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Chapter 1

Executive Summary

Hypersubstitutions were introduced to make precise the concept of hyperidentities. An
identity s ~ t of type 7 of a variety V' of type 7 is called a hyperidentity of V if, for every
substitution of terms of appropriate arity for the operation symbols in s & ¢, the resulting
identity holds in V. This leads to the definition of a map o : {f; | i € I} — W.(X) such
that o(f;) is an n;-ary term of type 7. Any such mapping o is called a hypersubstitution
of type 7.

It is known that the collection of all varieties of a type 7, denoted by L(7), forms a
complete lattice under the usual inclusion. Moreover, this lattice is dually isomorphic to the
lattice of all equational theories of type 7. It is of interest to know what the lattices £(7)
look like, but it has become clear that they are very complicated. Even for type 7 = (2),
L(2) is uncountably infinite. Denecke and M. Reichel have described a method of studying
the lattice of all varieties of a given type by using monoids of hypersubstitutions.

Let 7 = (ni)icr, n; € N, be a type with an operation symbol f; for each i € I. Let
X = {x1,29,23,...} be a countably infinite alphabet of variables which is disjoint from
{fi|i€el}. ForneN,let X, ={x,...,2,} be an n-element alphabet of variables. For

each n € N, the n-ary terms of type 7 are inductively defined as follows:
(i) every variable z; € X, is an n-ary term of type T,

(ii) if t1,...,t,, are m-ary terms of type 7 and f; is an m;-ary operation symbol then

fi(t1, ..., t,,) is an n-ary term of type .

Let W, (X,,) be the smallest set containing 1, . .., x, which is closed under finite application

of (ii). The set of all terms of type 7 over the alphabet X is defined as the union
W (X) = | Wr(X5).
n=1

The hypersubstitution ;4 of type 7 is defined by



Vi € ], Uid(fi) = fi(ZL‘h N ,l’ni).

Any hypersubstitution o of type 7 uniquely determines a map ¢ : W,(X) — W,.(X) on
W.(X), inductively defined as follows:

(i) 6lt] :==tift € X,
(i) 6[t] == o(£) 6l 0ltn]) if £ = filtr, ... ).

In (i), if ¢ is an m-ary term of type 7, then o(f;)(¢[t1], ..., &[tn,]) means ST (o (f;), o[t1], ..., O[tn,])-
Using the induced maps &, a binary operation o, can be defined on the set Hyp(7).

For any hypersubstitutions o1, 09 € Hyp(T), 01 oy, 09 is defined by
Vi€, (010 09)(fi) = d1[o2(fi)]-
Theorem. Let 7 be a type. The following hold:
(i) for any 1,09 € Hyp(T), (01 04 03) = 61 0 6,

(ii) the structure (Hyp(7);op, 04q) forms a monoid. The hypersubstitution ;4 acts as the
identity of Hyp(7).

In this work, we are interested in semigroup properties of hypersubstitutions of a given
type. These include regular elements and order of hypersubstitutions. Work has focused on
type 7 = (2,2).



Chapter 2

Main Results

2.1 The order of hypersubstitutions of type (n)

We submitted one paper on this topic. The order of a hypersubstitution ¢ is defined in
the usual way, that is, the order of the cyclic subsemigroup (o) = {o™ | n € N} generated
by o. In [1], the auther proved that the order of hypersubstitutions of type (3) is 1,2,3 or
infinite.

For any n € N, the set of all mappings on {1,2,3,...,n} isdenoted by T,,. It is known that
T, forms a semigroup under the usual composition of functions, the so-called a transformation

semigroup. The semigroup T, has n" elements. For a € T,,, let
fix(a) ={x €{1,2,3,...,n} : za = x}.

We give an easy observation that for any o € T,, if fix(a) C {1,2,3,...,n}, then there is
ag € Ty, with ng = [{1,2,3,...,n}\ fiz(a)| which has the same order with «.
Our main result proved that the order of a hypersubstitution of type (n) corresponds to

the order of transformation o € 7,, or infinite.

Main Theorem.
(1) The order of a hypersubstitution in P(n) is 1.

(2) The order of a hypersubstitution in Short(n) is equal to the order of a mapping « for

some « € T,,.

In [1], we determine all order of hypersubstitutions of type (n). This extend the result
2].



2.2 The order of hypersubstitutions of type (2, 1)

I is known that the order of hypersubstitutions of type (3) is 1, 2, 3 or infinite and that
the order of hypersubstitutions of type (2,2) is 1, 2, 3, 4 or infinite. In this paper, we ask
for the order of hypersubstitutions of type (2,1) and of type (1,2). The main result is

Main Theorem. The order of hypersubstitutions of type (2,1) is 1,2, 3 or infinite.

2.3 Regular weak projection hypersubstitutions

We published one paper on this topic. We begin with the notations used in this paper.

Notation. Let ¢t € W3 9)(X3). Since ¢ can be represented by a tree, we address each node
in the usual way: the root is labeled by 0, the first node on the left branch starting from the
root is labeled by 00, the first node on the right branch starting from the root is labeled by
01, etc. Then we label the different occurrences of the operation symbols f and g as follow:
for instant, fp11111 means the operation symbol position at 011111 is f. We abbreviate

0111011...10...0 by 01201%0’. For an example see Figure 1:
— =~

k l
x To T
1 2 2 x2l‘1 1

03 021
0 01
0

Figure 1.
Assume that firstop(t) = f. If go;x exists for some &k > 1, we let Rp|(t) and Rpy(t)

denote the parts:
Joforforz - - - fore—1901k ForeoForkor - - - Forkorm - - -

for some m > 1 and
Joforforz - . fore—1901x Forko Forkoz - - -

respectively, F' € {f, g}. Dually, assume that firstop(t) = g. If fo1; exists for some j > 1,
we let Lp’s(t) and Lp;(t) denote the parts:

909019012 - - - Gori—1 fori ForioForion - - - Foriorn - - -

for some n > 1 and

909019012 - - - Gori—1 fors ForioForioz - - -

respectively.



Similarly, assume that firstop(t) = f. If gor exists for some k > 1, we let Lp(t) and
Lp|;(t) denote the parts:

f0f02f03 RN fok—lgokFoleoklo e Fokloq Ce

for some ¢ > 1 and
f0f02f03 e fok—lgokFoleokll e Foqu e

respectively, F' € {f,g}. Assume that firstop(t) = g. If fy; exists for some j > 1, we let
Lp'(t) and Lp/(t) denote the parts:

90902903 - - - 9oi-1 foi Foir Foiro - - - Foitor - - -

for some r > 1 and
9090290 - - - Goi-1 foi Fosr Foinn - - - Fosrr - -

respectively.

Let F'Rp,(t) and GRp/(t) denote the number of occurrences of f in Rp|(t) and the
number of occurrences of g in Rpj(t), respectively. F'Rp)(t), GRpy(t), FLp,(t), GLp,(t),
FLpj(t) and GLpy(t) are similarly defined. We define

rightmost’s(t) := rightmost(Rp'(t)), rightmost’(t) := rightmost(Rp}(t)),

and leftmost(Lp’(t)), leftmost(Lp’(t)), rightmost(Rp|(t)), leftmost(Lpy(t)),
rightmost(Rpy(t)), leftmost(Lpy(t)) are similarly defined. For an example, consider the

following term

t = fo(goo(z1, 72), for(z1, gor2 (for2o(gor202 (T2, 1), for201 (72, 21)), 22)))

given by the tree diagram in Figure 2:

To L1 Xo

Tr1 T9 €1

Figure 2.

We have Rplg(t) = fofo19012 for20 for201 and Rpfq’(t) := foJo19012 fo120901202. Then GRp;’(t) =
2, FRpy(t) = 3, rightmost;(t) = 1, rightmost;(t) = xy and le ftmost, (t) = x5 = le ftmost}(t).



This is one of the main results.

Theorem. Let b € W(32)(X3) be such that op(b) > 1 and var(b) = {z1}. Then o, ; is
regular (in Hyp(2,2)) if and only if

(i) FLp(b) =1; or
(ii) FLp(b) > 1 and GLp(b) = 1; or

(iii) If FLp(b) = 0, then GLp(b) = 1 or GRp(b) = 1 or FRp(b) = 1 or FRp}(b) = 1 or
GRp(b) = 1; or
(iv) If FLp(b) > 1 and GLp(b) = 0, then GRp(b) = 1 or FRp(b) =1 or FRp)(b) = 1; or
(v) If FLp(b) > 1 and GLp(b) > 1, then we have one of the following cases: GRp(b) = 1,
1

FRp(b) = 1, GLpl,(b) = 1, FLy,(b) = 1, FLp)(b) = 1, GRp,(b) = 1, FRp!(b) = 1,
GLp(b) = 1.
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1 Preliminaries

In 1991, K. Denecke, D. Lau, R. Poschel and D. Schweigert [1] defined the concept of a hy-
persubstitution to make precise the concept of a hyperidentity. It is known that there is a
Galois connection between submonoids of the monoid consisting of all hypersubstitutions and
complete sublattices of the lattice of all varieties of the same type. It is of interest to know
which semigroup properties of hypersubstitutions can be transferred by this Galois connection.
Semigroup properties of hypersubstitutions have been widely studied see, for example, [2], [3],
[4] and [5]. Properties of monoids of generalized hypersubstitution, i.e. non-arity preserving
ones are studied in [6] and [7].

Let 7 = {(fi,ni) | ¢ € I} be a type. Let X = {x1,x2,23,...} be a countably infinite
alphabet of variables such that the sequence of the operation symbols (f;);er is disjoint with
X, and let X, = {x1,22,...,2,} be an n-element alphabet where n € N. Here f; is n;-ary for
a natural number n; > 1. An n-ary (n > 1) term of type 7 is inductively defined as follows:

(i) every variable z; € X, is an n-ary term,

(ii) if ¢1,...,t,, are n-ary terms and f; is an n;-ary operation symbol then f;(t1,...,t,,) is
an n-ary term.

Let W, (X,,) be the smallest set containing 1, ..., x, and being closed under finite application
of (ii). The set of all terms of type 7 over the alphabet X is defined as W, (X) := (Jo—; W, (X,,).

Any mapping o : {f; : i € I} — W, (X) is called a hypersubstitution of type 7 if o(f;)
is an n;-ary term of type 7 for every i € I. Any hypersubstitution o of type 7 can be uniquely
extended to a map & on W, (X) as follows:

(i) 6[t] :==tift € X,
(ii) &[t] == o(fi)(G[t1], ..., 0[tn,)) if t = filt1,. .. tn,)-
A binary operation oy, is defined on the set Hyp(7) of all hypersubstitutions of type 7, by

(01 00 02)(fi) == d1[oa(fi)]

for all n;-ary operation symbols f;. Together with this binary associative operation Hyp(T)
forms a monoid since the identity hypersubstitution o;4 which maps every f; to fi(x1,...,Zx,)

'Research Supported by the Thai Research Fund.



is an identity element. Throughout, we will write o109 instead of o1 op 02. For notions con-
cerning semigroup properties we refer the reader to [8]. An element e of a semigroup S is said
to be idempotent if ee = e; and an element a of a semigroup S is called regular if there exists
an x € S such that a = aza. Clearly, every idempotent element is regular. A hypersubstitu-
tion mapping every operation symbol to variables is called a projection hypersubstitution.
Since every projection hypersubstitution is idempotent, we have the following remark.

Remark. Every projection hypersubstitution is regular.

2 Weak Projection Hypersubstitutions

From now on, let f and g be the binary operation symbols of the type 7 = (2,2). For binary
terms a and b of type 7, the hypersubstitution which maps the operation symbol f to the term
a and the operation symbol g to the term b will be denoted by o4. A hypersubstitution o,
such that a € X5 or b € X5 is called a weak projection hypersubstitution. Therefore, the
concept of a weak projection hypersubstitution generalizes that of a projection hypersubstitu-
tion.

Notation. For ¢ € W(39)(X2), the first variable (from the left) which occurs in ¢, the
last variable which occurs in ¢, the set of all variables occurring in ¢, the first operation
symbol occurring in ¢ and the number of occurrence of all operation symbols in ¢ are de-
noted by leftmost(t), rightmost(t), var(t), firstop(t) and op(t), respectively. For an exam-
ple, if t = f(f(z2,21),9(9(z2,x2), f(x2,21))), then leftmost(t) = xa, rightmost(t) = x1,
var(t) = {x1,z2}, firstop(t) = f and op(t) = 5.

The following result extends the remark above.
Theorem 2.1. If o, € Hyp (2,2) such that op(a) <1 and op(b) < 1, then o4 is regular.

Proof. If a € X5 and b € Xy, by the remark above, we have o, is regular. Assume that
a € Xo and op(b) = 1. Then b € {f(x;,x;), 9(zs,x;)}, 4,5 € {1,2}. If b = f(zs,2;), we
let v = g(x;,z;),v = x9. By calculation, we have 04040006 = Oap. If b = g(z;,2;), let
u=1x1,v = g(x;,x;) and we have 04,041,046 = Tq,pb- O

The following results reduce our work.

Theorem 2.2. Let b € W3 2)(X2).

(1) 04y is reqular if and only if 04,4 is reqular.

(2) o4, is regular if and only if op 5, is reqular.

(3) 0uyp is reqular if and only if op 4, is regqular.
Proof. (1) Assume that oy, p is regular. Then there exists o,, € Hyp(2,2) such that o, ; =
Oy pOuw0z, - Then b = 64, p[04,0[b]]. Since 04, 5(9) = b = 62, b[0uw[b]] = (T2s,b(Tay,g(x1,20)

Ouw)0zs.0)(g) we have that o, is regular. Conversely, assume that oy, is regular. Then
there exists oy v € Hyp(2,2) such that 04, 4 = 0py b0uw v Oy b. Thus b = G4y p[6u 4 [D]]. Since

Oz1,6(9) = b= 64, [0 0 [b] = (Uazl,b(am,g(mhxz)aw,v’)O'whb)(g) we have that oy, p is regular.
(2) Assume that o, p is regular. Then there exists o,, € Hyp(2,2) such that o, , =
Ou1 b0uwOay b Thus b = G4, p[6u[b]]. Since oy 4, (f) = b = 62, 5[0un(b] = (0,01 (T2, f2r,20)

Ouw)0b,z,)(f) we have that oy 4, is regular. Conversely, assume that oy, ,, is regular. Then
there exists oy v € Hyp(2,2) such that oy 5, = 0p 2,00 v/ Ob gy - Thus b = Gp 5, [0 [D]]. Since
Ouy p(9) = b= 62, [Gur 0 [b]] = (021 p(Tg(a1,20),21 T’ v/ )Ty 5)(g) We have that o, 5 is regular.



(3) Assume that oy, is regular. Let o, € Hyp(2,2) such that og,p = 04, 500 0/ 0z, b-
Thus b = 6z2,b[&u/,v’ [b]] Since Ob,zo (f) =b= 0A'm27b[6u/7v/ [b]] = (0‘5712 (Jwg,f(wl,wz)ou’,v’)ab,mg)(f)
we have that oy, is regular. Conversely, assume that o 5, is regular. Then there exists
Ouw € Hyp(2,2) such that op 4, = 0b,0,0u,00b,0,- Thus b = Gp 4, [6u,0[b]]. Since oy, 5(9) =b =
Gb,25[0u,w (0] = (02,6(Tg(2y1,20),22Tuw)0zs,6) (g) We have that o, p is regular.

As a consequence, 0, p is regular if and only if o} 4, is regular, o,, 4 is regular if and only
if o 4, is regular and oy 4, is regular if and only if oy ., is regular. ]

Let b € W(2,2)(X2). Then we will write b(x;,;),4,7 € {1,2} if 2; and ; occur in the term
b.

Theorem 2.3. Let b € W39)(X2). Then 04, p(a, ) @5 regular if and only if 04, p(zs,2s) 18
regqular.

Proof. Assume first that o, p(q, 2,) is regular. Then there exists oy, € Hyp(2,2) such that

Uzl,b(a:l,:rl) = Uzl,b(xl,wl)au,vazl,b(xl,wl)~ Since b(.Tl,J?l) - a-xl,b(asl,a:l)[a-u,v[b(xhxl)]]v we get
b(za,x2) = 64, [0u,[b(z2, z2)]]. Since

O, b(z2,2) [6—x17g(x17$1) [(}U,v [b(xe, w2)]]] = 6zl,b[6u,v (b(z2, z2)]]
= &xl,b[6u,v[b]](z2a x2)
= b(.Z‘Q, l‘g),

we have that o, p(z,,2,) is regular.
Conversely, assume that o, p(z,.2,) is regular. Then there exists oy, € Hyp(2,2) such

that Oxq,b(z2,22) — Ox1,b(x2,22)Ou,v01q,b(z2,22)" Since b(IQaZQ) = &xhb(xz,xz)[é—uav[b(x%ZQ)]]a
b(x1,21) = 64, p[0uw][b(z1,21)]]. Since

&zl,b(mhrl)[&zl,g(xz,xz)[&um[b(xlvxl)m = Guy b[Ouplb(z1,71)]]
= &xhb[au,v[b”(xlaxl)
= b(.’El, ’1,’1),
we have that o, bz, 4,) is regular. O

Using Theorem 2.1, Theorem 2.2 and Theorem 2.3, there are two cases to consider:
(1) the regularity of o, » where b ¢ X5 and var(b) = {1},
(2) the regularity of o, ;, where b ¢ X5 and var(b) = {z1,x2}.

In the present paper, we consider the regularity of o,, ;, where var(b) = {x1}, i.e. the case (1).

Notation. Let t € W3 9)(X2). Since ¢ can be represented by a tree, we address each node in
the usual way: the root is labeled by 0, the first node on the left branch starting from the root
is labeled by 00, the first node on the right branch starting from the root is labeled by 01, etc.
Then we label the different occurrences of the operation symbols f and g as follow:
for instant, fp11111 means the operation symbol position at 011111 is f. We abbreviate
0111011...10...0 by 01301%0". For an example see Figure 1:
— =~

k l



x1 T2 X2 x
2 1 T

03 021

0
Figure 1: A tree diagram

Assume that firstop(t) = f. If goy exists for some k > 1, we let Rp|(t) and Rpj(t) denote
the parts:

fOfOlfOl2 s fOlk—lgOlkF01k0F01k01 s FOl’“Ol’” s

for some m > 1 and

f0f01f012 . f01k*1901kF01k0F01k02 ey

respectively, F' € {f, g}. Dually, assume that firstop(t) = g. If fq1s exists for some j > 1, we
let Lp'(t) and Lp’(t) denote the parts:

909019012 - - - Jo1i -1 fori ForioForion - - - Foriorn - - -
for some n > 1 and
gogo1goi2 - - - go1i—1 fors ForioForioz - - -,

respectively.

Similarly, assume that firstop(t) = f. If gor exists for some k > 1, we let Lpy () and Lpy (t)
denote the parts:

f0f02f03 e fok—lgokFoleoklo e Fokloq .

for some ¢ > 1 and

f0f02f03 . fok—lgokFoleokll e Foqu .

respectively, F' € {f,g}. Assume that firstop(t) = g. If fo; exists for some j > 1, we let Lp'f (t)
and Lp';(t) denote the parts:

90902908 - - - 9oi—1 foi Foi1 Foivo - - - Foiror - -

for some r > 1 and
90902903 - - - 9oi—1 foi Foi1 Foirn - - - Foirr - - -

respectively.

Let F'Rpj,(t) and GRpj(t) denote the number of occurrences of f in Rpj(t) and the number
of occurrences of g in Rp’g(t), respectively. For an example, consider the following term

t = fo(goo(1,22), for (w1, go12 (for20(go1202 (2, 21), for201 (2, 1)), T2))),

given by the tree diagram in Figure 2:



Figure 2: Tree diagram of ¢

We have Rpy(t) = fofo1go12 forzofo1201, Bpy(t) = fofor9012 forzo901202 and Lpj(t) :=
fogoo := Lpy(t) . Then GRpy(t) = 2, FRp;(t) = 3, GLp,(t) = 1 = GLpj(t), rightmost(Rp)(t)) =
x1, rightmost(Rp(t)) = zo and le fttmost(Lpy(t)) = zo = le fttmost(Lpy (t)).

N Q>

Lemma 2.4. Let b,t € Wy 9y(X2) be such that op(b) > 1 and var(b) = {x1}. Then 64, p[t] =b
if and only if GLp(t) =1 and leftmost(t) = x;.

Proof. Assume that 65, 3[t] = b. If GLp(t) = 0, then b = &4, p[t] € Xo, this contradicts
to op(b) > 1. If GLp(t) > 1, then 64, 4[t] = b(b(t1,t2),t3) for some t1,ta,t3 € Wiz 9)(X2).
Since var(b) = {z1}, op(64,6[t]) = op(b(b(t1,t2),t3)) > op(b), we have a contradiction. Then
GLp(t) = 1. If leftmost(t) = xq, then b = &y, p[t] = b(x2,z2), a contradiction. Hence
leftmost(t) = x1.

Conversely, assume that GLp(t) = 1 and leftmost(t) = 1. Since var(b) = {z1}, we get
Gay [t] = . O

For convenience, if oy, 1 is regular, we let o, , € Hyp(2,2) such that o4, p = 0z, b0u,v0z; b-
Thus 64, 4[0u,[b]] = b. By Lemma 2.4,

GLp(6y,[b]) =1 and leftmost(Gy,,[b]) = 1. (2.1)
This notion will be used in the proof of Lemma 2.5 - Lemma 2.9

Lemma 2.5. Let b € W3 9)(X2) be such that FLp(b) =0, GLp(b) > 1, GRp(b) > 1, FRp(b) >
1, FRp%(b) > 1 and GRp’(b) > 1. Then oy, is not reqular.

Proof. Suppose that le ftmost(v) = 1. If GLp(v) = 0, by FLp(b) = 0, then b = 64, p[6u,[b]] €
X2, a contradiction. If GLp(v) > 1, by FLp(b) = 0 and GLp(b) > 1, then GLp(6,,[b]) > 1.
This contradicts to (2.1). Therefore, leftmost(v) = 5. Suppose that leftmost(u) = x5. Since
FRp(b) > 1 and GRp(b) > 1, we have GLp(6y,[b]) > 1 or b = 64, p[6uu[b]] € X2. In both
cases we get a contradiction. Then leftmost(u) = x1. Now, there are two cases to consider.

Case 1: b= g(t1, f(g(ta, f(t3,14)),t5)) for some t1,t2,t3,ta,t5 € Wia2)(X2). Then 6y, (b) =
v(ty, u(v(ty, v(ts, ty)), t5)) for some t9,t5, 15, 1), t5 € Wig.9)(X2). If GLp(u) = 0 and GLp(v) = 0,
then b = 6,, [t] € X2, a contradiction. If GLp(u) > 1 or GLp(v) > 1, then GLp(Gy,,[b]) > 1,
a contradiction.

Case 2: b = g(s1, f(f((g(s2,53),54)),55)) for some s1,52, s3,54,55 € Wi2,2)(X2). Then
Guw(b) = v(sh, u(u((v(sh, s5),5,)),s5)) for some s7,5s5, 85,5}, s5 € W0y (Xa). If GLp(u) =
0 and GLp(v) = 0, then b € Xj, a contradiction. If GLp(u) > 1 or GLp(v) > 1, then
GLp(64,[b]) > 1, a contradiction. O

Lemma 2.6. Let b € W3 2)(X2) be such that FLp(b) > 1, GLp(b) =0, FRp(b) > 1, GRp(b) >
1 and FRpj(b) > 1. Then o, p is not regular.



Proof. Assume that o, p is regular. If GLp(u) = 0, then GLp(6,,,[b]) = 0 because GLp(b) = 0.
Then b = 64, p[6u[b]] € X2, a contradiction. Thus GLp(u) > 1. If leftmost(u) = z1, then
GLp(64,0[b]) > 1 (since FLp(b) > 1). This contradicts to (2.1). Therefore, le ftmost(u) = za. If
b= f(f(s1,52), f(s3,54)) for some s1, 52, 53,54 € Wz 2)(X2), then 6, ,(b) = u(u(s’, s5), u(ss, s4))
for some s7,s5, 53,8} € Wg2)(X2). Since GLp(u) > 1, we have GLp(G.,4[b]) > 1, a contra-
diction. If b = f(f(tl, tz), g(f(t3, 1*,4)7 f(t5, t6))) for some tl, tQ, t3, t4, t5, tg € W(2’2) (Xg), then
GLp(64,0[b]) > 1, a contradiction. There are three cases to consider.

Case 1: b = f(f(tl,tg),g(f(t3,t4),g(t5, t6))) for some tl,tg,tg,t4,t5,t6 € W(Q)Q) (Xg) If
leftmost(v) = 1, then, since GLp(u) > 1, we have GLp(Gy.,[b]) > 1. We get a contradiction.
Thus leftmost(v) = x2. Since FRp(b) > 1,leftmost(u) = x2 and leftmost(v) = x1, we have
GLp(64,[b]) > 1. We get a contradiction.

Case 2: b= f(f(t1,t2), 9(g(ts,ta), f(t5,t6))) for some tq,ta,13,14,15,t6 € Wi2,9)(X2). This
can be considered in the same manner as Case 1.

Case 3: b = f(f(t1,t2),9(g(t3,t4),9(t5,t6))) for some t1,t2,t3,t4,t5,t6 € Wiz 2)(X2). If
leftmost(v) = x9, since FRp(b) > 1 and GRp(b) > 1, we have GLp(6,,,[b]) > 1. We get
a contradiction. Thus leftmost(v) = x1. Since FRpj(b) > 1, we get GLp(6,,[0]) > 1, a
contradiction. O

Lemma 2.7. Let b € Wiy 9)(X2) be such that FLp(b) > 1, GLp(b) > 1, FRp(b) > 1, GRp(b) =
0, GLpy(b) > 1 and FLpy(b) > 1 Then oy, is not regular.

Proof. Assume that o,  is regular. We consider into four cases.

Case 1: GLp(u) = 0 and GLp(v) = 0. Then GLp(6,,[b]) = 0. Thus b = 6, p[6u,0[b]] €
X5, a contradiction.

Case 2: GLp(u) > 1 and GLp(v) > 1. Then leftmost(u) = x1 and leftmost(v) = xa.
Since G Lp(b) > 1 and FLpj(b) > 1, we have GLp(64,,[b]) # 1. This contradicts to (2.1).

Case 3: GLp(u) = 0 and GLp(v) > 1. Since FRp(b) > 1 and GRp(b) = 0, we have
leftmost(u) = x1. Since GLp(b) > 1, we get leftmost(v) = xa. Since GLpj(b) > 1 we have
GLp(6y,0[b]) # 1. This contradicts to (2.1).

Case 4: GLp(u) > 1 and GLp(v) = 0. Then leftmost(u) = x1. This gives leftmost(u) =
ry. Since F'Lp)(b) > 1 and GLp(u) > 1, we have G Lp(6y,,[b]) # 1. This contradicts (2.1). O

Lemma 2.8. Let b € Wy 9)(X2) be such that firstop(b) = f, FLp(b) > 1, GLp(b) > 1,
GRp(b) > 1, FRp(b) > 1, GRpy(b) > 1, GLpy(b) > 1, FRp(b) > 1 and FLpy(b) > 1. Then
Ozy b 45 nOt Teqular.

Proof. Assume that o, ; is regular. We consider into four cases.

Case 1: GLp(u) =0 and GLp(v) = 0. Then b = 64, p[64,0[b]] € X2, a contradiction.

Case 2: GLp(u) > 1 and GLp(v) > 1. Then GLp(6,,[b]) # 1, this contradicts to (2.1).

Case 3: GLp(u) = 0 and GLp(v) > 1. If leftmost(u) = x; and leftmost(v) = x1,
then GLp(6,,[b]) > 1, a contradiction. Similarly, if leftmost(u) = 1 and leftmost(v) =
x2, then GLp(Gy,[0]) > 1, a contradiction. If leftmost(u) = zo and leftmost(v) = xa,
then GLp(64,[b]) > 1, a contradiction. If leftmost(u) = zo and leftmost(v) = x1, then
GLp(64,[b]) > 1, a contradiction.

Case 4: GLp(u) > 1 and GLp(v) = 0. If leftmost(u) = z1 and leftmost(v) = x1,
then GLp(64,,[b]) > 1, a contradiction. Similarly, if leftmost(u) = z1 and leftmost(v) = xa,
then GLp(6,,[b]) > 1, a contradiction. If leftmost(u) = z2 and leftmost(v) = z1, then
GLp(Guw[b]) > 1, a contradiction because F'Rp(b) > 1 and F'Rpy(b) > 1. If le ftmost(u) = xo
and leftmost(v) = x2, then GLp(G,,[b]) > 1, a contradiction. O

~— —

Lemma 2.9. Let b € W39)(X2) be such that FLp(b) > 1, GLp(b) > 1, GRp(b) > 1,
firstop(b) = g, FLps(b) > 1 and GLp(b) > 1. Then oy, is not regular.



Proof. Assume that o, p is regular. There are four cases to consider.
Case 1: GLp(u) =0 and GLp(v) = 0. Then b = 64, 4[64,[b]] € X2, a contradiction.
Case 2: GLp(u) > 1 and GLp(v) > 1. Then GLp(G4,[b]) # 1, this contradicts to (2.1).
Case 3: GLp(u) = 0 and GLp(v) > 1. Since GRp(b) > 1, we get leftmost(v) = x1. This
gives leftmost(u) = x2. Since GLp(v) > 1 and GLp(b) > 1, we have GLp(6y,[b]) > 1, a
contradiction.
Case 4: GLp(u) > 1 and GLp(v) = 0. Then leftmost(v) = x1. Since GLp(u) > 1, we
get leftmost(u) = z2. Since GLp(u) > 1 and FLp}(b) > 1, we have GLp(64,[b]) > 1, a
contradiction. O

Now, we prove the following main result.

Theorem 2.10. Let b € Wz 2y(X2) be such that op(b) > 1 and var(b) = {x1}. Then o4, is
reqular (in Hyp(2,2)) if and only if

(i) FLp(b) =1; or

(ii) FLp(b) > 1 and GLp(b) =1; or

(iif) 4f FLp(b) = 0, then GLp(b) = 1 or GRp(b) = 1 or FRp(b) = 1 or FRp}(b) =1 or
GRp}’(b) =1; or

(iv) if F'Lp(b) > 1 and GLp(b) = 0, then GRp(b) =1 or FRp(b) =1 or FRpy(b) = 1; or

(v) if FLp(b) > 1 and GLp(b) > 1, then we have one of the following cases: GRp(b) =
FRp(b) = 1, GLp),(b) = 1, FLp,(b) = 1, FLp!(b) = 1, GRp,(b) = 1, FRp!(b)
GLp(b) = 1.

L,
L,

Proof. Assume that o, p is regular. Then there exists o, , € Hyp(2,2) such that o4, 104 00z, » =
Oy b SINCE Gy, p[0u,v[b]] = b, by Lemma 2.4, equation (2.1) holds.

Assume further that FLp(b) # 1 and FLp(b) # 1 or GLp(b) # 1. That is, FLp(b) # 1 and
FLp(b) # 1 or FLp(b) # 1 and GLp(b) # 1. Thus, we have FLp(b) = 0 or FLp(b) > 1 and
GLp(b) =0 or FLp(b) > 1 and GLp(b) > 1.

We will show that (iii) holds. We suppose that it is not true. Then FLp(b) = 0, GLp(b) # 1,
GRp(b) # 1, FRp(b) # 1, FRp}(b) # 1 and GRp}(b) # 1. Since GLp(b) # 1, we have
GLp(b) = 0 or GLp(b) > 1. Since FLp(b) = 0, we get GLp(b) > 1. Since GRp(b) # 1, we
obtain GRp(b) = 0 or GRp(b) > 1. Since F'Lp(b) = 0, we have GRp(b) > 1. Since FRp(b) # 1,
we get FRp(b) = 0 or FRp(b) > 1. If FRp(b) = 0, then GLp(6,,[b]) # 1, this contradicts to
(2.1). Then FRp(b) > 1. Since FRp}(b) # 1, we get FRp;(b) > 1. Since GRp/;(b) # 1, we
have GRp';(b) > 1. By Lemma 2.5, we get a contradiction.

Next, we suppose that (iv) is not true. Then FLp(b) > 1, GLp(b) = 0, GRp(b) # 1,
FRp(b) # 1 and FRp(b) # 1. Since F'Rp(b) # 1, we have F'Rp(b) = 0 or FRp(b) > 1. Since
GLp(b) = 0, we get FRp(b) > 1. Since GRp(b) # 1, we obtain GRp(b) = 0 or GRp(b) > 1.
If GLp(b) = 0, then b € X5 or GLp(G,,[b]) > 1. We get a contradiction. Thus GRp(b) > 1.
Since F'Rp;(b) # 1, we get F'Rpj(b) > 1. By Lemma 2.6, 0., ; is not regular, a contradiction.

Now we show that (v) holds. We suppose that it is not true. Then FLp(b) > 1, GLp(b) > 1,
GRp(b) # 1, FRp(b) # 1, GLpy(b) # 1, FLps(b) # 1, FLpy(b) # 1, GRpy(b) # 1, FRpy(b) # 1
and GLp'(b) # 1. Since GRp(b) # 1, we have GRp(b) = 0 or GRp(b) > 1. Now, there are two
cases to consider.

Case 1: GRp(b) = 0. Since FRp(b) # 1, we have FRp(b) > 1. Since GLpy(b) # 1, we
obtain G Lpy(b) > 1. Since FLpj(b) # 1, we get F'Lpj(b) > 1. By Lemma 2.7, a contradiction.

Case 2: GRp(b) > 1. We consider into two cases: firstop(b) = f or firstop(b) = g.

Case 2.1: firstop(b) = f. Since F'Rp(b) # 1, we have FRp(b) > 1. Since GRp|,(b) # 1,
we get GRp),(b) > 1. Since F'Rp(b) # 1, we obtain FRp}(b) > 1. Since GLpy(b) # 1, we get
G Lp,(b) > 1. Since F'Lpj(b) # 1, we have F'Lpg(b) > 1. By Lemma 2.8, a contradiction.



Case 2.2: firstop(b) = g. Since FLp(b) # 1, we get FLp(b) > 1. Since GLp(b) # 1,
we obtain GLp{(b) > 1. By Lemma 2.9, a contradiction.

Conversely, assume that one of the conditions (i), (ii), (iii), (iv), (v) holds. The table shows
that there exist u,v € Wy 2y(X2) such that 04,5 Ouw 02y b = Op b

No. Cases u v
1 FLp(b) = g(x1,21) T
2 FLp(b) =0, GLp(b) =1 x g(x1, 1)
3 FLp(b) =0, GRp(b) =1 x g(x2, x2)
4 FLp(b) =0, FRp(b) =1 g(x2,z2) T
5 FLp(b) =0, FRp}(b) =1 g(z1,21) Zo
6 FLp(b) =0, GRp”(b) =1 g(x2,22) X1
7 FLp(b) > 1, GLp(b) 1 x g(x1,21)
8 | FLp(b) > 1, GLp(b) =0, GRp(b) =1 X9 g(x1,21)
9 | FLp(b) > 1, GLp(b) =0, FRp(b) =1 | g(xa,x2) T
10 | FLp(b) > 1, GLp(b) =0, GRp,(b) =1 9 g(x1, 1)
11 | FLp(b) > 1, GLp(b) > 1, GRp(b) =1 X9 g(x2,x2)
12 | FLp(b) > 1, GLp(b) > 1, FRp(b) =1 | g(z2,x2) T2
13 | FLp(b) > 1, GLp(b) > 1, Gqu(b) 1 1 g(x2,22)
14 | FLp(b) > 1, GLp(b) > 1, FLpy(b) =1 | g(x1,21) T2
15 | FLp(b) > 1, GLp(b) > 1, FLp b)) =11 g(xe,z2) X
16 | FLp(b) > 1, GLp(b) > 1, GRpg(b) 1 T2 g(x1,21)
17 | FLp(b) > 1, GLp(b) > 1, FRp;(b) =1 | g(x2,z2) X1
18 | FLp(b) > 1, GLp(b) > 1, GLps(b) =1 X9 g(x1,21)

Example. A hypersubstitution o, ; is regular if b is the term shown in Figure 3:

Figure 3: A term b for which o, is regular



A hypersubstitution oy 5, is not regular if b is the term shown in Figure 4:

Figure 4: A term b for which o, is not regular
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A hypersubstitution is a mapping which maps operation symbols to terms of the corre-
sponding arities. It is known that the set of all hypersubstitutions of a given type forms
a semigroup. In this paper, we determine the order of hypersubstitutions of type (2,1).
We show that the order of hypersubstitutions of type (2,1) is 1, 2, 3 or infinite.

Keywords: Hypersubstitutions; order; semigroups.

1. Introduction

Semigroups properties of hypersubstitutions of a given type have been studied [1],
[2], [3], [6], [9] and [10]. The order of a hypersubstitution o is defined in the usual
way, that is, the order of the cyclic subsemigroup (o) = {¢" | n € N} generated by
o. If (o) is finite, we say that the order of ¢ is finite, otherwise the order of o is
infinite. The following are known results concerning the order of hypersubstitutions.
Klaus Denecke and Shally Wishmath [6] showed that the order of hypersubstitu-
tions of type (2) is 1, 2 or infinite. Thawhat Changphas and Klaus Denecke [1]
showed that the order of hypersubstitutions of type (3) is 1, 2, 3 or infinite. The
same authors [3] showed that the order of hypersubstitutions of type (2,2) is 1, 2, 3,
4 or infinite. In [9], the authors studied the order of generalized hypersubstitutions,
they showed that the order of generalized hypersubstitutions of type (3) is 1, 2, 3
or infinite. In this paper, we ask for the order of hypersubstitutions of type (2,1)

*Supported by the Thailand Research Foundation.
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and of type (1,2). The main result is

Main Theorem. The order of hypersubstitutions of type (2,1) is 1,2, 3 or infinite.

2. Preliminaries

Let 7 = {(fi,ni) : ¢ € I} be a type and X = {x1,22,23,...} a countably infinite
alphabet of variables such that the sequence of the operation symbols (f;):es is
disjoint with X. Let X,, = {z1, 22, x3,...,2,} be an n-element alphabet. Here f; is
n;-ary for a natural number n; > 1. An n-ary (n > 1) term of type 7 is inductively
defined as follows:

(i) Every variable z; in X,, is an n-ary term.

(i) If ¢1,ta,...,t,, are n-ary terms and f; is an n;-ary operation symbol, then
fi(ti,ta, ..., ty,) is an n-ary term.
Let W.(X,) denote the set containing 1,2, x3,...,2x, and being closed under

finite application of (ii). The set of all terms of type 7 over the alphabet X is
defined by W;(X) = Uy, W-(X,,). For t € W(,1)(X2), we introduce the following
notations:
le ftmost(t) — the first variable (from the left) occurring in ¢
rightmost(t) — the last variable occurring in ¢
var(t) — the set of all variable occurring in ¢
op(t) — the total number of all operation symbols occurring in ¢
ops(t) — the set of all operation symbols occurring in ¢
firstops(t) — the first operation symbols (from the left) occurring in ¢.
For t € W2,1)(X2), let Lp(t) denote the left path from the root to the leaf which
is labelled by the leftmost variable in ¢ and Rp(t) denote the right path from the
root to the leaf which is labelled by the rightmost variable in ¢. The operation
symbols occurring in Lp(t) and Rp(t) will be denoted by ops(Lp(t)) and ops(Rp(t)),

respectively. If t € W5 1)(X2) such that var(t) = {z1} or var(t) = {x2}, we define
t! =t and

tn ="t t) ifn > 1.

A mapping o : {f; : i € I} — W, (X) is called a hypersubstitution of type 7 if
o(f;) is an n;-ary term of type 7 for every ¢ € I. A hypersubstitution o of type 7
can be uniquely extended to a map 6 : W, (X) — W, (X) on W,(X) as follows:

(i) ot =tifte X.
(11> &[t] = J(fi)((}[tl]v&[tﬂﬂ e vﬁ[tﬂz]) ift = fi(t17t27~ . >t’ﬂz‘)'

For 01,09 € Hyp(T), define o109 by
(0102)(fi) = 1lo2(f3)]
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for all n;-ary operation symbols f;. Together with this binary associative operation,
Hyp(r) forms a monoid with the hypersubstitution o;4 which maps every f; to
fi(x1,...,xy,) is an identity element.

Throughout, let f and g be the operation symbols of the type (2,1). For terms
a and b of type (2, 1), the hypersubstitution which maps the operation symbol f to
the term a and the operation symbol g to the term b will be denoted by o, 3, that
is 0ap(f) = a and g44(g) = b.

For the hypersubstitution o, 5 of type (2,1), we shall consider six cases:

If op(a) < 1 and op(b) < 1, there are twenty four cases to consider. The order
in each of these cases can be listed in the table shown below. The results can be
obtained by simple calculation.

a\b

~—

f($17961)
2

g(

8
s

e i i e i i
e e e e el )

ol
W N~ DN~ =N

3. Case op(a) > 1 and op(b) > 1
We consider three cases:
(i) var(a) = {z1,x2} and var(b) = {z1}.

(ii) var(a) = {x1} and var(b) = {x1}.
(iii) var(a) = {x2} and var(b) = {z1}.

Theorem 1. Leta € Wiy 1y(X2) andb € Wiz 1)(X1) be such that op(a) > 1,0p(b) >
L,var(a) = {x1,22} and var(b) = {x1}. Then the order of o is infinite.

Proof. It was shown [8] that if 0 € Hyp(7) is regular (i.e. var(c(f;)) = X,, for
all ¢ € I), then op(6[t]) > op(t) for all t € W-(X) \ X. Since o, is regular,
op(ay,(f)) < op(asil( )) for all n € N. Then the order of o, is infinite.
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O

Lemma 2. Let a € W31)(X2) and b € W(31)(X1) be such that op(a) > 1 and
op(b) > 1. Then 67, [t] is not a variable for alln € N and for allt € W(z1)(X2)\ Xa.

Proof. This can be argued by induction. O

Lemma 3. Let a € W31)(X2) and b € Wiz 1)(Xy). If t € W(g1)(X2) such that
var(t) = {x;} for some i € {1,2}, then var (6} ,[t]) = {x;} for alln € N.

Proof. Clearly. O

Assume var(a) = {z1} and var(b) = {x1}. Let a = F(a1,a2) where F €
{f,g},a1,a0 € Wioy(X2). If F = g, let a = g(a1). Let b = G(b1,b2) where
G € {f,g},b1,bo € Wio1)(X1). If G = g, let b = g(by). We consider the follow-
ing cases and their subcases:

(1) F=fand G=f.
(11) a1 ¢ XQ.

(1.2) a; = x1 and by = 7.
(1.3) a1 = x1,b1 ¢ X1 and g ¢ ops(Lp(b)).
(1.4) a1 = x1,b1 ¢ X1 and g € ops(Lp(b)).
(2) F=gand G =
(3) F=fand G=g
(4) F=gand G=f
(4.1) by ¢ X;.
(4.2) by =1 and f ¢ ops(Lp(a)).
(4.3) by = 1 and f € ops(Lp(a)).

Using above notations, we have

Theorem 4. Leta € Wy 1y(X2) and b € W3 1)(X1) be such that op(a) > 1,0p(b) >
1 and var(a) = var(b) = {z1}.

(1) If a and b satisfy (1.1), (1.4),(2), (3), (4.1) or (4.3), then o4 has infinite order.
(i1) If a and b satisfy (1.2), (1.3) or (4.2), then the order of o4 is less than or equal
to 3.

Proof. (i) If a and b satisfy (1.1), then a; ¢ X». By Lemma 2, 67, [a1] ¢ X for all
n € N. Since var(a) = {z1}, by Lemma 3, we have var(6, ,[a]) = {21} for alln € N,
Then op(c7 ,(f)) = op(Ga.lal) = op(a(Gaslai], Gaplaz])) > op(a) = op(oas(f)). Let
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k > 2. Therefore,

op(oy 3 (f)) = op(647% [a(6aplar], 6a,las])])
= op(6)7,'[al (6% [an], 6% [as]))
> op(6),'[a])
= op(a (1))

Then the order of o, is infinite.

Assume a and b satisfy (1.4). Since g € ops(Lp(b)), 6ap[b] = a'(b(t1,t2),t3)
where t1,t2,t3 € W(2,1)(X1),1 € N. Since var(a) = {1}, op(ag’b(g)) = op(6ap[b]) =
op(al (b(t1,t2),t3)) > op(b) = op(dap(g)). Let k > 2. By Lemma 2 and Lemma 3,
&szl[al] ¢ X, and var(&ﬁ;l[al]) = {x1}. Therefore,

op(ort(9)) = op(6L,

Thus the order of o, is infinite.
Similarly, if @ and b satisfy (4.1) or (4.3), then the order of o, is infinite.
Assume a and b satisfy (2), then by ¢ Xo. By Lemma 2, 67 ,[b1] ¢ Xo for all
n € N. Since var(a) = {z1}, by Lemma 3, we have var (6}, ,[b]) = {21} for alln € N.
Then op(a2 ,(9)) = 0p(Gap[b]) = 0p(b(Gaplbr])) > op(b) = op(cas(g)). Let k > 2.

Therefore,
op(oy 31 (9)) = op(65, [b(Gap[mr])])
= op(67, ' [b1(65 4 [b1]))
> op(6)7," [b])
= op(a54(9))

Then the order of o, is infinite.

Similarly, if a and b satisfy (3), then the order of o, is infinite.

(ii) Assume a and b satisfy (1.2). Tt is easy to see that o ,(f) = o5 ,(f) and
o2 ,(9) = 02 ,(g), so the order of g4y is less than or equal to 2. If a and b satisfy
(1.3), then aiyb = oi’b. Then the order of o, is less than or equal to 3. If @ and b
satisfy (4.2), then ag’b = 04 It follows that the order of o, is less than or equals
to 3. |

Assume var(a) = {z2} and var(b) = {x1}. Let a = F(a1,a2) where F €
{f,g},a1,00 € Wio(X2). If F = g, let a = g(a1). Let b = G(b1,b2) where
G € {f,9},b1,b2 € W1)(X1). If G = g, let b = g(b1). We consider the follow-
ing cases and their subcases:
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(1) F=fand G=f.
(1 ].) a9 ¢ X2
(1.2) as = x9 and by = ;.
(1.3) a2 = z2,b2 ¢ X1 and g ¢ ops(Rp(b)).
(1.4) az = x2,b2 ¢ X1 and g € ops(Rp(b)).
(2) F=gand G=yg
3) F=fandG=yg
(4) F=gand G = f.

Using above notations, we have

Theorem 5. Leta € Wiy 1y(X2) and b € W3, 1)(X1) be such that op(a) > 1, 0p(b) >
1,var(a) = {z2} and var(b) = {x1}.

(1) If a and b satisfy (1.1),(1.4),(2), (3) or (4), then the order of 04 is infinite.
(i1) If a and b satisfy (1.2) or (1.3), then the order of o, is less than or equal to
2.

Proof. (i) Assume a and b satisfy (1.1), then as ¢ X5. By Lemma 2, 67 ,[az] ¢ X
for all n € N. Since var(a) = {z2}, by Lemma 3, we have var(é?,[a]) = {z2
for all n € N. Then op(o? ,(f)) = op(Gasla]) = op(a(Gaplail, aab[ag])) op(a)
op(0a,p(f)). Let k > 2. We obtain

|I~V~w

(053 (f)) = op(65 " [a(Ga,bla1], Gaplaz])])
= op(65,'[a)(65 plar], 65 ylaa])

op(6q " [a))

=0p(<f§b(f))

It follows that the order of o, is infinite.

Assume a and b satisfy (1.4). Since g € ops(Rp(b)) and var(a) = {z2}, we have
Gaplb] = a'(t1,b(ta,t3)) where ti,to,t3 € Wi2,1)(X1),1 € N. Since var(a) = {x2},
op(a ,(9)) = op(Gap[b])
= op(al(ty, b(tg,tg))) > op(b) = op(oab(g)). Let k > 2. By Lemma 2 and Lemma 3,

we have &kb [a'] ¢ X and var(6 f’bl[al]) = {x5}. We obtain
op(ag 1 (9) = op(&4 ;" [6a,6[0))
= op(&4 ' [a' (t1, b(t2, 13))])
AR CAS IR ARG ICAS AR
> op(65' [0])

= op(og 4(9))

Then the order of o, is infinite.
Assume a and b satisfy (3), then by ¢ Xo. By Lemma 2, 67 ,[b1] ¢ Xo for all
n € N. Since var(b) = {x1}, by Lemma 3, we have var (67 ,[b]) = {z1} for alln € N,
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Then op(ag,b(g)) = 0p(G4,p[b]) = op(b(G4pb1])) > op(b) = op(oap(g)). Let k > 2.

We obtain
op(oy ' (9)) = op(65 " [b(6a,5[b1])])
= op(6;, " [0](65 5 [01]))
> op(&7," [b])
= op(0% ,(9))

Therefore, the order of o, is infinite.
Similar arguments work if a and b satisfy (2) or (4).
(ii) This is easy to see. |

4. Case op(a) =1 and op(b) > 1

We shall consider three cases. Assume var(a) = {x1, 22} and var(b) = {z1}. Let
b= G(bl,bg) where G € {f,g}7b17b2 S W(Q)l)(Xl). If G = g, let b = g(bl). We
consider the following cases:

(1) a= f(r1,22) and G = f
(2) a= f(r1,22) and G =g
(3) a= f(xo,z1) and G = f
(4) a= f(zo,z1) and G =g

Using above notations, we have

Theorem 6. Leta € Wiy 1)(X2) andb € W3 1)(X1) be such that op(a) = 1,0p(b) >
1,var(a) = {1, 22} and var(b) = {z1}.

(i) If a and b satisfy (1), then the order of o4 is 1 or infinite.
(11) If a and b satisfy (3), then the order of o, is less than or equal to 2 or infinite.
(111) If a and b satisfy (2) or (4), then the order of o4 is infinite.

Proof. (i) Assume a and b satisfy (1). Then 6,a] = a. If ops(b) = {f}, by
var(b) = {x1}, we have 6,[b] = b . Then the order of o, is 1. Assume g €
ops(b). Note that op(Gap[t]) > op(t) for any t € W3 1)(X1). We claim that for
t € Wia,1)(Xy) if firstop(t) = f and g € op(t), then op(G4[t]) > op(t). We proceed
by induction on op(t), that is, on the total number of all operation symbols occurring
in t. If op(t) = 2, then t = f(g(x1),z1) or t = f(x1,9(x1)). Each of the cases we
have op(Gq(t]) > op(t). Assume the claim holds for any ¢ with 2 < op(t) < k. Let
t € Wi2,1)(X1) be such that firstop(t) = f,g € op(t) and op(t) = k + 1. Then
t = f(t1,t2) for some t1,t € Wig 1y(X1). Therefore,

op(6a,[t]) = 0p(0ab(f)(Faplti]; Gaplta])) = 1+ op(Gaplti]) + op(Gaptz])
> 1+ op(t1) + op(t2)
= op(t)
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So we have the claim. Using the claim, the order of o, is infinite.

(ii) Assume ops(b) = {f}. Since o) ,(f) = oas(f) and o7 ,(9) = 0ap(g), the
order of o, is less than or equal to 2. If g € ops(b), in the same manner as (i), the
order of o, is infinite.

(iii) Assume a and b satisfy (2). Since op(b) > 1, b = g(G(b1,b2))
for some bi,by € W q)(X1). Then op(ag,b(g)) = op(Gaplg(G(b1,b2))]) =
op(b(04p(G)(Gap[b1], Fap[b2]))) > op(b) = op(cap(g)). Let k > 2. Therefore,

3 b)(ok L (G) (65, [b1), 6% 4 [b2])))

Then the order of o, is infinite. Similar arguments work for (4). O

Assume var(a) = {z1} and var(b) = {x1}. Let b = G(b1,b2) where G €
{f, g}, b1,b2 € Wip1)(X1). If G = g, let b= g(b1). We consider the following cases
and thire subcases:

(1) a= f(z1,21) and G = f.
(]. 1) bl =2X.
(1.2) by ¢ X7 and g € ops(Lp(b)).
(1.3) by ¢ Xy and g ¢ ops(Lp(b)).
(2) a=g(z1) and G = g.
3) a= f(x1,21) and G = g.
(4) a=g(r1) and G = f.

) bl =2X1.

(4.
(4 ) bl 7& xXq.
Using above notations, we have

Theorem 7. Leta € Wiy 1)(X2) andb € Wio1)(X1) be such that op(a) = 1,0p(b) >
1 and var(a) = var(b) = {x1}.

(1) If a and b satisfy (1.1), (1.3) or (4.1), then the order of o4 is less than or equal
to 2.
(i1) If a and b satisfy (1.2),(2),(3) or (4.2), then the order of o4 is infinite.

Proof. (i) This is easy to see.
(ii) Assume a and b satisfy (1.2). Then 64[0] = f(x1,21)(b(t1),t2) for some

ti,ta € Wia1)(X1). Since var(a) = {z1}, op(oz,(9)) = op(f(x1,x1)(b(t1),t2)) >
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op(b) = op(o4.b(g)). Let n > 2. Therefore,

(G5 (b)) = op(G7 [ f (1, 1) (b(t1). £2)])
= op(f(z1,21) (67 [b](60 p[t1]), 05 p[t2]))
> op(64[0])
Then the order of o, is infinite.

Assume a and b satisfy (2). Then b = g(G(t1,t2)) for some t1,t2 € Wg1)(X1).
We have op(c7 ,(9)) = op(6ap[9(G(t1,12))]) = 0p(b(0as(G)(Gan[ti], Gaslta])) >
op(b) = op(oap(g)). Let k > 2. We obtain

(0} (9)) = 0p(64 ;' [B(0a.b(G) (Gapltr], Gablta])])
= op(&, ' [B(0% ,(G) (Ga[t1]), 55 b [t2])))
> op(6, ' b))
= op(05,(9))
Then the order of o, is infinite.

Similarly, if a and b satisfy (3), then the order of o, is infinite.

Assume a and b satisfy (4.2). Then a = g(x1) and by ¢ X;. If g € ops(by), in the
same manner as Theorem 6 (i), the order of o, is infinite. Assume g ¢ ops(b1). Since
b ¢ X1,0ps(b1) = {f}. Since firstops(a) = g and ops(b1) = {f}, dap[b] = 627b[a].
Then op(c7 ,(9)) = op(6as[b]) = op(67 ,[al) > op(6apla]) = op(b) = op(cas(g))-
Let k£ > 2. We have

op(a;31(9)) = op(657" 162 blal]) > op(65}, [Gaslal)) = op(657," b)) = op(af ,(9))

s

Therefore, the order of o, is infinite. O

Assume var(a) = {z2} and var(b) = {z1}. Let b = G(b1,b2) where G €
{f, 9}, b1,b2 € Wia1y(X1). If G = g, let b= g(b1). We consider:
(1) a= f(z2,22) and G = f.

(1.1) bg = XT1.
(1.2) by & X7

(2) a=g(z2) and G = g.
(3) a= f(xa,22) and G = g.
(4) a = g(z2) and G = f.

(41) b2 =X1.
(4.2) by ¢ X;.

Using above notations, we have the following.

Theorem 8. Leta € Wiy 1)(X2) andb € W3 1)(X1) be such that op(a) = 1, 0p(b) >
1,var(a) = {z2} and var(b) = {x1}.

(i) If a and b satisfy (1.1) or (4.1), then the order of o4 is 2.
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(i1) If a and b satisfy (1.2),(2),(3) or (4.2), then the order of o4 is infinite.

Proof. (i) If a and b satisfy (1.1), then &, [a] = @ and &g}b[b] = Ggp(b]. If @ and b
satisfy (4.1), then 5’2717[&] =a and &ib[b] = b. Consequently, the order of o, is 2.
(ii) Assume a and b satisfy (1.2). Then by = G(t1,t2) for some t1,ty €
Wi2,1y(X1). Since firstops(b) = f and a = f(z2,22),
op(07 5(f)) = 0p(Gaplf (b1, G(t1,12))]) = 0p(a(Ga,[b1], 0a,b(G)(Gaplti], Gaplta]))
> Op(a)
(@0,6(f))-
Let k > 2. Therefore,
op(7, 3 (f) = op(da}"
= op(6
> op(
= op(o

Thus the order of o, is infinite.
If a and b satisfy (2) or (3), in the same manner as Theorem 7 (ii), the order

i), t
of o,y is infinite. Assume a and b satisfy (4.2). Since a = g(z2), op(o ,(f)) =

0p(Guplg(22))) = op(b(x2)) = op(f(br,G(t1,12))(w2)) > op(g(x2)) = op(a) =
op(0a,p(f)). Let k > 2. We obtain
op(og i () = op(6), [6ap(all)

= op(65 3, [6aplg(x2)]])

> op(647, " [9(w2)])

= op(6%,'[al)

= op(a5,(f))
Thus the order of o, is infinite. O

Now, we consider the case op(a) > 1 and op(b) = 1. The results can be considered
similarly as the case op(a) = 1 and op(b) > 1. We consider three cases:

(1) var(a) = X5 and var(b) = {1 }.

(2) var(a) = {z1} and var(b) = {x;1}.
(3) var(a) = {z2} and var(b) = {x;1}.

For (1), we consider four cases:
(1.1) b= f(x1,z1) and firstops(a) = f.
(1.2) b= f(x1,21) and firstops(a) =g
(1.3) b= g(z1) and firstops(a) = f.
(1.4) b= g(z1) and firstops(a) = g.
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Using above notation, we have the following.

Theorem 9. Let a € Wi31)(X2), b € Wi31)(X1) be such that op(a) > 1, op(b) =
1,var(a) = X2 and var(b) = {x1}.

(i) If a and b satisfy (1.1), (1.2) or (1.3), then the order of o4 is infinite.

(11) If a and b satisfy (1.4), then the order of o4 is 1 or infinite.

For (2), let a = g(a1, az) where a1, az € Wz 1)(X2). If F'= g, let a = g(a1). We
consider two cases:

(21) aj ¢ Xg.
(2.2) ay = I1.

Theorem 10. Let a € Wg1)(X2), b € Wi 1)(X1) be such that op(a) > 1 and
var(a) = {x1} = var(d).

(i) If a satisfies (2.1), then the order of oqp is 1 or infinite.
(it) If a satisfies (2.2), then the order of o4 is 2.

For (3), let a = g(a1,az) where ay,az € Wiz 1)(X2). If F'= g, let a = g(az). We
consider:

(31) as ¢ XQ.
(3.2) az = ;.

Theorem 11. Leta € Wz 1)(X2), b € Wi 1)(X1) be such that op(a) > 1, var(a) =
{z2} and var(b) = {z1}.

(i) If a satisfies (3.1), then the order of oqp is 1 or infinite.
(i1) If a satisfies (3.2), then the order of o4y is less than ro equal to 2.

5. Case op(a) > 1 and op(b) =0
Since b € W(3,1)(X1) and op(b) = 0, b = x1. We consider three cases. Assume

var(a) = {x1,z2}. Let a = F(a1,az) where F' € {f, g}, a1,a2 € W31)(X2). Clearly,
if a; € X5 then ag ¢ X5. If F = g, let a = g(a1). There are six cases to consider:

(1.1) F=f,a1 ¢ X5 and f € ops(Lp(a)).
(1.2) F=f,a1 ¢ X5 and f ¢ ops(Lp(a)).
(1.3) F = f,a1 € X2 and [ € ops(Rp(a)).
(14) F = f,a1 € X2 and [ ¢ ops(Rp(a)).
(1.5) FF =g and f ¢ ops(ay).
(1.6) FF =g and f € ops(ay).

Using above notations, we have Theorem 12.

Theorem 12. Let a € Wi 1y(X2) and b € Wy1)(X1) be such that op(a) >
1,0p(b) =0 and var(a) = {x1,x2}.
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(1) If a satisfies (1.1) or (1.3), then the order of o4 is infinite.
(i1) If a satisfies (1.2),(1.4),(1.5) or (1.6), then the order of o4 is less than or
equal to 2.

Proof. (i) Assume a satisfies (1.1). Since b = z1,F = f and f € ops(Lp(a)), so
O'ib(f) = a(a,t) for some t € Wy 1)(X2). Since var(a) = {x1,22}, op(oap(f)) <
op(o2 ,(f))- Since f € ops(Lp(a)), 63, la] ¢ X for all n € N. For k > 2, we have

k+1

op(oy ' () = op(6), " [Ga.0all)
= op(d4, '[a(a, 1))
= op(65 ' [al (65, al, 6573 [t]))
> op(60, " [a]
= op(0g,(f)).
Then the order of o, is infinite. Similarly, if a satisfies (1.3), then the order of g,
is infinite.
(ii) Assume a satisfies (1.2). If le ftmost(a1) = 1, then G, [a] = a and G4 [b] =
b. Thus o7, = 0ap. If leftmost(ar) = wa, then 67 ,[a] = Gapla] and G,[b] =
b. Hence the order of o, is less than or equal to 2. Assume a satisfies (1.4).
If rightmost(az) = xa, then G4p[a] = a and G4p[b] = b. Thus o, = 0qp. If

leftmost(az) = x1, then &7 y[a] = G4 [a] and G4[b] = b. Hence the order of g,
is less than or equal to 2. Assume a satisfies (1.5). If leftmost(a;) = 1, then
Gapla) = b and 64[b] = b. Hence the order of o, is is less than or equal to
2. If leftmost(a1) = w2, then 6g’b[a] = Ggpla] and G4[b] = b. Hence the order
of 04, is less than or equal to 2. Assume a satisfies (1.6). If leftmost(a1) = z1,
then 643(a] = a and &,,[b] = b. Hence O'g’b = 0gp. If leftmost(a;) = 2, then
&27b[a] = Gqpla] and G4,5[b] = b. Hence the order of o, is less than or equal to 2.0

Assume var(a) = {z1}. Let a = F(ay,az) where F € {f, g}, a1, a2 € Wiz 1)(X2).
If F =g, let a =g(a1). There are five cases to consider:

F=fand a; = ;1.

Using above notation, we have Theorem 13.

Theorem 13. Let a € W31)(X2),b € W(a1)(X1) be such that op(a) > 1 and
op(b) = 0.

(1) If a satisfies (1),(2) or (4), then the order of o4y is less than or equal to 2.
(i1) If a satisfies (3), then the order of o4 is infinite.
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(111) If a satisfies (5), then the order of o4 is less than or equal to 2 or infinite.

Proof. (i) This is easy to see.

(ii) Assume a satisfies (3). Since b = x1, F = f and f € ops(Lp(a)), we have
aib(f) = a(a,t) for some t € Wy 1)(Xz). Since var(a) = {z1}, op(oap(f)) <
op(aib(f)). Since f € ops(Lp(a)), 6, ,[al ¢ Xz for all n € N. Let k > 2. Therefore,

Then the order of o, is infinite.

(iii) Assume a satisfies (5). If there is only one f € ops(a), then 6, [a] = a and
Ga,p[b] = . Thus the order of o, is less than or equal to 2. Assume there are more
than one times f € ops(Lp(a)). Since b = x; and F = g, we have ag)b(f) = a(a,t1)
for some t; € Wy 1)(X2). Since var(a) = {z1}, op(oap(f)) < op(oib(f))‘ Since
f € ops(Lp(a)), 67 la] ¢ X5 for all n € N. For k > 2, we have

op(ol () = op

I
=

> op

(
(
= op(6
(
= op(

Then the order of o, is infinite. O

Assume var(a) = {z2}. Let a = F(a1,a2) where F € {f,g} and aj,a2 €
Wi2,1)(X2). If F =g, let a = g(a1). There are five cases to consider:

(1) F = f and as = .

(2) F'=f,az ¢ X5 and f ¢ ops(Rp(a)).
(3) F'=f,az ¢ X5 and f € ops(Rp(a)).
(1) F =g and f ¢ ops(an).

(5) F=gand f € ops(ay).

Using above notation, Theorem 14 below can be proved in the same manner as
Theorem 13.

Theorem 14. Let a € Wi 1)(X2),b € Wi 1)(X1) be such that op(a) > 1 and
op(b) = 0.

(i) If a satisfies (1), (2) or (4), then the order of o4 is less than or equal to 2.
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(i1) If a satisfies (3), then the order of o, is infinite.
(i11) If a satisfies (5), then the order of o4 is less than or equal to 2 or infinite.

6. Case op(a) = 0 and op(b) > 1

Let b = F(bl,bg) where F' € {f,g},bl,bg € W(2’1)<X1). If F=g,let b= g<b1>.
Since op(a) =0, a = z1 or a = 5. There are ten cases to consider:

a=z,F=fand by = x;.

Using above notations, we have Theorem 15 and Theorem 16. Theorem 16 can be
proved in the same manner as Theorem 15.

Theorem 15. Let a € Wi 1)(X2),b € Wig1)(X1) be such that op(a) = 0 and
op(b) > 1.

(1) If a and b satisfy (1), (2) or (4), then the order of o4 is less than or equal to
2

(i1) If a and b satisfy (3), then the order of o, is less than or equal to 2 or infinite.
(i11) If a and b satisfy (5), then the order of o4 is infinite.

Proof. (i) If a and b satisfy (1), (2) or (4), then 64 [a] = a and &4[b] = a. Thus

U?z,b = Ug,b-
(i) Assume a and b satisfy (3). If there is only one g € ops(Lp(b)), then G, p[a] =
a and 6,4,[b] = b. Thus 037b = O'ib. Assume there are more than one times g €

ops(br). Since a = x1 and b ¢ X1, 6, ,[b] ¢ X; for all n € N. Since there are more
than one times g € ops(by) and a = w1, o, ,(9) = b(b, 1) for some t € Wiz 1)(X1).
Since var(b) = {x1}, 0p(0a,(g)) < op(o} ,(g)). For k > 2, consider

op(ah 31 (9)) = op(673" [6ab[b]])
= op(6}, ' [b(b, 1))
= op(&43 ' [b(645 ' 0,603 1))
> op(6a7," [b]
= Op(Us,b(g))a

we obtain the order of o, is infinite.
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(iii) Assume a and b satisfy (5). Then 67 ,[b]) ¢ X1 for all n € N. Since g €
ops(by) and a = w1, o ,(g) = b(b, t1) for some t; € W(5,1)(X1). For k > 2, consider

op(o5 ' (9)) = op(G4, [6ap[b]])
= op(d5' [b(b,11)))
= op(6 ' Bl(Gay ], &2 [01])
> op(64,'[b]
= op(ay4(9)),
we have the order of o, is infinite. O

Theorem 16. Let a € Wiy 1)(X2),b € Wi 1)(X1) be such that op(a) = 0 and
op(b) > 1.

(i) If a and b satisfy (6),(7) or (9), then the order of o4 is less than or equal to
2

(11) If a and b satisfy (8), then the order of o, is less than or equal to 2 or infinite.
(111) If a and b satisfy (10), then the order of o, is infinite.

Note that the mapping ¢ : Hyp(2,1) — Hyp(1,2) defined by ¢(o.p) =
Ta,b0g(a1),f(x1,00) 1S an isomorphism. Then we can conclude that the order of hy-
persubstitutions of type (1,2) is 1,2,3 or infinite.
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1 Preliminaries

Let S be a semigroup. The order of an element a of S is defined as the order of (a), the cyclic
subsemigroup of S generated by a. The indez and the period of an element a of S consults [10]

(p. 9-11).

Let 7 = {(fi,ni) | ¢« € I} be a type. Let X = {x1,x2,23,...} be a countably infinite
alphabet of variables such that the sequence of the operation symbols (f;);er is disjoint with
X, and let X, = {x1,22,...,2,} be an n-element alphabet where n € N. Here f; is n;-ary for
a natural number n; > 1. An n-ary (n > 1) term of type 7 is inductively defined as follows:

(i) every variable z; € X,, is an n-ary term,
(ii) if ¢1,...,t,, are n-ary terms and f; is an n;-ary operation symbol then f;(t1,...,t,,) is
an n-ary term.

Let W,(X,,) be the set containing x1,...,x, and being closed under finite application of (ii).
The set of all terms of type 7 over the alphabet X is defined by W, (X) := U,—; Wr(X,,). Any
mapping o : {f; : i € I} — W, (X) is called a hypersubstitution of type 7 if o(f;) is an n;-ary
term of type 7 for every i € I. Any hypersubstitution o of type 7 can be uniquely extended to
a map ¢ on W,(X) as follows:

(i) olt]:==tift e X,
(ii) &[t] == o(fi)(G[t1], ..., 0[tn,])) it t = filt1,. .. tn,)-
A binary operation is defined on the set Hyp(7) of all hypersubstitutions of type 7, by
(0102)(fi) = diloa(fi)]

for all n;-ary operation symbols f;. Together with this binary associative operation Hyp(T)
forms a monoid since the identity hypersubstitution ;4 which maps every f; to fi(x1,...,ax,)
is an identity element. For an n-ary term ¢ of type (n), let

var(t) — the set of all variables occurring in ¢,

op(t) — the total number of all operation symbols occurring in ¢.

Several subsemigroups of Hyp(7) can be defined: P(7) :={o:0(f;) € X,,,i € I}, Short(r) :=
{o:0p(o(f;)) =1,i €1}, and H? := {0 : op(o(f;)) > k,i € I} for any k € N.

'Research Supported by the Thai Research Fund.



Semigroup properties of hypersubstitutions have been widely studied (see [1], [2], [7],[1]).
Properties of monoids of generalized hypersubstitution, i.e. non-arity preserving ones are stud-
ied in [2], [8] and [9]. Given a type 7. The following problem arise: Describe the order of
hypersubstitutions of the type. So far this was done for type (2), (3), and (2,2): It was shown
that the order of a hypersubstitutions of type (2) is 1, 2 or infinite ([?]), of type (3) is 1, 2, 3
or infinite ([3]), and of type (2,2) is 1, 2, 3, 4 or infinite ([5]). In this paper we are interested
in the order of hypersubstitutions of type (n) for any n € N.

2 Main Results

For any n € N, the set of all mappings on {1,2,3,...,n} is denoted by T,,. It is known that
T, forms a semigroup under the usual composition of functions, the so-called a transformation
semigroup. The semigroup T,, has n” elements (see [10]). For o € T, let fiz(a) = {z €
{1,2,3,...,n} : za = z}. We give an easy observation that for any o € T,, if fiz(a) C
{1,2,3,...,n}, then there is o € Ty, with ng = |{1,2,3,...,n} \ fiz(«)| which has the same
order with o.

For convenience, we let f stand for n-ary operation symbol of type (n) and we denote a
hypersubstitution of type (n) which maps the operation symbol f to the n-ary term ¢ by oy.
Further, let o, for some a € T},, be a hypersubstitution mapping f to f(za(1),---,ZTam)). We
state an easy theorem to make our investigation complete.

Theorem 2.1. (1) The order of a hypersubstitution in P(n) is 1.

(2) The order of a hypersubstitution in Short(n) is equal to the order of a mapping o for
some o € T,,.

Proof. (1) Obvious.
(2) Define a mapping ¢ : Short(n) — T, by o, — «. It can be proved easily that ¢ is an
anti-isomorphism. O

Now, we proceed to the case that hypersubstitutions come from H5”. In this case if
var(o(f)) = X, then we have the following theorem.

Theorem 2.2. Let t be a term of type (n) with op(t) > 1. If var(t) = X,,, then oy has infinite
order.

Proof. Claim. If s € W,)(X,) \ X,, with var(s) = X,,, then op(s) < op(d¢]s]).
We set s = f(s1,...,5n). Since vbi(o:(f)) > 1, k=1,...,n and op(o¢(f)) > 1,

op(oi[s]) = op(o(f)(Gils1], .- Gelsn]))

v v
S S S S
> X
~ o
+ =
o+
+
s 4
<8
+ &
[
S
_|_

—

So we have the Claim. This gives, for k € N,
op(o; () = op((a10f)([)) = op((61[af (f)]) > op(af (f))-

We conclude that o; has infinite order. O

Next, we will investigate the case that var(t) is a proper subset of X,,, i.e. var(t) C X,.
Hereafter, we let



t=f(tr, . otn), t1, oo tn € Wiy (Xn)
be an n-ary term of type (n) such that op(t) > 1 and var(t) = {x;,,...,z;;}. We separate to
three cases:
(1) tiy,... ti; €var(t),
(2) tiy,... ts; & var(t),
(3) thereis j" € {1,...,j — 1} such that ¢;,,...,t;, €var(t) and t; , ..., t;; & var(t).

For cases (1) and (2) we have Theorem 2.3 and Theorem 2.4, respectively.

Theorem 2.3. Lett = f(t1,...,tn) be an n-ary term of type (n) with op(t) > 1 and var(t) =
{@iy, . oa} C X If ty, = Tyy sy tiy = Ty, € var(t), then the order of oy is a + b where a

i

and b are, respectively, index and period of some ag € Ty, and some ng < n.

Proof. Assume that t;, = xr, ... t; =y, € var(t). Define « € T}, by, for v € {1,...,n},

a(u) ::{ ro ifwe {i,... i},

u  otherwise.

Clearly, the order of « is finite. Assume that o has index a and period b. Then a® = a%*?.
Using property of « and assumption, we get
t(Gelta], .o, 0¢tn]) = t(Za)s - Tam))-
It follows that,
0¢lt] = G¢[f(t1, .-, tn)] = t(Gelta], - - -, Ottn]) = H(Zaq1)s - - Ta(n))

We can prove by induction that (6¢)*[t] = tH(Tar(1ys -+ Takn)) for every & € N. Hence
(00)*T(f) = (00)*T*T1(f). This shows that the order of oy is a+b. Since var(t) = {;,,...,z;,}
is a proper subset of X,,, then there the set B C {1,...,n} such that «(b) = b for every b € B
and «a(b') ¢ B for every b/ ¢ B. Hence, there is a transformation oy € Ty, for some ng < n
such that its index and period are the same as the index and period of «. O

Theorem 2.4. Lett = f(t1,...,tn) be an n-ary term of type (n) with op(t) > 1 and var(t) =
{@i, .2} C X If sy, .. by, & var(t), then the order of oy is infinite.

Proof. Let k € N. We have var((o;)*(f)) C war(t). Since t;,,...,t; ¢ var(t), we have
(6¢)k[t;,] ¢ X, for all u =1,...,j. Then,

op((a)* () = op((60)*[t))
op((00)* (N0 1], -, (60)F[tnl])
> op((a0)"(f))-
This shows that the order of o; is infinite. O

To prove (3): there exists j' € {1,...,j—1} such that t;,,... ot € var(t) and 2B 7 ¢
var(t), we need the following: It has been known that terms can be represented by tree, i.e.,
connected graph without cycles having a root. For any term ¢ of type (n), we can label each
operation symbol or variable of ¢ by a sequence of numbers from {1,...,n}, by using the ad-
dress of the corresponding node in the tree diagram for t; the operation symbol at the root of
the tree receives the label 0. For instance, the term t = f(f(x1,x2, z3), 23, 22) of type (3) can
be written with labels as L(t) := fO(f* (21!, 232, 233),23,23). For N C {1,...,n}, we will be
interested in the set var(L(t)) \ N of (labeled) variables occurring in ¢ whose addresses do not



contain any occurrences of k € N.

We make the key observation that if ¢ satisfies (3.1.2.1), then var(6.[t]) € {zs,..., =, };
if ¢ satisfies (3.1.2.2), then var(6{°[t]) N {zi;,,,..., 2} # 0 for all w € N. Now, we have the
following.

Theorem 2.5. Lett = f(t1,...,t,) be an n-ary term of type (n) with op(t) > 1 and var(t) =
{iys 2} C Xy If there is j' < j such that t;,,....t;, € var(t), ti, ... ti; & var(t),
then either: the order of o, is equal to 1 plus the order of some transformation o € T, for
some ng < n; or the order of oy is infinite.

Proof. Assume that there is j' < j such that t;,,....t;, € var(t), ti,, ...,
separate to three subcases:

(31) tin”wtij/ c {xil,...wij,},
(32) tiu"'vtij/ S {xij,ﬂ,...,xij}, i.e. tiu"- ti./ ¢ {xil,...,xij,},

(33) zil,...,tij{;/e {{;iil,...zlxij,l}}and tij”+1"" ij € {.’Ez ,+1,...,.’Eij}
or some 3" € 1l,...,7 — 1y

ti; ¢ var(t). We

Case (3.1). We separate to the following cases:

(3.1.1) war(ti, ), .., var(ty;) C {ti, ..., ti, },
(3.1.2) thereis ! € {iji11,...,1;} such that var(tl) M{@iy @i} # 0
(3.1.2.1) every ¢, satisfying (3.1.2) have the property that every x;, € var(t)) " {z;, ..., i;}
is not labeled with address containing the number i, for every i, with z;, €
var(t;) N {wij,ﬂ, C T}
(3.1.2.2) there is t; satisfying (3.1.2) have the property that there are z; , z;, € var(t;)N
{zij,+1 ;- } such that x;, is labeled by address containing i,,

Case (3.1.1). Without of generality we may assume that t;, = Ty se-ostiy, = Tp, , with
“ J

TipyoosTiy € {i1,...,1j}. Define a mapping a € T}, by, for u € {1,...,n},

u otherwise.

au) = { ri, ifwe{i,... i},

Clearly, the order of « is less than n". Assume that « has index a and period b. Then
a® = P, Since var(t;,, s eesvar(ty,) C {tiys--- 7t¢j/} C A{xiy, ... ,mij,}, we have

Oilt] = 0¢[f(t1, ... tn)] = t(Ge[ta], ..., G¢[tn]) = Lxa@)s - - s Tam))-

It can be proved by induction that: for k € N, (6¢)F[t] = t(zar(1),. .., Tak(n)). Therefore,
(6¢)21L[t] = (64)*FtP*1[t]. This shows that the order of oy is equal to a + b. Hence, there is a
transformation ag € T, for some ny < n such that its index and period are the same as the
index and period of «.

Case (3.1.2.1). Assume that ¢ satisfies (3.1.2.1). Then var(6¢[t]) C {@i,,...,2i,}. Define a
mapping o € T,, by for w € {1,...,n},

o(w) ::{ i ifwe{l,. .. j},

w  otherwise.

We have that the order of « is less than n™. Assume that « has index a and period b. Since
0¢[t] = t(0¢[ta], . . ., 04[tn]) and var(o¢[t]) C {xi,,..., x5} we have

Gi[tl(G7[ta], -, 67 [tn])

[ ](xoz(l 7xa(n))

op [tl](ma(l)a . ,xa(n))a cee 76—7& [tn](xa(l)a cee 7xo¢(n))),

63 =

=

Q>



and

&?[t] = 5t[t]((5’t2[t1](l‘a(1), e ,.’L‘a(n)), RN &f[tn](xa(l)a e ,.’L‘a(n)))
= &t[t](xaz(l), .. ,$a2(n)).
It can be proved by induction that for k € N,
Oy [t] = &t[t](xak(l),...,wak(n))

Therefore, (6;)**1[t] = (6¢)T**+1[t]. This shows that the order of o; is equal to a + b. Since
{xil,...,xii,} C X,, there is a transformation ag € Ty, for some ng < n such that its index
and period are the same as the index and period of a.

Case (3.1.2.2). As mentioned, we have var(6{[t]) N {zs, ,,..., 2} # 0 for all w € N. Then,
for k € N, we have

op((00)"2(f)) = op((6)"[f(tr(Gelta], -, Geltn])s - ta(Gelta], -, Ge[ta])])

(60) [t (Gelta], -, Geltnl)], - - (60)  [tn(Gelta], - - - G [ta])]])

Q>

(
= op (o
> op((o0)*(f))

This shows that the order of o; is infinite.
Case (3.2). We have

Git] = t(Ge[ta], - - -, aeltn]) = 1 (Gelta], - .- Geltn]), - - - tn(Gelta], - - -, Geltnl]))-
ti, ¢ var(t) and t;,,...,t;; & {zs,..., 2}, it follows that

8 (Ge[t1)s s Geltn])s s tn(Gelt], - Geltn]) & Xon.

Since i, ;.-

op((@)*2(f)) = op((6) [f(t1(Geltr), -, Gueltul), - tu(Gelta], -, Geltn]))])

—
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> op((o0)*(f)
This shows that the order of o; is infinite.
Case (3.3): thereis j” € {1,...,j'—1} such that t;,,...,¢; , € {z;,...,2;, } and t
{xij//+17 R 7xij/ }
We separate to the following cases:
(3.3.1) Tigs--- 7tij// S {xil, . ,xij//},
(332) tilv - 7tij// S {CL’ijUrl, . ,l’ij, },
(3.3.3) thereisj” € {1,...,j"} suchthatt;,,... sti € {ziy, ... ,a:ij,,} and ¢
{xij/+15 ce ?x’ij// }
Cases (3.3.1), (3.3.2) and (3.3.3) can be proved similarly as cases (3.1.1), (3.1.2) and (3.1.3),
respectively.
Continue in this way, we can have only the following two cases left:
(1) tirreotie € {1,
(II) Liys--- 7tij* S {Jﬁij”_l, sy T }
Both of the cases can be proved similarly as cases (3.1.1) and (3.1.2), respectively. This com-
pletes the proof. O

..,tij, €

Zj//+13 *

.. 7tij// S

Zj///+17 *

Using the main theorem, we have the following immediately.

Corollary 2.6. The order of hypersubstitutions of type (n) for n € {1,2,3,4} is 1,2,3,...,n
or infinite.
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