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Chapter 1
Executive Summary

An equitable coloring of a graph is a proper vertex coloring such that the
sizes of every two color classes differ by at most 1. We say that G is equitably
k-colorable if G has an equitable k-coloring.

It is known that determining if a planar graph with maximum vertex degree
4 is 3-colorable is NP-complete. For a given n-vertex planar graph G with
maximum vertex degree 4, let G’ be obtained from G by adding 2n isolated
vertices. Then G is 3-colorable if and only if G’ is equitably 3-colorable. Thus
finding the minimum number of colors need to color a graph equitably even
for planar graphs G is an NP-complete problem.

Hajnal and Szemerédi settled a conjecture of Erdds by proving that every
graph G with maximum degree at most A has an equitable k-coloring for every
k> 1+ A. In its ‘complementary’ form this result concerns decompositions of
a sufficiently dense graph into cliques of equal size. This result is now known
as Hajnal and Szemerédi Theorem. Later, Kierstead and Kostochka gave a
simpler proof of Hajnal and Szemerédi Theorem in the direct form of equitable
coloring. The bound of the Hajnal-Szemerédi theorem is sharp, but it can be
improved for some important classes of graphs. In fact, Chen, Lih, and Wu

put forth the following conjecture.

Conjecture 1 FEvery connected graph G with mazimum degree A > 2 has an

equitable coloring with A colors, except when G is a complete graph or an odd

1



cycle or A is odd and G = Kaa.

Chen, Lih, and Wu proved the conjecture for graphs with A(G) < 3 of A(G) >
|G|/2. Lih and Wu proved the conjecture for bipartite graphs. Meyer proved
that every forest with maximum degree A has an equitable k-coloring for
each k > 1+ [A/2] colors. This result implies conjecture holds for forests.
The bound of Meyer is attained at the complete bipartite Kj,,: in every
proper coloring of K ,,, the center vertex forms a color class, and hence the
remaining vertices need at least m/2 colors. Yap and Zhang proved that the
conjecture holds for outerplanar graphs. Later Kostochka extended the result
for outerplanar graphs by proving that every outerplanar graph with maximum
degree A has an equitable k-coloring for each £ > 1+[A/2]. Again this bound
is sharp.

Zhang and Yap essentially proved the conjecture holds for planar graphs
with maximum degree A > 13.

We are mainly interested in proving the conjecture in various classes of
planar graphs. In this report, we proved that conjecture holds for planar
graphs in various classes, especially a class of planar graphs with maximum
degree 9,10, 11, and 12. Consequently, the conjecture holds for planar graphs

with maximum degree at least 9.



Chapter 2

Main Results

Chen, Lih, and Wu put the following conjecture which is a main topic on

the study of equitable coloring.

Conjecture 2 Fvery connected graph G with mazimum degree A > 2 has an

equitable coloring with A colors, except when G is a complete graph or an odd
cycle or A is odd and G = Kaa.

We published one paper in this topic (see Appendix A1l). We proved that
conjecture holds for planar graphs in various classes, especially a class of planar
graphs with maximum degree 9,10, 11, and 12. Consequently, the conjecture

holds for planar graphs with maximum degree at least 9.

2.1 Equitable Colorings of Planar Graphs with

Maximum Degree at least Nine

Throughout this report, all graphs are finite, undirected and simple. We
use V(G), |G|, E(G),e(G), A(G), and 6(G), respectively, to denote vertex set,
order, edge set, size, maximum degree, and minimum degree of a graph G. We
write zy € E(G) if x and y are adjacent. The graph obtained by deleting an
edge zy from G is denoted by G\ {zy}. For any vertex v in V(G), let Ng(v) be

3



the set of all neighbors of v in G. The degree of v, denoted by dg(v), is equal
to |Ng(v)|. We use d(v) instead of dg(v) if no confusion arises. For disjoint
subsets U and W of V(G), the number of edges with one end in U and other
in W is denoted by e(U, W). we use G[U] to denote the subgraph of G induced
by U.

2.1.1 Preliminaries

Many proofs in this report involve edge-minimal planar graph that is not
equitably m-colorable. In this section, we describe some properties of such
graph that appear recurrently in later arguments. The following fact about
planar graphs in general is well-known and can be found in standard texts
about graph theory.

Lemma 1 For any planar graph G of order n,e(G) < 3n — 6 and §(G) < 5.

Let G be an edge-minimal planar graph with |G| = mt, where ¢ is an integer,
such that G is not equitably m-colorable. As G is planar, G has an edge
xy where d(z) = 6 < 5. By edge-mimimality of G, the graph G \ {zy} has
an equitable m-coloring ¢ having color classes V{,V,,... V. It suffices to
consider only the case that z,y € V/. Let 1 < ¢ < 5 be the minimum degree
of non-isolated vertices. Choose x with degree § and order V{,V;,... UV} in a
way that N(z) C VUV U---UVJ. Define Vi = V/\ {2z} and V; = V/ for each
1=2,3,...,m.

We define R recursively. Let V; € R and V; € R if there exists a vertex
in V; which has no neighbors in V; for some V; € R. Let r = |R|. Let A and
B denote [y, .z Vi and V(G) \ A, respectively. Furthermore, we let A" denote
AUA{z} and B’ denote B\ {z}. From definition of R and B,e(V;,{u}) > 1
for each V; € R and u € B. Consequently e(A, B) > r[(m — r)t + 1] and
e(A,B) >r(m—r)tifr=|R|.

Suppose there is V;, € R for some i > 0 + 1. By definitions of R, there
exist uy € Vi, u2 € Vi, ... us € Vi, uy,, € Vi, = Vi such that e(Vi, {ui}) =
e(Vij, {uz}) = -+ = e(Vi,, {uss1}) = 0. Letting Wy = Vy U{w },W;, =V, U



{ug}\{w1}, ..., Wi, = Vi U{usi1} \{us}, and Wy, = VyU{x}\{uss1}, otherwise
W; = V;, we get an equitable m-coloring of GG. This contradicts to the fact that
G is a counterexample.

Thus we assume R C {Vi, Vs, ..., Vs} where 6 <5 is the minimum degree
of non-isolated vertices.

We summarize our observation here.

Observation 1 If G is an edge-minimal planar graph of order mt such that
G is not equitably m-colorable, then we may assume

(i) R C {V1,Va, ..., Vs} where 6 < 5 is the minimum degree of non-isolated
vertices;

(11) e(u,V;) > 1 for each w € B and V; € R;

(i1i) e(A, B) > r[(m —r)t + 1] and e(A’, B") > r(m — r)t.

2.1.2 Helpful Lemmas

Lemma 2 Let m > 1 be a fized integer. Suppose that any planar graph of
order mt with mazximum degree at most A is equitably m-colorable for any
integer t > 1. Then any planar graph with mazximum degree at most A is also

equitably m-colorable.

Lemma 3 If G is a graph with mazimum degree A > |G|/2, then G is equi-
tably A-colorable.

By Lemmas 2 and 3, it suffices to consider only the planar graph of order

mt where t > 3 is a positive integer.

Lemma 4 Let H be a graph of order mt with chromatic number x < m. If
e(H) < (m — 1)t, then H is equitably m-colorable.

Lemma 5 If a planar graph G has an independent s-set V' and there exists
B CV(G)\ V' such that |B| > (3s+e(V’, B))/2 and u has a neighbor in V'
for all w € B, then B contains two nonadjacent vertices a and 3 which are

adjacent to exactly one and the same vertex v € V'.



Proof. Let B; C B be such that each v € By is adjacent to exactly one vertex
of V'. Let k = |By|. Then k+2(|B| —r) < e(V’, B), from which it follows that
k > 2|B| —e(V',B) > 3s. Hence V' contains a vertex - which is adjacent to
at least four vertices of B;. Since G is planar, G does not induce K5. Hence

B, contains two nonadjacent vertices o and 3 which are adjacent to 7.

Lemma 6 If a graph G has an independent s-set V' and there exists B C
V(G) \ V' such that e(u,V') > 1 for all w € B, and e(G[B]) + e(V',B) <
2|B| —s, then B contains two nonadjacent vertices o and B which are adjacent

to exactly one and the same vertex v € V.

Proof. Let B(v;) consist of vertices in B whose only neighbor in V' is v;.

Note that B(v;) forms a clique in B, otherwise we get those desired vertices.

Each of the remaining vertices in B\ |J B(v;) has at least 2 neighbors in V’.
i=1

So e(G[B]) +e(V',B) > zs: ('B(;i)') +2|B| — XS: |B(v;)| > 2|B| —s. We get a
contradiction here. - -

Notation. Let g, a denote the maximum number not exceeding 3mt — 6 such
that each planar graph of order mt is equitably m-colorable if it has mazimum

degree at most A and size at most gm A.

Lemma 7 Let G be an edge-minimal planar graph of order mt with maximum
degree at most A that is not equitably m-colorable. If e(G) < (r+1)(m—r)t—
t+ 2+ g, then B contains two nonadjacent vertices o and B which are

adjacent to exactly one and the same vertex v € V{.

Proof. If e(G[A']) < ¢, a, then G[A'] is equitably r-colorable. Consequently, G
is equitably m-colorable. So we suppose e(G[A’]) > ¢, a+1. By Observation 1,
e(A\V{,B") > (r—1)(m—r)t. So e(G[B'])+e(V{, B') = e(G)—e(G[A]) —e(A"\
VI,B') <2mt—2rt—t+1=2|B'|—|V/|. But e(G[B]) = e(G[B']),e(V],B) =
e(V{,B")+1, and |B| = |B'|+1. So we have e(G[B])+e(V{, B)+1 < 2|B|—|V{|.
By Lemma 6, B contains two nonadjacent vertices a and [ which are adjacent

to exactly one and the same vertex v € V/.



Lemma 8 If G is an edge-minimal planar graph of order mt with mazximum
degree at most A that is not equitably m-colorable, then e(G) > r(m — r)t +
qr,A + 1

Proof. Suppose e(G) < r(m — r)t + ¢, a. By Observation 1, e(A’, B) >
r(m — r)t. So e(G[A']) < ¢, a, which implies G[A'] is equitably r-colorable.
Thus G is equitably m-colorable. This contradiction completes the proof.

Lemma 9 Let G be an edge-minimal planar graph of order mt with maximum
degree at most A that is not equitably m-colorable. If B contains two nonad-
jacent vertices a and 3 which are adjacent to exactly one and the same vertex
v € Vi, then e(G) > r(m —r)t + ¢ra + Gmra — A+ 4.

Proof. Suppose e(G) < r(m — )t + ¢pa + Gmra — A + 3. If e(G[4A]) <
¢r.n, then G[A'] is equitably r-colorable. Consequently, G is equitably m-
colorable. So we suppose e(G[A']) > ¢, o + 1. This with Observation 1 implies
e(G[A) + e(A,B') > q;a + 1+ r(m — r)t. Note that e(G[A]) + e(A, B") =
e(G[A])+e(A, B). Let Ay = A\ {7} U{«, 8} and B; = BU{v}\ {a, 5}. Then
e(G[A1])+e(A1, By) > e(G[A])+e(A, B)—A+2 > goa+1+r(m—r)t—A+2.
So e(G[B1]) = e(G) — e(G[A4]) + e(A1, B1) < ¢m—ra which implies G[By] is
equitably (m — r)-colorable. Combining with Vi \ {7y} U {«, 8}, Vo, ..., V., we
have GG equitably m-colorable which is a contradiction.

Corollary 1 Let G be an edge-minimal planar graph of order mt with max-
imum degree at most A that is not equitably m-colorable. Then e(G) >
r(m—r)t+q.a~+Gm-ra—A+4 if one of the following conditions are satisfied;
(i) (m—r)t+1>(t—1)(3+A)/2;

(i) e(G) < (r+1)(m —7r)t =t + 2+ g-a, then e(G) > r(m — 1)t + ¢, a +
Qm—rA — A+ 4.

Proof. This is a direct consequence of Lemmas 5, 7, and 9.



2.1.3 Results on Planar Graphs

Lemma 10 (i) gga =0. (i) goan > 2. (iii) 3o > 3. () qaa > 3L.
Proof. (i), (ii), (iii) are obvious. (iv) is the result of Lemma 4.

Lemma 11 ¢; o > min{5t + 4,7t — A+ 3} for A > 5.

Proof. Let G be an edge-minimal graph counterexample of order 5t and
e(G) < min{5t + 4,7t — A+ 3}. Let ¢ be the minimum degree of non-isolated
vertices. For 0 = 5, color non-isolated vertices with 5 colors. If one color class
has at least ¢t + 1 non-isolated vertices, then GG has at least 5¢ 4+ 5 edges which
is a contradiction. Thus every color class has at most ¢ non-isolated vertices.
Next, we can add isolated vertices to each color class to have size t. This result
is an equitable 5-coloring of GG. This is also a contradiction.

So we suppose r < § < 4. If r = 2,3, or 4, then e(G) > min{6t + 3,7t + 1}
by Lemmas 8 and 10. If r = 1, then e(G) > 7t — A + 4 by Corollary 1 and
Lemma 10. Since we obtain contradiction for all cases, the counterexample is

impossible.
Lemma 12 g5 > min{11t — A+ 5,9t + 2,5t + gs o — A + 3} for A > 6.

Proof. Let A > 6. Suppose G’ is a planar graph with maximum degree at
most A and e(G’') < min{11t — A + 5,9t + 2,5t + gsA — A + 3} but G’ is
not equitably 6-colorable. Let G C G’ be an edge-minimal graph that is not
equitably 6-colorable. From Table 2.1.1, e¢(G) > e(G’). This contradiction

completes the proof.

Lemma 13 (i) g;ao > min{15t+6 — A, 14t +4,10t + gs o +5— A, 6t + gs.a +
3—A} forT< ALY,

(11) gz.an > min{15t +6 — A, 10t + gs o +5 — A, 11t + 2,6t + gs.o +3 — A} for
A > 10.

Proof. Use Table 2.1.2 for an argument similar to the proof of Lemma 12.



r lower bounds on size Reason

5 5t + gs.a + 1 Lemma 8

4 11+ 1 Lemmas 8, 10

3 9t +4 Lemmas 8, 10

2 11t+5o0r 11t —A+6 Corollary 1(ii), Lemma 10
1| 9t+3orbt+gsan—A+4 | Corollary 1(ii), Lemma 10

Table 2.1.1: Lower bounds on size of GG in the proof of Lemma 12

r lower bounds on size Reason

5 10 + gs. A + 1 Lemma 8

4 15t 4+ 1 Lemmas 8, 10

3 15t +6or 15t +7— A Corollary 1(i), Lemma 10.
2 14t +5 or 10t +gsa +6 — A Corollary 1(i), Lemma 10
1 6t +gen+4—Afor 7T<A<L9 Corollary 1(i), Lemma 10
1|11t +3or6t+gsn+4—A for A>10 | Corollary 1(ii), Lemma 10

Table 2.1.2: Lower bounds on size of GG in the proof of Lemma 13

Lemma 14 (i) gs o > min{19¢,15¢t + gso +6 — A, 12t + gsa + 5 — A, Tt +
gra+3—A} for A=8 or9.

(i1) gs.a > min{19¢, 15t +qs A +6— A, 17t +4, 12t +ge o +5— A, Tt+gra+3— A}
for A =10 or 11.

(111) gs o > min{15t+gs A +6 — A, 12t +qgs A +5— A, 13t +2, Tt +gr o +3 — A}
for A > 12.

Proof. Use Table 2.1.3 for an argument similar to the proof of Lemma 12.

Lemma 15 (i) go o > min{20t + g5 A, 23t, 18t + gs o +6 — A, 14t + g7 n + 5 —
A8t +gsa+3— A} for9 <A <11

(i) qo,n > min{20t + g5 A, 23t, 18t +qs A +6 — A, 20t +4, 14t +qra+5— A, 8t +
gsa +3— A} if A=12.

Proof. Use Table 2.1.4 for an argument similar to the proof of Lemma 12.
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r lower bounds on size Reason

5 5t +gsn+1 Lemma 8

4 19t +1 Lemmas 8 and 10

3 19t +6or 15t +qgsn +7— A Corollary 1(i) and Lemma 10

2117t +5o0r 12t +gsa +6 — A for A > 10 | Corollary 1(i) and Lemma 10

2 12t + gsn +6 — Afor § <A <9 Corollary 1(ii) and Lemma 10

1| 13t+2o0r 7t +qgra+4—Afor A>12 | Corollary 1(i) and Lemma 10

1 Tt+qga+4—Afor 8<A<LI] Corollary 1(ii) and Lemma 10
Table 2.1.3: Lower bounds on size of GG in the proof of Lemma 14

endtable

r lower bounds on size Reason

5 200 +gsn + 1 Lemma 8

4 23t + 1 Lemmas 8 and 10

3 23t +6 or 18t +gsan +7— A Corollary 1(i) and Lemma 10.

2120t +5or 14t +gra +6 — A for A =12 | Corollary 1(i) and Lemma 10

2 4t+qga+6—-—Afor 9 <A<I11 Corollary 1(ii) and Lemma 10

1 8t +qsa+4—A Corollary 1(ii) and Lemma 10

Table 2.1.4: Lower bounds on size of GG in the proof of Lemma 15

Lemma 16 ¢joa > min{25t + g5 A, 27¢,21t + qgzo + 6 — A, 16t + gsa + 5 —
A9t + gon + 3 — A} for A = 10,11, or 12.

Proof. Use Table 2.1.5 for an argument similar to the proof of Lemma 12.

Lemma 17 ¢3 o > min{30t + ¢5 A, 31¢,24t + gga + 6 — A, 18t + gon + 5 —
A, 10t + groa +3 — A} for A =11 or 12.

Proof. Use Table 2.1.6 for an argument similar to the proof of Lemma 12.

Corollary 2 (A1) gs9 is at least 5t, 5t + 2, and 5t + 4 for t at least 3,4, and

5, respectively.



21t + gra+7— A
16t + gs.n +6 — A
9+ qgon+4—A

_ N W e O3

lower bounds on size Reason
25t + gs.n + 1 Lemma 8
27t + 1 Lemmas 8 and 10

Corollary 1(ii) and Lemma 10.

Corollary 1(ii) and Lemma 10
Corollary 1(ii) and Lemma 10

Table 2.1.5: Lower bounds on size of GG in the proof of Lemma 16

24t + gsa +7— A
18t + gon +6 — A

lower bounds on size Reason
30t + gs,a +1 Lemma 8
31t +1 Lemmas 8 and 10

Corollary 1(ii) and Lemma 10.

Corollary 1(ii) and Lemma 10

11

— N W e O3

Corollary 1(ii) and Lemma 10

10t + qion +4— A

Table 2.1.6: Lower bounds on size of GG in the proof of Lemma 17

(A2) 510 is at least 5t — 1,5t + 1, and 5t +4 for t at least 3,4, and 6, respec-
tively.

(A3) gs11 is at least 5t —2,5t, and 5t+4 fort at least 3,4, and 6, respectively.
(A4) 512 is at least 5t — 3,5t + 1, and 5t + 4 for t at least 3,5, and 7, respec-
tively.

(B1) qs9 is at least 9t —3,9t, and 9t + 2 for t at least 3,4, and 5, respectively.
(B2) qs0 is at least 9t — 5,9t — 2, and 9t + 2 for t is at least 3,4, and 6,
respectively.

(B3) qs.11 is at least 9t — 7,9t — 4, and 9t + 2 for t at least 3,4, and 6, respec-
tively.

(B4) qsq2 is at least 9t — 9,9t — 3, and 9t + 2 for t at least 3,5, and 7, respec-
tively.

(C1) qr9 is at least 14t — 6,14t — 2,14 + 1, and 14t + 4 for t at least 3,4,5,
and 8, respectively.

(C2) qr10 is at least 11t and 11t + 2 for t at least 3 and 4, respectively.
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(C3) qr11 is at least 11t — 3 and 11t + 2 for t at least 3 and 4, respectively.
(C4) qr12 is at least 11t — 6 and 11t + 2 for t at least 3 and 5, respectively.
(D1) gsg is at least 19t — 6 and 19t for t at least 3 and 4, respectively.

(D2) gs 10 is at least 17t — 4,17t — 1,17t + 1, and 17t + 4 for t at least 3,4,6,
and 9, respectively.

(D3) qs 11 is at least 17t — 8,17t — 2,17t, and 17t + 4 for t at least 3,4, 6, and
10, respectively.

(D4) gs12 is at least 13t and 13t + 2 for t at least 3 and 4, respectively.

(E1) qoq0 is at least 23t — 5 and 23t for t at least 3 and 4, respectively.

(E2) qo11 is at least 23t — 10,23t — 2, and 23t for t at least 3,4, and 5, respec-
tively.

(E3) qo 12 is at least 20t — 6,20t — 2,20¢t, and 20t + 4 for t at least 3,5,7, and
13, respectively.

(F1) qroa1 is at least 2Tt — 3 and 27t for t at least 3 and 4, respectively.

(F2) quoa2 is at least 27t — 9,27t — 1, and 27t fort at least 3,5, and 6, respec-
tively.

(G1) qi112 is at least 31t for t at least 3.

Proof. The result can be calculated directly from Lemmas 11 to 17.

Theorem 1 FEach planar graph with maximum degree at most A > 9 has an

equitable A-coloring.

Proof. Since Zhang and Yap proved the case of A > 13, it suffices to show
only the case A = 9,10, 11, or 12. By Lemmas 2 and 3, we consider only the
case |G| = At where ¢t > 3 is a positive integer. Let G be an edge-minimal pla-
nar graph with maximum degree at most A but is not equitably A-colorable.

For r = 5, we have e(G) > 5(A —5)t+¢5.a +qa_5.A — A+4 by Corollary 1.
But 5(A = 5)t + ¢s.A + ga—5.4 — A +4 > 3At — 6 by Corollary 2.

For r = 4, we have e(G) > 4(A —4)t+q.an +qa—a.an — A+4 by Corollary 1.
But 5(A—4)t+qsa+ga—a.a—A+4 > 3At—6 by Lemma 10 and Corollary 2.

Consider the case r = 3. We have e(B’,V;) > (A — 3)t, by Observa-
tion 1. But y has at most A — 1 neighbors in B’ because zy € F(G), so
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(t—1)A—12>e(B',V}). Consequently, (t—1)A—1> (A —3)t. Thatist >4
when A = 9,10, and 11, and ¢t > 5 when A = 12. By Corollary 1, e(G) >
3(A=3)t+gzsa+qa—sa—A+4. But 3(A—3)t+q3ao+qa-3A—A+3 > 3At—6
by Lemma 10 and Corollary 2.

Consider the case r = 2. Similar to the above case, we have (t —1)A —1 >
(A —2)t. That ist > 5 when A =9, ¢ > 6 when A = 10 and 11, and t > 7
when A = 12. By Corollary 1, e(G) > 2(A — 2)t + ga.a + qa—2.A — A+ 4. But
2(A = 2)t + @oa + ga—2A — A+ 3 > 3At — 6 by Lemma 10 and Corollary 2.

Consider the case r = 1. Similar to the above case, we have (t —1)A—1 >
(A—1)t. That ist > A+1. By Corollary 1, e(G) > 1(A—1)t+q1.an+qa-1.A —
A+4. But (A -1t +qa+ga1.4a —A+3>3At—6 by Lemma 10 and
Corollary 2.

Since we obtain contradiction for all cases, the counterexample is impossi-

ble.



Appendix

A1 Kittikorn Nakprasit, Fquitable Colorings of Planar Graphs with Mazxi-

mum Degree at least Nine, Discrete Math., to be appeared
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