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Abstract

Project Code : MRG5180105
Project Title :  Modification of Electrical Properties of Lead Zinc Niobate Based
Ferroelectric Ceramics by Using Columbite Precursor and Oxide Additives
Investigators :  Dr. Athipong Ngamjarurojana
Department of Physics and Materials Science, Faculty of Science,
Chiang Mai University
Assistant Professor Dr. Rattikorn Yimnirun
Department of Physics, Faculty of Science, Suranaree University of
Technology
Associate Professor Dr. Supon Ananta
Department of Physics and Materials Science, Faculty of Science,
Chiang Mai University
E-mail Address : Ngamjarurojana@yahoo.com

Project Period : May 15, 2008 to May 14, 2010

In this research, study in modification of electrical properties of Lead Zinc Niobate
based ferroelectric ceramics by using Columbite precursor and oxide Additives, that were
synthesized by using a mixed oxide via a rapid vibro-milling technique which have been
investigated as a function of calcination conditions and sintering conditions It has been
found that effect on relationships between chemical compositions, sintering conditions,
phase formation, densification, microstructure and electrical properties of the sintered

products reflect to developing on Lead Zinc Niobate based ferroelectric ceramics.

Keywords: Ferroelectrics, Sintering, Electrical properties, Columbite and Lead Zinc Niobate
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Executive Summary
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. . I
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(Lead-based perovskite relaxor ferroelectrics) W ﬁgmﬁ’ﬂﬂﬁa Pb(B,B’)O; Inu B A
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Abstract. The structure and electrical properties of AlOs;-doped 0.2Pb(Zn;sNbys)Os-
0.8Pb(Zr)2Ti12)O0; ceramic, which is the morphotropic phase boundary composition of the PZN-
PZT system, were investigated. The addition of Al:O; content transformed the crystal structure
from coexisting with rhombohedral to purely tetragonal structure. Furthermore, addition of Al,O;
decreased &, 53 and k;, but increased Curie temperature and enhanced the mechanical quality factor.
Finally, the P~/ and s-I loops demonstrated decreased ,, /-, and strain level with addition of AL>O;.

Introduction

Lead zirconate titanate, Pb(Zr.Ti)Os; or PZT, is a well known piezoelectric that has been widely
employed in a large number of sensing and actuating devices. PZT ceramics have very high Curie
temperature (~ 390 °C). Lead zinc niobate, Pb(Zn;;sNb,;)O; or PZN, which exhibits a perovskite
structure and a Curie temperature of ~140 °C, is one of the most important relaxor ferroelectric
materials with a high dielectric constant and large electrostrictive coefficient. They have excellent
dielectric, piezoelectric and elastic properties suitable for wide range of practical applications [1-3].
Though the PZN-PZT based ceramics have excellent electrical properties, poor mechanical
properties such as fracture strength and toughness have been reported [4]. In some applications at
high power and high stress, mechanical properties of this material become critically important.
Recently, it is reported that the mechanical properties of structural ceramics can be improved by an
addition of second phase nanoparticles such as SiC and AlLO; [5]. It is therefore of interest to
explore the possibility of using Al;O; as both electrical properties modification with possible
mechanical properties benefit.

Thus, in this study 0.2Pb(Zn;sNb;5)05-0.8Pb(Zr;2Ti;2)O; ceramics were prepared and the
influences of Al:O; addition on structure, and clectrical properties of the ceramics were
investigated, which are especially important from the viewpoint of the development of practical
piezoelectric materials.

Experimental

The specimens studies were fabricated according to the formula: 0.2Pb(Zn;sNbys)0;5-
0.8Pb(Zr2Ti2)05+x wt% Al:Os, where x = 0.1, 0.3, 0.5, 0.7 and 0.9, Raw materials of PbO, ZrOs,
TiOs, ZnO, NbyOs and Al;O: with =99% purity were used to prepare samples by a conventional
mixed oxide process. The starting powders were mixed by zirconia ball media with isopropanal as a
medium in a polyethylene jar for 30 min via vibro-milling technique. The mixed slurry was dried
and calcined at 900 °C for 2 h. The calcined powders were ball-milled again with additives and
consolidated into disks of 12.5 mm diameter using isostatic pressing about 150 MPa. PbO-rich
atmosphere sintering of the ceramics was performed in a high-purity alumina crucible at 1200 °C
for 2 h. The crystal structure and symmetry of the sintered bodies were examined by X-ray
diffraction (XRD) and densities were measured by Archimedes method. Surface morphologies of
sintered ceramics were directly imaged, using scanning electron microscopy (SEM; JEOL JSM-
840A). Grain size was determined from SEM micrographs by a linear intercept method.

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the
publisher: Trans Tech Publications Ltd, Switzerland, www ttp.net. (ID: 202.28.27.3-11/05/09,10:24:08)
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For electrical properties characterizations, silver electrode (Dupont, QS 171) was printed on the
lapped surfaces. The electrode was fired at 850 °C for 45 min. The specimens were poled in
silicone oil at 150 °C by applying a DC field of 3 kV/mm for 30 min. The dielectric properties of the
sintered ceramics were studied as functions of both temperature and frequency with an automated
dielectric measurement system. The computer-controlled dielectric measurement system consists of
a precision LCR-meter (Hewlett Packard, model 4284A), a temperature chamber, and a computer
system. The capacitance and the dielectric loss tangent are determined over the temperature range
of 50 and 450 °C with the frequency ranging from 100 Hz to 100 kHz. The Curie temperature (7)
was determined by the temperature dependence of the dielectric constant at 1 kHz. The
piezoelectric constant («33) was measured using a quasi-static piezoelectric s; meter (Model ZJ-3d,
Institute of Acoustics Academic Sinica, China). The planar coupling coefficient (k;) and the
mechanical quality factor ((J),) were determined by the resonance and anti-resonance technique [6]
using an impedance analyzer (Model HP4294A, Hewlett-Packard). Ferroelectric switching
measurements were made using a modified Sawyer-Tower circuit with a linear variable differential
transducer (LVDT) for strain measurement, DSP lock-in amplifier (SR830, Stanford Research),
high voltage power supply (TREK 609C-6, Trek), and computerized control and data acquisition.

Results and Discussion

Figure 1 shows the XRD patterns of AI;D;-doped 0.2Pb(Zn;3Nba3)03-0.8Pb(Zr 2 T1)2)O5 ceramics
sintered at 1200 °C for 2 h. In these patterns, the crystal structure of the specimens is modified by
the addition of Al,O;, as revealed by the evolution of (200) and (002) peaks. The perovskite
structure appears to change from coexisting with rhombohedral to purely tetragonal structure. Slight
shift in diffraction angle by doping A" ions indicates their substitution (solid solution) into the
lattice of PZN-PZT. Al'"ions are expected to substitute B-sites of the perovskite structure because
ionic radius of AI'"is closer to that of Zr'*, Ti**, Zn®* and Nb** than that of Pb> [7].

won

man
700

it

8
H

26 (degrees)
(a) undoped (b) 0.1 wt% (c) 0.3 wt%
(d) 0.5 wt% (e) 0.7 wt% (f) 0.9 wit%
Figure 1. XRD patterns of Al,Os-doped Figure 2. SEM photographs of the surfaces of
PZN-PZT ceramics sintered at 1200 'C for2h.  Al,03-doped PZN-PZT ceramics

Figure 2 shows SEM photographs of the surfaces of 0.2Pb(Zn;;:Nb;;)03-0.8Pb(Zry2Ti2)0s
ceramics doped with 0.1-0.9 wt% AlOs. As shown in Fig. 2, the grain sizes of ceramics are
slightly increased with increasing amount of Al;O; addition. However, the SEM micrographs in
Fig. 2(e-f) show that a higher porosity level is observed when the amount of Al:O; is increased,
which indicates that the specimens are not sintered effectively. The above results are obviously
consistent with the change in the bulk density with AlLOs; content for Al:Os-doped
0.2Pb(Zn;3Nby3)03-0.8Pb(Zr 2 Ti 2)Os ceramics. It can be seen from Fig. 2 that Al ions are mainly
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accumulated at the grain boundaries [8]. Atkim ef al [9] reported that dopant ions were
concentrated at grain boundaries and took excess impurities by diffusion when grain boundaries
moved, which in turn reduced grain boundary mobility and size. These inferences are obviously
consistent with the changes mentioned above in the microstructures. The micrographs also show
that the grain size of the ceramics varies considerably.

The temperature dependences of the dielectric constant (g,) at 1 kHz for 0.2PZN-0.8PZT + x
wi% ALOs, x =0, 0.1, 0.3, 0.5, 0.7 and 0.9 are plotted in Fig. 3. The observed broadening of the
dielectric peaks may be caused from decreasing of density of ceramics and higher porosity. The
variation of the Curie temperature (7:) as a function of composition x is displayed, which shows an
increase in I, with increasing Al;O3 content. Thus, the Curie temperature of 0.2PZN-0.8PZT + x
wt% AL O; system can be varied over a range of 340 and 360°C by controlling the content of Al,Os

addition in the system.

5000

- - -
" e . Jo8
e . k b
g . - 4o
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g ¥ ; ;2: . " Jox
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2, = 0] I ] 1400
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& T8 e . - 500
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Figure 3. The temperature dependences of Figure 4. , dielectric constant (g,), piezoelectric
the dielectric constant (g;) atl kHz constant (d33), electromechanical coupling factor

(k,) and the mechanical quality factor (0,,)

Figure 4 shows the changes in density, dielectric constant (&), piezoelectric constant (ds3),
electromechanical coupling factor (k;) and the mechanical quality factor ((J,;) as a function of the
amount of Al;O; addition. With addition of Al,O;, the density, &, &, and d5; rapidly decrease. It is
well known that the substitutions of acceptor dopant Al ions will lead to the creation of oxygen
vacancies, which pin the movement of the ferroelectric domain walls and result in a decrease of ¢, ,
kp and dsz. On the other hand, O, rapidly increases with increasing Al;O; content.  These
observations are in good agreement with previous work by Kulascar e al. [10], which reported that
in the case of substitution of 3+ ions for B-sites of the perovskite structure, oxygen vacancies
produced by charge neutrality beyond solid solution limit lead to decrease in electromechanical
coupling factor, dielectric constant and electrical resistivity, and to increase in mechanical quality
factor. Hence, these results clearly indicate that increased Al,O; would degrade piezoelectric
properties due to exceeding the solution limit of lattices [11].

The polarization-field (P—F) hysteresis loops of 0.2PZN-0.8PZT + x wt% Al,O; ceramics are
shown in Fig. 6. The well-developed and fairly symmetric hysteresis loops with the field are
observed for all compositions. To further assess ferroelectric characteristics in Al;Os;-modified
PZN-PZT ceramics, the ferroelectric parameters, i.e. the remnant polarization (/) and the coercive
field ([), have been extracted from the experimental data and given in Table III. Tt can be seen
clearly that P, P; and £, decrease with an addition of Al,Os into the PZN-PZT composition [12].
Strain of specimens as function of the electric filed is shown in Fig. 7. Decreasing in strain and
coercive field with increasing Al;O; content is clearly observed. Finally, the decrease in 7, ., and
strain level with Al,O; addition suggests the reduction of the polarization and strain that are
achieved during an electric field cycle. These quantities depend directly on the extent of domain
boundary motion [9].
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Polarization (C/m’)

X witsAlLO,

t

X Wi%hAL O,

!
B
- 3 2 1 o 1 2 3 4
0.4 4 Electric field (MV/m)
Figure 5. P—I hysteresis loops of Figure 6. Strain loops of 0.2PZN-0.8PZT
0.2PZN-0.8PZT + x wit% Al,O; ceramics + x wt% AlOs ceramics

Summary

The structure and electrical properties of AlOsz-doped 0.2Pb(Zn;3Nba3)03-0.8Pb(Zry2Ti12)0s
ceramic, which is the morphotropic phase boundary composition of the PZN-PZT system, are
investigated. The addition of Al,O; transformed the crystal structure from coexisting with
rhombohedral to purely tetragonal structure. Furthermore, added Al,O; decreases €., ds; and &, but
increases Curie temperature and enhances the mechanical quality factor. The P-F and s-£ loops
demonstrate decreased P, strain level, and /. when addition of Al.O; in PZN-PZT ceramic
systems.

Acknowledgment

This work was jointly supported by the Thailand Research Fund (TRF), Commission on Higher
Education (CHE), and the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of
Science and Technology, Thailand, through its program of Center of Excellent Network, Faculty of
Science, Chiang Mai University. Thanks are also extended to Kenji Uchino, ICAT, Penn State
University for helpful discussion and use of facility.

References

[1] Xu Y.. Ferroelectric Materials and Their Applications (Elsevier Science Publishers,
Amsterdam, The Netherlands, 1991).

[2] Uchino K. and. Giniewicz J. R: Micromechatronics (Marcel Dekker, New York, 2003).

[3] Moulson A.J. and Herbert J.M.: Electroceramics (2"'] ed., Wiley, New York, 2003).

[4] Tajima K., Hwang H., Sando M. and Niihara K.: J. Eur. Ceram. Soc. Vol. 19 (1999), p. 1179.

[5] Sternitzke M.: J. Eur. Ceram. Soc. Vol. 17 (1997), p.1061.

[6] IEEE Standard on Piezoelectricity: [EELE Standard 176-1978. Institute of Electrical and
Electronic Engineers, New York, 1978.

[7] Shannon R. D.: Acta Crystal. A. Vol. 32 (1976), p. 751.

[8] FangJ.X. and Yin Z. W.: Physics of Dielectric (Science Press, Beijing, 1989)

[9] Atkin R. B., and Fularath R. M.: J. Am. Ceram. Soc.Vol. 54 (1971), p. 265.

[10] Kulascar F.: J. Am. Ceram. Soc. Vol. 42 (1959), p. 343.

[11] Kim Y.-M., Kim J.-C., Ur S.-C. and Kim H.-H.: J. Electroceram. Vol. 16 (2006), p. 347.

[12] Iijima T., HeG., Wang Z., Isuboi H., Hivama K. and Okada M.: Jpn. J. Appl. Phys. Vol. 39
(2000}, p. 5426.

[13] Yimnirun R, Ananta, S Ngamjarurojana A, and Wongsaenmai S.: Appl. Phys. A. Vol. 81
(2005), p. 1227.

_23-



-4 -



Chiang Mai J. Sci. 2009; 36(1}

multilayer piezoelectric devices. Furthermore,
low temperature sintering can provide
advantages such as compatibility with low
temperature cofired ceramics (LTCC), the
reduction of energy consumption, and the
reduced PbO volatilization.

Previously, various techniques were
employed to obtain the low temperature
sinterable PZT composition. The additon of
dopants, which improves solid-state sintering,
and the addition of oxides and compounds,
which have low melting points for liquid-
phase sintering are the most popular methods
[2-4]. The other processes such as sintering in
an inert atmosphere followed by hot pressing
[5], use of fine starting powders [6] are not
generally used due to their expensive,
complicate and laborious procedure.

Some of the oxides and compounds thar
have been used for assisting liquid-phase
sintering are BiFeQ +Ba(Cu, W, 1O, [7],
Li,Co,-Bi,0,-CdCO, [8], LiBiO, (melting
temperature of 700°C} [9], 4PbOB.O, [10],
B,O-Bi,0.-CdO [4], and PbO + CuO [11].
Even though these techniques were able to
obrain dense ceramics ar low sintering
temperature, piezoelectric properties were not
satisfactory enough ro be used in industry. In
the initial and middle sintering stages, low
temperature sintering aids form a liquid phase
and promote densification, but in the final
sintering stage, additives enter into a lattice,
and eventually affect the dielectric and
piezoelectric properties.

Previously, we developed the Sb, Li and
Mn substituted Pb(Zr  Ti  JO, -Pb(Zn,
Nb,, JO-Pb{Ni Nb, jO, ceramics with
excellent dielectric and piezoelectric properties
when sintered at 1200°C  [12]. The aim of
this study was to lower the sintering
temperature of this composition for
providing Ag or Cu cofiring compatible high-
power piezoelectric ceramics, aiming at
layered structure piezoelectric actuators and

_25-
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transformer applications. We therefore
investigated the effect of CuO and Bi,0,
addition in the Sh, Li and Mn substitured
Pb (Zr‘\aaTic\ sz 03"Pb (2“1 ,-'aNb:usv\" Os"Pb(Ni:.fs
me)og ceramics as a solution for low
temperature sinterable high power ceramics.

2. EXPERIMENTAL PROCEDURE

The specimens studied in this research
were fabricated according to the formula:
08Pb{Zr 11 O, - 02Pb [0.7{07(Zn Ni J, .

(Nbu.':Sbm}zﬁ_O'?’LL.;4(Nbo.95bm)5fn} - 0.3Mn,,
{(Nb, Sh 3, ] O,+ x wt%s CuO + ywt? Bi,0,,

called PZT-PZN-PNN based compositions,
where x=0.1~0.5; y= 0~(.5, respectively. Raw
materials of PhO, ZrO,, TiO,, ZnO, NiO,
Nb,O,, §b,0,, Li,CO,, MnO,, CuO and
Bi,0, with >99% purity were used to prepare
samples by a conventional ceramic sintering
process. The obtained mixture was ball-milled
using zirconia ball media with isopropanal as
a medium in a polyethylene jar for 24 h. The
mixed slurry was dried and calcined at 750 °C
for 2h. The calcined powders were ball-milled
again with additives and consolidared into
disks of 12.5 mm diameter and rectangular
plates using isostatic pressing about 150 MPa.
PbO-rich atmosphere sintering of the
ceramics was performed in a high-purity
alumina crucible at the temperature of
850-900°C for 2 h. The crystal structure and
symmetry of the sintered bodies were
examined by X-ray diffraction (XRD) and
sintered densities were measured by
the Archimedes method. Electrode (Dupont,
Q8 171) was printed on the lapped surfaces
for electrode. The electrode specimens were
poled in silicone oil at 150 °C by applying
a d.c. field of 3kV/mm for 30min. The
piezoelectric constant {4, ) was measured using
a quasi-static piezoelectric d,, meter {Model
Z]-3d, Institute of Acoustics Academic Sinica,
China}. The planar coupling coefficient %P)
and the mechanical quality factor {J_} were
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determined by the resonance and anti- 3. RESULTS AND DISCUSSION
resonance technique using an impedance 3.1 Effect of CuO Addition

analyzer (Model HP4294A, Hewlett-Packard, Initially, the effect of the addition of CuO

CA). All ceramics were characterized as on PZT-PZN-PNN based ceramics. The

described in Figure 1. sintering temperature of all the specimens was
I Raw materials |

I Ball milled 24 h with zirconia media in ethyl alcohol |

}

I Calcined at 750°C for 2 hours |
i

| Ball milled 24h with sintering aids |
1

I Sinter at 880-900°C for 2 hours |
3

I XRD | l Density I I?Iemktmc Pa'operuee]

Figure 1. Diagram of experimental procedure on ceramics.

8.0
—8— sinering & §50°C
754 | —@— sintering @ 875°C -
v sintering @ 900°C — Sl A

~ 704 ‘
5
=
.E‘ 6.5 v R— » o ——
g 6.0 o

5.5 -

5.0 T T T T T

00 0.1 02 03 04 05 08
wt% of CuO

Figure 2. Density in different sintering temperature in PZT-PZN-PNN based compositions
+ % wi% CuO ceramics.
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Sintering temp, 900°C

A A 0.5wt%Cu0
f 0.3wt%Cu0

0. Iwt%Cu0

o h M A A

Intensity (a.u.)
F -

0 N
1200°C
LA A A A N A
& T o T o T o T a7 1
20 30 40 50 B0 70

26 (degrees)

Figure 3. XRD patterns of the samples sintered 900°C for Zh in PZT-PZN-PNN based
ﬂ

o

Figure 4. SEM images of the samples sintered at 900°C tor 2h in PZT-PZN-PNN based
compositions + x wt%s CuQ) ceramics : (a) x=0.1, (b) x=0.2, (c) x=0.3 (d) x=0.4 and (e} x=0.5.

compositions + x wt% CuQ ceramics.
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selected with temperatures of 850°C, 875°C,
and 900°C, which is cofiring compatible
temperature for Ag and low temperature
cofired ceramics (LTCC) substrate. Density
in different sintering temperature is shown in
Figure 2.

Figure 3 shows the XRD patterns of the
samples sintered 900°C for 2h in PZT-PZN-
PNN based compositions + x wt% CuQO
ceramics It can be seen in Figure 3 that all
samples exhibit a perovskite structure, and that
there is no secondary phase until x=0.2
(any peak for secondary phase was not
detected in the range of 0.0-0.2). When x was
over .3, second phase peak was observed,
however, a composition for the second peak
was not clearly identified.

Figure 4 shows the SEM images of the
PAT-PZN-PNN based compositions + x
wt%o Cu() ceramics sintered at 900°C for 2h.
As the CuO addition amount increased, grain
growth happened whereas small grains
disappeared. This grain growth with CuO
addition can be explained with liquid phase
sintering. Previously, we showed that the

Chiang Mai [. Sci. 2009; 36(1)

addition of CuO can reduce the sintering
temperature of the Pb(Zr, T1)O,-Pb(NL,Nb)O,
system by the formation of a liquid phase
[13]. Thus this liquid phase formation can also
be an explanation for the PZT-PZN-PNN
based compaositions + x wt% CuQ ceramics.

Density, diclectric permittivity (€,,"/€ ),
electromechanical coupling factor (&),
mechanical quality factor (¢ ) and piezoelectric
constant () were plotted as a function of
the amount of CuO addition in Figure 5.
The density was increased with the increase
of CuO contents approximately from 6.4 to
7.8 g/em®. This improvement of the density
might be related to the formation of the liquid
phase. Moreover, the variation of piezoelectric
and dielectric properties showed similar trend
to that of density. Therefore, the improved
piezoelectric and dielectric properties, which
were observed in the range of x=0.3, might
be due to the increased density as well as
increased grain size shown in Figure 4. This
hardening effect that could be confirmed by
the enhancement of ¢ value approximately
from 600 to 1200 as shown in Figure 5.

1200
o 1100 - . =
< 1000 4 /
900 4 - 4 053
—_——
800 ] - - 4 g_:;g
— . Jo
/ Jos0 -7
-~ 3504 Joas
£ = Joas
% 300 ._.—// X
=, "
e
=" 250 7 . a Jm
o 4 1100
/ —_— 4000 5
o Jo0
E 754 . 3 800
o 2 e -— - 1 700
¥ —
2 69 ~
g 66 _/
R
2 634
T T T T T T
01 02 0.4 05
Amount of CuQ {(wit%)

Figure 5. Density, dielectric permittivity (€7, /€ ), piezoclectric constant (d, ), electromechanical
coupling factor (£ ) and mechanical quality factor (¢ ) of the specimens sintered at 900°C for
2h in PAT-PZN-PNN based compaositions + x wt% CuO ceramics.
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Therefore, Cuions could be expected to enter
B site and act as a hardener.

3.2 Effect of Bi,O, Addition

Bi,0, has low melting temperature (817°C)
and itwas reported that Bi,0, can form liquid
phase with ZnO at approximately 750°C.
Therefore, Bi, O, was added to PZT-PZN-
PNN based compositions + 0.5 wt% CuO
in order to further improve the piezoelectric
properties of the specimens sintered at low
temperature. Density in different sintering
temperature is shown in Figure 6.

Figure 7 shows the XRD patterns of the
samples sintered 900°C for 2h in PZT-PZN-
PNN based compositions + (L5 wt% CuO
+ vy wt% Bi,O, ceramics. It can be seen that
all the samples exhibit a perovskite structure.
The base composition (y=0} had a slight
tetragonal symmetry. The tetragonality of the
peaks was reduced until y=0.3; but it was

wn
w

increased when the amount of Bi,0, addition
exceeded 0.3 wte.

Figure 8 shows the SEM images of the
PZT-PZN-PNN based compositions
+ 0.5 wt% CuO + y wt% Bi,O, ceramics
sintered at 900°C for 2 h. When the amount
of Bi,0, was more than 0.3 wt%, the small
grains almost disappeared and average grain
size increased. Even though apparent liquid
phase formation was not observed in the
SEM images, Bi,O, addition might induce
small amount of liquid phase and it could be
expected to help grain growth due to irs low
melting point.

Density, dielectric permittivity (£,,"/€),
clectromechanical coupling factor (£ ),
mechanical quality facror (¢/_) and piezoelectric
constant (d,,) of PZT-PZN-PNN based
compositions + 0.5 wt% CuO + y wt% Bi,0O,
ceramics sintered at 900°C for 2 h are plotted
as a function of the amount of Bi,0, addition

85
—&— sintering @ 650°C
—e— sintering @ 87E°C
804 | —v— sintering @ 900°C

Density (g/em’)

6.5

6.0 4 /
55 T T T L] T T
0.0 (1§ 02 03 04 05 08
wite of Bi, O,

Figure 6. Density in different sintering temperature in PZT-PZN-PNN based compositions

+ 0.5 wt% CuO + y wt¥ BL,0O, ceramics.

-29-



56 Chiang Mai J. Sci. 2009; 36(1)

Sintering temp, 900°C

0.5Wt%CuO+0.5w1%Bi.0,

~ A A M M. P e

s L 0.5WI%CUO+0.3WI%BI,O,

3 o.sﬁtsc;;om.mmsi,o,

= LA A M M .

A 0.5Wt%CuO

ey e Rend et b ety

20 30 40 50 €0 70
24 (degrees)

Figure 7. XRD patterns of the samples sintered 900°C for 2h in PZT-PZN-PNN based
compositions + 0.5 wt% CuO + y wt? Bi,0, ceramics.

Figure sintered at 900 ased
compositions + (L5 wt% CuO + y wt% Bi,O, ceramics : (a) y=0, (b) y=0.1, (c) y=0.3 and
(d) y=0.5.
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Figure 9. Density, dielectric permittivity (€7, /€ ), piezoelectric constant (d, ), electromechanical
coupling factor (kij and mechanical quality factor () of the specimens sintered at 900°C for
Zh in PZT-PZN-PNN based compositions + 0.5 wt% CuO + y wt Bi, O, ceramics,

in Figure 9. When Bi,0, was added, density
was increased and this increased density
improved the dielectric and piezoelectric
properties as seen in Iigure 8. The density of
the specimens was improved when the
amount of Bi 0, was added and this increase
might be due to the formation of liquid phase.
In addition, Qm was decreased and EMT/SU
and d, were increased with the amount of
Bi,0, addition in the range of 0.0=y<0.3.
Therefore, their variations could happen
because Biions entered A site, since they acted
as softener in this range. On the contrary, &
exhibits a minimum profile at 0.3 wt% of
Bi,0, addition. In addition, 8_“1'/ €, d,, and
O were increased with the amount of Bi,0O,
addition abowve 0.3 wt%. Thus, Bi 1ons might
act as both hardener and softener in this range
and their variations might be able to occur
because Bi ions entered B site and A site,
respectively.
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4. CONCLUSIONS

The addition of CuO decreases the sintering
temperature through the formation of a liquid
phase. Iowever, the piezoelectric properties
of the CuO-added ceramics sintered at below
900°C are lower than the desired values. The
additional Bi,0, results in a significant
improvement in the piezoelectric properties.
Furthermore, at the sintering temperature of
900°C, the electromechanical coupling factor
(k) , piezoelectric constant (d,,), mechanical
qulity factor (¢ ) of PZT-PZN based
composition ceramics with 0.5 wt% CuO and
0.5 wt% Bi,0, show the optimal value of
0.56, 350 pC/N and 1042, respectively.
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3. RESULTS AND DISCUSSION

Perovskite phase formation, crystal
structure and lattice parameter were deter-
mined by XRD at room temperature. The
XRD patterns of 0.2Pb(Zn, Nb, JO_-
0.8Pb(Zr, ,Ti, O, with the addition of 0.0-
0.9 wt% MnO, are shown in Figure 1, showing
the perovskite structure for all compositions.
The pyrochlore phase is not observed in this
system. In the XRD patterns, the crystal
structure of the specimens appears clearly to
change to rhombohedral side across MPB
with increasing amount of MnO, around
0.5 wt%. It has been reported [6,8] that
manganese coexists mainly in the Mn* and
Mn**states, which entered into the perovskite
structure of BO, octahedron to substitute for
the B-site ion (e.g, Ti*"and Z+*").

Figure 2 shows SEM photographs of the
surfaces of 0.2Pb(Zn, Nb, jO,-0.8Pb(Zr,,
.Ti,,)O, ceramics doped with 0.0-0.9 wi%
MnO,. As shown in Figs. 2(a-b), the grain sizes
of the ceramics are increased with increasing
amount of MnO, addition. The result is
similar to the result of Yu ¢/ @/ [16]. Further
increasing MnO, content gives rise to an
inhomogeneous grain size. However, the SEM
micrographs in Figure 2(c-f) show that a
higher porosity level is observed when the
amount of MnQO, is increased [17]. The above
results are obviously consistent with the
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change in the bulk density with MnO, content
for Mn-doped 0.2Pb(Zn,  Nb, }O,-0.8Pb
(Zr, ) Ti, JO, ceramics. It can clearly be seen
from Figure 2 that the ceramics have high
densities in the MnO, addition range of 0.0-
0.5 wt%. It is believed that manganese ions
are mainly incorporated into the lattice, but
if the addition is above 0.5 wt%, manganese
ions will accumulate at the grain boundaries
[14]. These inferences are obviously consistent
with the changes mentioned above in the
microstructures. The micrographs also show
that the grain size of the ceramics varies
considerably, as listed in Table 1.

The temperature and frequency depen-
dences of the dielectric constant (€) and
dielectric loss tangent (tan &) for 0.2PZN—
0.8PZT + x wi% MnO,, x = 0,0.1,0.3, 0.5,
0.7 and 0.9 are shown in Figure 3. The
maximum dielectric constant at 1 kHz (£ @
1 kHz) is listed in Table 2. Dielectric behaviors
show strong increase of frequency-dependence
on dielectric constant and dielectric loss with
increasing amount of MnO,. Tt may be caused
from oxygen vacancies and conducting
regions near grain boundaries [18] when
increasing MnO,.  The variation of the Curie
temperature (T ) as a function of composition
x is plotted in Figure 4. The Curie
temperature of 0.2PZN-0.8PZT + x wt%
MnO, system can be varied over a wide range

Table 1. Physical properties of 0.2PZN—0.8PZT + x wt% MnO, ceramics.

x | Density (g/cm’) | Grain size range(um) | Average grain size (Lm)
7.826 05-20 1.726
0.1 7.849 1.5-60 4.131
0.3 7.897 1.0-3.0 2,991
0.5 8.028 05-20 2116
0.7 7.718 - -
0.9 7.653 - -
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Table 2. Diclectric and piezoelectric properties of 0.2PZN-08PZT + xwt% MnO,, ceramics.

Dielectric properties Dielectric propertieg e e

5 T.(°C) (at 25 °C, 1 kHz) (@7, )
E tand [ tand |d (pC/N)| &k Q.
0 339.7 1575 0.0249 | 21047 | 0.0420 430 0.583 90
0.1 334.2 1155 0.0436 7784 | 0.1181 365 0.564 356
0.3 326.5 1100 0.0464 | 19102 | 0.1241 320 0.551 735

0.5 323.4 1086 0.0440 | 18220 | 0.1454 305 0.532 1413

0.7 318.7 1020 0.0368 | 21178 | 0.1354 263 0.48 1260
0.9 311 948 0.0438 | 21389 | 0.1762 237 0.44 1080

Table 3. Terroelectric and strain properties of 0.2PZN-0.8PZT + x wt% MnO), ceramics .

X SSir¢lents o propericol (WOAT) Loop squareness (R )| Strain %@ 4MV/m
P.(C/m) |P.(C/m’) | E, (MV/m)

0 0.287 0.300 1.97 1.483 0.278
0.1 0.224 0.233 218 1.488 0.231
03| 0208 0.213 2.37 1.712 0.188
0.5 0.147 0.175 1.94 1.024 0.162
0.7 0.089 0.126 1.63 0.811 0.134
0.9 0.077 0.111 1.75 0.811 0.115

s
g = g _ d
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e
g A J A ©@
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20 30 40 50 80
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Figure 1. XRD patterns of the samples sintered at 1200°C for 2h of 0.2PZN-0.8PZT + x
wt% MnQO, ceramics: (a) x =0, (b) x =0.1, (¢) » =0.3, (d)  =0.5, (¢) » =0.7 and (f) x =0.9.
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63

Figure 2. SEM images of the specimens sintered surface of 0.2PZN-0.8PZT" + xwt% MnO,
ceramics at 1200°C for 2h; (a) a0 =0, (b) 2 =0.1, (¢) 2 =0.3, (d) »=0.5, (¢} > =0.7 and (f) 2 =0.9.

from 310 to 340 °C by controlling the addition
of MnO, content in the system. The results
indicate a rapid decrease in with an increase
in MnO, content over the range from 0.0 to
0.9 wt%.

Density, dielectric constant (€ ), electro-
mechanical coupling factor (,ép), mechanical
quality factor and piezoelectric constant (d,,)
are plotted as a function of amount of MnO,
addition in Figure 5. When the amount of
MnQ, is lower than 0.5 wt%, density slightly
increases. However, €_, 'ép and d,, show
decreasing trends with increasing MnO),
content. When the amount of MnO, is lower
than 0.5 wt?%, £ and 4, are rapidly decreased

-36-

with increasing MnO, content. 1t is well
known that the substitutions of accepror
dopant Mn ions will lead to the creation of
oxygen vacancies, which pin the movement
of the ferroclectric domain walls and result
in a decrease of € , £ and 4 [ 11,19]. "The
mechanical quality factor (@) increases
rapidly with increasing MnO, content [4]. The
acceptor dopant of MnO, improves ¢
significanty. The highest value @ (~1413)

m

are obtained in the ceramics with MnO,
amounts of 0.5 wt%. Further addition of
MnO, above 0.5 wt% leads to a slightly
decrease in the value of ¢, which may be
mainly attributable to non-uniformity of the
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Figure 3. Temperature and frequency dependence of dielectric properties of 0.2PZN-08PZT
+ x wito MnO, ceramics at 1200°C for 2h; (a) =0, (b) 2 =0.1, (c) » =03, (d) x=0.5, (e) »

=0.7 and () x =0.9.

microstructure, as shown in Figure 2.

The polarization-field (P-E) hysteresis
loops of 0.2PZN-0.8PZT + x wt% MnO,
ceramics are shown in Figure 6. The well-
developed and fairly symmetric hysteresis
loops with the field are observed for all
compositions. To further assess ferroelectric

characteristics in MnO,-modified PZN-PZT
ceramics, the ferroelectric parameters, i.e. the
remnant polarization (P) and the coercive field
(E), have been extracted from the
experimental data and given in Table 3. It
can be seen that P_and P, decrease with an
addition of MnO, into the PZN-PZT
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coupling factor (af:p), and mechanical quality factor (/) of the specimens sintered at 1200°C
for 2h of 0.2PZN-0.8PZT + »x wt% MnO, ceramics where x =0, 0.1 ,0.3, 0.5, 0.7 and 0.9.
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Figure 6. Polarization and electric field (P-E) loops of 0.2PZN-0.8PZT + x wt% MnO,
ceramics.

Strain (%)

Figure 7. Strain and electric field (s-E) loops of 0.2PZN-0.8PZT + » wt% MnQO), ceramics.
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composition, while E_increases to the
maximum at x = 0.3 wt%. The ferroelectric
characteristics can also be assessed with the
hysteresis loop squareness {R’q}, which can be
calculated from the empirical expression
R“I:(PF/P)&{P”&/P!}, where P_is the
remnant polarization, P_ is the saturated
polarization obtained at some finite field
strength below the dielectric breakdown and
P, ... is the polarization at the field equal to
L1E_ [20]. For the ideal square loop, R_ is
equal to 2.00. As listed in Table 3, the R
parameter increases from 1.483 in x = 0 to
reach the maximum value of 1.712 in = 0.3.
Further additon of MnO, above 0.3 wt%
leads to a decrease in the R parameter, which
is mainly attributable to non-uniformiry of
the microstructure, as shown in Figure 2. The
longimdinal strain (5) of the specimens as a
function of the electric field is shown in
Figure 7. The strains are degraded markedly
when MnO, content is increased, as listed in
Table 3. These results (decreased Px and strain
level but increased I} clearly indicate the
“hard” characteristics with addition of MnO,
mainly caused by Mn ions substitution in B-
site leads to the creation of oxygen vacancies,
which pin the movement of the ferroelectric
domain walls.

4. CONCLUSIONS

The structure and electrical properties of
MnO _-doped 0.2Pb{Zn, Nb, ;0. -0.8Pb
(Zr, T, )O, ceramic, which is the MPB
composition of the PZN-PZT system, are
investigated. The addition of MnO, content
transforms the crystal structure to
rhomhbohedral side. Furthermore, MnO,
addition decreases the Curie temperature, €,
d,, and £, bur enhances the mechanical qualiry
factor. The P-E and s-E loops demonstrate
decreased P and strain level with increased
II_ with addifion of MnO_. These results

clearly show the hardening influence of MnO),

- 40 -

in the PZN-PZT system.
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ABSTRACT

Zinc niobate, ZnNb,Og, nanopowders was synthesized by a solid-state reaction via a rapid
vibro-milling technique. The effect of milling time on the phase formation and particle size of
ZnNb,Og; powder was investigated. The formation of the ZnNb,Os, phase investigated as a function
of calcination conditions by DTA and XRD. The particle size distribution of the calcined powders
was determined by laser diffraction technique, while morphology, crystal structure and phase
composition were determined via a SEM techniques. In addition, by employing an appropriate
choice of milling time, a narrow particle size distribution curve was also observed.

INTRODUCTION

Zinc niobate (ZnNb:Og, ZN ) is one of the binary niobate compounds which exhibits excellent
dielectric properties at microwave frequencies [1-2]. It has very low loss and high dielectric
constant and is a promising candidate for application in microwave devices[3-4]. Moreover, the
columbite-structured ZnNb,Og is well known as an attractive B-site precursor for the preparation of
lead zinc niobate (Pb(Zn;;sNb,;3)O; or PZN)-based ferroelectric ceramics used for high performance
electromechanical actuators and transducers and piezoelectric ultrasonic motors [5-7]. This is
significant because it is very difficult to synthesize those compounds via the conventional
solid-state reaction process using oxides as starting materials [8-10]. In the past, ZnNb,Os powders
were usually prepared by a solid-state reaction process [11-13]. Recent work by Vittayakorn er. al.
[14] has also shown promise in producing pure phase columbite ZN powders with the conventional
mixed-oxide ball milling method technique that used very long heat treatments at ~950-1350 °C for
4h, while Ngamjarurojana et. al[15] has successfully synthesized ZN powders via a rapid
vibro-milling technique, which have been developed as alternatives to the conventional solid-state
reaction of mixed oxides. These techniques are aimed at reducing the temperature of preparation of
the compound by mixed oxide route.

Therefore, the main purpose of this work is to explore a simple mixed oxide synthetic route for the
production of ZnNb,Os (ZN) powders via a rapid vibro-milling technique and to perform milling
time, which calcined at 600 °C for 2 h with heating/cooling rates 5 °C/min, on the phase formation
and particle size of ZnNb,Og powder was investigated.

EXPERIMENTAL

In this study, starting materials were commercially available zinc oxide, ZnO (Fluka Chemical,
99.9% purity) and niobium oxide, Nb,Os (Aldrich, 99.9% purity). ZnNb,Os; powders were
synthesized by the solid-state reaction of these raw materials. Ground mixtures of the powders were
required with stoichiometric ratio of ZnO and Nb,Os powders. A McCrone vibro-milling technique

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the
publisher: Trans Tech Publications Ltd, Switzerland, www ttp.net. (ID: 202.28.27 3-30/07/09,04:37-06)
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was employed in order to combine mixing capacity with a significant time saving. The milling

oneratinn
ope

ration was carried out in isopropanal. High purity corundum cylindrical media were used as the
milling media. After varied vibro-milling from 0.5- 25 h. and drying at 120 °C, the mixture was
calcined at 600 “°C for 2 h with heating/cooling rates 5 °C/min[13] in alumina crucible to investigate
the phase formation behavior of ZN powders. Calcined powders were subsequently examined by
room temperature X-ray diffraction (XRD: Siemens-D500 diffractrometer) using Ni-filtered CuK
radiation to identify the phases formed for the ZN powders. Powder morphologies and particle sizes
were directly imaged using scanning electron microscopy (SEM; JEOL JSM-840A). The particle
size distributions of the powders were determined by laser diffraction technique (Zetasizer Nano;

Malvern Particle Size).
RESULTS AND DISCUSSION

All calcined powders in together different vibro-milling time as shown in Fig. 1. It can be noticed
that all conditions is pure phase of ZnNb,Os which are matched in JCPDS file number 30-0873.

ZnNb O JCPDS file no. 76-1827

[E5E1]

111y
]
21)
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Fig. 1 XRD patterns of the ZN powders calcined at 600 °C for 2 h with
heating/cooling rates 5 °C/min with various milling times,

Fig. 2 shows the morphological evolution of all samples as a function of milling times. In general,
the particles are agglomerated and basically irregular in shape, with a substantial variation in
particle sizes. By increasing the milling time from 0.5 h to 25 h, the particle size of the ZN powder
almost similar in size and shape. This is probably due to the effectiveness of vibro-milling and
carefully optimized reaction. It is also of interest to point out that larger particle size was obtained
for the milling time longer than 10 h. This observaticn may be attribute to the occurrence of hard
agglomeration with strong inter-particle bond within each aggregates resulting from high energy of
too long milling time process.

The effect of milling time on particle size distribution was found to be quite significant as shown in
Fig 3. After milling times of 0.5-7.5 h, the powders have similar particle size distribution behavior.
They exhibit a single peak covering the size ranging from 0.3 — 0.8 um. By increasing the milling
time to 10 h, a uniform particle size distribution with a much lower degree of particle agglomeration
was found. However, upon further increasing of milling time up to 25h, a
distribution curve with peak broadening between 0.2 — 1 um was observed. This may be attribute to
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the formation of hard and large agglomeration found in the SEM results. In this work, it is seen that
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Fig. 3 Particle size distribution curves of the calcined ZN powders with various milling times.
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CONCLUSIONS

The effect of milling times on phase formation, particle size and particle size distribution of
perovskite zinc niobate synthesized by the solid-state reaction via a rapid vibro-milling technique
was investigated. The resulting ZN nano-sized powders consist of a variety of agglomerate particle
size, depending on milling times.
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In this work, the selected compositions of a combination between | kite piezo-
electric ceramics lead zine niobate (PZN) and lead zirconate ticanate { PZT), close to
the morphotropic phase boundary (MPB) i.e. the 0.2PZN-Q.8PZT, doped with MnO,
concentrations of 0.0-0.9 wit were fabricated by a simple solid-state reaction and a
pre sintering technig X-ray diffraction (XRD) spectra from these materi-
als reveal transformation of the tetragonal into the rhombohedral structure. The local
structure af Mn was analyzed by mean of synchrorron exiended X-ray absorprion fine
structure { EXAFS) measurements ai the Mn K-edge, The correlation between the struc-
tural changes and the Mn content was analvzed and compared, The EXAFS analvsis
indicates that Mn ions should occupy the B-sites in PEN-PLT structure and plays a
critical role for the hard ferroelectric behavior of the materiais.

Keywords  Piezoceramics; perovskite; EXAFS; X-ray diffraction

1. Introduction

Lead-based complex perovskite piezoceramics with general formula Pb(B',B")0O: such Q1
as PZN, PZT and their solid-solutions close to the MPB are very attractive for sensor,
transducer and actuator applications [1-3]. This is because of their low firing temperature
and excellent piezoelectric properties. It has been widely proposed that these important
properties strongly depend on the rotations and distortions of the BOy octahedra [1, 2].
Manganese oxide is one of the key effective dopants for lead-based perovskite piezoce-
ramics to exhibit hard ferroelectric behavior [4-6]. Because of different valence of Mn and
B-site ions, an enhancement in the Mn/B-site ions ratio may increase the vacancy concen-
tration, forming acceptor-type defects andfor ete. In our previous work [7], the structure
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“Corresponding author. E-mail: suponananta@ yahoo.com
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36 and electrical properties of MnOz-doped 0.2PZN-0.8PZT compositions were investigated.
37 It was found that with the addition of MnO,, Curie temperature, the piezoelectric constant
38 and electromechanical coupling factor were slightly decreased, but the mechanical quality
39 factor was significantly enhanced. However, so far, the nature of the hard ferroelectric re-
40 sponse and the site preference of Mn in these complex perovskite materials are still unclear
41 [4-7]. Additionally, these previous investigation on Mn-doped PZT-based ceramics has
42 also assumed that Mn ions sitin B-site [4-7]. Interestingly, so far, there has been no direct
43 experimental determination of Mn-site in these materials. Thus, in this work, a combina-
44 tion of X-ray diffraction (XRD) and synchrotron extended X-ray absorption fine structure
45 (EXAFS) experiments [8, 9], which is proven to be a powerful technique for resolving the
46 local structure surrounding a particular (absorbing) atom, was performed on the Mn-doped
47 PZN-PZT system in order to determine the local structure around Mn ions.
48
49 2. Experimental
50 The selected samples studied were fabricated according 1o the formula 0.2Pb(Zn ;3 Nbys )
51 OL08P(ZrTip)0s + x wit MnOs, where x = 0.0 1o 0.9 by a simple mixed-oxide
52 method as detail described elsewhere [7]. Starting materials of PbO, Zn0, Nb,Os, Zr0Os,
53 TiOs, and MnO; with =99% purity were vibro-milled with zirconia media in isopropanal
54 for 30 min. Afier drying, ihe -aic ned PZN-
55 PZT powders were vibro-milled with MnO- additive and PVA binder for 30 min, pressed
56 into pellets and fired at 500°C for 1 hto eliminate the PVA, followed by sintering with PhO-
57 rich atmosphere inside sealed alumina crucible at 1200°C for 2 h [7]. Phase identification
58 of the samples was performed by XRD and densities were measured by Archimedes
59 method. The synchrotron EXAFS measurement was performed in the transmission mode
60 at the X-ray absorption spectroscopy beamline (BL-8) of the Siam photon source (electron
61  energy of 1.2 GeV), Synchrotron Light Research Institute {Public Organization), Thailand
62 (Fig. 1). The spectra were collected at ambient temperature with a Ge(111) double crystal

o = =
Sample Chamber -

Figure 1. EXAF experimentzl set-up at BLE, SPS.
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menochromator and recorded after performing an energy calibration. To increase the count
rate, the ionization chamber was filled with Ar gas. The storage ring was running at an
energy of 1.2 GeV with electron currents between 80 mA and 30 mA.

3. Results and Discussion

The XRD patterns of 0.2Pb(ZnyaNbay3 ¥03_0.8Pb{Zrg 52 Tip45)03 ceramics at different Mn
concentrations are shown in Fig. 2. In general, the strongest reflections apparent in the
majority of these XRD patterns indicate the formation of the pure perovskite phase for
all compositions. It should be noted that no evidence of the pyrochlore-type compounds
[10, 11] was found in this study, nor was there any indication of the unreacted precursors
[12] being present. This is possibly due to uses of different processing methods. In those
either works, a conventional ball-milling was employed, while the rapid vibro-milling used
in this present study results in finer powders with apparently more reactivity, hence the
pure perovskite phase is formed more easily. Furthermore, the effective suppression of
PbO volatilazion commonly found for lead-based perovskite ceramics during high firing
temperature [1, 2] was also achieved with the designed sample arrangement for the sintering
scheme [7] The undoped PZN-PZT ceramics were characterized as tetragonal phase which
is indicated by the splitting of (002} and (200} peaks in the 26 range from 43 to 45°, similar
to the reported by Hou et al. [13] and Yang ef al. [14]. It is noticed that a small amount
of rhombhohedral phase is also present with increasing Mn substitution with a complete
transformation to rhombohedral phase (revealed by the single (202)g peak) when x reaches
0.5 wt%). This is similar to the circumstance of PZN (rhombohedral phase) addition on
PZT system earlier reported by Lee ef al. [11]. In addition, the effect of Mn on the shift
of MPB toward the rhombohedral phase region in the similar system of Mn-doped PZT
ceramics was also observed by Kim and Yoon [€]. It is believed that manganese ions are
mainly incorporated into the lattice, but if the addition is above 0.5 wt%, manganese ions
will accumulate at the grain boundaries [5]. It has been reported that manganese coexists
mainly in the Mn®* and Mn** states, which entered into the perovskite structure of BO,
octahedron to substitute for the B-site ion (e.g. Ti*t and Zr**).

The MPB composition range has believed to be quite narrow, but in practice the MPB
has a wide range of compositions over which the tetragonal and rhombohedral phases
coexist in ceramics. Since all properties take extreme values near MPB, the width of the
MPB has been investigated by many workers and found to be related to the heterogeneous
distribution of Zr** and Ti** cations on the B-site of perovskite lattice [5, 6). By means
of XRD, the co-existence of the two phases over a range of compositions around the MPB
was demaonstrated in this work. The smaller ionic radius of Mn** ion (0.053 nm) compared
with that of the B-site ions (either Zn®* (0,083 nm), Nb* (0.069 nm), Zr** (0.082 nm) or
Ti** (0.064 nm) [1, 15] leads to the reductions in the lattice constants (and tetragonality)
in Mn-doped PZN-PZT ceramics. However, the information on site preference of Mn in
PZN-PZT perovskite structure cannot be retrieved directly from the XRD analysis alone.
The EXAFS analysis was then employed to further study the local structure of Mn in the
PZN-PZT-based lattice.

Figure 3 show the Mn K edge and Fourier transforms for the EXAFS spectra with
possible bonding information identified and local structure of Mn-doped 0.2PZN-0.8PZT
ceramics. The Fourier transform is a complex fanction of distance R, the amplitude of
which is denoted by the real function p(R). The position of peaks in p(R) is related to
bond distances between the Mn ion and neighboring ions while the height of each peak
is proportional to the number of neighbors. The bond lengths and coordination numbers
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Figure 2. (a) XRD patterns of 0.2Pb{Zn 5 Nby; )05 0.8Pb(Zry 2 Tij2 )05 4 x wi% MnO;, where x =
0.0 10 0.9 and (b) enlarged XRD patterns in the 26 = 23-46°, (See Color Plate XXX)
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Figure 3. () Mn K edge spectra of MnO; doped 0.2FZN-0.8PZT ceramics, (b) Fourier transforms
of the EXAFS spectra for MnOs doped 0.2PZN-0.8PZT ceramics (peaks are designed with possible
bonding) and (¢) Possible local structure for Mn-doped 0.2PZN-0.8PZT ceramics. (See Color Plate
XXX)
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Figure 3. (Coninued)

cannot, however, be read directly from p(R). In order to determine the bond lengths and
coordination numbers, the k-dependent amplitude and phase corrections must be made
to the EXAFS signal. For example, prior to the phase correction, the peaks in p(R) are
basically smaller than the corresponding bond lengths by ~0.5 A [9]. Interestingly, the
location of Mn within PZN-PZT unit cell can be resolved without making phase and
amplitude corrections. As shown in Fig. 3, by simply comparing the raw Fourier transform
for different Mn contents (0.1-0.9 wi1%), there is no observable change in peak positions,
particularly for the first main peak. The coincidence of the main peaks is evidence that no
change in the location of the majority of Mn ions occurs with increasing Mn concentration.
Furthermore, the location of Mn appears to be unaffected by the presence of 0.9 wi%
MnO;. It should be noted that a similar Fourier transform of EXAFS spectra for Mn doped
PZN-PZT in this study, Mn doped PZT reported by Cherdhirunkorn et al. [9] and PZN,
PZT perovksite established by Chen [16] is observed. The results indicate the site of Mn
atom at B(Zn,Nb,Zr,Ti)-site in the PZN-PZT unit cell. Since the peak position indicates the
bond distance between Mn and its neighbors or the location of Mn within the PZN-PZT unit
cell, the unit cell of Mn-doped PZN-PZT can be extracted from the peak positions in the
Fourier transform of EXAFS spectra shown in Fig. 3. According to the simulation EXAFS
for Mn-doped PZT established by Cherdhirunkorn er al. [9], similar information can be
extracted from the Fourier transforms of the EXAFS spectra from Mn-doped PZN-PZT
observed in this work. It is very interesting to observe similar EXAFS signatures between
the Mn-B-site curve where the first main peak occurring at ~1.25 A (due to the six nearest
oxygen atoms), while the second peak at ~3.2 A is auributed to the nearest Pb atoms.
Furthermore by comparing the results shown in Fig, 3 and Ref, [16], it is evident that the
peaks are well consi with a simulation of EXAFS that assumes Mn occupies the B-site
but the minority A-site occupation cannot be ruled out.
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4. Conclusions

A combination of X-ray diffraction and synchrotron extended X-ray absorption fine struc-
ture experiments is performed on Mn-doped 0.2PE(Zn;3Nby3)05.0.8Pb(Zr) 2 Tiys 05, The
transformation of the tetragonal into the rhombohedral structure with increasing Mn con-
tent was revealed by XRD technique. The EXAFS analysis indicates that Mn ions should
occupy the B(Zn, Nb, Zr, Ti)-sites in PEN-PZT structure and plays a critical role for the
hard ferroelectric behavior of the materials.
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