บทคัดย่อ

งานวิจัยเรื่องการผลิตพอลิไฮดรอกซิลแอลคาโนเอต (PHA) จากน้ำทิ้งโรงงานแป้งมันสำปะหลังนี้ แบ่งการ ทดลองออกเป็น 2 ส่วน ส่วนแรก เป็นการศึกษาหาสภาวะที่เหมาะสมต่อการผลิตโพลีไฮดรอกซีบิวไทเรต (PHB) ซึ่งเป็นพอลิเมอร์หนึ่งของ PHA โดยเชื้อ Cupriavidus sp. KKU38 จากน้ำทิ้งโรงงานแป้งมันสำปะหลัง โดยน้ำทิ้ง โรงงานแบ้งมันสำปะหลังที่ถูกใช้เป็นสับสเตรทจะผ่านกระบวนการหมักภายใต้สภาวะไร้อากาศ เพื่อให้สารอินทรีย์ ที่อยู่ในน้ำเสียถูกเปลี่ยนเป็นกรดไขมันระเหยง่าย (volatile fatty acids) ทำให้มีศักยภาพในการนำมาผลิต PHB ได้สูงกว่าน้ำทิ้งจากโรงงานแป้งมันสำปะหลังที่ไม่ผ่านการกระบวนหมัก จากการศึกษาผลของความเข้มข้นของ สับสเตรทและธาตุอาหาร ได้แก่ ในโตรเจน และฟอสฟอรัส ต่อการผลิต PHB พบว่าสัดส่วนของ COD:N:P ที่ เหมาะสมต่อการผลิต PHB จากน้ำทิ้งโรงงานแป้งมันสำปะหลังที่ผ่านกระบวนการหมักมีค่าเท่ากับ 100:0.5:11 โดยให้ค่า PHB สะสมและผลได้เท่ากับ 85.53% และ 0.31 กรัม PHB/กรัม COD ที่ถูกใช้ไป ตามลำดับ แสดงให้ เห็นว่ากระบวนการผลิต PHB มีศักยภาพในการผลิต 0.19 กิโลกรัมจาก 1 กิโลกรัมซีโอดีที่ละลายของน้ำทิ้งโรงงาน แป้งมันสำปะหลัง ประสิทธิภาพในการกำจัด COD ออกจากน้ำทิ้งโรงงานแป้งมันสำปะหลังมีค่าเท่ากับ 73.82% ที่ สภาวะเหมาะสม แสดงให้เห็นว่าการใช้น้ำทิ้งจากโรงงานแป้งมันสำปะหลังเพื่อเป็นวัตถุดิบในการผลิต PHB นอกจากจะก่อให้เกิดกระบวนการบำบัดน้ำเสียซึ่งเป็นวัสดุเหลือทิ้งในกระบวนการผลิตแป้งมันสำปะหลังแล้วยัง เป็นการเพิ่มมูลค่าของน้ำทิ้งในแง่ของการนำมาผลิตพลาสติกชีวภาพ PHB อีกด้วย

ส่วนที่ 2 จะทำการศึกษาผลของค่า pH (ที่ 6 7 8 และชุดที่ไม่ได้ควบคุม) และอัตราส่วนระหว่างอาหาร และเชื้อจุลินทรีย์ (F/M ratio) (อัตราส่วนเท่ากับ 1 2 3 4.5 และ 6) ต่อการผลิต PHB ในระดับห้องปฏิบัติการ ผลจากการทดลองแสดงให้เห็นว่าที่ pH 8 เชื้อ Cupriavidus sp. KKU38 ให้ปริมาณ PHB สะสมและผลได้สูงสุด เท่ากับ 61.47% และ 0.23 กรัม PHB/กรัม COD ที่ถูกใช้ไป ตามลำดับ ใช้ค่า pH เท่ากับ 8 ทำการศึกษาผลของ F/M ratio ต่อการผลิต PHB ซึ่งพบว่าที่ pH ดังกล่าว PHB สะสมสูงสุดมีค่าเท่ากับ 67.19% ค่าผลได้ของ PHB สูงสุดเท่ากับ 0.25 กรัม PHB/กรัม COD ที่ถูกใช้ไป เมื่อ F/M ration มีค่าเท่ากับ 2

คำสำคัญ : น้ำทิ้งแป้งมันสำปะหลัง เชื้อ *Cupriavidus necator* KKU38 โพลีไฮดรอกซีบิวไทเรต (PHB) สัดส่วนระหว่างอาหารและจุลินทรีย์

ABSTRACT

The research in production of polyhydroxyalkanoates (PHA) from cassava wastewater was divided into two parts. *Part 1*: To study of optimum conditions for the production of polyhydroxybutyrate (PHB), a polymer of the PHA. The Cassava starch manufacturing wastewater (CSW) was used as a substrate to produce polyhydroxybutyrate (PHB) by *Cupriavidus* sp. KKU38. The acidogenic fermentation process of CSW was first conducted to obtain volatile fatty acids (VFAs), which are more efficient in PHB production than raw CSW. The effect on substrate concentration and nutrients, i.e. nitrogen and phosphorus concentrations, by means of COD: N: P ratio variation was investigated. The results indicated that PHB production from fermented CSW by *Cupriavidus* sp. KKU38 was optimized at the soluble COD:N:P ratio of 100:0.5:11. This ratio gave the maximum PHB content and yield of 85.53% and 0.31 g PHB/g COD consumed, respectively. By using the proposed PHB production process, the potential to produce 0.19 kg of PHB from 1.0 kg of sCOD contained in CSW was exhibited. The relatively high COD removal efficiency of 73.82% at the optimal condition could be achieved, which demonstrated the concept of water quality improvements alongside the production of the value-added by-product, PHB.

Part II: was investigated the effect of pH (pH 6, 7, 8 and un-controlled) and food-to-microorganism (F/M) ratio (1, 2, 3, 4.5 and 6) on PHB production from fermented CSW by Cupriavidus sp. KKU38 at the flask scale. The results indicate that PHB production at pH 8 gives the maximum PHB content and yield of 61.47 % and 0.23 g PHB/g COD consumed, respectively. The enhanced F/M ratio at pH 8 for PHB production at the highest PHB content was 67.19 % while the yield was 0.25 g PHB/g COD consumed when the F/M ratio was enhanced to 2.0.

Keywords: cassava wastewater, *Cupriavidus necator* KKU38, polyhydroxybutyrate (PHB) food-to-microbial ratio (F/M)