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Abstract

This project is organized as follows :

1. For a geodesic metric space (X,d) with card(X) > 1, we define the Jordan von
Neumann constant of X by

d(y, 2)? + 4d(z, mly, z])?
2(d(z,y)* + d(z, 2)?)

Cny(X) —sup{ cx,y,2z € M and d(:L‘,y)—i—d(x,z);éO},
where [y, z] is the (geodesic) midpoint of y and z. We show that a complete geodesic
metric space X is a CAT(0) space if and only if Cxj(X) = 1. We also show that if
a complete geodesic metric space X with Cxj(X) < 2, then X has uniform normal
structure and by the famous Kirk’ s fixed point theorem, X has the fixed point prop-
erty for nonexpansive mappings. Some other properties of the Jordan von Neumann
constant are also studied.

2. Let F be a nonempty compact convex subset of a uniformly convex Banach space
X,and t: E — Fand T : E — KC(F) be a single valued nonexpansive mapping
and a multi-valued nonexpansive mapping, respectively. Assume in addition that
Fix(t) N Fix(T) # 0 and Tw = {w} for all w € Fix(¢t) N Fix(T). We prove that
the sequence of the modified Ishikawa iteration method generated from an arbitrary
xg € E by

Yn = (1 - ﬁn)fn + ﬂnzn
Ip+1 = (1 - an)l‘n + antyn

where z, € Tz, and {«a,} , {#,} are sequences of positive numbers satisfying
0<a<anlB,<b<l,

converges strongly to a common fixed point of £ and T, i.e., there exists x € F such
that x =tz € Tz.

3. We introduce a class of nonlinear continuous mappings defined on a bounded closed
convex subset of a Banach space X. We characterize the Banach spaces in which
every asymptotic center of each bounded sequence in any weakly compact convex
subset is compact as those spaces having the weak fixed point property for this type
of mappings.

Keywords : Jordan-von Neumann constant; Normal structure; Fixed point; Multivalued
nonexpansive mapping; Nonexpansive mapping ; Uniformly convex Banach space ; Asymp-
totic center
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d(y, 2)* + 4d(x, mly, 2])*
2(d(z,y)* + d(z, 2)?)

CNJ(X):SUP{ cxyy,z € M OH(x, y) + d(z, 2) 7&0}

(T, 2] OIIIOOMMOTY T8 OO OO T geodesic X (I MIITIOAT (0)
OO (X)) ILIMIgeodesic X [Ty (X)

FE OIIT : E — KC(E)
(O TOMIIIIFiX (¢) N Fix(T) # ¢ OOTMw = {w} IR € Fix(t) N Fix(T)
MMM TMMnhodified Ishikawa iteration O T

Yn = (1 - /Bn)xn + ﬂnzn

Tnt1 = (1 — ap)zn + antyn

M, € Tx, M{e,} , {G,} OO IO

O0<a<aplB,<b<l,
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Geometric Constants and Metric Fixed Point Theory

1. The Jordan von Neumann constant

1.1. Introduction

Let (X,d) be a metric space. A geodesic path joining x € X to y € X (or, more
briefly, a geodesic from z to y) is a map ¢ from a closed interval [0,/] C R to X such that
c(0) = z,c(l) =y, and d(c(t),c(t')) = |t—t'| for all t, ¢’ € [0,1]. In particular, ¢ is an isometry
and d(z,y) = l. The image « of ¢ is called a geodesic (or metric) segment joining x and
y. When it is unique this geodesic is denoted by [z,y]. The space (X,d) is said to be a
geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each z,y € X. A subset Y C X
is said to be convex if Y includes every geodesic segment joining any two of its points.

A metric space X is a CAT(0) space if it is geodesically connected, and if every geodesic
triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean plane. It is
well-known that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces, R—trees
(see [1]), Euclidean buildings (see [3]), the complex Hilbert ball with a hyperbolic metric (see
[12]), and many others. For a thorough discussion of these spaces and of the fundamental
role they play in geometry see Bridson and Haefliger [1]. Burago, et al. [6] contains
a somewhat more elementary treatment, and Gromov [13] a deeper study. Fixed point
theory in a CAT(0) space was first studied by Kirk (see [17] and [18]). He showed that
every nonexpansive (single-valued) mapping defined on a bounded closed convex subset of
a complete CAT(0) space always has a fixed point. Since then the fixed point theory for
single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed and
much papers have appeared.

If 2, y1, y2 are points in a CAT(0) space and if yo = m|y1, yo], then the CAT(0) inequality
implies

1 1 1
d(z,y0)? < §d($7y1)2 + §d($7 y2)? — Zd(yla y2)?. (CN)

This is the (CN) inequality of Bruhat and Tits [5]. In fact (cf. [1], p. 163), a geodesic space
is a CAT(0) space if and only if it satisfies (CN).
1.2. Results

Let (X,d) be a geodesic metric space with card(X) > 2. We define the Jordan von
Neumann constant of (X, d) by

d(y, 2)* + 4d(x, mly, 2])*
2(d(z,y)? + d(y, 2)?)

C’NJ(X):sup{ :az,y,zEM,d(m,y)—i—d(y,z)7&(0,0)},

where m[y, z| is the (geodesic) midpoint of y and z.

Proposition 1. We have
1 <COny(X) <2



It follows from the use of the (CN) inequality of Bruhat and Tits that :

Theorem 2. Let X be a complete geodesic metric space. Then X is a CAT(0) space if
and only if the Jordan von Neumann constant Cny(X) = 1.

Theorem 3. Let X be a complete geodesic metric space. If Cnj(X) < %, then X has
uniform normal structure.

Since our work uses the fixed point property, let us give the following definition.

Definition 4. A mapping T : X — X is said to be nonexpansive if
d(Tz,Ty) < d(z,y)

for all z,y € X. We say that X has the fixed point property if any nonexpansive mapping
defined on X has a fixed point.

The analogue of Kirk’s fixed point theorem in metric spaces can be stated by the fol-
lowing.

Theorem 5. [16] Let X be a complete bounded metric space. Asuume that X has uniform
normal structure. Then M has the fixed point property.

Using Theorem 3 and Theorem 5 together, we can conclude that :

Theorem 6. Let X be a complete bounded metric space. Asuume that Cxy(X) < 2. Then
X has the fixed point property.

Using Theorem 3 and Theorem 6 together, we obtain the known result of Kirk [17] and
[18].

Theorem 7. Let X be a complete bounded CAT(0) space. Then X has the fixed point
property.

2. Ishikawa iterative process for a pair of single valued and multi-valued
nonexpansive mappings in Banach spaces

2.1 Introduction

Let X be a Banach space and E a nonempty subset of X. We shall denote by FB(FE)
the family of nonempty bounded closed subsets of E and by KC(FE) the family of nonempty
compact convex subsets of E. Let H(-,-) be the Hausdorff distance on FB(X), i.e.,

H(A, B) = max{ supdist(a, B), supdist(b, A) }, A, B € FB(X),
acA beB

where dist(a, B) = inf{|ja — b|| : b € B} is the distance from the point a to the subset B.
A mapping t : E — FE is said to be nonexpansive if

[tz —ty[| < ||lz —y|| forall z,y € E.

A point z is called a fixed point of ¢ if tx = x.



A multi-valued mapping T : E — FB(X) is said to be nonexpansive if
H(Tx,Ty) < ||z —y| foralz,y€ E.

A point z is called a fixed point for a multi-valued mapping T if x € T'x.

We use the notation Fix(7T') stands for the set of fixed points of a mapping 7" and
Fix(t) N Fix(T') stands for the set of common fixed points of ¢ and T". Precisely, a point x
is called a common fixed point of t and 7" if x = tx € Tx.

In 2006, S. Dhompongsa et al. ([7]) proved a common fixed point theorem for two
nonexpansive commuting mappings.

Theorem 8. [7, Theorem 4.2] Let E be a nonempty bounded closed convex subset of a
uniformly Banach space X, t: E — E, and T : E — KC(FE) a nonexpansive mapping and
a multi-valued nonerpansive mapping respectively. Assume that t and T are commuting ,
.e. if for every x,y € E such that x € Ty and ty € E, there holds tx € Tty. Thent and T
have a common fixed point.

In this project, we introduce an iterative process in a new sense, called the modified
Ishikawa iteration method with respect to a pair of single valued and multi-valued nonex-
pansive mappings. We also establish the strong convergence theorem of a sequence from
such process in a nonempty compact convex subset of a uniformly convex Banach space.

The important property of a uniformly convex Banach space we use is the following
lemma proved by Schu ([22]) in 1991.

Lemma 9. ([22]) Let X be a uniformly convex Banach space, let {uy} be a sequence of real
numbers such that 0 < b < u, < c¢ <1 foralln > 1, and let {z,} and {yn} be sequences
of X such that limsup ||z,| < a, limsup ||y,|| < @ and lim ||upz, + (1 — up)ynl| = a for
n—00 n—00 n—0oo
some a > 0.Then, lim |z, — y,| = 0.
n—oo

The following observation will be used in proving our results and the proof is a straight-

forward.

Lemma 10. Let X be a Banach space and E be a nonempty closed convex subset of X.
Then,

dist(y, Ty) < |ly — z| + dist(z, Tz) + H(Tz,Ty),
where x,y € E and T is a multi-valued nonexpansive mapping from E into FB(E).

A fundamental principle which plays a key role in ergodic theory is the demiclosedness
principle. A mapping t defined on a subset E of a Banach space X is said to be demiclosed
if any sequence {x,} in E the following implication holds: z, — x and tz,, — y implies
tr =y.

Theorem 11. ([2]) Let E be a nonempty closed convex subset of a uniformly convexr Banach
space X and t : E — E be a nonexpansive mapping. If a sequence {x,} in E converges
weakly to p and {x, — tx,} converges to 0 as n — oo, then p € Fix(t).

In 1974 | Ishikawa introduced the following well-known iteration.
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Definition 12. ([14]) Let X be a Banach space, E a closed convex subset of X and ¢ a
selfmap on E. For xg € E, the sequence {x,} of Ishikawa iterates of ¢ is defined by,

{ Yn = (1 - ﬁn)l'n + Bntzn

Tyl = (1 — an)xn + antyn, n >0,
where {a,,} and {3, } are real sequences.

A nonempty subset K of E is said to be proximinal if, for any x € E , there exists an
element y € K such that ||z — y|| = dist(z, K). We shall denote P(K) by the family of
nonempty proximinal bounded subsets of K.

In 2005, Sastry and Babu ([21]) defined the Ishikawa iterative scheme for multi-valued
mappings as follows:
Let E be a compact convex subset of a Hilbert space X and T': E — P(E) be a
multi-valued mapping and fix p € Fix(T).

xg € F,

Tni1 = (1 — an)zp + anzl,, VYn >0,

where {a,}, {8n} are sequences in [0, 1] with z, € T'z,, such that ||z, — p| = dist(p, Tx,,)
and ||z, — p|| = dist(p, T'yn,)-

They also proved the strong convergence of the above Ishikawa iterative scheme for a
multi-valued nonexpansive mapping 7" with a fixed point p under some certain conditions
in a Hilbert space.

Recently, Panyanak ([20]) extended the results of Sastry and Babu ([21]) to a uniformly
convex Banach space, and also modified the above Ishikawa iterative scheme as follows:

Let E be a nonempty convex subset of a uniformly convex Banach space X and T :
E — P(E) be a multi-valued mapping

xo € F,

Yn = (1 - Bn)xn + ﬁnzn
Tpt1 = (1 — an)an + anz,, Yo >0,

where {ay,}, {fn} are sequences in [0, 1] with z, € Tz, and u, € Fix(T') such that
|z, — up|| = dist(up, Tzy) and ||z, — u,|| = dist(x,, Fix(T')), respectively. Moreover, z!, €
Tx, and v, € Fix(T') such that ||z}, — v, || = dist(v,, Tzy) and ||y, — v, || = dist(yn, Fix(T)),
respectively.

Very recently, Song and Wang (25, 26]) noted that there was a gap in the proofs of (20,
Theorem 3.1]), and ([21, Theorem 5]). Thus they solved/revised the gap by means of the
following Ishikawa iterative scheme:

Let T : E — FB(E) be a multi-valued mapping, where «y,, 3, € [0,1). The Ishikawa
iterative scheme {x,} is defined by

xo € E,

Yn = (1 - ﬂn)xn + Bnzn,
Tni1 = (1 — an)zy + anzl, V¥n >0,
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where z, € Tz, and 2], € Ty, such that ||z, — 2| < H(Tzp, Tyn) +vn and ||zn41 — 2, || <
H(Tzp41,Tyn) + v , respectively. Moreover, v, € (0,+00) such that nh_)rgo Yn = 0.

At the same period, Shahzad and Zegeye ([23]) modified the Ishikawa iterative scheme
{z,,} and extended the result of ([25, Theorem 2]) to a multi-valued quasi-nonexpansive
mapping as follows:

Let K be a nonempty convex subset of a Banach space X and T : E — FB(E) a
multi-valued mapping, where o, 8, € [0,1]. The Ishikawa iterative scheme {z,} is defined
by

xo € F,
Yn = (1 - ﬁn)xn + Bnzn,
Tni1 = (1 — an)zy + anzl,, VYn >0,

where z, € Tz, and z/, € Ty,.

2.2 Results

In this project we introduce a new iteration method modifying the above ones and call
it the modified Ishikawa iteration method.

Definition 13. Let E be a nonempty closed bounded convex subset of a Banach space X,
t : E — F be a single valued nonexpansive mapping, and 7' : E — F'B(F) be a multi-valued
nonexpansive mapping. The sequence {x,} of the modified Ishikawa iteration is defined by

Yn = (1 - Bn)mn + Bnzn
Tn+l = (1 - Oén)xn + aptyn (1)

where zg € E,z, € Tz, and 0 < a < ap, 0, < b < 1.
We first prove the following lemmas, which play very important roles in this section.

Lemma 14. Let E be a nonempty compact convex subset of a uniformly convex Banach
space X, t: E— E and T : E — FB(E) a single valued and a multi-valued nonexpansive
mapping, respectively, and Fiz(t) N Fiz(T) # 0 satisfying Tw = {w} for all w € Fiz(t) N
Fix(T). Let {x,} be the sequence of the modified Ishikawa iteration defined by (1). Then
nlggo |xn — w|| exists for all w € Fix(t) N Fiz(T).

We can see how Lemma 9 is useful via the following lemma.

Lemma 15. Let E be a nonempty compact convex subset of a uniformly convex Banach
space X, t: E — E and T : E — FB(E) a single valued and a multi-valued nonexpansive
mapping, respectively, and Fiz(t) N Fiz(T) # 0 satisfying Tw = {w} for all w € Fiz(t) N
Fizr(T). Let {x,} be the sequence of the modified Ishikawa iteration defined by (1). If
0<a<a, <b<1 for somea,beR, then nlg{.lothn — x| = 0.

Lemma 16. Let E be a nonempty compact convex subset of a uniformly convex Banach
space X, t: E — E and T : E — FB(FE) a single valued and a multi-valued nonexpansive
mapping, respectively, and Fiz(t) N Fiz(T) # 0 satisfying Tw = {w} for all w € Fiz(t) N
Fir(T). Let {x,} be the sequence of the modified Ishikawa iteration defined by (1). If
0<a<ay,Bp<b<1l for somea,becR, then nh_)n(go |xrn, — 20| = 0.
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The following lemma allows us to go on.

Lemma 17. Let E be a nonempty compact convex subset of a uniformly convex Banach
space X, t: E — E and T : E — FB(E) a single valued and a multi-valued nonexpansive
mapping, respectively, and Fix(t) N Fiz(T) # O satisfying Tw = {w} for all w € Fiz(t) N
Fir(T). Let {x,} be the sequence of the modified Ishikawa iteration defined by (1). If
0<a<ay,B, <b<1, then n11_>11010 ltx,, — x| = 0.

We give the sufficient conditions which imply the existence of common fixed points for
single valued mappings and multi-valued nonexpansive mappings, respectively, as follow:

Theorem 18. Let E be a nonempty compact convex subset of a uniformly convexr Banach
space X, t: E — E and T : E — FB(E) a single valued and a multi-valued nonexpansive
mapping, respectively and Fiz(t) N Fir(T) # O satisfying Tw = {w} for all w € Fixz(t) N
Fir(T). Let {x,} be the sequence of the modified Ishikawa iteration defined by (1). If
0 <a<anfp <b< 1, then x,, — y for some subsequence {x,,} of {x,} implies
y € Fiz(t) N Fiz(T).

Hereafter, we arrive at the convergence theorem of the sequence of the modified Ishikawa
iteration. We conclude this project with the following theorem.

Theorem 19. Let E be a nonempty compact convex subset of a uniformly convexr Banach
space X, t: E— E and T : E — FB(E) a single valued and a multi-valued nonexpansive
mapping, respectively, and Fiz(t) N Fiz(T) # 0 satisfying Tw = {w} for all w € Fixz(t) N
Fir(T). Let {xn} be the sequence of the modified Ishikawa iteration defined by (1) with
0<a<apB, <b<1l. Then {x,} converges strongly to a common fized point of t and T.

3. Asymptotic centers and fixed points

3.1 Introduction

A mapping T on a subset E of a Banach space X is called a nonexpansive mapping if
|Tx—Ty| < ||lx—y] for all z,y € E. Although nonexpansive mappings are widely studied,
there are many nonlinear mappings which are more general. The study of the existence of
fixed points for those mappings is very useful in studying in the problem of equations in
science and applied science.

The technique of employing the asymptotic centers and their Chebyshev radii in fixed
point theory was first discovered by Edelstein [9] and the compactness assumption given
on asymptotic centers was introduced by Kirk and Massa [19]. Recently, Dhompongsa et
al. proved in [8] a theorem of existence of fixed points for some generalized nonexpansive
mappings on a bounded closed convex subset E of a Banach space with assumption that
every asymptotic center of a bounded sequence relative to E is nonempty and compact.
However, spaces or sets in which asymptotic centers are compact have not been completely
characterized, but partial results are known (see [11, pp. 93]). In this project, we introduce
a class of nonlinear continuous mappings in Banach spaces which allows us to characterize
the Banach spaces with compact asymptotic centers of bounded sequence relative to their
weakly compact convex subsets as those that have the weak fixed point property for this
type of mappings.
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Let E be a nonempty closed and convex subset of a Banach space X and {z,,} a bounded
sequence in X. For x € X, define the asymptotic radius of {x,} at = as the number

r(z,{x,}) = liﬁsip |xn — 2.
Let
r=r(E,{z,}) = inf {r(z,{z,}) : z € E}

and
A=AEAxn}) ={z € E:r(z,{x,}) =1}.

The number r and the set A are, respectively, called the asymptotic radius and asymptotic
center of {x,} relative to E. It is known that A(FE, {x,}) is nonempty, weakly compact and
convex as F is [11, pp. 90].

Let T : E — FE be a nonexpansive and z € E. Then for o € (0,1) the mapping
T, : E — FE defined by setting

Tor=(1—a)z+aTx

is a contraction mapping. As we have known, Banach contraction mapping theorem assures
the existence of a unique fixed point x, € E. Since

lim ||z —Tzo| = lim (1 — )|z — Tza| =0,
a—1— a—1~

we have the following.

Lemma 20. If E is a bounded closed and convex subset of a Banach space and if T : E — FE
is nonexpansive, then there exists a sequence {x,} C E such that

lim ||z, — Tzy,|| = 0.
n—oo
3.2 Results

Definition 21. Let F be a bounded closed convex subset of a Banach space X. We say
that a sequence {x,} in X is an asymptotic center sequence for the mapping 7' : £ — X if,
for each z € E,
limsup ||z, — Tz| < limsup ||z, — z||.
n—oo n—oo

We say that T': E — X is a D-type mapping whenever it is continuous and there is an
asymptotic center sequence for 7.

The following observation shows that the concept of D-type mappings is a generalization
of nonexpansiveness.

Proposition 22. LetT : E — E be a nonexpansive mapping. Then T is a D-type mapping.

Definition 23. We say that a Banach space (X, || - ||) has the weak fixed point property
for D-type mappings if every D-type self-mapping of every weakly compact convex subset
of X has a fixed point.

Now we are in the position to prove our main theorem.
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Theorem 24. Let X be a Banach space. Then X has the weak fixed point property for
D-type mappings if and only if the asymptotic center relative to every monempty weakly
compact convex subset of each bounded sequence of X is compact.

In 2007, Garcia-Falset et al. [10] introduced another concept of a center of mappings.

Definition 25. Let E be a bounded closed convex subset of a Banach space X. A point
xo € X is said to be a center for a mapping 7' : ¥ — X if, for each z € F,

T2 — 2ol < [l — x0]|.

A mapping T : E — X is said to be a J-type mapping whenever it is continuous and it has
some center xg € X.

Definition 26. We say that a Banach space X has the J-weak fixed point property if every
J-type self-mapping of every weakly compact subset F of X has a fixed point.

Employing the above definitions, the authors proved a characterization of the geomet-
rical property (C') of the Banach spaces introduced in 1973 by R. E. Bruck [4] : A Banach
space X has property (C') whenever the weakly compact convex subsets of its unit sphere
are compact sets.

Theorem 27. [10, Theorem 16] Let X be a Banach space. Then X has property (C) if
and only if X has the J-weak fized point property.

It is easy to see that a center ¢y € X of a mapping 7' : E — X is can be seen as an
asymptotic center sequence {z,} for the mapping 7" by setting z,, = x for all n € N. This
leads to the following conclusion.

Proposition 28. Let T : E — X be a J-type mapping. Then T is a D-type mapping.
Consequently, we have

Proposition 29. Let X be a Banach space. If X has the weak fixed point property for
D-type mappings, then X has the J-weak fized point property.

From Theorem 24, Theorem 16 of [10], and Proposition 29 we can conclude this project
by the following.

Theorem 30. Let X be a Banach space. If the asymptotic center relative to every nonempty
weakly compact convex subset of each bounded sequence of X is compact, then X has property

(@).
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Abstract

Let F be a nonempty compact convex subset of a uniformly convex Banach space
X,and t: E — F and T : E — KC(FE) be a single valued nonexpansive mapping and
a multi-valued nonexpansive mapping, respectively. Assume in addition that Fix(t) N
Fix(T) # 0 and Tw = {w} for all w € Fix(¢) N Fix(T). We prove that the sequence of
the modified Ishikawa iteration method generated from an arbitrary xo € E by

Yn = (1 - ﬁn)xn + ﬁnzn

Tn+1 - (1 - an)mn + antyn
where z, € Tz, and {an} , {Bn} are sequences of positive numbers satisfying

0<a<anfBn<b<l,

converges strongly to a common fixed point of ¢ and T, i.e., there exists x € E such that
z=tr eTx.
Keywords: Nonexpansive mapping, Fixed point, Uniformly convex Banach space, Ishikawa

iteration.

1 Introduction

Let X be a Banach space and E a nonempty subset of X. We shall denote by FB(F)
the family of nonempty bounded closed subsets of E and by KC(FE) the family of nonempty
compact convex subsets of E. Let H(-,-) be the Hausdorff distance on FB(X), i.e.,

*Corresponding author.
t E-mail addresses: k_sokhuma@yahoo.co.th (Kritsana Sokhuma), akaewkhao@yahoo.com (Attapol Kaewkhao)



H(A, B) = max{ supdist(a, B), supdist(b, A) }, A, B € FB(X),
a€A beB

where dist(a, B) = inf{|la — b|| : b € B} is the distance from the point a to the subset B.

A mapping t : E — FE is said to be nonexpansive if
[tz —ty|| < ||z —y|| forall z,y € E.

A point z is called a fixed point of ¢ if tx = x.
A multi-valued mapping T : E — FB(X) is said to be nonexpansive if

H(Tz,Ty) < ||z —y|| forallz,ye€ E.

A point z is called a fixed point for a multi-valued mapping T if z € Tx.

We use the notation Fix(T) stands for the set of fixed points of a mapping T and Fix(¢) N
Fix(T') stands for the set of common fixed points of ¢ and T'. Precisely, a point z is called a
common fixed point of ¢t and T if x = tx € Tx.

In 2006, S. Dhompongsa et al. ([2]) proved a common fixed point theorem for two nonex-

pansive commuting mappings.

Theorem 1.1. [2, Theorem 4.2] Let E be a nonempty bounded closed convex subset of a
uniformly Banach space X, t : E — E, and T : E — KC(FE) a nonezpansive mapping and
a multi-valued nonexpansive mapping respectively. Assume that t and T are commuting , i.e.
if for every x,y € E such that x € Ty and ty € E, there holds tx € Tty. Then t and T have

a common fized point.

In this paper, we introduce an iterative process in a new sense, called the modified
Ishikawa iteration method with respect to a pair of single valued and multi-valued nonexpan-
sive mappings. We also establish the strong convergence theorem of a sequence from such
process in a nonempty compact convex subset of a uniformly convex Banach space.

2 Preliminaries

The important property of a uniformly convex Banach space we use is the following lemma
proved by Schu ([6]) in 1991.

Lemma 2.1. ([6]) Let X be a uniformly convex Banach space, let {u,} be a sequence of real
numbers such that 0 < b < wu, <c <1 foralln > 1, and let {z,} and {y,} be sequences of



X such that limsup ||z,|| < a, limsup ||y,|| < a and lim |ju,z, + (1 — uy)yn|| = a for some
n—oo n—oo n—oo

a > 0.Then, lim ||z, —y,|| = 0.
n—oo

The following observation will be used in proving our results and the proof is a straight-

forward.

Lemma 2.2. Let X be a Banach space and E be a nonempty closed convex subset of X.
Then,
dist(y, Ty) < |ly — z|| + dist(z, Tx) + H(Tx,Ty),

where x,y € E and T is a multi-valued nonexpansive mapping from E into FB(E).

A fundamental principle which plays a key role in ergodic theory is the demiclosedness
principle. A mapping ¢ defined on a subset F of a Banach space X is said to be demiclosed if
any sequence {z,} in E the following implication holds: x,, — = and tx,, — y implies tx = y.

Theorem 2.3. ([1]) Let E be a nonempty closed convex subset of a uniformly convex Banach
space X andt: E — E be a nonexpansive mapping. If a sequence {x,} in E converges weakly

to p and {x,, — tx,} converges to 0 as n — oo, then p € Fix(t).

In 1974 , Ishikawa introduced the following well-known iteration.

Definition 2.4. (/3]) Let X be a Banach space, E a closed convez subset of X and t a selfmap
on E. For xg € E, the sequence {x,} of Ishikawa iterates of t is defined by,

Tpt1 = (1 — an)zy, + antyn, n >0,

where {a,} and {B3,} are real sequences.

A nonempty subset K of F is said to be proximinal if, for any « € E , there exists an
element y € K such that || — y|| = dist(x, K). We shall denote P(K) by the family of
nonempty proximinal bounded subsets of K.

In 2005, Sastry and Babu ([5]) defined the Ishikawa iterative scheme for multi-valued map-
pings as follows:

Let E be a compact convex subset of a Hilbert space X and T : E — P(E) be a multi-
valued mapping and fix p € Fix(T).

Ty € F,
Yn = (1 - ﬂn)xn + Bnzn

Tpi1 = (1 — ap)xn + anzl, VYn >0,



where {a,}, {8,} are sequences in [0, 1] with z, € Tx, such that ||z, — p|| = dist(p, Tz,)
and [|z;, — pl| = dist(p, Tyn).

They also proved the strong convergence of the above Ishikawa iterative scheme for a
multi-valued nonexpansive mapping 7" with a fixed point p under some certain conditions in
a Hilbert space.

Recently, Panyanak ([4]) extended the results of Sastry and Babu ([5]) to a uniformly
convex Banach space, and also modified the above Ishikawa iterative scheme as follows:

Let E be a nonempty convex subset of a uniformly convex Banach space X and T : £ —
P(E) be a multi-valued mapping

T9 € F,
Yn = (1 - ﬂn)zn + Bnzn

Tp+1 = (1 - an)xn + anziw Vn > 0,

where {a,}, {6n} are sequences in [0, 1] with z, € Tz, and u, € Fix(T) such that
|2, — un|| = dist(up, Tz,) and ||z, — u,|| = dist(x,, Fix(T")), respectively. Moreover, z/, €
Tz, and v, € Fix(T) such that ||z}, — v, || = dist(vy, Tz,) and ||y, — vs|| = dist(yn, Fix(T)),
respectively.

Very recently, Song and Wang ([8, 9]) noted that there was a gap in the proofs of ([4,
Theorem 3.1]), and ([5, Theorem 5]).

Thus they solved/revised the gap by means of the following Ishikawa iterative scheme:
Let T : E — FB(FE) be a multi-valued mapping, where a,, 3, € [0,1). The Ishikawa

iterative scheme {z,} is defined by

Ty € F,
Yn = (1 - ﬂn)xn + Bnzn,

Tpt1 = (1 —ap)Tn + anzy,, Yn >0,

where z,, € T, and 2], € Ty, such that ||z, — z},|| < H(TZpn, TYyn) + vn and ||zn+1 — 2] <
H(Txzp41,Tyn) + n , respectively. Moreover, ~,, € (0,400) such that 1Lm Y = 0.

At the same period, Shahzad and Zegeye ([7]) modified the Ishikawa Tilte;;tive scheme {z,}
and extended the result of ([8, Theorem 2]) to a multi-valued quasi-nonexpansive mapping as
follows:

Let K be a nonempty convex subset of a Banach space X and T': E — FB(F) a multi-
valued mapping, where ay,, 3, € [0, 1]. The Ishikawa iterative scheme {z,} is defined by

zo € F,
Yn = (1 - ﬂn)xn + Bnzn,

Tpi1 = (1 — ap)xn + anzl, VYn >0,



where z,, € Tz, and 2/, € Ty,.

In this paper we introduce a new iteration method modifying the above ones and call it
the modified Ishikawa iteration method.

Definition 2.5. Let E be a nonempty closed bounded convex subset of a Banach space X,
t: E — E be a single valued nonexpansive mapping, and T : E — FB(E) be a multi-valued

nonezpansive mapping. The sequence {x,} of the modified Ishikawa iteration is defined by

Tnt1 = (1 — an)xn + anty, (2.1)

where xg € E, 2z, € Txy and 0 < a < ap, B, <b < 1.

3 Main Results

We first prove the following lemmas, which play very important roles in this section.

Lemma 3.1. Let E be a nonempty compact convex subset of a uniformly convex Banach space
X,t:E— FE andT : E — FB(FE) a single valued and a multi-valued nonexpansive mapping,
respectively, and Fiz(t) N Fiz(T) # O satisfying Tw = {w} for oll w € Fiz(t) N Fiz(T). Let
{zn} be the sequence of the modified Ishikawa iteration defined by (2.1). Then lim |z, — w]|
exists for all w € Fiz(t) N Fix(T). o

Proof. Let 29 € E and w € Fix(t) N Fix(T), we have

[#nt1 = wll = [|(1 = an)zn + ant((1 = Bn)Tn + Bnzn) — vl
= (1 = an)zn + ant((1 = Bn)zn + Bnzn) — (1 — an)w — anw|
< (1= am) [len —wll + an [E((1 = Bn)@n + Bnzn) — w]|
< (I —an) [on —wl +an [|(1 = Bn)rn + Brzn — w]|
(1 = an) [len = wll + an [|(1 = Bn)n + Bnzn — (1= Bn)w — Bnw]|
(1= an) lzn — wl| + an(l = Bn) lzn — wl| + anfn [|2n — w]|
=1 =) llzn —wl + an(l = Bp) lzn — w| + anBndist(z,, Tw)
( ) (1
( (

I IA

IN

IA

)
1—an) ||zn —w|| + an(1 = 6n) |xn — w|| + anBnH (Txy, Tw)
)
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1—Bn) |20 — w|| + anfn ||on — w|]

IA

1 —ap) |z —w|| + ay

= [|lzn —wl|.



Since {||z, — w||} is a decreasing and bounded sequence, we can conclude that the limit of
{||lzn — w||} exists. O

We can see how Lemma 2.1 is useful via the following lemma.

Lemma 3.2. Let E be a nonempty compact convez subset of a uniformly convexr Banach space
X,t:E— FE andT : E — FB(FE) a single valued and a multi-valued nonexpansive mapping,
respectively, and Fiz(t)NFix(T) # 0 satisfying Tw = {w} for allw € Fiz(t)NFiz(T). Let {x,}
be the sequence of the modified Ishikawa iteration defined by (2.1). If 0 < a < ay, <b< 1 for

some a, b € R, then lim |ty, — z,|| = 0.
n—oo
Proof. Let w € Fix(¢) N Fix(T). By Lemma 3.1, we put lim ||z, — w|| = ¢ and consider
n—oo

[tyn — w|| < [lyn — w]|
= l(1 = Bn)zn + Pnzn — w||
< (A =6n) llen —wl + Bnllzn — wl|
=(1—-0,) |zn — w| + Brdist(z,, Tw)
< (1 =Bn) lzn —wl| + B H (T, Tw)
< (1= 6n) llen —wl[ + B llzn — wl]

= [Jen —wl.
Then we have
lim sup |[ty, — w|| <limsup ||y, — w| < limsup ||z, —w| = c. (3.1)
n—oo n— 00 n—oo

Further, we have
c= lim ||zp41 —w]
n—oo
= lim ||(1 — an)Zn + antyn — w||
n—oo
= lim ||apty, — w4+ T — @pxy + apw — w|
n—oo

= nh_)ngo lan (tyn — w) + (1 — an)(zn —w)| .

By Lemma 2.1, we can conclude that lim ||(ty, —w) — (2, —w)|| = lm |ty, —x,||=0.0

Lemma 3.3. Let E be a nonempty compact convez subset of a uniformly convexr Banach space
X,t:E— FE andT : E — FB(FE) a single valued and a multi-valued nonexpansive mapping,
respectively, and Fiz(t)NFix(T) # 0 satisfying Tw = {w} for allw € Fiz(t)NFizx(T). Let {x,}
be the sequence of the modified Ishikawa iteration defined by (2.1). If 0 < a < o, fn <b< 1

for some a, b € R, then lim ||z, — z,| = 0.
n—oo



Proof. Let w € Fix(t) N Fix(T). We put, as in Lemma 3.2, lim ||z, —w|| = ¢. For n > 0,

we have
Znt1 —w|l = |[(1 — an)rn + anty, — w||
=10 = an)zn + anty, — (1 — ap)w — ayw||
< (1 —ap) [|En — w|| + an |[tyn — w||
S (]- - an) ||xn - ’lU” + Qo ||yn - U}” 9
and hence
[t — w]| = 20 — w]| < —an (|20 — 0] + o lyn — w]|
[zn41 = w]| = flan — w| < an(llyn — w|| = [lzn —wl])
Tyl — w|| — ||z, —w
H n+ || H n H < Hyn—w||—||39n—w||
Qp,

Therefore, since 0 <a < a,, <b< 1,

(Ifﬂnﬂ — w|| = [lzn — ]|

)+ ln — wl) < 1y — wll.
an

Thus,

n— o0 (6775

lim inf {(|xn+1 — ol = llan = w|) + ||z — w||} < liminf ||y, — w]| .
n—oo
It follows that
¢ < liminf ||y, — w] .
n—oo

Since, from (3.1), limsup ||y, — w|| < ¢, we have

¢ = lim [ly.— vl
= nlLH;o (1 = Bn)Tn + Bnzn — wl|
=l (= B) @~ w) + Bz~ )] (32)

Recall that

Iz, — w]| = dist(zy, Tw)

< H(Txp, Tw)
<y — wl| -
Hence we have
limsup ||z, — w| < limsup ||z, — w| = c.
n—oo n—oo



Using the fact that 0 < a < 8, < b < 1 and (3.2), we can conclude that lim |z, — z,| = 0.
O

The following lemma allows us to go on.
Lemma 3.4. Let E be a nonempty compact convex subset of a uniformly convexr Banach space
X,t:E— FE andT : E — FB(F) a single valued and a multi-valued nonexpansive mapping,
respectively, and Fiz(t)NFin(T) # 0 satisfying Tw = {w} for allw € Fiz(t)NFiz(T). Let {x,}
be the sequence of the modified Ishikawa iteration defined by (2.1). If 0 < a < a, B, < b <1,
then nler;O [tz — x| = 0.

Proof. Consider

[txn = znll = tn — tyn + tyn — o0

< tzn = tynll + ltyn — 2all

< lwn = ynll + l[tyn — 2nl

= llzn = (1 = Bu)zn = Bnznll + [[tyn — on

= [[#n = Zn + Brn — Bnnll + [[tyn — zn|

= B lln = 2znll + [[tyn — znl| -
Then, we have

T = | <t Gyl = 2l + T g — 2]

Hence, by Lemma 3.2 and Lemma 3.3, nlingo [tz — xn|| = 0. O

We give the sufficient conditions which imply the existence of common fixed points for

single valued mappings and multi-valued nonexpansive mappings, respectively, as follow:

Theorem 3.5. Let E be a nonempty compact convex subset of a uniformly convexr Banach
space X, t: E — E and T : E — FB(FE) a single valued and a multi-valued nonexpansive
mapping, respectively and Fix(t)N Fiz(T) # 0 satisfying Tw = {w} for allw € Fiz(t)N Fiz(T).
Let {x,} be the sequence of the modified Ishikawa iteration defined by (2.1). If 0 < a <
O, Bn < b < 1, then x,, — y for some subsequence {xy,} of {xn} impliesy € Fix(t)NFiz(T).

Proof. Assumed that lim ||z,, —y|| = 0. From Lemma 3.4, we have

0= lim |tzn, — zn,|| = lim ||(I —t)(xn,)] -

Since I — t is demiclosed at 0, we have (I —t)(y) = 0 and hence y = ty, i.e., y € Fix(t). By
Lemma 2.2 and by Lemma 3.4, we have

dist(y, Ty) < ||y — @p, || + dist(xn,, Tan,) + H(T2p,, Ty)

<y = zn, | + |[Zn; — 2]l + |20, =yl — 0 as i — 00.



It follows that y € Fix(T). Therefore y € Fix(¢t) N Fiz(T) as desired. O

Hereafter, we arrive at the convergence theorem of the sequence of the modified Ishikawa

iteration. We conclude this paper with the following theorem.

Theorem 3.6. Let E be a nonempty compact convex subset of a uniformly convexr Banach
space X, t : E — E and T : E — FB(E) a single valued and a multi-valued nonexpansive
mapping, respectively, and Fiz(t)NFix(T) # O satisfying Tw = {w} for allw € Fiz(t)NFiz(T).
Let {x,} be the sequence of the modified Ishikawa iteration defined by (2.1) with 0 < a <
Qn,Bn <b< 1. Then {x,} converges strongly to a common fized point of t and T.

Proof. Since {z,} is contained in E which is compact, there exists a subsequence {x,,} of
{zy} such that {z,,} converges strongly to some point y € E, i.e., lim ||z, —y| = 0. By
Theorem 3.5, we have y € Fix(¢) N Fix(T) and by Lemma 3.1, we };;/Zo that lim ||z, — y||
exists. It must be the case that lim ||z, — y|| = lim ||,, — y|| = 0. Therefor {Z:}C»)Oconverges
strongly to a common fixed poig?gjo of t and T. o O
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Abstract

We introduce a class of nonlinear continuous mappings defined on a bounded closed
convex subset of a Banach space X. We characterize the Banach spaces in which every
asymptotic center of each bounded sequence in any weakly compact convex subset is

compact as those spaces having the weak fixed point property for this type of mappings.

1 Introduction

A mapping T on a subset E of a Banach space X is called a nonexpansive mapping if
[Tz — Ty| < ||z —y|| for all z,y € E. Although nonexpansive mappings are widely studied,
there are many nonlinear mappings which are more general. The study of the existence of
fixed points for those mappings is very useful in solving in the problems of equations in science

and applied science.

The technique of employing the asymptotic centers and their Chebyshev radii in fixed
point theory was first discovered by Edelstein [3] and the compactness assumption given
on asymptotic centers was introduced by Kirk and Massa [6]. Recently, Dhompongsa et
al. proved in [2] a theorem of existence of fixed points for some generalized nonexpansive
mappings on a bounded closed convex subset E of a Banach space with assumption that
every asymptotic center of a bounded sequence relative to E is nonempty and compact.
However, spaces or sets in which asymptotic centers are compact have not been completely

characterized, but partial results are known (see [5, pp. 93]).

In this paper, we introduce a class of nonlinear continuous mappings in Banach spaces
which allows us to characterize the Banach spaces in which every asymptotic center of each
bounded sequence in any weakly compact convex subset is compact as those spaces having

the weak fixed point property for this type of mappings.

*Corresponding author.
t B-mail addresses: akaewkhao@yahoo.com (Attapol Kaewkhao), k-sokhuma@yahoo.co.th (Kritsana Sokhuma)



2 Preliminaries

Let E be a nonempty closed and convex subset of a Banach space X and {x,} a bounded
sequence in X. For € X, define the asymptotic radius of {z,} at x as the number

r(z,{zn}) = limsup [z, — .

n—oo

Let
r=r(E,{x,}) = inf {r(z, {z,}) : x € £}

and
A= AE{zn}) ={z € E:r(x,{z,}) =71}.

The number r and the set A are, respectively, called the asymptotic radius and asymptotic
center of {z,} relative to E. It is known that A(F,{z,}) is nonempty, weakly compact and
convex as E is [5, pp. 90].
Let T : E — E be a nonexpansive and z € E. Then for « € (0,1) the mapping T, : E — FE
defined by setting
Tor=(1—-a)z+aTx

is a contraction mapping. As we have known, Banach contraction mapping theorem assures

the existence of a unique fixed point x, € E. Since
lim ||zq —T2o]| = lm (1 —a)|z —Tzs| =0,
a—1- a—1-
we have the following.

Lemma 2.1. If E is a bounded closed and convex subset of a Banach space and if T : E — E
is nonexpansive, then there exists a sequence {x,} C E such that

lim |z, —Tz,| =0.

n—

3 Main Results

Definition 3.1. Let E be a bounded closed convex subset of a Banach space X. We say that
a sequence {x,} in X is an asymptotic center sequence for a mapping T : E — X if, for each
reF,
lim sup ||, — Tz|| < limsup ||z, — z||.
n—oo n—oo
We say that T : E — X is a D-type mapping whenever it is continuous and there is an

asymptotic center sequence for 7.

The following observation shows that the concept of D-type mappings is a generalization

of nonexpansiveness.

Proposition 3.2. Let T : E — E be a nonexpansive mapping. Then T is a D-type mapping.



Proof. It is easy to see that T is continuous. By Lemma 2.1 there exists a sequence {x,}
such that

lim |z, — Tz,| =0.

n—oo

For z € F,
|z — Tl < |lon — Tanl| + |Ton — Ta|| < [[zn — Tonl| + |20 — 2.

Then

limsup ||z, — Tz| < limsup ||z, — ||
n—oo

n—oo
This implies that {z,} is an asymptotic center sequence for T. Thus T is a D-type mapping.
O

Definition 3.3. We say that a Banach space (X, || - ||) has the weak fized point property for
D-type mappings if every D-type self-mapping on every weakly compact convex subset of X
has a fixed point.

Now we are in the position to prove our main theorem.

Theorem 3.4. Let X be a Banach space. Then X has the weak fized point property for D-
type mappings if and only if the asymptotic center relative to each nonempty weakly compact

convez subset of each bounded sequence of X is compact.

Proof. Suppose the asymptotic center of any bounded sequence of X relative to any nonempty
weakly compact convex subset of X is compact. Let E be a weakly compact convex subset of
X and T : E — E be a D-type mapping having {z,} as an asymptotic center sequence. Let
r and A, respectively, be the asymptotic radius and the asymptotic center of {z,} relative to
E. Since F is weakly compact and convex, A is nonempty weakly compact and convex. For
every © € A, since {x,} is an asymptotic center sequence for T, we have
r < limsup ||z, — Tz| < limsup ||, — x| =r.
n—oo n—oo

Hence T'(x) € A, which implies that A is T—invariant. By the assumption, A is a compact
set. By using Schauder’s fixed point theorem we can conclude that T has a fixed point in A

and hence T has a fixed point in F.
Now suppose X has the weak fixed point property for D-type mappings, and suppose there

exists a weakly compact convex subset K of X and a bounded sequence {z,} in X whose
asymptotic center A relative to K is not compact. By Klee’s theorem (see [5, pp. 203]), there
exists a continuous, fixed point free mapping T : A — A. We see that {x,} is an asymptotic

center sequence for T. Indeed, since Tz € A for each x € A, we have

limsup ||z, — Tz|| = r = limsup ||z, — z|.

n—oo n—o0

Then T is a D-type mapping. Thus T should have a fixed point which is a contradiction. [

In 2007, Garcia-Falset et al. [4] introduced another concept of centers of mappings.



Definition 3.5. Let E be a bounded closed convex subset of a Banach space X. A point
xo € X 1is said to be a center for a mapping T : E — X if, for each x € E,

[Tz — wol| < [l = o-

A mapping T : E — X is said to be a J-type mapping whenever it is continuous and it has

some center xg € X.

Definition 3.6. We say that a Banach space X has the J-weak fixed point property if every
J-type self-mapping of every weakly compact subset E of X has a fixed point.

Employing the above definitions, the authors proved a characterization of the geometrical
property (C) of the Banach spaces introduced in 1973 by R. E. Bruck [1] : A Banach space X
has property (C') whenever the weakly compact convex subsets of its unit sphere are compact
sets.

Theorem 3.7. [/, Theorem 16] Let X be a Banach space. Then X has property (C) if and
only if X has the J-weak fixed point property.

It is easy to see that a center xg € X of a mapping T : £ — X is can be seen as an
asymptotic center sequence {z,} for the mapping T by setting x,, = z¢ for all n € N. This
leads to the following conclusion.

Proposition 3.8. Let T : E — X be a J-type mapping. Then T is a D-type mapping.

Consequently, we have
Proposition 3.9. Let X be a Banach space. If X has the weak fized point property for D-type
mappings, then X has the J-weak fixed point property.

From Theorem 3.4, Theorem 3.7, and Proposition 3.9 we can conclude this paper by the
following result:

Theorem 3.10. Let X be a Banach space. If the asymptotic center relative to every nonempty

weakly compact convex subset of each bounded sequence of X is compact, then X has property

(©).
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