (ϵ_r) at 1 kHz

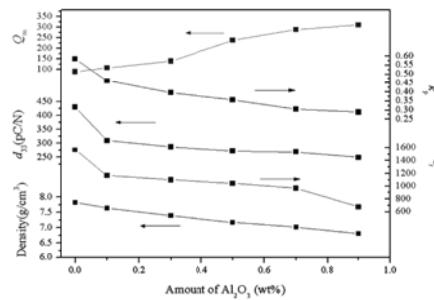


Figure 4. , dielectric constant (ϵ_r), piezoelectric constant (d_{33}), electromechanical coupling factor (k_p) and the mechanical quality factor (Q_m)

Figure 4 shows the changes in density, dielectric constant (ϵ_r), piezoelectric constant (d_{33}), electromechanical coupling factor (k_p) and the mechanical quality factor (Q_m) as a function of the amount of Al_2O_3 addition. With addition of Al_2O_3 , the density, ϵ_r , k_p and d_{33} rapidly decrease. It is well known that the substitutions of acceptor dopant Al^{3+} ions will lead to the creation of oxygen vacancies, which pin the movement of the ferroelectric domain walls and result in a decrease of ϵ_r , k_p and d_{33} . On the other hand, Q_m rapidly increases with increasing Al_2O_3 content. These observations are in good agreement with previous work by Kulascar *et al.* [10], which reported that in the case of substitution of 3^{+} ions for B-sites of the perovskite structure, oxygen vacancies produced by charge neutrality beyond solid solution limit lead to decrease in electromechanical coupling factor, dielectric constant and electrical resistivity, and to increase in mechanical quality factor. Hence, these results clearly indicate that increased Al_2O_3 would degrade piezoelectric properties due to exceeding the solution limit of lattices [11].

The polarization-field ($P-E$) hysteresis loops of 0.2PZN-0.8PZT + x wt% Al_2O_3 ceramics are shown in Fig. 6. The well-developed and fairly symmetric hysteresis loops with the field are observed for all compositions. To further assess ferroelectric characteristics in Al_2O_3 -modified PZN-PZT ceramics, the ferroelectric parameters, i.e. the remnant polarization (P_r) and the coercive field (E_c), have been extracted from the experimental data and given in Table III. It can be seen clearly that P_r , P_s and E_c decrease with an addition of Al_2O_3 into the PZN-PZT composition [12]. Strain of specimens as function of the electric field is shown in Fig. 7. Decreasing in strain and coercive field with increasing Al_2O_3 content is clearly observed. Finally, the decrease in P_r , E_c , and strain level with Al_2O_3 addition suggests the reduction of the polarization and strain that are achieved during an electric field cycle. These quantities depend directly on the extent of domain boundary motion [9].

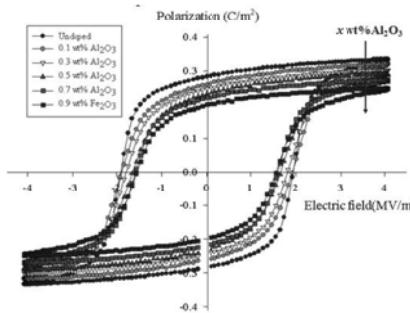


Figure 5. P - E hysteresis loops of 0.2PZN-0.8PZT + x wt% Al_2O_3 ceramics

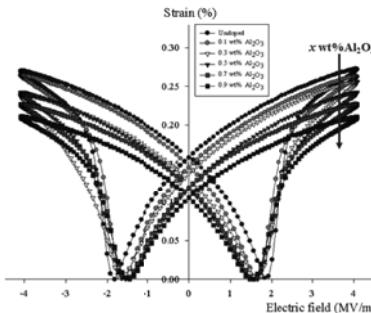


Figure 6. Strain loops of 0.2PZN-0.8PZT + x wt% Al_2O_3 ceramics

Summary

The structure and electrical properties of Al_2O_3 -doped 0.2Pb(Zn_{1/3}Nb_{2/3})O₃-0.8Pb(Zr_{1/2}Ti_{1/2})O₃ ceramic, which is the morphotropic phase boundary composition of the PZN-PZT system, are investigated. The addition of Al_2O_3 transformed the crystal structure from coexisting with rhombohedral to purely tetragonal structure. Furthermore, added Al_2O_3 decreases ϵ_r , d_{33} and k_p , but increases Curie temperature and enhances the mechanical quality factor. The P - E and s - E loops demonstrate decreased P_r , strain level, and E_c when addition of Al_2O_3 in PZN-PZT ceramic systems.

Acknowledgment

This work was jointly supported by the Thailand Research Fund (TRF), Commission on Higher Education (CHE), and the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellent Network, Faculty of Science, Chiang Mai University. Thanks are also extended to Kenji Uchino, ICAT, Penn State University for helpful discussion and use of facility.

References

- [1] Xu Y.: *Ferroelectric Materials and Their Applications* (Elsevier Science Publishers, Amsterdam, The Netherlands, 1991).
- [2] Uchino K. and. Giniewicz J. R: *Micromechatronics* (Marcel Dekker, New York, 2003).
- [3] Moulson A.J. and Herbert J.M.: *Electroceramics* (2nd ed., Wiley, New York, 2003).
- [4] Tajima K., Hwang H., Sando M. and Niihara K.: *J. Eur. Ceram. Soc.* Vol. 19 (1999), p. 1179.
- [5] Sternitzke M.: *J. Eur. Ceram. Soc.* Vol. 17 (1997), p.1061.
- [6] IEEE Standard on Piezoelectricity: *IEEE Standard 176-1978*. Institute of Electrical and Electronic Engineers, New York, 1978.
- [7] Shannon R. D.: *Acta Crystal. A*. Vol. 32 (1976), p. 751.
- [8] Fang J.X. and Yin Z. W.: *Physics of Dielectric* (Science Press, Beijing, 1989)
- [9] Atkin R. B., and Fularath R. M.: *J. Am. Ceram. Soc.* Vol. 54 (1971), p. 265.
- [10] Kulascar F.: *J. Am. Ceram. Soc.* Vol. 42 (1959), p. 343.
- [11] Kim Y.-M., Kim J.-C., Ur S.-C. and Kim H.-H.: *J. Electroceram.* Vol. 16 (2006), p. 347.
- [12] Iijima T., Heg., Wang Z., Isuboi H., Hiyama K. and Okada M.: *Jpn. J. Appl. Phys.* Vol. 39 (2000), p. 5426.
- [13] Yimnirun R, Ananta, S Ngamjarurojana A, and Wongsaenmai S.: *Appl. Phys. A*. Vol. 81 (2005), p. 1227.

Effect of Addition of CuO and Bi_2O_3 on Low Temperature Sintering of $\text{Pb}(\text{Zr,Ti})\text{O}_3$ - $\text{PbZn}_{1/3}\text{Nb}_{2/3}\text{O}_3$ - $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ Based Ceramics

Athipong Ngamjaruojana

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

Author for correspondence: e-mail: ngamjaruojana@yahoo.com

Received: 15 December 2008

Accepted: 2 January 2009.

ABSTRACT

In this study, in order to develop low-temperature-sintering ceramics for a multilayer piezoelectric transformer application, we explored CuO and Bi_2O_3 as sintering aids $\text{Pb}(\text{Zr,Ti})\text{O}_3$ - $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ (PZT-PZN-PNN) based ceramics with excellent piezoelectric and dielectric properties such as $d_{33} \sim 347 \text{ pC/N}$, $k_p \sim 0.57$, and $Q_m \sim 1469$. The addition of CuO decreased the sintering temperature through the formation of a liquid phase. However, the piezoelectric properties of the CuO-added ceramics sintered below 900°C were lower than the desired values. The additional Bi_2O_3 resulted in a significant improvement in the piezoelectric properties. At the sintering temperature of 900°C, the electromechanical coupling factor (k_p), piezoelectric constant (d_{33}), mechanical quality factor (Q_m) of PZT-PZN-PNN composition ceramics with addition of 0.5 wt% CuO and 0.5 wt% Bi_2O_3 showed the optimal value of 0.56, 350 pC/N, and 1042, respectively. These values indicated that the newly developed composition may be suitable for multilayer piezoelectric transformer application.

Keywords: low temperature sintering, piezoelectric transformer and sintering aids.

1. INTRODUCTION

A high-electric field and high-vibration level are required for high power piezoelectric devices associated with significant heat generation such as piezoelectric actuators, ultrasonic motors, and piezoelectric transformers. The materials for these applications should have compromised characteristics between hard and soft piezoelectrics, implying high electro-mechanical coupling factor (k) and piezoelectric constant (d) with high mechanical quality factor (Q_m) [1]. However,

the sintering temperature of lead zirconate titanate (PZT)-based high-power compositions is usually too high, approximately 1200°C, to use base metal electrodes such as Ag and Cu. Therefore Ag/Pd alloy is generally used as the electrode to suppress the migration of Ag into the ceramics at high temperature. However, Pd metal is very expensive. Consequently, lowering of the sintering temperature of piezoelectric ceramics is essential for the fabrication of cost-effective

multilayer piezoelectric devices. Furthermore, low temperature sintering can provide advantages such as compatibility with low temperature cofired ceramics (LTCC), the reduction of energy consumption, and the reduced PbO volatilization.

Previously, various techniques were employed to obtain the low temperature sinterable PZT composition. The addition of dopants, which improves solid-state sintering, and the addition of oxides and compounds, which have low melting points for liquid-phase sintering are the most popular methods [2-4]. The other processes such as sintering in an inert atmosphere followed by hot pressing [5], use of fine starting powders [6] are not generally used due to their expensive, complicate and laborious procedure.

Some of the oxides and compounds that have been used for assisting liquid-phase sintering are BiFeO₃ + Ba(Cu_{1/2}W_{1/2})O₃ [7], Li₂Co₃-Bi₂O₅-CdCO₃ [8], LiBiO₂ (melting temperature of 700°C) [9], 4PbOB₂O₅ [10], B₂O₅-Bi₂O₅-CdO [4], and PbO + CuO [11]. Even though these techniques were able to obtain dense ceramics at low sintering temperature, piezoelectric properties were not satisfactory enough to be used in industry. In the initial and middle sintering stages, low temperature sintering aids form a liquid phase and promote densification, but in the final sintering stage, additives enter into a lattice, and eventually affect the dielectric and piezoelectric properties.

Previously, we developed the Sb, Li and Mn substituted Pb(Zr_{0.48}Ti_{0.52})O₃-Pb(Zn_{1/3}Nb_{2/3})O₃-Pb(Ni_{1/3}Nb_{2/3})O₃ ceramics with excellent dielectric and piezoelectric properties when sintered at 1200°C [12]. The aim of this study was to lower the sintering temperature of this composition for providing Ag or Cu cofiring compatible high-power piezoelectric ceramics, aiming at layered structure piezoelectric actuators and

transformer applications. We therefore investigated the effect of CuO and Bi₂O₃ addition in the Sb, Li and Mn substituted Pb(Zr_{0.48}Ti_{0.52})O₃-Pb(Zn_{1/3}Nb_{2/3})O₃-Pb(Ni_{1/3}Nb_{2/3})O₃ ceramics as a solution for low temperature sinterable high power ceramics.

2. EXPERIMENTAL PROCEDURE

The specimens studied in this research were fabricated according to the formula: 0.8Pb(Zr_{0.48}Ti_{0.52})O₃ - 0.2Pb [0.7{0.7(Zn_{0.8}Ni_{0.2})_{1/3}(Nb_{0.9}Sb_{0.1})_{2/3}-0.3Li_{1/4}(Nb_{0.9}Sb_{0.1})_{3/4}} - 0.3Mn_{1/3}(Nb_{0.9}Sb_{0.1})_{2/3}] O₃ + x wt% CuO + y wt% Bi₂O₃, called PZT-PZN-PNN based compositions, where x=0.1~0.5, y=0~0.5, respectively. Raw materials of PbO, ZrO₂, TiO₂, ZnO, NiO, Nb₂O₅, Sb₂O₅, Li₂CO₃, MnO₂, CuO and Bi₂O₃ with >99% purity were used to prepare samples by a conventional ceramic sintering process. The obtained mixture was ball-milled using zirconia ball media with isopropanol as a medium in a polyethylene jar for 24 h. The mixed slurry was dried and calcined at 750 °C for 2 h. The calcined powders were ball-milled again with additives and consolidated into disks of 12.5 mm diameter and rectangular plates using isostatic pressing about 150 MPa. PbO-rich atmosphere sintering of the ceramics was performed in a high-purity alumina crucible at the temperature of 850-900 °C for 2 h. The crystal structure and symmetry of the sintered bodies were examined by X-ray diffraction (XRD) and sintered densities were measured by the Archimedes method. Electrode (Dupont, QS 171) was printed on the lapped surfaces for electrode. The electrode specimens were poled in silicone oil at 150 °C by applying a d.c. field of 3kV/mm for 30min. The piezoelectric constant (d_{33}) was measured using a quasi-static piezoelectric d_{33} meter (Model ZJ-3d, Institute of Acoustics Academic Sinica, China). The planar coupling coefficient (k_p) and the mechanical quality factor (Q_m) were

determined by the resonance and anti-resonance technique using an impedance analyzer (Model HP4294A, Hewlett-Packard, CA). All ceramics were characterized as described in Figure 1.

3. RESULTS AND DISCUSSION

3.1 Effect of CuO Addition

Initially, the effect of the addition of CuO on PZT-PZN-PNN based ceramics. The sintering temperature of all the specimens was

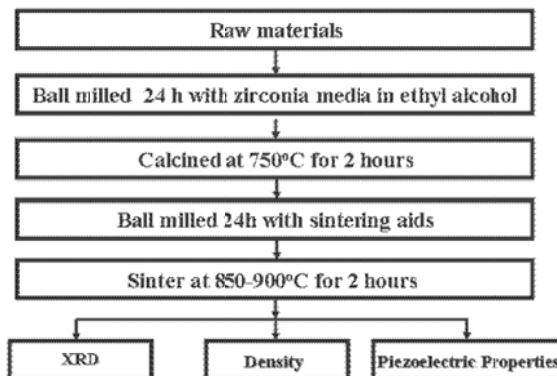


Figure 1. Diagram of experimental procedure on ceramics.

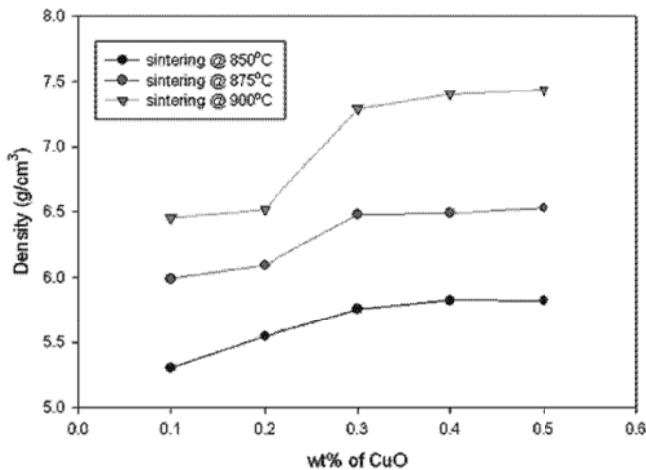
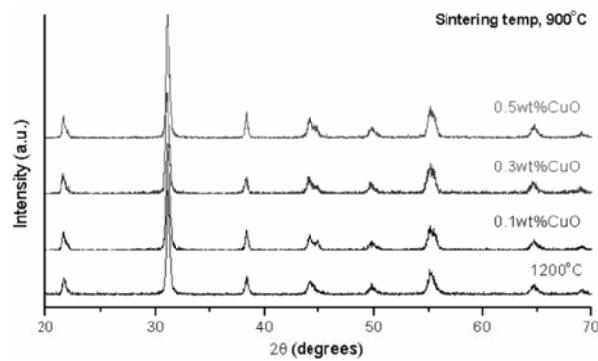
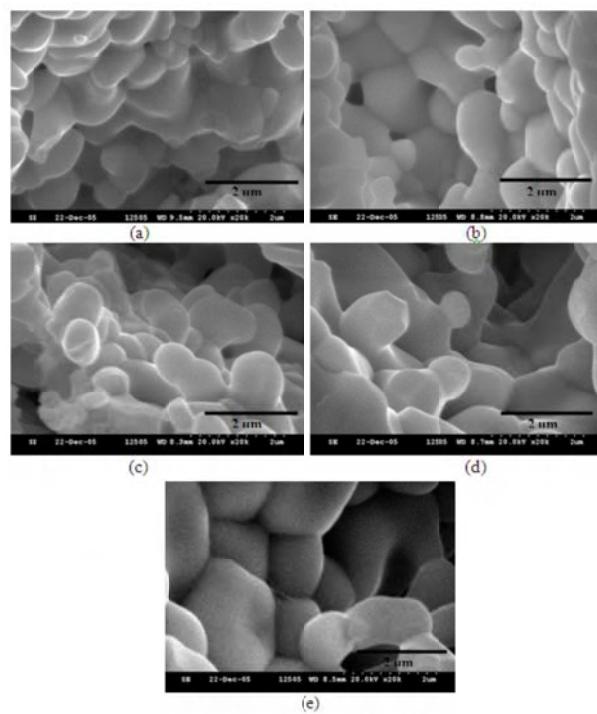




Figure 2. Density in different sintering temperature in PZT-PZN-PNN based compositions + x wt% CuO ceramics.

Figure 3. XRD patterns of the samples sintered 900°C for 2h in PZT-PZN-PNN based compositions + x wt% CuO ceramics.

Figure 4. SEM images of the samples sintered at 900°C for 2h in PZT-PZN-PNN based compositions + x wt% CuO ceramics : (a) x=0.1, (b) x=0.2, (c) x=0.3 (d) x=0.4 and (e) x=0.5.

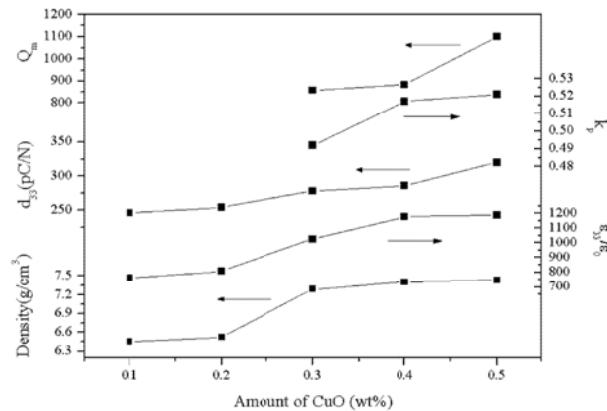

selected with temperatures of 850°C, 875°C, and 900°C, which is cofiring compatible temperature for Ag and low temperature cofired ceramics (LTCC) substrate. Density in different sintering temperature is shown in Figure 2.

Figure 3 shows the XRD patterns of the samples sintered 900°C for 2h in PZT-PZN-PNN based compositions + x wt% CuO ceramics. It can be seen in Figure 3 that all samples exhibit a perovskite structure, and that there is no secondary phase until $x=0.2$ (any peak for secondary phase was not detected in the range of 0.0-0.2). When x was over 0.3, second phase peak was observed, however, a composition for the second peak was not clearly identified.

Figure 4 shows the SEM images of the PZT-PZN-PNN based compositions + x wt% CuO ceramics sintered at 900°C for 2h. As the CuO addition amount increased, grain growth happened whereas small grains disappeared. This grain growth with CuO addition can be explained with liquid phase sintering. Previously, we showed that the

addition of CuO can reduce the sintering temperature of the $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$ - $\text{Pb}(\text{Ni},\text{Nb})\text{O}_3$ system by the formation of a liquid phase [13]. Thus this liquid phase formation can also be an explanation for the PZT-PZN-PNN based compositions + x wt% CuO ceramics.

Density, dielectric permittivity ($\epsilon_{33}^T/\epsilon_0$), electromechanical coupling factor (k_p), mechanical quality factor (Q_m) and piezoelectric constant (d_{33}) were plotted as a function of the amount of CuO addition in Figure 5. The density was increased with the increase of CuO contents approximately from 6.4 to 7.8 g/cm³. This improvement of the density might be related to the formation of the liquid phase. Moreover, the variation of piezoelectric and dielectric properties showed similar trend to that of density. Therefore, the improved piezoelectric and dielectric properties, which were observed in the range of $x \geq 0.3$, might be due to the increased density as well as increased grain size shown in Figure 4. This hardening effect that could be confirmed by the enhancement of Q_m value approximately from 600 to 1200 as shown in Figure 5.

Figure 5. Density, dielectric permittivity ($\epsilon_{33}^T/\epsilon_0$), piezoelectric constant (d_{33}), electromechanical coupling factor (k_p) and mechanical quality factor (Q_m) of the specimens sintered at 900°C for 2h in PZT-PZN-PNN based compositions + x wt% CuO ceramics.

Therefore, Cu ions could be expected to enter B site and act as a hardener.

3.2 Effect of Bi_2O_3 Addition

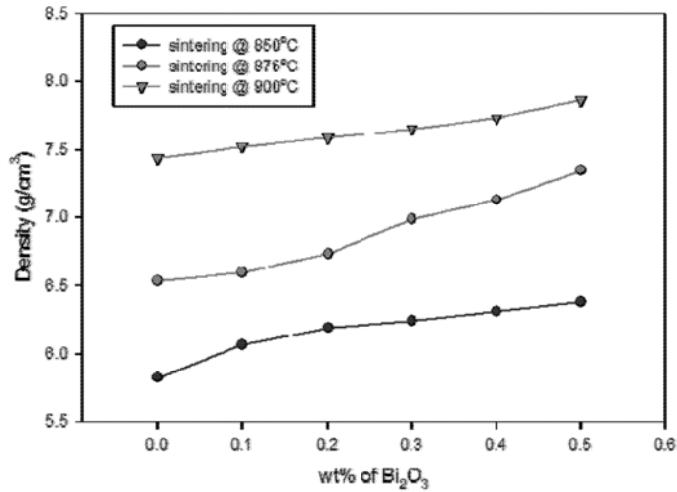

Bi_2O_3 has low melting temperature (817°C) and it was reported that Bi_2O_3 can form liquid phase with ZnO at approximately 750°C. Therefore, Bi_2O_3 was added to PZT-PZN-PNN based compositions + 0.5 wt% CuO in order to further improve the piezoelectric properties of the specimens sintered at low temperature. Density in different sintering temperature is shown in Figure 6.

Figure 7 shows the XRD patterns of the samples sintered 900°C for 2 h in PZT-PZN-PNN based compositions + 0.5 wt% CuO + y wt% Bi_2O_3 ceramics. It can be seen that all the samples exhibit a perovskite structure. The base composition (y=0) had a slight tetragonal symmetry. The tetragonality of the peaks was reduced until y=0.3; but it was

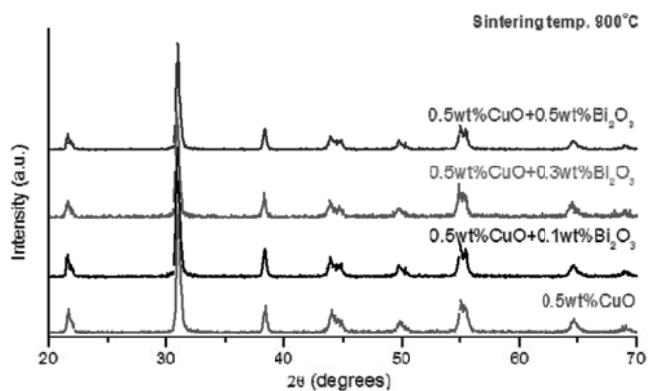
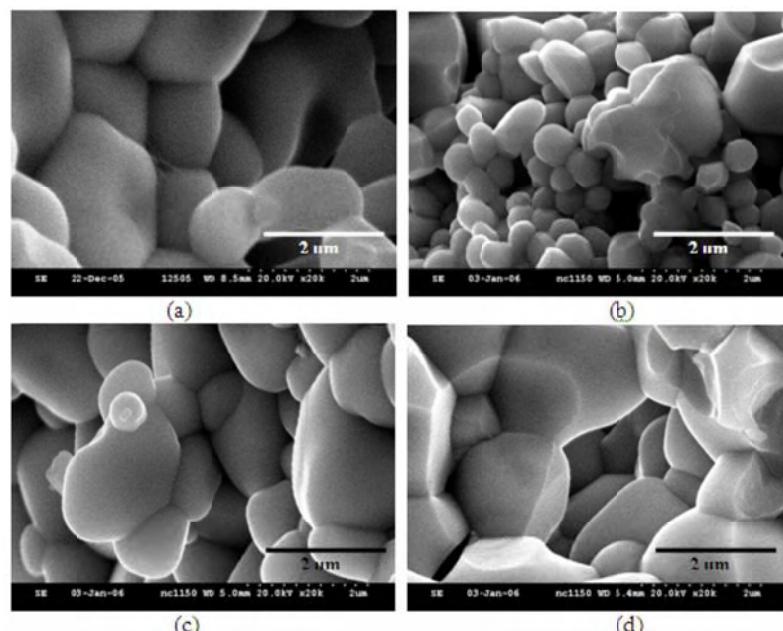

increased when the amount of Bi_2O_3 addition exceeded 0.3 wt%.

Figure 8 shows the SEM images of the PZT-PZN-PNN based compositions + 0.5 wt% CuO + y wt% Bi_2O_3 ceramics sintered at 900°C for 2 h. When the amount of Bi_2O_3 was more than 0.3 wt%, the small grains almost disappeared and average grain size increased. Even though apparent liquid phase formation was not observed in the SEM images, Bi_2O_3 addition might induce small amount of liquid phase and it could be expected to help grain growth due to its low melting point.


Density, dielectric permittivity ($\epsilon_{33}^T/\epsilon_0$), electromechanical coupling factor (k_p), mechanical quality factor (Q_m) and piezoelectric constant (d_{33}) of PZT-PZN-PNN based compositions + 0.5 wt% CuO + y wt% Bi_2O_3 ceramics sintered at 900°C for 2 h are plotted as a function of the amount of Bi_2O_3 addition

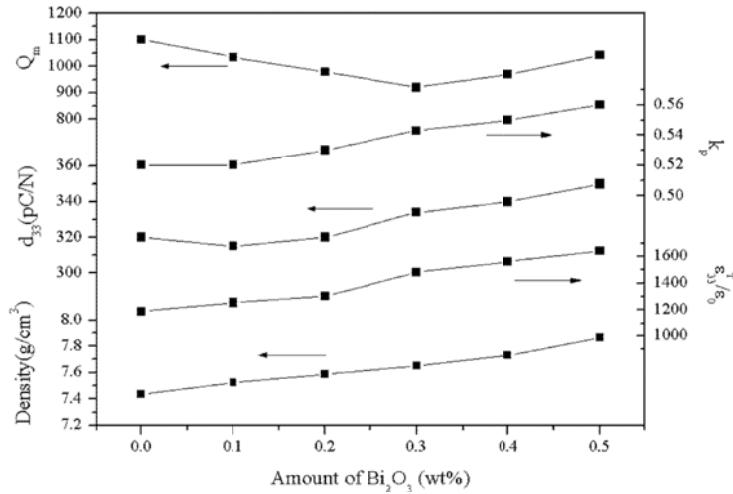

Figure 6. Density in different sintering temperature in PZT-PZN-PNN based compositions + 0.5 wt% CuO + y wt% Bi_2O_3 ceramics.

Figure 7. XRD patterns of the samples sintered 900°C for 2h in PZT-PZN-PNN based compositions + 0.5 wt% CuO + y wt% Bi₂O₃ ceramics.

Figure 8. SEM images of the samples sintered at 900°C for 2h in PZT-PZN-PNN based compositions + 0.5 wt% CuO + y wt% Bi₂O₃ ceramics : (a) y=0, (b) y=0.1, (c) y=0.3 and (d) y=0.5.

Figure 9. Density, dielectric permittivity ($\epsilon_{33}^T/\epsilon_0$), piezoelectric constant (d_{33}), electromechanical coupling factor (k_p) and mechanical quality factor (Q_m) of the specimens sintered at 900°C for 2h in PZT-PZN-PNN based compositions + 0.5 wt% CuO + y wt% Bi_2O_3 ceramics.

in Figure 9. When Bi_2O_3 was added, density was increased and this increased density improved the dielectric and piezoelectric properties as seen in Figure 8. The density of the specimens was improved when the amount of Bi_2O_3 was added and this increase might be due to the formation of liquid phase. In addition, Q_m was decreased and $\epsilon_{33}^T/\epsilon_0$ and d_{33} were increased with the amount of Bi_2O_3 addition in the range of $0.0 \leq y \leq 0.3$. Therefore, their variations could happen because Bi ions entered A site, since they acted as softener in this range. On the contrary, Q_m exhibits a minimum profile at 0.3 wt% of Bi_2O_3 addition. In addition, $\epsilon_{33}^T/\epsilon_0$, d_{33} and Q_m were increased with the amount of Bi_2O_3 addition above 0.3 wt%. Thus, Bi ions might act as both hardener and softener in this range and their variations might be able to occur because Bi ions entered B site and A site, respectively.

4. CONCLUSIONS

The addition of CuO decreases the sintering temperature through the formation of a liquid phase. However, the piezoelectric properties of the CuO-added ceramics sintered at below 900°C are lower than the desired values. The additional Bi_2O_3 results in a significant improvement in the piezoelectric properties. Furthermore, at the sintering temperature of 900°C, the electromechanical coupling factor (k_p), piezoelectric constant (d_{33}), mechanical quality factor (Q_m) of PZT-PZN based composition ceramics with 0.5 wt% CuO and 0.5 wt% Bi_2O_3 show the optimal value of 0.56, 350 pC/N and 1042, respectively.

5. ACKNOWLEDGEMENTS

This work was supported by the Synchrotron Light Research Institute (Public Organization) SLRI, the Thailand Research Fund (TRF), the Commission on Higher

Education (CHE), and the Faculty of Science, Chiang Mai University. Thank are also extended to Kenji Uchino, ICAT, Penn State for helpful discussion and use of facility during a visit.

REFERENCES

- [1] Uchino K., and Giniewicz J.R., *Micro-mechatronics*, Marcel Dekker, New York, 2003.
- [2] Takahashi S., Sintering $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$ Ceramics at Low Temperature, *Jpn. J. Appl. Phys.*, 1980; **19**: 771-771.
- [3] Lucuta P.G., Constantinescu F., and Barb D., Structural Dependence on Sintering Temperature of Lead Zirconate-Titanate Solid Solutions, *J. Am. Ceram. Soc.*, 1985; **68**: 533-537.
- [4] Zhilun G., Longtu L., Suhua G., and Xiaowen Z., Low-Temperature Sintering of Lead-Based Piezoelectric Ceramics, *J. Am. Ceram. Soc.*, 1989; **72**: 486-491.
- [5] Patel N.D., and Nicholson P.S., Comparison of piezoelectric properties of hot-pressed and sintered PZT, *Am. Ceram. Soc. Bull.*, 1986; **65**: 783-787.
- [6] Yamamoto T., Optimum Preparation Methods for Piezoelectric Ceramics and Their Evaluation, *Am. Ceram. Soc. Bull.*, 1992; **71**: 978-985.
- [7] Kaneko S., Dong D., and Murakami K., Effect of Simultaneous Addition of BiFeO_3 and $\text{Ba}(\text{Cu}_{0.5}\text{W}_{0.5})\text{O}_3$ on Lowering of Sintering Temperature of $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$ Ceramics, *J. Am. Ceram. Soc.*, 1998; **68**: 1013-1018.
- [8] Wang X., Murakami K., and Kaneko S., High-Performance $\text{PbZn}_{1/3}\text{Sb}_{2/3}\text{O}_3$ - $\text{PbNi}_{1/2}\text{Te}_{1/2}\text{O}_3$ - PbZrO_3 - PbTiO_3 Ceramics Sintered at a Low Temperature with the Aid of Complex Additives Li_2CO_3 - Bi_2O_3 - CdCO_3 , *Jpn. J. Appl. Phys.*, 2000; **39**: 5556-5559.
- [9] Hayashi T., Inoue T., and Akiyama Y., Low-Temperature Sintering and Properties of $(\text{Pb}, \text{Ba}, \text{Sr})(\text{Zr}, \text{Ti}, \text{Sb})\text{O}_3$ Piezoelectric Ceramics Using Sintering Aids, *Jpn. J. Appl. Phys.*, 1999; **38**: 5547-5552.
- [10] Wu L., and Wang C.H., The Dielectric and Piezoelectric Properties of 0.125PMN-0.875PZT Ceramics Doped with $4\text{PbO}\cdot\text{B}_2\text{O}_3$, *Jpn. J. Appl. Phys.*, 1993; **32**: 2757-2761.
- [11] Wittmer D.E., and Buchanan R.C., Low Temperature Denisification of Lead Zirconate Titanate with Vanadium Pentoxide Additive, *J. Am. Ceram. Soc.*, 1981; **64**: 485-490.
- [12] Park S.-H., Ural S., Ahn C.-W., Nahm S., and Uchino K., Piezoelectric Properties of Sb-, Li-, and Mn-substituted $\text{Pb}(\text{Zr}_{x}\text{Ti}_{1-x})\text{O}_3$ - $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $\text{Pb}(\text{Ni}_{1/3}\text{Nb}_{2/3})\text{O}_3$ Ceramics for High-Power Applications, *Jpn. J. Appl. Phys.*, 2006; **45**: 2667-2673.
- [13] Ahn C.-W., Song H.-C., and Nahm S., Priya S., Park S.-H., Uchino K., Lee H.-G., and Lee H.-J., Effect of ZnO and CuO on the Sintering Temperature and Piezoelectric Properties of a Hard Piezoelectric Ceramic, *J. Am. Ceram. Soc.*, 2006; **89**: 921-925.

Effect of MnO_2 Addition on Dielectric, Piezoelectric and Ferroelectric Properties of $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ Ceramics

Athipong Ngamjarurojana, and Supon Ananta*

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

*Author for correspondence; e-mail: suponananta@yahoo.com

Received: 20 December 2008

Accepted: 7 January 2009.

ABSTRACT

Piezoelectric materials are presently being extensively developed for applications such as ultrasonic motors and piezoelectric transformers. In this study, the dielectric, piezoelectric, and ferroelectric properties of MnO_2 -doped $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3-0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ (hereafter 0.2PZN-0.8PZT), which is the morphotropic phase boundary composition of the PZN-PZT system, were investigated. It was found that crystal structure moved to rhombohedral side when increasing MnO_2 content. With the addition of MnO_2 , Curie temperature T_c , the piezoelectric constant d_{33} , and electromechanical coupling factor k_p were slightly decreased, but the mechanical quality factor Q_m was significantly increased. The $P-E$ and $s-E$ loop demonstrated decreased P_s and strain level but increased E_c with addition of MnO_2 . These results clearly showed the significance of MnO_2 addition on the electrical properties of the PZN-PZT system with "hard" characteristics.

Keywords: dielectric, piezoelectric, ferroelectric, hard doping.

1. INTRODUCTION

All commercial piezoelectric devices employ $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$ (PZT)-based formulations, close to the morphotropic phase boundary (MPB). The MPB composition is modified by the acceptor and/or donor ions to yield high piezoelectric properties with low losses. The influence of various substitutions on the B-site of $\text{Pb}(\text{Zr},\text{Ti})\text{O}_3$ perovskite has been widely investigated to optimize the piezoelectric properties [1-6]. Fan and Kim [7] investigated $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})_0.5(\text{Zr}_{0.4}\text{Ti}_{0.5})_0.5\text{O}_3$ ceramics with composition close to MPB and clarified that the ceramics had large electro-mechanical coupling factor k_p .

However, the mechanical quality factor Q_m was too low to permit their use as high power piezoelectric devices. It is necessary to improve Q_m as much as possible for suppressing the generation of heat during operation. To develop materials suitable for multilayer piezoelectric transformers and actuators with high d_{33} , high k_p and Q_m , it is necessary to add some dopants to PZN-PZT based ceramics to optimize the piezoelectric properties for device applications [8-11].

Manganese ions have been investigated extensively as effective dopant in PZT-based ceramics because Mn ions can have valence

3. RESULTS AND DISCUSSION

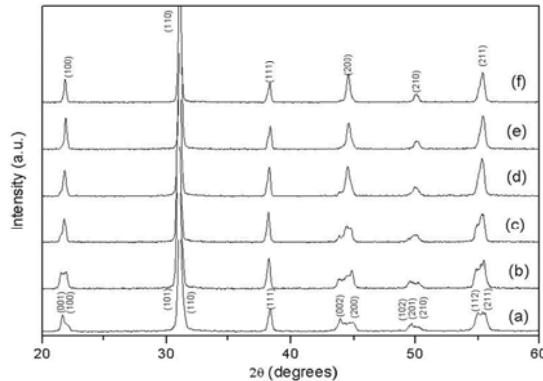
Perovskite phase formation, crystal structure and lattice parameter were determined by XRD at room temperature. The XRD patterns of $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ with the addition of 0.0-0.9 wt% MnO_2 are shown in Figure 1, showing the perovskite structure for all compositions. The pyrochlore phase is not observed in this system. In the XRD patterns, the crystal structure of the specimens appears clearly to change to rhombohedral side across MPB with increasing amount of MnO_2 around 0.5 wt%. It has been reported [6,8] that manganese coexists mainly in the Mn^{2+} and Mn^{3+} states, which entered into the perovskite structure of BO_6 octahedron to substitute for the B-site ion (e.g., Ti^{4+} and Zr^{4+}).

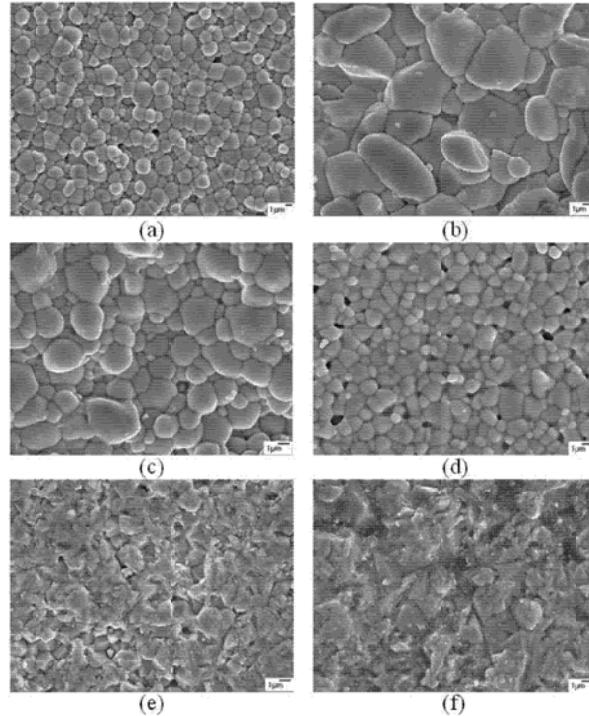
Figure 2 shows SEM photographs of the surfaces of $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramics doped with 0.0-0.9 wt% MnO_2 . As shown in Figs. 2(a-b), the grain sizes of the ceramics are increased with increasing amount of MnO_2 addition. The result is similar to the result of Yu *et al.* [16]. Further increasing MnO_2 content gives rise to an inhomogeneous grain size. However, the SEM micrographs in Figure 2(c-f) show that a higher porosity level is observed when the amount of MnO_2 is increased [17]. The above results are obviously consistent with the

change in the bulk density with MnO_2 content for Mn-doped $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ - $0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramics. It can clearly be seen from Figure 2 that the ceramics have high densities in the MnO_2 addition range of 0.0-0.5 wt%. It is believed that manganese ions are mainly incorporated into the lattice, but if the addition is above 0.5 wt%, manganese ions will accumulate at the grain boundaries [14]. These inferences are obviously consistent with the changes mentioned above in the microstructures. The micrographs also show that the grain size of the ceramics varies considerably, as listed in Table 1.

The temperature and frequency dependences of the dielectric constant (ϵ_r) and dielectric loss tangent ($\tan \delta$) for 0.2PZN - 0.8PZT + x wt% MnO_2 , $x = 0, 0.1, 0.3, 0.5, 0.7$ and 0.9 are shown in Figure 3. The maximum dielectric constant at 1 kHz (ϵ_m @ 1 kHz) is listed in Table 2. Dielectric behaviors show strong increase of frequency-dependence on dielectric constant and dielectric loss with increasing amount of MnO_2 . It may be caused from oxygen vacancies and conducting regions near grain boundaries [18] when increasing MnO_2 . The variation of the Curie temperature (T_c) as a function of composition x is plotted in Figure 4. The Curie temperature of 0.2PZN - 0.8PZT + x wt% MnO_2 system can be varied over a wide range

Table 1. Physical properties of 0.2PZN - 0.8PZT + x wt% MnO_2 ceramics.


x	Density (g/cm ³)	Grain size range(μm)	Average grain size (μm)
0	7.826	0.5 - 2.0	1.726
0.1	7.849	1.5 - 6.0	4.131
0.3	7.897	1.0 - 3.0	2.991
0.5	8.028	0.5 - 2.0	2.116
0.7	7.718	-	-
0.9	7.653	-	-


Table 2. Dielectric and piezoelectric properties of 0.2PZN–0.8PZT + x wt% MnO_2 ceramics.

x	T_c (°C)	Dielectric properties (at 25 °C, 1 kHz)		Dielectric properties (at T_{Max})		Piezoelectric properties		
		ϵ_r	$\tan\delta$	ϵ_r	$\tan\delta$	d_{33} (pC/N)	k_p	Q_m
0	339.7	1575	0.0249	21047	0.0420	430	0.583	90
0.1	334.2	1155	0.0436	17784	0.1181	365	0.564	356
0.3	326.5	1100	0.0464	19102	0.1241	320	0.551	735
0.5	323.4	1086	0.0440	18220	0.1454	305	0.532	1413
0.7	318.7	1020	0.0368	21178	0.1354	263	0.48	1260
0.9	311	948	0.0438	21389	0.1762	237	0.44	1080

Table 3. Ferroelectric and strain properties of 0.2PZN–0.8PZT + x wt% MnO_2 ceramics.

x	Ferroelectric properties (at 25 °C)			Loop squareness (R_{sq})	Strain %@ 4MV/m
	P_c (C/m ²)	P_s (C/m ²)	E_c (MV/m)		
0	0.287	0.300	1.97	1.483	0.278
0.1	0.224	0.233	2.18	1.488	0.231
0.3	0.208	0.213	2.37	1.712	0.188
0.5	0.147	0.175	1.94	1.024	0.162
0.7	0.089	0.126	1.63	0.811	0.134
0.9	0.077	0.111	1.75	0.811	0.115

Figure 1. XRD patterns of the samples sintered at 1200°C for 2h of 0.2PZN–0.8PZT + x wt% MnO_2 ceramics: (a) $x=0$, (b) $x=0.1$, (c) $x=0.3$, (d) $x=0.5$, (e) $x=0.7$ and (f) $x=0.9$.

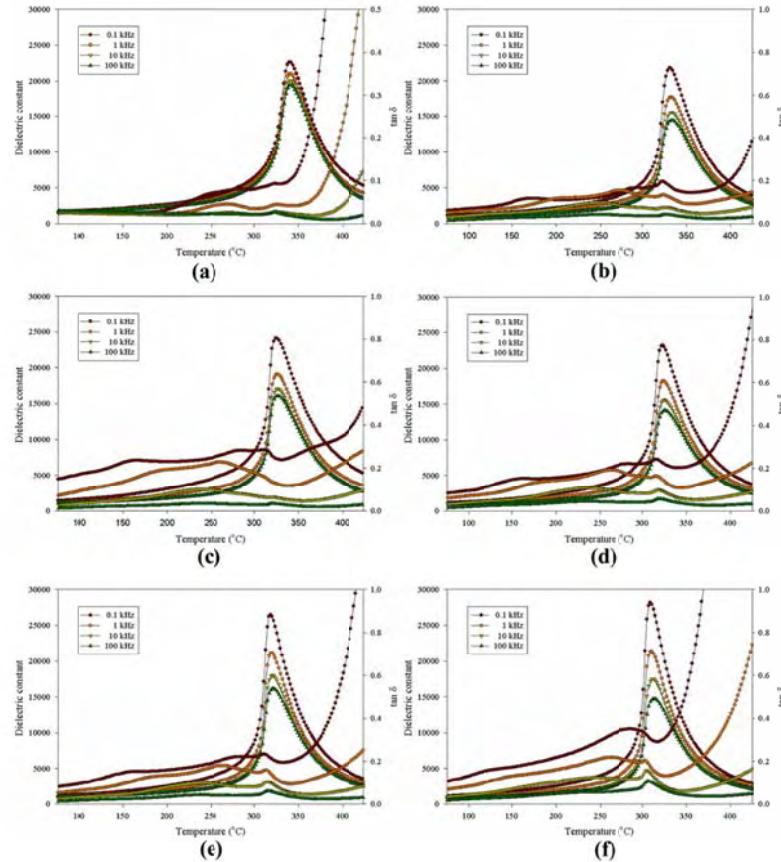


Figure 2. SEM images of the specimens sintered surface of 0.2PZN-0.8PZT + x wt% MnO_2 ceramics at 1200°C for 2h; (a) $x=0$, (b) $x=0.1$, (c) $x=0.3$, (d) $x=0.5$, (e) $x=0.7$ and (f) $x=0.9$.

from 310 to 340 °C by controlling the addition of MnO_2 content in the system. The results indicate a rapid decrease in T_c with an increase in MnO_2 content over the range from 0.0 to 0.9 wt%.

Density, dielectric constant (ϵ_r), electro-mechanical coupling factor (k_p), mechanical quality factor and piezoelectric constant (d_{33}) are plotted as a function of amount of MnO_2 addition in Figure 5. When the amount of MnO_2 is lower than 0.5 wt%, density slightly increases. However, ϵ_r , k_p and d_{33} show decreasing trends with increasing MnO_2 content. When the amount of MnO_2 is lower than 0.5 wt%, k_p and d_{33} are rapidly decreased

with increasing MnO_2 content. It is well known that the substitutions of acceptor dopant Mn ions will lead to the creation of oxygen vacancies, which pin the movement of the ferroelectric domain walls and result in a decrease of ϵ_r , k_p and d_{33} [11,19]. The mechanical quality factor (\mathcal{Q}_m) increases rapidly with increasing MnO_2 content [4]. The acceptor dopant of MnO_2 improves \mathcal{Q}_m significantly. The highest value \mathcal{Q}_m (~ 1413) are obtained in the ceramics with MnO_2 amounts of 0.5 wt%. Further addition of MnO_2 above 0.5 wt% leads to a slightly decrease in the value of \mathcal{Q}_m , which may be mainly attributable to non-uniformity of the

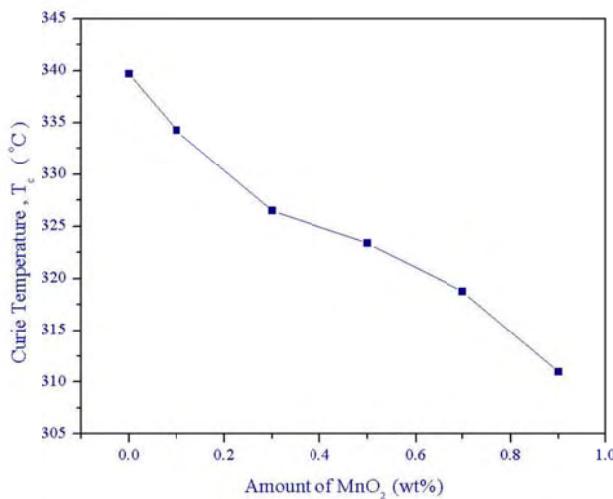
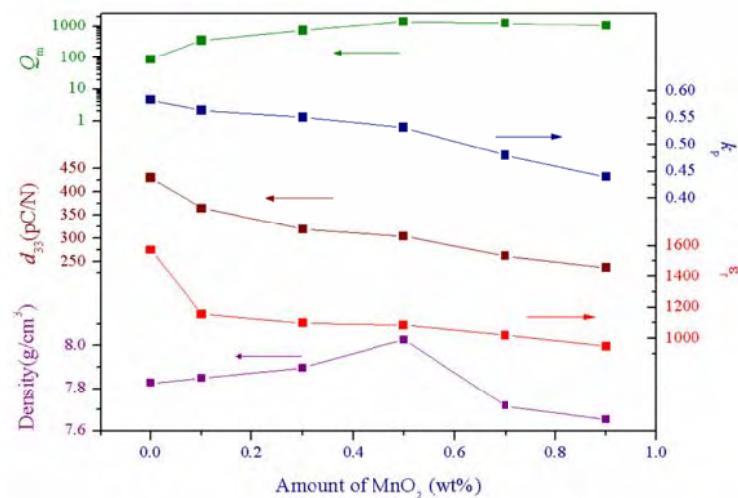
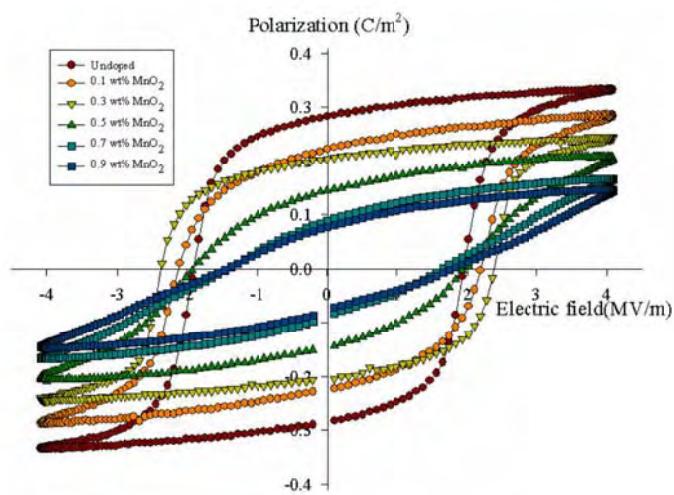


Figure 3. Temperature and frequency dependence of dielectric properties of 0.2PZN–0.8PZT + α wt% MnO_2 ceramics at 1200°C for 2h; (a) $\alpha=0$, (b) $\alpha=0.1$, (c) $\alpha=0.3$, (d) $\alpha=0.5$, (e) $\alpha=0.7$ and (f) $\alpha=0.9$.


microstructure, as shown in Figure 2.

The polarization-field ($P-E$) hysteresis loops of 0.2PZN–0.8PZT + α wt% MnO_2 ceramics are shown in Figure 6. The well-developed and fairly symmetric hysteresis loops with the field are observed for all compositions. To further assess ferroelectric


characteristics in MnO_2 -modified PZN-PZT ceramics, the ferroelectric parameters, i.e. the remnant polarization (P_r) and the coercive field (E_c), have been extracted from the experimental data and given in Table 3. It can be seen that P_r and P_s decrease with an addition of MnO_2 into the PZN-PZT

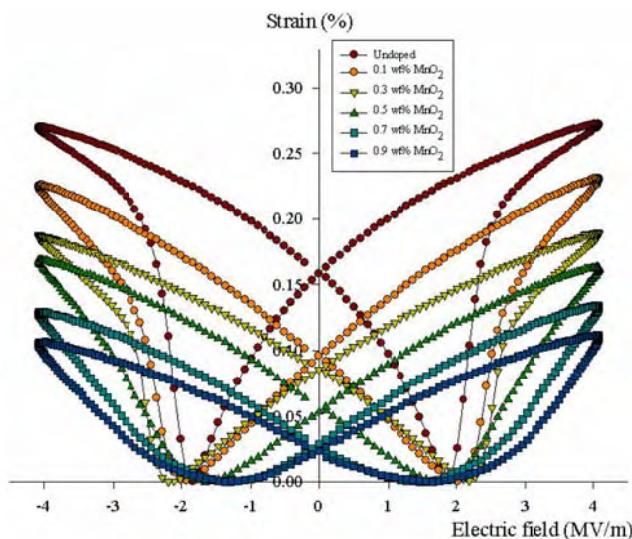

Figure 4. Curie temperature of the specimens sintered at 1200°C for 2h of 0.2PZN-0.8PZT + α wt% MnO₂ ceramics where $\alpha = 0, 0.1, 0.3, 0.5, 0.7$ and 0.9.

Figure 5. Density, dielectric constant (ϵ_r), piezoelectric constant (d_{33}), electromechanical coupling factor (k_p), and mechanical quality factor (Q_m) of the specimens sintered at 1200°C for 2h of 0.2PZN-0.8PZT + α wt% MnO₂ ceramics where $\alpha = 0, 0.1, 0.3, 0.5, 0.7$ and 0.9.

Figure 6. Polarization and electric field (P-E) loops of 0.2PZN-0.8PZT + x wt% MnO_2 ceramics.

Figure 7. Strain and electric field (s-E) loops of 0.2PZN-0.8PZT + x wt% MnO_2 ceramics.

composition, while E_c increases to the maximum at $x = 0.3$ wt%. The ferroelectric characteristics can also be assessed with the hysteresis loop squareness (R_{sq}), which can be calculated from the empirical expression $R_{sq} = (P_r/P_s) + (P_{1.1E_c}/P_s)$, where P_r is the remnant polarization, P_s is the saturated polarization obtained at some finite field strength below the dielectric breakdown and $P_{1.1E_c}$ is the polarization at the field equal to $1.1E_c$ [20]. For the ideal square loop, R_{sq} is equal to 2.00. As listed in Table 3, the R_{sq} parameter increases from 1.483 in $x = 0$ to reach the maximum value of 1.712 in $x = 0.3$. Further addition of MnO_2 above 0.3 wt% leads to a decrease in the R_{sq} parameter, which is mainly attributable to non-uniformity of the microstructure, as shown in Figure 2. The longitudinal strain (δ) of the specimens as a function of the electric field is shown in Figure 7. The strains are degraded markedly when MnO_2 content is increased, as listed in Table 3. These results (decreased P_r and strain level but increased E_c) clearly indicate the "hard" characteristics with addition of MnO_2 , mainly caused by Mn ions substitution in B-site leads to the creation of oxygen vacancies, which pin the movement of the ferroelectric domain walls.

4. CONCLUSIONS

The structure and electrical properties of MnO_2 -doped 0.2Pb $(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3$ -0.8Pb $(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3$ ceramic, which is the MPB composition of the PZN-PZT system, are investigated. The addition of MnO_2 content transforms the crystal structure to rhombohedral side. Furthermore, MnO_2 addition decreases the Curie temperature, ε_p , d_{33} and k_p , but enhances the mechanical quality factor. The P - E and δ - E loops demonstrate decreased P_r and strain level with increased E_c with addition of MnO_2 . These results clearly show the hardening influence of MnO_2 in the PZN-PZT system.

5. ACKNOWLEDGEMENTS

This work was supported by the Synchrotron Light Research Institute (Public Organization) SLRI, the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), and the Faculty of Science, Chiang Mai University.

REFERENCES

- [1] Jin B.M., Kim J., and Kim S.C., Effects of grain size on the electrical properties of Pb $\text{Zr}_{0.52}\text{Ti}_{0.48}\text{O}_3$ ceramics, *Appl. Phys. A: Mater.*, 1997; **65**: 53-55.
- [2] Yudong H., Mankang Z., and Feng G., Effect of MnO_2 Addition on the Structure and Electrical Properties of Pb $(\text{Zn}_{1/3}\text{Nb}_{2/3})_{0.20}(\text{Zr}_{0.50}\text{Ti}_{0.50})_{0.80}\text{O}_3$ Ceramics, *J. Am. Ceram. Soc.*, 2004; **87**: 847-850.
- [3] Vasileva T.K., Nadoliisky M.M., and Toshev S.D., Study of PZT ceramics doped with Cr_2O_3 , *Phys. Status Solidi (a)*, 1984; **86**: 109-111.
- [4] Toshio K., Toshimasa S., and Takaaki T., Effects of Manganese Addition on Piezoelectric Properties of Pb $(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3$, *Jpn. J. Appl. Phys.*, 1992; **31**: 3058-3060.
- [5] Takahashi S., and Takahashi M., Effects of Impurities on the Mechanical Quality Factor of Lead Zirconate Titanate Ceramics, *Jpn. J. Appl. Phys.*, 1972; **11**, 31-35.
- [6] Kim J.S., Yoon K.H., Choi B.H., Park J.O., and Lee J.M., Effects of MnO_2 on the Dielectric and Piezoelectric Properties of Pb $(\text{Zr}_{0.5}\text{Ti}_{0.5})\text{O}_3$ Ceramics, *J. Kor. Ceram. Soc.*, 1990; **27**: 187-194.
- [7] Fan H.Q., and Kim H.E., Effect of Lead Content on the Structure and Electrical Properties of Pb $(\text{Zn}_{1/3}\text{Nb}_{2/3})_{0.5}(\text{Zr}_{0.47}\text{Ti}_{0.53})_{0.5}\text{O}_3$ Ceramics, *J. Am. Ceram. Soc.*, 2001; **84**: 636-638.

- [8] Xu Y, *Ferroelectric Materials and Their Applications*, Elsevier Science Publishers, Amsterdam, The Netherlands, 1991.
- [9] Uchino K., Giniewicz J.R., *Micromechatronics*, Marcel Dekker, New York, 2003.
- [10] Moulson A.J., and Herbert J.M., *Electroceramics (2nd ed.)*, Wiley, New York, 2003.
- [11] Jaffe B., Cook W.R., and Jaffe H., *Piezoelectric Ceramics*, Academic Press Inc., New York, 1971.
- [12] Yoo J., Hong J., and Suh S., Effect of MnO_2 impurity on the modified PbTiO_3 system ceramics for power supply, *Sens. Actuators*, 1999; **78**: 168-171.
- [13] Priya S, Ph.D. Dissertation, Pennsylvania State University, USA., 2003.
- [14] He L.X., and Li C.E., Effects of addition of MnO on piezoelectric properties of lead zirconate titanate, *J. Mater. Sci*, 2000; **35**: 2477-2480.
- [15] IEEE Standard on Piezoelectricity, *IEEE Standard 176-1978*, Institute of Electrical and Electronic Engineers, New York, 1978.
- [16] Yu C.-S., Hsieh H.-L., X ray investigation of high oriented $(1 - \alpha)\text{PbMg}_{1/3}\text{Nb}_{2/3}\text{O}_3 - \alpha\text{PbTiO}_3$ ceramics, *J. Euro Ceram. Soc.*, 2005; **25**: 2435-2427.
- [17] Hou Y.D., Cui B., Zhu M.K., Wang H., Wang B., Yan H., Tian C.S., Structure and electrical properties of Mn-modified $\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})_{0.20}(\text{Zr}_{0.50}\text{Ti}_{0.50})_{0.80}\text{O}_3$ ceramics sintered in a protective powder atmosphere, *Mater. Sci. and Eng. B*, 2004; **111**: 77-81.
- [18] Wersing W, Anomalous dielectric losses in manganese doped lead-titanate-zirconate-ceramics, *Ferroelectrics*, 1978; **22**: 813-815.
- [19] Wu L., Wei C.-C., Wu T.-S., and Teng C.-C., Improved ceramics for piezoelectric devices, *J. Phys. C: Solid State Phys.*, 1983; **16**: 2813-2821.
- [20] Yinnirun R., Ananta S., Ngamjarurojana A., and Wongsaenmai S., Uniaxial stress dependence of ferroelectric properties of $\alpha \text{PMN}-(1 - \alpha) \text{PZT}$ ceramic systems, *Appl. Phys. A: Mater.*, 2005; **81**: 1227-1231.

Effect of Vibro- Milling Time on Phase Formation and Particle Size of $ZnNb_2O_6$ Nano-powders

Athipong Ngamjarurojana^{1,*}, Rattikorn Yimnirun² and Supon Ananta¹

¹Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand

²School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand

Keywords: Zinc niobate; Vibro-milling; solid-state reaction; Microstructure; Dielectric Properties

ABSTRACT

Zinc niobate, $ZnNb_2O_6$, nanopowders was synthesized by a solid-state reaction via a rapid vibro-milling technique. The effect of milling time on the phase formation and particle size of $ZnNb_2O_6$ powder was investigated. The formation of the $ZnNb_2O_6$ phase investigated as a function of calcination conditions by DTA and XRD. The particle size distribution of the calcined powders was determined by laser diffraction technique, while morphology, crystal structure and phase composition were determined via a SEM techniques. In addition, by employing an appropriate choice of milling time, a narrow particle size distribution curve was also observed.

INTRODUCTION

Zinc niobate ($ZnNb_2O_6$, ZN) is one of the binary niobate compounds which exhibits excellent dielectric properties at microwave frequencies [1-2]. It has very low loss and high dielectric constant and is a promising candidate for application in microwave devices[3-4]. Moreover, the columbite-structured $ZnNb_2O_6$ is well known as an attractive B-site precursor for the preparation of lead zinc niobate ($Pb(Zn_{1/3}Nb_{2/3})O_3$ or PZN)-based ferroelectric ceramics used for high performance electromechanical actuators and transducers and piezoelectric ultrasonic motors [5-7]. This is significant because it is very difficult to synthesize those compounds via the conventional solid-state reaction process using oxides as starting materials [8-10]. In the past, $ZnNb_2O_6$ powders were usually prepared by a solid-state reaction process [11-13]. Recent work by Vittayakorn *et. al.* [14] has also shown promise in producing pure phase columbite ZN powders with the conventional mixed-oxide ball milling method technique that used very long heat treatments at ~950-1350 °C for 4h, while Ngamjarurojana *et. al.*[15] has successfully synthesized ZN powders via a rapid vibro-milling technique, which have been developed as alternatives to the conventional solid-state reaction of mixed oxides. These techniques are aimed at reducing the temperature of preparation of the compound by mixed oxide route.

Therefore, the main purpose of this work is to explore a simple mixed oxide synthetic route for the production of $ZnNb_2O_6$ (ZN) powders via a rapid vibro-milling technique and to perform milling time, which calcined at 600 °C for 2 h with heating/cooling rates 5 °C/min, on the phase formation and particle size of $ZnNb_2O_6$ powder was investigated.

EXPERIMENTAL

In this study, starting materials were commercially available zinc oxide, ZnO (Fluka Chemical, 99.9% purity) and niobium oxide, Nb_2O_5 (Aldrich, 99.9% purity). $ZnNb_2O_6$ powders were synthesized by the solid-state reaction of these raw materials. Ground mixtures of the powders were required with stoichiometric ratio of ZnO and Nb_2O_5 powders. A McCrone vibro-milling technique

was employed in order to combine mixing capacity with a significant time saving. The milling operation was carried out in isopropanol. High purity corundum cylindrical media were used as the milling media. After varied vibro-milling from 0.5- 25 h. and drying at 120 °C, the mixture was calcined at 600 °C for 2 h with heating/cooling rates 5 °C/min[13] in alumina crucible to investigate the phase formation behavior of ZN powders. Calcined powders were subsequently examined by room temperature X-ray diffraction (XRD; Siemens-D500 diffractometer) using Ni-filtered CuK α radiation to identify the phases formed for the ZN powders. Powder morphologies and particle sizes were directly imaged using scanning electron microscopy (SEM; JEOL JSM-840A). The particle size distributions of the powders were determined by laser diffraction technique (Zetasizer Nano; Malvern Particle Size).

RESULTS AND DISCUSSION

All calcined powders in together different vibro-milling time as shown in Fig. 1. It can be noticed that all conditions is pure phase of ZnNb₂O₆ which are matched in JCPDS file number 30-0873.

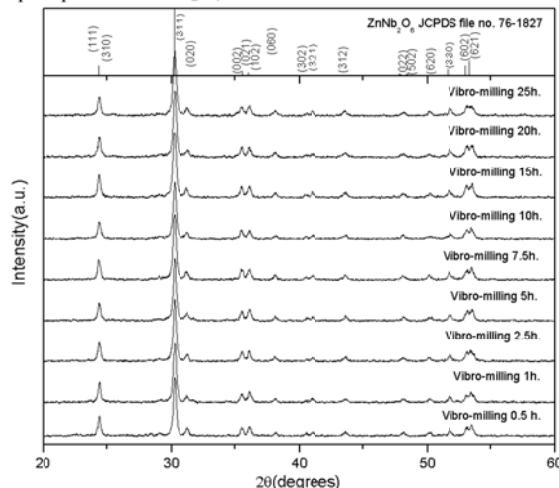


Fig. 1 XRD patterns of the ZN powders calcined at 600 °C for 2 h with heating/cooling rates 5 °C/min with various milling times.

Fig. 2 shows the morphological evolution of all samples as a function of milling times. In general, the particles are agglomerated and basically irregular in shape, with a substantial variation in particle sizes. By increasing the milling time from 0.5 h to 25 h, the particle size of the ZN powder almost similar in size and shape. This is probably due to the effectiveness of vibro-milling and carefully optimized reaction. It is also of interest to point out that larger particle size was obtained for the milling time longer than 10 h. This observation may be attribute to the occurrence of hard agglomeration with strong inter-particle bond within each aggregates resulting from high energy of too long milling time process.

The effect of milling time on particle size distribution was found to be quite significant as shown in Fig 3. After milling times of 0.5–7.5 h, the powders have similar particle size distribution behavior. They exhibit a single peak covering the size ranging from 0.3 – 0.8 μ m. By increasing the milling time to 10 h, a uniform particle size distribution with a much lower degree of particle agglomeration was found. However, upon further increasing of milling time up to 25h, a distribution curve with peak broadening between 0.2 – 1 μ m was observed. This may be attribute to

the formation of hard and large agglomeration found in the SEM results. In this work, it is seen that the optimum milling time for the production of smallest nanosized and high purity ZN powder was found to be at 10 h. Variations in these data may be attributed mainly to the formation of hard and large agglomerations found in the SEM results.

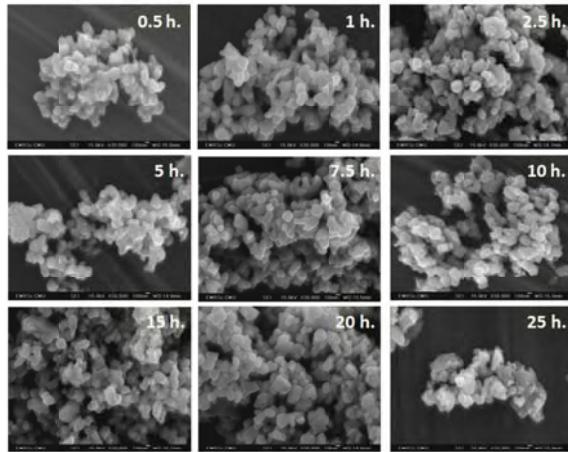


Fig. 2 SEM micrographs of the calcined ZN powders with various milling times.

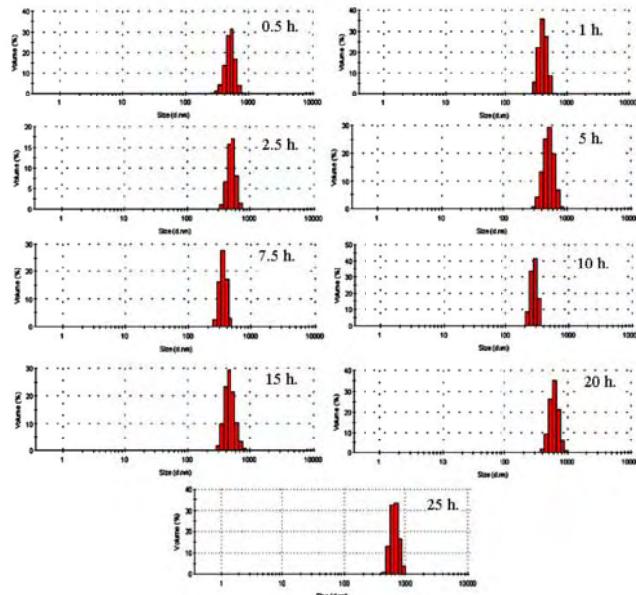


Fig. 3 Particle size distribution curves of the calcined ZN powders with various milling times.

CONCLUSIONS

The effect of milling times on phase formation, particle size and particle size distribution of perovskite zinc niobate synthesized by the solid-state reaction via a rapid vibro-milling technique was investigated. The resulting ZN nano-sized powders consist of a variety of agglomerate particle size, depending on milling times.

ACKNOWLEDGEMENTS

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE) and the Faculty of Science, Chiang Mai University.

REFERENCES

- [1] R. C. Pullar, K. Okeneme and N. M. Alford, *J. Eur. Ceram. Soc.*, **23** (2003) 2479.
- [2] D.W. Kim, K.H. Ko, K.S. Hong, *J. Am. Ceram. Soc.* **84** (6) (2001) 1286.
- [3] A.Z. Simoes, A.H.M. Gonzalez, A.A. Cavalheiro, M.A. Zaghe, B.D. Stojanovic, J.A. Varela, *Ceram. Inter.* **28** (2002) 265.
- [4] L.J. Hu, Y.H. Chang, I.N. Lin, S.J. Yang, *J. Cryst. Growth.* **114** (1991) 191.
- [5] Xu, Y., *Ferroelectric Materials and Their Applications*. Elsevier Science, Amsterdam, The Netherlands, 1991.
- [6] G. Haertling, *J. Am. Ceram. Soc.* **82** (1999) 797.
- [7] A.J. Moulson, J.M. Herbert, *Electroceramics*, 2nd ed., A Wiley-Interscience, New York, 2004
- [8] T.R. Gururaja, A. Safari, A.Halliyal, *Am. Ceram. Soc. Bull.* **65** (1986) 1601.
- [9] M.M.A. Sekar, A. Halliyal, K.C. Patil, *J. Mater. Res.*, **1996**, **11**, 1210.
- [10] H.J. Lee, K.S. Hong, S.J. Kim, *Mater. Res. Bull.* **32** (7) (1997) 847.
- [11] Y. Hou, M.K. Zhu, H. Wang, B. Wang, H. Yan, C.S. Tian, *Mater. Lett.* **58** (2004) 1508.
- [12] W. Zhu, A.L. Kholkin, P.Q. Mantas, J.L. Baptista, *J. Am. Ceram. Soc.* **84** (2001) 1740.
- [13] M. Villegas, A.C. Caballero, C. Moure, P. Durán, J.F. Fernández, R.E. Newnham, *J. Am. Ceram. Soc.* **83** (2000) 141.
- [14] N. Vittayakorn, G. Rujjanagul, T. Tunkasiri, X. Tan, D.P. Cann, *J. Mater. Res.*, **2003**, **18**, 2882.
- [15] A. Ngamjarurojana, O. Khamman, R. Yimnirun and S. Ananta, *Mater. Lett.* **60** (2006) 2863

e-mail: ngamjarurojana@yahoo.com

Fax: +66-53-943445

GFER #482888, VOL 405, ISS 1

Extended X-Ray Absorption Fine Structure and X-Ray Diffraction Studies of Mn-Doped PZN-PZT Ceramics

Athipong Ngamjarurojana, Laongnuan Srisombat, Rattikorn Yinnirun,
and Supon Ananta

QUERY SHEET

This page lists questions we have about your paper. The numbers displayed at left can be found in the text of the paper for reference. In addition, please review your paper as a whole for correctness.

Q1. Au: Please check for empty boxes in text where special characters should be, and provide correct characters.

TABLE OF CONTENTS LISTING

The table of contents for the journal will list your paper exactly as it appears below:

Extended X-Ray Absorption Fine Structure and X-Ray Diffraction Studies of Mn-Doped
PZN-PZT Ceramics
**Athipong Ngamjarurojana, Laongnuan Srisombat, Rattikorn Yinnirun,
and Supon Ananta**

1 **Extended X-Ray Absorption Fine Structure and**
 2 **X-Ray Diffraction Studies of Mn-Doped PZN-PZT**
 3 **Ceramics**

4 ATHIPONG NGAMJARUROJANA,^{1,4}
 5 LAONGNUAN SRISOMBAT,² RATTIKORN YIMNIRUN,³
 6 AND SUPON ANANTA^{1,*}

7 ¹Department of Physics and Materials Science, Faculty of Science,
 8 Chiang Mai University, Chiang Mai 50200, Thailand

9 ²Department of Chemistry, Faculty of Science, Chiang Mai University,
 10 Chiang Mai 50200, Thailand

11 ³School of Physics, Suranaree University of Technology, Nakhon Ratchasima
 12 30000, Thailand

13 ⁴IhEP Center, CHE, 328 Si Ayutthaya Road, Bangkok 10400, Thailand

14 *In this work, the selected compositions of a combination between perovskite piezo-
 15 electric ceramics lead zinc niobate (PZN) and lead zirconate titanate (PZT), close to
 16 the morphotropic phase boundary (MPB) i.e. the 0.2PZN-0.8PZT, doped with MnO₂
 17 concentrations of 0.9–0.9 wt% were fabricated by a simple solid-state reaction and a
 18 pressureless sintering techniques. X-ray diffraction (XRD) spectra from these materi-
 19 als reveal transformation of the tetragonal into the rhombohedral structure. The local
 20 structure of Mn was analyzed by means of synchrotron extended X-ray absorption fine
 21 structure (EXAFS) measurements at the Mn K-edge. The correlation between the struc-
 22 tural changes and the Mn content was analyzed and compared. The EXAFS analysis
 23 indicates that Mn ions should occupy the B-sites in PZN-PZT structure and plays a
 24 critical role for the hard ferroelectric behavior of the material.*

25 **Keywords** Piezoceramics; perovskite; EXAFS; X-ray diffraction

26 **1. Introduction**

27 Lead-based complex perovskite piezoceramics with general formula Pb(B',B'')O₃ such
 28 as PZN, PZT and their solid-solutions close to the MPB are very attractive for sensor,
 29 transducer and actuator applications [1–3]. This is because of their low firing temperature
 30 and excellent piezoelectric properties. It has been widely proposed that these important
 31 properties strongly depend on the rotations and distortions of the BO₆ octahedra [1, 2].
 32 Manganese oxide is one of the key effective dopants for lead-based perovskite piezoe-
 33 ramics to exhibit hard ferroelectric behavior [4–6]. Because of different valence of Mn and
 34 B-site ions, an enhancement in the Mn/B-site ions ratio may increase the vacancy concen-
 35 tration, forming acceptor-type defects and/or etc. In our previous work [7], the structure

Q1

Received August 23, 2009; in final form October 9, 2009.

*Corresponding author. E-mail: suponananta@yahoo.com

{1}/{1}

36 and electrical properties of MnO_2 -doped 0.2PZN-0.8PZT compositions were investigated.
 37 It was found that with the addition of MnO_2 , Curie temperature, the piezoelectric constant
 38 and electromechanical coupling factor were slightly decreased, but the mechanical quality
 39 factor was significantly enhanced. However, so far, the nature of the hard ferroelectric re-
 40 sponse and the site preference of Mn in these complex perovskite materials are still unclear
 41 [4-7]. Additionally, these previous investigation on Mn-doped PZT-based ceramics has
 42 also assumed that Mn ions sit in B-site [4-7]. Interestingly, so far, there has been no direct
 43 experimental determination of Mn-site in these materials. Thus, in this work, a combina-
 44 tion of X-ray diffraction (XRD) and synchrotron extended X-ray absorption fine structure
 45 (EXAFS) experiments [8, 9], which is proven to be a powerful technique for resolving the
 46 local structure surrounding a particular (absorbing) atom, was performed on the Mn-doped
 47 PZN-PZT system in order to determine the local structure around Mn ions.
 48

49 2. Experimental

50 The selected samples studied were fabricated according to the formula $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})$
 51 $\text{O}_3\text{.0.8Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3 + x \text{ wt\% MnO}_2$, where $x = 0.0$ to 0.9 by a simple mixed-oxide
 52 method as detail described elsewhere [7]. Starting materials of PbO , ZnO , Nb_2O_5 , ZrO_2 ,
 53 TiO_2 , and MnO_2 with $>99\%$ purity were vibro-milled with zirconia media in isopropanol
 54 for 30 min. After drying, the powders were calcined at 900°C for 2 h. The calcined PZN-
 55 PZT powders were vibro-milled with MnO_2 additive and PVA binder for 30 min, pressed
 56 into pellets and fired at 500°C for 1 h to eliminate the PVA, followed by sintering with PbO -
 57 rich atmosphere inside sealed alumina crucible at 1200°C for 2 h [7]. Phase identification
 58 of the samples was performed by XRD and densities were measured by Archimedes
 59 method. The synchrotron EXAFS measurement was performed in the transmission mode
 60 at the X-ray absorption spectroscopy beamline (BL-8) of the Siam photon source (electron
 61 energy of 1.2 GeV), Synchrotron Light Research Institute (Public Organization), Thailand
 62 (Fig. 1). The spectra were collected at ambient temperature with a Ge(111) double crystal

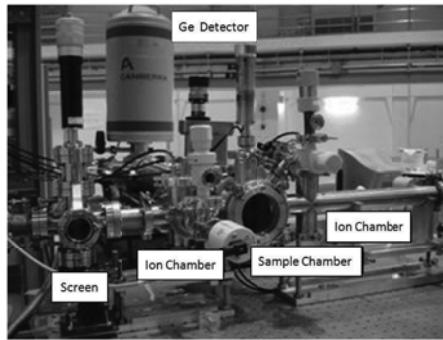


Figure 1. EXAFS experimental set-up at BL8, SPS.

63 monochromator and recorded after performing an energy calibration. To increase the count
64 rate, the ionization chamber was filled with Ar gas. The storage ring was running at an
65 energy of 1.2 GeV with electron currents between 80 mA and 30 mA.

66 3. Results and Discussion

67 The XRD patterns of 0.2Pb(Zn_{1/3}Nb_{2/3})O₃–0.8Pb(Zr_{0.52}Ti_{0.48})O₃ ceramics at different Mn
68 concentrations are shown in Fig. 2. In general, the strongest reflections apparent in the
69 majority of these XRD patterns indicate the formation of the pure perovskite phase for
70 all compositions. It should be noted that no evidence of the pyrochlore-type compounds
71 [10, 11] was found in this study, nor was there any indication of the unreacted precursors
72 [12] being present. This is possibly due to uses of different processing methods. In those
73 either works, a conventional ball-milling was employed, while the rapid vibro-milling used
74 in this present study results in finer powders with apparently more reactivity, hence the
75 pure perovskite phase is formed more easily. Furthermore, the effective suppression of
76 PbO volatilization commonly found for lead-based perovskite ceramics during high firing
77 temperature [1, 2] was also achieved with the designed sample arrangement for the sintering
78 scheme [7]. The undoped PZN-PZT ceramics were characterized as tetragonal phase which
79 is indicated by the splitting of (002)_T and (200)_T peaks in the 2θ range from 43 to 45°, similar
80 to the reported by Hou *et al.* [13] and Yang *et al.* [14]. It is noticed that a small amount
81 of rhombohedral phase is also present with increasing Mn substitution with a complete
82 transformation to rhombohedral phase (revealed by the single (202)_R peak) when *x* reaches
83 0.5 wt%. This is similar to the circumstance of PZN (rhombohedral phase) addition on
84 PZT system earlier reported by Lee *et al.* [11]. In addition, the effect of Mn on the shift
85 of MPB toward the rhombohedral phase region in the similar system of Mn-doped PZT
86 ceramics was also observed by Kim and Yoon [6]. It is believed that manganese ions are
87 mainly incorporated into the lattice, but if the addition is above 0.5 wt%, manganese ions
88 will accumulate at the grain boundaries [5]. It has been reported that manganese coexists
89 mainly in the Mn²⁺ and Mn³⁺ states, which entered into the perovskite structure of BO₆
90 octahedron to substitute for the B-site ion (e.g. Ti⁴⁺ and Zr⁴⁺).

91 The MPB composition range has believed to be quite narrow, but in practice the MPB
92 has a wide range of compositions over which the tetragonal and rhombohedral phases
93 coexist in ceramics. Since all properties take extreme values near MPB, the width of the
94 MPB has been investigated by many workers and found to be related to the heterogeneous
95 distribution of Zr⁴⁺ and Ti⁴⁺ cations on the B-site of perovskite lattice [5, 6]. By means
96 of XRD, the co-existence of the two phases over a range of compositions around the MPB
97 was demonstrated in this work. The smaller ionic radius of Mn⁴⁺ ion (0.053 nm) compared
98 with that of the B-site ions (either Zn²⁺ (0.083 nm), Nb⁵⁺ (0.069 nm), Zr⁴⁺ (0.082 nm) or
99 Ti⁴⁺ (0.064 nm) [1, 15] leads to the reductions in the lattice constants (and tetragonality)
100 in Mn-doped PZN-PZT ceramics. However, the information on site preference of Mn in
101 PZN-PZT perovskite structure cannot be retrieved directly from the XRD analysis alone.
102 The EXAFS analysis was then employed to further study the local structure of Mn in the
103 PZN-PZT-based lattice.

104 Figure 3 show the Mn K edge and Fourier transforms for the EXAFS spectra with
105 possible bonding information identified and local structure of Mn-doped 0.2PZN-0.8PZT
106 ceramics. The Fourier transform is a complex function of distance R, the amplitude of
107 which is denoted by the real function $\rho(R)$. The position of peaks in $\rho(R)$ is related to
108 bond distances between the Mn ion and neighboring ions while the height of each peak
109 is proportional to the number of neighbors. The bond lengths and coordination numbers

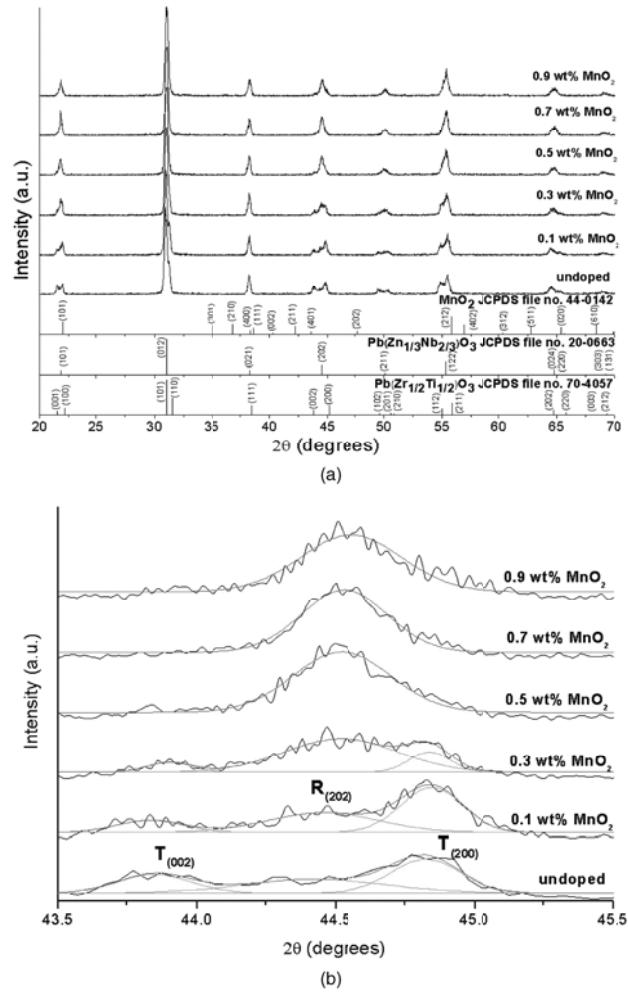
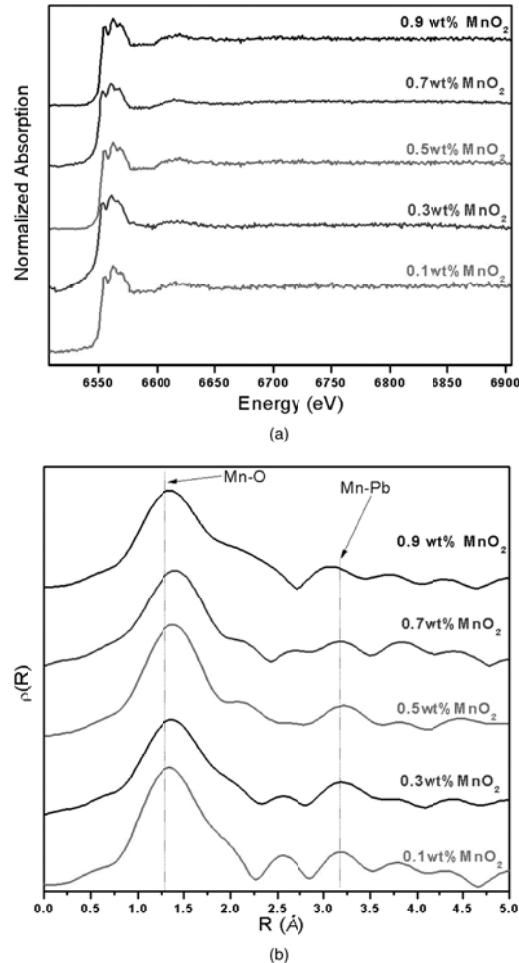



Figure 2. (a) XRD patterns of $0.2\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3\text{-}0.8\text{Pb}(\text{Zr}_{1/2}\text{Ti}_{1/2})\text{O}_3 + x \text{ wt\% MnO}_2$, where $x = 0.0$ to 0.9 and (b) enlarged XRD patterns in the $2\theta = 43\text{-}46^\circ$. (See Color Plate XXX)

Figure 3. (a) Mn K edge spectra of MnO₂ doped 0.2PZN-0.8PZT ceramics, (b) Fourier transforms of the EXAFS spectra for MnO₂ doped 0.2PZN-0.8PZT ceramics (peaks are designed with possible bonding) and (c) Possible local structure for Mn-doped 0.2PZN-0.8PZT ceramics. (See Color Plate XXX)

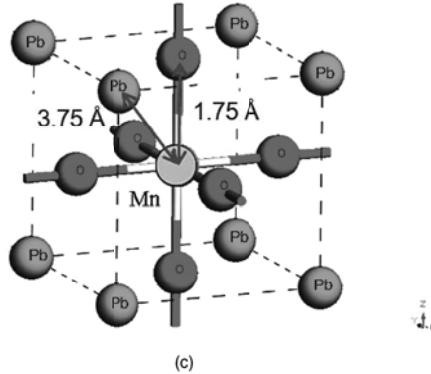


Figure 3. (Continued)

cannot, however, be read directly from $\rho(R)$. In order to determine the bond lengths and coordination numbers, the k -dependent amplitude and phase corrections must be made to the EXAFS signal. For example, prior to the phase correction, the peaks in $\rho(R)$ are basically smaller than the corresponding bond lengths by ~ 0.5 Å [9]. Interestingly, the location of Mn within PZN-PZT unit cell can be resolved without making phase and amplitude corrections. As shown in Fig. 3, by simply comparing the raw Fourier transform for different Mn contents (0.1–0.9 wt%), there is no observable change in peak positions, particularly for the first main peak. The coincidence of the main peaks is evidence that no change in the location of the majority of Mn ions occurs with increasing Mn concentration. Furthermore, the location of Mn appears to be unaffected by the presence of 0.9 wt% MnO_2 . It should be noted that a similar Fourier transform of EXAFS spectra for Mn doped PZN-PZT in this study, Mn doped PZT reported by Cherdhirunkorn *et al.* [9] and PZN, PZT perovskite established by Chen [16] is observed. The results indicate the site of Mn atom at B(Zn,Nb,Zr,Ti)-site in the PZN-PZT unit cell. Since the peak position indicates the bond distance between Mn and its neighbors or the location of Mn within the PZN-PZT unit cell, the unit cell of Mn-doped PZN-PZT can be extracted from the peak positions in the Fourier transform of EXAFS spectra shown in Fig. 3. According to the simulation EXAFS for Mn-doped PZT established by Cherdhirunkorn *et al.* [9], similar information can be extracted from the Fourier transforms of the EXAFS spectra from Mn-doped PZN-PZT observed in this work. It is very interesting to observe similar EXAFS signatures between the Mn-B-site curve where the first main peak occurring at ~ 1.25 Å (due to the six nearest oxygen atoms), while the second peak at ~ 3.2 Å is attributed to the nearest Pb atoms. Furthermore by comparing the results shown in Fig. 3 and Ref. [16], it is evident that the peaks are well consistent with a simulation of EXAFS that assumes Mn occupies the B-site but the minority A-site occupation cannot be ruled out.

135 **4. Conclusions**

136 A combination of X-ray diffraction and synchrotron extended X-ray absorption fine structure experiments is performed on Mn-doped 0.2Pb_{(Zn_{1/3}Nb_{2/3})O₃}-0.8Pb_{(Zr_{1/2}Ti_{1/2})O₃}. The transformation of the tetragonal into the rhombohedral structure with increasing Mn content was revealed by XRD technique. The EXAFS analysis indicates that Mn ions should occupy the B(Zn, Nb, Zr, Ti)-sites in PZN-PZT structure and plays a critical role for the hard ferroelectric behavior of the materials.

142 **Acknowledgment**

143 This work was supported by the Synchrotron Light Research Institute (Public Organization),
144 Thailand (GRANT 1-2551/PS02) and the Faculty of Science, Chiang Mai University.

145 **References**

- 146 1. A. J. Moulson and J. M. Herbert, *Electroceramics*. New York: Wiley-Interscience (2003).
- 147 2. Y. Xu, *Ferroelectric Materials and Their Applications*. Los Angeles: North Holland (1991).
- 148 3. K. Uchino, *Ferroelectric Devices*. New York: Marcel Dekker (2000).
- 149 4. Y. Hou, M. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, and C. Tian, Effect of MnO₂ addition on
150 the structure and electrical properties of Pb_{(Zn_{1/3}Nb_{2/3})_{0.20}(Zr_{0.50}Ti_{0.50})_{0.80}O₃} ceramics. *J. Am. Ceram Soc.* **87**, 847-850 (2004).
- 151 5. L. X. He and C. E. Li, Effects of addition of MnO on piezoelectric properties of lead zirconate
152 titanate. *J. Mater. Sci.* **35**, 2477-2480 (2000).
- 153 6. J. S. Kim and K. H. Yoon, Physical and electrical properties of MnO₂-doped Pb_{(Zr_xTi_{1-x})O₃}
154 Ceramics. *J. Mater. Sci.* **29**, 809-815 (1994).
- 155 7. A. Nganjaruojana and S. Ananta, Effect of MnO₂ addition on dielectric, piezoelectric and
156 ferroelectric properties of 0.2Pb_{(Zn_{1/3}Nb_{2/3})O₃}-0.8Pb_{(Zr_{1/2}Ti_{1/2})O₃} ceramics. *Chiang Mai. J. Sci.* **36**, 59-68 (2009).
- 157 8. E. R. Kipkoech, F. Azough, R. Freer, and J. F. Mosselmans, Extended x-ray absorption fine
158 structure analysis of (Cd,Nd)(Ti,Al)O₃ perovskite ceramics used in cellular base stations. *Acta Mater.* **54**, 2305-2309 (2006).
- 159 9. B. Cherdhirunkom, M. F. Smith, S. Limpijumnorg, and D. A. Hall, EXAFS study on the site
160 preference of Mn in perovskite structure of PZT ceramics. *Ceram Inter.* **34**, 727-729 (2008).
- 161 10. S. Zhao, H. Wu, and Q. Sun, Study on PSN-PZN-PZT quaternary piezoelectric ceramics near
162 the morphotropic phase boundary. *Mater. Sci. Eng. B* **123**, 203-210 (2005).
- 163 11. S. H. Lee, C. B. Yoon, S. M. Lee, and H. E. Kim, Reaction sintering of lead zinc niobate-lead
164 zirconate titanate ceramics. *J. Eur. Ceram Soc.* **26**, 111-115 (2006).
- 165 12. D. H. Suh, N. K. Kim, and J. H. Kim, Crystallographic and dielectric studies on Pb_{(Zn_{1/3}Ta_{2/3})O₃}-
166 substituted Pb_{(Zn_{1/3}Nb_{2/3})_xTi_{1-x}O₃} system. *Mater. Lett.* **50**, 6-11 (2001).
- 167 13. Y. Hou, M. Zhu, H. Wang, B. Wang, H. Yan, and C. Tian, Effects of CuO addition on the struc-
168 ture and electrical properties of low temperature sintered Pb_{(Zn_{1/3}Nb_{2/3})_{0.20}(Zr_{0.50}Ti_{0.50})_{0.80}O₃}
169 ceramics. *Mater. Sci. Eng. B* **110**, 27-31 (2004).
- 170 14. Z. Yang, H. Li, X. Zong, and Y. Chang, Structure and electrical properties of PZT-PMS-PZN
171 piezoelectric ceramics. *J. Eur. Ceram Soc.* **26**, 3197-3202 (2006).
- 172 15. R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorites. *Acta Crystallogr. B* **25**, 925-946 (1969).
- 173 16. I. W. Chen, Structural origin of relaxor ferroelectrics-revisited. *J. Phys. Chem. Solid.* **61**, 197-208
174 (2000).
- 175 17. I. W. Chen, Structural origin of relaxor ferroelectrics-revisited. *J. Phys. Chem. Solid.* **61**, 197-208
176 (2000).
- 177 18. I. W. Chen, Structural origin of relaxor ferroelectrics-revisited. *J. Phys. Chem. Solid.* **61**, 197-208
178 (2000).