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Chapter 1

Executive Summary

Hypersubstitutions were introduced to make precise the concept of hyperidentities. An

identity s ≈ t of type τ of a variety V of type τ is called a hyperidentity of V if, for every

substitution of terms of appropriate arity for the operation symbols in s ≈ t, the resulting

identity holds in V . This leads to the definition of a map σ : {fi | i ∈ I} → Wτ (X) such

that σ(fi) is an ni-ary term of type τ . Any such mapping σ is called a hypersubstitution

of type τ .

It is known that the collection of all varieties of a type τ , denoted by L(τ), forms a

complete lattice under the usual inclusion. Moreover, this lattice is dually isomorphic to the

lattice of all equational theories of type τ . It is of interest to know what the lattices L(τ)

look like, but it has become clear that they are very complicated. Even for type τ = (2),

L(2) is uncountably infinite. Denecke and M. Reichel have described a method of studying

the lattice of all varieties of a given type by using monoids of hypersubstitutions.

Let τ = (ni)i∈I , ni ∈ N, be a type with an operation symbol fi for each i ∈ I. Let

X = {x1, x2, x3, . . .} be a countably infinite alphabet of variables which is disjoint from

{fi | i ∈ I}. For n ∈ N, let Xn = {x1, . . . , xn} be an n-element alphabet of variables. For

each n ∈ N, the n-ary terms of type τ are inductively defined as follows:

(i) every variable xi ∈ Xn is an n-ary term of type τ ,

(ii) if t1, . . . , tni
are n-ary terms of type τ and fi is an ni-ary operation symbol then

fi(t1, . . . , tni
) is an n-ary term of type τ .

Let Wτ (Xn) be the smallest set containing x1, . . . , xn which is closed under finite application

of (ii). The set of all terms of type τ over the alphabet X is defined as the union

Wτ (X) :=
∞⋃

n=1

Wτ (Xn).

The hypersubstitution σid of type τ is defined by

1



∀ i ∈ I, σid(fi) := fi(x1, . . . , xni
).

Any hypersubstitution σ of type τ uniquely determines a map σ̂ : Wτ (X) → Wτ (X) on

Wτ (X), inductively defined as follows:

(i) σ̂[t] := t if t ∈ X,

(ii) σ̂[t] := σ(fi)(σ̂[t1], . . . , σ̂[tni
]) if t = fi(t1, . . . , tni

).

In (ii), if t is an m-ary term of type τ , then σ(fi)(σ̂[t1], . . . , σ̂[tni
]) means Sni

m (σ(fi), σ̂[t1], . . . , σ̂[tni
]).

Using the induced maps σ̂, a binary operation ◦h can be defined on the set Hyp(τ).

For any hypersubstitutions σ1, σ2 ∈ Hyp(τ), σ1 ◦h σ2 is defined by

∀ i ∈ I, (σ1 ◦h σ2)(fi) := σ̂1[σ2(fi)].

Theorem. Let τ be a type. The following hold:

(i) for any σ1, σ2 ∈ Hyp(τ), (σ1 ◦h σ2)
ˆ = σ̂1 ◦ σ̂2,

(ii) the structure (Hyp(τ); ◦h, σid) forms a monoid. The hypersubstitution σid acts as the

identity of Hyp(τ).

In this work, we are interested in semigroup properties of hypersubstitutions of a given

type. These include regular elements and order of hypersubstitutions. Work has focused on

type τ = (2, 2).
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Chapter 2

Main Results

2.1 The order of hypersubstitutions of type (n)

We submitted one paper on this topic. The order of a hypersubstitution σ is defined in

the usual way, that is, the order of the cyclic subsemigroup 〈σ〉 = {σn | n ∈ N} generated

by σ. In [1], the auther proved that the order of hypersubstitutions of type (3) is 1, 2, 3 or

infinite.

For any n ∈ N, the set of all mappings on {1, 2, 3, . . . , n} is denoted by Tn. It is known that

Tn forms a semigroup under the usual composition of functions, the so-called a transformation

semigroup. The semigroup Tn has nn elements. For α ∈ Tn, let

fix(α) = {x ∈ {1, 2, 3, . . . , n} : xα = x}.

We give an easy observation that for any α ∈ Tn if fix(α) ⊂ {1, 2, 3, . . . , n}, then there is

α0 ∈ Tn0 with n0 = |{1, 2, 3, . . . , n} \ fix(α)| which has the same order with α.

Our main result proved that the order of a hypersubstitution of type (n) corresponds to

the order of transformation α ∈ Tn or infinite.

Main Theorem.

(1) The order of a hypersubstitution in P (n) is 1.

(2) The order of a hypersubstitution in Short(n) is equal to the order of a mapping α for

some α ∈ Tn.

In [1], we determine all order of hypersubstitutions of type (n). This extend the result

[2].
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2.2 The order of hypersubstitutions of type (2, 1)

I is known that the order of hypersubstitutions of type (3) is 1, 2, 3 or infinite and that

the order of hypersubstitutions of type (2, 2) is 1, 2, 3, 4 or infinite. In this paper, we ask

for the order of hypersubstitutions of type (2, 1) and of type (1, 2). The main result is

Main Theorem. The order of hypersubstitutions of type (2, 1) is 1, 2, 3 or infinite.

2.3 Regular weak projection hypersubstitutions

We published one paper on this topic. We begin with the notations used in this paper.

Notation. Let t ∈ W(2,2)(X2). Since t can be represented by a tree, we address each node

in the usual way: the root is labeled by 0, the first node on the left branch starting from the

root is labeled by 00, the first node on the right branch starting from the root is labeled by

01, etc. Then we label the different occurrences of the operation symbols f and g as follow:

for instant, f011111 means the operation symbol position at 011111 is f . We abbreviate

01110 11 . . . 1︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
l

by 01301k0l. For an example see Figure 1:

@
@

@
@

@

�
�

�
��

0
p

x1 x1
x2p



�
�

�p02
03 p021

B
BB

01

@@
x2x2 x1p

Figure 1.

Assume that firstop(t) = f . If g01k exists for some k > 1, we let Rp′g(t) and Rp′′g(t)

denote the parts:

f0f01f012 . . . f01k−1g01kF01k0F01k01 . . . F01k01m . . .

for some m ≥ 1 and

f0f01f012 . . . f01k−1g01kF01k0F01k02 . . . ,

respectively, F ∈ {f, g}. Dually, assume that firstop(t) = g. If f01j exists for some j > 1,

we let Lp′f (t) and Lp′′f (t) denote the parts:

g0g01g012 . . . g01j−1f01jF01j0F01j01 . . . F01j01n . . .

for some n ≥ 1 and

g0g01g012 . . . g01j−1f01jF01j0F01j02 . . . ,

respectively.
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Similarly, assume that firstop(t) = f . If g0k exists for some k > 1, we let Lp′g(t) and

Lp′′g(t) denote the parts:

f0f02f03 . . . f0k−1g0kF0k1F0k10 . . . F0k10q . . .

for some q ≥ 1 and

f0f02f03 . . . f0k−1g0kF0k1F0k11 . . . F0k1q . . .

respectively, F ∈ {f, g}. Assume that firstop(t) = g. If f0j exists for some j > 1, we let

Lp′f (t) and Lp′′f (t) denote the parts:

g0g02g03 . . . g0j−1f0jF0j1F0j10 . . . F0j10r . . .

for some r ≥ 1 and

g0g02g03 . . . g0j−1f0jF0j1F0j11 . . . F0j1r . . .

respectively.

Let FRp′g(t) and GRp′g(t) denote the number of occurrences of f in Rp′g(t) and the

number of occurrences of g in Rp′g(t), respectively. FRp′′g(t), GRp′′g(t), FLp′g(t), GLp′g(t),

FLp′′g(t) and GLp′′g(t) are similarly defined. We define

rightmost′f (t) := rightmost(Rp′f (t)), rightmost′′f (t) := rightmost(Rp′′f (t)),

and leftmost(Lp′f (t)), leftmost(Lp′′f (t)), rightmost(Rp′g(t)), leftmost(Lp′g(t)),

rightmost(Rp′′g(t)), leftmost(Lp′′g(t)) are similarly defined. For an example, consider the

following term

t = f0(g00(x1, x2), f01(x1, g012(f0120(g01202(x2, x1), f01201(x2, x1)), x2)))

given by the tree diagram in Figure 2:
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@
@
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�@@ q
f01201q
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x2 qx2 x1x1
x1 x2 x2

Figure 2.

We have Rp′g(t) := f0f01g012f0120f01201 and Rp′′g(t) := f0f01g012f0120g01202 . Then GRp′′g(t) =

2, FRp′′g(t) = 3, rightmost′g(t) = x1, rightmost′′g(t) = x2 and leftmost′g(t) = x2 = leftmost′′g(t).
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This is one of the main results.

Theorem. Let b ∈ W(2,2)(X2) be such that op(b) > 1 and var(b) = {x1}. Then σx1,b is

regular (in Hyp(2, 2)) if and only if

(i) FLp(b) = 1; or

(ii) FLp(b) > 1 and GLp(b) = 1; or

(iii) If FLp(b) = 0, then GLp(b) = 1 or GRp(b) = 1 or FRp(b) = 1 or FRp′f (b) = 1 or

GRp′′f (b) = 1; or

(iv) If FLp(b) > 1 and GLp(b) = 0, then GRp(b) = 1 or FRp(b) = 1 or FRp′′g(b) = 1; or

(v) If FLp(b) > 1 and GLp(b) > 1, then we have one of the following cases: GRp(b) = 1,

FRp(b) = 1, GLp′g(b) = 1, FLp′f (b) = 1, FLp′′g(b) = 1, GRp′g(b) = 1, FRp′′g(b) = 1,

GLp′′f (b) = 1.
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Regular Weak Projection Hypersubstitutions
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Abstract: It is known that there is a Galois connection between submonoids of the monoid
consisting of all hypersubstitutions and complete sublattices of the lattice of all varieties of the
same type. It is of interest to know which semigroup properties of hypersubstitutions can be
transferred by this Galois connection. In this paper, we characterize regular weak projection
hypersubstitutions of all mappings from the set of operation symbols to the set of terms which
preserve arities type (2,2).

Keywords: Hypersubstitutions, Regular elements, Semigroups
2000 Mathematics Subject Classification: 20M07

1 Preliminaries

In 1991, K. Denecke, D. Lau, R. Pöschel and D. Schweigert [1] defined the concept of a hy-
persubstitution to make precise the concept of a hyperidentity. It is known that there is a
Galois connection between submonoids of the monoid consisting of all hypersubstitutions and
complete sublattices of the lattice of all varieties of the same type. It is of interest to know
which semigroup properties of hypersubstitutions can be transferred by this Galois connection.
Semigroup properties of hypersubstitutions have been widely studied see, for example, [2], [3],
[4] and [5]. Properties of monoids of generalized hypersubstitution, i.e. non-arity preserving
ones are studied in [6] and [7].

Let τ = {(fi, ni) | i ∈ I} be a type. Let X = {x1, x2, x3, . . .} be a countably infinite
alphabet of variables such that the sequence of the operation symbols (fi)i∈I is disjoint with
X, and let Xn = {x1, x2, . . . , xn} be an n-element alphabet where n ∈ N. Here fi is ni-ary for
a natural number ni ≥ 1. An n-ary (n ≥ 1) term of type τ is inductively defined as follows:

(i) every variable xj ∈ Xn is an n-ary term,

(ii) if t1, . . . , tni are n-ary terms and fi is an ni-ary operation symbol then fi(t1, . . . , tni) is
an n-ary term.

Let Wτ (Xn) be the smallest set containing x1, . . . , xn and being closed under finite application
of (ii). The set of all terms of type τ over the alphabet X is defined as Wτ (X) :=

⋃∞
n=1 Wτ (Xn).

Any mapping σ : {fi : i ∈ I} → Wτ (X) is called a hypersubstitution of type τ if σ(fi)
is an ni-ary term of type τ for every i ∈ I. Any hypersubstitution σ of type τ can be uniquely
extended to a map σ̂ on Wτ (X) as follows:

(i) σ̂[t] := t if t ∈ X,

(ii) σ̂[t] := σ(fi)(σ̂[t1], . . . , σ̂[tni
]) if t = fi(t1, . . . , tni

).

A binary operation ◦h is defined on the set Hyp(τ) of all hypersubstitutions of type τ , by

(σ1 ◦h σ2)(fi) := σ̂1[σ2(fi)]

for all ni-ary operation symbols fi. Together with this binary associative operation Hyp(τ)
forms a monoid since the identity hypersubstitution σid which maps every fi to fi(x1, . . . , xni

)

1Research Supported by the Thai Research Fund.



2

is an identity element. Throughout, we will write σ1σ2 instead of σ1 ◦h σ2. For notions con-
cerning semigroup properties we refer the reader to [8]. An element e of a semigroup S is said
to be idempotent if ee = e; and an element a of a semigroup S is called regular if there exists
an x ∈ S such that a = axa. Clearly, every idempotent element is regular. A hypersubstitu-
tion mapping every operation symbol to variables is called a projection hypersubstitution.
Since every projection hypersubstitution is idempotent, we have the following remark.

Remark. Every projection hypersubstitution is regular.

2 Weak Projection Hypersubstitutions

From now on, let f and g be the binary operation symbols of the type τ = (2, 2). For binary
terms a and b of type τ , the hypersubstitution which maps the operation symbol f to the term
a and the operation symbol g to the term b will be denoted by σa,b. A hypersubstitution σa,b

such that a ∈ X2 or b ∈ X2 is called a weak projection hypersubstitution. Therefore, the
concept of a weak projection hypersubstitution generalizes that of a projection hypersubstitu-
tion.

Notation. For t ∈ W(2,2)(X2), the first variable (from the left) which occurs in t, the
last variable which occurs in t, the set of all variables occurring in t, the first operation
symbol occurring in t and the number of occurrence of all operation symbols in t are de-
noted by leftmost(t), rightmost(t), var(t), firstop(t) and op(t), respectively. For an exam-
ple, if t = f(f(x2, x1), g(g(x2, x2), f(x2, x1))), then leftmost(t) = x2, rightmost(t) = x1,
var(t) = {x1, x2}, firstop(t) = f and op(t) = 5.

The following result extends the remark above.

Theorem 2.1. If σa,b ∈ Hyp (2, 2) such that op(a) ≤ 1 and op(b) ≤ 1, then σa,b is regular.

Proof. If a ∈ X2 and b ∈ X2, by the remark above, we have σa,b is regular. Assume that
a ∈ X2 and op(b) = 1. Then b ∈ {f(xi, xj), g(xi, xj)}, i, j ∈ {1, 2}. If b = f(xi, xj), we
let u = g(xi, xj), v = x2. By calculation, we have σa,bσu,vσa,b = σa,b. If b = g(xi, xj), let
u = x1, v = g(xi, xj) and we have σa,bσu,vσa,b = σa,b.

The following results reduce our work.

Theorem 2.2. Let b ∈ W(2,2)(X2).

(1) σx1,b is regular if and only if σx2,b is regular.

(2) σx1,b is regular if and only if σb,x1 is regular.

(3) σx2,b is regular if and only if σb,x2 is regular.

Proof. (1) Assume that σx1,b is regular. Then there exists σu,v ∈ Hyp(2, 2) such that σx1,b =
σx1,bσu,vσx1,b. Then b = σ̂x1,b[σ̂u,v[b]]. Since σx2,b(g) = b = σ̂x1,b[σ̂u,v[b]] = (σx2,b(σx1,g(x1,x2)

σu,v)σx2,b)(g) we have that σx2,b is regular. Conversely, assume that σx2,b is regular. Then
there exists σu′,v′ ∈ Hyp(2, 2) such that σx2,b = σx2,bσu′,v′σx2,b. Thus b = σ̂x2,b[σ̂u′,v′ [b]]. Since
σx1,b(g) = b = σ̂x2,b[σ̂u′,v′ [b]] = (σx1,b(σx2,g(x1,x2)σu′,v′)σx1,b)(g) we have that σx1,b is regular.

(2) Assume that σx1,b is regular. Then there exists σu,v ∈ Hyp(2, 2) such that σx1,b =
σx1,bσu,vσx1,b. Thus b = σ̂x1,b[σ̂u,v[b]]. Since σb,x1(f) = b = σ̂x1,b[σ̂u,v[b]] = (σb,x1(σx1,f(x1,x2)

σu,v)σb,x1)(f) we have that σb,x1 is regular. Conversely, assume that σb,x1 is regular. Then
there exists σu′,v′ ∈ Hyp(2, 2) such that σb,x1 = σb,x1σu′,v′σb,x1 . Thus b = σ̂b,x1 [σ̂u′,v′ [b]]. Since
σx1,b(g) = b = σ̂b,x1 [σ̂u′,v′ [b]] = (σx1,b(σg(x1,x2),x1σu′,v′)σx1,b)(g) we have that σx1,b is regular.
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(3) Assume that σx2,b is regular. Let σu′,v′ ∈ Hyp(2, 2) such that σx2,b = σx2,bσu′,v′σx2,b.
Thus b = σ̂x2,b[σ̂u′,v′ [b]]. Since σb,x2(f) = b = σ̂x2,b[σ̂u′,v′ [b]] = (σb,x2(σx2,f(x1,x2)σu′,v′)σb,x2)(f)
we have that σb,x2 is regular. Conversely, assume that σb,x2 is regular. Then there exists
σu,v ∈ Hyp(2, 2) such that σb,x2 = σb,x2σu,vσb,x2 . Thus b = σ̂b,x2 [σ̂u,v[b]]. Since σx2,b(g) = b =
σ̂b,x2 [σ̂u,v[b]] = (σx2,b(σg(x1,x2),x2σu,v)σx2,b)(g) we have that σx2,b is regular.

As a consequence, σx1,b is regular if and only if σb,x2 is regular, σx2,b is regular if and only
if σb,x1 is regular and σb,x1 is regular if and only if σb,x2 is regular.

Let b ∈ W(2,2)(X2). Then we will write b(xi, xj), i, j ∈ {1, 2} if xi and xj occur in the term
b.

Theorem 2.3. Let b ∈ W(2,2)(X2). Then σx1,b(x1,x1) is regular if and only if σx1,b(x2,x2) is
regular.

Proof. Assume first that σx1,b(x1,x1) is regular. Then there exists σu,v ∈ Hyp(2, 2) such that
σx1,b(x1,x1) = σx1,b(x1,x1)σu,vσx1,b(x1,x1). Since b(x1, x1) = σ̂x1,b(x1,x1)[σ̂u,v[b(x1, x1)]], we get
b(x2, x2) = σ̂x1,b[σ̂u,v[b(x2, x2)]]. Since

σ̂x1,b(x2,x2)[σ̂x1,g(x1,x1)[σ̂u,v[b(x2, x2)]]] = σ̂x1,b[σ̂u,v[b(x2, x2)]]
= σ̂x1,b[σ̂u,v[b]](x2, x2)
= b(x2, x2),

we have that σx1,b(x2,x2) is regular.
Conversely, assume that σx1,b(x2,x2) is regular. Then there exists σu,v ∈ Hyp(2, 2) such

that σx1,b(x2,x2) = σx1,b(x2,x2)σu,vσx1,b(x2,x2). Since b(x2, x2) = σ̂x1,b(x2,x2)[σ̂u,v[b(x2, x2)]],
b(x1, x1) = σ̂x1,b[σ̂u,v[b(x1, x1)]]. Since

σ̂x1,b(x1,x1)[σ̂x1,g(x2,x2)[σ̂u,v[b(x1, x1)]]] = σ̂x1,b[σ̂u,v[b(x1, x1)]]
= σ̂x1,b[σ̂u,v[b]](x1, x1)
= b(x1, x1),

we have that σx1,b(x1,x1) is regular.

Using Theorem 2.1, Theorem 2.2 and Theorem 2.3, there are two cases to consider:

(1) the regularity of σx1,b where b /∈ X2 and var(b) = {x1},

(2) the regularity of σx1,b where b /∈ X2 and var(b) = {x1, x2}.

In the present paper, we consider the regularity of σx1,b where var(b) = {x1}, i.e. the case (1).

Notation. Let t ∈ W(2,2)(X2). Since t can be represented by a tree, we address each node in
the usual way: the root is labeled by 0, the first node on the left branch starting from the root
is labeled by 00, the first node on the right branch starting from the root is labeled by 01, etc.
Then we label the different occurrences of the operation symbols f and g as follow:

for instant, f011111 means the operation symbol position at 011111 is f . We abbreviate
01110 11 . . . 1︸ ︷︷ ︸

k

0 . . . 0︸ ︷︷ ︸
l

by 01301k0l. For an example see Figure 1:
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Figure 1: A tree diagram

Assume that firstop(t) = f . If g01k exists for some k > 1, we let Rp′g(t) and Rp′′g (t) denote
the parts:

f0f01f012 . . . f01k−1g01kF01k0F01k01 . . . F01k01m . . .

for some m ≥ 1 and

f0f01f012 . . . f01k−1g01kF01k0F01k02 . . . ,

respectively, F ∈ {f, g}. Dually, assume that firstop(t) = g. If f01j exists for some j > 1, we
let Lp′f (t) and Lp′′f (t) denote the parts:

g0g01g012 . . . g01j−1f01j F01j0F01j01 . . . F01j01n . . .

for some n ≥ 1 and

g0g01g012 . . . g01j−1f01j F01j0F01j02 . . . ,

respectively.
Similarly, assume that firstop(t) = f . If g0k exists for some k > 1, we let Lp′g(t) and Lp′′g (t)

denote the parts:

f0f02f03 . . . f0k−1g0kF0k1F0k10 . . . F0k10q . . .

for some q ≥ 1 and

f0f02f03 . . . f0k−1g0kF0k1F0k11 . . . F0k1q . . .

respectively, F ∈ {f, g}. Assume that firstop(t) = g. If f0j exists for some j > 1, we let Lp′f (t)
and Lp′′f (t) denote the parts:

g0g02g03 . . . g0j−1f0j F0j1F0j10 . . . F0j10r . . .

for some r ≥ 1 and

g0g02g03 . . . g0j−1f0j F0j1F0j11 . . . F0j1r . . .

respectively.
Let FRp′g(t) and GRp′g(t) denote the number of occurrences of f in Rp′g(t) and the number

of occurrences of g in Rp′g(t), respectively. For an example, consider the following term

t = f0(g00(x1, x2), f01(x1, g012(f0120(g01202(x2, x1), f01201(x2, x1)), x2))),

given by the tree diagram in Figure 2:
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Figure 2: Tree diagram of t

We have Rp′g(t) := f0f01g012f0120f01201, Rp′′g (t) := f0f01g012f0120g01202 and Lp′g(t) :=
f0g00 := Lp′′g (t) . Then GRp′′g (t) = 2, FRp′′g (t) = 3, GLp′g(t) = 1 = GLp′′g (t), rightmost(Rp′g(t)) =
x1, rightmost(Rp′′g (t)) = x2 and lefttmost(Lp′g(t)) = x2 = lefttmost(Lp′′g (t)).

Lemma 2.4. Let b, t ∈ W(2,2)(X2) be such that op(b) > 1 and var(b) = {x1}. Then σ̂x1,b[t] = b
if and only if GLp(t) = 1 and leftmost(t) = x1.

Proof. Assume that σ̂x1,b[t] = b. If GLp(t) = 0, then b = σ̂x1,b[t] ∈ X2, this contradicts
to op(b) > 1. If GLp(t) > 1, then σ̂x1,b[t] = b(b(t1, t2), t3) for some t1, t2, t3 ∈ W(2,2)(X2).
Since var(b) = {x1}, op(σ̂x1,b[t]) = op(b(b(t1, t2), t3)) > op(b), we have a contradiction. Then
GLp(t) = 1. If leftmost(t) = x2, then b = σ̂x1,b[t] = b(x2, x2), a contradiction. Hence
leftmost(t) = x1.

Conversely, assume that GLp(t) = 1 and leftmost(t) = x1. Since var(b) = {x1}, we get
σ̂x1,b[t] = b.

For convenience, if σx1,b is regular, we let σu,v ∈ Hyp(2, 2) such that σx1,b = σx1,bσu,vσx1,b.
Thus σ̂x1,b[σ̂u,v[b]] = b. By Lemma 2.4,

GLp(σ̂u,v[b]) = 1 and leftmost(σ̂u,v[b]) = x1. (2.1)

This notion will be used in the proof of Lemma 2.5 - Lemma 2.9

Lemma 2.5. Let b ∈ W(2,2)(X2) be such that FLp(b) = 0, GLp(b) > 1, GRp(b) > 1, FRp(b) >
1, FRp′f (b) > 1 and GRp′′f (b) > 1. Then σx1,b is not regular.

Proof. Suppose that leftmost(v) = x1. If GLp(v) = 0, by FLp(b) = 0, then b = σ̂x1,b[σ̂u,v[b]] ∈
X2, a contradiction. If GLp(v) ≥ 1, by FLp(b) = 0 and GLp(b) > 1, then GLp(σ̂u,v[b]) > 1.
This contradicts to (2.1). Therefore, leftmost(v) = x2. Suppose that leftmost(u) = x2. Since
FRp(b) > 1 and GRp(b) > 1, we have GLp(σ̂u,v[b]) > 1 or b = σ̂x1,b[σ̂u,v[b]] ∈ X2. In both
cases we get a contradiction. Then leftmost(u) = x1. Now, there are two cases to consider.

Case 1: b = g(t1, f(g(t2, f(t3, t4)), t5)) for some t1, t2, t3, t4, t5 ∈ W(2,2)(X2). Then σ̂u,v(b) =
v(t′1, u(v(t′2, v(t′3, t

′
4)), t

′
5)) for some t′1, t

′
2, t

′
3, t

′
4, t

′
5 ∈ W(2,2)(X2). If GLp(u) = 0 and GLp(v) = 0,

then b = σ̂x1,b[t] ∈ X2, a contradiction. If GLp(u) ≥ 1 or GLp(v) ≥ 1, then GLp(σ̂u,v[b]) > 1,
a contradiction.

Case 2: b = g(s1, f(f((g(s2, s3), s4)), s5)) for some s1, s2, s3, s4, s5 ∈ W(2,2)(X2). Then
σ̂u,v(b) = v(s′1, u(u((v(s′2, s

′
3), s

′
4)), s

′
5)) for some s′1, s

′
2, s

′
3, s

′
4, s′5 ∈ W(2,2)(X2). If GLp(u) =

0 and GLp(v) = 0, then b ∈ X2, a contradiction. If GLp(u) ≥ 1 or GLp(v) ≥ 1, then
GLp(σ̂u,v[b]) > 1, a contradiction.

Lemma 2.6. Let b ∈ W(2,2)(X2) be such that FLp(b) > 1, GLp(b) = 0, FRp(b) > 1, GRp(b) >
1 and FRp′′g (b) > 1. Then σx1,b is not regular.
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Proof. Assume that σx1,b is regular. If GLp(u) = 0, then GLp(σ̂u,v[b]) = 0 because GLp(b) = 0.
Then b = σ̂x1,b[σ̂u,v[b]] ∈ X2, a contradiction. Thus GLp(u) ≥ 1. If leftmost(u) = x1, then
GLp(σ̂u,v[b]) > 1 (since FLp(b) > 1). This contradicts to (2.1). Therefore, leftmost(u) = x2. If
b = f(f(s1, s2), f(s3, s4)) for some s1, s2, s3, s4 ∈ W(2,2)(X2), then σ̂u,v(b) = u(u(s′1, s

′
2), u(s′3, s

′
4))

for some s′1, s
′
2, s

′
3, s

′
4 ∈ W(2,2)(X2). Since GLp(u) ≥ 1, we have GLp(σ̂u,v[b]) > 1, a contra-

diction. If b = f(f(t1, t2), g(f(t3, t4), f(t5, t6))) for some t1, t2, t3, t4, t5, t6 ∈ W(2,2)(X2), then
GLp(σ̂u,v[b]) > 1, a contradiction. There are three cases to consider.

Case 1: b = f(f(t1, t2), g(f(t3, t4), g(t5, t6))) for some t1, t2, t3, t4, t5, t6 ∈ W(2,2)(X2). If
leftmost(v) = x1, then, since GLp(u) ≥ 1, we have GLp(σ̂u,v[b]) > 1. We get a contradiction.
Thus leftmost(v) = x2. Since FRp(b) > 1, leftmost(u) = x2 and leftmost(v) = x1, we have
GLp(σ̂u,v[b]) > 1. We get a contradiction.

Case 2: b = f(f(t1, t2), g(g(t3, t4), f(t5, t6))) for some t1, t2, t3, t4, t5, t6 ∈ W(2,2)(X2). This
can be considered in the same manner as Case 1.

Case 3: b = f(f(t1, t2), g(g(t3, t4), g(t5, t6))) for some t1, t2, t3, t4, t5, t6 ∈ W(2,2)(X2). If
leftmost(v) = x2, since FRp(b) > 1 and GRp(b) > 1, we have GLp(σ̂u,v[b]) > 1. We get
a contradiction. Thus leftmost(v) = x1. Since FRp′′g (b) > 1, we get GLp(σ̂u,v[b]) > 1, a
contradiction.

Lemma 2.7. Let b ∈ W(2,2)(X2) be such that FLp(b) > 1, GLp(b) > 1, FRp(b) > 1, GRp(b) =
0, GLp′g(b) > 1 and FLp′′g (b) > 1 Then σx1,b is not regular.

Proof. Assume that σx1,b is regular. We consider into four cases.
Case 1: GLp(u) = 0 and GLp(v) = 0. Then GLp(σ̂u,v[b]) = 0. Thus b = σ̂x1,b[σ̂u,v[b]] ∈

X2, a contradiction.
Case 2: GLp(u) ≥ 1 and GLp(v) ≥ 1. Then leftmost(u) = x1 and leftmost(v) = x2.

Since GLp′g(b) > 1 and FLp′′g (b) > 1, we have GLp(σ̂u,v[b]) 6= 1. This contradicts to (2.1).
Case 3: GLp(u) = 0 and GLp(v) ≥ 1. Since FRp(b) > 1 and GRp(b) = 0, we have

leftmost(u) = x1. Since GLp(b) > 1, we get leftmost(v) = x2. Since GLp′g(b) > 1 we have
GLp(σ̂u,v[b]) 6= 1. This contradicts to (2.1).

Case 4: GLp(u) ≥ 1 and GLp(v) = 0. Then leftmost(u) = x1. This gives leftmost(u) =
x2. Since FLp′′g (b) > 1 and GLp(u) ≥ 1, we have GLp(σ̂u,v[b]) 6= 1. This contradicts (2.1).

Lemma 2.8. Let b ∈ W(2,2)(X2) be such that firstop(b) = f , FLp(b) > 1, GLp(b) > 1,
GRp(b) > 1, FRp(b) > 1, GRp′g(b) > 1, GLp′g(b) > 1, FRp′′g (b) > 1 and FLp′′g (b) > 1. Then
σx1,b is not regular.

Proof. Assume that σx1,b is regular. We consider into four cases.
Case 1: GLp(u) = 0 and GLp(v) = 0. Then b = σ̂x1,b[σ̂u,v[b]] ∈ X2, a contradiction.
Case 2: GLp(u) ≥ 1 and GLp(v) ≥ 1. Then GLp(σ̂u,v[b]) 6= 1, this contradicts to (2.1).
Case 3: GLp(u) = 0 and GLp(v) ≥ 1. If leftmost(u) = x1 and leftmost(v) = x1,

then GLp(σ̂u,v[b]) > 1, a contradiction. Similarly, if leftmost(u) = x1 and leftmost(v) =
x2, then GLp(σ̂u,v[b]) > 1, a contradiction. If leftmost(u) = x2 and leftmost(v) = x2,
then GLp(σ̂u,v[b]) > 1, a contradiction. If leftmost(u) = x2 and leftmost(v) = x1, then
GLp(σ̂u,v[b]) > 1, a contradiction.

Case 4: GLp(u) ≥ 1 and GLp(v) = 0. If leftmost(u) = x1 and leftmost(v) = x1,
then GLp(σ̂u,v[b]) > 1, a contradiction. Similarly, if leftmost(u) = x1 and leftmost(v) = x2,
then GLp(σ̂u,v[b]) > 1, a contradiction. If leftmost(u) = x2 and leftmost(v) = x1, then
GLp(σ̂u,v[b]) > 1, a contradiction because FRp(b) > 1 and FRp′′g (b) > 1. If leftmost(u) = x2

and leftmost(v) = x2, then GLp(σ̂u,v[b]) > 1, a contradiction.

Lemma 2.9. Let b ∈ W(2,2)(X2) be such that FLp(b) > 1, GLp(b) > 1, GRp(b) > 1,
firstop(b) = g, FLp′f (b) > 1 and GLp′′f (b) > 1. Then σx1,b is not regular.
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Proof. Assume that σx1,b is regular. There are four cases to consider.
Case 1: GLp(u) = 0 and GLp(v) = 0. Then b = σ̂x1,b[σ̂u,v[b]] ∈ X2, a contradiction.
Case 2: GLp(u) ≥ 1 and GLp(v) ≥ 1. Then GLp(σ̂u,v[b]) 6= 1, this contradicts to (2.1).
Case 3: GLp(u) = 0 and GLp(v) ≥ 1. Since GRp(b) > 1, we get leftmost(v) = x1. This

gives leftmost(u) = x2. Since GLp(v) > 1 and GLp′′f (b) > 1, we have GLp(σ̂u,v[b]) > 1, a
contradiction.

Case 4: GLp(u) ≥ 1 and GLp(v) = 0. Then leftmost(v) = x1. Since GLp(u) ≥ 1, we
get leftmost(u) = x2. Since GLp(u) ≥ 1 and FLp′f (b) > 1, we have GLp(σ̂u,v[b]) > 1, a
contradiction.

Now, we prove the following main result.

Theorem 2.10. Let b ∈ W(2,2)(X2) be such that op(b) > 1 and var(b) = {x1}. Then σx1,b is
regular (in Hyp(2, 2)) if and only if

(i) FLp(b) = 1; or

(ii) FLp(b) > 1 and GLp(b) = 1; or

(iii) if FLp(b) = 0, then GLp(b) = 1 or GRp(b) = 1 or FRp(b) = 1 or FRp′f (b) = 1 or
GRp′′f (b) = 1; or

(iv) if FLp(b) > 1 and GLp(b) = 0, then GRp(b) = 1 or FRp(b) = 1 or FRp′′g (b) = 1; or

(v) if FLp(b) > 1 and GLp(b) > 1, then we have one of the following cases: GRp(b) = 1,
FRp(b) = 1, GLp′g(b) = 1, FLp′f (b) = 1, FLp′′g (b) = 1, GRp′g(b) = 1, FRp′′g (b) = 1,
GLp′′f (b) = 1.

Proof. Assume that σx1,b is regular. Then there exists σu,v ∈ Hyp(2, 2) such that σx1,bσu,vσx1,b =
σx1,b. Since σ̂x1,b[σ̂u,v[b]] = b, by Lemma 2.4, equation (2.1) holds.

Assume further that FLp(b) 6= 1 and FLp(b) ≯ 1 or GLp(b) 6= 1. That is, FLp(b) 6= 1 and
FLp(b) ≯ 1 or FLp(b) 6= 1 and GLp(b) 6= 1. Thus, we have FLp(b) = 0 or FLp(b) > 1 and
GLp(b) = 0 or FLp(b) > 1 and GLp(b) > 1.

We will show that (iii) holds. We suppose that it is not true. Then FLp(b) = 0, GLp(b) 6= 1,
GRp(b) 6= 1, FRp(b) 6= 1, FRp′f (b) 6= 1 and GRp′′f (b) 6= 1. Since GLp(b) 6= 1, we have
GLp(b) = 0 or GLp(b) > 1. Since FLp(b) = 0, we get GLp(b) > 1. Since GRp(b) 6= 1, we
obtain GRp(b) = 0 or GRp(b) > 1. Since FLp(b) = 0, we have GRp(b) > 1. Since FRp(b) 6= 1,
we get FRp(b) = 0 or FRp(b) > 1. If FRp(b) = 0, then GLp(σ̂u,v[b]) 6= 1, this contradicts to
(2.1). Then FRp(b) > 1. Since FRp′f (b) 6= 1, we get FRp′f (b) > 1. Since GRp′′f (b) 6= 1, we
have GRp′′f (b) > 1. By Lemma 2.5, we get a contradiction.

Next, we suppose that (iv) is not true. Then FLp(b) > 1, GLp(b) = 0, GRp(b) 6= 1,
FRp(b) 6= 1 and FRp′′g (b) 6= 1. Since FRp(b) 6= 1, we have FRp(b) = 0 or FRp(b) > 1. Since
GLp(b) = 0, we get FRp(b) > 1. Since GRp(b) 6= 1, we obtain GRp(b) = 0 or GRp(b) > 1.
If GLp(b) = 0, then b ∈ X2 or GLp(σ̂u,v[b]) > 1. We get a contradiction. Thus GRp(b) > 1.
Since FRp′′g (b) 6= 1, we get FRp′′g (b) > 1. By Lemma 2.6, σx1,b is not regular, a contradiction.

Now we show that (v) holds. We suppose that it is not true. Then FLp(b) > 1, GLp(b) > 1,
GRp(b) 6= 1, FRp(b) 6= 1, GLp′g(b) 6= 1, FLp′f (b) 6= 1, FLp′′g (b) 6= 1, GRp′g(b) 6= 1, FRp′′g (b) 6= 1
and GLp′′f (b) 6= 1. Since GRp(b) 6= 1, we have GRp(b) = 0 or GRp(b) > 1. Now, there are two
cases to consider.

Case 1: GRp(b) = 0. Since FRp(b) 6= 1, we have FRp(b) > 1. Since GLp′g(b) 6= 1, we
obtain GLp′g(b) > 1. Since FLp′′g (b) 6= 1, we get FLp′′g (b) > 1. By Lemma 2.7, a contradiction.

Case 2: GRp(b) > 1. We consider into two cases: firstop(b) = f or firstop(b) = g.
Case 2.1: firstop(b) = f . Since FRp(b) 6= 1, we have FRp(b) > 1. Since GRp′g(b) 6= 1,

we get GRp′g(b) > 1. Since FRp′′g (b) 6= 1, we obtain FRp′′g (b) > 1. Since GLp′g(b) 6= 1, we get
GLp′g(b) > 1. Since FLp′′g (b) 6= 1, we have FLp′′g (b) > 1. By Lemma 2.8, a contradiction.
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Case 2.2: firstop(b) = g. Since FLp′f (b) 6= 1, we get FLp′f (b) > 1. Since GLp′′f (b) 6= 1,
we obtain GLp′′f (b) > 1. By Lemma 2.9, a contradiction.

Conversely, assume that one of the conditions (i), (ii), (iii), (iv), (v) holds. The table shows
that there exist u, v ∈ W(2,2)(X2) such that σx1,b σu,v σx1,b = σx1,b.

No. Cases u v
1 FLp(b) = 1 g(x1, x1) x1

2 FLp(b) = 0, GLp(b) = 1 x1 g(x1, x1)
3 FLp(b) = 0, GRp(b) = 1 x1 g(x2, x2)
4 FLp(b) = 0, FRp(b) = 1 g(x2, x2) x2

5 FLp(b) = 0, FRp′f (b) = 1 g(x1, x1) x2

6 FLp(b) = 0, GRp′′f (b) = 1 g(x2, x2) x1

7 FLp(b) > 1, GLp(b) = 1 x1 g(x1, x1)
8 FLp(b) > 1, GLp(b) = 0, GRp(b) = 1 x2 g(x1, x1)
9 FLp(b) > 1, GLp(b) = 0, FRp(b) = 1 g(x2, x2) x2

10 FLp(b) > 1, GLp(b) = 0, GRp′g(b) = 1 x2 g(x1, x1)
11 FLp(b) > 1, GLp(b) > 1, GRp(b) = 1 x2 g(x2, x2)
12 FLp(b) > 1, GLp(b) > 1, FRp(b) = 1 g(x2, x2) x2

13 FLp(b) > 1, GLp(b) > 1, GLp′g(b) = 1 x1 g(x2, x2)
14 FLp(b) > 1, GLp(b) > 1, FLp′′g (b) = 1 g(x1, x1) x2

15 FLp(b) > 1, GLp(b) > 1, FLp′f (b) = 1 g(x2, x2) x1

16 FLp(b) > 1, GLp(b) > 1, GRp′g(b) = 1 x2 g(x1, x1)
17 FLp(b) > 1, GLp(b) > 1, FRp′′g (b) = 1 g(x2, x2) x1

18 FLp(b) > 1, GLp(b) > 1, GLp′′f (b) = 1 x2 g(x1, x1)

Example. A hypersubstitution σx1,b is regular if b is the term shown in Figure 3:
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Figure 3: A term b for which σa,b is regular
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A hypersubstitution σb,x2 is not regular if b is the term shown in Figure 4:
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Figure 4: A term b for which σa,b is not regular
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A hypersubstitution is a mapping which maps operation symbols to terms of the corre-
sponding arities. It is known that the set of all hypersubstitutions of a given type forms
a semigroup. In this paper, we determine the order of hypersubstitutions of type (2, 1).
We show that the order of hypersubstitutions of type (2, 1) is 1, 2, 3 or infinite.

Keywords: Hypersubstitutions; order; semigroups.

1. Introduction

Semigroups properties of hypersubstitutions of a given type have been studied [1],
[2], [3], [6], [9] and [10]. The order of a hypersubstitution σ is defined in the usual
way, that is, the order of the cyclic subsemigroup 〈σ〉 = {σn | n ∈ N} generated by
σ. If 〈σ〉 is finite, we say that the order of σ is finite, otherwise the order of σ is
infinite. The following are known results concerning the order of hypersubstitutions.
Klaus Denecke and Shally Wishmath [6] showed that the order of hypersubstitu-
tions of type (2) is 1, 2 or infinite. Thawhat Changphas and Klaus Denecke [1]
showed that the order of hypersubstitutions of type (3) is 1, 2, 3 or infinite. The
same authors [3] showed that the order of hypersubstitutions of type (2, 2) is 1, 2, 3,
4 or infinite. In [9], the authors studied the order of generalized hypersubstitutions,
they showed that the order of generalized hypersubstitutions of type (3) is 1, 2, 3
or infinite. In this paper, we ask for the order of hypersubstitutions of type (2, 1)

∗Supported by the Thailand Research Foundation.
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and of type (1, 2). The main result is

Main Theorem. The order of hypersubstitutions of type (2, 1) is 1, 2, 3 or infinite.

2. Preliminaries

Let τ = {(fi, ni) : i ∈ I} be a type and X = {x1, x2, x3, . . .} a countably infinite
alphabet of variables such that the sequence of the operation symbols (fi)i∈I is
disjoint with X. Let Xn = {x1, x2, x3, . . . , xn} be an n-element alphabet. Here fi is
ni-ary for a natural number ni ≥ 1. An n-ary (n ≥ 1) term of type τ is inductively
defined as follows:

(i) Every variable xi in Xn is an n-ary term.
(ii) If t1, t2, . . . , tni are n-ary terms and fi is an ni-ary operation symbol, then

fi(t1, t2, . . . , tni) is an n-ary term.

Let Wτ (Xn) denote the set containing x1, x2, x3, . . . , xn and being closed under
finite application of (ii). The set of all terms of type τ over the alphabet X is
defined by Wτ (X) =

⋃∞
n=1 Wτ (Xn). For t ∈ W(2,1)(X2), we introduce the following

notations:

leftmost(t) − the first variable (from the left) occurring in t

rightmost(t) − the last variable occurring in t

var(t) − the set of all variable occurring in t

op(t) − the total number of all operation symbols occurring in t

ops(t) − the set of all operation symbols occurring in t

firstops(t) − the first operation symbols (from the left) occurring in t.

For t ∈ W(2,1)(X2), let Lp(t) denote the left path from the root to the leaf which
is labelled by the leftmost variable in t and Rp(t) denote the right path from the
root to the leaf which is labelled by the rightmost variable in t. The operation
symbols occurring in Lp(t) and Rp(t) will be denoted by ops(Lp(t)) and ops(Rp(t)),
respectively. If t ∈ W(2,1)(X2) such that var(t) = {x1} or var(t) = {x2}, we define
t1 = t and

tn = tn−1(t, t) if n ≥ 1.

A mapping σ : {fi : i ∈ I} → Wτ (X) is called a hypersubstitution of type τ if
σ(fi) is an ni-ary term of type τ for every i ∈ I. A hypersubstitution σ of type τ

can be uniquely extended to a map σ̂ : Wτ (X) → Wτ (X) on Wτ (X) as follows:

(i) σ̂[t] = t if t ∈ X.
(ii) σ̂[t] = σ(fi)(σ̂[t1], σ̂[t2], . . . , σ̂[tni ]) if t = fi(t1, t2, . . . , tni).

For σ1, σ2 ∈ Hyp(τ), define σ1σ2 by

(σ1σ2)(fi) = σ̂1[σ2(fi)]
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for all ni-ary operation symbols fi. Together with this binary associative operation,
Hyp(τ) forms a monoid with the hypersubstitution σid which maps every fi to
fi(x1, . . . , xni

) is an identity element.
Throughout, let f and g be the operation symbols of the type (2, 1). For terms

a and b of type (2, 1), the hypersubstitution which maps the operation symbol f to
the term a and the operation symbol g to the term b will be denoted by σa,b, that
is σa,b(f) = a and σa,b(g) = b.

For the hypersubstitution σa,b of type (2, 1), we shall consider six cases:

(i) op(a) ≤ 1 and op(b) ≤ 1.
(ii) op(a) > 1 and op(b) > 1.
(iii) op(a) > 1 and op(b) = 1.
(iv) op(a) = 1 and op(b) > 1.
(v) op(a) > 1 and op(b) = 0.
(vi) op(a) = 0 and op(b) > 1.

If op(a) ≤ 1 and op(b) ≤ 1, there are twenty four cases to consider. The order
in each of these cases can be listed in the table shown below. The results can be
obtained by simple calculation.

a\b x1 g(x1) f(x1, x1)
x1 1 1 2
x2 1 1 2

f(x1, x1) 1 1 1
f(x1, x2) 1 1 1
f(x2, x1) 2 2 2
f(x2, x2) 1 1 1

g(x1) 1 1 2
g(x2) 1 1 3

3. Case op(a) > 1 and op(b) > 1

We consider three cases:

(i) var(a) = {x1, x2} and var(b) = {x1}.
(ii) var(a) = {x1} and var(b) = {x1}.
(iii) var(a) = {x2} and var(b) = {x1}.

Theorem 1. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) >

1, var(a) = {x1, x2} and var(b) = {x1}. Then the order of σa,b is infinite.

Proof. It was shown [8] that if σ ∈ Hyp(τ) is regular (i.e. var(σ(fi)) = Xni for
all i ∈ I), then op(σ̂[t]) > op(t) for all t ∈ Wτ (X) \ X. Since σa,b is regular,
op(σn

a,b(f)) < op(σn+1
a,b (f)) for all n ∈ N. Then the order of σa,b is infinite.
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Lemma 2. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1) be such that op(a) ≥ 1 and
op(b) ≥ 1. Then σ̂n

a,b[t] is not a variable for all n ∈ N and for all t ∈ W(2,1)(X2)\X2.

Proof. This can be argued by induction.

Lemma 3. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1). If t ∈ W(2,1)(X2) such that
var(t) = {xi} for some i ∈ {1, 2}, then var(σ̂n

a,b[t]) = {xi} for all n ∈ N.

Proof. Clearly.

Assume var(a) = {x1} and var(b) = {x1}. Let a = F (a1, a2) where F ∈
{f, g}, a1, a2 ∈ W(2,1)(X2). If F = g, let a = g(a1). Let b = G(b1, b2) where
G ∈ {f, g}, b1, b2 ∈ W(2,1)(X1). If G = g, let b = g(b1). We consider the follow-
ing cases and their subcases:

(1) F = f and G = f .

(1.1) a1 /∈ X2.
(1.2) a1 = x1 and b1 = x1.
(1.3) a1 = x1, b1 /∈ X1 and g /∈ ops(Lp(b)).
(1.4) a1 = x1, b1 /∈ X1 and g ∈ ops(Lp(b)).

(2) F = g and G = g.
(3) F = f and G = g.
(4) F = g and G = f .

(4.1) b1 /∈ X1.
(4.2) b1 = x1 and f /∈ ops(Lp(a)).
(4.3) b1 = x1 and f ∈ ops(Lp(a)).

Using above notations, we have

Theorem 4. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) >

1 and var(a) = var(b) = {x1}.

(i) If a and b satisfy (1.1), (1.4), (2), (3), (4.1) or (4.3), then σa,b has infinite order.
(ii) If a and b satisfy (1.2), (1.3) or (4.2), then the order of σa,b is less than or equal

to 3.

Proof. (i) If a and b satisfy (1.1), then a1 /∈ X2. By Lemma 2, σ̂n
a,b[a1] /∈ X2 for all

n ∈ N. Since var(a) = {x1}, by Lemma 3, we have var(σ̂n
a,b[a]) = {x1} for all n ∈ N.

Then op(σ2
a,b(f)) = op(σ̂a,b[a]) = op(a(σ̂a,b[a1], σ̂a,b[a2])) > op(a) = op(σa,b(f)). Let
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k ≥ 2. Therefore,

op(σk+1
a,b (f)) = op(σ̂k−1

a,b [a(σ̂a,b[a1], σ̂a,b[a2])])

= op(σ̂k−1
a,b [a](σ̂k

a,b[a1], σ̂k
a,b[a2]))

> op(σ̂k−1
a,b [a])

= op(σk
a,b(f))

Then the order of σa,b is infinite.
Assume a and b satisfy (1.4). Since g ∈ ops(Lp(b)), σ̂a,b[b] = al(b(t1, t2), t3)

where t1, t2, t3 ∈ W(2,1)(X1), l ∈ N. Since var(a) = {x1}, op(σ2
a,b(g)) = op(σ̂a,b[b]) =

op(al(b(t1, t2), t3)) > op(b) = op(σa,b(g)). Let k ≥ 2. By Lemma 2 and Lemma 3,
σ̂k−1

a,b [al] /∈ X1 and var(σ̂k−1
a,b [al]) = {x1}. Therefore,

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [σ̂a,b[b]])

= op(σ̂k−1
a,b [al(b(t1, t2), t3)])

= op(σ̂k−1
a,b [al](σ̂k−1

a,b [b](σ̂k−1
a,b [t1], σ̂k−1

a,b [t2]), σ̂k−1
a,b [t3])])

> op(σ̂k−1
a,b [b])

= op(σk
a,b(g))

Thus the order of σa,b is infinite.
Similarly, if a and b satisfy (4.1) or (4.3), then the order of σa,b is infinite.
Assume a and b satisfy (2), then b1 /∈ X2. By Lemma 2, σ̂n

a,b[b1] /∈ X2 for all
n ∈ N. Since var(a) = {x1}, by Lemma 3, we have var(σ̂n

a,b[b]) = {x1} for all n ∈ N.
Then op(σ2

a,b(g)) = op(σ̂a,b[b]) = op(b(σ̂a,b[b1])) > op(b) = op(σa,b(g)). Let k ≥ 2.
Therefore,

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [b(σ̂a,b[b1])])

= op(σ̂k−1
a,b [b](σ̂k

a,b[b1]))

> op(σ̂k−1
a,b [b])

= op(σk
a,b(g))

Then the order of σa,b is infinite.
Similarly, if a and b satisfy (3), then the order of σa,b is infinite.
(ii) Assume a and b satisfy (1.2). It is easy to see that σ2

a,b(f) = σ3
a,b(f) and

σ2
a,b(g) = σ3

a,b(g), so the order of σa,b is less than or equal to 2. If a and b satisfy
(1.3), then σ3

a,b = σ4
a,b. Then the order of σa,b is less than or equal to 3. If a and b

satisfy (4.2), then σ3
a,b = σa,b. It follows that the order of σa,b is less than or equals

to 3.

Assume var(a) = {x2} and var(b) = {x1}. Let a = F (a1, a2) where F ∈
{f, g}, a1, a2 ∈ W(2,1)(X2). If F = g, let a = g(a1). Let b = G(b1, b2) where
G ∈ {f, g}, b1, b2 ∈ W(2,1)(X1). If G = g, let b = g(b1). We consider the follow-
ing cases and their subcases:
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(1) F = f and G = f .

(1.1) a2 /∈ X2.
(1.2) a2 = x2 and b2 = x1.
(1.3) a2 = x2, b2 /∈ X1 and g /∈ ops(Rp(b)).
(1.4) a2 = x2, b2 /∈ X1 and g ∈ ops(Rp(b)).

(2) F = g and G = g.
(3) F = f and G = g.
(4) F = g and G = f .

Using above notations, we have

Theorem 5. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) >

1, var(a) = {x2} and var(b) = {x1}.
(i) If a and b satisfy (1.1), (1.4), (2), (3) or (4), then the order of σa,b is infinite.
(ii) If a and b satisfy (1.2) or (1.3), then the order of σa,b is less than or equal to

2.

Proof. (i) Assume a and b satisfy (1.1), then a2 /∈ X2. By Lemma 2, σ̂n
a,b[a2] /∈ X2

for all n ∈ N. Since var(a) = {x2}, by Lemma 3, we have var(σ̂n
a,b[a]) = {x2}

for all n ∈ N. Then op(σ2
a,b(f)) = op(σ̂a,b[a]) = op(a(σ̂a,b[a1], σ̂a,b[a2])) > op(a) =

op(σa,b(f)). Let k ≥ 2. We obtain

op(σk+1
a,b (f)) = op(σ̂k−1

a,b [a(σ̂a,b[a1], σ̂a,b[a2])])

= op(σ̂k−1
a,b [a](σ̂k

a,b[a1], σ̂k
a,b[a2]))

> op(σ̂k−1
a,b [a])

= op(σk
a,b(f))

It follows that the order of σa,b is infinite.
Assume a and b satisfy (1.4). Since g ∈ ops(Rp(b)) and var(a) = {x2}, we have

σ̂a,b[b] = al(t1, b(t2, t3)) where t1, t2, t3 ∈ W(2,1)(X1), l ∈ N. Since var(a) = {x2},
op(σ2

a,b(g)) = op(σ̂a,b[b])
= op(al(t1, b(t2, t3))) > op(b) = op(σa,b(g)). Let k ≥ 2. By Lemma 2 and Lemma 3,
we have σ̂k−1

a,b [al] /∈ X1 and var(σ̂k−1
a,b [al]) = {x2}. We obtain

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [σ̂a,b[b]])

= op(σ̂k−1
a,b [al(t1, b(t2, t3))])

= op(σ̂k−1
a,b [al](σ̂k−1

a,b [t1], σ̂k−1
a,b [b](σ̂k−1

a,b [t2], σ̂k−1
a,b [t3])))

> op(σ̂k−1
a,b [b])

= op(σk
a,b(g))

Then the order of σa,b is infinite.
Assume a and b satisfy (3), then b1 /∈ X2. By Lemma 2, σ̂n

a,b[b1] /∈ X2 for all
n ∈ N. Since var(b) = {x1}, by Lemma 3, we have var(σ̂n

a,b[b]) = {x1} for all n ∈ N.
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Then op(σ2
a,b(g)) = op(σ̂a,b[b]) = op(b(σ̂a,b[b1])) > op(b) = op(σa,b(g)). Let k ≥ 2.

We obtain

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [b(σ̂a,b[b1])])

= op(σ̂k−1
a,b [b](σ̂k

a,b[b1]))

> op(σ̂k−1
a,b [b])

= op(σk
a,b(g))

Therefore, the order of σa,b is infinite.
Similar arguments work if a and b satisfy (2) or (4).
(ii) This is easy to see.

4. Case op(a) = 1 and op(b) > 1

We shall consider three cases. Assume var(a) = {x1, x2} and var(b) = {x1}. Let
b = G(b1, b2) where G ∈ {f, g}, b1, b2 ∈ W(2,1)(X1). If G = g, let b = g(b1). We
consider the following cases:

(1) a = f(x1, x2) and G = f .
(2) a = f(x1, x2) and G = g.
(3) a = f(x2, x1) and G = f .
(4) a = f(x2, x1) and G = g.

Using above notations, we have

Theorem 6. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1) be such that op(a) = 1, op(b) >

1, var(a) = {x1, x2} and var(b) = {x1}.
(i) If a and b satisfy (1), then the order of σa,b is 1 or infinite.
(ii) If a and b satisfy (3), then the order of σa,b is less than or equal to 2 or infinite.
(iii) If a and b satisfy (2) or (4), then the order of σa,b is infinite.

Proof. (i) Assume a and b satisfy (1). Then σ̂a,b[a] = a. If ops(b) = {f}, by
var(b) = {x1}, we have σ̂a,b[b] = b . Then the order of σa,b is 1. Assume g ∈
ops(b). Note that op(σ̂a,b[t]) ≥ op(t) for any t ∈ W(2,1)(X1). We claim that for
t ∈ W(2,1)(X1) if firstop(t) = f and g ∈ op(t), then op(σ̂a,b[t]) > op(t). We proceed
by induction on op(t), that is, on the total number of all operation symbols occurring
in t. If op(t) = 2, then t = f(g(x1), x1) or t = f(x1, g(x1)). Each of the cases we
have op(σ̂a,b[t]) > op(t). Assume the claim holds for any t with 2 ≤ op(t) ≤ k. Let
t ∈ W(2,1)(X1) be such that firstop(t) = f, g ∈ op(t) and op(t) = k + 1. Then
t = f(t1, t2) for some t1, t2 ∈ W(2,1)(X1). Therefore,

op(σ̂a,b[t]) = op(σa,b(f)(σ̂a,b[t1], σ̂a,b[t2])) = 1 + op(σ̂a,b[t1]) + op(σ̂a,b[t2])

> 1 + op(t1) + op(t2)

= op(t)
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So we have the claim. Using the claim, the order of σa,b is infinite.
(ii) Assume ops(b) = {f}. Since σ3

a,b(f) = σa,b(f) and σ2
a,b(g) = σa,b(g), the

order of σa,b is less than or equal to 2. If g ∈ ops(b), in the same manner as (i), the
order of σa,b is infinite.

(iii) Assume a and b satisfy (2). Since op(b) > 1, b = g(G(b1, b2))
for some b1, b2 ∈ W(2,1)(X1). Then op(σ2

a,b(g)) = op(σ̂a,b[g(G(b1, b2))]) =
op(b(σa,b(G)(σ̂a,b[b1], σ̂a,b[b2]))) > op(b) = op(σa,b(g)). Let k ≥ 2. Therefore,

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [b(σa,b(G)(σ̂a,b[b1], σ̂a,b[b2]))])

= op(σ̂k−1
a,b [b](σk

a,b(G)(σ̂k
a,b[b1], σ̂k

a,b[b2])))

> op(σ̂k−1
a,b [b])

= op(σk
a,b(g))

Then the order of σa,b is infinite. Similar arguments work for (4).

Assume var(a) = {x1} and var(b) = {x1}. Let b = G(b1, b2) where G ∈
{f, g}, b1, b2 ∈ W(2,1)(X1). If G = g, let b = g(b1). We consider the following cases
and thire subcases:

(1) a = f(x1, x1) and G = f .

(1.1) b1 = x1.
(1.2) b1 /∈ X1 and g ∈ ops(Lp(b)).
(1.3) b1 /∈ X1 and g /∈ ops(Lp(b)).

(2) a = g(x1) and G = g.
(3) a = f(x1, x1) and G = g.
(4) a = g(x1) and G = f .

(4.1) b1 = x1.
(4.2) b1 6= x1.

Using above notations, we have

Theorem 7. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1) be such that op(a) = 1, op(b) >

1 and var(a) = var(b) = {x1}.

(i) If a and b satisfy (1.1), (1.3) or (4.1), then the order of σa,b is less than or equal
to 2.

(ii) If a and b satisfy (1.2), (2), (3) or (4.2), then the order of σa,b is infinite.

Proof. (i) This is easy to see.
(ii) Assume a and b satisfy (1.2). Then σ̂a,b[b] = f(x1, x1)(b(t1), t2) for some

t1, t2 ∈ W(2,1)(X1). Since var(a) = {x1}, op(σ2
a,b(g)) = op(f(x1, x1)(b(t1), t2)) >
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op(b) = op(σa,b(g)). Let n ≥ 2. Therefore,

op(σ̂n+1
a,b [b]) = op(σ̂n

a,b[f(x1, x1)(b(t1), t2)])

= op(f(x1, x1)(σ̂n
a,b[b](σ̂

n
a,b[t1]), σ̂

n
a,b[t2]))

> op(σ̂n
a,b[b])

Then the order of σa,b is infinite.
Assume a and b satisfy (2). Then b = g(G(t1, t2)) for some t1, t2 ∈ W(2,1)(X1).

We have op(σ2
a,b(g)) = op(σ̂a,b[g(G(t1, t2))]) = op(b(σa,b(G)(σ̂a,b[t1], σ̂a,b[t2])) >

op(b) = op(σa,b(g)). Let k ≥ 2. We obtain

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [b(σa,b(G)(σ̂a,b[t1], σ̂a,b[t2])])

= op(σ̂k−1
a,b [b](σk

a,b(G)(σ̂k
a,b[t1], σ̂

k
a,b[t2])))

> op(σ̂k−1
a,b [b])

= op(σk
a,b(g))

Then the order of σa,b is infinite.
Similarly, if a and b satisfy (3), then the order of σa,b is infinite.
Assume a and b satisfy (4.2). Then a = g(x1) and b1 /∈ X1. If g ∈ ops(b1), in the

same manner as Theorem 6 (i), the order of σa,b is infinite. Assume g /∈ ops(b1). Since
b /∈ X1, ops(b1) = {f}. Since firstops(a) = g and ops(b1) = {f}, σ̂a,b[b] = σ̂2

a,b[a].
Then op(σ2

a,b(g)) = op(σ̂a,b[b]) = op(σ̂2
a,b[a]) > op(σ̂a,b[a]) = op(b) = op(σa,b(g)).

Let k ≥ 2. We have

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [σ̂2
a,b[a]]) > op(σ̂k−1

a,b [σ̂a,b[a]]) = op(σ̂k−1
a,b [b]) = op(σk

a,b(g))

Therefore, the order of σa,b is infinite.

Assume var(a) = {x2} and var(b) = {x1}. Let b = G(b1, b2) where G ∈
{f, g}, b1, b2 ∈ W(2,1)(X1). If G = g, let b = g(b1). We consider:

(1) a = f(x2, x2) and G = f .

(1.1) b2 = x1.
(1.2) b2 /∈ X1.

(2) a = g(x2) and G = g.
(3) a = f(x2, x2) and G = g.
(4) a = g(x2) and G = f .

(4.1) b2 = x1.
(4.2) b2 /∈ X1.

Using above notations, we have the following.

Theorem 8. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1) be such that op(a) = 1, op(b) >

1, var(a) = {x2} and var(b) = {x1}.
(i) If a and b satisfy (1.1) or (4.1), then the order of σa,b is 2.
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(ii) If a and b satisfy (1.2), (2), (3) or (4.2), then the order of σa,b is infinite.

Proof. (i) If a and b satisfy (1.1), then σ̂a,b[a] = a and σ̂2
a,b[b] = σ̂a,b[b]. If a and b

satisfy (4.1), then σ̂2
a,b[a] = a and σ̂2

a,b[b] = b. Consequently, the order of σa,b is 2.
(ii) Assume a and b satisfy (1.2). Then b2 = G(t1, t2) for some t1, t2 ∈

W(2,1)(X1). Since firstops(b) = f and a = f(x2, x2),

op(σ2
a,b(f)) = op(σ̂a,b[f(b1, G(t1, t2))]) = op(a(σ̂a,b[b1], σa,b(G)(σ̂a,b[t1], σ̂a,b[t2])))

> op(a)

= op(σa,b(f)).

Let k ≥ 2. Therefore,

op(σk+1
a,b (f)) = op(σ̂k−1

a,b [σ̂a,b[f(b1, G(t1, t2))]])

= op(σ̂k−1
a,b [a(σ̂a,b[b1], σa,b(G)(σ̂a,b[t1], σ̂a,b[t2]))])

> op(σ̂k−1
a,b [a])

= op(σk
a,b(f)).

Thus the order of σa,b is infinite.
If a and b satisfy (2) or (3), in the same manner as Theorem 7 (ii), the order

of σa,b is infinite. Assume a and b satisfy (4.2). Since a = g(x2), op(σ2
a,b(f)) =

op(σ̂a,b[g(x2)]) = op(b(x2)) = op(f(b1, G(t1, t2))(x2)) > op(g(x2)) = op(a) =
op(σa,b(f)). Let k ≥ 2. We obtain

op(σk+1
a,b (f)) = op(σ̂k−1

a,b [σ̂a,b[a]])

= op(σ̂k−1
a,b [σ̂a,b[g(x2)]])

> op(σ̂k−1
a,b [g(x2)])

= op(σ̂k−1
a,b [a])

= op(σk
a,b(f))

Thus the order of σa,b is infinite.

Now, we consider the case op(a) > 1 and op(b) = 1. The results can be considered
similarly as the case op(a) = 1 and op(b) > 1. We consider three cases:

(1) var(a) = X2 and var(b) = {x1}.
(2) var(a) = {x1} and var(b) = {x1}.
(3) var(a) = {x2} and var(b) = {x1}.
For (1), we consider four cases:

(1.1) b = f(x1, x1) and firstops(a) = f .
(1.2) b = f(x1, x1) and firstops(a) = g.
(1.3) b = g(x1) and firstops(a) = f .
(1.4) b = g(x1) and firstops(a) = g.
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Using above notation, we have the following.

Theorem 9. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) =
1, var(a) = X2 and var(b) = {x1}.
(i) If a and b satisfy (1.1), (1.2) or (1.3), then the order of σa,b is infinite.
(ii) If a and b satisfy (1.4), then the order of σa,b is 1 or infinite.

For (2), let a = g(a1, a2) where a1, a2 ∈ W(2,1)(X2). If F = g, let a = g(a1). We
consider two cases:

(2.1) a1 /∈ X2.
(2.2) a1 = x1.

Theorem 10. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1 and
var(a) = {x1} = var(b).

(i) If a satisfies (2.1), then the order of σa,b is 1 or infinite.
(ii) If a satisfies (2.2), then the order of σa,b is 2.

For (3), let a = g(a1, a2) where a1, a2 ∈ W(2,1)(X2). If F = g, let a = g(a2). We
consider:

(3.1) a2 /∈ X2.
(3.2) a2 = x1.

Theorem 11. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, var(a) =
{x2} and var(b) = {x1}.
(i) If a satisfies (3.1), then the order of σa,b is 1 or infinite.
(ii) If a satisfies (3.2), then the order of σa,b is less than ro equal to 2.

5. Case op(a) > 1 and op(b) = 0

Since b ∈ W(2,1)(X1) and op(b) = 0, b = x1. We consider three cases. Assume
var(a) = {x1, x2}. Let a = F (a1, a2) where F ∈ {f, g}, a1, a2 ∈ W(2,1)(X2). Clearly,
if a1 ∈ X2 then a2 /∈ X2. If F = g, let a = g(a1). There are six cases to consider:

(1.1) F = f, a1 /∈ X2 and f ∈ ops(Lp(a)).
(1.2) F = f, a1 /∈ X2 and f /∈ ops(Lp(a)).
(1.3) F = f, a1 ∈ X2 and f ∈ ops(Rp(a)).
(1.4) F = f, a1 ∈ X2 and f /∈ ops(Rp(a)).
(1.5) F = g and f /∈ ops(a1).
(1.6) F = g and f ∈ ops(a1).

Using above notations, we have Theorem 12.

Theorem 12. Let a ∈ W(2,1)(X2) and b ∈ W(2,1)(X1) be such that op(a) >

1, op(b) = 0 and var(a) = {x1, x2}.
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(i) If a satisfies (1.1) or (1.3), then the order of σa,b is infinite.
(ii) If a satisfies (1.2), (1.4), (1.5) or (1.6), then the order of σa,b is less than or

equal to 2.

Proof. (i) Assume a satisfies (1.1). Since b = x1, F = f and f ∈ ops(Lp(a)), so
σ2

a,b(f) = a(a, t) for some t ∈ W(2,1)(X2). Since var(a) = {x1, x2}, op(σa,b(f)) <

op(σ2
a,b(f)). Since f ∈ ops(Lp(a)), σ̂n

a,b[a] /∈ X2 for all n ∈ N. For k ≥ 2, we have

op(σk+1
a,b (f)) = op(σ̂k−1

a,b [σ̂a,b[a]])

= op(σ̂k−1
a,b [a(a, t)])

= op(σ̂k−1
a,b [a](σ̂k−1

a,b [a], σ̂k−1
a,b [t]))

> op(σ̂k−1
a,b [a]

= op(σk
a,b(f)).

Then the order of σa,b is infinite. Similarly, if a satisfies (1.3), then the order of σa,b

is infinite.
(ii) Assume a satisfies (1.2). If leftmost(a1) = x1, then σ̂a,b[a] = a and σ̂a,b[b] =

b. Thus σ2
a,b = σa,b. If leftmost(a1) = x2, then σ̂2

a,b[a] = σ̂a,b[a] and σ̂a,b[b] =
b. Hence the order of σa,b is less than or equal to 2. Assume a satisfies (1.4).
If rightmost(a2) = x2, then σ̂a,b[a] = a and σ̂a,b[b] = b. Thus σ2

a,b = σa,b. If
leftmost(a2) = x1, then σ̂2

a,b[a] = σ̂a,b[a] and σ̂a,b[b] = b. Hence the order of σa,b

is less than or equal to 2. Assume a satisfies (1.5). If leftmost(a1) = x1, then
σ̂a,b[a] = b and σ̂a,b[b] = b. Hence the order of σa,b is is less than or equal to
2. If leftmost(a1) = x2, then σ̂2

a,b[a] = σ̂a,b[a] and σ̂a,b[b] = b. Hence the order
of σa,b is less than or equal to 2. Assume a satisfies (1.6). If leftmost(a1) = x1,
then σ̂a,b[a] = a and σ̂a,b[b] = b. Hence σ2

a,b = σa,b. If leftmost(a1) = x2, then
σ̂2

a,b[a] = σ̂a,b[a] and σ̂a,b[b] = b. Hence the order of σa,b is less than or equal to 2.

Assume var(a) = {x1}. Let a = F (a1, a2) where F ∈ {f, g}, a1, a2 ∈ W(2,1)(X2).
If F = g, let a = g(a1). There are five cases to consider:

(1) F = f and a1 = x1.
(2) F = f, a1 /∈ X2 and f /∈ ops(Lp(a)).
(3) F = f, a1 /∈ X2 and f ∈ ops(Lp(a)).
(4) F = g and f /∈ ops(a1).
(5) F = g and f ∈ ops(a1).

Using above notation, we have Theorem 13.

Theorem 13. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1 and
op(b) = 0.

(i) If a satisfies (1), (2) or (4), then the order of σa,b is less than or equal to 2.
(ii) If a satisfies (3), then the order of σa,b is infinite.
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(iii) If a satisfies (5), then the order of σa,b is less than or equal to 2 or infinite.

Proof. (i) This is easy to see.
(ii) Assume a satisfies (3). Since b = x1, F = f and f ∈ ops(Lp(a)), we have

σ2
a,b(f) = a(a, t) for some t ∈ W(2,1)(X2). Since var(a) = {x1}, op(σa,b(f)) <

op(σ2
a,b(f)). Since f ∈ ops(Lp(a)), σ̂n

a,b[a] /∈ X2 for all n ∈ N. Let k ≥ 2. Therefore,

op(σk+1
a,b (f)) = op(σ̂k−1

a,b [σ̂a,b[a]])

= op(σ̂k−1
a,b [a(a, t)])

= op(σ̂k−1
a,b [a](σ̂k−1

a,b [a], σ̂k−1
a,b [t]))

> op(σ̂k−1
a,b [a]

= op(σk
a,b(f)).

Then the order of σa,b is infinite.
(iii) Assume a satisfies (5). If there is only one f ∈ ops(a1), then σ̂a,b[a] = a and

σ̂a,b[b] = b. Thus the order of σa,b is less than or equal to 2. Assume there are more
than one times f ∈ ops(Lp(a)). Since b = x1 and F = g, we have σ2

a,b(f) = a(a, t1)
for some t1 ∈ W(2,1)(X2). Since var(a) = {x1}, op(σa,b(f)) < op(σ2

a,b(f)). Since
f ∈ ops(Lp(a)), σ̂n

a,b[a] /∈ X2 for all n ∈ N. For k ≥ 2, we have

op(σk+1
a,b (f)) = op(σ̂k−1

a,b [σ̂a,b[a]])

= op(σ̂k−1
a,b [a(a, t1)])

= op(σ̂k−1
a,b [a](σ̂k−1

a,b [a], σ̂k−1
a,b [t1]))

> op(σ̂k−1
a,b [a]

= op(σk
a,b(f)).

Then the order of σa,b is infinite.

Assume var(a) = {x2}. Let a = F (a1, a2) where F ∈ {f, g} and a1, a2 ∈
W(2,1)(X2). If F = g, let a = g(a1). There are five cases to consider:

(1) F = f and a2 = x2.
(2) F = f, a2 /∈ X2 and f /∈ ops(Rp(a)).
(3) F = f, a2 /∈ X2 and f ∈ ops(Rp(a)).
(4) F = g and f /∈ ops(a1).
(5) F = g and f ∈ ops(a1).

Using above notation, Theorem 14 below can be proved in the same manner as
Theorem 13.

Theorem 14. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1 and
op(b) = 0.

(i) If a satisfies (1), (2) or (4), then the order of σa,b is less than or equal to 2.
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(ii) If a satisfies (3), then the order of σa,b is infinite.
(iii) If a satisfies (5), then the order of σa,b is less than or equal to 2 or infinite.

6. Case op(a) = 0 and op(b) > 1

Let b = F (b1, b2) where F ∈ {f, g}, b1, b2 ∈ W(2,1)(X1). If F = g, let b = g(b1).
Since op(a) = 0, a = x1 or a = x2. There are ten cases to consider:

(1) a = x1, F = f and b1 = x1.
(2) a = x1, F = f, b1 /∈ X1 and g /∈ ops(Lp(b)).
(3) a = x1, F = f, b1 /∈ X1 and g ∈ ops(Lp(b)).
(4) a = x1, F = g and g /∈ ops(b1).
(5) a = x1, F = g and g ∈ ops(b1).
(6) a = x2, F = f and b2 = x1.
(7) a = x2, F = f, b2 /∈ X1 and g /∈ ops(Rp(b)).
(8) a = x2, F = f, b2 /∈ X1 and g ∈ ops(Rp(b)).
(9) a = x2, F = g and g /∈ ops(b1).

(10) a = x2, F = g and g ∈ ops(b1).

Using above notations, we have Theorem 15 and Theorem 16. Theorem 16 can be
proved in the same manner as Theorem 15.

Theorem 15. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) = 0 and
op(b) > 1.

(i) If a and b satisfy (1), (2) or (4), then the order of σa,b is less than or equal to
2.

(ii) If a and b satisfy (3), then the order of σa,b is less than or equal to 2 or infinite.
(iii) If a and b satisfy (5), then the order of σa,b is infinite.

Proof. (i) If a and b satisfy (1), (2) or (4), then σ̂a,b[a] = a and σ̂a,b[b] = a. Thus
σ2

a,b = σ3
a,b.

(ii) Assume a and b satisfy (3). If there is only one g ∈ ops(Lp(b)), then σ̂a,b[a] =
a and σ̂a,b[b] = b. Thus σ2

a,b = σ3
a,b. Assume there are more than one times g ∈

ops(b1). Since a = x1 and b /∈ X1, σ̂n
a,b[b] /∈ X1 for all n ∈ N. Since there are more

than one times g ∈ ops(b1) and a = x1, σ2
a,b(g) = b(b, t) for some t ∈ W(2,1)(X1).

Since var(b) = {x1}, op(σa,b(g)) < op(σ2
a,b(g)). For k ≥ 2, consider

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [σ̂a,b[b]])

= op(σ̂k−1
a,b [b(b, t)])

= op(σ̂k−1
a,b [b](σ̂k−1

a,b [b], σ̂k−1
a,b [t]))

> op(σ̂k−1
a,b [b]

= op(σk
a,b(g)),

we obtain the order of σa,b is infinite.
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(iii) Assume a and b satisfy (5). Then σ̂n
a,b[b]) /∈ X1 for all n ∈ N. Since g ∈

ops(b1) and a = x1, σ2
a,b(g) = b(b, t1) for some t1 ∈ W(2,1)(X1). For k ≥ 2, consider

op(σk+1
a,b (g)) = op(σ̂k−1

a,b [σ̂a,b[b]])

= op(σ̂k−1
a,b [b(b, t1)])

= op(σ̂k−1
a,b [b](σ̂k−1

a,b [b], σ̂k−1
a,b [t1]))

> op(σ̂k−1
a,b [b]

= op(σk
a,b(g)),

we have the order of σa,b is infinite.

Theorem 16. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) = 0 and
op(b) > 1.

(i) If a and b satisfy (6), (7) or (9), then the order of σa,b is less than or equal to
2.

(ii) If a and b satisfy (8), then the order of σa,b is less than or equal to 2 or infinite.
(iii) If a and b satisfy (10), then the order of σa,b is infinite.

Note that the mapping ϕ : Hyp(2, 1) → Hyp(1, 2) defined by ϕ(σa,b) =
σa,bσg(x1),f(x1,x2) is an isomorphism. Then we can conclude that the order of hy-
persubstitutions of type (1, 2) is 1, 2, 3 or infinite.
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1 Preliminaries

Let S be a semigroup. The order of an element a of S is defined as the order of 〈a〉, the cyclic
subsemigroup of S generated by a. The index and the period of an element a of S consults [10]
(p. 9-11).

Let τ = {(fi, ni) | i ∈ I} be a type. Let X = {x1, x2, x3, . . .} be a countably infinite
alphabet of variables such that the sequence of the operation symbols (fi)i∈I is disjoint with
X, and let Xn = {x1, x2, . . . , xn} be an n-element alphabet where n ∈ N. Here fi is ni-ary for
a natural number ni ≥ 1. An n-ary (n ≥ 1) term of type τ is inductively defined as follows:

(i) every variable xj ∈ Xn is an n-ary term,

(ii) if t1, . . . , tni
are n-ary terms and fi is an ni-ary operation symbol then fi(t1, . . . , tni

) is
an n-ary term.

Let Wτ (Xn) be the set containing x1, . . . , xn and being closed under finite application of (ii).
The set of all terms of type τ over the alphabet X is defined by Wτ (X) :=

⋃∞
n=1 Wτ (Xn). Any

mapping σ : {fi : i ∈ I} → Wτ (X) is called a hypersubstitution of type τ if σ(fi) is an ni-ary
term of type τ for every i ∈ I. Any hypersubstitution σ of type τ can be uniquely extended to
a map σ̂ on Wτ (X) as follows:

(i) σ̂[t] := t if t ∈ X,

(ii) σ̂[t] := σ(fi)(σ̂[t1], . . . , σ̂[tni
]) if t = fi(t1, . . . , tni

).

A binary operation is defined on the set Hyp(τ) of all hypersubstitutions of type τ , by

(σ1σ2)(fi) := σ̂1[σ2(fi)]

for all ni-ary operation symbols fi. Together with this binary associative operation Hyp(τ)
forms a monoid since the identity hypersubstitution σid which maps every fi to fi(x1, . . . , xni)
is an identity element. For an n-ary term t of type (n), let

var(t) − the set of all variables occurring in t,

op(t) − the total number of all operation symbols occurring in t.

Several subsemigroups of Hyp(τ) can be defined: P (τ) := {σ : σ(fi) ∈ Xni , i ∈ I}, Short(τ) :=
{σ : op(σ(fi)) = 1, i ∈ I}, and Hop

k := {σ : op(σ(fi)) ≥ k, i ∈ I} for any k ∈ N.

1Research Supported by the Thai Research Fund.
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Semigroup properties of hypersubstitutions have been widely studied (see [1], [2], [7],[1]).
Properties of monoids of generalized hypersubstitution, i.e. non-arity preserving ones are stud-
ied in [2], [8] and [9]. Given a type τ . The following problem arise: Describe the order of
hypersubstitutions of the type. So far this was done for type (2), (3), and (2, 2): It was shown
that the order of a hypersubstitutions of type (2) is 1, 2 or infinite ([?]), of type (3) is 1, 2, 3
or infinite ([3]), and of type (2, 2) is 1, 2, 3, 4 or infinite ([5]). In this paper we are interested
in the order of hypersubstitutions of type (n) for any n ∈ N.

2 Main Results

For any n ∈ N, the set of all mappings on {1, 2, 3, . . . , n} is denoted by Tn. It is known that
Tn forms a semigroup under the usual composition of functions, the so-called a transformation
semigroup. The semigroup Tn has nn elements (see [10]). For α ∈ Tn, let fix(α) = {x ∈
{1, 2, 3, . . . , n} : xα = x}. We give an easy observation that for any α ∈ Tn if fix(α) ⊂
{1, 2, 3, . . . , n}, then there is α0 ∈ Tn0 with n0 = |{1, 2, 3, . . . , n} \ fix(α)| which has the same
order with α.

For convenience, we let f stand for n-ary operation symbol of type (n) and we denote a
hypersubstitution of type (n) which maps the operation symbol f to the n-ary term t by σt.
Further, let σα, for some α ∈ Tn, be a hypersubstitution mapping f to f(xα(1), . . . , xα(n)). We
state an easy theorem to make our investigation complete.

Theorem 2.1. (1) The order of a hypersubstitution in P (n) is 1.

(2) The order of a hypersubstitution in Short(n) is equal to the order of a mapping α for
some α ∈ Tn.

Proof. (1) Obvious.
(2) Define a mapping ϕ : Short(n) → Tn by σα 7→ α. It can be proved easily that ϕ is an

anti-isomorphism.

Now, we proceed to the case that hypersubstitutions come from Hop
2 . In this case if

var(σ(f)) = Xn, then we have the following theorem.

Theorem 2.2. Let t be a term of type (n) with op(t) > 1. If var(t) = Xn, then σt has infinite
order.

Proof. Claim. If s ∈ W(n)(Xn) \Xn with var(s) = Xn, then op(s) < op(σ̂t[s]).
We set s = f(s1, . . . , sn). Since vbk(σt(f)) ≥ 1, k = 1, . . . , n and op(σt(f)) > 1,

op(σ̂t[s]) = op(σt(f)(σ̂t[s1], . . . , σ̂t[sn]))
= vb1(σt(f))op(σ̂t[s1]) + . . . + vbn(σt(f))op(σ̂t[sn]) + op(σt(f))
> op(σ̂t[s1]) + . . . + op(σ̂t[sn]) + 1
≥ op(s1) + . . . + op(sn) + 1
= op(s).

So we have the Claim. This gives, for k ∈ N,

op(σk+1
t (f)) = op((σtσ

k
t )(f)) = op((σ̂t[σk

t (f)]) > op(σk
t (f)).

We conclude that σt has infinite order.

Next, we will investigate the case that var(t) is a proper subset of Xn, i.e. var(t) ⊂ Xn.
Hereafter, we let
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t = f(t1, . . . , tn), t1, . . . , tn ∈ W(n)(Xn)

be an n-ary term of type (n) such that op(t) > 1 and var(t) = {xi1 , . . . , xij
}. We separate to

three cases:

(1) ti1 , . . . , tij
∈ var(t),

(2) ti1 , . . . , tij
/∈ var(t),

(3) there is j′ ∈ {1, . . . , j − 1} such that ti1 , . . . , tij′ ∈ var(t) and tij′+1
, . . . , tij

/∈ var(t).

For cases (1) and (2) we have Theorem 2.3 and Theorem 2.4, respectively.

Theorem 2.3. Let t = f(t1, . . . , tn) be an n-ary term of type (n) with op(t) > 1 and var(t) =
{xi1 , . . . , xij

} ⊂ Xn. If ti1 = xri1
, . . . , tij

= xrij
∈ var(t), then the order of σt is a + b where a

and b are, respectively, index and period of some α0 ∈ Tn0 and some n0 < n.

Proof. Assume that ti1 = xri1
, . . . , tij

= xrij
∈ var(t). Define α ∈ Tn by, for u ∈ {1, . . . , n},

α(u) :=
{

ru if u ∈ {i1, . . . , ij},
u otherwise.

Clearly, the order of α is finite. Assume that α has index a and period b. Then αa = αa+b.
Using property of α and assumption, we get

t(σ̂t[t1], . . . , σ̂t[tn]) = t(xα(1), . . . , xα(n)).

It follows that,

σ̂t[t] = σ̂t[f(t1, . . . , tn)] = t(σ̂t[t1], . . . , σ̂t[tn]) = t(xα(1), . . . , xα(n))

We can prove by induction that (σ̂t)k[t] = t(xαk(1), . . . , xαk(n)) for every k ∈ N. Hence
(σt)a+1(f) = (σt)a+b+1(f). This shows that the order of σt is a+b. Since var(t) = {xi1 , . . . , xij}
is a proper subset of Xn, then there the set B ⊂ {1, . . . , n} such that α(b) = b for every b ∈ B
and α(b′) /∈ B for every b′ /∈ B. Hence, there is a transformation α0 ∈ Tn0 for some n0 < n
such that its index and period are the same as the index and period of α.

Theorem 2.4. Let t = f(t1, . . . , tn) be an n-ary term of type (n) with op(t) > 1 and var(t) =
{xi1 , . . . , xij} ⊂ Xn. If ti1 , . . . , tij /∈ var(t), then the order of σt is infinite.

Proof. Let k ∈ N. We have var((σt)k(f)) ⊆ var(t). Since ti1 , . . . , tik
/∈ var(t), we have

(σ̂t)k[tiu ] /∈ Xn for all u = 1, . . . , j. Then,

op((σt)k+1(f)) = op((σ̂t)k[t])
= op((σt)k(f)[(σ̂t)k[t1], . . . , (σ̂t)k[tn]])
> op((σt)k(f)).

This shows that the order of σt is infinite.

To prove (3): there exists j′ ∈ {1, . . . , j−1} such that ti1 , . . . , tij′ ∈ var(t) and tij′+1
, . . . , tij /∈

var(t), we need the following: It has been known that terms can be represented by tree, i.e.,
connected graph without cycles having a root. For any term t of type (n), we can label each
operation symbol or variable of t by a sequence of numbers from {1, . . . , n}, by using the ad-
dress of the corresponding node in the tree diagram for t; the operation symbol at the root of
the tree receives the label 0. For instance, the term t = f(f(x1, x2, x3), x3, x2) of type (3) can
be written with labels as L(t) := f0(f1(x11

1 , x12
2 , x13

3 ), x2
3, x

3
2). For N ⊂ {1, . . . , n}, we will be

interested in the set var(L(t)) \N of (labeled) variables occurring in t whose addresses do not
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contain any occurrences of k ∈ N .

We make the key observation that if t satisfies (3.1.2.1), then var(σ̂t[t]) ⊆ {xi1 , . . . , xij
};

if t satisfies (3.1.2.2), then var(σ̂w
t [t]) ∩ {xij+1 , . . . , xjk

} 6= ∅ for all w ∈ N. Now, we have the
following.

Theorem 2.5. Let t = f(t1, . . . , tn) be an n-ary term of type (n) with op(t) > 1 and var(t) =
{xi1 , . . . , xij} ⊂ Xn. If there is j′ < j such that ti1 , . . . , tij′ ∈ var(t), tij′+1

, . . . , tij /∈ var(t),
then either: the order of σt is equal to 1 plus the order of some transformation α ∈ Tn0 for
some n0 < n; or the order of σt is infinite.

Proof. Assume that there is j′ < j such that ti1 , . . . , tij′ ∈ var(t), tij′+1
, . . . , tij

/∈ var(t). We
separate to three subcases:

(3.1) ti1 , . . . , tij′ ∈ {xi1 , . . . , xij′},
(3.2) ti1 , . . . , tij′ ∈ {xij′+1

, . . . , xij
}, i.e. ti1 , . . . , tij′ /∈ {xi1 , . . . , xij′},

(3.3) ti1 , . . . , tij′′ ∈ {xi1 , . . . , xij′} and tij′′+1
, . . . , tij′ ∈ {xij′+1

, . . . , xij
}

for some j′′ ∈ {1, . . . , j′ − 1}.
Case (3.1). We separate to the following cases:

(3.1.1) var(tij′+1
), . . . , var(tij

) ⊆ {ti1 , . . . , tij′},
(3.1.2) there is l ∈ {ij′+1, . . . , ij} such that var(tl) ∩ {xij′+1

, . . . , xij
} 6= ∅.

(3.1.2.1) every tl satisfying (3.1.2) have the property that every xiu
∈ var(tl)∩{xij′+1

, . . . , xij
}

is not labeled with address containing the number iv for every iv with xiv
∈

var(tl) ∩ {xij′+1
, . . . , xij

},
(3.1.2.2) there is tl satisfying (3.1.2) have the property that there are xiu

, xiv
∈ var(tl)∩

{xij′+1
, . . . , xij

} such that xiu
is labeled by address containing iv,

Case (3.1.1). Without of generality we may assume that ti1 = xri1
, . . . , tij′ = xri

j′
with

ri1 , . . . , rij′ ∈ {i1, . . . , ij′}. Define a mapping α ∈ Tn by, for u ∈ {1, . . . , n},

α(u) :=
{

riu
if u ∈ {i1, . . . , ij′},

u otherwise.

Clearly, the order of α is less than nn. Assume that α has index a and period b. Then
αa = αa+b. Since var(tij′+1

), . . . , var(tij
) ⊆ {ti1 , . . . , tij′} ⊂ {xi1 , . . . , xij′}, we have

σ̂t[t] = σ̂t[f(t1, . . . , tn)] = t(σ̂t[t1], . . . , σ̂t[tn]) = t(xα(1), . . . , xα(n)).

It can be proved by induction that: for k ∈ N, (σ̂t)k[t] = t(xαk(1), . . . , xαk(n)). Therefore,
(σ̂t)a+1[t] = (σ̂t)a+b+1[t]. This shows that the order of σt is equal to a + b. Hence, there is a
transformation α0 ∈ Tn0 for some n0 < n such that its index and period are the same as the
index and period of α.
Case (3.1.2.1). Assume that t satisfies (3.1.2.1). Then var(σ̂t[t]) ⊆ {xi1 , . . . , xij′}. Define a
mapping α ∈ Tn by for w ∈ {1, . . . , n},

α(w) :=
{

iw if w ∈ {1, . . . , j},
w otherwise.

We have that the order of α is less than nn. Assume that α has index a and period b. Since
σ̂t[t] = t(σ̂t[t1], . . . , σ̂t[tn]) and var(σ̂t[t]) ⊆ {xi1 , . . . , xij

} we have

σ̂2
t [t] = σ̂t[t](σ̂2

t [t1], . . . , σ̂2
t [tn])

= σ̂t[t](xα(1), . . . , xα(n))
= t(σ̂t[t1](xα(1), . . . , xα(n)), . . . , σ̂t[tn](xα(1), . . . , xα(n))),
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and

σ̂3
t [t] = σ̂t[t](σ̂2

t [t1](xα(1), . . . , xα(n)), . . . , σ̂2
t [tn](xα(1), . . . , xα(n)))

= σ̂t[t](xα2(1), . . . , xα2(n)).

It can be proved by induction that for k ∈ N,

σ̂k+1
t [t] = σ̂t[t](xαk(1), . . . , xαk(n))

Therefore, (σ̂t)a+1[t] = (σ̂t)a+b+1[t]. This shows that the order of σt is equal to a + b. Since
{xi1 , . . . , xij′} ⊂ Xn, there is a transformation α0 ∈ Tn0 for some n0 < n such that its index
and period are the same as the index and period of α.
Case (3.1.2.2). As mentioned, we have var(σ̂w

t [t]) ∩ {xij+1 , . . . , xjk
} 6= ∅ for all w ∈ N. Then,

for k ∈ N, we have

op((σt)k+2(f)) = op((σ̂t)k[f(t1(σ̂t[t1], . . . , σ̂t[tn]), . . . , tn(σ̂t[t1], . . . , σ̂t[tn]))])
= op((σt)k(f)[(σ̂t)k[t1(σ̂t[t1], . . . , σ̂t[tn])], . . . , (σ̂t)k[tn(σ̂t[t1], . . . , σ̂t[tn])]])
> op((σt)k(f))

This shows that the order of σt is infinite.
Case (3.2). We have

σ̂t[t] = t(σ̂t[t1], . . . , σ̂t[tn]) = f(t1(σ̂t[t1], . . . , σ̂t[tn]), . . . , tn(σ̂t[t1], . . . , σ̂t[tn])).

Since tij+1 , . . . , tik
/∈ var(t) and ti1 , . . . , tij /∈ {xi1 , . . . , xij}, it follows that

t1(σ̂t[t1], . . . , σ̂t[tn]), . . . , tn(σ̂t[t1], . . . , σ̂t[tn]) /∈ Xn.

Let k ∈ N. We have var((σt)k(f)) ⊆ var(t). Now

op((σt)k+2(f)) = op((σ̂t)k[f(t1(σ̂t[t1], . . . , σ̂t[tn]), . . . , tn(σ̂t[t1], . . . , σ̂t[tn]))])
= op((σt)k(f)[(σ̂t)k[t1(σ̂t[t1], . . . , σ̂t[tn])], . . . , (σ̂t)k[tn(σ̂t[t1], . . . , σ̂t[tn])]])
> op((σt)k(f))

This shows that the order of σt is infinite.
Case (3.3): there is j′′ ∈ {1, . . . , j′−1} such that ti1 , . . . , tij′′ ∈ {xi1 , . . . , xij′} and tij′′+1

, . . . , tij′ ∈
{xij′′+1

, . . . , xij′}.
We separate to the following cases:

(3.3.1) ti1 , . . . , tij′′ ∈ {xi1 , . . . , xij′′},
(3.3.2) ti1 , . . . , tij′′ ∈ {xij′+1

, . . . , xij′},
(3.3.3) there is j′′′ ∈ {1, . . . , j′′} such that ti1 , . . . , tij′′′ ∈ {xi1 , . . . , xij′′} and tij′′′+1

, . . . , tij′′ ∈
{xij′+1

, . . . , xij′′ }.
Cases (3.3.1), (3.3.2) and (3.3.3) can be proved similarly as cases (3.1.1), (3.1.2) and (3.1.3),

respectively.
Continue in this way, we can have only the following two cases left:

(I) ti1 , . . . , tij∗ ∈ {xi1 , . . . , xij∗ },
(II) ti1 , . . . , tij∗ ∈ {xij∗+1 , . . . , xij∗ }.

Both of the cases can be proved similarly as cases (3.1.1) and (3.1.2), respectively. This com-
pletes the proof.

Using the main theorem, we have the following immediately.

Corollary 2.6. The order of hypersubstitutions of type (n) for n ∈ {1, 2, 3, 4} is 1, 2, 3, . . . , n
or infinite.
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