

Abstract

Project Code : MRG 5180145

Project Title : Properties and clinical performance of zirconia-based dental ceramics

Investigator : Kallaya Suputtamongkol, Prosthodontics Department, Faculty of Dentistry

Mahidol University

E-mail Address : dtkst@mahidol.ac.th

Project Period : 15 May 2008 – 14 May 2010

Aims: The objective of this study was to characterize the clinical performance of zirconia-based all-ceramic crowns and the related properties. **Methods:** Twenty one posterior all-ceramic crowns were made for twenty subjects, using tetragonal zirconia polycrystals as a core ceramic and conventional condensation and sintering methods for a veneering ceramic. Subjects are recalled annually and the quality of crowns and adjacent gingival tissues were examined for acceptability. A shade measurement of each crown was made to examine the shade differences before and after cementation using a shade measuring device and the CIE-Lab parameters. The properties tested in this study were the particle size, translucency, fracture toughness, and flexural strength of zirconia-based materials. **Results:** At the baseline examination, the quality of all crowns and the adjacent tissues were acceptable. The contrast ratio or the opacity of a zirconia material was lower than that of a metal which was completely opaque. Therefore, slight shade differences before and after cementation were observed for all-ceramic crown cemented on a metal post and core. The fracture toughness of a glass-infiltrated zirconia-toughened ceramic ($5.4 \pm 0.7 \text{ MPa} \cdot \text{m}^{1/2}$) was significantly lower than that of a zirconia material ($8.6 \pm 1.1 \text{ MPa} \cdot \text{m}^{1/2}$).

Conclusions: The quality of crowns and the adjacent gingival tissues were acceptable at baseline. Shade differences before and after cementation were observed for all-ceramic crowns as a consequence of the color of the underlying structures. The fracture toughness of a glass-infiltrated zirconia-toughened ceramic was significantly lower than that of a zirconia material.

Keywords : zirconia, clinical, translucency, fracture toughness

บทคัดย่อ

รหัสโครงการ: MRG 5180145

ชื่อโครงการ: สมบัติและประสิทธิภาพในการใช้งานทางคลินิกของเซรามิกที่ใช้ในทางทันตกรรมชนิดเซอร์โคเนีย

ชื่อหัววิจัย: นางสาว กัญญา ศุภุธรรมมงคล คณะทันตแพทยศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address : dtkst@mahidol.ac.th

ระยะเวลาโครงการ: 15 พฤษภาคม 2551 – 14 พฤษภาคม 2553

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพของครอบฟันเซอร์โคเนียในการใช้งานทางคลินิกรวมทั้งสมบัติที่เกี่ยวข้อง วิธีทดสอบโดยเตรียมครอบฟันเซอร์โคเนีย จำนวน 21 ชิ้น โดยส่วนโครงทำจากเซอร์โคเนียที่ประกอบด้วยผลึกเตトラゴโนอลและเคลือบด้วยพอร์ซเลน ผู้ป่วยจะถูกเรียกกลับมาตรวจอุจจาระทุกปีเพื่อตรวจสอบของครอบฟันและเนื้อเยื่อใกล้เคียง การวัดสีของครอบฟันได้วัดทั้งก่อนและหลังการยึดครอบ สมบัติอื่นๆที่ศึกษาคือขนาดของผิวความโปร่งแสง ความเหนียวต้านการแตกหักและความทนแรงดัดของวัสดุ ผลการทดลอง พบร่วมกันของครอบฟันเซอร์โคเนียหลังจากการยึดครอบอยู่ในสภาพดี โครงเซอร์โคเนียมีความทึบแสงน้อยกว่าโครงโลหะโดยโครงโลหะจะทึบแสงอย่างสมบูรณ์ ดังนั้นจึงพบรูปแบบการเปลี่ยนแปลงสีของครอบฟันเล็กน้อยโดยเฉพาะครอบฟันเซอร์โคเนียที่ยึดบนเดียวยันฟันโลหะ ความเหนียวต้านการแตกหักของเซอร์โคเนียที่เติมแก้ว ($5.4 \pm 0.7 \text{ MPa} \cdot \text{m}^{1/2}$) มีค่าน้อยกว่าค่าความเหนียวต้านการแตกหักของเซอร์โคเนียที่ขึ้นรูปโดยวิธี CAD-CAM ($8.6 \pm 1.1 \text{ MPa} \cdot \text{m}^{1/2}$) สรุปผลการทดลอง สภาพของครอบฟันเซอร์โคเนียหลังจากการยึดครอบอยู่ในสภาพดี ผู้ป่วยใช้งานได้ดีและมีความพึงพอใจต่อสีและการใช้งานของครอบฟันเซอร์โคเนีย โดยที่โครงเซอร์โคเนียมีความทึบแสงน้อยกว่าโครงโลหะ สีของฟันหรือวัสดุที่ใช้อุดฟันหรือสีของซีเมนต์ที่ใช้ยึดครอบอาจมีผลต่อสีของครอบฟันเซอร์โคเนียได้ เซอร์โคเนียที่ขึ้นรูปโดยวิธี CAD-CAM มีค่าความเหนียวต้านการแตกหักและความทนแรงดัดที่มากกว่าเซอร์โคเนียชนิดที่เติมแก้ว

ข้อเสนอแนะสำหรับงานวิจัยในอนาคต ในปัจจุบันมีเซอร์โคเนียหลายกลุ่มที่ใช้ในทางทันตกรรม ควรเพิ่มกลุ่มของการทดสอบให้ครอบคลุมวัสดุทุกกลุ่ม เพื่อประโยชน์ในการเปรียบเทียบและเลือกใช้วัสดุ ควรศึกษาสมบัติเพิ่มเติมที่เกี่ยวข้องกับการผลิต เช่น การเปลี่ยนแปลงอุณหภูมิเผาที่มีผลต่อสมบัติเชิงกล วัสดุช่วยลดอุณหภูมิเผาโดยไม่เปลี่ยนแปลงสมบัติของวัสดุ การเปลี่ยนแปลงอุณหภูมิเผาที่มีผลต่อขนาดผลึก เป็นต้น

คำหลัก: เซอร์โคเนีย การใช้งานทางคลินิก ความโปร่งแสง ความเหนียวต้านการแตกหัก