บทคัดย่อ

รหัสโครงการ: MRG51-พรชัยราชตนะพันธุ์

ชื่อโครงการ: การสังเคราะห์คาร์บอกซีเมทิลเซลลูโลสจากเปลือกไมยราบยักษ์

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. พรชัย ราชตนะพันธุ์

E:-mail address: p.rachta@chiangmai.ac.th

ระยะเวลาโครงการ: พฤษภาคม 2551-2553

การศึกษาผลของความเข้มข้นของโซเดียมไฮดรอกไซด์ (30%, 40%, 50% and 60%w/v) ต่อเปอร์เซ็นต์การแทนที่ ความหนืด สัณฐานวิทยา สมบัติความร้อนของคาร์บอกซีเมทิลเซลลุโลส จากเปลือกไมยราบยักษ์ (CMC_) การเพิ่มความเข้มข้นของโซเดียมไฮดรอกไซด์เป็นผลทำให้ เปอร์เซ็นต์การแทนที่และความหนืดเพิ่มขึ้น อย่างไรก็ตามความหนืดของ CMC ลดลงเมื่อ อุณหภูมิเพิ่มขึ้น หมู่ฟังก์ชันของเซลลูโลสและ CMC_m ถูกวิเคราะห์โดย Infrared spectra (IR) แถบ ดูดกลื่นแสงที่ 1605 cm⁻¹ แสดงการเกิดหมู่ COO บน CMC สันฐานของเซลลูโลสจากเปลือก ไมยราบยักษ์และผง CMC ตรวจสอบโดยกล้องจุลทรรศน์อีเล็กตรอนแบบส่องกราด สันฐานของเซลลูโลสจากเปลือกไมยราบยักษ์และผง CMC ที่ความเข้มข้นโซเดียมไฮดรอกไซด์ ต่างๆ ไม่แตกต่างกัน จุดหลอมเหลวของเซลลูโลสจากเปลือกไมยราบยักษ์และ CMC ู วิเคราะห์ โดย differential scanning calorimetry (DSC) จุดหลอมเหลวของเซลลูโลสจากเปลือกไมยราบ ยักษ์และ CMC เพิ่มขึ้นเมื่อโซเดียมไฮดรอกไซด์เพิ่มขึ้น นอกจากนั้น การเพิ่มขึ้นของความเข้มข้น โซเดียมไฮดรอกไซด์ (30-50% w/v) เป็นผลทำให้สมบัติทางกลเพิ่มขึ้น อย่างไรก็ตาม ระดับความ เข้มข้นของโซเดียมไฮดรอกไซด์ที่ 60% w/v สมบัติทางกลลดลง ดังนั้นที่โซเดียมไฮดรอกไซด์เข้มข้น 50% w/v ให้สมบัติทางกลดีที่สุด เข้มข้นโซเดียมไฮดรอกไซด์ไม่มีผลต่อการซึมผ่านของไอน้ำของ ฟิล์ม CMC นอกจากนั้นยังศึกษาผลของปริมาณกลีเซอรอลที่เป็นพลาสติไซด์เซอร์ต่อสมบัติทาง กล พบว่าเมื่อเพิ่มปริมาณกลีเซอรอล เปอร์เซ็นต์การยืดตัว ณ จุดแตกหัดเพิ่มขึ้นแต่การต้านแรงดึง ขาดลดลง

คำสำคัญ: คาร์บอกซีเมทิลเซลลูโลส ซีเอ็มซี พอลิเมอร์ชีวภาพ ฟิล์ม และ โซเดียมไฮดรอกไซด์

ABSTRACT

Project Code: MRG51-Pornchai Rachtanapun

Project Title: Synthesis of Carboxymethyl Cellulose

from Mimosa Pigra Peel

Investigator: Assist.Prof. Pornchai Rachtanapun, Ph.D.

Project Period: May 2008-May 2010

The effect of NaOH concentrations (30%, 40%, 50% and 60%w/v) on degree of substitution (DS), viscosity, morphology and thermal property of carboxymethy cellulose from Mimosa pigra peel (CMC_m) were investigated. The increasing of NaOH concentration resulted in increasing degree of substitution and viscosity. However, viscosity of CMC_m decreased as temperature increased. Functional groups of cellulose from Mimosa pigra peel and CMC_m were characterized by Infrared spectroscopy (IR). The presence of a new and strong absorption band at 1605 cm⁻¹ confirms the presence of ${\rm COO}^{\bar{}}$ group in all ${\rm CMC_m}$ samples. Morphology of cellulose from *Mimosa pigra* peel and CMC_m powder was characterized by scanning electron microscopy (SEM). The surface roughness of CMC_m powder with various NaOH concentrations was not different. Thermal property according to melting point of cellulose and CMC_m was determined by differential scanning calorimetry (DSC). The melting point of samples decreased as %NaOH increased. The increase of NaOH concentration (30-50% w/v) resulted in increasing mechanical properties of CMC_m film. However, the level of NaOH concentration was 60% w/v, mechanical properties of CMC_m films decreased. The results indicated that the highest mechanical properties were provided on 50%w/v NaOH-synthesized CMC_m film. The water vapor permeability (WVP) of CMC_m films seemed to be not affected by NaOH concentration. In addition, CMC_m films were determined the effect of glycerol as a plasticizer on mechanical properties. Increasing amount of glycerol showed an increase elongation at break but decrease tensile strength.

Keywords: Carboxymethy cellulose, CMC, biopolymer, film, sodium hydroxide