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Abstract

Project Code : MRG5180217

Project Title : Development of a Nanometer Electrical Particle Analyzer using

Electrostatic Charge Measurement Technique
Investigator : Dr. Panich Intra
E-mail Address : panich_intra@yahoo.com
Project Period : 2 Years

A nanometer electrical particle analyzer using electrostatic charge measurement
technique was developed in this project. The aim of this project is to design, construct,
and performance test the prototype of the analyzer by using materials and control
system which is the development and domestic replacement parts from abroad in order
to the terms of the instrumentation appropriate work rates and the adoption of
commercial.

The developed particle analyzer consists of a size selective inlet, a particle
corona charger, an ion trap, a Faraday cup, an electrometer, a data acquisition and
processing system, and a fluid flow control system. The flow system of the analyzer was
controlled and regulated by mean of mass flow controller and vacuum pump. In this
system, a nanoparticle sample first passes through the size selective inlet to remove
particles outside the measurement size range based on their aerodynamic diameter,
and then pass through the particle corona charger that sets a charge on the particles
and enter the ion trap to remove the free ions. After the ion trap, the charged particles
then enter the Faraday cup electrometer for measuring ultra low current about 10'12 A
induced by charged particles collected on the HEPA filter in Faraday cup corresponding
to the number concentration of particles. Signal current is then recorded and processed
by a data acquisition system. Finally, time variation of particle number concentration

was also shown.



In this project, both theoretical and experimental studies of the sub-components
of the analyzer includes the size selective inlet, the particle corona charger, the ion trap,
a Faraday cup, the electrometer, and the data acquisition and processing system were
conducted. The combustion aerosol generator (CAG) was used to generate a
polydisperse aerosol for the performance test of this analyzer. The results have been
compared with the standard instruments to verify the accuracy. It was found from the

results that the developed analyzer was capable of measuring number concentration of

nanometer sized particles in the range of approximately 1 X 1010 to 1 X 1012
particles/m3 corresponding to the signal current in the range of approximately 1 to 250
pA. Time response of this analyzer was about 1 s.

Suggestions for further research on both the theoretical and experimental parts
of this project: (a) further research should be focused on the effect of particle shape on
the overall performance of the analyzer, (b) the analyzer should be improved to a
smaller size for portability in field test, and (c) calibration and comparison of the
analyzer with other particle measuring devices (e.g. SMPS, EAS, DMS, and ELPI)

should be conducted further.

Keywords : Particle Aerosol ion Nanometer Electrostatic
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Analog to Digital Converter
Combustion Aerosol Generator
Condensation Particle Counter
Diffusion Charging Electrometer
Differential Mobility Analyzer
Electrical Aerosol Analyzer
Electrical Aerosol Detector

High Efficiency Particulate Air
Nano Electromechanical System
Polytetrafluoroethylene
Scanning Electron Microscope
Thermo-Systems Incorporated
Ultrafine Particle Measurement System

Whitby Aerosol Analyzer
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=

a0aJIasy (aerosol) ﬁaa%mﬂ (particles) Aduuouds (solid) NIDVDILAR? (liquid)

wrusasagluameniaudauazlvwaagluzgig 1 wilwaas (hm) 8 100 lulasiuas (um)
. | A A o Aa
(Hinds 1999) azaasaasinafiiNaniznudafInIanen FUNMNLIZAMNNTIATaITzTINT
uazmauHsIFngslanluussenmea  Jomwsfisnmsamealwmilaslugiildinaliaszuu
muduwmelateds  wazbilunhnudufvdanmaudsiievesdszmnaiiasnnmigania
wilagnaumanfamwaiinndt 2.5 lulasiuas (Hinds 1999) uanantt deywimstwlan
vasaymaluszauinluuny wia  aynawlu  (nano-particles) fHifldarzuumInialy
a & A 2 o o [ ' @
gamwmnyan lulasBianniefinduazansnedaih ndonssw uazwilunalulad 1w Mawam
JTULLATRINA TN 2UNAT2 (nano-electromechanical systems) %38 NEMs sﬁﬁamgmﬂmiu
1 tﬂq’ 1 a 1 6 a o 6 o o a
wanazdinaliudagUnoal sruy uazndadus matlasiuaannildlas In1saaseu
a 6 A' dly é 1 a%’ a 1 d'
ez muguamnweIna uaziswiauanaymalu TaztaTUSinmuazuna 1NN
. d“VLw a = & . o

vasaymaniild  laswgdnisuuaznalnraseumaiduisidusessme (size) uIn
(number) LaENIR (mass) (Intra and Tippayawong, 2003)

luagtiuanasgiuanududusasaynaazafuniugIuadInauna LT
ANAI3 % Particulate Matter 10 %38 PM 10 (U3anaenuidudusnazasaunausiuassluy
omanfiawaiannit 10 lulaswas) vainsumvquuadis uddynizesmyininazas
aumaluiagiu  dnzifanueumandvmalng iwnziduildsumasmaidniuwm
uwnﬁuaauﬁﬁﬁﬂuaamaaagﬂﬁﬂﬁﬁmumeH@' MBENNLTY  NIREUMNAYIGA 1 Tulasiuas
o @ ~ a ]
F1mau 1000 auma wviiuaaTedayMaIwIa 10 lulanuas issaymade $997n
NENUMABNUIRaNENUdagMNTatamazan 1 luleswas  Suwaliugandn
aumMara 10 lulaswas wnzheumazwia 1 lwlasuas sansanzgnzaadlui
vinhmduinfiigazaslealumamielald (Hinds 1999) dantunisiaduinvasanniaiai
anudidguazlianugndasuiniinimyiainazeseuma  uazmsiadwansesanna
awwﬁinﬁa:uﬂaaﬁﬂﬂﬂLﬂuuaamaoa%nWQqﬁhﬂﬂ%éhiﬁ

NnMIETATeyaNNgNINgTaIUAzLE NI TNWITLEN Y WUILATIALATEA
ﬂ%mmmmLﬁuﬁu’ﬁﬁmumaﬂa%mﬂmiu (nano-particles number concentration analyzer)
lutlagtiuldlinsinsITouazWamnnuadnsdaiitas (Agrawal and Sem 1980; Lehtimaki
1983; Johnson et al. 2002; Kaufman et al. 2002; Wilson et al. 2004; Park et al. 2005) L8z
lafimsndasanuduinIasunasgruiaiBondiod (Thermo-System Inc. 2002; Thermo-



System Inc. 2005) L7% CPC (Condensation Particle Counter) (Agrawal and Sem 1980) %38
EAD (Electrical Aerosol Detector) (Lehtimaki 1983; Johnson et al. 2002; Kaufman et al.
2002; Wilson et al. 2004) CPC Lﬂmﬂ%aaﬁfmiﬁmumgmﬂmﬁﬁ’uazhan*?wamwém%’uﬁfu
ﬁhmumgmﬂﬁﬁmm@agﬂuma 2.5 wlwuas o9 10 ulasiues 1w CPC mi,mﬂgﬂﬁﬂﬁﬁ
g . e . .
el dnlasnsnivuiusedlaluniuen (butanal vapor) LAzIMNHUIZONATIVTULAZIL
fwulagldaumainfeunidaruaiseslalan  (laser diode) ud CPC  Huwalng
mﬁauﬁwmmm:ﬁﬁmgd §%3U EAD agmngﬂé‘@ﬂi:aﬂ@mﬂ%adé'@ﬂs:ﬁ;a%mmmu
UWWINIza1e  (diffusion charger) Lmzmgmﬂﬁﬁﬂszqazgﬂa:aué’ﬂ@mmimul,iﬂvl,ﬂﬂ'oﬁaé'ﬂ
dl < @ o . . Y dl a s >
nyasaunafiduaiiin (conducting filter) m:LLa"LWWWIm@mﬂmia:aummaamgmﬂuum
annIasRzgnindisiaIasianizuadn wia Bianinsliinad (electrometer) WazINUUIYN
Lqur;i’un‘flummLﬂT&lﬁuL%qﬁ‘hmumaaagmﬂ
ﬂi:mﬂvlmnLﬂuﬂi:mﬂﬁﬁq@m%miuLLazmﬂIuIaﬁmma@ﬁLﬁmﬁa FateananIwli
a o P’ e ' ° o o A A e Ao &
mMandaIanauLazadnIalTudIndsg  dwniunandesesiiouazaUnoivugiuidndy
U a g v { =) =3 v v o
NIWINIFINTIN A betadnelundising 1309303 RkUS I mA NN NT U WIUY D9
amgmﬂﬁﬁsl"ﬁﬁ'ua%iluﬂaqﬁ'u T,@]ULo‘,wwﬂuo'}uﬁm’%amumuqmqmmwﬁsﬂmgomﬂa%isl,u
RANRALLFWLIN DANILIADINININNTHITILATIN AR LINTIING U TN AN UNIR A
A = A o ' = x> A v o @ ' o A o
mLﬂummampmamimamamuvlmcﬂ Lih 99 NTaI N bvsulszuman I FIN e AEINY
A A o & o ' ° o ° Ao =< A o o A A L AR A v
\A30IlBLLATATAUNAINE mlumsmmmammzﬂﬂmmaﬂmmawammmwaguaﬂ
o v A A a o ¢ A A , A o a o A
Turssnanva lidliag umiwwmua:ﬂs:qn@Lmamammﬂmlmmﬂiﬂaﬂ IEFPELIT
mmmﬂﬁﬁ’mﬂﬁﬁamﬂ%thuaJ*s:mﬂ%ﬁﬂﬁﬁswmfemm@;auwa AN WNTANEN
ac A A o o { ° o ' o a £
LLa:’mUﬁLﬁmﬂJaaﬂUL%aaLﬂﬂIuIaﬁamgnnﬂ YN MO LNITRAN SN TIUININEITWIUIINT
A snwiiNeTaInuNatiBeuNIA LazgamUNTINMINAaTeIlIzINe
fgmjmmwaﬂmomiﬁ ALFIMIINA WA WULULLATIN DT LATIZRUS U AN LT N T 1
o v L L a J
ﬁnmwnaaam&mam“[mmulwanmm@ﬂs:q"lwﬁwammmaamaﬂuﬂixmﬁ M3
o & o Ada o A ° Al =<
ﬂixqﬂ@l‘lmaoﬂmmymzmﬂiﬂaﬂﬂuagluﬂaﬁ;uu FIFNNNIDNW AR L NNTATIIRAUAN T
YANBNIINNNA u,azmiﬂmﬂamaoau‘,mﬂluwﬁmﬁmsﬂ Lﬁﬂmﬁﬂﬂﬁﬁuqﬂmrﬁﬁmmﬂ
dvtvsing uazlinenata WIRNNLN BWIALEN NUNIB Imaa:lﬁ'aqqﬂnstﬁ Hia uaz
{ o A & ') { = ° @
Y9Nt IUsznaudaanazasnmululssne WiaTHaaNIINININITHNLENA1N
[ o v (d‘d 1 1 o Y 1 & I
dA913zine mlﬁ”l@qﬂmmwmﬁmgﬂmwLLa:mmmmeu"l,@ﬂumaamaﬂs:mﬂ Tzl
ﬂsﬂmﬁi@imamﬁmmma:qmmmmiw MUaNWALITINUNTATINIAUAZ ALY
VANENIIINIE il mumuquuaﬁw amﬂ'u%%'ﬂmamgmﬂlumsmmﬂ TN
& A ' A =2 Aa a A Av A o
EDIIARY guﬂuﬂumﬂiﬂammwm FOUANHINUNIITUWATROURIDINWILLNLIND
mam’uazmﬂiﬂaﬁagnm #I§201@ (clean room) maﬂiamuq@mﬂﬂsmmwam‘lﬂm

ailnniafinduazdug  Ndssminanaiadiinaeumalusimastvdaiiies 130979
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1.2 NMINUNINITIBNIIN

miﬁﬂmqmé’aazmLﬁamaﬁ@mm@LLazﬂ‘%mmﬂlaamgmﬂﬁ;amﬂummﬂ ﬁagjafha
WNSHANE LT% (Chen et al. 1997; Balachandran et al. 2000; Tippayawong et al. 2002) 443
NIMTIATEAUSIN AT NT U9 WIBLALNIaR 8 LI NNATEN N WRZMTIANINNT

=3 v & { { U L g
nENLIWIaTaleuMATAEnIs  Daduwinuiinesdaanumsdnsgmnne nauag
VAN P NNAIBEINMIANLANATIVIATINILUAZIINABRNALNDAILANA AN WY DS
WAanm 13w lugaswnisuniadudiululasBidnniadied wilwnalulad uwazindonimw
. 1 = Aa e dl dl o dll A A 6 A
(King 1999) lusuzasnudnuIdsiineinumseaniuuiaIasiadansiuSinuany
iuduinwuseseyme Jagaaudauninae iulay (Agrawal and Sem 1980; Lehtimaki
1983; Johnson et al. 2002; Kaufman et al. 2002; Wilson et al. 2004; Park et al. 2005) Tadl
MINAWANBENIdaLhassnIwIn  (Flagan  1999)  uazldinmsndasanunduiasasiia
napulundiensidinaenuduiuddwineeseumaiadawndisd  (Thermo-
System Inc. 2002; Thermo-System Inc. 2005) wazgaiimInawatdaiiias lasaniziiad
mydiudpianuuduiiumeaumaniidninngluszaumluwes  anusenalumaia
LATUITNIANA LA BE19TIALTIMILIANTSI  (real-time) éh‘ﬂ%'uqﬂnszﬁuaxm%aaﬁai'@ﬂ%mm
anudniudwnsasenmeniagludeiudagnaosfiodioiu  udazsnannanane
mwﬁ@ﬁﬁ’]ﬁtyﬁmﬂ%asmu,ws'%mzJLLazmaqﬂﬂmia%is:wmmﬁ%'ﬂﬁwm letun
Differential Mobility Analyzer (DMA), Condensation Particle Counter (CPC), Electrical
Aerosol Analyzer (EAA), Electrical Aerosol Detector (EAD), Ultrafine Particle Measurement
System (UPMS), Diffusion charging electrometer (DCE) i8¢ Epiphaniometer lagoazidoa
4 L Ao

YILATBILAB BRI

Differential Mobility Analyzer (DMA) iJugunsaifildnannisanumansnlums
iwndeunvasaumameldauwaini (ntra and Tippayawong 2008) Aaiiioaunafiiilezg
| A ] L3 o v dl I ‘ﬂl t:ﬂl v v g;
DuavrTevindwdranlussn iy azldeumeniuvinieafenildadhmrsuuas
aumafidusvaziafeunldndmainin DMA uansalnlddmsuusnamavasannea
dl [ a o v o v dl s 6 &
fnsznvagluaima fansnizlasseine uazmsvinuuaasliasgun 1.1 anwnuzgunnhiu
NTINTZUONUAIIN (two concentric cylinders) NTInTzUand Wl dutILINUAZNITINTZLEN
% I 3 6 a g; d' 1 s U 3; A v
dunanidutiniia (ground) adnniiainsussan Wi linuaiuinnIensinszuanmuly
v itAasuwy IWiassuSnagesinssenitemsenszuen lunvinawazisudual8n1Iaa
Ugauldfivaymadiedne asuwilisaymafaniivianluswaniasgdaziefauilas
v g; & 1 { { L { o 1
NMTIINTIDEGATINGN aumaniivmefimunzauiuussesswn ihnnszinde

aumanaziafanniintasnuainididenuiniaatudwinuayna (particle counter) &%



Aerosol (Q,)

l Sheath air (Q.) l
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[ e e
p JT_PP % Z “Z/Outer electrode
20
2 ‘\‘\‘\‘ / 7 Monodisperse slit

2 1'4 ,z;'l %

l Excess air
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aerosol

Eﬂﬁl 1.1 ansmzlasIas19ad DMA (Intra and Tippayawong 2008)

agmﬂﬁ'ﬁmm@Lﬁﬂﬂiwzmé"auﬁﬁwmiﬁmm%a annsENUfARTIUINRawiias fstaafiu
RRTIaN Lmzmi,mﬂﬁﬁmm@lmyﬂ’jw:mﬁauﬁﬁasmwmﬁawaaé’amgmmaamuﬁamﬁu
fatsaan lUnIeNNUaINAR=19 miﬁ'@mm@mgmﬂﬁ]zﬁﬁvlé’l@ﬂmsﬂ%mljaé'uVMﬂﬁﬁ
swldiutauan ﬁﬂﬁl,l,iamavlwﬂﬂﬁﬂs:ﬁwiaamgmmﬂ'ﬁ'qulﬂé'aﬁ?um&mﬂﬁmmﬁ’ma@Lﬁu
fathaaziiumnaiiens gnu LL]JEBT%@I’]&JLLidﬁuVLWW’lﬁﬁ]"lUlﬁﬁﬂ%’)ﬂ’m%\‘]ET’]&J’]SE]ﬁ’]“fI/E]%lﬂ&I’]
ﬂszmawaL'ﬂunﬁwLLammmé'uﬁu'Eswhwm@LLazﬁim’amaoamgn'vaﬁ Fadanin
PBININTINYIUIAVBIARANA

Condensation Particle Counter (CPC) (Agrawal and Sem 1980) Lilwia3asiLs1wIn
DUNAKLLNIALLUY I@ﬂﬁ"'svl,ﬂgﬂ“l%l,ﬂum‘%'aaﬁaz%m%’umsi'@mmLﬁuﬁm%aaﬁﬂmmaa
agmmmﬁg\mm lagldditatisamaaynia é’ofuﬁuﬁﬂaﬂﬁ%yaﬁLﬁ'mﬁ'wm@mg‘omﬂ
anwuelATIaIvad CPC LLava’ﬂugﬂﬁ 1.2 mmzﬁmgmﬂﬁ’sashmﬁvlﬂlu CPC 2z8n3
wWasusyanaduanufeuinoliiueueanases awvliueanazesnmoiiulonasritu
Al avianruusin Vl,ai:myLLaaﬂaaaﬁa:Lm:éhaauumgmmmmuLLuuLflwaﬂﬁuﬁa%aﬁ
natsznm 12 lwlasuas ‘vsstJaamgmﬂ‘ﬁﬁu,aaﬂaaaﬁmuLtuuaga:gﬂdalﬁLﬂﬁauﬁmu
fuFIaTas u,azl"ﬁqﬂmrﬁ@ma%’ué’mwtyﬁmmsﬂszmwammLﬁaﬁ’lvlﬂl,mmml,ﬂuéim’m
vasaumadall drat19 CPC ffguannaaluiaa TSI 3010 (Thermo-System Inc. 2002)
NI mnaaumg;mﬂvl,@ﬁﬁﬂﬁo 10 wilwaes fAenududuiiwnds 10° aunNAGo
anueflndlnas dsamiaauawedu 1 3w dsaimineuauatasndt 5 T

CPC luiaa 3010 azfimlasyszano 40,000 3o yaniy
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gﬂ'ﬁ' 1.2 anwuelATIFII9V89 CPC (Agrawal and Sem 1980)

Electrical Aerosol Analyzer (EAA) 1uia3asitainziazaadaasalisdIznismainia
ansuzlanzrad T silunafiansianseua Wi (Lehtimaki 1983) NvildaIunIaia
ai s dl' a 6 d{ % (2 1 ] dl' o n‘lp 3
AU NN R AU WL ATEIAATIZRNNTIAR AU LaatNddaLitad szuunITIahlsznaudaae
A A & A o o o & . &
Lmaa:}me:vxmimaaummﬂﬂﬁ’mu@uguﬂ (zeroth-order mobility analyzer) LWRZLTWLTDTI
N3eud WA BLanINTA@as (conventional electrometer current sensor) WANNNIVBILATEY
a & A v o o A o (Y o A A o . o
Aenzimaafaudsuaugudlansucasanunlilueiasialaaan (ion meter) lasiains
vosszuuiauaadbiluzun 1.3 szuvazlizneudiodmladszylwildazeasaay  (aerosol
charger) dMAATzAMTAREUAINIINAN (mobility analyzer) uazdnazawuilizadiniad
(filter charge collector) @ ladszqlniliazensnandansadonufltluaisinsiaia
82089618339 TN (electrical aerosol detector, EAD) luﬁﬂﬁiﬂizﬂWWﬂﬁa:aaaaaﬂﬁ
v £ a ¢ Ao & = Aa & Aa
"l,aaaummﬂgﬂm’]wﬂ@ﬂmﬂﬂim’ma“zj’mﬂamﬂimmmw naaasmeulunsinszuanid
Al 3.8 ETUALNAT é’aazauﬂs:qé’amaaﬂi:ﬂauﬁaUéhﬂsaaﬁgﬂLmﬂaaﬂmavLW‘WWLLazgﬂ
1 ¥ A& a 6 o A 6 dl e A o |
daltNnul9asENLBLAN INISALaas AILATIZRNTLAR WA I INHA T AN et Tl
NTINTLUONTOUUNUIINNTTANGWIU 2.5 LTUALNAT LAZEUWAN 3.0 LTUALNAT NI LA
NAGIBENNEAI 75 Aavdauwn ’iwdn ldlutadsznindgasBianinie  @23e RN
mﬁauéhgn?mé’aag}'msﬂuviaiamﬁtﬂumnﬁ WUAIWAWIW PTFE (polytetrafluoroethylene)

in"ﬁl,ﬁaﬂaaﬁ'uéf'ﬁLm'wﬁmﬂm'm@mﬁnﬂWW'}Lﬂumn@T LLasza'w"]UVLWWWLLsaé'ugan

[
a

a@mdagJ]'mUluﬁLﬁﬂimﬂﬁmluﬁﬁmwma 13 1IUALNAT ITTUUREINITDIANTUE WA Lo

=

@19 0.01 Alauawil (pA) uazuTIGUMIRZANG) (collecting voltage) anansndivldaglutig
0 — 5000 &t
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gﬂ‘?‘i 1.3 anwmuzlasia’nsves EAA (Lehtimaki 1983)

Electrical Aerosol Detector w38 EAD (Johnson et al. 2002) 1luiadasiiasasuwin
E]l};ﬂﬁﬂ‘?llaﬂﬁﬁlﬂﬂiﬁﬂﬂiz?LLllLILL‘WiﬂizmEI (diffusion charging) LAZAIUAILNIINTIVTLAZDDY
aaﬂmmwsﬁlﬁﬂimﬁmai"ﬁ'ﬁmmvbgu anwuelasIaNvad EAD LLavai‘lugﬂﬁ 1.4 lag
szaasnastn i/ lwedasdlasadusamslva 2.5 505 da wif m3lnavznnuandullis
faennIsuaziaiasailoaa (onizer) 1 303 fia Wi uazazaasnay 1.5 303 da Wi uas
m‘sﬂmaﬁ%mngmmﬁ'ﬂ%ﬂuﬁawau (mixing chamber) Lﬁamgmﬂiumﬂmmaaa:aao
saunnuauniulesan vilweymaldiudizg (charge state) mnifumgmﬂﬁﬁﬂizﬁp:mmﬁw
lugsaranlasan  (ion trap) Lﬁaﬁﬁwvlaaauﬁﬁmmmmmlumimﬁ'auéffsL%ﬂ?\lﬂ'}gq
(electrical mobility) aana1nn13ng uaztedanditnluss wWiswasesy (Faraday cup) vinlw
amgmﬂgﬂazaméfwuﬁaﬁﬂmmﬁL%amiam’%aoi’am:ua@‘iﬁL§ﬂI‘ﬂiﬁL@lﬂ§ L‘ﬁ'amﬁmﬂszﬁ;
Tldtn %aﬂs:aﬂﬂﬁwﬁi’ﬂﬁ%é’wﬁuﬁﬁummLﬁuﬁuﬁ‘hmumaamgmﬂ

Ultrafine Particle Measurement System (UPMS) (Park et al. 2005) AavzuLNTIa
aumazaumludisnilfinafiamisiuuiuiumidadszaauna Gaanwmelaseaing
LazaulIznauvay UPMS LLava’S‘Lugﬂﬁ 1.5 UPMS U32naueis 5 &1 AoFIBAALEN
muﬂﬂa%ﬂﬁﬂﬂwlﬁ’] (inlet/size separation part) 8% Particle Growth dl%ﬂizﬁ;‘a:aad (aerosol

charge) §IUN1IRTANGIDUNTA  (particle collection) UATEIUMTIANTZUA NN (current
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31]"71 1.4 ansmlaTIas19289 EAD (Johnson et al. 2002)

measurement) N1INIWUEI UPMS L’%uﬁuiﬂﬂmiﬁ'@Lmﬂ"ﬁ’swmmaamgmﬂﬁﬁaamﬁ@
daw anuuaunaazgniudnllugn Particles Growth tWaaiuuiuaual#iizuwalng
4 o @ A o . a &
IuuAzanNALYNanlzadisinleddnilszgaunia (particle charger) uuulalswn@amsa
(corona discharge) amgnﬁﬂﬁﬁﬂizgazﬁﬂﬂlumumadwﬂﬂmﬁmﬁl (Faraday cage) Uas

=) { Qs U Qo D. '13 IQ o
waniitaas (ammeter) WNalanTeua Wi szaumUszanas 10 wawni Afeanmswiteni

d'd o 1 s 6 s ni d'
lasaymanddszaszandmunuduanniasluiiniadion uazdyginszualwinazgnises
1 K a 6 o s v a 1 U dIQ/ v
dalUdsnaniimaidmivuaainadoyaaumaluiniss  lasdnszualnindaldazgn
ﬁwVLﬂLLﬂadﬁu"lﬂLﬂummtiuﬁmﬁ?aahmumaamgmﬂﬁaﬂﬂmmmawﬂama%
Diffusion charging electrometer (DCE) (Fierz et al. 2002) 1 uia3asdaiannuiduds

o a A v A & eda o o | A A
Fwuvesaymadnuuunile fadves DCE ugunsninfinannsrnuisiuaziinaign
snwuzlasiainived DCE uaaaliasgu 1.6 DCE dsznausdiugaldlizgaunia (particle
charger) dnsadloaan (ion filter) LLazﬁaﬂiadamgnﬂﬂﬁﬁﬂizﬁg (charged particle filter) lag
DCE azvhaulasandunsladszyliniueumadisitnislalsn@smi ieaymalaiunis
' . @ o ' A o o A o X o
ladszgazgniwdh il Sawsiunsesiatanszua Wiy Agnaseduannmsszaudivatannie

\ A& A e P oy Ao o o o
vuusunIaslasiasBianinsfiweindanuhigs  sdnsualwihndaldazsenndaanue

m’mLﬁuﬁumaoau‘,ﬂmﬁazaué‘sa%iuml,t\iuﬂsao
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gﬂﬁ' 1.5 anuuelATIF3I9v89 UPMS (Park et al. 2005)

Epiphaniometer (Hinds 1999) \iuguninidmiviaanuidudusataynia gﬂﬁ 1.7
LEAIAN UL IATIFEIIVBY Epiphaniometer N3¥iN9Nuwa9 Epiphaniometer azﬁuagjﬁumﬁ@
§03IMIMz@a (attachment rate) vasazaan © Pb ﬁssumauuﬁuﬁwaaa%mﬂ lasazaay
VDI 211Pb Qﬂﬁ%ﬂd%ﬂﬁ%ﬁmm@Umiﬂ'aﬂamﬂ (decay) @83 short-lived radon isotope
(mRn) ﬁvjoaaﬂm@ long-lived artificial actinium source (227Ac) ﬁgﬂ’nﬂuﬁ'a\‘m’mm:a@
(attachment chamber) U843 Epiphaniometer asaadva3 211Pb %ztﬂﬂza@ﬁua%n’lﬂﬂzaadaaﬂ
ﬁgﬂmmiﬂﬂ wazrdn ldgsaansas lasdasimamaimzinazmnlalas o -spectrocopy
FNWANTHAUEANHUIABNTBY ~ Pb HsaziiugaswiUs I wInIaTed0zaaNinzaa
uuﬁuﬁwadm&mﬂ

MNMIATIIFALLANTITNWITEARLITINUT  LASa9ItATeR S mn LT uT
i IusesaMATEA LM LMAAT fanuiAydansdnsuafiznsaimeauaznyiaie
muqumiﬂmﬁaumaqag,mﬂluwa@ﬁmeﬁ LLa:"Lﬁﬁmiﬁ'wmﬂ%'uﬂEaLﬂéaqﬁaém%'ﬁmmzﬁ
Fwaneymaldaglugisama 1 wilwwes - 10 lulanaes LAINNaUISuT Lt
PNTARAIINILE Wud’uﬂ‘%aﬁLmﬂzﬁﬁiwmuagmmmmaaal'lummﬂﬁﬁaimmyaglu
Ta9tiu Inengannaglunannaiousuuin SnstadoaRtswImsdnndelsnaiay
FaRuA LLazﬁoﬁﬂﬁﬂﬁﬂ%mslaﬂﬁoﬁﬁﬁw%wa@iaamiﬂuwmm%ﬁLmﬁ:ﬁﬁ‘hmumgmﬂlu
seauw lwaasigelifanuanta b WAB91/3296N9 (space charge effect)  WRANIIW
yosawn i usssnsmzvasswnumsnanelueiosiiada  (flow and electric fields) uaz
mmvl,ajauyirﬁmaqﬁvuﬁwaa‘ﬁgﬁlﬁﬂimm (electrode acentricity) Mulugalddizyzasannia
RN Iuiﬂiaﬂﬂﬁ%’Uf:ﬁ]xﬁﬁmsﬁwmﬁmmum’%f'aoﬁa’iLmﬁ:ﬁﬁ‘hmumgmﬂﬁaﬂ‘i%'mﬁ@
UrrglWiatia LLa:maauamsnuﬂumﬁmﬁwmmaoau‘,mmﬂ%ﬂmﬁwﬁ‘um%aaﬁai'@
WIAITIN ielldSanlavesuuuiniasiiotafimanzaudonisvinemu a1 uazmIseaNsy

v A a 6
a3 Q’mewm&m



Corona Charger Ion Filter

Electrical Feedthroughs to Current Amplifiers

gﬂﬁ' 1.6 an¥uclATIFIIVE9 DCE (Fierz et al. 2002)
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3N 1.7 anwuelATIaN9ad Epiphaniometer (Hinds 1999)



1.3 Tas9z09389 M seatuaaY I

Imaa%ﬁwa\mmwumsﬁ%’mﬂuauyitﬁf{azﬂszﬂauﬁ’;sl 6 un Ao luunii 1 9=
NANIIANURA VDI UWILAZANA DIN TN MINUMIMITIANTTNBILAS DIILATIEN
ﬂ%mmmmlﬁwﬁumaaagmﬂ‘ﬁ'ﬁag unil 2 %LﬂumwﬁﬁLﬁmﬁaaﬁumiﬁﬂwﬁ%ﬂ unil 3
zshaueNeazdualunseanuuuLazLULINasIN A B aasIasanlTznautaa@d o
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doluamnn SrwmarRwINazlsznauds duwunanuiseqlesumsanuivtoinaualn
ma‘mﬁmmma:ﬂixqu’imm{lm:ﬁumaLLazmmma iﬁdﬂﬂmm%ﬂﬁa%}szmnms
#van uazuuuinaftavadguninllsznautauedng JU04L038931ATzRY

10



uNnn 2

RANNIIUAENT )

2.1 quanUAvaIazaaInl
2.1.1 2W1AVDIAZDDIADY

azagdnoy (aerosol) gniienulifeaunia (particle) fduvasuds (solid) w3e
209187 (liquid) ¥iaLlunIsaunh (combination) vasiigasiuwInasslwuianioanme
frwmaidurugudnaaglugimzaiie 1 wlwwas (om) uaz 100 lulaswas (um)
(Hinds 1999) Eﬂﬁ 2.1 LLamm‘wmwaam&mm:é’umimmﬂ@slﬁl”avl,ﬂ PUABRNNA
(particle size) Lﬂuéf';LLﬂsﬁé’]ﬁ'tyﬁq@ém%’umsﬂauaﬂﬁawqamiw (behavior) UpIazaad
a88 lagwgdnisy eeAdsznaumaail (chemical composition) AMFULANIMENN
(physical properties) maaam&mﬂa:aaoaamﬂuﬂaﬁ%’umawm@mgmﬂ azoasaanlaanaly
ﬁ]sﬂs:ﬂauéf’sm‘immmaamgmﬂﬁﬁmmmmmmﬁu 82089808 IMILINUAITIIALAEN
(monodisperse aerosol) I@ﬂmiﬁmuﬂﬁzﬂam‘hﬂmgmﬂﬁﬁmum%ﬁauﬁ'uﬁzmm LAz
gNInEss ke lwkesdjiansdmsultiiuszassseulunmmasay  adislanann azeas
saulasm lUasdianwaenisuanuasuwanannay  (polydisperse) NT9aMINT19284
1NAEUMA  uazmyianeaiianlszgnianlglunnivenguinyuzrasraauna
mMIkaINuasTasIwIaaMansluazaaiaa andadunmMILINLIIIMaTeINzeal
(aerosol size distribution) lapin@udy M1IINUIVINAVBINZERIRDHATYNETINLEIY
ﬂdﬁ%%ﬂ’liLLﬁ]ﬂLLﬁNLLUU Lognormal (Lognormal distribution function) %dqﬁﬁ%§ﬂﬁugﬁuﬂﬁd
m']Mf]‘é’(m%’umsﬂs:qnm“l‘*ﬁﬁoﬁ%’ummaﬂLml,mu Lognormal  §asuwls i umsuanuas

WU Lognormal ®18N3awN beanaunsaa LU (Hinds 1999)

1
df = exp| —
V27 Ino, 2(ln o, )2 ’

e d, ﬁamm@Lﬁumuguﬁﬂmwaaagmﬂ d ﬁma?umugmﬁﬂmamﬁwaafﬁwmmm
(count median diameter) U8z o, ﬁaﬂ"nﬁmLuuw’]@l‘ig’mﬂ’mlﬁmﬂﬁ@l (geometric standard

deviation) W Lean

1/2

S n(Ind,~Ind,)

N -1

o, =exp (2.2)



EMSc CMLL

31]“7] 2.1 PMWaNYVAI ﬂ%ﬂ’]ﬂiﬂﬁﬂ%’ﬂ%t&l(ﬂi

We  d, Aevwadwiugudnanaafomasnatiaiiiinuin  (number  weighted
geometric mean diameter) %38 mu’lmﬁumuquﬁﬂmomﬁwaoﬁﬁmunmﬂﬁmﬂ (Hinds
1999)

Zni Ind,
d, =exp| S22 (2.3)

A A o ' L Ada = A o
LN n, ﬂa"ﬂ’]ujumﬂda%ﬂ’]ﬂluﬂﬂqu 1 ﬂm?@ﬂ@ﬂﬂqﬂma\‘]"ﬂu’]@ di RS N AU IBIINUDY
aumA (Hinds 1999)

2.1.2 NSULANUIIYWIAVDIALDDIADEY
mnmmwwmmaaamgmﬂI@ﬂﬁ'a"l,i.ll,l,a”ammma%mﬂvl@? 3 lnua Ao lnua Nuclei
1wue Accumulation wazlwae Coarse é’mam"li’l,ugﬂﬁ 2.2 lulnua Nuclei Usznauee
agmﬂﬁ'ﬁmm@Lﬁumuﬂuﬁﬂmaﬁamﬂ'j’] 100 wiluiwas aunalulnua Nuclei Qna%ﬁa%u
ﬁnnmiﬂﬁiaﬂaaﬂmmmma’aﬁmuazmg‘,mﬂﬁLﬁ@lumimmﬂimﬂmﬂﬂﬁﬂmmaamnuﬁ"a
VlﬂLﬂuagmﬂ (gas-to-particle  conversion)  LATNITUIUNTAVLUL  (condensation
processes) amgmalﬂ%mﬁ%ﬁmmaﬂmemmaaazaamam;ﬁﬁwmu (number
weighted aerosol size distribution) Lﬁaaﬁnﬂmgmﬂ‘lﬂﬁm Nuclei Jumalanuazlauiatiay
N9l ldinsuanuasumaiiaauna  (mass  weighted size  distribution) lwaa
Accumulation ﬂs:ﬂa‘u@i”aﬂamgmﬂ‘ﬁ'fmm@Lﬁumuquﬁﬂmdlumwmmzmnﬂizu'}m,
100 wilwaay uaz 1 lulasnuas 13u Handaana38ur3y (organic product) ayn1AATH
(smog particles) m‘l‘,ﬂﬁﬂmnmimﬂ%ﬁ (combustion particles) LR agﬂﬁﬂluiﬁu@ Nuclei

H o o o . { g k2 J
ﬁﬁmimw:mumnuﬂumgmﬂlﬂm@ Accumulation Lﬁaoﬁnﬂatgmﬂsluim@ﬁgﬂaﬂwu
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Chemical Conversion

of Gases to Low
Volatility Vapors

Condensation Lc}w
Volatility
Primary Vapor
Particles 1
. Homogeneous
Coagulation Nucleation

Chain
[Aggregates

Condensation
Growth of Nuclei

Wind Blown Dust
+

Emissions
+

Droplets Sea Spray
+

Volcanoes

+
Plant Particles

Coagulation

| ] L1 1

|
0.001 0.01 0.1 1 10 100
Particle Diameter, um
__ Transient Nuclei or Accumulation Mechanically Generated _
Aitken Nuclei Range Range Aerosol Range

Fine Particles T Coarse Particles

Eﬂﬁ 2.2 msu,'qmLLﬁ]amm@azaaoaaﬂlumimmﬂ

Tasmatmesusarusasaumaluluue Nucei 3avnlifumnanlnaniuaiiwuisias
ﬂ’jﬁaﬁmmﬁmmwm@agmmmm%ama (mass weighted particle size distribution)
dmiveumalulnua  Coarse ﬂi:nauﬁaalmﬁ,mﬂ'ﬁ'ﬁmm@Lﬁumuguﬁﬂmﬂmjndw 1
lulasuay 1w du (dust) aumainfe (sea-salt particle) amgmﬂﬁgﬂa%“ﬁﬁumﬂ
1A9893NINS 1TU MIEeINTIN Matindaus ﬁmﬁdﬂmgmﬂlﬂm@ Coarse 93l
W8N Lwimg,mm%mf':ﬁ]zﬁaﬁm’mﬁawmG)ijmﬁﬂuﬁ'umbmﬂluiﬂm Nuclei Uag

Accumulation ¢t aumalulunuaidslildanudmayiunswanuasmenadidum
LAZAIA

2.2 M3aionasannalwuig
2.2.1 ANMNABAVDIUNE
A i . A A o Aa v o ¢ . v A
ANUnia  (viscosity) AaANAINURIRAFINANANNFUNBETERINIANNLAWADY
(shear stress) WAZANALSINTLALUA (velocity gradient) FIRTUANHIULANT MARTBIVDI AR
Mdwldenunsauiisgupesiiaau (Newtonian fluid) fia

F d_u (2.4)
dy

13



' @ -5 o o { a
ANURIAZVAYINAL 1.81 X 10 Pa.s. mmummﬂﬁqm%gu 20 AIFLTALTUE AW
A o A o v o ¢ ' ) A o A . . A
%u@mmmsmsl‘ul%agiugﬂmaaawwuﬁszmwmmﬂwu@maad (reference viscosity) 71

gnNilan984 (reference temperature) laasaunisealudl (Willeke and Baron 1993)

TL+S\T
77—77,(T+S)(TJ (2.5)

Wa S Aerasnmadszanmdwwuudaiiiodzad Sutherland (Willeke and Baron 1993)

P & A & a A =4 | @ [
IMNJFUNIIN 2.5 ’%L‘Viu’l’]ﬂ?’]&J‘Viu(ﬂfﬂuﬂuaﬁi:%iavm“ﬂuagﬂﬂﬂ’)’]&lﬂu

2.2.2 anazisdluanvasannia

o Ao o A (% & .
dauds  (parameter) fgdgflElunsdausnvaswamaniuetayma  (particle

A a =

dynamic) ﬁaé"sl,amiﬂuaﬁmadagﬂ’m (particle Reynolds number, R, ) 1atulan
P

qmawﬂ'ﬁL%ammﬂwamam’maaagmﬂ ALRULTS LHAGADTIWIW ITRANLILANDINIT A

\ ' Y a ) ~ a .
22919 AN UYBWIaRBNTOLFINAVINS LT auNA TGQH%U']NL‘TJ% (Hinds 1999)

e p deemanmwuivvesvadlne ¥ ﬁammL%mﬁwawaﬂ%a@iam&mﬂ d, o
PnaFwUgUINaITatauNa uaz 7 Aedanuniladuysntvevedlna  daad
Iuaﬁmaam&mﬂﬁa5mﬁzhmlaumLﬁaamnmwmﬁaﬂ (inertial force) dausaLilasaInaIy
niha (viscous force) WIDUTILTLAN (frictional force) ﬁﬂi:‘ﬁﬁuual&nm Unduas o

v a & a . =
R, <1 msvl‘maamaumgmﬂmminaﬁmmﬂumﬂmLLummLiﬂu (laminar flow) 3
3

o & o o o = g
FNTudnIum sl FnwlwnsAn

2.2.3 n7)VaIdlaNAUATAITATIARRILIN

Lfiamgmﬂazaaamé"auﬁﬁ’;Umwm%aqw% (net velocity) ¥, do@uiusnuuAaw
(carrier  gas) ﬁ"l,nnuaazlagj aumaazagmuldusnfoaaniiiaimanacaas
(aerodynamic drag force) £, LLSGLﬁzl@mﬂf:%ﬁvlﬁﬁ]’mﬂg"lladaI@mﬁ?( Stoke’s law) URAIA

FuMIN 2.7

F,=3muV d, (2.7)
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Wa u  fedienunitevesuds  lasnguasalansldudtnmsswnzaasaunis  Navier-
af o A A A W A A ) A A A

Stokes lasmsuadliusuftesnnanuidasiisfendaifisunuusniiasananunia i
. @ & o ' A A A A Aa . &
Adanatluaduasaymaiosniidizinm 1 nanfeunnasnvaseymanlzlinouds

1A =l a gj A d' v A | ;:l'v > 1 £Z =

ligangulidntinunisaumaduglndidss uvatlnandaadldlduazanuivessas
= ed X a A A % A Aa A o
Inadugudniuinzeseume ieaymadvinalndnuizszmuafawndsszaisvasuis
(gas mean free path) LLiaéﬁummadLLﬁ”aﬁ]zm?:V‘iwiamgmﬂaam"l,&i@ial,ﬁaal,l,a:mgmm:
A ., A& a . o o . Ao X A
aulaaslipy  MuAsznivluenavauis  (lduianuiivesvesinandansauiui

e Al

aumaazliilugud) arhmsiunudwivddulosvesiuiioh  Fslanudududasld

2

@1TaLTE (correction factor) AUANMIVBINBAIFIANE (NaTNBANNTINAUNAANLT?
J s dy cldil a U a @ A . . .
U AITALTEY JTOLIYNIT AITALTLVIABWILTN (Cunningham slip correction factor)

C, (Cunningham, 1910) LRAIFIFNNIT 2.8 — 2.10

3muV d
F, :# (2.8)
A d
C.=1+—]2.514+0.8exp| -0.55—£% (2.9)
d, A
A= 101.3 T 1+110/293.15 (2.10)
P 293.15 1+110/T

dll =) a v A A 1 dl dll dln 23 =)
Wa C. fesrairgvadauiiiay A Aaduadgszuznanfeundsszaaduis A Ao
' A A Aa A A @ A

AafuNIILARauNdaszuIaINd (NFNITINAIPINAAILYIND 0.0665 um) P Aaaaa
AUBIV09 1A I@mmmﬁ’smsmﬂq@ﬁw (terminal settling velocity) V. maaamgmﬂﬁ
apuiluudaisaunsam lalasaunsusaiuaanalang (Stoke’s drag force) Aauwsdlia

19 (F, = F,) anuiimiangarsii sunsadiwimldann

2
p,d,8C,
s = (2.11)
18u
A A ' A oA Y] a >
Wa p, ABANUWWILUULDIOUMA AT g AaanuLsaiasnnuslduals @ayinnu
2 = VA o @ o ') Aa = '

9.81 m/s) m’mLsaﬂﬁ@ﬂa:"l,mmmmmymmuamgmﬂmmmmaﬂm’] 1 lalasiuas
m’mL‘%’maoamgmmmﬂiﬁu{@ymaﬁ'mmﬁmzﬁwiaagmﬂ A09NNTN RO U FUN U
v oad A ) A > . .. PN &
Lmﬂumalﬁﬂmﬁmwmmmlumsmaaummaoamgmﬂ (particle mobility) B #enutiu

é'mﬁahumaommﬁaatgmﬂ@immLﬁmmﬂﬁmzﬁmumgmﬂ LEAIAIFNAITN 2.12
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p-_C (2.12)
3rud,

Lﬁmlm(ﬂLﬁumuquﬁﬂmﬂﬁﬂmadLé{"umuﬂuﬁﬂmdL%ammﬂwamaﬁ (aerodynamic

diameter)

2.2.4 nalniBaday

M7 RalasuainIziaazaad mmmﬂa’aﬂlﬁmgmﬂLLmuaay"LmVLﬂmméfumaﬁ
AAUNNINLEWNS InaTeIuiasay 9 le m@;ﬁﬂmﬁuf‘tmﬁzmgmﬂLLmuaazlﬁmmLﬁam
annnin 3elionaaenldslevud i '3'@1qﬁfmmwﬁ”'mﬁuma"lmamaam:l,l,aa:aaw:
Lﬁum&mﬂmmﬁ%l,ﬁ 1un'1<5’3|,ﬂsﬂzﬁmil,mxaﬁ'ummagmﬂmﬂm:LLamsVLmaauuﬁ'aﬁ'@
17119 i mdiendlasiiaheymaiswadnannglunszuauis udlainaunnniiang
Y Iuna ﬂavl,ﬂmiﬁﬁ@mgmaff%:ﬁmdnmwnm:m (impaction) Tuns@nenilefisvma
aumauaziimfmwialdunsduatanne (particle trajectory) 7019 Fafan9Tin Lile
gﬁhLﬁ@miﬁuﬁmwmmg,mﬂﬁ'uﬁwaoéoﬁ@mwm%a"l&i na"l,ﬂﬂﬁﬁﬁ@mgmﬂf:ﬁfﬂﬂﬁ
msaftans  (interception)  lwundasianadanusniudasdniladonalnmsannsenuuas
nalnmssianuniay gnulumaiianzidssininaunisianeumea lasdssdninwves
a1MAYNTIAAANIINNIUANT IWavaIazaaslasnsannIzny s fluia T DI ILaUS

1an# (Stoke’s number) Stk FINTAFIUIDALFANN

av,Cc
Stkzdﬁz% (2.13)
S =m BV, (2.14)

e d. AIWIAANEILANIE (characteristic dimension) POIFIAAVIN V, faanuiii
204v04 A8 S AaIzUNYAVEIERNIA (stop distance of particle) m, faNINVBIARNA
v, ﬁaﬂ’nm%aL‘émﬁumaaamgmﬂﬁmmwhﬁ'uguﬁ oflenwalanduasumaidusinn
audnandzadagmagnly mﬂmsmammigzyﬁﬂLﬁaammﬂmmmzLﬁ@%mawn:
f%'m%‘uamgmﬂﬁﬁﬁuamﬂmnﬁmﬂﬂdw 0.6  WATNIANNITNUANANNAAYLANIZRIAT

d'd % 1 6 1 1
aumeanfivmaduruaudnaslngnii 1 lulasiwas)
dll d. = 1
2.2.5 NILAR A WNRULUIINHYBUAZNITHNI NI
- . o o
mgmﬂlm ﬁLLmuaaﬂagiummﬂa:gﬂ"ﬁuammmﬁaﬂmimaqammmmﬂ G

Al 1A & s v & a P A ‘A &
L%@lﬂqim‘ﬂvlwllﬂgLﬂmGVIL%ﬂ’]uLLE‘T@ﬂFL%LV\u']'] a%ﬂqﬂwﬂqiLﬂﬂﬂuﬂaﬂqﬁquwﬂgLﬂm‘”aﬂq\‘]
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oA A A A A . . A A ~ Aq o
datiiay wIonsteRouiuuuuIIHeu (Brownian motion) matadauiuuuuLiuunls
o A = % a 5 & v A« .

nuaymadsudunszuaunsluszavluens Wezvugndnadulassieiidunga
foulng Audwiuninuazaseymazesmudasuudaszwia nizuawmsigniiendims
uwsnszany  (diffusion)  mMudSpufisunsnszdaluszauluanavesiuiuninaaas
aumafiia lasmaiafeunuuuunidewiunsuwinszansgnadinelasngved Fick's

it
J=-D-2" (2.15)

We J AawWanduatayme (particles flux) dn/dx Aaunsidourianuidudusatannie
g a AE‘ 1 . . . .
(particle concentration gradient) W8 D RN ENTNNTUNINTZANY (diffusion coefficient)

>

D arduRUSIUIWINaRNAGTH (Hinds, 1999)

kTC,
3mud,

D=kTB =

(2.16)

ﬁwm@Léfmhugluﬁﬂmwaamgmﬂﬁma@amé'ﬂsfmmwim:mﬂmnl,ﬁﬂu (Brownian
i i A v a £ = ) Aa ' A
diffusional  flux)  zduwdltuANT Gﬁwmslmmfnamgmﬂmmm@lmyﬁ]:umi
u:ws'ﬂs:msﬂﬁm'j’]mgmﬂﬁﬁmmmﬁﬂ AIDENILT U auUNATUIA 100 wilwauas mule
HanluanasauTauaz iAW LN TUNINTZN R ULYINAY 14 cm/sec mmzﬁmémﬂ
e 10 wiluwwas noldFawludoinwazianusilunisunsnszanamiuyinny 440
cm/sec ﬁaﬁumums’m:mmﬁnLﬁmuﬁaaﬁwmﬁmauﬁ’umsg@Lﬁwadamgmﬂ‘lm:uu
NMILAITUNADENINZAD IR
a A \ = X a v o gd a £ dl' @

MILARUNLULLNI IUNNTANENT A ANUFUNWTNLAATWLULATAINALENTUIA
E]‘Iféﬂ’]mflaé]%ﬂ’lﬂgﬂwﬁ/ﬂﬁ’sElLLN‘Y]’NVLWW’IETﬁ@I@]aE]@Lﬁuiﬂﬁ]i (trajectory) JzaizMILAREUN
wwuuifisuasihldgezozmuefeunigniuuulifianis (random net displacement)
WU lunigulaasdndiiasannmatafani Il ana T,@ﬂwaqﬂ’ﬁmaoﬂm,ﬂﬁauﬁu,uuu

{ a J a a 1 U 1 { ) e

S’nLﬁwﬁmem:ﬁamwa@aLauImasmaamgmﬂ lagdaadumadsed (oot mean

square) 2843z ILAREUNUTN RN T JUTUIE ¢ W laan

X =~2Dt (2.17)
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2.2.6 mimﬁauﬁaqmﬂmzflé’fauwvlvxlﬁ'l
\Woaumaazaasniilszy lwiafingnd  (net electrostatic charge) agmuld
snnlWihadenudy £ eumaenddsgezldiuusineinudelwihaiiogn  (net

electrostatic force) F,, ﬁﬂixﬁﬁ@iamg,mﬂmmim‘hmmvlﬁﬁnﬂ
Fy=n,eE (2.18)

{ ° d ' ' a -19
\Wa n, Aednwinlzanaguuanme e fanlszaveddianasan (1.6X10 C) uaz £ Ao
anuassaswn i dldlussmouanaulag wnszi (lesmldudadmiveyna
szauw lwaausan i Wisiazidannniussldudfia F, >> F ) wsanma i
a = [ A @ (3 v '
sfiaazauqalasusaioaainaland 7, uazldrdisvisdluadueseumaiosniiyszanm
1 azldaunaieuiuszasmuaiandovasaumanmeldswalnihfe

4,3,
o dt C

c

V,+n,eE (2.19)

e m, ﬁamamaaau‘,mﬂ waz v, ﬁammﬁfﬂum‘smﬁauﬁwmaamgmﬂ aumﬁlﬁ’mgmﬂ
ﬁéTﬂHmzLﬂumoﬂamzmmmﬁﬁmmmmamaamgmﬂﬁLﬂuﬂaﬁﬁmawmmﬁumu
ARINAI AN

U

m =%~pp & (2.20)

P

BINTAWALNIARNANTN 2.19 azldanuisrluniefandru g Iwilatatwlane

(terminal electrostatic velocity) V. FNIDFWIDA LD N

n,eEC,

— (2.21)
3mud

TE

A a o A o a
IMNRJUNIIN 2.21 RINNIDILY Uulﬂa%ﬂugﬂma(]ﬂ')’]l]a’]ll’]iﬂluﬂ’]il,ﬂﬂa%@na%ﬂqﬂlﬂjﬂﬂa

(mechanical particle mobility) B wEadlalag

Vip =n,eEB (2.22)
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IIOEERR agmaﬁ"lﬁ%’uﬂs:agmﬁauﬁm el s Tl QﬂL‘%ﬂﬂ'j'uflummmmmluﬂﬁ
{ > 2 Qs Q Q
LARBUAINMI MWK (electrical  mobility) Z, (m/\V.s) LAZTAMURUNWT LA aTINL

mmmmmlumimﬁaué’uagmm%aﬂa B URAIAIRNNITN 2.23

n,eC,

Z =%=n eB = (2.23)

r P 3mud,

2.3 nuin1sluavasvaslna
2.3.1 ANN1INI3 LAAVBIVDI 1A

malwazasvedlua (fuid flow) melweIasdinnzdanudududsiwines
a%mﬂlumiﬁﬂmﬁ: azaun@linmyinameludunmslnawuusuanasivuny
(axisymmetric) WUUIIUIIBU (laminar) LmugﬂiﬂwaommL%’Jﬁ'@um"lﬂmm@ummtﬁuﬁ
(fully developed) uazuuyliyu@IaUAMNGY (incompressible) Tagsunmsanudaiio
(continuity equation) LLazRUN1T Navier-Stokes LL‘l_l‘lJvl&iq‘Llﬁm’mﬂ’nuﬁu (incompressible
Navier-Stokes ~equation) ledgnihanlglunisduwinudduazvasswinmslnanielu
Lﬂéaﬁmﬁ:ﬁmm@agmﬂﬁ %Gmmsm%wlﬁag’lugﬂmmaumn%aagﬁuﬁﬂaﬂ (partial
differential equation, PDE) luszuuAnanssnszvan (cylindrical coordinate system) LUU

2 NALAaITh
FUNIIANNG DD :

L () + () =0 224)

RUNTT Navier-Stokes:

fnsuluuwannu (n

2 2
u, Ou, +u, Ou, Uy _ _16_p+# i(li(”‘r)}r S _ﬂi”r (2.25)
or oz r p or or\ror

fwsuluuuanns (z)

2
y ey, O 100 li(r Ou, j+ 0 , (2.26)
or 0z p 0Oz ror\ or oz
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fnsuluuuinnu (6)

2
w Lo yy Py, li(r%}ra ty _2_”(%) (2.27)
or 1674 ror or 1574 r \ or

W u,, u, Uaz 1, A8ANTIVBIVRIIRALULIILNY X, ¥ UAT 6 WEEL p Aaana

AuRIRI N Uaz 1 Aannuniauesuadlna (kinematic viscosity of air)

2.3.2 dasistluanuazsdssanusivasmsinalure

ALa2L3 1 Uaa (Reynolds number) Aadata 130G (dimensionless number) v
UaNTIMANBIULNNT INATBIVEI MarwYiD Tumsanwiinsluavesaasinanioluaias
‘3meﬁqgﬂ‘lﬁﬁwmﬁLf‘alau"lmmsvl,ml,mmmL‘%fsm (laminar flow condition) @3udILaY
wiluadazdasagluszuaunuunuiioy (laminar regime) fnsLnsasiinziefildloy
ﬂﬂaﬁb’ﬂﬂ A IUBANINTANTINTTUBNTDULNUIIY (coaxially cylindrical electrodes) N3
ThauuuI9I% (annular flow) LLazéfstamiﬂua@‘lugﬂmaLammﬁmmuﬁmmmﬁﬂmm
1dan

Re =M (2.28)
n

e 7, Aevafizasdianiniansinzuanduuen (outer) x AodARIUTBIFUHIUAUINANS
PaanTInszuandunludadiunan U fannuidimswaads uwaz p Aaanunwuivas
wAw (gas density) @9tu3LIT19A21037 (velocity profile) lulsnAdlan1T InauDLILAILE

w1lea1n

2 2 2
u(r) = i(—d—pj 1-= - I=x h{iJ (2.29)
4n

dz o In(x) (n
A A A o A & .
Wa dp/dz aaa1RINTRIAINNABLNTILALWYN (pressure gradient)

2.4 w1 Tl

N LAz T InauaInIzua Wi (electric field and current flow) 813150
asunglaanannisves Maxwell's ﬁﬂiﬂﬂﬂq&lm}miﬂ’sﬁm (Poisson’s equation) U3
dndlWi 7 @8 (Chang et al. 1995)
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vy =L~ (2.30)

A A 1 3 A 1 A nndy A A
Wa p Aeanunwiuiuzaiszy (C/m) uaz g, Aeddeila@iauasgyanmeanianing
P -12 d 36 Yo @ o o
(Free-space permittivity) AA WAL 8.854 x 10 F/m Tdauminlslaswsuuiansld
gn1dn@  aenuanaunsn 230 swnsadswdusunsvesardans  (Laplace’s

equation) luszuUANANTINTZUBNLLL 2 6 Ae

2
lﬁ(ra_VjJra_’z/Jr_P(”) ~0 (2.31)
ror\ or) oz &

AINUAMNGIANT NN (electric potential) N IALULUILAK z WALWUWITAN r RINTD
Mt laann

g=% p_ 9

== (3.32)

' or’ oz

UM IVBIMUMNTIRTUANNANANT AN (RUAIA 231 uaz 2.32) lanansafias

fMUITIANATIEA (analytical method) Idlumsinmil (lasananududauyaszngg
a Al a & o & ° = A ¢ & ¥

LIUNAHAVBIAIBINATIZRY a9t s asny e luiaIasiiane iy fazla

= ad a o . @ ' °
FLLUPUIBLTIAIIRY (numerical method) LTWNW%’)UI%ﬂWiﬂ"IW]m

2.5 myanzviama il uazamianisiva

WUUIRINTAWIILTIAILEY  (numerical  model) ﬂﬁgnﬁwuﬁuﬁalﬂums
SreiaWiussamamsnameluaiasiereiaiarmlniiaanudilatomns
upedaiasdazRanidn  lasuuuiiaaseslznaudisgesdin de uUUIIE0d
237U PN (electric field model) WAZLUUINRBIVDIFWINANT L1AE (flow field model)
lapauy@alinsinanoluvaidunsiwauuusuanasiuuny (axisymmetric) wuUTILITEY
(laminar) LmugﬂiwwaammL%aﬁ'@um"l,ﬂﬁnmﬁwazhmﬁuﬁl (fully developed) wazuwuyla
UAIAINAINAY (incompressible) LLa:"L&iﬁNamadﬂizaﬂummﬂdw S9ruauNNT Navier-
Stokes aaoﬁ&mﬂ&iqué’mmmmé’u WALENNNT Poisson’s LUUABING (2D) 93l
Tunsdwnudidiardmnitanaminawszamn Wiy awdrau doldsunsudniagy
cFDRC™ fildszifouatmImuSinasduiios (finite volume method) WSafifloui3oneas
ddariuin Fvm daduldsunsuusluidymnisdunaemaasvedlna (computational fiuid
dynamic) Wawaulasi315n CFD Research Corporation §suARUSinasauiiasildny

o ™ a A o {
mmmmaﬂﬂmmw CFDRC WusztdauismMaBeaauino I A Halaa s ad
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Tymfirnueanly Tasmautalaws  (domain) tTymaaniunasimasudafiGani
31@3auAy (control volume) FINBWAE 9T WAIEINENNINIUAN (governing
equation) °11adLL@ia:ﬂ%mmmuqﬂﬁaamé’aaﬁuaumn%amgﬁuﬁsiaﬂLLﬂ:L’f‘iau"Lwaum
(boundary condition) 614¢) ﬁﬁmu@mlﬁﬁ’m%’uﬂtymfuq MNEUI NI TIBsudaS
ﬂ%mmmuquﬁaﬁ”ﬁaﬁumvlﬁf:mﬂs:ﬂauﬁ'w:ﬁ”'] AalwiAaszuusumInseuiudn (system
of simultaneous equations) LaZ39YNMILATEULRNMINIRNAlADMIBUANTAEIGILA
ma@ﬁ”’wﬁaﬁﬁ%aﬂ%u’lmmqu Aolfifianaiaasfidasmmudiunmaeig 928931379
flywin lusunsw crFOrRc™ Hﬁﬂ'ﬁf{'}'@éf’au,ﬂs"?iagﬂuﬁna’mmawﬁaﬁﬁﬁiﬁ'mﬁu (co-
located cell-centered variable arrangement) ‘%Wmﬂmmiﬂﬁmﬂimu (dependent
variable) UAzAMLENUAYBIIEG (material properties) ﬁy'mmﬁ]zgﬂLﬁuvl,’?ﬁaqﬂﬂuﬁﬂmwaa
e lapduadvasitwiulag mﬁluﬂ%umsmuqngﬂﬁﬂﬁ’l@U@hﬁﬁ;@ﬂuﬁﬂmwad
LIRS

2.6 nstialalswfar1salwnzuaznislruazasnszua Wi

lalsu@as3a (corona  discharge) Lﬂudluﬁﬁﬁﬁ@aﬂﬁd%ﬁd%ﬂdﬂi:ﬂ%%ﬂﬁigﬂ
ﬂi:ﬁ;"LW‘Wﬂﬁﬁuagmﬂ stwzLﬂuﬂi:mumi*ﬁa%"w"laaauﬁﬁﬂﬁagmﬂﬁ%’uﬂs:q Un@
Ui9zua0d 1311890 UAN BIUZVBINTZUAUAZLIIGU (voltage-current  characteristics) e
LLiaé’u"LWWﬁqaﬂdwLLiaﬁuﬁuLﬁ@IﬂIim (corona onset voltage) NIzW&LALIUN (corona
current) asfas q WinTuauusiew Wi fAndu I@ﬂLLiaﬁuﬁﬁ@hg\iqmza%"wﬂszmUI@B
W1 (sparkover  corona) é’afumﬁuﬂuﬁaoi&mﬂﬂﬂwLLa:mzLLaVI,W‘WWLﬁalﬂumi
aaﬂLLUULﬂ%mnmnamﬁaﬁﬁ@mgmﬂaaﬂmﬂmumﬁ"ﬁsﬁ g Wi Suialalsm

(corona onset field strength) £, RINITDFIUI IFNNFNNNTVDY Peek (1929)

E,=E,(5+A4J5]r) (2.33)
s=LF (2.34)
TP

do £ fesuwwlwiiusnannsd (breakdown field) luanmeafiannizund 3.10 x 10°

1 o et . 6 1 o el
Tad ¢ was §wSulalsuiay (negative corona) kae 3.37 X 100 1ad 68 AT &1L
e ' d 12 o @ &

lalsuuan (positive corona) 4 faf@N (0.0301 m ~ &wiulalsuaIay was 0.0266
12 o o & A ' ~ o A
m & miulalswiuin) & AeenunwiniusasameananuawuIIenmMa 7. fa
punpiiiasnasanmeananzanas;u 7 Aegunnfionmeasmennu P Aannuan
USTNMANENIIZNAITIH  Ue: P A0AUABLIIIMATMIING  Iaggunsves

Peek’s ﬁa’lNWSﬂIﬂ@TL%WRL%’]:%ﬁUEﬂLimﬂﬂfﬁmwuwi\‘mizuaﬂ (cylindrical geometry)
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ﬁ'u,ﬂ%aﬁme:ﬁmﬂmmumamzu aﬂ‘]}/a%LLﬂuil'JNLLﬂZVLﬂa@]Na?ladﬂitﬂﬁﬁd a1

ussau WG Ralalsw 7, saunsadiwimldaann

Vy = Eg In(r, /1) (2.35)

\ o { i . 2 AL da &
uazANNRWILUBYINTLR MHLaRe (average current density) j (A/m”) ANUWNRIVBILL
& o { ' ' g { A ' o [ Y
Wanlnsasuunan NRwLoLn nszurIWAdaNwnnantiig LHuNIRTwYaILIIa W IWHA

271al5GaTI3 FWTAFIwIBALaaNn (Parker, 1997)

48,2V -V
r23 In(r, /1)

(2.36)

Wa Z, fadanuaiunsnlumaiadauainsiwidiaeslaaan (ion electrical mobility) Jein
@ -4 ' ea a A A aad A AL
WAL 1.4 x 107 anvawasdaliadiwnd uaz g, Aedndaslia@iauasgyymeaniaiiing

cige . ' P -12 o .
(free-space permittivity) NFLYNAL 8.854 x 10 W1SAAELNAT LABAMNAUILUUT DI
nazus Wi lusunisn 236 dimunindsuliedluzlvasnszualWihninaduiuig

2917 8LANINIAG I UkaN laaa

_ 8z ZV(V -1,

72 In(r, /1)

(2.37)

% n:l' o v Aa 3; dln =3 dld U 1
usdauivinldiialalsun (flashover voltage) vaslalsuwaraufdianinsandumaauwsimg
' -2 ' @ a { ' =
audnand (d) anAnd 5 x 107 was aziidurian 15d Alalad e d Swimiu
a v [ g: & & a v g; a
LAy waztulwlalswtiuinazdszainmesinikradlalsway  Un@usitiauioy
ﬁ'l"l,ﬂsl‘*ﬁmumﬂme:’hLmé’umnﬁ@l@kmﬁg@ﬂiwazlﬁ"ﬁaamaumé‘uﬁwmumm’h
gusunm il Fnunmeluanansuanr  azdoultlalsuiauiningzuInaz e la o

fNINVIAY

2.7 nun1saniszgannia
9 9
Weaumaazaasaasidn ldlunguuasudalesan (gaseous ions) azvhldifianis
- g c W e . . .
me@mao"laaauuua%mﬂmuua:m‘lﬂgmsa@ﬂszfg"l,wm (electrical charging) U%a%NA
x . _ . . .
202891399 UBLIUIMIATBIBUNNA  (particle size) AMARWIMKULaIlasan (ion
. A ' &V A A i . .
density) usziianfeumaassatluuialosaunianafltluniidnilszy (charging time)
dndulunsdinldfiswnnihlagsng  eumaeszgnaadszquuuuninizany  (diffusion
charging) lasmsiafani l5Aan19uaiten (Brownian random motion) 284 laaaws e

a‘lj‘:ﬂﬁﬂ 1%ﬂ7‘§5@ﬂ?$?LLUU WNINTZNBH NIITUNBIZHAIN agmﬂazaaaaaﬂﬁ'ﬂaaangﬂ
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Anvwudn 3 szuay %aa:aguuﬁugmmadé’amm Knudsen, Kn = 4,/a o A favzoe
mstedanfisasziadevasloaan (on mean free path) uas a AaruaTaiiuaianne il
@187 Knudsen Nenstay lawA Kn << 1 ADNITLIUMILYNAILANGILNIUNINTZINY
TanauLseAnTnsIanu (combination coefficient) 1¢ldunainmsustymannisms
unsnszneluszauiivaainlddsals (macroscopic diffusion equation) &1MILUAILEY
Knudsen fienun (Kn>> 1) azldmnuijasiuauia (kinetic theory of gases) lun1sm
dnerdudsantnsmntn  egelsiony  luziedaey  Knudsen fewidu 1 lw
NSEUNUMTHE ANUTUTaRIN LA IR NS s RN NN Smsane
aduaatiiaafisanulessuuazazeassasualddnmssssumsnmnanss (semi-
empirical expressions) Jwinanuslugisiond 1950 dwsurhwsdasMIINziaas
losaunuazaadaat (rate of ion-aerosol attachment) Melansuwsnszasvadlosaw lag
Fuchs (1947) Lﬂuﬁfﬂ%mmamﬁfﬂumnﬁvlﬁﬁ'@ummmﬁmsé’aﬂs:gmemi’ﬂs:mmmz
@iamvlﬁgﬂﬂ'@ummm@imﬁaﬂ@ﬂ Bricard (1949) Waz Gunn (1955) daanuuwlull 1962 fis
1963 Bricard (1962) uaz Fuchs (1963) ldwammnuinisdatizgde lanauy@lvlosaudl
maunineznglddiaymauazyinsuwidymsumimauninzanslndnveuna Tu
nuiva9 Fuchs iawlvvauinafilidendnd (fluxes) 1fasnnmsuninszanouazngs]]
aaﬂvhﬁ'uﬁgﬂmaﬂauﬁmamw (limiting sphere) uazfinuwwIwiuaaslosawlnasn
aumaidudiatiud (n(o0) wihnuanududuvaslosauluiiunas) I@ﬂlqumﬁﬁﬁlﬁsw
UIIIUAMIWMS WA (electrical image force) nlUdne dannlull 1985 Adachi uazaue
(Adachi et al. (1985)) Vl,@mﬁl,auawami'ﬂ@aaoﬁlvl,ﬂsl,uﬁﬂmaLamﬁ'uvlﬁaﬁ'wmwﬁgﬂma
nanduauIuarad Fuchs dniLaunaluszuaunssinin (transition regime) (Kn=1)
Lfiamm@]a%mﬂﬁﬁ’umﬁwmmaas:mmsmﬁauﬁ%aizmﬁwaﬂaaau lagAsMIuuy
ﬂﬂ@ﬁm%’ummﬁ”ﬁmummsé'@ﬂi:qLm'uLL‘wim‘:mﬂﬁlul,l,ﬁ”a"laaaw,l,uu'ﬁ”"sLam (unipolar) g
aguuﬁugﬁumamﬂwﬁ birth-and-death ﬁgﬂﬁ%auaiﬂﬂ Boisdraon and Brock (1970) n13
ﬂixmLﬁumim:mﬂé’waaﬂszquum&mﬂﬁﬁmmmam (monodisperse particles) 22 e

v
e A

ﬁ]’lﬂﬂ’liLLfTﬁmuﬂﬁauﬂ’li Differential-Difference Equations (DDEs) @41 (Biskos 2004)

dN
—r BN, N, (2.38)

dN
o BN, N, =N, N, (2.39)

an,,
Tl’, = an—le,n—lNi _ﬂan,nNi (240)
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A A v @ o Aa A v o
Wa N, feanudutuitmiuseseunaazeadassniilszy n N, faanududuuad

A [ a n"‘ s = d'd o et
logeu uaz B, AedudszAnimiviunuvaslesaunveymeniidszy n sumsdmsy
L5 a g Qs 1 ¥ Qs
fu3zANTNITINNU (Adachi et al. 1985) ajuuiuzunnEinIdnLlzgzasaynalas
Fuchs (1963) @

7o’ eXp(—Mj
i3 I LN | (2.41)
N, 1+exp(—¢(5)jm/c"5 ja/aexp(¢(a/x)jdx
kT ) 4Da 90 kT
e
x=alr (2.42)
-1 & a

41 = | Frrdr =L

2.43
dregr & +187g, r*(r’ —a®) (249

2\ A Y
3 (1+ Ij 1+ 12 1+— ) /12 5/2
s=2 a “ - £1+ : ] (2.44)

#(r) FannuandndialWiatia (electrostatic potential) va3laaaunszuziail r 11n3a
ﬂuﬁﬂmwaoa‘tgmﬂ F(r) ﬁaLmﬂﬁﬁ%mma"lw“?\haﬁmwdwvl,aaammzmgmﬂﬁﬁﬂszﬁ;
s AedalveszUninanfiveuu J, =dn/dr fevanduveilesanldiaynia y daana
duldldvaslessunidnlusdnsnaniesuuszlondrotszavesiulddseunma ¢ fe
a v { Qo a Qg
AN TITInuTanatuvadlasan (ion mean thermal speed) D. faguiyz@ndny
A = & &
Aadasnuaslusnuug

WNINITBVEI leeaw  (diffusion coefficient of ions) Kk

(
faurinty 1.380658 X 1072 JIK Tﬁaqmwnﬁﬁwmumaas:uu e

(Boltzmann’s constant) A

fedndsrguasBiinaseuliduiniy 16 X 10°C & fasasfivasmuduawiuzas
8N (dielectric constant of vacuum) & @afan wBaNNI INFNRNRUTVDITRG
anna (relative permittivity of particle material) I@Uﬂ’mmwl,‘nﬂrymwiyau G]ﬁ'umaﬁzuu
aumsﬁwumﬂﬁﬁhmuﬂs:ﬁ;m’é"sl (average charge) UAZNINILANUAIVLIUTZIUUARANA
(charge distribution on particle) luLL@iaz*’nm@mwLfi'au"lmmsé'ﬂﬂizg

agng lafiana mmmmﬁ%ﬁmimmzmumsmaamsé'@ﬂszfgmel,ws'mzmﬂ
LLUU"E%‘Qzmd'muazﬂ‘@ummuﬁL‘ﬁaﬂizmm@hﬂizﬁ;maamgmﬂw dorldlas  White

¢§ | S a a a
(1951, 1963) sml,ﬂuga‘swmwgimaqaamz (free molecule theory) lagmIfasan
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Wanduasleasunanniznuuuiuitaunauazlininsznsdivesluinanul  (Boltzma-
nn distribution) #%IUMINITBEIVAdlesauuazamIlsuliaglusluuuEAienzi
(analytic form) atsield dwivaymanfvweiaiilngnitszeznnefeunda M3
WNINIZTANBUAZNIITUAKYEY laaaunUaymaazaadaasazaniwslasngeiasd  dam
MITWAW (collision rate) w8 5@1ﬂﬂ’135@11l§$’=g (charging rate) LHuRAFIBNLAMWULTIT
o & A o o a o
aMuTau (thermal speed) uazWuUAINIIIUMVEIERMIARzERIRDY luNnBjued White's
Al v I 1 1 Q Qs & L 6 dl
lasauazgnauydlitiansuzduurisdeaymanasannissunu Sawanduaslesan J 0
niznuuuAunAIaseumadwitaymafidaniunand (neutral particle) Ninauatlunga

AIUVDI bEBaUTIALIN laaTn

1

J =4ra’ (E ]Z j (2.45)

a A v o A & a o @
Wa N, feanudiuduvaslesswniiafinds  mInszate@iveslosanszilaainnis
naznpevasluimanutimivaouzaugs  (equilibium state) 1 liaulausaduanin
Ufisenszninglesauuazauma lasnisnsznedivasluinanuinduinzasaynmanild
37N

2
I’lpe
akT

N, =N, exp| -K, (2.46)

W n, Aevszavaseuma uaz K, =1/47e, unuaunsfl 2.46 asluaunisi 2.45 azld

2
n.e

J=ma’cN. exp| -K, -2~ 2.47
it p E akT ( )

Taggums@t 245 (usunsiignibiauelay White (1951, 1963) naumsi 247

F1N1TD a%mﬂé'@mmié'@ﬂizaﬂ@ YITUUVDIFNNTLTS a@ﬁuﬁ(ﬁaﬁ

dnp . npe2
% =ra'c, N, exp| —-K, T (2.48)

o A | = o o % ' =
ﬂ']ﬁ%@]L\‘iE]%vLﬂlLiﬁJ@]%ﬂﬂ n, = One=0 ﬁﬁ%iﬂﬂ’]iﬁ]@]ﬂi:ﬁlﬂladﬂxﬂE’NE‘]E]SI mﬂizﬁy,aawaa

mgmﬂmmsnﬁﬁmiﬁuw%mm WBIILaTE Rt
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"2 dn L
| b~ =[ra’e Nt (2.49)
0 0

npe

£ akT

exp| —K

gﬂLmuﬁgﬂauﬁmmLLé"mamumﬁnuugﬂHﬁ'uasj'ml,l,wivamal LRZINIANNWaIl
WiiEad 1IN % (Willeke and Baron 1993; Hinds 1999) a9uu fnuszalady 7, 284

msé'@ﬂiza;mel,ws'm:a’mlwﬁ’m'm’l t Lmzmm@Lﬁumuguﬁﬂmamaaagmﬂ d,

R1UIIDR EAN
d kT 7K .d ce’ Nt
n = | 14— T (2.50)
P 2K.e 2kT

i d, Aevwaliuigudnanivedanna Tagsunsfi 2.50 alddmiveymaluszuay
ABUNIRAN (continuum regime) (Kn << 1) wazsaandougeslWiAwIuULiaeiimang
wwzszuuluanadasz (Kn>> 1) (Liu et al. 1967; Gentry and Brock 1967) at19l3nana
Brock (1969, 1970) ldmaawinfianufanamaismamifiodwanaunsi 2,50 iilesan
HaTaILIsIUaNW lumsinmeaun Liv et al. (1967) lavimadudyeaunisvas White's
s'f?o"lﬁsaummiﬁwaaLﬁu‘[msmaavl,aaauﬁLﬂuwamﬂﬂszﬁﬂWﬁhuum&mﬂ W8 Gentry and
Brock (1967) f l@uAtmiaunsnsTwnusadluinanust (Boltzmann's collision equation)
Lﬁaﬁuﬂ'ummgﬂﬁawa@aumﬂaa white's lagldanuaulafi Kn - o adrelsions
msldmInszanadrvasluinunuwilumsmmsnszasiizaslosaudsitads o’
ﬁmwuﬁ'ma\ﬂuLaqaﬁlﬂuﬂmaﬁ'ﬂaaau’l,uu’%nmlﬂ&ﬁmagmﬂ §9is  Fuchs and
Sutugin  (1971) leuuzsirinazlafinsnszasaivedldsnuud  Taswind lauuziii
3n3ua4 Keefe et al. (1959) anin lasin3va9 Keefe et al. (1959) ldNansanidulaay
maavl,aaauluamuLLsaﬁQﬂaﬁ”waI@ﬂﬂi:ﬁgmaoau‘,mﬂ gan Pui (1976) lavinmssiunand
losaufildulay Keefe et al. (1959) lugumsuazusasliidwinaunisvoaninianliuad
ANNWALFUNIVEI White's ﬁﬁﬂ%ﬂl%ﬂitﬁﬂadﬂﬁigﬂﬂizﬁgLLUULLWiﬂSZﬁ]’]U{?’JLaUQ

dnsulunsdiitswnIwilang leseuszgnlendieludseymenivuiuaasag
anaaLFuawIa [N (field line) I@mﬁuaumvlvmw:wé'ﬂﬂizgagmﬂiﬁﬁmgﬂﬂﬁmm:ﬁa
"szﬁl,ﬁuamu"lW%"LﬂEJ':]mgmw%a‘ﬁ'L%Uﬂd’m"nsﬁmé'waaﬂizﬁg (charge satura-tion) M38@
ﬂi:qLLuuf:L%ﬂﬂﬂdwmié'@ﬂi:ﬁgam:u (field charging) lasuavadawd IWidvauivadnng
ﬁlﬂuﬁuﬁmsé’wﬂi:ﬁ; (charging zone) mmmﬂszmmmvlﬁﬁrmaumimsé’@ﬂsza;u,mJ
JWIVBI White’s (White 1963) I@ﬂmsﬁuﬁmaaﬂs:q n, vasaumaluswinnihmld
N
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_ 2
n =[1+ 2621 £a (2.51)
‘ e+2 )\ K,e

Al A P & A @ o o &
e ¢ ﬂE]ﬂ’]ﬂdﬂ‘lladﬂ’lil,ﬂuau’mmadmgﬂﬁﬂ ey F ﬂﬂﬂquLTNTaﬂau’]Nvawq QI

é’@mmsé'@ﬂiz'gLLmJamzumm‘mm"l,ﬁﬁnnaumﬂ%aamgﬁufﬁaﬁ

dnp n, ?
—=nK,eZn|l-— (2.52)
dt n,
ﬁmqmm‘%wﬁuﬁmlﬂunma a‘hmuﬂiz@La,ﬁyuumgmﬂﬁ"l@i”miuaumvlwﬂ’]L«a.ﬁm]z
R1U130A lea7n
261\ Ed* 7K _eZnt
n,=| 1+ a alile (2.53)
e+2 )\ Kpe \ 1+ 7K eZnt

P A A P ' & ' A
laggadinannInuasaunsn 2.53 Aeanuslszadud lunenusnazaguuiugiudnan
& o A ' ' 2 A & A
anuduawinverizglasfidiaglugag 1 - « Sdasfianuduawiuiidnnn 1 (yaa
tﬁl ] =3 1 tﬁl ] L= o 1 v 1 tﬁl |
fduanin) it o (eumanidudai) lassunnusdasnanuduawinses
aumaazidiaglugg 1 - 10 lunennzasvasaun1sn 2,53 azaguuiugiuzasanuida
maaamu"l,wﬂ’]LLazﬁuﬁﬁwadamgmﬂ AW NANNRINVIRNATN 2.53 Azt lrle
Q g: Q 1 a &, = = g;
NIzUIUN1I8aLIE) NIN1I8ALUUULNINIZINBLAZRINNzA AT Ul ALY Gt
Fwaudizgvatapmaild eandummiaiusnidwiuleanldnnmsdadszquuy

LWINTEUWRLRUN (Liu and Kapadia 1975)

2.8 NMIIARAENITNIIVNIUA YY1
mylasyyaelwivatayna  (particle electrical measurement) lafin1g
hanldadrsunsnaneluaiasiianziamaazaadass (aerosol size spectrometer) wazlu
mianareuguanliadveuilosaudisnaiialdnanmauafoudaimlnin - Tagasasd
\@nlnifiiaas  (electrometer  circuit)  legnihwnldienTaduuaziadianuidudu

. Aa A v & [ Aa e

(concentration) vadlasauuazaumaniidszafionaietuluiesljuidnuazluusssma
Whitby Aerosol Analyser (WAA) LLaz Electrical Aerosol Analyser (EAA) Huasasdaned
o o A o o A A9 vn & A & &
naagmauuulinanmaefendamiiniieiawsn  alddidnlnsfiweinssrhriad
(Faraday-cage electrometer) lumvianszualWinannagmeaniidszgduaszasaiasda

LLEIﬂ“lI%’]@]E]%ﬂ’Wﬂ I@] Elﬂﬂﬁ’?@ﬂiZLLﬂvLWW’]ﬁ]’mLﬂ%a\ﬁLﬂi’]zﬁ‘“ll%’]@a%ﬂ’]ﬂ‘i]zgﬂuﬂﬂd BT%VLI]L{]%
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mwmimma‘i’]mumaaagmﬂ Np ﬁm%’um&mﬂa:aamammu Monodisperse FIRNNTY

dolail

1
p (2.54)

N, =
g(n,.,d,)n,eQ,

We 1, denvzualwihiialdnndianlnsfiwaivaaiediianiy gnd,) @aan
Juldle (probability) vasaumanfumaidusiuguanats d, Aldiudey o, usz Q,

AREAINMT InavaInaBIRRE ﬁ%ﬂ%%'uluﬂizﬁmaaam&mﬂa:amaammu Polydisperse

o

¥ ¥ o ﬂ; = 1 k d‘v
FUNIANULVNYWBINWIBUBD ﬂ‘%ﬂ’]ﬂl%awﬂﬁiﬂ 2.54 gyNInLY UHIWNVL@]@N%

M I
N,d)=> 2 Ad (2.55)
P ? i=1 g(npi (dpi )’ dpi )npi (dpi )eQa !

A A o i A ] & A .
e M @adwinzed bin 1eeuma 4, Aevmaiduriuguinasvasaymaaiolu i
284 bin Uaz Ad,, f8n11uni19T89 bin VWIAARIA i GIRNNITN 2.54 Uaz 2.55 M3l
aininifiwesitataanudutiuiwiuvesauna IdaiFoAon1Inauauadzesainiiady
(sensor) axpnimadiedmulaneumaldiy  amu  anahzesdianinalieed
(electrometer  sensitivity) 3sianudayaiuin  hasaniluaiimuetiirasnina
v o o A A A @ o A o a & A Al
dintuiwnvaseumeniedasiesaniniald  lapdnGusy  Blnlnsfaasnlily
{ Qs ] { '15 d v Q
w3asliadnazeasnasaziianybeagfidszanm 10 wewnd (A) wia fA TiazmanadoIniy
v v o d 2 ' a ° o o
anuduiuiwiusesaumanlszinm 107 aumadegnunamiaudiues §miueane

Iwaunailflmeadasiiada
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unn 3

msaammuﬁ’mmum%aﬁmsﬂzﬁ%

dl nl‘y ¥ o Y =
luunn 3 Hazladviuauadwanslunsesnuuuuazoazdoaluniseanuuy
6 ' ' 1 A a 6 A % s a nﬂy
qﬂmmﬂs:ﬂauﬂaﬂluLL@aza’;umaaLmaa’;msw:m Fslznauany Tenauansdluilan
wnalngrudn geanivlessn galdveglwinueumeauuulalswidn gndewn
6 A& a 6 @ A £ A a
wduazBianinafiiee’  uazgaldsunsudufinuaztszananatoys  laslinoazidua
aadia U

3.1 tilhwanalunseanuuuninue

wWhnanelunnseanuuunsnua (overall design goals) 284laTdNTILHNDAN LN
AONLUL &3 LASVORAURNITOUSAULLULUAIATAINATIZAUT U A NN UT LT
ﬁhmmaamgmﬂLmulﬁ%é’nmsmsi‘aﬂs:ﬂﬂﬁwaﬁ61 Tagls e3a9ila T8 qﬂﬂmi LA
FUUAILAW NENITONAUILRZ A LN IUUTENG NAUNUTURIRINNGLUTENGA LA
A o A A A o A ) o [ o
LN L9 b LI T8 ILUULATE N 8 T ATMRINZFNAENTHN9% 31A0 LLazmmamwmgﬂ"ﬁ
a a 6 o g; d‘ v Y dl g: (% dl a 6 dl o % J %3 ]
VEIWERTE A% LWEJi%USSQLﬂ’IWJ’]EJﬂmVL’J LATAIILATITRYNALINNNITNAN WA UAINET
a:ﬁaammm%Lm’]zﬁﬂ%mmmmLﬁu*’ﬁm%aﬁm’mmaom&mﬂ (particle number

o ' 14 ' ' ) '
concentration) @@ 10 agmﬂmaﬁﬂmﬂﬁmm LLa:mwm@Laumuguﬂ’nmwaa
f \ = A & A <

mgmﬂagiuma 10 99 1,000 wlwLuas I(ﬂya’lmimLﬂiﬁ:mm@mgmmama:mmm:

. A Aa A & = ) = o
(transient) %5681/@’1@1/]3\!7'1’151,1_]&ﬂuLLﬂadﬂﬁdwaﬂ’lﬁ@liaF_I’NS’J@]LTJVLGI FIRAZNUNNT
° v & v o a a & A 2 =
m"l,ﬂsl:mmﬁz%mwmeumaamgmﬂmrﬂaLawaamsawummam%m Taduaunia
A lAAeNafEaIMa IANNNIAURKEIMNNTIA  (time  response) 28dLAYad
AATERYHAITITUALNTIT 1 TN BRZEIFNINTNTIINTIATITALRLLRAINANITIATIZH
Ienfluszazinansniwwhinasnii 1 Tlug I@U"L&iﬁsﬁa&lﬂﬁ‘ga wYaNInaas19/law%
qﬂmfﬂumm:ﬁﬁmﬁ@ Wa lwlranwlutzauniaswiyld astuiaIaddaeriynalIazil
YWIALERN  TIRINLLN UM% LaRandneladny  sanIniwlwnnanIsuwrIaniy
LARau e LLa:ﬁﬁmﬁunulumsa%Ngﬂ N3N 3.1 LRAINIH NITaanuLUL lasTIN
YAILATAINATIZRYNAZV NI TWAIU

dl' a 6 L% s s Y a
ANMINUNIWITIHATINVAILATAIILATIZRY LLuﬁlwaﬂmﬁ@ﬂs:aﬂWWﬁan@ﬂ,u
A ° o VA a A A = oA oA

unn 1 szl beszuulndndng Mg GuszEnsaw waziANNULTatalus
’3mﬁzﬁﬂ’%mmmmLﬂT@JﬂTuL%aa‘hmmaamgmﬂmiu I@slmé’mmm’mﬁ@ﬁugmlugﬂ
7 3.1 I@U“ﬂ'u@aml,sﬂamgmﬂazgﬂﬁ'@Lmﬂmm@mgmﬂﬁLﬁumamm@ﬁﬁaamﬁ@aaﬂﬁau

mnﬁfumgmngﬂiﬁﬂi:qiﬁ Ia ﬁ%'mié'@ﬂi:fgLLm_lNaummmzmwmmwma:



AN 3.1 mmmﬂummammuh 8374 aam‘%aﬁmsw:ﬁmm@aqmﬂ%

bn msvﬂumia anwuy

wva

QM&&I‘U

WMARAMTILATER
ﬁaamuﬂméfumugluﬁnmw oN;
auneA
ANULTUTUINWIN YA
807 lWavedauNA
NANNTUIZUIANA
riauazasflIznauvesauma

AATURN mmlumﬁm LLRSLHLRAINR

A A
WP VBILATBIND

m‘ssﬁauﬂﬂ;a

3101

waNMIN WA

10 99 1,000 W luLuas

Wasnin 10" amgmmiagﬂmﬂﬁmm

1 94 10 Rasdauwi

$oauni1 1 N
mmmi’@mgmmiéfﬁ%ﬁtﬂmau@a (solid)  uas
2a9L%a7 (liquid)
mmmﬁﬁmﬁmag,mﬂ"lﬁl,ﬂunmmamuﬂ’h 1
%ﬂiuoimU"szﬁminaﬂﬁ"nm%anamﬂﬁyuqﬂmwf
luaazyinmsia

FNIDLARAWNIN LR UIEEIRILINT WA ARUN Y

L 22D

YWIALAN TNRBALLI UM% 8IU1TDYN9W N
I A ~ AN o

MIFURIaNIIA WA la

1 luglunisvinenadnetas 10 Tlud ®adsanyin

ANMNURZDIALA

#apnin 200,000 LN

SUREUM e

Aa
a%ﬂ’]ﬂﬂuﬂitﬁq

mnﬁfu"l,aaauﬁﬁm’mmmmlumsmﬁaué’amﬂwwgﬁaﬂ:ﬂumﬁu

o o A o a v a a Y a
'ﬂzgﬂ@]ﬂ'ﬂﬂﬁiﬂﬂﬁﬁ]@ﬂ@ﬂi@ Eli"liL“ﬂﬂuﬂﬂ'ﬁ@lﬂ@lzﬂ B'HL"H\‘]VLWWW N016

(electrostatic precipitation method) tNailasnuiiliiinadasuormwnzua Wi NNdaInT

o

9 mﬂﬁuagmﬂﬁﬁﬂs:gazgﬂé’ﬂmaoﬁ’sﬂé”msaam&mﬂLLuuﬂizﬁﬂ%mwgomﬂugﬂ

Y & A a A o Aa A o . Y
DUNIILG ULLﬂzﬂﬁzLLﬁVLW'W']VILﬂ@ﬁ]qﬂﬂqitﬁuﬂqu"lmaﬂ a%ﬂqﬂﬂuﬂizﬂsﬁﬂﬂza&]@qa%]llu@q

nissagmeszgnialassasiadyaimnszuainihezaud lasdenududmdidum

P24a%MAYNUAIRUININABaIN T INTh N TaanIsaT Ty oy lag

NYAzLDLATBINIIoNUULFIMLIZNaLL e 9

WaTaadsia b

MuldfsnAenzvaz lavinaualu

3.2 gaanuandilwitlonzwialnaizian

3.21 ﬂ')’]&J(;Eldﬂ'ﬁGl%ﬂ'ﬁaﬂﬂLL‘]JU

A A ¢ & o N A \ ) . . .
1%Lﬂ5@\13Lﬂ3’7$V\9‘1% ﬁ@ﬂ@LLUﬂaﬂﬂuLﬂaumuqﬂlﬂquLmq (size selective inlet) 3

nidaeynaniizmalngniizissma (size range) Ndasnmyinaan

a
bWadN
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Size selective inlet

A 4

Particle charging

A 4

Free ions removal

A 4

Particle detection

\ 4
Signal current
measurement

Y
Particle number
concentration

Eﬂﬁ 3.1 HANNNIYNIWY DIG UL ULATAIILATIZAUT N A LT UT LTI T 114 89
amgmﬂmimuulﬁﬁﬁﬂmﬁ @ﬂi:ﬂﬂﬂﬁ 806

Aa ' & o A .
mgmﬂ‘nwmﬂlmymmumzﬂi:ﬂaumﬂﬂi:ﬁ;w%mﬂ%mU (multiple-charged aerosol)
Aa A Ao = o o Aa = '
I@slmgmﬂmﬂs:wmﬂ%mﬂmmu alidwnulszaasanunuagpmandawaidnnin
Trazviliaymanidszananuansmaaanngniauazasadudyyinldwiou gy
Aa = ' o 2 o @ oy Ao o & ' A
amgmﬂwwmmaﬂmﬂ@ ﬁmml%myrmm"l,wWﬂmmvlmzl,ﬂuwamm:mnamgmﬂﬂag
Tur9nIIIaLazanTIINIIIG I@slLLSTamwummgmﬂﬁ@Tadmﬁ@maam%a\ﬁmezﬁ%ﬁ
A = >3 g; 1 d' v o Qa = n:?d
fa 10 wilwuey 99 1 lulanuas muu‘mwm@mgm@maomimwlumiﬂﬂmuﬂa

Aa ]
aumanduwalngini 1 lulanuas

3.2.2 3ngazdgalnnisaanuui

v o [ a P ' v A o £ oo

aﬂwmﬂmaaﬁwam@mLmﬂmﬂmﬂaumm@lmymmewwmmuu,amvbmgﬂ
n32 I@Uq@ﬁ'@Lmﬂﬁaﬂmﬂaummﬂlmym’nﬁﬂumiﬁﬂmﬁ (Intra, 2008) q@ﬁmmﬂ%ﬁﬁ]:
mﬁ'mé’nmwaammLﬁawaamsmﬁauﬁmaam&mﬂ TATIRFIIVNINRUAWLAR

. o \ ' i A A o &

(stainless steel) Usznaua8 TadL3d (acceleration nozzle) NUTWIALTFUWNIBAULNRY 1.0
URALNGAT LAZUNUANNIZNY (impaction plate) ﬁﬁmmmﬁumuﬂuﬁﬂma 10 ARLUAT 219
PINATIN D ONVDITDILII 18T 8 WI9Te I T AL T INU LN N IZNULYINNL 1.0

UARLNGT
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Aerosol
inlet

l Acceleration nozzle

/Impaction plate

Aerosol
outlet

Z %

gﬂﬁ 3.2 é’nwmﬂmoaﬁ”ﬂwaa“g@ﬁmwﬂ’ﬁaﬂmﬂaumm@lmy' (Intra, 2008)

P> ' (% a A -
U7 3.3 ydwvesgadausnailwilausinalng el (intra, 2008)

\Weaunmaazaasnas warwdntenss aymanfivmalngaziianudesgiazannizny
a ' A Ao ' ' o ' Aa &

fuiunsznummzlisansanfeundeniuudunsznullld  dneymafifvinaidn
WazLARaWN MWL TNU I ld WS o N UNIZ LR T INaT09U09 e La8 U IALE N
audnanizedaymafignuenaan  Sonivaduiugudnaiiadaayna  (particle
cut-point diameter)  lumsdnmBvmaiduruguinaIadaaunaiiduriniy 1.28
Tulasuas N9aINI Ivaradazaadyinny 2.0 86T da w17 U7 3.3 usasgddievasra

v 4 A o
Aausnasdwdenymalng a1

3.23 mﬁLﬂi’l:ﬁlé’fmi'mquﬁna'm@‘mé’ﬂwaaa%mﬁ
muﬂmﬁumug{uﬁﬂmwawmLsfammsnﬁﬂmmvlﬁmﬂé";Lamaimﬂs? (Stokes
number, Stk) @LaalANFAaALUTISAA (dimensionless parameter) faTUNUANBALANT

6 A
N3Ny FNNIFLANd Ao
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2
p,C.dU
9nD

Stk= (3.1)

lasfl p, Aeanammwiuiuzasauma C, Aadraizovaiduiiuan d, Aanmaidusii
3 o = = a 4, ) . A = o
AwinNaNIaananma U Aaanuiiafoidiutedss » Asanuniavasuds uaz D

ﬁammmﬁumug{uﬁﬂmwawaaLs'o TagaN U UARINHIWTAILIIRINITOAIWI DA LAN

4
U= ﬂgz (3.2)

UNWRNNIIN 3.2 adluaunisn 3.1 azle

_4p,C.d,0

3

Stk (3.3)

9rnD

‘iﬂﬂﬁllﬂ’]iﬁ 3.3 ﬁ]zﬁ’lﬁ\l’liﬂﬁ’]%’)mm%’]@Lﬁuﬁh%ﬂ%gﬂﬂ’]d’ﬂﬂﬁﬁa‘%ﬂ’]ﬂﬁﬂizaﬂ%ﬂ’w\m’ﬁ
gzaN@) 50 1lasidua (d.,) (Hinds, 1999)

972nD’Stk,
4p,0

d50\/a =

= o “ A & & o ¥ & A = \
iinsnndrzarsauibiuanduiairusmaiduiiuguings aunsi 3.4 sldmann
Mzdwinlagddundla asnn dy, swrsndszanman dy/C. lawldsumsnlanis

NA8BY (empirial equation) fa (Hinds, 1999)
dgy =d,\JC. —0.078x10° & wil d,, lunisues (3.5)

A o A ¢ & & o o % )
FUNIBUANINNaDIBLN 2 1Waslaua §WmIu dy, > 0.2 lulasiuas uazanuawlugie
0.9 — 1 U3 (Hinds, 1999) é’oﬁfumm@LﬁumuﬂuﬁﬂmwaaLi’dmvl,@ﬁm

2
D> 4p, (dsovcc ) Q (3.6)
97nStks,
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n:i A o 6 n:id a A > 6 & 6 A
Tas? Stk ﬂamLamaimﬂamaoam&mﬂﬂuﬂi:aﬂﬁmwmia:aum 50 Lasiouwe N
WiNNU 0.24 ﬁ%ﬂ%%’ﬂé’(ﬂmumawm@Lé'fumugmﬁﬂma‘*ﬁaaL‘jaﬁ'm:U:ﬁﬂaizmﬂa‘*ﬁmﬁqﬁu

LNBNTENULYNAL 1.0 (Marple and Willeke, 1976; Hinds, 1999)
3.2.4 Usz@nSnnIazaNA20991%N1A
UszEndnwmIkdIunzauadanne (particle penetration efficiency) P maa"g@ﬁ@
A & ' o o A
uonFdwlavamalngaudraanson ldanauniin 3.7

P=(1-E)x100 (3.7)

dl A a A o . . . . dll 04 QI
lapf E fauszdnTnwmsazanen (particle collection efficiency) VUBJLATDIAALINER

Ywdauiinilean
2s -1
F-l1+ % (3.8)

P 2 a Aa o o v v Aa A a
I@]U‘Y] S ﬂﬂ@]’JLLﬂiﬂNNﬂﬂizﬂUﬂUﬂ’ﬂN‘ﬁ%ﬂﬂdLﬁ%IﬂGﬂiZﬁﬂﬁﬂ?Wﬂ?iﬁtﬁN@]’) 1%

=) =g af va |
ﬂ’]iﬂﬂﬁﬂ”]%ﬁﬂ&q}(ﬂlﬂwﬂ%ﬂ’mﬂ 1.0

3.3 gaandulonan
3.3.1 @NADINITIHNITDDNULIL

>

dld 1 v = Qs Qs . d. Qs
milnazaseymanilszamsiwdlufigadnivlaaan (on trap) La@ndy
a . Aa A o o o Aa
losaudass (free ions) mmmmmsn‘lumimaaummo"l,ww"ngqﬂumrmamgmﬂm
Uszq Aawnd U gannsadaauaianInitieas 134a997N 10 o BRI NE1HISANREFUAA
o @ Aa A o o Aa Py
wiaunuaynanille Lmzamaﬂuﬂuamumu']mm:l,mvl,wﬂwaamg‘,mﬂmﬂszqmaorm
o o o & 2 o & v A o @ A, o a PR o Aa
Il AIT ﬁmmLﬂumaaw"q@@ﬂauvlaaaw,wamwvl,aaauaas:ﬂLﬁ]aﬂumnumgmﬂm

PR
!

3.3.2 Sgazidenalwnisaanuiuy

é’ﬂumziﬂsqa§wamaa°g@é'ﬂ%'uvlaaauuamvl,ﬂugﬂﬁ 34 lagazendunannisms
anaznawde Wiadia (electrostatic precipitation) qmﬁﬂﬁ'ﬂaaamzﬂizﬂauﬁ’aULé{Vuam
Bianlnsaawli  (inner electrode) ‘ﬁanme'wﬁ'mia’éLﬁﬂIﬂmﬁa%}ﬁmuaﬂ (outer
electrode) Via'éLﬁﬂimﬂﬁlagﬁwuuaﬂﬁwmmﬂagﬁLﬁmuﬁmm@Lﬁumuquﬁﬂmo 28

FRRLNAT LAZHNY 15 NARLNGAT FIULAUAIADLANLINTAG UMD RULAULARA NV WIALF
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Aerosol
inlet

é%g;i Inner electrode

/ Outer electrode

'y

<'\

. Ton trap
B § voltage

Aerosol
outlet

Z)

gﬂﬁ 3.4 anwmzlasaainsvaszadniuleaat (Intra and Tippayawong, 2009)

A ] o @ A o X
3UN 35 gﬂmwaaqwmﬂaaauwmwwu (Intra and Tippayawong, 2009)

muquﬁﬂma 300 Mulasues wazenn 15 AaRLNes T,cﬂﬂﬁmeﬁim"LWWWLmé'ugaLmu
nuEasITuN I EwaIadlanInsaaule  lwuneivadianinsadunaniduwniiaiine
g 9auwy W LLsoé'uvaWﬂﬂﬂaa%ﬂwﬁN 10 89 100 Tad U7 3.5 usasgldiovasta

@]ﬂﬁ]ﬂvlﬂaﬂ%‘ﬂﬁiﬁd"ll%

3.3.4 m‘s"iLﬂsﬂ:ﬁ'ﬂﬁmﬁa%ﬁwaﬂaaa%mﬂ‘lmgmﬁni’fuvlaaau

gﬂﬁ 36 ugesnanmsmIanaznawmdsniaia lasnsedondluuwiunuas
lasuantwaanmsinaluuwinnuaasvesing samwmaadaniluuwriadaz ldsuaniwe
nusIme Wi Gsasfisnannnitusinszinug Lﬁavl,aaawﬁ'\vlﬂﬁ'aamﬂﬂﬂwé’agﬂ
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Outer electrode

— —
Ton
— —
Inlet —>» —> Outlet
— —
—

| Inner electrode |

gﬂﬁ 3.6 nanmMIANAznawds Wi naiia (Intra and Tippayawong, 2009)

lasauazagnulddniwazasauwuinih wazazdenuaansalunaagaudad Wi
losauy@lisuumlnauaiWindanusuanasiuuny  (axisymmetric)  wazAden
(steady) Hn3braruluazdassiuSey  (laminar) ﬁmiﬂ'@umgﬂiﬁaﬁnmauashmﬁuﬁ
(fully developed) uazlifin13gaea  (incompressible) wazlifinavasdszadimelu
(space charge effect) LLazﬂ’mL‘Wiﬂim’lEl"llax‘ia‘bkﬂ’]ﬂ (Brownian diffusion effect) ﬁdﬁ?u
mimﬁauﬁmaﬂaaaumﬂum&n%’u azmunInetslasszuusuMITIauRUS

(differential equation system) fa

£=ur +ZE, (3.9)
dt
%:uz +ZE. (3.10)
dt

do u waz u, deanuiiluwsniafiuazumwinny £, uaz £, deawin i luwwiad
wAzuwILNL  uar  Z Aesnwswnsnlunisideudamelwihaadloseu  (electrical
mobility of ions) lageafpvasnnuaaisalumsedoudamalwihueslasanuan
(positive) LAZAL (negative) NAMNGULITEMARAUINAY 1.4 x 10° MV s waz 2.2
10 M’V s @WEEL (White, 1963) ﬁwamﬁlﬁmigcyLﬁwaaaumVLWW']ﬁﬂnauuqmaa*’ﬁz’;
aisnlInsafientonanng wszawnlnineluransenszuansinawe (uniform electric

field) a8 b2z e naNUFNNUS

E __r e E =0 (3.11)
rln(rz/rl)

a A o A & aw @ % A Y oy A
We 7 uaz 1, Aevwatalvasnidianinsadmululazeunan uag ¥V faussawlwilin

I NUIIBEANINTAMBIL ANV LI TAT FIRTUMT MAALLUTIUS DTN
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L“/i’]fq‘l/‘]_lf]luﬁ LLQ::ﬂ’J']&IL%’JSL%LL%’J WAWINALAMULTI VDI aa"lmalmi ANTINTZUDNTAUN

pebh
u =0 U8z wu (r)=Ar’+Bln(r)+C (3.12)

Tasn

2 .2 22
A:Ld_p’B:_id_p HhTh ’C:Ld_p DTN ny-r? |, (3.13)
44 dz 4p0dz { In(r, /1)

uaz dp/dz fefAsNae9 Pressure gradient 3NsafIwITLlaaN

d_p:_plji (3.14)

dz 2D, '
Lfiﬂ

Dh:2r2(1—(rl/r2)), (3.15)

f:ﬁ 1+(r1/r2)2 . 1+(n/n,) ’ (3.16)

Re (1—(1”1/1”2))2 (1—(13/r2))1n(r1/r2)

Re = 2r, (1_(’”1/”2))(]/7
U

(3.17)

b

D, farmaliurugudnand Hydraulic Swiuiunnmslnauuunsinszuandauunuiiy
/ @etladumaFuams (friction factor) U Aannui51289ms Maluuwiunwaiy p
A

AOAMNRWILUBTOIUAR LAz Re ABALAULIOLUAE YINNITIINENNITN 3.11 Uaz 3.12
AILENNIT 3.9 1Az 3.10 ANAIAU A IARNNITLEWIAITVES laaaufa

dr
ﬂ:%: 24 (3.18)
dz 7 ru,(r)In(r,/n)

o a a dl v v All dl . . A
NINTBBNILNTIARUNIIN 3.18 'ﬂva@]Lﬁ%ﬂ’]\'iﬂ’liLﬂaﬂuﬂ (migration path) maa"laaauﬂa
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k ¢ VZ
Jruz(r)dr = {mdz (3.19)

dll =) o [ dd‘ v o @ o g g; v v @ Qs
Wa 7, Aedunisiaiinlesaudnlddsraanavlessu danu dlesswdnlulugadndy

A o = A v o o ' A
lopaundunissal r, szfigulaavlgodumnisumwinnn z fe

___g)In(n/r) 5.20)
4vz,

) Ar) — Ar) + Br. — Bry +2Br) In(r,) (3.21)
g ’/;'n = :
—2Br In(r, ) +2Cr} —2Cr;.

in
3.3.5 n1Yarzidszansannisanduloaan
Uz ANTMWNIANILRIBNIIANAZNE (removal or trapping efficiency) a9
losau Ae 80IINNTVRIANVLANGIITZTAINANUTNTUNIINUNITILAZNNIBBNY I
Taanaulonau I@ﬂﬁuyalﬁﬁﬂwsns:mﬂﬁaasi’maﬂ"]Lfsmama@mal,ﬁ'vgmﬁm‘i'uvlaaau
Gt Ussdnsmwmsensulesew 7 swnsadsznnmanldanaunsues  Deutsch-
Anderson fa (Hinds, 1999)

n :1—exp(—2”r2Qﬂj (3.22)

We L feanwuemizasriedidniniadusenvesgaanivlesan £ feswiwlWin uaz
0, fedanmalwavasgadnivlesan  @mu  Swuanudntuveslasaufinidn
naanvaszaanalanan N, i ldan

N, =N,=-Nyn (3.23)
dl =S [-3 v v dl v v
L8 NO ﬂa%quauﬂjquLTNT%TQ\‘]VLQaau‘ﬂ‘ﬂ’]ﬂ(ﬂ’]u‘ﬂ’]ﬂlﬂl’]

(Y [
3.4 galvdszglWihnvanmenvulalswids
3.4.1 ANAABINIIBANTBBNUUL
o o & ﬂ/ A v Y . A
wanmathnuiugusesgadanieliey iWihiveumeaunulalswy fa m3
a o 1% o A a 9 '
Inavesazaasnasfivinainounulesaumelugaliszanfiaualuin 32Wig

NITUINNIITH  (collision process) Vl,aaaumdé’fnxmzwuLLaza:auuuﬁuﬁwadmgmﬂ
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UWITAUNRNNA (macroscopic scale) Faananinaydlditaumaldiudszy ihnanunan
lunseanuuuifagalilszgIWinueunmeszdasiidsdninmwlunmslidszandeudns
v dq, v U e =)

g9 lasanaudasmiugiusasnissenuuugalitszg lWihnueumeunulalswde 10
daszarsazliszaninwlunslidszage (high charging efficiency) lun1sliises
Inhiueynaazeataasiidan  lasdnimwlunslidszavetseayninazesinasgs
fnarhldiaTasiadanulgs (high sensitivity) aaldenn dazdninmwlumslidszany
aumea  wpnisnududasiuasiwiuenmanldiudzanimuaiinmisanvesgali
Uiy Bedudninwisanndaldlassesdedoiisdny  lasidvuindeszduiaz
v A d' % 1 d' o A A 6 = 6 a
U939 (actual charge level) Nanassuuudazayna venadsnaedfailafidudand
a

(net  percentage)  vedauMANlaLly  leasnsszaudszguazidefifudgniazdl

=

nansznulagasnuIsauaamnIzua Wi (signal current) ﬁmﬁmﬁﬂ@sagmﬂ
grauauwenTasnelunedasudianIniiiaas S'fia%mmmm’hﬁﬁzﬁuﬂszqvlwh
A o = ¢ = @ A v A ° oo A o @ ° v
ummuazmﬂawnumEgmuam:wNawﬂ%aryrywmmmawmmmﬂﬂmU wRzvin i
@mwmﬂ’l,umﬁ@ﬁ@Taamimmgﬂéfaa CRI luﬂﬂiaaﬂLLuumlﬁ’ﬂizﬁﬁa@Taamsmﬂﬁﬂ
lumﬂﬁﬂ‘szﬁgﬁgo ﬂi:ﬂauﬁ'uﬁmmLiuﬁmaa"l,aaauﬁgma:ﬁawﬁwmﬁ Tag'luvinau
Womelinuauniaazeasnes In1sgudsvedanna (particle losses) noludn
m3vUwan (contamination) mm:ﬁm%’umgmm:é’umiu LRZAINITDVINIIWNANN AL
° o AaA . . o P A o
@1 (low pressure) LASLNRNUANULANGN (different gases) o ilasaniinsld
unasdeIWiusegs (high voltage supply) d1elWilussgeldnundidninsadaday
A o A o . Aa a o
uwnaufiagdulwiesivauwinlalawn (corona field) NaMuaTuagInolugalizy
210 T@sJé’u@mmnﬂvl,%lﬁ’]Lmg;mmmmﬁﬂﬁa@aﬂ@ﬂ@Uﬁﬁmmmuvmﬁ’]ﬁamﬂ
"LW“W’]LLS@@@LLa:ﬁ;@ﬁﬁmSL%amaﬁu mnmnqﬂmmﬂﬂﬁnmgalﬂ 988NNNH LAZANT LT
S'aqamuﬁﬁmmLa‘flua,u’suVLWW’lLﬁmwaLﬁa'ﬂaaﬁ'un'mﬁcﬂﬂszmﬂWﬁma:msé’moas
1A uazuanIINUTRanLzgeunInNeanuuuIzdasiiumIaAN LA NUNIMRANZ ALY

FEAUAARUY

3.4.2 gazdaalwnisaanuuy
VL@a:Lmiwé’ﬂwmziﬂsaai?wwaamlﬁﬂs:aﬂ%lﬂ’]mgmﬂlumﬁﬁ'ﬂﬁuamﬁﬁagﬂﬁ
3.7 I@ﬂ"gﬂlﬁﬂi:ﬂwaﬂﬁmgmﬂf:a:ﬁé'ﬂwmzﬂﬁﬂﬂﬁ'ﬂumumao Hernandez-Sierra et al.
(2003) WAz Alonso et al. (2005) a:ndlsAany qmlﬁﬂi:ﬁ;ﬁ”ﬁmmLmﬂ@i'mnm'mmaa
Hernandez-Sierra et al. (2003) W&z Alonso et al. (2005) fandlnUadazaadnasll
ANBMULNNT IRALLUULEWRUNES (tangential aerosol inlet) Lﬁaﬁ’]lﬁamgmﬂa:aaoaaﬂﬁnﬁ
nyznpdressainaueasaanadnly  waraansarhouianuawussanmednle 70
1ﬁﬂ§$ﬁﬂ1/\|17\|’l1fﬂ3$ﬂ€]ﬂ1ﬂﬁ’3U%ﬂ&ﬁﬂiﬂi@@&lﬂa’ml,maw (needle electrode) fivanann

Lmommmaaﬁﬁmm@Lﬁuﬁﬁuﬂuﬁﬂaﬂa 6 NRALUAT LAZHND 49 NARLNAT LWN1TANE L6
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Aerosol
inlet

T
%%%\\\\ S iearote

Aerosol
—

L S
p%®§

Teflon insulator

To high veltage
power supply

outlet

Outer electrode

3N 3.7 1 azLmiué'ﬂwmﬂmoaa?wwaomlﬁﬂs:ﬂﬂﬁwmgi,mﬂ

(Intra and Tippayawong, 2009)

A ] Y o A o X
3N 3.8 gﬂmwaoq@ﬂﬂﬂszﬂwmau‘,mﬂﬂaﬁwu (Intra and Tippayawong, 2009)

a%”w?]LﬁﬂimmﬁuﬁﬁywaoﬂmﬂLmau 10 WAz 20 8960 %mﬁaﬁnmwamawuﬂmﬂ
uraudonsaafamels dautasiEnInsadunen (outer electrode) maa"g@lﬁﬂszﬁ;ﬁaz
ﬁé’nwmuﬂumoﬂﬁmﬁﬁmﬂmmumaﬁmm@Lﬁumug{uﬁﬂmamﬂluwhﬁ'u 30 AARLNGT
612 15 Uadlas LazlyuainsanTiy 30 i muﬁmﬁumug{uﬁnmaﬁmaaaﬂwhﬁ'u
3.5 faawny uariiszasiersninlmaduiunisesntszanm 1.75 Jaswas lagfiva
maai?aal,ﬁﬂimﬂL%miaLﬁﬁﬁuLma'aahzlvl,wLLsaﬁugaﬁmmmﬂ%'um"l@T (adjustable high
voltage power supply) yasfigniiluranssnsasunandetiunanag Eﬂﬁ 3.8 ugay3y

1 v { v J
fne aa“gm‘l%ﬂs:ﬂﬂﬁn auMANEINTU

3.4.3 nydszanaainagns Nt 2asgaidszgldihagnia
gn Wi (electric field) zwinsrBianInTadudasunanLazaldianinge
v d‘dy | 1 v =) v
dunanifansusduriansinnsvaszalivsz lWihayna susnatuneldan
& a & & , A &
FUMITAUIUVBINOBJUANTIING  (Maxwells  theory)  finsauaguann1silades
(Poisson’s equation) Va3ans Wi ¥ fa
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vy =L (3.24)

Wa ¥ deunsaulnih p feanunuiuiulizavesaimaing (space charge density)
uaz g, AeaNINgaNNS IWNTNBaI9INEAdNS (vacuum permittivity) (JAYinNL 8.854 x

-12 ' . . [
10" F/m) lasanunmuwiunszus Wil1aasloaaw (ion current density) anunsaLdan ke

=€
=1

j=pZE (3.25)

LLazﬂ’J’]&mu’lLL%%ﬂS:LLavLWWﬂJad‘laaau E‘T\‘]a’]quﬂl,%E]ulﬁaQiugﬂmaﬁﬂizuﬁvlwwqmaﬂ
lasau (on current) NlnaruNwNA 1Bl (inner surface area) maaqmiﬁ'ﬂnﬂﬂﬁh

mgmﬂvlﬁéﬁf:
i
Lz (3.26)

e 1, fasnszlWihaadlaseumelugalivszgliihaymeaus: 4 Aefuiinadulu
p0470 1y Wiheumea dndudsursnuzmilidszg nihiveynmavesgalidazqa:
%ua%iﬁ'uwagmmaa (product) ANLTNTUBaslaaan (ion concentration) n, Melugali
ﬂit%LLﬂ“’L’mﬁﬁIﬂuﬂﬁﬂﬁﬂit q (residence time) ¢ maaaumﬂnﬂaaaumﬂum‘lﬁﬂiwﬁ]
FIThuen n,t ﬁ]x‘iLﬂ%@]’JLLﬂi%aﬂluﬂT’U’Julﬁﬂi”ﬁ]LLa“’ﬁ]’lLﬂu@]aﬂwﬂ’]iﬂi”N’]mﬂ’] n,t i
mmumﬂluqmlﬁﬂi:ﬁ;mﬂl@LaauVLm@]ﬂa6] (Lm@u"l,ww’l gamilnazeseunma  uaz
anuaurinm) - Uizaseimeadndsmnanindouliagluslvesanudniuvedlosau
n, @

p=n,e (3.27)

{ ' ¥ A & ' @ -19
\Wa e A AUz uIBIBIANATO (elementary charge) AU 1.61 x 10 C
PNITUNUWRNNITN 3.27 aJUINNIIN 3.26 ﬁ]:"lﬁmmLﬁwﬁuﬁﬂmumaﬂaaamaﬁﬂsl,wq@
lﬁﬂizﬂWW’]mgm@ém%’umﬂﬁvlﬂﬁmﬁ,mﬂazaaaﬁa

n, =—" (3.28)
eZ EA
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A v o o p=| ' = ' & o A A
FIAANUTUTWINWINV DS Lo aawirilellu laaaw da anuAriiag fauy @l laidng
maaﬂizqmaammm’mmﬂumiﬁﬂs:ﬂﬂﬁwmpm dnanuusaIzwy Wi A1l

quﬁﬂsxa;"lWﬁw mgmﬂmmmﬂs:mmﬁﬂﬁmnammsa tin9d1ufa
V
E=L (3.29)
d

wa ¥V dauvsanlwinanglinudianiniady way d Aaveuzrneiznindianiniady
NUNANIINTIY WFNNIIN 3.29 UNUAIIWINN1IN 3.28 9l
1.d

n, =— (3.30)
eZVA

AT nmﬁ’l,"ﬁjl,umsé'mﬂs:qmaaagmﬂmaa"g@lﬁﬂi:ﬂwWﬁamgmﬂﬁmmmmvlﬁmﬂ

z(r*+rr,+r )L
t= i+ 13) (3.31)
30

Al A o Aw ' A o Ao ) A

We r Assalienuluaasianseniiy r, Aatalidwuanuasviansinyy L fannuen

P04MansInTIe usr 0 Aedanmilna nawn1sn 3.31 wafldlunisdatzguas
A o A A A Ao > a . a A

\Ar098a1szaliAe 0.0814 Jwfl NdaMMTInazedazeauiniy 5 §aT da Wil uas

ANMNAULITENNNEA

3.4.4 anunTuIWINlasaniinwaanzasgalilsza i
v U o dl d‘ v [) v
anudutuiminlesauiimisansaneiaslivsalni  smansndwmldnn
ﬂszLLa"LWWWaa"Laaauﬁmaaanmaamlﬁﬂszﬂﬂﬂw fa

yy =L (3.32)

out

dl =1 v v o dl v Y
Wa n,, Aeanududuiwinvedlosauninisanvasgalidszlnieyma uas 7
Aanszualasaufiiald datu dnisrunzguasiesan (ion penetration) vasraliilizy

Inihauma P sansndwamldan

Pou (3.33)

Rav
Il
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3.4.5 M3UszaMNIFULRILAZAINTHIRNEAVIDKNA
lunsdnsinmagniduveseuna (particle loss) nanmalugaliizylnilia:
I a A Aa = A a £ a &
dumsgiFoiiasnnawna i nianueisegeiiiatu lasmslalsndamianolu
galdlzglniheyme  dmiumiguidedug wu Wasneavasusiliudisaslan
(gravitational loss) ﬂizﬁgﬁ’m (space charge) WRZMIUNWINIZANY (diffusion loss) Tu
=2 A A @ A a ) a A o Aa a
midnmiteidnadasnnillaifsuiumsgydsfesaninieio  lasnsguidy
iasnnlWihadialdgniioadudandinesanuduiuaymanddszg IWianisean
N, daanududusataymaflaildiudszglwiln (uncharged) nanuafimath N,

@ = ° Y A .
Tﬂd“l!@i%ﬂ‘iz’iﬂﬂﬁﬂ ‘ﬁd&ﬂ&l’]iﬂﬂﬁu’smvl,@’ﬂ’ma&lﬂ’]‘ﬁl 24 Deutsch-Anderson @8 (Hlnds,
1999)

loss,, :%:I—P (3.34)

P
in
dll A 1 [l . . v Y
Wa P, AadINIdIuneguasaunIa (particle penetration) maamiwﬂs:ﬂﬂﬂnmgmﬂ
fANTAWITA LA

-7 EA]
L (3.35)

Pp = eXp (T
Wa Z, ?1am’mmmmlumimﬁaué’hmﬂﬂﬂwaaa%mﬂ

¢ A a 4
3.5 Qﬂﬁ')ﬂﬂ'\i'\Lﬂﬂlllazalaﬂr‘ﬂi&lt@lai
3.51 ﬂ')'l&JﬁE)dﬂ’lﬂ%ﬂ’ﬁﬂﬂﬂLLﬂiJ

lunsanviadygmnszualWiesemenldlunsdnmnit  szerdonannis

v
A a

wugmmmmﬂsxﬂﬂﬁ’]aﬁ@madmgmﬂmugﬂmﬁm{T (Faradya cup) lag@nanaiugn
ﬁhmwnaamgmﬂmmmﬁﬂmm"l,ﬁmﬂaumsﬁ 254 M3z mANagnIBINENNIT
254 Pszaudgananszualiihlugig 10 wulavewd (A) da anududu 10° aynia
b gﬂmﬂﬁmm ﬁ%ﬁ%%'ulu?iﬂmf:aulaﬂawwLﬁuiuﬁiﬁu’sumgmﬂﬁam’h 10" oS el
b gﬂmﬂﬁlms goimanyhesdianinsiimefivindy 500 walanewd AReawe

v
° [ o A

RIAILNIIIAY %aﬂﬁ]'mﬁﬂiﬁw‘l’ﬂ%ﬂ'ﬁ{ﬂ?ladaLgﬂiﬂ‘iﬁL@I@%Qﬂﬁi’]ﬁﬂiﬂ BIZAUY D

a A

s MIunIuneansula (acceptable noise level) s@MNIzLE IWH1INBLENINS
f1aa39:@aIMInNTYYIMIUNIBAFI (background noise) 88N LIAIMBUEWEI LY
[ A& a 6 = A A < v wAa g v A
myiazasesdiininsfiveiamziingarhnandululd quandGiihnanedesige

@%ﬁ%%’ﬂnmlummauauawaam%aﬁmm:ﬁmm@a%mﬂ% A 1 3uwn
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Flow in

o

insul%(l)‘r&§
7/ 2N N7/
vow (22, 20
Sl .

Electrometer
—>

gﬂﬁ 3.9 é’nwmﬂﬂioai‘”ﬂwaogﬂﬁa AWNITAE

{ 1 v { v ﬂa/
Eﬂﬁ 3.10 EﬂmmlaagﬂmﬂW'}i’]L@ﬁﬁaﬁwu

3.5.2 i’lﬂa&aﬂﬂi%ﬂ’ﬁaaﬂuﬂ’ﬂ

gﬂﬁ 3.9 usasansuzlasaivvasgniiwhiad %@Lﬂuqﬂmtﬁﬁiﬁumﬁ@
ﬂszﬂvxlﬁwaamgmﬂ gﬂﬁ’;ﬂﬂ’mmﬁﬂszﬂauﬁatlLwiuﬂiaamgmﬂﬂszﬁw‘%mwg\nmu
HEPA ﬁmaagmﬂuﬁﬁuﬁ@ (filter holder) U@ 47 JABUATATNINNTUAWAT LaS
vIragmulugniisauauas ﬁgnLwﬂaanmnﬁ'umﬂ%l%a’mgﬂﬁum‘hmmu‘lWWw
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current input) iTIANEINNN (INANLIZI 2,000 §i9 5,000 UN) G LOWANLAYS
s-?iﬂfﬁiwﬁgﬂumia%ﬁo Tunsenenilldidensetuanifivnanldlunmsarsnasiided
MNAgLAzRANzIUMIE NG Tasaatuawnifildluisasiasiues LMC662 waz OPO7
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I/()ut :Iin flle = (336)

i2

A A o @ A o o o 6f o A
Wa 7, Aanszualwinsdumad R, Aesanudunuilounavvaseaduaniddan 1
sz
aaduandddn 2 naumIn 3.36 Aundwerdnanldnnisasiida 10 Sadliad (mA)

A @ o o A A @ a
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Input Output
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3171 3.12 29930709 NUALUY RC low-pass

[ A

lunsansilaisasnsasanuiuuy RC low-pass LNBAARNMILNIUAINND

v o
]

A o o ] & o A A o
gxﬁLLazLWaﬂaﬂﬂuﬂ']iLLﬂ'J\‘]‘?Ja\‘]La’]@]“/\i@]"ﬂa\‘]'ﬂ\‘]zﬂ?’ﬂU']U@\‘]LL@@\‘]VL'ﬂugﬂﬂ 3.12 HINIIAA
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1
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AARYYIUANNDGIN 7.23 1F70F §MIUAIAIGIVBIIN (time constant) ¢ VBI9TH

FINITDATW) va(;‘lj"ﬂ"lﬂ
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3.6 agﬂfﬂ‘sun‘mﬁuﬁmtazﬂizmaNaﬁaga
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To high voltage From electrometer and
power supply high voltage power supply
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module
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RS-485 to USB
converter
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External Computer,
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AUONTAYINND 5 Naaliad ainik 3Naun N 3.39 Swiniavasniulssiuayann
@ , & ' ~ £ @ [ & ' . ' '
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3.6.2 Sgaztdgalwnisoanuuy

ai % dl' a 6 d'
3UN 314 usadleezunINTaITUUMTIALATAILANTRIATEIIATIZHYT

o J % a . .
Wawau lasszuulsznaudivawiaandunaluga (analog input module) 8 Tad w83
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JAa . o& o & A ) Y a A v

nazuaun1sfiiadnduns warm up zuy wasnnuuiladuTIaw Wi aunaldiay

' a A & Y & ¥ o v A o o 6
NI 1 &IﬂﬂI’lﬂ(ﬂ LLﬂ’JﬂL“ll’]gﬂﬁzﬁJ’)%ﬂ’li’J@vLﬂ I@ﬂﬁ?&lﬁ‘iﬂﬂ’ﬂ&‘ﬂ?ﬂ’]‘iﬂiﬂﬂuﬂ (zero offset)

49



_Count I Ip i Tre [0,

(1) MmﬂsuﬁuﬁﬂLtazﬂs:mawa"ﬁagamm:ﬁwm

gﬂﬁ 3.15 IﬂmﬂiuﬂuﬁﬂLLaziJszmaNaﬁagammzﬁwmﬁm

° /A @ A o v A o = Y a
LazrintnNNIaIa1Ia N30 LLa:Luaaﬂ%Lsuﬂﬂsaﬂiﬂsl,l,ﬂiuna:aaatytywmmuqu"l,ﬂﬂ
tugygmarmnuiageameadildlueiadienzdy  udviimsiadussdulin
Eu'vgmLLazLLiJm@hLmé'uVLWWWﬁi'@VLé)'lﬂLﬂumﬁrytywmﬂszLLavLWWWﬁaﬂaumiﬁ 3.36 LAY
@hmmLﬁwﬁm%aﬁwmumaaa%mﬂﬁammmiﬁ 254 Wiaunuin lUuRaINaUWNTIN LA
o =& % A A a a = o o
tuinasaedeyaninsidswulaianunainng 1 i TisunsuAazyinnissiuLan
swiumsldaundazesusnammrianivue - Asslingensialasdsdygruaiugw

Inuunssdne lniussdugauazdugyuimealdngarinau

50



High voltage
ON

¢ Warm up

» Vi, Measurement

Zero offset

Set Time
Ty

Measuring
START

Pump
ON

Vin Measurement

Show results

Measurement
process

Measuring
STOP

Time counting

NO

YES

High voltage
OFF

gﬂﬁ 3.16 "ImazLmium:mumiﬁwmmaamiﬂmmuﬁuﬁﬂLLa:ﬂszmawa%;&a

51



uNh 4
(Y A a ¢ 1a ¥ v °
(FI%LLTJ?JLﬂiax‘nLﬂi’lzﬁﬂi&l’lm@l')ﬂ&dL?.IN‘J.I%L%\‘]%'\%’)%?JENB%ﬂ'\ﬂ%’lt%

woulawannisiadszglaiaiia

4.1 S1URLLDYALALKANNIININ
n‘ % 2 o % dll a 6 A

Jun 4.1 LRAIAN I LATIFTIIULAS AT DAL LULAIAIIATIZ A LTI T

v v =) o U Q Q U a ﬂ;’ A U
@mumeumammmaaamgmmﬂmmulwanmsa@ﬂizaﬂwman@u F31vznavay
ganausnilwionswalng  gadaigazeatsesuvulaliw  geanivlesan  gn
fovhriad gaasianszuazaud qﬂiﬂmmwﬂuﬁmm:ﬂizmawa"ﬁaya LR TEUL
muqumﬂmmawaﬂm T3 UUMIT AT DILATIILATIZWY a:gndmua:muqﬂm
é"smuqué'mwmi"l%m%oma (Dwyer model RMA-SSV) ﬁ'um‘%aog@qmuty'm’m (Busch
luiaa SV 1003) agiuﬁ'sa 0 D9 10 AaTdawI NIIHIIUVBILATDINATITHY AU
L%WT%I@Umig]@é'hamaa:aaaaaUﬁﬁaomﬁmhwial,ﬁuﬁaaﬂw LLazshuL"ﬁﬁvl,ﬂﬁoq@ﬁ@
a P oA o Aa Y & P ~
wnslwensmalnginedausnaumanluaiduiugudnanalnginirgsamai
AAINITINDANAILRANNNININANNANIANENT u,azmﬂﬁ%@gﬂﬁﬂﬁ]:gﬂl@%ﬂixﬂﬂﬂﬁﬁan
'3%'m$LLw<imzmﬂLLa:aummulu"g@iﬁﬂszﬁgLLquﬂBmL‘ﬁuﬂmmmauﬁ'«jvaWWWLLiaga
2@ 3.5 Nlaliag @TasﬂugaLmaiaﬁhﬂ"LWW’magwaa Bertan lataa PMT-50CP uazgn
muqmmé’mm@ﬁg@l@ﬂiwgaamaammﬁwmaa ADAM lalaa 4024 NniuayANa
ﬂizﬁp:mwfﬁwvlﬂﬂ'@mé’n%’ﬂaaamﬁaﬁﬁcﬂvl,aaauﬁm:ﬁﬁmmmmmlumsmﬁauéh
nyihgadaduiniuaumeniidszgesnten  inalasiunmatadudyarimnslnii

° %) A ) o o ' ']
2290%N1AUMUTIINTIA énaLLsmuvLWW’maaq@@ﬂwvlaaangﬂmﬂ@ﬂu@aumw’m
"LWWWLLsagwaa Bertan lulaa PMT-05CP ﬁmuqmmé’mmﬁmhﬂiug}aamaaﬂ
LE]’WTV!@]"U?N ADAM luiaa 4024 Lﬁamg',mﬂﬁﬁﬂszﬁgaanmnmé’n%’ﬂaaauLLﬁ’aﬁazmu
LiTﬁVLﬂéngnﬁmemﬁ mgmﬂﬁﬁﬂizﬁgﬁmzum:@mazawé’hUuLLNuﬁﬂﬂsaaﬂszaw%mw
§IUUY HEPA 283 Whatman luea EPM 2000 miﬁ;aQmﬂué’ﬁuﬁmﬂummlugﬂ
(3 6 d' 1 v o Y s a' A Aa & a 6 d' %
NI ILa LLa:mamaLmﬂuqm@mszLLa"LWWw:@ummmmiaLaﬂImuLmaSLwam
{ s 1 d U { IQ’ v
m:LLaVLWmemgmﬂﬁ@ﬂamumummumm mmum"lvxlﬂwaqa%mﬂﬁﬁﬂizgﬁm%
azé’uﬁuﬁﬁudwmmLiuiuL%aﬁiﬁmumaamgmﬂﬁmunﬁvl,ﬂﬂ'mﬁﬁmﬁﬂﬁu JEEEL TRt
ﬂszLLa"LWWWﬁ"l@TazgﬂLLﬂaosTuvl,iJLﬂuLLsoﬁu"LWWﬂuma 0 19 5 lad tnagglugauilas
rusnmewaan ltidusuanmiinas lunsdnmiazldlugaawaanaunases
ADAM  luiaa 4017  eihdygmddneadnldldsznanatdayadisllsuniy
AANNILADINNAI WU mmamNama;gamaﬂﬂmmmwwmmu azaaﬂmlugmmwaa
Az etayauaasisianudniuiiwnseseumaninindasuulasas



€g

HBUBLM Kf.@ww?@\m\wrc uy $\m°H_._. Qjﬁwrﬁu@ rC:_T,@ CERMENLEILINBRELIELELVIY LML T LE LT LRCELIMMNNBLCLILILAELUSEIICLES vwawméﬁ us Ly K_Am

(ASS-VINY [opow 1AM()
IS[[OIIU0D MO[]

1 PN VdaH | = @ e
il

SSQ0XH

ompouw ndur ojeuy
LI0Y WVAV

dwind wnnoe A

1INDIID 119WO0NIJ[ ] dno
REIREYNI(o I L Kepereq
gSN 01 68%-SY

i

O
@)
L

9mpouw ndino oreuy
Y20y Wvav

B

den uoj

(dDS0-LINd [9pow uepag)
K1ddns 1omod o3ejjoa dex],

Il Joqut
108rey0 1 |__|rﬁ [0S0IY
BUOIO)) Joqur

QATOJ[SS AZIS

—

@)
@)

Sud3o7 v1eQ
‘1odwo)) [euIsIXyg

B

(dD0S-LINd [opowt uepag)
K1ddns 1omod o3ejjoa y3iy DA



na dwiumalendasznivlugaewinendunauaziandnauazaaniaimatazlinms
fadalasanaigin RS-485 dnudiulasiu RS-485 lililu USB LiafAlElunaiudaya

LARZATI (sampling time) Uszanas 100 Aaf3uf 89 1 A

4.2 I NaUVBITLULAKUUY
v £ A v 3 6 A a 6 1
lunssiouszdszneuszuuduuuy - anzgidsldldaUnsaldandinddnag  lu

& @ A & = & A a 4 o
msdsznautdussuuanuuNENY Ik émqﬂmmﬂi:ﬂamwmmwiﬂmzummwu
sznavueas Iugaamaaﬂauwmmumﬁm (analog input and output modules) I&lga
unsade lniussdugs (high voltage supply module) lugaunasinglwilinszusass 12
Tad@d (12 VDC power supply) dutladns RS-485 liiflu USB (RS-485 to USB
converter) ﬁ?ﬂ?ﬂﬂ&lﬁ@i’m’lﬂﬂa (flow controller) LLRZLﬂ%adgﬂqrywﬂmﬁ (vacuum

1 a A . A 1
pump) uazuHwNIBIUNIAUILENDNINES (HEPA filter) miwauﬁmmaaqﬂﬂstﬁmm

v

wanshaz laasuneluiitadssalus
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5 1ad I@ﬂluﬂﬂiﬁnmﬁaﬂﬁu@aamaanﬁuﬁqm 8 TadUaILUSEN Advantech luLAA
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GadaRamIdudas ASCII mummgwumsa@@iaﬁammw RS-485 gﬂ‘ﬁ' 4.2 LA

a 6 A =S =
gﬂmwmaﬂw@aamaanau‘vgmLLa:mew@ﬂlﬂum‘mnmu
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4.2.4 auilasiin RS-485 liiilw USB
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3 ada
Ecl.ﬂﬂiﬂ,LLL'éIZ'Jﬁﬂ'ﬁYlﬂﬂaO

1uuwf:ﬁ1:ﬂ§mﬁaiwau§slmlaaLﬂ’%'aaﬁaLLaxqﬂﬂsfﬁﬁé'ﬂﬁlﬁuﬂﬁsw@aaa ua
nsUwM It unIesaUsNIInNEMITINwasduILLIS a0 lagluiaTe
winazeunsiigmansmzaasgnIninInaned Fedsznavdiy dIN30901%NA
UidnSmwgs  (HEPA fiter) szuumidnsuazialWiluseaugs  (high voltage
measurement and supply system) aLgﬂiﬂ‘iﬁL@a‘gmmg’m (standard electrometer)
paada laalaluuud’Inea (digital oscilloscope) NaaNLAaSLULAIMOA (digital multimeter)
Lﬂ%'aﬁmi’lzﬁmu’ma%mﬂ (electrical mobility spectrometer) LLazﬂﬁadﬁgaﬂiiﬂﬁ
BLANATOUUUUFAINTG (scanning electron microscope) Iumumaaﬂs:mua%“nmgn’m
dadidniunInaass wldfinInaseusussnuzmavinauasadninisznauton
@9 awlaln ﬂg@ﬁmLLyﬂﬁaﬂuLﬁaumuﬁﬂlmgmLﬁ'} yaanivlasan galiizylwi
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5.1 Lﬂéﬂdﬁmmzqﬂﬂitﬁﬂﬂiﬂﬂaaﬁ
5.1.1 Mnsasannalsz@nSangs

anvadauMadszEninwgs (high efficiency particulate-free air filter) wiof
FunindinTasauMALLL  HEPA Lﬂuqﬂmniﬁl"ﬁ’lumiﬁﬁ@amgmﬂmmmﬁﬂaanmﬂ
nazuam3lnavasufa lunsdnmnitls Pall HEPA Capsule Tuiaa 12144 18lunnsmda
UMATIARINITUMINaRaUFNTIALEVaIgUnTallsznauanda g Faanses
amgmﬂf:ﬁﬂi:?m%mwm‘snsaaﬂi:mm 99.97 wodidud 1 0.3 lulaswas swsuanmea

WIDUWAR gﬂﬁ 5.1 LLamgﬂmwaaé”msaami,mm,l,uu HEPA

5.1.2 3xuUN1398azIn W wIs RS

uumMItsuazia iusaugeazlilummaesasdneg Fyazdsznavdae
uwnsadne IWiusseugauuulTueld  (adjustable DC high voltage power supply)
mﬂﬂﬁ%mé’uga (high voltage cable) LLazﬁu’?@vLWW’]LLidﬁuga (high voltage probe) 1w
ﬂ’]iﬂ@]aadﬁﬁ]ﬂﬁmddﬁhEIVLWWWLLiG@GLLUUU%U@hVLﬁTBGU%ﬁV] Leybold Didactic luiaa
521721 snanInUinusiauwendwaldadlutig o fis 25 Alaliad ﬁﬂimaimagdq@ 0.5
fnduend uazfidnanunaivasusieulszanm 3 wWesidud vasFuTIauIWiNgIga 31
7 5.2 w4 Leybold Didactic Tuiaa 521721 fauiaa INiusaugs Lﬂuqﬂmtﬁm‘%uﬁ

lgdannulafiiaasuuLAIe aaé‘h%%‘m”@VLWW”nLstTuga lumsanuilsrIIauas



gﬂﬁ 5.1 Eﬂmﬁmaoé”msaaaqmmwu HEPA Nlolun1s@nsis

Fluke lutaa 80K-40 mmmi’ﬂﬂﬂwLLidé‘ugdvlﬁ'LwﬁN 1 09 40 Alalad Jaranw

o & & 6 A o v a o & A
andas 1 wWadidud usz Sdranudumunmadudunainiy 1000 wnnzlavy U7
5.3 WRAJ Fluke lutaa 80K-40

5.1.3 BianInsimasnnsgin
dianlnsimedidugdnsaiilslunmsiasyansaualniiszdud  (ow level)
=uadmi,mﬂﬁﬁﬂi:agLLa:"Laaaumﬂgﬂﬁ'am\hﬁL@ﬁ%%aqﬂlﬁﬂs:agvlwwawmﬂ lunsfinm
asEnlnsfinofuesnsun Keithley Tuiaa 6517A vivmsaunulues 6522 TasTuiaa
6517A LﬂuELﬁﬂImﬁmas‘ﬁﬁmumﬂué’aﬁuw@ (input bias current) %asnin 3 wula
wawd uazldyanasuniu 075 wulauand uazsansndanszualninldaglugg 1
wulawantd 9 20 Haruand] Eﬂﬁ 5.4 usasgdiievasBianinifiined Keithley luian
6517A dulutan 6522 1Iw993T09AUAYIKIIWIL 10 Togia &§IWIUNITIA
sy Wi uuuwaatesiavasdianiniliaosluies 6517A fmiuluian 6522
fnszumeanida (offset current) weaztadiaasnin 1 Alawani wasdnmsuaniums
W (electrical isolation) 1uLL@ia:°ﬁaa’3'@1f§d @ nni 10" Task) gﬂﬁ 5.5 ugaygilang
289 Keithley laian 6522 lunsdnumitldldmosyniadendeuuunnusinisifyuno
FUNIUGH (low-noise coaxial connection cable) LﬁlaﬂaﬂLa‘lﬂx‘ié’tyiuu’ltl)‘ﬁun’smm‘;ﬂ’li
S lwsvasnszualvii Smofynaiiianudunussaminsznitaunudniie
awimdzans 10° oy wazanudumuzasdashesnin 05 lavin  uas
SUFYRMIUMIuEUL Triax lawas  237-AGL-2 IFlumadaudaszwinsdianlng
fumainugalidszy lniheuna dniunsianszualnihseinisdadszquazlosau gﬂ‘ﬁ

5.6 uaas3LiNpIaINBRYYIUVEY Keithley luLaa 237-ALG-2
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gﬂ‘ﬁ' 5.2 gﬂthmJa<1Lmdaﬁi’mvlwﬁ%mﬁugwaa Leybold Didactic lutaa 521721

gﬂﬁ 5.3 ﬁ";"i’@"lWWﬁLmﬁugwaa Fluke luLaa 80K-40

5.1.4 saadaladlaluuuiinea

3UN 57 usaseasdalasladuun@dnes (digital oscilloscope) ad Tektronix

& d;/ 3 a a 1 =

lulea TDS 210 Slumsfinwdldeasdalaalodlunsinreiagyoimnewin
' o Qs a a [ ' L o
@99 FNTUMIMARU9TDLANINIIAeS 1w ueawlWidn nizualain wassaNm
sumudig lagluiea TDS 210 fTesFun mawaaniiwiu 4 Ta9ia Ivasanad
(bandwidth) 200 Lunziasad BuwaBufuaud (input impedance) 1 iunzlavia uaz

mmmﬁ'uﬁﬂﬁayamuwai‘@ usB &
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gﬂﬁ 5.5 Jutuad Keithley luiaa 6522

5.1.5 NafdnasuUUAINDA
Uaddinatuuufines  (digital multi-meter) DugdnyninlEEmIunisiacn
SN o IWdds glumnesss lunseinenfazldves Digicon luies DM-815

ANugneas 12.5 Wasidue UN 5.8 LIAINRANLAaTLUUAIRaan LT lunINagauh
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Eﬂﬁ 5.6 UthuvasmuRT MUY Keithley luiaa 237-ALG-2

gﬂ‘ﬁ' 5.7 Eﬂdﬂﬂmadaaa%aiaaiﬂﬂmaa RIGOL lutaa DS1000

a a 6
5.1.6 Lﬂiﬂd')tﬂi’]xﬁ?.l%’]ﬂa‘i«kﬂ']ﬂ
Lﬂ%aﬁmﬂ:ﬁmm@m&mﬂ (electrical mobility spectrometer) wia EMS Liu
A A A a & v &
Lmawaﬂhﬂummme:vxmsmﬂmem@Laumuﬂuﬂnmwaaa%mﬂ EMS &30
%Lﬂi’lzﬁ‘ﬂu’]ﬂﬂ%ﬂ’mqﬁluﬁ’m 10 ﬁ\‘l 1,000 %"II%L&J@I? ﬁﬂ??ﬂLﬁMﬁ%L%dﬁi’]%’)%ﬁﬂﬂﬂ’h
14 ' % [y ' a A A o
10 aq,mﬂ §8 Qﬂﬂ’]ﬂﬁm@li 1°1fna11un15ﬂs:mamauasm'n 1 IUIN ummgnmaa‘lu
myend £ 5 wefifud JUN 5.9 usaszddnsves EMS (Intra and Tippayawong,

2009)



Eﬂ‘ﬁl 59 m‘%'aﬁl,mw:ﬁmm@mbn’m (Intra and Tippayawong, 2009)
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gﬂﬁ 5.10 gﬂfhwaané”aaﬁgamiﬂﬁaLﬁﬂmamwuﬁaamwmm JEOL JSM-6335F

5.1.7 né’aaqamsﬁﬁaLgnmsauLLuueiaonswﬂ

luﬂwsﬁﬂmﬁwﬂﬁaafgamiﬂﬁﬁLﬁnmammudmmm (scanning  electron
microscope) #38 SEM w83 JEOL lauiaa JSM-6335F Lﬁ"amﬂmwmgmﬂﬁaamomn
Lmﬁiaﬁi’mmgn’mﬁﬁ’mﬁu %ané’aaﬁ;amiﬂﬁiﬂuﬂﬁaogamwﬁ%Lﬁnmammudmmwmﬁ
ﬁmmﬂﬂ"ﬁ’@gd las AN suantasszunm 1.5 wluaas wasdmasuensszning 10 win
14 500,000 L1 gﬂﬁ 5.10 LLamgaJmﬂmaaﬂﬁaaqammﬁ‘éLﬁﬂmammudaammmaa
JEOL luLaa JSM-6335F

5.2 528U NINAADY
5.2.1 msa%’waumﬂéhazi'wﬁ'm%'umsvmaau
sun 511 LLam"L@a::Lmswaamsa%”wamgmﬂ@ﬁashaa%w%’umsmaaaﬁ Tag
mgm@é”;amw:gﬂaﬁ”ﬁﬂ@ﬂn'mm"l,mj”l,l,wim:mmmmmﬁﬂu (laminar  diffusion
burner) @agtnaiwinanan1zAawn sl (presooting condition) Meldan1aziivsin
o =i & ¢ A o ¥ o o A o
fﬂ:gﬂaﬁﬂ@ﬂLﬂmwnmmﬂuaaﬂ%@ ﬁﬁﬂﬁlzl‘ﬁﬂ’l’lNL?J&J‘IJ%E]’]%’JHE%I]’WW]@I’]%J’]H‘3] Tay
dlﬂd 1 1 U dld v v
3 lvavasormenaariulatsvaddad i a:mUlumiaﬁoawmﬂmmmmeuga
LLazmmﬂﬁaﬂﬁ'aawwamgmﬂlﬁmﬁauﬁaaﬂmﬂﬁaum%ﬁ I@uvLaLﬁmmmﬂmVLWanﬂwau
nuaNAagITIaI laamsltiaTaananie L'ﬁ'aﬁﬂﬁlﬁ@agmﬂﬂﬁuauﬁﬁmmmﬁﬂ
8 mMIguiiumadieymaliisnIgudetnauuunaseaaiviniu  (isokinetic

sampling) I@ﬂmmLﬁuﬁuﬁﬂmuua:msmnmem@maamgmammmﬂ%’mﬂﬁzluvL@T
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P a @ o oA =2 &
E‘]JYI 5.1 "l,@ammmaomiaaaﬁamgmﬂmamm‘lﬂummnmu

(Yawootti et al., 2010)

U7 5.12 JudpesaIasaiiazaasaasfililumsdinmi (Yawootti et al., 2010)

TaunsUsuidaauwaasnisivavasonmelurasnn mduazszauvaadar W lasUndiuad
AV o A v o o 14 ' I P
azaataauflldvziionududuiwindszinm 107 suma de gnunadiuas jUf 5.12
waasgdeisvasaiasaiaymanltlunsdnmii I@wm@Lﬁumuquﬁnmwmagmﬂ
Tauiafy ﬁﬁwvl@i”mnnﬁaaﬁgamsﬂﬁﬁLﬁﬂmammuﬁaamwm:aglumwm@Lﬁﬂﬂdw 1
Tulasuas é’aumo"lﬂugﬂﬁ 513 uazyUN 5.14 URAINMIUINUAITUIATBIAUNATEI
a o A o L da a & Aa o
iwsssETaumMafiwamnIundanzilasiaias EMS nlazifinieumaniianzidla
a ' ' = o @ '
fimsuanuassneeglugas 10 wilwwas o 1 lulawwes Sweandesnuziipan
SEM lumiﬁﬂmﬁﬁ'ﬂﬁmmgmﬂﬁqaaiwaﬁaﬁ”nvl,ﬁ"lﬂ‘iLmﬁxﬁaoﬁﬂi:ﬂawaomq
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31 5.13 gﬂdwmnﬂa”aaqamiﬂﬁﬁLﬁﬂmaumaamgmﬂﬁaam (Yawootti et al., 2010)

electrometer ring number
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particle diameter, nm

4 4 e do X da
31]“{] 5.14 ﬂ’]iLLﬁ]ﬂLL’fN‘IJu’]@‘IJaﬂB‘H‘uﬂ’]ﬂﬂlﬂ\‘]Lﬂiada‘i’]\‘iﬂ‘%ﬂ’]ﬂﬂW@N%’]Tuﬂ’JLﬂTﬁﬁI@m
L3809 EMS (Yawootti et al., 2010)

A o X & o ' Y v o a & v a
I@UamgmﬂwaﬁwngﬂmumamﬂwumﬂmmmLme"lﬂaLmﬂmmmmao EDS
(energy dispersive spectroscopy) Eﬂ‘ﬁ 5.15 LLamNamﬁme:ﬁaaﬁﬂizﬂam’wgmaa

o 1 & ' A v < 6 a 6 < 6 g’ s
axgmﬂmama mngﬂazmumatgmﬂﬁl@Lﬂumgmﬂm‘suau (C) Ul suavaIiinmn
(weight%) 41.36 1asidud wariidasiuduadazaan (atomic%) 78.86 LUasidud uas

nnzazsunaldhiimefidunasuas (Cu) dudausiuininauasfiiiveiaeng
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““ Spectrum 2

Cu

T e o e e o e
c 1+ 'z 3 4 5 &5 7 & 88 10

Full Scale 450 cts Cursor: 0.000 ket =

Eﬂﬁ 5.15 N&ﬂ’]?ﬁLﬂi’]:ﬁadﬁﬂizﬂﬁmﬁ’]@l‘ﬂE]\‘]E]%ﬂ’]ﬂ(;]/’m{j’]\iﬁ?EJ EDS
(Yawootti et al., 2010)

5.2.2 mswmaanaminmmaaagﬂé'ﬂuﬂﬂ?«laﬂuﬁjaummm‘lﬂmj

gﬂﬁ 5.16 LFAY LADZUNTNVBINMINARALANIIOULNNIALANGL (particle collection
efficiency) maaamgmﬂmﬂlumﬁmLmﬂ’édﬂmﬁamm@lmy lunmInesauanNTIAULANT
a:améhL‘%'wﬁuimmigjmmgmﬂé’aama @Fune3luvinda 5.2.1) duviaiiualatng la
g0 InazesauMnIzgnALgudIBiIAIguaaTIMT MaTunaeglute 1.0 A
50 83 @8 wIn mﬂﬁ?umgmngﬂr‘iﬁ@]mwu%ui@]sJcimﬂﬁ"lﬂlué’aé'ﬂﬂmu%mmu
WWINI¥ANY  (diffusion  dryer) riauua:gﬂﬁﬂﬁﬁaﬁmaﬂﬂmhuqm%amo (dilution
chamber) %é’amﬂﬁf'umgmﬂé'aasmazmmﬁﬂﬂEl'a*’g@ﬁ'@Lmﬂéaﬂm‘ﬁaumm@l%@jﬁ
AININARU I@almwLﬁuéwmmaaamgmﬂﬁﬁmmmﬁma:maaanmaa‘q@é’mwﬂéa
Uniion ﬁ]:gﬂi’@ﬁaﬂmﬁ@mzuaVLWWwaaﬂszqmaamgmﬂ (charged particle current)
@T’;zJQﬂ‘vxhs']L@ﬁLLa:SLﬁﬂImﬁma% Lﬁ'amﬂs:'ﬁﬂ‘ﬁmwmsa:auﬁwaamgmﬂmﬂuq@ﬁ@

A Y ¥ o o v
LN Sﬁdﬂﬁﬂ’ﬂwL“D&l“llu‘ﬂ’]u’]u‘lladalgﬂ’]ﬂﬁ’]&l’]iﬂﬂ’]u’lmv[,(ﬂfﬂ’]ﬂ

N = Ip
’ n,eQ,

(5.1)

e N, ﬁam’mvﬁwiﬁwmmaoa%mﬂ 1, ﬁaﬂ"]nsumﬂvxlﬁwﬁi’m"[ﬁmngnﬁam\h'ﬁ
ea & A & A o A A, & A&
WgaaninINiaas n, Aadwiudszafieguuanma e Aedlzaiugiuvaddianasen
' @ -19 o o &
(Elementary charge) §fL¥iAU 1.61 x 10 C uaz Q, ﬁaa@mﬂ’ﬁvl,mmaamgmﬂmuu
ﬂizaw%mwmsamué’waaamgmﬂmmluq@ﬁ@LLsm?mJuL'ﬂaumm‘mmvlﬁmﬂ

E — 1_ p.out (52)

Wa N, uaz N, A891muanuduiunessunmaniaiunadinagnieanuedga

p.out
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U7 5.16 laszunsnvesmimaseuausTauenIazaNaasagMAn s lugadauanE
Uwilouvwialng (Intra, 2008)

5.2.3 msﬂﬂaanamsnuwaaqmé’n%’ﬂaaau
msmaauammuznwsé’n%ﬂlaaaumaaqmﬁn%ﬂaaau i snasaulasns
ﬁhU"Laaauﬁimmﬂmﬁuﬁuﬁﬁmu (number concentration) 111 lu/lugadndulosau u
Wilsaninn  andadiuanudutuiiwinseslasaniiialdnmadiuaznisean
"L@aum‘mmmmaammmuzmao‘*gﬂé'ﬂ%'uvl,aaauuamvlfﬁ“é'agﬂﬁ 5.17 lumsanitasls
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ABSTRACT

An inertial impactor is widely used for sampling, separating and measuring
aerosol particles of aerodynamic size. In this study, a prototype of the submicron-
particle inertial impactor for size selective inlet of the electrical mobility particle
sizing instruments was designed, constructed and investigated. The effects of
major design parameters on the cut-off diameter were analytically investigated
including the aerosol flow rate, acceleration nozzle-to-impaction plate distance,
and acceleration nozzle diameter. A prototype of the impactor was preliminarily
tested experimentally to investigate the particle collection efficiency of the
impactor and the deposited particles on the surface of the impaction plate inside
the impactor. The combustion aerosol generator was used to generate a polydis-
perse carbonaceous diffusion flame aerosol in the size range of approximately
10 nm — 10 um for this experiment. It was shown that the theoretical 50%
cut-off diameter decreased with increasing aerosol flow rate and also decreased
with decreasing acceleration nozzle diameter. Finally, the results of the prelimi-
nary experimental tests and the photograph of particle deposited on the surface
of the impaction plate inside the impactor was presented and also observed in
this paper.

Key words: Particle aerosol, Inertial impactor, Size-selective inlet, Electrical
mobility Spectrometer

INTRODUCTION

Inertial impactors have been widely used for many years for sampling and
separating airborne aerosol particles of aerodynamic size for further chemical
analysis because they are simple in construction with high separation and collec-
tion capabilities (Hinds, 1999). It consists of an acceleration nozzle and a flat plate,
called an impaction plate. In inertial impactor, particles with sufficient inertia are
unable to follow the streamlines and will impact on the impaction plate. Smaller
particles will follow the streamlines and not be collected on the impaction plate. The
aerodynamic particle size at which the particles are separated is called the cut-point
diameter. Numerous extensive studies had been carried out in the past (May, 1945;
Ranz and Wong, 1952; Andersen, 1966; Lundgren, 1967; Cohen and Montan, 1967;
Mercer and Chow, 1968; Mercer and Stafford, 1969; Marple, 1970; Marple and Liu,




258 | 2 CMU. J. Nat. Sci. (2008) Vol. 7(2)

1974; Marple and Willeke, 1976; Dzubay et al., 1976; Markowski, 1984). In a later
work, inertial impactors have been used extensively for measurements of micron or
super-micron aerosol particle size distribution by mass known as an electrical low
pressure impactor (ELPI) (Keskinen, 1992; Keskinen et al., 1992; Marjamaki et al.,
2000).

In the electrical mobility particle sizing instruments, inertial impactors were
also used to remove submicron-sized particles outside the measurement size range
upstream of the instruments due to their contribution to multiple-charged aerosols
(TSI, 2002; Intra, 2006; Intra and Tippayawong, 2006a, 2006b). These multiple-
charged aerosols have the same electrical mobility diameter, and may therefore be
detected on the same sensor. Consequently, the signal measured at a given sensor
will be due to particles of different physical sizes. Even though inertial impactors
have been widely studied for micron or super-micron aerosol collection, separation
and measurement, submicron-particle inertial impactor for size selective inlet of the
electrical mobility particle sizing instruments have not yet been studied extensively.
So far, studies on submicron size selective inlet impactors were not carried out
enough.

Therefore, an inertial impactor for upstream separating submicron size aero-
sol particles for the electrical mobility particle sizing instruments was designed,
and theoretically and experimentally investigated in this study. The effects of ma-
jor design parameters on the cut-off diameter were theoretically investigated. The
parameters included the aerosol flow rate, nozzle-to-impaction plate distance and
acceleration nozzle diameter. A prototype of the impactor was built and preliminarily
tested experimentally. Finally, preliminary test results are also presented.

IMPACTOR DESIGN

The most important characteristic of an inertial impactor is the collection
efficiency curve which indicates the percent of particles of any size which is
collected on the impaction plate as a function of the particle size. According to
Marple and Willeke (1976), for conventional inertial impactor, the aerosol flow
rate, the acceleration nozzle-to-impaction plate distance and the acceleration nozzle
diameter are the important parameters governing the performance of the inertial
impactor. A schematic diagram of the inertial impactor used in this study is shown in
Figure 1. The design of the impactor is based on the inertial impactor configuration
of Marple and Willeke (1976). It consists of an acceleration nozzle and an impac-
tion plate. The acceleration nozzle and the impaction plate are made of a stainless
steel. In the inertial impactor, the aerosol flow is accelerated through an acceleration
nozzle directed at an impaction plate. The impaction plate deflects the flow stream-
lines to a 90° bend. The particles larger than the cut-off diameter of the impactor
impact on the impaction plate while the smaller particles follow the streamlines and
avoid contact to the impaction plate and exit the impactor. A picture of the impactor
used in this study is shown in Figure 2.
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Figure 1. Schematic deagram of the submicron-sized particle inertial impactor.

Figure 2. A picture of the submicron-sized particle inertial impactor.

The acceleration nozzle diameter can be calculated from the Stokes number
(Stk). The Stokes number is a dimensionless parameter that characterizes impaction,
defined as the ratio of the particle stopping distance to the halfwidth or the radius of
the impactor throat. The Stokes number equation for a round jet impactor is defined
as (Hinds, 1999):

cdU
Stkz"p%;[;, (1)

where p, is the particle density, C is the Cunningham slip correction factor, d, is the
particle cut-off diameter, U is the mean velocity at the throat, 1 is the gas viscosity,
and D is the acceleration nozzle diameter. Air density and viscosity are 1.225 kg/m?
and 1.7894 x 10~ kg/m/s, respectively. Temperature of 294°K is used. For the round
jet impactor, the expression of the average velocity within the round jets is given
by the following equation

u=29
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Substituting Equation 2 into Equation 1 gives

2
4p,C.d.Q '

9nn D’

Solving the above equation for the particle cut-off diameter at 50% collection
efficiency, dy,, can be calculated by (Hinds, 1999)

Stk= 3)

3
d,,\[C. = 9 D°Stk, )

4pQ
Because C,_ is a function of d;, Equation 4 cannot be conveniently solved for particle
diameter. For conventional impactor, d, can be estimated from d;/C, using the
following empirical equations (Hinds, 1999)

ds, = dgy/C, —0.078x10™ ,  dgyisinm. (5)

This equation is accurate within 2% for dg; > 0.2 um and pressure from 0.9 — 1 atm
(Hinds, 1999). Thus, the acceleration nozzle diameter is given by

_ J4p, @4C) @ (6)

- omnStk,,

where Stk is the Stokes number of a particle having 50% collection efficiency.
For the round jet impactor, Stky, is 0.24, and the ratio of the acceleration nozzle
diameter to the nozzle-to-plate distance is 1.0 (Marple and Willeke, 1976; Hinds,
1999). In this study, the 50% cut-off diameter >= 1 um for the size selective inlet of
the electrical mobility particle sizing instruments. The fractional particle penetration
efficiency (P) of the impactor was determined as follows:

P(%)=(1-E)x100 (7)
where E is the particle collection efficiency of the impactor, and it is determined

from (Marjamaki et al., 2000)

-1

2s
d
E=|1+| 22

where s is the parameter affecting the steepness of the collection efficiency curve.
In the present study, s = 1 is arbitrarily assumed for the steepness of the collection
efficiency curve.

PRELIMINARY EXPERIMENTAL TESTING

In order to measure the particle collection efficiency, it is necessary to
measure the particle concentration both upstream and downstream of the impactor.
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For each particle size, the particle collection efficiency of the impactor was defined
as:

E=1- é—“w , )
where Co. up and C,. down are the particle number concentrations in upstream and
downstream, respectively. Unfortunately, particle size distribution of both upstream
and downstream of the impactor was not measured because no aerosol sizer was
available at the time of the experimentation. Thus, only particle number concentra-
tions of both upstream and downstream of the impactor were preliminarily investi-
gated using unipolar corona charging and electrostatic detection of highly charged
particles (Intra and Tippayawong, 2008). The deposited particles on the surface of
the impaction plate inside the impactor were also observed. A schematic diagram
of the preliminary experimental setup used to investigate the collection efficiency
of particles of the impactor and the deposited particles inside the impactor is shown
in Figure 3. The combustion aerosol generator was used to generate a polydisperse
carbonaceous diffusion flame aerosol for this experiment. Stable polydisperse aero-
sols with particle number concentrations of approximately 10'2 — 104 particles/m3
were obtained (Cleary et al., 1992). The particle size obtained by scanning electron
microcopy (SEM) was in the range between approximately 10 nm — 10 um. Figure
4 shows the particle morphologies of agglomerates obtained from the scanning
electron micrograph, taken with a JEOL JSM-6335F Field Emission Scanning
Electron Microscope, operated at 15 kV and magnification of 5,000X. In this study,
the sampling aerosol flow rate was regulated and controlled by means of mass flow
meter and controller with a vacuum pump and the flow rate ranging from 1.0 to 5.0
I/min. The particles were first dried with the diffusion drier. Thus, any remaining
water was removed. Before aerosol particles entering the impactor, the particles
were diluted and mixed with clean air, which had been filtered through a HEPA
filter, in the mixing chamber. In the impaction plate, impaction surface was coated
with an adhesive collection substrate to prevent particle bounce. Particle number
concentrations of both upstream and downstream of the impactor were measured.
In the measurement system, aerosol sample first pass through the unipolar corona
charger that sets a charge on the particles and enter the ion trap to remove the free
ions. After the ion trap, the charged particles then enter the Faraday cup electrometer
for measuring ultra low current about 10-'2 A induced by charged particles collected
on the filter in Faraday cup corresponding to the number concentration of particles.
Finally, signal current is then recorded and processed by a data acquisition system
(Intra and Tippayawong, 2008). The particle number concentration, C,, is related
to the signal current, | , at Faraday cup electrometer is given by

C = 'y (10)

" peQ,’
where p is the number of elementary charge units, e is the elementary unit of charge
(1.6 x 1012 C), and Q, is the volumetric acrosol sampling flow rate into a Faraday
cup. To reduce errors due to time variations in the upstream aerosol concentrations,
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repeat measurements were commenced at least 5 min after the introduction of the
aerosol into the measurement system.
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Figure 3. A schematic diagram of the preliminary experimental setup used to
investigate the collection efficiency and the deposited particles inside the
impactor.
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Figure 4. Scanning electron micrograph of sampling particle from the generator.
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RESULTS AND DISCUSSION

The following parameters affecting the cut-off diameter were theoretically
investigated in this study: the aerosol flow rate, acceleration nozzle-to-impaction
plate distance and acceleration nozzle diameter. These calculations were carried
out at varying aerosol flow rates between 1.0 to 5.0 I/min. An operating pressure
was set at 1 bar. The acceleration nozzle diameter was varied from 0.5 to 2 mm.
Figure 5 shows variation of theoretical impactor efficiency curves as a function of
particle size at aerosol flow rates of 1, 2, 3, 4 and 5 I/min with the acceleration nozzle
diameter of 1.0 mm. Calculations have been performed for particle size range from
10 nm to 10 pm. It was found that the cut-off diameter decreased as the flow rate
increased. With respect to the influence of the aerosol flow rate on the performance
of the size selective inlet, the cut-off diameter corresponding to 1 and 5 1/min were
1.28 and 0.53 um, respectively. It is natural that both throat velocities and collection
efficiencies increase as aerosol flow rates increase due to increased inertia. Thus,
the impactor collection efficiency depends on acrosol flow rate, as shown in Figure
5. It is apparent that the collection efficiency increases between the aerosol flow
rates of 1 and 5 1/min, because the inertial force acting on the particles is greater at
the higher flow rate.

100
9 | ——Q=1Vmin
Son | | ------Q=2Vmin
‘;m Q=3 Vmin
S| Q=4V/min
260 |
|
=50
2
540
AL
8%|
20.
10/
UI I | - ——a b - —aa
10° 10’ 10° 10° 10 10°

particle diameter, nm

Figure 5. Variation of impactor collection efficiency with particle diameter at
different operating aerosol flow rates.

For the study of the effect of the ratios of the acceleration nozzle diameter (D)
to impaction plate distance (S) on the efficiency curve, Marple and Willeke (1976)
showed that the 50% cut-off size \/ﬁso was strongly dependent upon S/D for
S/D < 1 for rectangular impactors and for S/D < 1/2 for round impactors. For S/D
ratios larger than these values, \/@50 and the shape of the efficiency curves are
relatively constant. As design criteria, the values of S/D should be the minimum
nozzle-to-plate distance used. Figure 6 shows variation of theoretical impactor
efficiency curves as a function of acceleration nozzle diameter of 0.5, 1, 1.5, and 2
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mm with the aerosol flow rate of 1.0 1/min, and operating pressure of 1 bar. It was
found that the collection efficiency of impactor decreased when acceleration nozzle
diameter decreased.
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Figure 6. Variation of impactor collection efficiency with particle deameter at
different acceleration nozzle diameters.

Figure 7 shows variation of measured particle number concentration and
current with aerosol flow rates of both upstream and downstream of the impac-
tor. As shown in Figure 7, the measured particle current and concentration,
particle number concentration is derived from the current by using Equation 10, of
both upstream and downstream was in the range from 1.5 x 10-10t0 9 x 10* A and 3
x 1013 to 3 x 10'3 particles/m?, respectively. It was shown that the particle currents
of both upstream and downstream of the impactor increased with increasing aerosol
flow rate. In the same way, the particle number concentrations of both upstream
and downstream increased slightly with increasing aerosol flow rate. It was also
evident that the upstream particle number concentrations and currents of the impac-
tor were slightly higher than downstream. Variation of measured particle penetration
through the impactor with aerosol flow rates is shown in Figure 8. It was shown the
measured particle penetration through the impactor was about 89, 56, 72 and 79%
for aerosol flow rates of 1, 2, 3 and 4 1/min, respectively. It can be seen that the par-
ticle penetration through the impactor is slightly high. This was expected because all
particles captured on the Faraday cup are assumed to be singly charged (p = 1), data
reduction is required. Thus, detailed reasons of this problem should be theoretically
and experimentally discussed further.
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Figure 7. Variation of measured particle number concentration and current with
aerosol flow rates of both upstream and ownstream of the impactor.
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Figure 8. Variation of measured particle penetration through the impactor with
aerosol flow rates.

The photograph of typical particles collected on the surface of the impaction
plate inside of the impactor with sampling aerosol flow rate of 2 I/min for 30 minutes
is shown in Figure 9. They were found to be agglomerated on the impaction plate.
It was found inherent problems which were particle bounce and re-entrainment.
The various problems in impactor use, such as the problem of particle bounce and
re-entrainment, interstage wall losses and non-ideal collection characteristics of the
impaction surface has been widely reported (Marple and Willeke, 1976). Particle
bounce can be a severe problem in high velocity.
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Figure 9. Photograph of typical particles collected on the impaction surface inside
of the impactor.

CONCLUSION AND FUTURE WORK

The submicron-particle inertial impactor for size selective inlet of the
electrical mobility particle sizing instruments has been designed, constructed and
investigated. The design of the inertial impactor was based on the inertial impactor
configuration of Marple and Willeke (1976). The effects of major design parameters
on the cut-off diameter were analytically investigated, they were the aerosol flow
rate, acceleration nozzle-to-impaction plate distance, and acceleration nozzle diam-
eter. The impactor was preliminarily tested experimentally to observe the deposited
particles on the surface of the impaction plate inside the impactor. The combustion
aerosol generator was used to generate a polydisperse carbonaceous diffusion flame
aerosol in the size range of approximately 10 nm — 10 um for this experiment. It was
shown that the theoretical 50% cut-off diameter decreased as the flow rate increased
and also decreased when acceleration nozzle diameter decreased. Finally, the
results of the preliminary experimental tests and the photograph of typical particles
collected on the surface of the impaction plate inside of the impactor was also shown
and observed. Results obtained were very promising and was also found particles
agglomerated on the impaction plate.

Therefore, future ongoing research will experiment on the effects of the
design parameters on the impactor performance. The particle penetration efficiency
of the impactor, particle size distribution both upstream and downstream of the
impactor should be further theoretically and experimentally studied. One of the
principal limitations of the inertial impaction method is that a significant fraction of
the particles greater than the cut-point diameter (50% is from particle larger than the
cut-point) that pass through the impactor contributed to multiple-charged aerosols.
Therefore, further research should be also focused on this effect.
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ABSTRACT

Corona-needle charger is widely used to impose a known net charge distribution on
the aerosol particles for the electrical mobility particle sizer. However, the corona discharge
and charging processes in the corona-needle charger at different operating conditions is not
well understood. In the present paper, measurement of ion current from a corona-needle
charger using a Faraday cup electrometer was performed in order to optimize the corona-
needle charger with respect to maximization of the ion number concentration. It was shown
that the corona onset increased with increasing air flow rate. At higher air flow rate, the ion
current and concentration were found to be relatively high for the same corona voltage. The
highest ion curtent in the Faraday cup electrometer was found to be about 6.4 X 10", and
6.29 X 10" A, corresponding to the ion number concentration of about 2.98 X 10", and 2.93
x 10" jons/m’ occurting at the corona voltage of 2.9 and 3.7 kV for positive and negative
coronas, and air flow rate at 8.0 L./min, respectively.

Keywords: corona discharge, faraday cup, electrometer, ion current.

1.INTRODUCTION

One of the most common techniques to
produce high ion concentrations is corona
discharge, defined as the low energy electrical
discharge with non-thermal ionization that
takes place in the vicinity of an electrode of
sufficiently low radius of curvature in a
medium the pressure of which is close to
atmospheric [1]. Corona discharge is produced
by a non-uniform electrostatic field such as
that between a needle and plate or a concentric
wire and a tube. Air and other gases can

undergo electrical breakdown when the
electric field strength is high. For the case of
wire and tube, the only place this breakdown
can occur is in a very thin layer on the wire
surface. In this corona region, energy is highly
intense to knock electron from gas molecules
creating positive ions and free electrons.
There have been numerous studies in
corona discharge phenomena in the past 2]
which are widely used in many industrial
applications such as electrostatic coating and



Chiang Mai J. Sci. 2009; 36(1)

precipitation |3 —5]. Electrostatic charging of
fine particles by the DC corona dischargers is
also commonly employed in determining
particle size distribution by electrical mobility
technique both corona-wire and corona-
needle chargers [6, 7]. Corona-needle charger
is among the most commonly used to
generate ions in aerosol diffusion chargers for
the particle sizing instruments. Knowledge of
the mechanism of the corona discharge
attainable in a given charger is needed. The
reason is that one has to know how particle
charging depends on the ion concentration
flowing through the charging zone, charging
time, and the electric field inside it. The issue
of corona discharge in the corona-needle
charger has not been extensively studied in
existing literature. Most papers concern about
characteristics of corona discharge in wire to
cylinder geometry. Only a few of them focus
on the corona discharge in the needle to nozzle
[8 — 11].

In the present paper, the ion current and
number concentration of ions from the
corona-needle charger were measured using
a Faraday cup electrometer at different

Aerosol
inlet

|

111

operating air flow rates and corona voltages.
The research is aimed at the optimization of
the corona-needle charger with respect to
maximization of the ion concentration. A
detailed description of the operating principle
of the Faraday cup electrometer was also
presented.

(. ErPERIMENTA[/APPARATUS
2.1 Corona-needle Charger

Figure 1 shows the schematic diagram
of the corona-needle charger used in this study.
The corona-needle charger geometrical
configuration is similar to the charger used by
Hernandez-Sierra ef al. [9], Alonso ez al. [10]
and Intra and Tippayawong [11]. However,
differences between the present charger and
existing chargers are aerosol inlet geometry
which was modified to ensure uniform particle
distribution across the annular acrosol entrance
to charging zone. This charger consists
essentially of a coaxial needle electrode placed
along the axis of a cylindrical tube with
tapered end. The needle electrode is made of
a stainless steel rod, 6 mm in diameter ending
in a sharp tip. The angle of the needle cone is

Corona needle
electrode

Aerosol

To high voltage 5
power supply

> outlet

7

i

_
.

Teflon insulator

<

Outer electrode

Figure 1. Schematic diagram of the corona-needle charger.
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about 10° and the tip radius is about 50 Um,
as estimated under a microscope. The outer
electrode is made of a stainless steel tube, 30
mm in diameter and 15 mm in length with
conical shape. The orifice diameter is about
3.5 mm. The distance between the needle
electrode and the cone apex is 1.75 mm. The
corona-needle electrode head is connected to
an adjustable DC high voltage supply, while
the outer electrode is grounded. The corona
discharge generates ions which move rapidly
in the strong corona discharge field towards
the outer electrode wall.

2.2 Faraday Cup
The schematic diagram of the Faraday
cup electrometer is shown in Figure 2. It

consists of an outer housing, a High Efficiency
Particulate Air (HEPA) filter, a filter holder,

Flow in
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and a Teflon insulator. To completely shield
the HEPA filter collecting the air ions, outer
housing is made of a stainless steel, HEPA
filter was equipped with a fine collection metal
grid, and was electrically isolated from the
outer housing and ground with Teflon stand
(a volume resistivity exceeding 10™ Qcm). The
HEPA filter was used in this wotk, because
the collection efficiency for small air ions was
very high. The Faraday cup plays a role to
prevent electric noise for measuring low
electric signal current (in pA range) from
accumulated charge of air ions on an internal
HEPA filter inside the Faraday cup corres-
ponding to the total number concentration
of the ions. If the object of measurement is
not shielded completely, noise which is 1000
times of resolutions is expected. To transfer
charges gathered at the HEPA filter to an

!

insulator é

7

Flow
out

-

T
HEPA filter I Electrometer
éf/ : e | —>
Teflon

Figure 2. Schematic diagram of the Faraday cup.
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electrometer circuit thatis outside the Faraday
cup, BNC connector is connected to HEPA
filter. Because material of HEPA filter is
conductive such as glass fiber, charges collected
in the filter can move to the electrometer
through the low noise cable and BNC
connector without delay. In the case of
existing electrometer air ions flow is curved
at 90° while air is drifted from sampling probe
to the filter. It can become the cause of charge
loss. To solve this problem airflow into
Faraday cup is straightened without changing
the direction of the flow and loss the charge.

2.3 Electrometer Circuit

An electrometer circuit is used to measure
the electric signal current, which are typically
in the range 1 pA to 1 nA, from the Faraday
cup. The schematic presentation of an
electrometer circuit design for air ions
detection system is shown in Figure 3. This
circuit is a simple current-to-voltage converter,
where the voltage drop caused by a current
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flowing through a resistor is measured. The
circuit adopted two cascaded negative
teedback amplifiers. The extra component in
this circuit is primarily for fine offset voltage
adjustment and input/output protection. A
+12V DC power supply capable of
providing 100 mA is required. The feedback
capacitor and RC low-pass filter were used
to reduce high-frequency noise and to prevent
oscillations of the amplifier output [12]. In
order to avoid expensive construction,
commercially-available low-cost monolithic
operational amplifiers were used. The
commercially-available operational amplifiers
used in this circuit is the LMC662, which was
designed for low current measurement
and featured ultra-low input bias current
(2 fA maximum) and low offset voltage drift
(1.3 uV/°C) [13]. This citcuit gives an output
voltage of 10 mV per 1 pA of input signal
current. The electrometer circuit was calibrated
with a current injection circuit, high-impedance
current source [12]. The performance of the
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| OP07 >—0—vvw—l—o
______ 1
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Figure 3. Schematic diagram of the sensitive electrometer circuit.
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electrometer circuit used in this work was also
evaluated and compared with a commercial
electrometer, Keithley model 6517A, and
good agreement was found from the
comparison [14].

" ETPERIMENTA[S['STEM AND PROCEDURE

The schematic diagram of the experi-
mental system for measurement of ion
number concentration from the corona-needle
charger is shown in Figure 4. It consists of a
corona-needle charger, a Faraday cup electro-
meter, a flow system, and a data acquisition
and processing system. In our experiments,
the Faraday cup is connected directly to the
charger outlet via a very short connecting pipe.
The air flow was regulated and controlled by
means of a mass flow meter and controller
with a vacuum pump, typically in the range
between 3.0 — 8.0 I./min. A commercial
adjustable DC high voltage power supply, a
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Leybold Didactic model 521721, was used
to maintain the positive and negative corona
voltages difference in the charger, generally in
the range between 1.0 — 5.0 kV. An air sample
was first filtered through a HEPA filter, and
was then drawn into the charger. The ions
produced inside the charger are then entered
the Faraday cup. In the Faraday cup, the ions
were removed from the air stream by the
filter and the resulting ion current flow was
measured with the electrometer. It should be
noted that the ion current was measured by
the electrometer corresponding to the ion
number concentration at the charger outlet.
The output signal from the electrometer circuit
is in the range of 0 to +10V. Itis then sent to
the ADAM-4017 analog input module, which
is a 16-bit, 8 channel analog input module,
controlled and data sampled by an external
personal computer via RS-485 to RS-232
converter interface. Software running on an

DC high voltage power supply
(Leybold Didactic 521721)
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]
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lon current
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Figure 4. Schematic diagram of the experimental system for measurement of dc ion current

from the corona-needle charger.
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external computer was developed, based on
Microsoft Visual Basic programming for all
data processing. The software is able to display
the ion current and number concentration.
The ion current measurements were translated
into ion number concentrations given the total
air flow rate through the charger. Thus, the
total number concentration of the ion at the
charger outlet, N, can be calculated from the
expression [11]
I,

M=o, (1)

where [ is the ion current at the charger outlet,
¢ is the elementary charge (1.6 X 10" C), and
O is the aerosol flow rate.

"L RESUI TS AND DISCUSSION
4.1 Current-voltage Characteristics of the
Charger

The charging current from the corona-
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needle electrode was measured directly with
the micro-ampmeter via the outer electrode
of the charger. Figure 5 shows the current-
voltage characteristics in the charging zone of
the charger. In this charger, the corona onset
was found to be about 2.4 kV, and 2.0 kV
for positive and negative coronas, respectively.
Increase in corona voltage produced a
monotonic increase in charging current. It was
shown that the spark-over phenomena
occurred for both positive and negative
corona voltages larger than about 4.2 kV.
Above these values, the current was found to
exhibit a fluctuation in an uncontrollable
manner and no measurement could be made.
Generally, the currents for negative ions were
slightly higher than those for positive ions. This
was expected because negative ions have
higher electrical mobility than positive ions
(Z7=115Xx 10" m*/V s, Z~ = 1.425 X
10* m?/V s, based on the work of Reischl
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4.0x10° |

2.0x10° |
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=
(=1
(=]

5

3.0 3.5

corona voltage, kV

Figure 5. Current-voltage characteristics in the charging zone of the corona-needle charger.



116

et al. [15]). Thus, it was more likely to impact
and deposit on the outer electrode wall of
the charger. The ion concentration in the
charging zone, N,, of the charger was
approximately proportional to the charging
current. Thus, the high ion concentration in
the charging zone of a charger is desirable
for high particle charging efficiency. The ion
concentration in the charging zone can be
estimated from the relation

I
' eZ,EA @

where Z_ is the electrical mobility of ions, E
is the electric field, and A is the inner surface
area of the outer electrode of the charger.
This charging current increased with the electric
tield, hence applied voltage.

4.2 Ton Current and Concentration at the
Charger Outlet

Figures 6 and 7 show the variations in
the ion current and concentration of the
charger outlet with corona voltage at different
operating air flow rates for both positive and
negative coronas. The resultantion current and
concentration of both positive and negative
coronas were evaluated for 3.0, 5.0, and 8.0
L/min and 1.0 — 5.0 kV. The obtained results
were expected for the effects of aerosol
flow and corona voltage. As seen in Figure 06,
the negative corona onset (i.e. negative ion
generation) appeared at about 2.0, 2.1, and
2.3 kV for air flow rates of 3.0, 5.0, and 8.0
L/min, respectively, while the positive corona
onset was observed at about 2.0, 2.3, and 2.5
kV for air flow rates of 3.0, 5.0, 8.0 L./min,
respectively. For corona voltage less than 2.0
kV, the ion current was low. In this range,
corona discharge was not present. It can be
seen that the corona onset increase with
increasing air flow rate. For both cases, at
higher air flow rates, the ion current and
concentration were found to be relatively high
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with the same corona voltage. This is because
the ions can be more easily drawn off the
charger by faster flowing air. In case of
positive corona, the ion current and concen-
tration appeared to depend on applied
voltage only within a narrow voltage interval.
For larger voltages, ion current and
concentration of positive corona became
practically constant, independent of the
applied voltage. Meanwhile, ion current and
concentration of negative corona slightly
increases with increasing applied voltage.
The reason for this may be due to greater
degree of ion loss. It was evident that when
the applied voltage increased, the charging
current and electric field strength in the
charging zone were found to increase. More
ions have tendency to be electrostatically lost
in the charging zone of the charger. The ion
loss inside the charger due to electrostatic loss
is defined as the ratio of the ion number
concentration at the charger outlet, N, over
the number concentration of ions inside the
charger, N, . The ion penetration, P, through
the charger can be estimated by Deutsch-
Anderson equation as [10]

N —-Z EA

P= NL"’ =exp| —— 3)

Q.
Form Eq. (3) it can be calculated that the ion
penetration was getting smaller with increasing
electric field strength as a function of the
corona voltage. It is commonly known that
the ion current and concentration for positive
corona of the charger was slightly higher than
for negative corona. The highest ion current
in the Faraday cup was found to be about
0.4x 10", and 6.29 X 10" A, corresponding
to the ion number concentration of about
2.98 x 10", and 2.93 X 10" ions/m’ occurting
at the corona voltage of 2.9, and 3.7 kV for
positive and negative coronas, and air flow
rate at 8.0 L/min, respectively.
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. CONCLUDIN REMARCS

In this paper, the Faraday cup electro-
meter was used to measure the DC ion
current from the corona-needle charger in
order to study the corona discharge inside it.
A semi-empirical method based on current
measurements was used to determine the total
ion concentration at the outlet of the charger.
It was found that the corona onset increased
with increasing air flow rate. At higher air flow
rate, the ion current and concentration were
found to be relatively high for the same
corona voltage. The effect of air flow rate
was more significant than that of corona
voltage. The negative corona was found to
be in higher concentration than the positive
corona. The highestion current in the Faraday
cup electrometer was found at the air flow
rate of 8.0 ./min about 6.4 X 10*°, and 6.29
x 107" A, for positive and negative coronas,
respectively, corresponding to the ion number
concentration is about 2.98 X 10'?, and 2.93 X
10" ions/m* occutting at the corona voltage
of 2.9, and 3.7 kV for positive and negative
coronas, respectively.
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Particle motion induced by electrical forces is the basis for important class of measuring instruments.
Charging is important in aerosol size measurement. Unipolar charger is a crucial component in the
aerosol particle sizing system by electrical mobility analysis. For an electrical mobility analyzer, the
charging is aimed to impose a known net charge distribution on each aerosol size. The charger perfor-
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1. Introduction

Aerosol is a complex mixture of liquid and solid particles that
exist in dynamic equilibrium with surrounding vapor phase. It has
a wide range of physical, chemical and biological properties.
Applications of aerosol have been found in diverse fields, including
materials synthesis, biotechnology, semiconductor manufacturing,
pharmaceutical products, emission control, health effects, instru-
mentation, and studies of fundamental transfer processes [1]. Their
unique properties depend on their sources and processes under-
gone. Important physical properties of airborne particles are: size,
shape, number, mass, surface area and density. Knowledge of the
properties of aerosols is of great practical importance in aerosol
science. Measurement capabilities are required to gain under-
standing of these particle dynamics.

Electrical mobility analysis is an important class of aerosol size
measuring techniques. The most crucial step in the aerosol size
measurement based on electrical technique is the particle charging
mechanism. Charging mechanism is aimed to impose a known net
charge distribution on the aerosol particles. Since particle size
distribution is commonly classified by the electrical mobility,
prediction of particle size requires the knowledge of the charge
distribution for each particle size interval. The charger performance

* Corresponding author.
E-mail addresses: panich_intra@yahoo.com, panich.intra@hotmail.com (P. Intra).

0304-3886/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.elstat.2008.12.018

depends on the charging efficiency, defined as the fraction of
charged particles among all the particles present at the charger
downstream. Thus, high charging efficiency of aerosol particles
results in high precision of measurement. There are several
mechanisms by which aerosol particles acquire net charge distri-
butions; flame charging, static electrification, diffusion charging
and field charging [1]. The most commonly used mechanism for
charging particles in electrical measurement instruments is diffu-
sion charging. Generally speaking, particles are allowed to collide
with ions and the charge carried by these ions is transferred to the
particles. This mechanism is so called due to the mechanism that
ions travel in the gas and collide with the particles. Diffusion
charging of particles can be unipolar or bipolar depending on the
polarity of the ions colliding to the particles. Bipolar diffusion
charging leads to a charge equilibrium which has low charging
efficiencies, e.g. 3.3% for positively charged 10 nm particles and 5.7%
for negatively charged particles, respectively [2,3]. Unipolar diffu-
sion charging has advantages over bipolar diffusion charging as it
does not reach an equilibrium charge distribution, therefore
potentially enabling the attainment of a higher charging efficiency.
There are three conventional methods to generate ions for unipolar
diffusion charging in a gas; corona discharge, photoemission from
UV-light radiation, and radiation from o-ray or p-ray sources. For
the ionizing radiation, this produces a stable ion concentration, but
the dynamic range in ion concentration is typically smaller
compared to a corona discharge.
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Corona discharge is among the most common technique to
produce high ion concentrations. There have been numerous
studies in the past [4-8] and used in many industrial applica-
tions such as electrostatic coating and precipitation [9]. Elec-
trostatic charging by the corona dischargers is also common in
aerosol size determination by electrical mobility analysis. Corona
discharge is produced by a nonuniform electrostatic field such as
that between a needle and a plate or a concentric wire and
a tube. Air and other gases can undergo electrical breakdown
when the electric field strength is high. For the case of the wire
and the tube, the only place this breakdown can occur is in
a very thin layer at the wire surface. In this corona region,
electrons have sufficient energy to knock an electron from gas
molecules creating positive ions and free electrons. During this
process, aerosol particles flow is directed across the corona
discharge field and is then charged by attachment of ions
produced by the corona discharge. Ions are transported by the
electric field and/or by thermal diffusion. Particle charging due
to the ions transported by electric field is called “field charging”.
For supermicron particles (>1 um), field charging is dominant.
For ultrafine particles (<0.1 pm), thermal diffusion becomes
dominant, and “diffusion charging” becomes important. For the
size range in between, both mechanisms show varying degree of
effect. The amount of ion deposition on the particle surface
depends on resident time, particle radius and shape, electric
field, etc. This technique has been applied successfully and
several designs of aerosol corona charger are employed and
described in the published literature, both corona-wire [4,6-
8,10-16] and corona-needle chargers [17-24]. A number of
particle sizing instruments employ unipolar corona chargers
[25-38] as important upstream component to impart known
charge to the aerosol system. Generally, the ideal charger would
need to have (i) high ion concentration, (ii) no gas-to-particle
conversion and low coagulation between charged particles, (iii)
low particle losses, (iv) no contamination, (v) applicability to
nanoparticles, and (vi) ability to work at various conditions.

In the present article, its main purpose is to present and discuss
progress on the state-of-the-art unipolar charger for airborne
particles, based on corona discharging. These chargers are either
commercially available or still remain as laboratory prototypes. A
detailed description of the operating principles, physical charac-
teristics of the corona-wire and corona-needle chargers are
presented.

2. Particle charging theory

During exposition to gaseous ions, aerosol particle captures the
ions, resulting in an electrical charge on the particle. The charging
level is dependent on the size and shape of the particle, the uni-
polar ion density, the particle residence time, and the external
electric and magnetic fields. The process of ion collisions can be
further divided in two different subcategories, diffusion and field
charging. In the absence of electric field, this particle will be dif-
fusionally charged by the Brownian motion of the ions. This diffu-
sion charging, first characterized by White [5] and more recently
modified by Pui [8], can be expressed in a convenient analytic form.
For an initially neutral particle immersed in a unipolar ion cloud,
the flux of ions impinging on the particle surface areaisj = mwa%cn,
where a is the particle radius, n is the concentration of ions above
the surface and ¢; is the mean thermal speed of the ions. The spatial
distribution of ions is given by the classical Boltzmann distribution
for the equilibrium state. Neglecting the image force attraction
between the ions and the particle, the Boltzmann distribution at
the particle surface is given by [8]

02
n=mn exp<1<5%> (1)

where n; is the ion concentration at infinity, qp is the particle
charge, e is the elementary unit of charge, Kp = 1/4meg with
the vacuum permittivity, k is the Boltzmann’s constant
(1.380658 x 1023 J/K), and T is the operating temperature of the
system. Thus, the ion flux to the particle is:

j = ma*ein; exp| — K e’ (2)
B EakT

The above equation was originally derived by White [5]. This is
valid for spherical particles and free molecular regime (Kn > 1),
where Kn is the Knudsen number (=4i/a; J; is the mean free path of
the ion). The charging rate expression can be described by a system
of differential equation as

dgp _ _ 5 qpe’
T Tascin; exp *KEW 3)

With the initial condition that g, = 0 at t = O for the charging of an
aerosol (initially neutral), the average charge of particle can be
integrated analytically to give

~dp -1 t
/0 exp(—KEqpez/akT> dgp = /0 ma%cn; dt (4)

Thus, the average charge, qdiffusion, caused by the diffusion charging
in a time period, t, by a particle radius can be found from

(5)

akT mKeac.e?n;t
ddiffusion = 1 (1 and 1)

Kge? kT

In field charging, ions are transported to suspended particles along
the field lines. The field lines are repelled as the particle charge
becomes high, and finally no electric field line reaches the particle.
This condition causes charge saturation. The effect of the finite
electric field used in the charging region can be estimated by
a classical field charging equation derived by White [5], the satu-
ration charge, ng, of a particle (radius, a, and dielectric constant, ¢) in
an electric field E is given by

2¢ — 1\ (Ed?
= (1552 (o) ©
The charging rate expression, dqp/dt, is given by the following
differential equation

d 2
% - nsKEeZini( —%1:) )

If the particle is initially neutral, the average number of the
elementary units of charge on a particle, ngeyg, acquired in an
average electric field E is given by

2
G = (l +2:+ 21) (%)( nI(EeZ,n,'t' ) (8)
re) \1+ mKgeZ;n;t

where ¢ is the particle dielectric constant. The first two terms in
Equation (8) represent the saturation charge situation, the first
term is dependent on the dielectric constant of material, and it may
have values from 1 to « as the ¢ can have values from 1 (insulating
particle) to « (conductive particle). For most materials the ¢ varies
from 1 to 10. The second term in Equation (8) is dependent on the
electric field strength and the surface area of the particle. The third



P. Intra, N. Tippayawong / Journal of Electrostatics 67 (2009) 605-615 607
AC voltage
Aerosol 4 Charei I— Aerosol
inlet —| arging zone ,— outlet
Metallic mesh .
ITon production zone

High voltage

7

Corona wire

£

Fig. 1. Schematic diagram of the corona-wire charger developed by Hewitt [4].

term in Equation (8) represents the time dependence of the
charging process. Both diffusion and field occur at the same time.
This is known as continuum charging where particle charge is the
sum of the contributions from diffusion and field charge [40].

3. Designs of unipolar corona chargers

Different designs of unipolar corona charger have been devel-
oped and reported in the literature. They can be classified as: (i)
corona-wire charger and (ii) corona-needle charger. The following
paragraphs give a brief overview of different designs, and
a comparison based on the reported Njt product, product of the ion
concentration, the mean residence time of the particles to the ions
in the charger, and charging efficiencies.

3.1. Corona-wire chargers

Hewitt [4] was one of the first to develop a corona-wire diffusion
charger to investigate the charging process in the electrostatic

Aerosol
in

l

precipitators. The Hewitt charger, shown schematically in Fig. 1,
consisted of a cylinder with a concentric corona wire along the axis.
Attached to the inner surface of the cylinder, a small path was
formed to carry the aerosol flow. The main corona discharge volume
and the aerosol flow region were separated by a metallic mesh. An
alternating voltage (AC) difference was applied between this mesh
and the outer electrode of the charger to reduce particle losses. The
particles flowing through the charger undergo oscillations but are
not deflected to the electrodes. Experiments were conducted for
particle in the size range between 60 and 700 nm. Hewitt reported
that the perpendicular electric field strength used to direct the ions
causes high-mobility nanoparticles with diameter as small as 70 nm
to be deposited on the outer cylinder wall. Several subsequent
researchers have used similar designs to investigate diffusion
charging of aerosol particles. Liu et al. [6] subsequently studied the
diffusion charging of monodispersed dioctyl phthalate aerosols by
unipolar ions at low pressure of 0.03-0.96 bar. The procedure
involved exposing a monodispersed aerosol to unipolar ions
produced by a high voltage corona discharge, and measuring the
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Fig. 2. Schematic diagram of the diffusion charger developed by Liu et al. [6].
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electrical mobility and charge of the aerosol in a straight-through,
dynamic flow system. The schematic diagram of the diffusion
charger used is presented in Fig. 2. It is similar to the charger, first
described by Hewitt [4]. In Liu et al. charger, the aerosol was exposed
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Fig. 4. Schematic diagram of the square-wave charger developed by Buscher et al. [10].
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Fig. 5. Schematic diagram of the wire-cylinder corona charger developed by Unger
et al. [11].

Output tube
Insulator

to positive ions in the charging region bounded on one side by a solid
electrode and on the other by a screen through which the positive
ions flow. An AC square-wave voltage was used to minimize the
aerosol loss occurring in the charging process. The 10-60 Hz
frequency of the AC square-wave voltage was used. The amplitude
of the square wave was kept low to approximate as closely as
possible the condition of pure diffusion charging. In pure diffusion
charging, the charge acquired by an aerosol of a given size at a given
pressure was a function of the number concentration of small ions in
the charging region and the charging time or the time during which
the aerosol was exposed to ions. The number concentration of small
ions in the charging region was measured by substituting a DC
voltage for the AC square-wave voltage and measuring the corre-
sponding DC current which flowed through the screen into the
charging region. The current was on the order of 10~°-10~% A. Good
agreement between the experimental data and White’s equation [5]
was reported. Similar design concept of Hewitt [4] and Liu et al. [6]
has been adopted and improved by Liu and Pui [7] and later by Pui [8]
for monodisperse aerosols in the size range between 75 nm and
5.04 um. A schematic diagram of the diffusion charger is shown in
Fig. 3. The charger consisted of two concentric metal cylinders with
a 25 um diameter tungsten wire positioned along the axis of the
cylinders. A positive high voltage was applied to produce a corona
discharge field. The ions were either collected by the inner cylinder
or flowed through the screen to the annular gap outside. In the
annular gap, collisions between the ions and the aerosol particles
occurred, causing the latter to become charged. The total flow
through the Liu and Pui charger was fixed at 5 L/min (4 L/min
aerosol + 1 L/min sheath air). The residence time of the charger was
0.217 s. Asheath air flow was used adjacent to the inner cylinder. This
arrangement was intended to displace the aerosol stream away from
the screen and to prevent aerosol particles from entering the high
intensity corona discharge region within the inner cylinder. It was
reported that the nominal Njt product was adjustable over a range
from less than 1 x 10° to over 3 x 107 ions/cm? s.

Buscher et al. [10] pointed out that the high particle losses were
associated with corona-wire diffusion chargers. Subsequently,
Buscher and coworkers proposed the square-wave diffusion
charger for ultrafine particles. In the Buscher et al. charger shown in
Fig. 4, its geometrical configuration was similar to the one used in
the TSI EAA 3030 [7]. However, the surfaces in contact with the
aerosol were conductive and connected to ground to avoid particle
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Fig. 6. Schematic diagram of the twin Hewitt charger developed by Kruis and Fissan [12].

losses due to insulator charging. The inlet tubes for aerosol and
sheath air were arranged to achieve a high particle penetration and
laminar flow inside the charger. A 4.5 kV corona discharge from
a wire along the axis of the two concentric metal cylinders (radii
ri = 1.65 cm and r, = 3.0 cm) generated ions. A positive voltage was
applied to the inner cylinder, a grid with width of 1.17 cm allowed
ions from the discharge zone to reach the aerosol. The aerosol
flowed into the annular gap between the cylinders. The aerosol
flow was 2 L/min and sheath air flow was 0.5 L/min. The sheath air
surrounded the inner cylinder with the grid, preventing aerosol
particles from entering the corona discharging zone. A square-wave
voltage was applied to the grid in the charging zone, guaranteeing
minimum particle losses due to electrostatic force. The particles
flowing through the charging zone underwent oscillations without
precipitating on the charger walls. In the Buscher et al. charger, the
square-wave voltage was in the range of +75 V to +300 V corre-
sponding to the frequency of 25-70 Hz. An isolated foil on the inner
side of the outer cylinder, opposite to the grid, was connected to an
electrometer amplifier to measure the ion current. In Buscher et al.
work, an evaporation nucleation generator was employed to
generate polydisperse sodium chloride particles. A Differential
Mobility Analyzer (DMA) type 3/150 was used downstream of the
generator to separate monodisperse samples from the polydisperse
particles in the size range between 5 and 35 nm in diameter.
Particle losses and charging efficiencies of the charger were
determined by measuring particle concentrations at the inlet and
outlet of the charger. Monodisperse sodium chloride particles in
the size range between 5 and 35 nm in diameter were used. The
monodisperse aerosol was bipolarly charged in a neutralizer. The
charged particles were removed in a subsequent electrostatic
precipitator. The number concentration of particles entering the

charger was measured by the first Condensation Particle Counter
(CPC). The particle concentration leaving the charger was measured
by the second CPC. It was found that the particle penetration, the
ratio of output concentration to input concentration of particle,
decreased towards small particles where diffusion losses were
highest, and the Njt product was approximately 1.1 x 107 ions/cm? s
for the charger. It was also reported that for the ion concentrations
greater than 10° ions/cm?, space charge had to be considered for
the spatial dependence of the Njt product.

Unger et al. [11] proposed another type of the unipolar corona-
wire charger to induce a stable negative corona discharge in flowing
air with insulating material nearby the discharge gap. The down-
stream part dealt with the influence of the aerosol concentration and
flow rate on the evolution of the discharge current related to the
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Fig. 7. Schematic diagram of the unipolar corona-wire diffusion charger developed by
Biskos et al. [13-15].
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particles deposition on both the wire and the cylinder. Fig. 5 shows
the wire-cylinder corona charger. The wire diameter was 330 um,
and the grounded cylinder had an internal diameter of 14 mm for
a length of 3 mm. With this electrode system, and with a voltage of
—8.5 kV, the discharge current was about —30 pA, leading to ion
densities in the range of 10'° jons/cm?>. The electrical measurements
were obtained by oscilloscope connected to the cylinder for the
discharge current and to a metallic foam for the charged particles
output current. The tested aerosol was produced with a nebulizer
and dried with a silica-gel diffusion dryer. Granulometric charac-
terization was achieved by DMA coupled with a CPC 3022. It was
found thatan increase of the relative humidity implied a reduction of
the discharge current by reduction of the ion mobilities leading to
space charge accumulation in the discharge gap, lowering the
electric field. The lifetime of the charger and the charged particles
current at the output of the charger were a function of the flow rate
and the aerosol concentration. High flow rate resulted in reduced
particle losses in the charger and with nearly constant charging
efficiency, whereas lower flow rate resulted in a lower output
current and a higher time of life.

An improvement on the corona-wire chargers based on Hewitt's
original design has been carried out by Kruis and Fissan [12]. It was
called the twin Hewitt charger. Fig. 6 shows the schematic diagram
of the developed twin Hewitt charger. The aerosol flow is intro-
duced via a short inlet section into a square charging zone of 16 mm
wide and 10 mm high. The charging zone is separated from the two
ion production zones by metal wire meshes to prevent the aerosol
expand into the corona discharge zone. These wire screens are

connected to two square-wave generators with opposite phase and
a maximal voltage difference of 600 V. The top and bottom of the
charging zone are electrically isolated. Positive ions are produced
by corona discharge of 25 pm thick Au wire in the center of metal
cylinder. There is a slit of length 150 mm and height 10 mm at one
side. This slit is positioned towards the charging zone. The wire was
fixed to a needle inserted through the openings at the end of the
cylinder. Its electrical contact was made by means of a drop of silver
paste. In the authors’ work, the operation parameters of the charger
were experimentally investigated at standard conditions with the
goal to optimize the extrinsic charging efficiency in N; carrier gas. It
was reported that there exists an optimal length of the charging
channel for each gas flow rate through the charger which mini-
mizes losses of charged particles and at the same time having
a sufficiently large Njt product and the extrinsic charging efficien-
cies of the charger as high as about 30% for particles with a diam-
eter of 10 nm.

Biskos et al. [13-15] later developed and investigated the elec-
trostatic properties of a Hewitt-type corona charger analytically and
numerically at different operating conditions. Fig. 7 shows a sche-
matic layout of the unipolar corona-wire diffusion charger. It was
composed of two concentric electrodes, 50 and 74 mm in diameter,
respectively, with a corona wire along the axis. A tungsten wire of
16 pm diameter was used to produce the corona discharge. The
generated ions migrated to the inner electrode due to the high
electric field in the region. The inner electrode was made of
a metallic mesh in order to allow ions to flow in the charging zone.
An AC voltage was applied on the outer electrode forcing ions to
enter the charging region without causing charged particles to
precipitate on the charger walls, while the perforated inner elec-
trode was connected to ground. Laminar flow of the aerosol stream
was maintained. Sheath air flowed in the ion-generation area with
the same axial pressure gradient of the aerosol and sheath flow
streams. The aerosol flow passed through the annulus formed by the
two cylinders, where the active charging region had a total length of
60 mm. The ammeter built into the high voltage power supply
(Bertan series 230) was used to measure the current from the
corona-wire electrode in the range of 0-10 mA. The 50 Hz AC voltage
was coupled to the outer electrode via an isolating transformer. The
other end of the secondary winding was connected to ground
through an electrometer in parallel with a 1 kHz high pass filter to
allow measurement of the average charging ion current. Average
and spatial distributions of ion concentrations for the two zones of
the charger were calculated by a semi-empirical method based on
ion current measurements. It was emphasized that neglecting the
space charge effect can lead to significant errors when the ion
concentration in the charger is greater than 5 x 10" ions/m’.
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Fig. 9. Schematic diagram of the sonic jet ion generator developed by Whitby [17].
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Estimation of ion penetration levels through the inner electrode
showed better agreement with the experimental results at sub-
atmospheric pressures of about 250 mbar. The average Njt product
appeared to increase with pressure, despite the fact that the ionic
concentration was significantly lower.

For a recent attempt, Intra and Tippayawong [16] developed and
tested a unipolar corona charger at different operating conditions.
Schematic diagram of the corona charger is shown in Fig. 8. Its
configuration is similar to the charger used by Unger et al. [11]. It
consists of coaxial corona-wire electrode placed along the axis of
a metallic cylinder (28 mm in diameter and 10 mm in length). The
wire electrode is made of stainless steel, 150 um in diameter and
10 mm long. DC high voltage is employed to produce the corona
discharge on the wire electrode while the outer metallic cylinder
is grounded. The corona discharge generates ions which move
rapidly in the strong corona discharge field (>10° V/m) towards
the outer electrode wall. A semi-empirical method was also
adopted to determine the electrostatic characteristics of the
unipolar corona aerosol charger. It was reported that the results
from mathematical model were in agreement with those from

experimental investigation. The space charge effect was significant
and must be taken into account, especially at high ion number
concentration and low flow rate.

3.2. Corona-needle chargers

Whitby [17] developed the first needle-type corona charger
which was capable of converting the corona current into free small
ions with 100% efficiency. A schematic of the sonic jet ion generator
is shown in Fig. 9. It consisted of an arrangement of a sharp needle
held at high potential upstream of a small sonic orifice to generate
the ions within a non-conductive housing which is capable of
forcing nearly all of the ions generated in the corona at the needle
tip through the orifice and hence free of the electric field. Clean air
entered at inlet and then passed through the orifice plate. Positive,
negative, or AC voltages on the needle electrode with respect to
orifice plate were used to produce positive, negative, or a mixture of
positive and negative ions. The ion generator was reported to
produce unipolar or mixed positive and negative ion concentration
of up to 10'! ions/cm?® in the charging zone and total ion outputs of

Sheath air

Corona needle
Ring

Plate with hole

DC high voltage

C AC high voltage

Aerosol

Charging zone

Aerosol

W -

Fig. 11. Schematic diagram of the twin corona module charger developed by Marquard et al. [19].
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Fig. 12. Schematic diagram of the unipolar corona ionizer developed by Hernandez-Sierra et al. [20].

10'/s had been achieved using 70 L/min of free air at 2 bar through
a 1.59 mm orifice diameter.

Another type of the corona-needle charger for aerosol particles
was proposed by Medved et al. [18]. A schematic diagram of the
new corona jet charger is shown in Fig. 10. It is currently employed
by the commercial Electrical Aerosol Detector (EAD) (model TSI
3070A, Thermo-Systems, Inc., 2500 N. Cleveland Ave., St. Paul, MN
55113, USA) [39]. Generation of ions occurs at a corona-needle tip in
a small ion-generation chamber connected to a mixing chamber via
an orifice. An air flow transferred the ions into the mixing chamber,
and an opposing aerosol flow promoted mixing of the aerosol and
the ions. Because the aerosol-ion mixture was not subjected to an
applied electric field, the only field being a negligible one was from
the ion space charge itself. It was reported that particles were more
efficiently charged, compared to corona-wire chargers due to
better turbulent mixing. In a subsequent work by Marquard et al.
[19], a twin corona-needle charger was developed. A schematic
diagram of this charger is shown in Fig. 11. It consisted of
a 70 x 90 x 120 mm chamber made of polyethylene with two
charging modules on opposing sides perpendicular to the main
flow. Within these modules, ions were generated in a point-ring
corona configuration (1 cm gap, ring diameter 15 mm) based on the
ion gun concept of Whitby [17] and transported by humidified air
(50% RH; 1, 10 or 20 L/min, respectively) through the ring into the
particle charging chamber. Inside the charger, additional metallic
plates were placed around the corona module holes. Particle resi-
dence times were between 3 and 10 s. Dilution ratios resulting from
the corona flows were 1.1 < f < 1.9. The device was reported to have
high charging efficiencies for sub-100 nm particles.

A simple corona-needle charger for high efficiency unipolar
charging of nanometer-sized aerosol particles was proposed by
Hernandez-Sierra et al. [20]. Fig. 12 shows the schematic diagram of
the unipolar corona ionizer. The design was a cylindrical tube with
tapered ends, and divided into three sections. The first and second

made by Alonso et al. [21]. Corona-needle charger, annular aerosol
inlet geometry as well as the manner of holding the discharge
electrode of the previous charger were modified. Fig. 13 shows
a schematic diagram of the Alonso et al. corona-needle charger. It
consists of an inner stainless steel electrode ending in a sharp tip, to
which a DC high voltage is applied. The electrode is coaxial with
a grounded metal cylinder whose inner wall has a conical shape.
The distance between the electrode tip and the cone apex is
1.75 mm. The neutral aerosol enters the charger through the
annular gap. The annular gap can be adjusted between 0 and 6 mm
in 1 mm step. Diffusion losses in the charger were about 25% and 7%
for 3 nm and 10 nm particles, respectively. It was reported that the
attainable extrinsic charging efficiency for nanometer-sized parti-
cles is about one order of magnitude higher than that of commer-
cially available bipolar chargers. It was also shown that no
additional new particles are formed by the corona discharge under
certain conditions: clean charger without dirtiness operating in the
appropriate voltage range, and aerosol not containing contami-
nants (such as organics) which might undergo a gas-to-particle
conversion process. Similarly, Intra and Tippayawong [22,23] con-
structed and evaluated a corona-needle charger, shown in Fig. 14,
for unipolar diffusion charging of nanoparticles. The corona-needle
charger is similar to the ionizer used by Hernandez-Sierra et al. [20]
and Alonso et al. [21]. Notable differences are (i) a tangential
aerosol inlet, and (ii) low operating pressure. It consists of a coaxial
corona-needle electrode placed along the axis of a cylindrical tube
with tapered end. The needle electrode is made of a stainless steel
rod, 3 mm in diameter and 49 mm in length, ending in a sharp tip.
The angle of the needle cone is about 9° and the tip radius is about
50 um, as estimated under a microscope. The outer cylindrical is
made of an aluminum tube, 30 mm in diameter and 25 mm in

(from left to right in the drawing) were made of methacrylate, and Ae;ﬁ“’l
the third (outlet section) of aluminum. A circular piece made of l Outer electrode
Teflon, placed between the two methacrylate sections, contained

a series of orifices through which the aerosol flows. This central
piece served to hold a stainless steel needle electrode, ending in
a sharp tip, coaxial with the external cylinders. The electrode head
was connected to a DC high voltage power supply. The outlet
metallic section was grounded. It was reported that the charging
efficiencies of positive and negative corona were high, about 30%
for 10 nm particles. The charging efficiency was also found to
increase with particle size, corona voltage and mean aerosol resi-
dence time in the charger. At high corona voltage, the electrostatic
deposition of charged particles within the charger was relatively
high. An improvement of the Hernandez-Sierra et al. charger was
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Fig. 13. Schematic diagram of the corona-needle charger developed by Alonso et al.
[21].
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length with conical shape. The angle of the cone is about 30° and
the orifice diameter is about 4 mm. The distance between the
needle electrode and the cone apex is 2 mm. The corona-needle
electrode head is connected to an adjustable DC high voltage
supply, while the outer electrode is grounded. In the authors’ work,
the electrical discharge characteristics of a corona charger based on
current measurements for positive and negative coronas were
investigated and discussed. The charging current from the corona-
needle electrode was measured directly with the sensitive elec-
trometer via the outer electrode. A semi-empirical method, relying
to some extent on observation or experiment, was used to deter-
mine the ion concentrations in the charging zone and at the outlet
of the charger. It was reported that the charging current and ion
concentration in the charging zone were found to increase with
corona voltage. The ion number concentration at the outlet for
positive corona of the ionizer was higher than for negative corona
at the same voltage. Electric field distribution in the charging zone
of the charger was also analyzed via numerical computation. Strong
electric field strength zone was identified and led to high charging.
It was also reported that particle loss inside this charger was
smaller than the corona-wire charger from the authors’ previous
work [16].

Recently, design concept of the corona jet charger has been
utilized in the unipolar diffusion charger by Park et al. [24]. A new
unipolar diffusion charger, shown schematically in Fig. 15, consists
of a corona discharge zone, mixing zone and ion trap zone. The

main body of the charger was made of Duralumin (also called
duraluminum, duraluminium or dural). Two bottom covers, each
of which was connected to the needle electrode, were made of
Teflon. A tungsten needle tip of 0.25 mm diameter and 29 mm
long was used as the needle electrode. The surface area of the
ground electrode was 0.005 m2. The distance between the needle
and the ground electrode was 3 mm. The volume of the mixing
and charging zones was 95.5 cm>. Aerosol and clean air flow rates
were both 5 L/min, respectively. The positive DC voltage was
applied to the needle electrode of the discharge zone in the range
of 3-6 kV. For the performance evaluation of this charger, NaCl
particles smaller than 0.1 um in diameter, and dioctyl sebacate
particles of 0.1-0.7 um were used. It was reported that the total
particle losses inside the mixing and charging zones were below
15%. The number of charges was almost linearly related to the
particle diameter.

4. Summary and future design needs

Corona discharge is one of the most common techniques to
produce great number concentration of ions in a gas, and is also
employed in determining the aerosol size distribution by electrical
mobility analysis. This paper has summarized a current status of
literature of the available unipolar corona chargers’ developments
for airborne particles. A brief outline focuses on the unipolar
charger based on corona discharge. It has covered the operating
principles as well as detailed physical characteristics of these
chargers, including the corona-wire and corona-needle chargers.
The main purpose of these chargers is to charge the particles effi-
ciently with minimal losses. Table 1 summarizes different designs
of the unipolar aerosol charger for airborne particle reported. The
charger performance is dependent on the charging efficiency which
is a function of particle size, corona voltage, and aerosol flow rate.
The charging efficiency increases with particle diameter and
decreases with increasing aerosol flow rate. Typically, corona
discharge used in a charger has poor charging efficiencies in the
ultrafine particle size range (d, < 20 nm) due to high particle losses.
Because the high ion concentration needed for efficient diffusion
charging requires a high electric field to charge aerosol, a fraction of
the particle losses is unavoidable in unipolar diffusion chargers.
Works towards improving the performance of these chargers by
reducing particle losses inside the chargers have been ongoing. This
can be carried out by
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Fig. 15. Schematic diagram of the unipolar diffusion charger developed by Park et al. [24].
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Table 1
Comparison of different unipolar corona aerosol chargers.
Reference Corona Inner electrode  Outer electrode Aerosol Sheath air  Electrode Polarity N;t product Aerosolf/ion  Charging
electrode  diameter diameter flow rate  flow rate voltage range direction efficiency
Hewitt [4] Wire n/a n/a n/a No n/a n/a n/a Perpendicular n/a
Liu et al. [6] Wire n/a n/a n/a No n/a Positive n/a Perpendicular n/a
Liu and Pui [7] Wire 25 pm n/a 4 L/min 1 L/min n/a Positive 1 x 106- Perpendicular 1.3% at 6 nm
3 x 107 s/cm®
Buscher et al. [10] Wire n/a 30 mm 2 L/min 0.5 L/min 4.5 kV Positive 1.1 x 107 sjcm> Perpendicular 4% at 5 nm
Unger et al. [11] Wire 330 pm 14 mm 2-6 L/min No 8.5 kv Negative  n/a Perpendicular n/a
Kruis and Fissan [12] Wire 25 pm 16 mm n/a No n/a Positive 1-8 x 107 Perpendicular 30% at 10 nm
s/cm®
Biskos et al. [13-15] Wire 16 um 74 mm 5 L/min n/a 2-9 kv Positive 3 x 107 s/cm® Perpendicular 60% at 20 nm
Intra and Wire 300 pm 28 mm 1-5L/min No 5-10 kV Positive 1.5-4 x 107 Perpendicular n/a
Tippayawong [16] s/cm?
Whitby [17] Needle n/a n/a 70 L/min  No 0-9 kv Positive/  n/a Perpendicular n/a
negative
Medved et al. [18] Needle n/a n/a n/a n/a n/a Positive n/a Perpendicular 40% at 10 nm
Marquard et al. [19] Needle n/a n/a n/a n/a n/a Positive n/a Perpendicular n/a
Hernandez-Sierra Needle 3 mm 4 mm 0-10 L/min No 2.5-4 kV Positive/  n/a Perpendicular 30% at 10 nm
et al. [20] negative
Alonso et al. [21] Needle n/a 3.5 mm 0-10 L/min No 3.1-3.7 kV Positive 1-4 x 107 Circular 55% at
s/cm® 13.6 nm
Intra and Needle 3 mm 4 mm 0-5 L/min No 3-5kV Positive 2-8 x 107 Circular n/a
Tippayawong s/cm?
[22,23]
Park et al. [24] Needle 0.25 mm n/a 5 L/min 5 L/min 3.5-5 kV Positive 1-7 x 107 Perpendicular n/a
s/cm®
n/a: information not available.
o introduction of surrounding sheath air flows at the boundary Acknowledgement

between the aerosol stream and the wall to allow more space
for the charged particles to flow through the charger without
precipitating on the charger walls [7,8,10,12-15],

o use of a turbulent jet of unipolar ions in a mixing chamber
[18,19,24],

o application of a sinusoidal or square-wave voltage to the
electrode instead of DC voltage [6,10,12-15]. The AC voltage
was shown to produce high charging efficiencies due to lower
particle losses because the charged particles flowing through
the charger undergo oscillations without precipitating in the
electrode.

Additionally, aerosol charging is a function of the ion concen-
tration Nj and the mean residence time t of the particles within the
ion zone, t. For this reason, a well-designed corona charger should
provide a stable Njt product that can be accurately determined for
any given operating conditions. Further research in the unipolar
charger design should be focused on:

o the particle shape effects on the unipolar diffusion charging for
non-spherical particles. Most particles, such as asbestos fibers,
soot aggregates, and bioaerosols are non-spherical. The shape
of a particle affects the drag force, settling velocity and elec-
trical mobility. Non-spherical particles were also expected to
play important role in the unipolar diffusion charging because
highly charged particles cause a great deal of electrostatic force
between charged particles and ions, which is comparable with
pure diffusion force.

o the effect of particle dielectric constant and conductivity on the
charging performance should be explored. Because the diffu-
sion charging is independent of particle material, it can be
concluded that for particles smaller than 0.2 pm particle
material is irrelevant considering the charging process. For
larger particles, charging is dependent on the dielectric constant
and conductivity of material. However, if the dielectric constant
and conductivity of particle material differ significantly from
calibration values, great difference can be expected.

The authors wish to express their deepest gratitude to the
Thailand Research Fund (TRF) for the financial support, contract no.
MRG5180217.

References

(1]
(2]
(3]
(4]

[5

[6

(7

[8

(9l

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

W.C. Hinds, Aerosol Technology, John Wiley & Sons, New York, 1999.

A. Wiedensohler, An approximation of the bipolar charge distribution for
particles in the submicron size range, Journal of Aerosol Science 19 (3) (1988)
387-389.

M. Adachi, Y. Kousaka, K. Okuyama, Unipolar and bipolar diffusion charging of
ultrafine aerosol particles, Journal of Aerosol Science 16 (2) (1985) 109-123.
G.W. Hewitt, The charging of small particles for electrostatic precipitation,
AIEE Transactions 76 (1957) 300-306.

H.J. White, Industrial Electrostatic Precipitation, Addison-Wesley, Reading,
MA, 1963.

B.Y.H. Liu, K.T. Whitby, H.H.S. Yu, Diffusion charging of aerosol particles at low
pressures, Journal of Applied Physics 38 (4) (1967) 1592-1597.

B.Y.H. Liu, D.Y.H. Pui, On the performance of the electrical aerosol analyzer,
Journal of Aerosol Science 6 (1975) 249-264.

D.Y.H. Pui, Experimental study of diffusion charging of aerosols, Ph.D. thesis,
University of Minnesota, Minneapolis, MN, USA, 1976.

P.A. Lawless, L.E. Sparks, Modeling particulate charging in ESPs, IEEE Trans-
actions on Industry Applications 24 (5) (1988) 922-925.

P. Buscher, A. Schmidt-Ott, A. Wiedensohler, Performance of a unipolar
“Square Wave” diffusion charger with variable nt-product, Journal of Aerosol
Science 25 (4) (1980) 651-663.

L. Unger, D. Boulaud, J.P. Borra, Unipolar field charging of particles by electric
discharge: effect of particle shape, Journal of Aerosol Science 35 (2004) 965-
979.

F.E. Kruis, H. Fissan, Nanoparticle charging in a twin Hewitt charger, Journal of
Nanoparticle Research 3 (2001) 39-50.

G. Biskos, E. Mastorakos, N. Collings, Monte-Carlo simulation of unipolar
diffusion charging for spherical and non-spherical particles, Journal of Aerosol
Science 35 (2004) 707-730.

G. Biskos, K. Reavell, N. Collings, Electrostatic characterization of corona-wire
aerosol charges, Journal of Electrostatics 63 (2005) 69-82.

G. Biskos, K. Reavell, N. Collings, Unipolar diffusion charging of aerosol
particles in the transition regime, Journal of Aerosol Science 36 (2005) 247-
265.

P. Intra, N. Tippayawong, Approach to characterization of a diode type corona
charger for aerosol size measurement, KIEE International Transactions on
Electrophysics and Applications 5-C (5) (2005) 196-203.

K.T. Whitby, Generator for producing high concentration of small ions, Review
of Scientific Instruments 32 (12) (1961) 1351-1355.



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P. Intra, N. Tippayawong / Journal of Electrostatics 67 (2009) 605-615

A. Medved, F. Dorman, S.L. Kaufman, A. Pocher, A new corona-based charger
for aerosol particles, Journal of Aerosol Science 31 (2000) s616-s617.

A. Marquard, M. Kasper, ]. Meyer, G. Kasper, Nanoparticle charging efficiencies
and related charging conditions in a wire-tube ESP at DC energization, Journal
of Electrostatics 63 (2005) 693-698.

A. Hernandez-Sierra, FJ. Alguacil, M. Alonso, Unipolar charging of nanometer
aerosol particle in a corona ionizer, Journal of Aerosol Science 34 (2003) 733-745.
M. Alonso, M.I. Martin, EJ. Alguacil, The measurement of charging efficiencies
and losses of aerosol nanoparticles in a corona charger, Journal of Electro-
statics 64 (2006) 203-214.

P. Intra, N. Tippayawong, Corona ionizer for unipolar diffusion charging of
nanometer aerosol particles, in: 29th Electrical Engineering Conference, Pat-
taya, Thailand, 9-10 November, 2006.

P. Intra, N. Tippayawong, Comparative study on electrical discharge and
operation characteristics of needle and wire-cylinder corona chargers, Journal
of Electrical Engineering & Technology 1 (4) (2006) 520-527.

D. Park, M. An, ]. Hwang, Development and performance test of a unipolar
diffusion charger for real-time measurements of submicron aerosol particles
having a log-normal size distribution, Journal of Aerosol Science 38 (4) (2007)
420-430.

M. Lehtimaki, New current measuring technique for electrical aerosol
analyzers, Journal of Aerosol Science 18 (1987) 401-407.

A. Mirme, Electric aerosol spectrometry, Ph.D. thesis, University of Tartuensis,
Tartu, Estonia, 1994.

H. Tammet, A. Mirme, E. Tamm, Electrical aerosol spectrometer of Tartu
University, Journal of Aerosol Science 29 (1998) s427-s428.

H. Tammet, A. Mirme, E. Tamm, Electrical aerosol spectrometer of Tartu
University, Atmospheric Research 62 (2002) 315-324.

J. Kulon, W. Balachandran, The measurement of bipolar charge on aerosols,
Journal of Electrostatics 51-52 (2001) 552-557.

[30]

[31]

(32]

[33]

(34]

[35]

(36]

(371

(38]

(39]

[40]

615

J. Kulon, S. Hrabar, W. Machowski, W. Balachandran, A bipolar charge
measurement system for aerosol characterization, IEEE Transactions on
Industry Applications 37 (2001) 472-479.

K. Reavell, Fast response classification of fine aerosols with a differential
mobility spectrometer, in: Proceedings of the 13th Annual Conference of the
Aerosol Society, Lancaster, 2002.

G. Biskos, Theoretical and experimental investigation of the differential
mobility spectrometer, Ph.D. thesis, University of Cambridge, UK, 2004.

G. Biskos, K. Reavell, N. Collings, Description and theoretical analysis of
a differential mobility spectrometer, Aerosol Science and Technology 39
(2005) 527-541.

TSI Incorporated, Operation and Service Manual, Revision B, for Engine
Exhaust Particle Sizer™ Spectrometer, Model 3090, Minnesota, 2004.

P. Intra, N. Tippayawong, An electrical mobility spectrometer for aerosol size
distribution measurement, in: International Conference on Technology and
Innovation for Sustainable Development, 25-27 January, Khon Kaen, Thailand,
2006.

P. Intra, Aerosol size measurement system using electrical mobility technique,
Ph.D. thesis, Chiang Mai University, Chiang Mai, Thailand, 2001.

P. Intra, N. Tippayawong, Aerosol size distribution measurement using
multi-channel electrical mobility sensor, Journal of Aerosol Research 21
(2006) 329-340.

P. Intra, N. Tippayawong, Brownian diffusion effect on nanometer aerosol
classification in electrical mobility spectrometer, Korean Journal of Chemical
Engineering 26 (1) (2009) 269-276.

TSI Incorporated, Operation and Service Manual, Revision B, for Electrical
Aerosol Detector™ Spectrometer, Model 3070, Minnesota, 2004.

B.Y.H. Liu, A. Kapadia, Combined field and diffusion charging of aerosol
particles in the continuum regime, Journal of Aerosol Science 9 (1975)
249-264.



MAaNIN 2-4

Intra, P. and Tippayawong, N., “An electrostatic sensor for nanometer-sized aerosol
particles detection”, Journal of the Japan Society of Applied Electromagnetics and

Mechanics, Vol.17, Supplement, pp. s17 — s20, 2009. Y impact factor = 0.0

153



An Electrostatic Sensor for Nanometer-Sized Aerosol Particles Detection
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In this study, an electrostatic sensor was developed for detecting the number concentration of
nanometer-sized aerosol particles. It consists of a size selective inlet, a corona charger, an ion trap, a
Faraday cup, an electrometer, a signal conditioning and processing system, and an I/O control and
human-computer interface. In the present sensor, aerosol flow is regulated and controlled by means of
mass flow meters and controllers with a vacuum pump. An aerosol sample first passes through the size
selective inlet to remove particles outside the measurement size range based on their aerodynamic
diameter, and then pass through the unipolar corona charger that sets a charge on the particles and enter
the ion trap to remove the free ions. After the ion trap, the charged particles then enter the Faraday cup
electrometer for measuring ultra low current about 10" A induced by charged particles collected on the
filter in Faraday cup corresponding to the number concentration of particles. Finally, signal current is then
recorded and processed by a data acquisition system. A detailed description of the operating principle of
the system as well as main components was presented. The performance of the prototype electrometer
circuit used in this work was also evaluated and compared with a commercial electrometer, Keithley

model 6517A, and good agreement was found from the comparison.

Key Words: aerosol, nanoparticle, electrostatic, electrometer, sensor.

1. Introduction

Nanometer-sized aerosol particles, defined as
aerosols with particle diameters less than 0.1 pm,
suspended in air have significant effects on the
human health, global climate, air quality and

processes in various industries such as food,
pharmaceutical and medical, electronic and
semiconductor industries [1]. Detection and

measurement of nanometer-sized aerosol particles
have become an important issue. For this purpose,
nanoparticle sensors were developed to monitoring
indoor and outdoor aerosols for pollution and
process control industry. There are several
commercial instruments using various methods of
detecting particle number concentration. Available
instruments include a SMPS (Scanning Mobility
Particle Sizer) using electrical mobility of particles,
a CPC (Condensation Particle Counter) which uses
particle growth and optical property, an EAD
(Electrical ~ Aerosol  Detector)  which  uses
electrostatic charge measurement technique, and an
ELPI (Electrical Low Pressure Impactor) using
inertia impaction of particles under low pressure [2].

Correspondence: P. Intra, College of Integrated Science
and Technology, Rajamangala University of Technology
Lanna, Chiang Mai 50300, Thailand.

email: panich_intra@yahoo.com

These commercial instruments are widely used for
measuring airborne ultra fine particles and provide
high-resolution measurement, but they are very
expensive and larges sizes. In addition, the CPC
should be carefully moved in caution to protect the
optics contamination from working fluid like alcohol
(C4HoOH) [3]. The movability of instruments should
be considered in monitoring airborne aerosol
particles.

To avoid this problem, an inexpensive sensor was
developed in this study, suitable for detection of
particle number concentration in the nanometer size
range. This sensor is based on unipolar corona
charging and electrostatic detection of highly
charged particles. A detailed description of the
operating principle of the sensor was presented. The
sensor performance also was evaluated and
compared with a commercial instrument.

2. Description of the Sensor

Fig. 1 shows the schematic diagram of the
electrostatic sensor for detecting nanometer-sized
aerosol particles was developed in this study. The
sensor system is composed of a flow system is
regulated and controlled by means of mass flow
controllers with a vacuum pump, a size selective
inlet to remove the particle outside the measurement
range, a particle charger using corona discharge tec-



DC high voltage
power supply

Size selective E

inlet
Aerosol o o o
inlet gl

Trap voltage
power supply

]

o o

B

Electrometer

HEPA filter

m = T o .
Vacuum . J:

Mass flow
Faraday cuy
pump controller v eup

External Computer,
Data Logging

Fig. 1 Schematic diagram of the electrostatic sensor.

hnique, an ion trap to remove the high electrical
mobility of free ions after charger, a Faraday cup to
collect charged particles, an electrometer for
measuring signal current from the Faraday cup, and
a computer controlled data acquisition and
management system.

2.1 Size selective inlet

The inertial impactor was used to remove
particles larger than a known aerodynamic size,
upstream of the system. The aerodynamic particle
size at which the particles are separated is called the
cut-point diameter. In the impactor, the aerosol flow

is accelerated through a nozzle directed at a flat plate.

The impaction plate deflects the flow streamlines to
a 90° bend. Particles with sufficient inertia are
unable to follow the streamlines and impact on the
plate. Smaller particles are able to follow the
streamlines and avoid contact with the plate and exit
the impactor.

2.2 Unipolar corona charger

The particle charger in the present study consists
of a coaxial corona-needle electrode placed along
the axis of a cylindrical tube with tapered ends [4].
The needle electrode is made of a stainless steel rod
3 mm in diameter and 49 mm in length, ended in a
sharp tip. The angle of the needle cone was
approximately 9° and the tip radius was
approximately 50 pm, as estimated under a
microscope. The outer cylindrical is made of
aluminum tube 30 mm in diameter and 25 mm in
length with conical shape. The angle of the cone was
approximately 30° and the orifice diameter was
approximately 4 mm. The distance between the
needle electrode and the cone apex is 2 mm. The
corona electrode head is connected to a DC high

voltage supply, while the outer electrode is grounded.
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Fig. 2 Schematic diagram of the Faraday cup.

An adjustable DC high voltage power supply is used
to maintain the corona voltage difference, typically
of the order of 3.0 kV. The corona discharge
generates ions which move rapidly in the strong
corona discharge field toward the outer electrode
wall. Aerosol flow is directed across the corona
discharge field and is charged by ion-particle
collisions via diffusion charging and field charging
mechanisms.

2.3 Ion trap

The ion trap was used to remove the high
electrical mobility of free ions after the charger. As
the free ions can potentially reach the detector and
ruin the measurement, a trap field is introduced just
after the corona charger. The trap field is across the
aerosol flow and has a 200 V.

2.4 Faraday cup

Fig. 2 shows the schematic diagram of the
Faraday cup used in this study. It consists of an outer
housing, a HEPA (High Efficiency Particulate Air)
filter, a filter holder, and a Teflon insulator. To
completely shield the filter holder collecting the
charged particles, the outer housing is made of a
stainless steel, and filter holder is electrically
isolated from the outer housing with Teflon insulator
stand, while the outer housing is grounded. The
Faraday cup plays a role to prevent electric noise for
measuring ultra-low electric signal current (pA)
from collected charged particles on an internal
HEPA filter inside the Faraday cup corresponding to
the total number concentration of the particles. If the
filter holder is not shielded completely, noise which
is 1000 times of resolutions to be expected. To
transfer charges gathered at the HEPA filter to an
electrometer circuit that is outside the Faraday cup,
BNC connector is connected to HEPA filter.
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Because material of HEPA filter is a conductor such
as glass fiber, charges collected in the filter can
move to the electrometer via the BNC connector and
low noise cable without delay. In the case of existing
aerosol electrometer airflow is curved at 90° while
air is drifted from sampling probe to the filter. It can
become the cause of charge loss. To solve this
problem airflow into Faraday cup is straightened not
to change the direction of the flow and loss the
charge. The particle number concentration, N, is
related to the signal current, 7, at HEPA filter is
given by

1

N =
peQ,

P

(D

where p is the number of elementary charge units, e
is the elementary unit of charge (1.6 x 10™"° C), and
0, is the volumetric aerosol sampling flow rate into
a Faraday cup.

2.5 Sensitive electrometer

A sensitive electrometer is used to measure the
electric signal current, which are typically in the
range 1 to 10 pA, from the Faraday cup. The
schematic presentation of an electrometer circuit
design for aerosol detection system is shown in Fig.
3. This circuit is a simple current-to-voltage
converter, where the voltage drop caused by a
current flowing through a resistor is measured. The
circuit adopted two cascaded negative feedback
amplifiers. The extra component in this circuit is
primarily for fine offset voltage adjustment and
input/output protection. A 12V power supply
capable of providing 100 mA is required. The
feedback capacitor and RC low-pass filter were used
to reduce high-frequency noise and to prevent
oscillations of the amplifier output [5]. In order to
avoid expensive  construction, commercially-

available low-cost monolithic operational amplifiers
were used. The commercially-available operational
amplifiers used in this circuit is the LMC662, which
was designed for low current measurement and
featured ultra-low input bias current (2 fA
maximum) and low offset voltage drift (1.3 uV/°C)
[6]. The output voltage, V,, of this circuit is given by
the following equation:

R, +R, &] ®

|
Rl RS

where /; is the input current, R; and R; are the input
resistors of the first and second amplifiers,
respectively, R, and R; are the feedback resistors of
the first amplifier, and Ry is the feedback resistors of
the second amplifier. This circuit gives an output
voltage of 10 mV per 1 pA of input signal current.

2.6 Data acquisition and processing system

The output voltage of the electrometer circuit in
the range of 0 to +5V was connected to a unipolar
12-bit analog to digital converter (ADC), controlled
by I’C bus from the external personal computer via
RS-232 serial port interface. The digital ADC signal
was processed by computer software, based on
Microsoft Visual Basic programming for all data
processing. The software is able to display the
particle number concentration.

3. Electrometer Calibration and Testing

The electrometer circuit is one of the most
important parts influencing accurate particle number
concentration measurement corresponding to signal
current in the sensor system. In the present paper, a
laboratory test facility was developed and
constructed to evaluate performance of a prototype
electrometer circuit. Fig. 4 shows the experimental
setup used to evaluate the fabricated electrometer
circuit performance. In this study, the electrometer
circuit was calibrated with a current injection circuit,
high-impedance current source [4]. This circuit
consists of an appropriately high-standard resistor
(10 G) and a highly-accurate adjustable voltage
source in the range between 0 to +5 V. The output
current of this circuit can simply be calculated from
the Ohm’s law. The range of the output current is
from 1 pA to 10 pA. It should be noted that the
electrometer circuit input was operated at virtual
ground potential during calibration and subsequent
current measurement. The output voltage from the
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Fig. 4 Schematic diagram of the experimental setup for
the electrometer test.

electrometer circuit was measured and recorded by a
highly-accurate digital voltmeter. The voltage
reading was then translated into the current
measurement.

Fig. 5 provides comparison of measured current
from this work and a commercial electrometer,
Keithley model 6517A, with a high-accuracy current
source. It can be found that the measured current
was rising linearly as input current increased.
Generally, the currents measured from this work
were found to agree very well with those measured
by the Keithley model 6517A. A very small
difference of about 5 % was obtained. It is worthy to
point out that there were some interferences on the
connector at small potentials. Additionally, leakage
of currents through the body of the connector can
potentially impair the performance of the
electrometer significantly. A detailed investigation
of this problem may be improved and experimental
studied further [5].

4. Conclusion and Future Work

The electrostatic sensor for detecting nanometer-
sized aerosol particles developed at Rajamangala
University of Technology Lanna and Chiang Mai
University has been presented and described in this
paper. The detecting method was based on unipolar
corona charging and electrostatic detection of highly
charged particles. It was able to detect particle
number concentration in the nanometer size range. A
prototype of the prototype electrometer circuit has
been constructed, evaluated, and compared against a
commercial electrometer, Keithley model 6517A.
The results obtained were very promising. It was
demonstrated that the electrometer can be used
successfully in detecting the signal current
corresponding the particle number concentration.

Among the various techniques and devices exist
for producing aerosol samples to testing and
calibration of any instrument that measures aerosol
particles. One of the most widely used techniques of

0F | ------ theoretical 0 b
—0— this work y
—O— Keithley 6517A

measured current, pA

input current, pA

Fig. 5 Performance comparison between the prototype
and commercial electrometer.

generating monodisperse aerosol particles is by
using a Tandem DMA method. The main advantage
of this method is the wide range of particle sizes it
can generate. Further research, may involve a
Tandem DMA method. Finally, calibration and
comparison of the instrument with other particle
measuring devices (e.g. SMPS, CPC, EAD, and
ELPI) should be conducted further.
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In this study, the corona-needle ionizer was designed, constructed, and characterized. Experimental
characterizations of the electrostatic discharge in terms of current-voltage relationships of the corona
ionizer, including the effects of discharge electrode cone angle and air flow rate were presented. It was
found that the charging current and ion concentration in the charging zone increased monotonically
with corona voltage. Conversely, discharge currents decreased with increasing angle of the needle cone.
The negative corona was found to have higher current than the positive corona. At higher air flow rates,
the ion current and concentration were found to be relatively high for the same corona voltage. The effect
of air flow rate was more pronounced than the corona voltage. It was also shown that the ion penetration
through the ionizer decreased with increasing corona voltage, and increased with increasing air flow
rate. The highest ion penetration through the ionizer of the 10° needle cone angle was found to be about
93.7 and 7.7% for positive and negative coronas, respectively. The highest ion penetration for the needle
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cone angle of 20° was found to be 96.6 and 6.1% for positive and negative coronas, respectively.
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1. Introduction

Corona discharge is a low-power electrical discharge with non-
thermal ionization that takes place at or near atmospheric pressure
in a region of non-uniform high electric field intensity such as
a sharp metal point held at several kilovolts [1]. The corona
discharge is one of the most common techniques to generate high
number concentration of ions. There have been numerous exten-
sive studies in the past. Corona ionization is widely used in the
semiconductor manufacturing industry to reduce the damage of
sensitive circuit elements by electrostatic discharge, and to reduce
electrostatic enhanced deposition of particulate contaminants on
silicon wafers [2]. Another application of corona ionizers is in
charging of particles in aerosol sizing based on electrical mobility
analysis to impose a known net charge distribution on the particles
because prediction of particle size distribution requires the
knowledge of the charge distribution for every particle sizes [3].

There are several designs of corona ionizer employed and
described in the published literature, both corona-wire and corona-
needle ionizers [4]. A widely used ionizer is a corona-needle
dischargers because of its simplicity and capability to provide high

* Corresponding author.
E-mail addresses: panich_intra@yahoo.com, panich.intra@hotmail.com (P. Intra).

0304-3886/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.elstat.2010.01.008

number concentrations of ions [5]. There have been numerous
studies and developments on the corona-needle ionizer, both ac
and dc sources. Recently, Asano et al. [6] reported the ac ion current
measurement from an alternating corona-needle ionizer using
Faraday cage at the different frequencies and operating pressures. It
is well known that the performance of these corona-needle ionizers
depends on the ion number concentration in the discharge zone of
the ionizer. A well designed corona ionizer should provide high
magnitude of ion number concentration and stability that can be
accurately determined for any given operating conditions. The
magnitude of the ion number concentration in the discharge zone
depends, however, on the ionizer geometry, i.e., the distance
between discharge electrode and the plane or nozzle, and also on
the angle of discharge electrode cone. To our knowledge, the issue
of corona discharge in the needle to nozzle geometry has not been
extensively studied in literature. Most of published papers concern
merely characteristics of corona discharge in wire to cylinder, wire
to plane, and point to plane geometries [4]. Only a few of them
discuss the corona discharge in needle to nozzle [7-11]. The
influence of the discharge electrode cone angle and air flow rate on
electrostatic discharge characteristics of a corona-needle ionizer is
important for corona discharge due to the presence of different
electric field profiles and space-charge effects in the discharge zone
of the ionizer. Therefore, the aim of this paper was to design,
construct, and characterize a unipolar corona-needle ionizer. The

Please cite this article in press as: P. Intra, N. Tippayawong, Effect of needle cone angle and air flow rate on electrostatic discharge characteristics
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results of the experimental characterizations of the electrostatic
discharge in terms of current-voltage relationships of the corona
ionizer on the effects of discharge electrode cone angle and air flow
rate (or residence time) in dc electric field were experimentally
studied and discussed. A detailed description of the operating
principle as well as physical characteristic of the ionizer was also
presented.

2. Materials and methods
2.1. Unipolar corona-needle ionizer

Fig. 1 shows the schematic diagram of the corona-needle ionizer
employed in this study. The ionizer’s geometrical configuration is
similar to the ionizer used by Hernandez-Sierra et al. [8], Alonso
et al. [9], and Intra and Tippayawong [10, 11]. However, differences
between the present ionizer and existing ionizers are air inlet
geometry which was modified to ensure uniform distribution
across the annular entrance to discharge zone. This ionizer consists
essentially of a coaxial needle electrode placed along the axis of
a cylindrical tube with tapered end, and divided into three sections.
The first and second sections (from left to right in the drawing) are
made of Teflon, and the third (outlet section) of stainless steel tube.
The needle electrode is made of a stainless steel rod, 6 mm in
diameter, ending in a sharp tip. The tip radius is about 50 um, as
estimated under a microscope. In this work, experiments have been
performed with the needle cone at two different angles, 10° and
20°, respectively. The diameter of the outer electrode was 30 mm,
its length 15 mm with conical shape. The orifice diameter is about
3.5 mm. The distance between the needle electrode and the cone
apex is 1.75mm. The needle electrode head is connected to
a positive high voltage, while the outer electrode is grounded.

2.2. Electric field inside the ionizer

In this study, a numerical model was developed to investigate
the distribution of electric field in the discharge zone of the ionizer
to give a better understanding on the operating of the ionizer for
both needle cone angle of 10° and 20°, respectively. The Poisson’s
equation for the electric potential can be used:

vy = £ (1)
o

where Vis the applied voltage, p is the space-charge density, and ¢

is the vacuum permittivity (8.854 x 10712 F/m). For the present

ionizer configurations, the resulting Laplace’s equation in the 2-D,

axisymmetric, cylindrical coordinates is given as:

Aerosol
inlet

Corona needle
electrode

Aerosol
> outlet

To high voltage
power supply

Outer electrode

Teflon insulator

Fig. 1. Schematic diagram of the corona-needle ionizer.
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Once the electric potential is obtained, the electric field strength

in the - and z-directions can be calculated by the following
equations:

-0 2)

E = — E, = -9

or’ 0z 3
The Laplace’s equation (Equations (2) and (3)) for electric
potential cannot be solved analytically in this study, especially for
the complex geometry of the present ionizer. Numerical simulation
has to be performed in order to obtain the solutions. The commercial
computational fluid dynamic software package, CFDRC™ is
employed in this study. This software was based on finite volume
method (FVM). With respect to the boundary conditions used,
constant potentials are applied to the corona-needle electrode
(V=corona voltage), the outer electrode (V=0), and the zero
gradient conditions is applied to the boundaries with out walls.

2.3. Experimental system

The schematic diagram of the experimental setup for the elec-
trostatic discharge characterization of the present ionizer is shown
in Fig. 2. Air flow was regulated and controlled by means of a mass
flow controller (Dwyer model GFC-1111) with a vacuum pump,
typically in the range between 1.0 and 8.0 L/min. The air was first
dried with the diffusion dryer, any remaining water was removed,
and then filtered through a high efficiency particulate-free air
(HEPA) filter, Pall HEPA capsule model 12144 with filtration effi-
ciency of 99.97% and retention of 0.3 um for air/gas, to remove any
particles and then enter the ion trap to remove the air ions. A
commercial adjustable DC high voltage power supply (Spellman’s
Bertan model 602C-100P) was used to maintain the positive high
voltage difference in the ionizer, generally in the range between 1.0
and 5.0 kV. The discharge current from the corona-needle electrode
was measured directly with a Keithley 6517A electrometer incor-
porating a Keithley 6522 scanner card. The electrometer is capable of
autoranging and has a 1 fA resolution. The rate of discharging is
proportional to the mean ion number concentration in the discharge
zone. Therefore, the mean number concentration of ions, njy, in the
discharge zone of the ionizer in the absence of aerosol particles can
be estimated from the discharge current using the expression:

o Iin
Mlin = o7 EA

(4)

where [jj is the current deposited on the grounded conical-shaped
wall, e is the elementary charge, Z; is the electrical mobility of the
ions, E is the electric field inside the discharge zone, and A is the
inner surface area of the metallic cone (charger outlet) where the
discharge current is collected. The ion number concentration has
units of ions/m?>.

In this study, the ion current at the ionizer outlet was measured
by filtration method. An air sample was drawn into a shielded
Faraday cup with a HEPA filter through which all the air passed. A
Faraday cup was devised using a stainless steel 47 mm filter holder
in a 70mm diameter stainless steel container. The filter was
equipped with a fine collection metal grid, and was electrically
isolated with Teflon from the container and ground. In the Faraday
cup, the 99.99% of ions were removed from the air stream by the
filter and the resulting ion current flow was measured with
the electrometer. Thus, the total number concentration of ions at
the ionizer outlet, nyy¢, can be calculated from the ion current by the
following equation:
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Fig. 2. Experimental setup for the characterization of the corona-needle ionizer.

Iout
NMout = a

(5)
where Iy is the ion current at the ionizer outlet was measured by
the Faraday cup electrometer, and Q is the volumetric air flow
through the Faraday cup. The ions penetration, P, through the
ionizer is defined as the ratio of the number concentration of ions at
the ionizer outlet over the number concentration of ions in the
discharge zone of the ionizer, and can be estimated from the
relation

NMout
P — 6
n, (6)

As shown in Table 1, several sets of experiments were carried
out at varying corona polarity and voltage, aerosol flow rates, and
angle of the needle electrode cone. For each set of operating
conditions, measurements were repeated at least three times.

3. Results and discussion
3.1. Current-voltage characteristics

Fig. 3 shows the corona discharge current-voltage characteris-
tics of the positive and negative coronas in the discharge zone of

the ionizer at different needle cone angles and operating air flow
rates. The discharge currents were found to increase monotonically

Table 1

Limits of variables investigated.
Variable Range
Corona voltage 0-10 kV
Orifice diameter 3.5 mm
Needle cone angle 10°, 20°

Ion generated Positive ion (+), negative ion (—)
Ionized gas Air

Gas flow rate 3,5, and 8 L/min

Pressure 1 bar

with an increase in the corona voltage, and decrease with
increasing angle of the needle cone. This was due to a weaker
electric field strength in the discharge zone for the more obtuse
needle cone angle (as evident in Fig. 4). This discharge current
increased with the electric field strength, hence applied voltage. At
the same corona voltage, magnitude of the discharge current was
markedly higher for the 10° needle cone angle, compared to cone
angle of 20°. The corona onset voltages were also found to increase
with the increasing angle of the needle cone. For the needle cone
angle of 10°, the onset of positive corona was found to be about
2.4 kV, and negative corona was about 2.0 kV. For the needle cone
angle of 20°, the onset of positive corona was found to be about
2.7 kV, and negative corona was about 2.5 kV. In the case of the
needle cone angle of 10°, the spark-over phenomena occurred for
the positive corona at voltages larger than 4.0 kV and negative
corona at voltages larger than 3.9 kV. In the case of the needle cone
angle of 20°, the spark-over phenomena occurred for the positive
corona at voltages larger than 4.3 kV and negative corona at volt-
ages larger than 4.0 kV. The spark-over phenomena were observed
to release higher charging currents, but it was undesirable because
it interfered with the detector circuitry. Above these values, the
current was found to exhibit a fluctuation in an uncontrollable
manner and no measurement could be made. For both cases, the
currents for negative ions were slightly higher than those positive
ions. This was expected because negative ions have higher elec-
trical mobility than positive ions (Zf =115x10"4m?Vs,
Zi =1.425 x 1074 m?/V s, based on the work of Reischl et al. [12]).
Thus, it was more likely to impact and deposit on the outer elec-
trode wall of the ionizer due to the electrostatic force. For a given
needle cone angle, the discharge current was also increased with
the air flow rate, hence space-charge effect.

3.2. lon current at the ionizer outlet

Variation in ion currents of the positive and negative ions at the
ionizer outlet with corona voltage at different needle cone angles
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Fig. 3. Current-voltage characteristics in the charging zone of the ionizer, (a) positive
ion, (b) negative ion.

and operating air flow rates is shown in Fig. 5. The resultant ion
currents at the ionizer outlet of both positive and negative coronas
were evaluated for 10° and 20°, 3.0, 5.0, and 8.0 L/min, and 1.0-
5.0 kV. As seen in Fig. 5, the positive corona onset (i.e. positive ion
generation) of the 10° needle cone angle appeared to occur at about
2.3, 2.4, and 2.5kV for air flow rates of 3.0, 5.0, and 8.0 L/min,
respectively, while the negative corona onset was observed at
about 2.3, 2.2, and 2.3 kV for 3.0, 5.0 and 8.0 L/min, respectively.
The positive corona onset of the 20° needle cone angle appeared to
occur at about 2.8, 2.9, and 2.8 kV for 3.0, 5.0, and 8.0 L/min,
respectively, while the negative corona onset was observed at
about 2.8, 2.9, and 2.8 kV for air flow rates of 3.0, 5.0 and 8.0 L/min,
respectively. For corona voltages less than 2.0 kV, the ion current
was relatively low. In this range, corona discharge did not occur. For
the air flow effect, the results showed that increase in air flow rate
resulted in an increase of the ion current at a fixed corona voltage.
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Fig. 4. Distributions of electric field strength inside the ionizer, (a) needle cone angle
of 10°, (b) needle cone angle of 20°.

In both needle cone angles, the positive ion current was found to
depend only on corona voltage within a narrow interval. At larger
voltages, positive ion currents practically become constant, inde-
pendent of the corona voltage. Meanwhile, negative ion currents
increased slightly with increasing corona voltage. This may be
explained by the fact that higher degree of ion loss was inevitable
when a great number of ions were densely populated. It was
evident that when the applied voltage increased, the discharge
current and electric field strength in the discharge zone were found
to increase. Many more ions have tendency to be electrostatically
lost in the discharge zone of the ionizer. The ion loss inside the
ionizer due to electrostatic loss is defined as the ratio of the ion
number concentration at the ionizer outlet over the number
concentration of ions inside the ionizer. At the same corona voltage,
magnitude of the ion current was slightly higher for the needle
cone angle of 10°, compared to cone angle of 20°. It was also found
that the ion current at the ionizer outlet for positive corona was
slightly higher than for negative corona, presumably because
negative ions, having higher electrical mobility, are electrostatically
lost within the ionizer to a higher extent.

3.3. lon number concentration and penetration

Fig. 6 shows the variation in ion number concentration with
corona voltage in the discharge zone of the ionizer at different
needle cone angles and air flow rates. The ion number concentra-
tion in the discharge zone was calculated based on measurements
and the method presented in Section 2.2. The number concentra-
tion of ions was approximately proportional to the discharge
current. As seen in the plot, the ion number concentration in the
discharge zone increased with increasing corona voltage. According
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Fig. 5. Variation in ion current with corona voltage at the ionizer outlet, (a) positive
ion, (b) negative ion.

to the discharge currents, the ion number concentration in the
discharge zone was found to decrease with increasing angle of the
needle cone. The ion concentrations from the 10° needle cone angle
were 1.5 times larger than those from the 20° needle cone angle. It
is commonly known that the number concentration of negative ion
is generally larger than positive ion, in a range well above corona
onset.

The plots of the ion number concentration at the ionizer outlet
as a function of the corona voltage at different needle cone angles
and air flow rates are shown in Fig. 7. For the needle cone angle of
10°, the highest ion current in the Faraday cup was found to be
about 6.4 x1071°, and 6.29 x 1071° A, corresponding to the ion
number concentration of about 2.98 x 103, and 2.93 x 10'3 ions/m>
occurring at the corona voltage of 2.9, and 3.7 kV for positive and
negative coronas, and air flow rate at 8.0 L/min, respectively. For the
needle cone angle of 20°, the highest ion current in the Faraday cup
was found to be about 6.25x107'°, and 6.69 x 10" 10A,
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Fig. 6. Variation in ion number concentration with corona voltage in the charging zone
of the ionizer, (a) positive ion, (b) negative ion.

corresponding to the ion number concentration of about
2.92 x 10'3, and 3.1 x 10" jons/m? occurring at the corona voltage
of 3.4, and 3.9 kV for positive and negative coronas, and air flow
rate at 8.0 L/min, respectively. Conversely, the discharge current of
10° needle cone angle under the same conditions was about
41x107%, and 9.82 x 107> A, corresponding to the ion number
concentration in the discharge zone of about 8.99 x 10'3, and
1.688 x 10" jons/m> for positive and negative coronas, respec-
tively. Meanwhile, the discharge current for the 20° needle cone
angle was about 5.7 x 106, and 1.06 x 10~ A, corresponding to the
ion number concentration in the discharge zone of about
1.07 x 10™, and 1.73 x 10 ions/m> for positive and negative
coronas, respectively.
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Fig. 7. Variation in ion number concentration with corona voltage at the ionizer outlet,
(a) positive ion, (b) negative ion.

Fig. 8 shows variation of ion penetration with corona voltage at
needle cone angles of 10° and 20° and different operating flow rates
for positive and negative coronas. It can be seen that after corona
onset of both cases, the ion penetration gradually decreased with
increasing corona voltage as a function of the electric field strength
inside the ionizer. This was expected. When the corona voltage
increased, the discharge current and the electric field strength in
the discharge zone were found to increase, hence, more ions loss
due to electrostatic deposition on the inner surface of the outer
electrode inside the ionizer. When the air flow rate increased, the
ion penetration through the ionizer was found to slightly increase.
This is because the ions can be transported from the charger more
easily by faster flowing air. Due to high electrical mobility of
negative ion, the penetration of positive ions was found to be
higher than negative ions for both needle cone angles. As it can be
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Fig. 8. Variation of ion penetration with corona voltage at different needle cone angles
and operating flow rates, (a) positive ion, (b) negative ion.

seen from Fig. 8, the highest ion penetration through the ionizer of
the needle cone angle of 10° was found to be about 93.7%, and 7.7%
for positive and negative coronas, respectively. Meanwhile, the
highest ion penetration for the needle cone angle of 20° was found
to be about 96.6%, and 6.1% for positive and negative coronas,
respectively.

4. Concluding remarks

Electrostatic discharge characteristics of corona-needle ionizer
were investigated and presented in this work. Discharge current,
ion number concentration, and ion penetration as a function of
corona voltage, aerosol flow rate, and needle cone angle were
evaluated. The results showed that the discharge current and ion
concentration in the charging zone increased with increasing
corona voltage. Conversely, discharge currents decreased with
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increasing angle of the needle cone. The negative corona was found
to have higher current than the positive corona. At higher air flow
rate, the ion current and concentration were found to be relatively
high for a fixed corona voltage. The effect of air flow rate was more
significant than that of corona voltage. It was also shown that the
ion penetration through the ionizer decreased with increasing
corona voltage, and increased with increasing air flow rate. The
highest ion penetration through the ionizer of the 10° needle cone
angle was found to be about 93.7%, and 7.7% for positive and
negative coronas, respectively. Meanwhile, the highest ion pene-
tration for the 20° needle cone angle was found to be about 96.6%,
and 6.1% for positive and negative coronas, respectively.
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Abstract — In this study, an aerosol electrometer system for measuring ion and aerosol charge using electrostatic
detection technique was developed and presented. It consists of a size selective inlet, a particle charger, an ion
trap, a Faraday cup, an electrometer, and a data acquisition and processing system. In this system, an aerosol
sample first passes through the size selective inlet to remove particles outside the measurement size range based
on their aerodynamic diameter, and then pass through the unipolar corona charger that sets a charge on the
particles and enter the ion trap to remove the free ions. After the ion trap, the charged particles then enter the
Faraday cup electrometer for measuring ultra low current about 1 pA induced by ion and aerosol charge
collected on the filter in Faraday cup corresponding to the number concentration of ion and aerosol. Signal
current is then recorded and processed by a data acquisition system. A detailed description of the operating
principle of the system as well as main components was presented. Performance of the prototype aerosol
electrometer circuit used in this work was evaluated and compared with a commercial electrometer, Keithley
model 6517A. Good agreement was found from the comparison. Finally, experimental testing results of ion and

aerosol charge measurements were shown and discussed.

Keywords: Aerosol, lon, Faraday cup, Electrometer
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INTRODUCTION

Detection and measurement of ion and aerosol charges have become an important topic in atmospheric
pollution monitoring and source characterization. In recent years, considerable interest has been shown to
submicron-sized aerosol particles, defined as aerosols with diameter less than 1 pm, for two main reasons. First,
such particles have been associated with adverse health effects in areas of high concentrations, and second,
aerosols are believed to have a significant influence on atmospheric quality, climate at a local and global scale
and processes in various industries such as food, pharmaceutical and medical, electronic and semiconductor
industries [1]. Ion and aerosol charge detectors have been developed to monitor indoor and outdoor aerosols for
pollution and process control industry for this purpose. A widely used instrument capable of detecting ion and
aerosol charge is an electrical aerosol detector (EAD). A typical EAD consists of two key components: one for
aerosol charging, and the other for measurement of the current or charges on charged aerosols with an
electrometer. Readout of an EAD depends strongly on the charging technique used. There have been numerous
studies and developments on the EAD. Recent developments were reviewed by Intra and Tippayawong [2].
Many previous studies concern about nanoparticle number and surface area concentration measurement [3 — 5],
ambient ion and aerosol charge measurement [6 — 7], aerosol integral parameter measurement [8], and
nanoparticle size distribution measurement [9]. Available commercial instruments designed to measure net
charge on aerosol particles is the TSI Model 3070A Electrical Aerosol Detector [10]. An alternative instrument
that can also be used to detect aerosol particles is a condensation particle counter (CPC) which uses particle
growth and optical property [11 — 12]. These commercial instruments are widely used for detecting airborne
ultra fine particles and provide high-resolution measurement, but they are very expensive and large in size. A
CPC does not operate in ambient temperatures outside the control range of 10 to 34°C, and the pump and flow
sensor of the CPC cannot control the flow when the pressure at the acrosol inlet, the make up air inlet, or the
pump exhaust is too high or too low. The CPC must be carefully moved in caution to protect the optics from
contamination with working fluid like alcohol. In addition, the CPC have a size dependent counting efficiency,
with low detection efficiency for particle size less than ~30 nm [12].

The movability of instruments should be considered in monitoring ion and airborne aerosol particles. To
avoid this problem, an inexpensive detector, suitable for detection of ion and aerosol number concentrations, was
developed and experimentally tested in this study. This system is based on unipolar corona charging and
electrostatic detection of highly charges. A detailed description of the operating principle of the sensor was

presented. The performance of the prototype electrometer circuit used in this work as well as the preliminary
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experimental testing results of ion and aerosol charge were also introduced and discussed.

AEROSOL ELECTROMETER SYSTEM

Fig. 1 shows the schematic diagram of the aerosol electrometer system, developed in this study. The
system is composed of a size selective inlet, a particle charger, an ion trap, a Faraday cup, an electrometer
circuit, and a data acquisition and management system. In this study, a flow system is regulated and controlled
by means of mass flow controllers with a vacuum pump. Sampled aerosols are first passed through a size
selective inlet to remove particles with diameter larger than 1.0 um. Sampled aerosol are then directly introduced
into the particle corona charger to charge the particles. Charged particles exiting from the charger are passed
through an ion trap, with the voltage set at 150V to remove excess ions. The electrical charges carried by
particles are measured in a Faraday cup electrometer downstream of the ion trap. The readout of the system has
shown a relationship between the time and the number concentration of particles by a data acquisition and
processing system. The following paragraphs give a detailed description of main components of the aerosol

electrometer system.

1. Size Selective Inlet

In this study, the inertial impactor was used to remove the particle outside the measurement range, 1.0
um, based on their aerodynamic diameter upstream of the system. The design of this impactor is based on the
inertial impactor configuration of Intra [13]. It consists of an acceleration nozzle and an impaction plate. The
acceleration nozzle in the diameter of 1 mm and the impaction plate are made of a stainless steel. The distance
between the acceleration nozzle and the impaction plate was 1 mm. In the impactor, the acrosol flow is
accelerated through an acceleration nozzle directed at an impaction plate. The impaction plate deflects the flow
streamlines to a 90° bend. The particles larger than the cut-off diameter of the impactor impact on the impaction
plate while the smaller particles follow the streamlines and avoid contact to the impaction plate and exit the

impactor.

2. Particle Charger
The corona-needle charger used in the present study consists of a coaxial corona-needle electrode
placed along the axis of a cylindrical tube with tapered ends [14]. The needle electrode is made of a stainless

steel rod 3 mm in diameter and 49 mm length, ended in a sharp tip. The angle of the needle cone was about 9°
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and the tip radius was about 50 pm, estimated under a microscope. The outer cylindrical is made of stainless
steel tube 30 mm in diameter and 25 mm length with conical shape. The angle of the cone was about 30° and the
orifice diameter was about 4 mm. The distance between the needle electrode and the cone apex is 2 mm. The
corona electrode head is connected to a DC high voltage supply, while the outer electrode is grounded. An
adjustable DC high voltage power supply module, a Bertan model PMT-50CP, is used to maintain the corona
voltage difference, typically of 3.5 kV. The output voltage of the Bertan model PMT-50CP was controlled by the
ADAM-4024 analog output module. The corona discharge generates ions which move rapidly in the strong
corona discharge field toward the outer electrode wall. Aerosol flow is directed across the corona discharge field

and is charged by ion-particle collisions via diffusion charging and field charging mechanisms.

3.lon Trap

In this study, the ion trap was used to remove the high electrical mobility of free ions after the charger.
As the free ions can potentially reach the detector and ruin the measurement, a trap field is introduced just after
the corona charger. lon trap has a geometrical configuration similar to the unipolar corona-wire charger and the
wire-cylinder electrostatic precipitator [15]. It consists of a coaxial wire electrode placed along the axis of a
metallic cylinder tube. The outer electrode is made of stainless steel tube 28 mm in diameter and 15 mm in
length. The wire electrode is made of stainless steel wire 300 um in diameter and 15 mm in length. DC voltage
supply module, a Bertan model PMT-05CP, was applied to the wire electrode, typically of 150 V, while the
outer metallic electrode is grounded. The output voltage of the Bertan model PMT-05CP was controlled by the
ADAM-4024 analog output module. The most important topic while operating the ion precipitator is about
setting a proper voltage to deposit the ions. This voltage will ensure that all ions can be removed but most

charged particles are not influenced.

4. Faraday Cup

Fig. 2 shows schematic diagram of the Faraday cup. This device is basically an open-ended Faraday cup
with a filter to collect the charges. It consists of an external case, a filter holder, HEPA (high efficiency
particulate air) filter, and BNC connector. To completely shield the filter collecting the charged particles,
external case is made of a stainless steel, and filter is electrically isolated from the external case with Teflon
stand. In the filter holder, the filter was placed on the top of a rigid stainless-steel net. The Faraday cup plays a

role to prevent electric noise to measure very low current caused by charges, which are collected by an internal
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filter. If the object of measurement is not shielded completely, noise which is 1000 times of resolutions to be
expected. To transfer charges gathered at the filter to an electrometer that is outside the faraday cage, BNC
connector is connected to filter holder. Because material of filter holder is conductor, charges collected in the
filter can move to the electrometer through the low noise cable and BNC connector without delay. In the case of
existing aerosol electrometer airflow is curved at 90 degrees while air is drifted from sampling probe to the filter.
It can become the cause of charge loss. To solve this problem airflow into faraday cage is straightened in such a
way that the change in direction of the flow and loss the charge do not occur. Thus, the signal current, /,, of

collected charges on the filter in the Faraday cup can be calculated by [14]

I,=NeQ (1)

where N; is the total ion number concentration, e is the elementary unit of charge (1.6 x 10" C), and Q is the
volumetric air flow rate into a Faraday cup. In the case of aerosol charge, the signal current equation, /,, has to

be rewritten as [16]:

I,=n,d,)N eQ )

where N, is the total particle number concentration, and n, is the mean charge level of aerosol particles as a

function of particle diameter.

5. Electrometer Circuit

The schematic diagram of an electrometer circuit design for the system is shown in Fig. 3. This circuit
is a simple current-to-voltage converter, where the voltage drop caused by a current flowing through a resistor is
measured. The circuit adopted two cascaded negative feedback amplifiers. Extra component in this circuit is
primarily for fine offset voltage adjustment and input/output protection. A 12V power supply capable of
providing 100 mA is required. The feedback capacitor and RC low-pass filter were used to reduce high-
frequency noise and to prevent oscillations of the amplifier output [16]. In order to avoid expensive construction,
commercially-available low-cost monolithic operational amplifiers were used. The commercially-available
operational amplifiers used in this circuit is the LMC662, which was designed for low current measurement and

featured ultra-low input bias current (2 fA maximum) and low offset voltage drift (1.3 uV/°C) [17]. The zero
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offsets are temperature-dependent, and therefore the electrometers are temperature-stabilized to about 32°C,
eliminating offset drift. This circuit gives an output voltage of 20 mV per 1 pA of input signal current. The
electrometer circuit was calibrated with a current injection circuit, high-impedance current source [16]. It
consists of an appropriately high standard resistor (10 GQQ) and an adjustable voltage source in the range between
0 — 5 V. The output current of this circuit can simply be calculated from the Ohm’s law. The range of the output
current is from 1 pA to 10 pA. It should be noted that the electrometer circuit input was operated at virtual
ground potential during calibration and subsequent current measurement. The output voltage from the
electrometer circuit was measured and recorded by a highly accurate digital voltmeter. The voltage reading was
then translated into the current measurement as shown in Table 1. The ratio and standard deviation of measured
current from this work and a commercial electrometer, Keithley model 6517A, with high-accuracy current
source is shown in Fig. 4. It was found that the measured current ratio was found in the range of 1.00 — 1.40
corresponding to the standard deviation in the range of 1.018 — 1.048. As shown in Fig. 4, the measured current
ratio and the standard deviation of this work was increased when input current smaller than 5 pA. Generally, the
currents measured from this work were found to agree very well with those measured by the Keithley model

6517A. Very small difference (<5%) was obtained.

6. Data Acquisition and Processing System

The output signal from the electrometer circuit is in the range of 0 to +10V. It is then sent to the
ADAM-4017 analog input module, which is a 16-bit, 8 channel analog input module, controlled and data
sampled by an external personal computer via RS-485 to USB converter interface. Software running on an
external computer was developed, based on Microsoft Visual Basic programming for all data processing. The

software is able to display the ion current and number concentration with a time response of approximately 1 s.

PERFORMANCE EVALUATION

In the case of ion measurement, high number concentration of ions was generated by corona discharge
with corona-needle charger, typically larger than 3 x 10'? ions/m’. An air sample was first dried with the dryer.
Thus, any remaining water was removed. Dried air sample was filtered through a HEPA filter, and was then
drawn into the charger. In the case of aerosol charge measurement, the schematic diagram of the experimental
setup is shown in Fig. 5. It consists of a combustion aerosol generator (CAG), a dryer, a dilution chamber, a

HEPA filter, and a vacuum pump. The CAG was used to generate polydisperse, carbonaceous diffusion flame
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aerosols for this experiment [18]. The particle size distribution of polydisperse aerosols obtained by the electrical
mobility spectrometer (EMS) was in the range between approximately 50 nm to 500 nm with particle number
concentrations of approximately 10" — 10'? particles/m’ [19]. Fig. 6 shows typical particle size distribution from
the CAG with the geometric mean diameter of 208 nm and the geometric standard deviation of 1.084. During the
measurement, the vacuum pump was switched on and the aerosol sample was sucked into the system using an
isokinetic sampling system. The aerosol particles were first dried with the dryer. Before aerosol particles
entering the system, the particles were diluted and mixed with clean air, which had been filtered through a HEPA
filter, in the mixing chamber. The system was operated at aerosol flow rate in the range of 5.0 — 15.0 L/min. To
reduce errors due to time variations in the aerosol concentrations, repeat measurements were commenced at least
5 min after the introduction of the aerosol into the measurement system.

Fig. 7 shows time variation of ion number concentration and signal current from the Faraday cup
electrometer. The system was operated at charger voltage of 3.5 kV, ion trap voltage of 150 V, air flow rate of 10
L/min, and operating pressure of 1 atm. In the case of the charger and ion trap voltages were off, there was no
ion. Measured signal current from Faraday cup was 0 pA. The number concentration of ions was calculated from
measured signal current by the Equation 1. It was shown that ion number concentration was found to be about
1.6 x 10" ions/m’, corresponding to measured signal current of about 47 pA when the charger voltage was on,
and the ion trap voltage was off. On the other hand, when both charger and ion trap voltages were on, most ions
were removed inside the ion trap. For the effect of air flow rate, variation of measured ion current from Faraday
cup electrometer with air flow rates is shown in Fig. 8. Three different operating conditions of the aerosol flow
rates were tested. Variation of flow rate was carried out by adjusting the outlet mass flow controller in the range
between 5.0 — 15.0 L/min. Ion current was found to be in the range of approximately 22 — 68 pA, corresponding
to the ion number concentration of about 1.5 x 10 jons/m’. It was also shown that increasing the flow rate
resulted in the increase in ion current. This may be attributed to the fact that the ion current was proportional to
the air flow rate. At higher flow rates, ion current was relatively high.

In the case of aerosol charge measurement, Fig. 9 shows variation of measured particle current with
aerosol flow rates. Signal current was measured to be in the range of about 75 — 225 pA, corresponding to the
mean particle number concentration of approximately 9.5 x 10" particles/m’. It was found that an increase in the
acrosol flow rate resulted in an increase in measured signal current. This was because the signal current was
approximately proportional to the aerosol flow rate. The larger aerosol flow rates led to more collected charged

particles, giving rise to a larger induced current. In addition, high particle number concentration may lead to



Korean J. Chem. Eng.

large signal current due to that the fact that more particles had chances to be collected in this situation. Time

variation of measured particle number concentration and signal current from the Faraday cup electrometer at

aerosol flow rate of 10.0 L/min were also shown in Fig. 9.

ADVANTAGES AND LIMITATIONS

1. Advantages

The system was simple, low cost, efficient and reliable to detect ion and aerosol charge. Overall
dimensions and weight were such that it was easy to handle and move around.

Rather than diffusion charging, the instrument employed unipolar corona discharge (diffusion and
field) charging method.

The system was capable of measuring both ion and aerosol charge. Collected aerosol particles in
the filter can be also further analysis for physical and chemical properties e.g. electron microscopy,

Or mass spectrometry.

2. Limitations

The detection limit is more pronounced for smaller particles because they carry less charge, and it
is lower for slower sampling rates where the longer averaging time reduces the noise.

The time response depends on two factors; the fluid time response and the electrical time response.
For the fluid time response, simple improvement may be done by using high sample flow rate
inside the system. For the electrical time response, sensitivity of the Faraday cup electrometer
depends on the electrometer circuit sensitivity.

Use of electrometer in the system limits the sensitivity of the instrument when detecting samples

with low concentrations. This sensitivity was limited by signal to noise ratio.

CONCLUSIONS

The simple system for measuring ion and aerosol charge with a Faraday cup electrometer has been

developed and evaluated in this paper. The detecting method was based on unipolar corona-needle charging and

electrostatic detection of highly charges. The performance of the prototype acrosol electrometer circuit used in

this work was evaluated and compared with a commercial electrometer, Keithley model 6517A, and good

agreement was found from the comparison. Experimental evaluation of the system was also carried out by the
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corona discharge charger and the combustion aerosol. Experimental testing results of ion and aerosol charge

measurements obtained were very promising. It was demonstrated that the system can be used in detecting the

number concentration of ion and aerosol charge of approximately 0 to 2 x 10'> per m’, corresponding to signal

current of approximately 0 — 250 pA with a time resolution of less than 1 s.
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Table 1. Measured signal current from the electrometer circuit.

Input current Minimum current Maximum current Average current Standard deviation
(pA) (PA) (PA) (pA)
0 -0.136 0.500 0.174 1.031
1 0.801 1.392 1.133 1.048
2 1.626 1.923 1.756 1.026
3 2.304 2.699 2.455 1.030
4 3.324 3.608 3.453 1.018
5 4.600 5.180 4.852 1.039
6 5.584 5.870 5.748 1.027
7 6.587 6.874 6.723 1.026
8 7.523 7.769 7.648 1.024
9 8.411 8.625 8.523 1.018
10 9.655 9.909 9.786 1.027
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Abstract

Electrostatic precipitation technique is adopted to remove excess ions mixing with the charged
particles prior to charged particle collection in an electrical mobility analyzer. In this paper, the ion
precipitator for the electrical mobility spectrometer was designed, constructed, and evaluated. An
analytical model was developed to investigate ion transport inside the ion precipitator in this study.
Experimental investigations were carried out for positive ions, positively applied voltage at the wire
electrode between 10 and 150 V, ion flow rate of 5 and 15 L/min, operating pressure of 1 atm and
radial distance of the inlet between 0.15 and 14 mm at a fixed separation between wire and outer
electrodes. It was found from the calculations that higher applied wire electrode voltage caused ions to
deposit closer to the entrance. Conversely, faster flow rate forced ions to impact the wall further
downstream. All charged particles of 10 nm in diameter can pass through the ion precipitator smoothly
without precipitated at the outer electrode. Collection efficiency of the ion precipitator was found to
increase to about 99% at the ion trap voltage larger than 100 V for all ion flow rates. The experimental
data was compared against theoretical prediction. It was found that the experimental data were in a

good agreement with the Deutsch-Anderson model.

Keywords: ion trap, electrostatic precipitator, electrical mobility, spectrometer
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1. Introduction

Fine aerosols are generally referred to airborne particles of diameter in submicron or
nanometer size range. Measurement and characterization of these particles is very important in
understanding and controlling their dynamics. The most efficient and widely used technique suitable
for measuring these submicron particles is essentially electrical mobility determination. Many
electrical mobility determination instruments have been developed and used widely [1]. Charging is
the basis of these instruments in which a known net charge distribution is imposed on to the particles.
High ion concentrations are usually generated to ensure high charging efficiency. An aerosol charger
is always positioned upstream of an electrical mobility analyzer, with an ion trap to remove excess
ions. The aim of the ion trap for the electrical mobility analyzer was to remove the high electrical
mobility of the excess free ions mixing with the charged particles prior to charged particle collection
[2], as the free ions can potentially reach the detector and contaminate the signal current to be
measured.

It is well known that electrostatic precipitators (ESP) are widely used for removing particles
from gas streams in various industrial processes and room air-conditioning system [3 — 5]. Typically,
it consists of a discharge electrode placed along the axis of the collecting electrode. A DC high
electrical voltage is applied to the discharge electrode, while the collecting electrode is grounded. The
high voltage produces an electric field and a flow of electric charges (ions) from discharge electrode to
the collecting electrode. Dirty gas containing particulate pollutants is introduced into ESP. The
particulates are bombarded by monopolar ions from the discharge electrode and are strongly charged;
they are driven by electrostatic force toward the collecting electrode and are deposited in its inner
surface. In this way the outgoing gas flow would become particle-free. Although ESPs are initially
designed to precipitate particles, they are also suitable for depositing ions under certain conditions.
This is because ions are, just like the charged particles, carrying charges. Therefore they can be
precipitated with an electric field. The key in adopting an ESP into an ion precipitator lies in applying
a proper voltage to the ESP such that only ions are precipitated while charged particles can pass
through smoothly. There have been numerous studies and developments on the wire-cylinder-type

ESP as the particle charger in a number of electrical mobility analyzers [6]. To our knowledge, the
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issue of design and performance evaluation of the ion trap has not been extensively studied and
reported in the literature [7 — 11].

In the present study, a simple and efficient electrostatic precipitator was developed as an ion
trap for an electrical mobility spectrometer. Analytical investigation of the design was carried out to
predict the ion trajectory inside the ion precipitator. Experimental evaluation of the ion precipitator
performance was carried out for positive ions, positively applied voltage at the wire electrode between
10 to 150 V, total flow rate of 5 to 15 L/min, operating pressure of 1 atm and radial distance of the
inlet between 0.15 to 14 mm at a fixed separation between wire and outer electrodes. A detailed

description of the ion precipitator design was also presented in this paper.

2. Design of the lon Precipitator
2.1 Description

A schematic diagram of the ion precipitator used in this study is shown in Fig. 1. It has a
geometrical configuration similar to the unipolar corona-wire charger and the wire-cylinder ESP. It
consists of a coaxial wire electrode placed along the axis of a metallic cylinder tube. The outer
electrode is made of aluminum tube 28 mm in diameter and 15 mm in length. The wire electrode is
made of stainless steel wire 300 um in diameter and 15 mm in length. DC voltage supply was applied
to the wire electrode, typically in the range between 10 — 150 V, while the outer metallic electrode is
grounded. The most important topic while operating the ion precipitator is setting a proper voltage to
deposit the ions. This voltage will ensure that all ions can be removed but most charged particles are

not influenced.

2.2 lons transport

The transportation of ions and charged particles inside the electrostatic precipitator and the
differential mobility analyzer have been studied and presented in the published literature [11 — 15]. As
shown in Fig. 2, the axial motion of ion was influenced by the fluid velocity profile in the axial flow.
The radial motion of ion is due to electric force which is by far greater than other forces. When the

ions introduced into the ion precipitator, any ions under the influence of an electric field will have an
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electrical mobility. It is assumed that the flow and electric fields are axisymmetric and steady, the flow
in the precipitator is laminar, fully developed and incompressible, the space charge effect is negligible,
and Brownian diffusion effects are negligible. For the particular case of annular geometries where the
ions enters the precipitator on an axial flow and the ions migrate along the radial direction of electric
field, motion of the ions within the precipitator can be described by the system of differential

equations as [12]

dr
—=u +ZE 1
ar T (D
dz
—=u +7ZE 2
P ()

where 7 and z are the radial and axial dimensions of the classifier, u, and u. are the radial and axial
components of the air flow velocity. Similarly, £, and E, are the radial and axial components of the
electric field and Z; is the electrical mobility of ions, which is a complicated function of the gas
density, electric field strength, and the constituent species of the gas. Based on the work of Reischl et

al. [17], the average value for the positive ion electrical mobility at atmospheric pressure was Z, =

1.425 x 10" m*/V s. Typically, ions and charged particles have quite different electrical mobility in
magnitude, electrical mobility of ions is in general much higher than that of particles. When a uniform
electric field is established between the two electrodes of the precipitator, the electric field

components are given by the following relations: £, =V /rIn(r, /r;) and E, ~0 where r; and r, are the

radii of the wire and outer electrodes, respectively. Assuming that the radial velocity component for a

laminar annular flow is zero (#, = 0) and combining the above equations, the ions trajectories can be

described by
dr ZV
e M 3
dt  rin(n/n) ©)
E_w @
Using Equations (3) and (4), the trajectory of the ions is given by
dr zV
: 6))

d ru (r)n(r, /1)
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where:

u.(ry=ar’ +bIn(r)+c, (6)
a :i% (7
el
¢ =ﬁ%[f<rz/rz)ln(n)—nz} ©)

dp/dz denotes the constant pressure gradient is given by the following equations

d_ pUS (10)
&z 2D,

where:
Dh=2r2(l—(r1/r2)), (11)

:ﬁ l+(rl/r2)2 . 1+(r1/r2)

Re (1—(;’1/;’2))2 (1—(;’1/r2))1n(r1/r2)

f ; (12)

Re=2r2(1—(rl/r2))ljp’ (13)

7

Dy, is the hydraulic diameter for an annular flow area, fis the friction factor, U is the mean axial flow

velocity, p is the gas density and Re is the Reynolds number in the annular flow. Substituting

Equation (6) into Equation (5) and Integrating Equation (5), the migration paths of the ions can be

determined as

b ¢ vz
J.ar3+bln(r2)+crdr:.|. 42

—l 14
s oln(rz/rl) (14

where 7y, is the radial position at which the ions enters the precipitator. Therefore, the ions entering the
precipitator at a radial position of r;, has trajectory taking it to an axial position of z, which can be

obtained as

Z:_g(’;'n)ln(r2/ri) (15)
4z,
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in

(16)
=2br In(r, )+ 2cr) —2cr;

ar, —ar, +br. —br; +2br; ln(rz)J

g(rm)=[

2.3 lon trapping efficiency
Removal or trapping efficiency is defined as the ratio of the difference between inlet and
outlet concentrations to the inlet concentration. Assuming uniform ion distribution across the

cylindrical tube, the ion removal efficiency of the precipitator,r, can be estimated by Deutsch-

Anderson equation as [18]

. zl_exp[_z’”’zQﬂj (17)

where L is the length of the outer electrode of the precipitator, and @, is the ion flow rate. Therefore,
the number concentration of ions, N,, at the outlet of the precipitator is given by
N, =Ny, =Ny (18)

where N, is the number concentration of ions at the inlet of the precipitator

3. Experimental Setup

The schematic diagram of the experimental system for performance evaluation of ion
precipitator is shown in Fig. 3. It consists of an ion generator, a DC high voltage power supply, a
Faraday cup, an electrometer, and a flow system. In this study, high number concentration of ions was
generated by corona discharge with the corona-needle generator [19], typically larger than 3 x 10"
ions/m’. In our experiments, the ion precipitator is connected directly to the ion generator outlet via a
very short connecting pipe. The air flow was regulated and controlled by means of a mass flow meter
and controller (a Dwyer model GFC-1111) with a vacuum pump, typically in the range between 5.0 —
15.0 L/min. A commercial adjustable DC high voltage power supply, a Bertan model PMT-50CP, was
used to maintain the positive corona voltages difference in the charger, generally 3.5 kV. An air
sample was first dried with the dryer. Thus, any remaining water was removed. Dried air sample was

filtered through a high efficiency particulate-free air (HEPA) filter (Pall HEPA capsule model 12144
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with filtration efficiency of 99.97 % and retention of 0.3 um for air/gas), and was then drawn into the
charger. The ions produced inside the charger are then entered the ion precipitator. A commercial
adjustable DC high voltage power supply, a Bertan model PMT-05CP, was used to maintain the
positive trap voltages difference in the precipitator, generally in the range between 10 — 150 V. After
the precipitator, ions were then entered the Faraday cup. In the Faraday cup, the ions were removed
from the air stream by the filter and the resulting ion current flow was measured with the Keithley
6517A electrometer. It should be noted that the ion current was measured by the electrometer
corresponding to the ion number concentration at the charger outlet. The ion current measurements
were translated into ion number concentrations given the total air flow rate through the charger. Thus,
the total number concentration of the ion at the charger outlet, N;, can be calculated from the

expression [20]

N =— (19)

where 7, is the ion current at the charger outlet, and e is the elementary charge (1.6 x 107 C).

4. Results and Discussion
4.1 lons transport

An analytical model was developed to investigate the ions transport inside the ion precipitator
to give a better understanding on the operation of the ion precipitator. Calculations have been
performed for positive ions and charged particles. These calculations were carried out at varying
positively applied voltage at the wire electrode between 10 and 150 V, total air flow rate between 5
and 15 L/min, and the radial distance of the inlet between 0.15 to 14 mm at a fixed radial of wire and
outer electrodes (r; = 0.15 mm and », = 14 mm). The parameters and operating conditions used are
shown in Table 1. Air density and viscosity were 1.225 kg/m® and 1.7894 x 107 kg/m/s, respectively.
Operating temperature and pressure were 294 K and 1 atm, respectively. In this study, the flow
conditions inside the ion precipitator were assumed to be steady, incompressible and laminar. The
electric field distribution inside the ion precipitator was also assumed to be uniform in the axial

direction. The ion and particle trajectories were calculated using Equations (15) and (16) with
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Microsoft Visual Basic programming. In our previous work [21], comparison of ion trajectories along
the precipitator between the existing models and the present model was introduced. Intra and
Tippayawong [21] reported that the ion trajectory of the present model agreed very well with that
proposed by Hagwood et al. [13] and Williams [14]. However, large difference between this model
and the models developed by Kulon et al. [15] and Wei [11] was also observed. This may be due to the
fact that Kulon and Wei models did not take into account the constant pressure gradient effect on the
annular flow velocity profile which could result in significant errors.

Fig. 4 shows a number of trajectories of the positively ions as a function of wire electrode
voltage. The ions were deflected radially toward the inner surface of the outer electrode of the
precipitator. It was found that higher applied wire electrode voltage caused ions to deposit closer to the
entrance. This was expected because the motion of ions was mainly influenced by the applied
electrical force. Increase in applied voltage resulted in the increase of the ions collecting efficiency. It
was clear that the optimal wire electrode voltage was about 100 V. After the optimal wire electrode
voltage was found, the optimal total flow rate through the precipitator was determined. Fig. 5 shows
variation of ion trajectories along the precipitator with total flow rate. It was shown that faster flow
rate forced ions to impact the wall further downstream.

It is still necessary to prove that the chosen voltage has barely minimum influence on the
charged particles. This can be easily done by calculating particle trajectories with the ion precipitator
at the identical voltage. In the calculations, particle governing equations are identical to ion governing
Equation (15) with the only exception of the ion electrical mobility Z; in the Equation (15), which
should be replaced by particle electrical mobility Z,. The electrical mobility of particle can be
calculated as [17]:

C
7 = Wit (20)
" 3mud,

where n, is the net number of elementary charges on the particle, e is the value of elementary charge
on an electron, C, is the Cunningham slip correction factor, x is the gas viscosity, and d, is the

particle diameter. When an extreme case in which a particle diameter of 10 nm (the lower limit of

particle size in the electrical mobility spectrometer) is singly charged was considered, the particle
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tended to have the largest electrical mobility. Fig. 6 illustrates the charged particle trajectories within
the ion precipitator, starting from different initial locations. It was shown that all charged particles can

pass through the ion precipitator smoothly without deposition onto the outer electrode.

4.2 lon trapping

Fig. 7 shows time variation of ion number concentration and signal current of the precipitator
outlet at different operating ion flow rate and trap voltage. Number concentration of ions was
calculated from the measured ion current by Equation (19). Measured current of ions at the
precipitator outlet was found to be from 0 to 100 pA, corresponding to the ion number concentration
of 0 to 2.5 x 10" ions/m’. It can be seen that increasing the trap voltage resulted in the decrease of ion
number concentration and signal current at the precipitator outlet. At higher ion flow rates, the ion
number concentration and signal current were relatively high. Variation of outlet ion number
concentration with ion trap voltage at different operating ion flow rate is shown in Fig. 8. It was shown
that low ion flow rate and high trap voltage resulted in a decrease in the number concentration of ions
at the precipitator outlet. The ion number concentration at the precipitator outlet decreased to about 0
at the ion trap voltage greater than 150 V for all ion flow rates considered.

Fig. 9 shows variation of collection efficiency of the precipitator as a function of ion trap
voltage at different operating ion flow rate. Generally, an increase in ion trap voltage produced an
increase in ion collection efficiency of the precipitator. For all ion flow rates, the collection efficiency
of the precipitator increased to about 99% at the ion trap voltage larger than 100 V. As shown in Figs.
8 and 9, the experimental data of the ion precipitator was also compared with theoretical prediction of
the Deutsch-Anderson model. It was observed that the experimental data was in good agreement with
the model. However, the Deutsch-Anderson model underestimated or overestimated the collection
efficiency of the precipitator at the trap voltage lower than 100 V. This was attributable to the fact that
the model did not take into account the effect of turbulence mixing by electric wind and ion turbulent
diffusion, leading to significant error [22].

Measured particle number concentration and signal current with and without the ion trap

voltage of the precipitator is shown in Fig. 10. In this study, a combustion aerosol generator (CAG)



O©CoO~NOOOTA~AWNPE

was used to generate a polydisperse aerosol for this experiment. The particle size distribution from the
CAG was in the range between approximately 10 nm to 400 nm [23]. Aerosol sampling was carried
out using an isokinetic sampling system. The aerosol particles were first dried with the diffusion drier.
Thus, any remaining water was removed. Due to the high particle concentration in the particle stream
flow rate of the exhaust, before aerosol particles entering the ion generator, the particles were diluted
and mixed with clean air, which had been filtered through a HEPA filter, in the mixing chamber. The
aerosol particles were charged by corona discharge in the ion generator. This experimental system was
operated at aerosol flow rate of 10 L/min and ion trap voltage of 150 V. It was found that the average
number concentrations of particles with and without the ion trap voltage of the precipitator were 5.57
x 10" particles/m’ and 7.87 x 10" particles/m’, respectively, corresponding to the measured signal
currents of 149.45 pA and 211.27 pA, respectively. When the ion trap voltage was off, ions entered the
Faraday cup and was measured together with the charged particles. On the other hands, when the ion
trap voltage was on, most ions were removed. Hence, only charged particles can pass through the

precipitator. Thus, the measured signal current was only derived from charged particles.

5. Conclusion

A wire-cylinder ion precipitator for the electrical mobility spectrometer was designed,
constructed, and investigated in this paper. An analytical model was developed to investigate the ions
transport inside the ion precipitator. The experimental study was carried out for positive ions,
positively applied voltage at the wire electrode between 10 and 150 V, total flow rate of 5 and 15
L/min, operating pressure of 1 atm and radial distance of the inlet between 0.15 and 14 mm at a fixed
radial of wire and outer electrodes. It was found that higher applied wire electrode voltage caused ions
to deposit closer to the entrance. Conversely, faster flow rate forced ions to impact the wall further
downstream. All charged particles of 10 nm in diameter can pass through the ion precipitator smoothly
without precipitated at the outer electrode was found at the ion flow rate of 5 L/min and the trap
voltage of 100 V. An increase in ion trap voltage produced an increase in ion collection efficiency of
the precipitator. For all ion flow rate, the collection efficiency of the precipitator increased to about

99% at the ion trap voltage larger than 100 V. Experimental data was found to be in good agreement

10
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with the analytical model. The precipitator proved to be particularly useful in removing excess ions in

the electrical mobility analyzer.
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Table 1 Model parameter and operating condition values

Parameter and operating conditions Values
Diameter of wire electrode, r;(mm) 0.15
Diameter of outer electrode, 7 (mm) 14
Length of precipitator, [ (mm) 15

Wire electrode voltage, [1(V)

Total flow rate, (L/min)

Nature of flow

Operating temperature, 7 (K)
Operating pressure, [ | (atm)

Gas density, (kg/m’)

Gas viscosity, u (kg/m/s)

Polarity of ions

Electrical mobility of ion, [} (m*/V/s)

Particle diameter, d, (nm)

10, 50, 100, 150
5,10, 15
Laminar

294

1

1.225

1.7894 x 10”
Positive

1.425 x 10™

10

14
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Fig. 4 Variation of ion trajectories along the precipitator with wire electrode voltage (5 L/min total flow rate)
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An Electrostatic Sensor for Nanometer-Sized Aerosol Particles
Detection

P. Intra' and N. Tippayawong’
! College of Integrated Science and Technology,
Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
? Department of Mechanical Engineering, Chiang Mai University,
Chiang Mai 50200, Thailand

In this study, an electrostatic sensor was developed for detecting the number concentration of
nanometer-sized aerosol particles. It consists of a size selective inlet, a corona charger, an ion trap, a Faraday
cup, an electrometer, a signal conditioning and processing system, and an 1/O control and human-computer
interface. In the present sensor, aerosol flow is regulated and controlled by means of mass flow meters and
controllers with a vacuum pump. An aerosol sample first passes through the size selective inlet to remove
particles outside the measurement size range based on their aerodynamic diameter, and then pass through the
unipolar corona charger that sets a charge on the particles and enter the ion trap to remove the free ions. After
the ion trap, the charged particles then enter the Faraday cup electrometer for measuring ultra low current
about 10™? A induced by charged particles collected on the filter in Faraday cup corresponding to the number
concentration of particles. Finally, signal current is then recorded and processed by a data acquisition system. A
detailed description of the operating principle of the system as well as main components was presented. The
performance of the prototype electrometer circuit used in this work was also evaluated and compared with a

commercial electrometer, Keithley model 6517A, and good agreement was found from the comparison.

Keywords: aerosol, nanoparticle, electrostatic, electrometer, sensor.

1. INTRODUCTION

Nanometer-sized aerosol particles, defined as
aerosols with particle diameters less than 0.1 pm,
suspended in air have significant effects on the human
health, global climate, air quality and processes in
various industries such as food, pharmaceutical and
medical, electronic and semiconductor industries [1].
Detection and measurement of nanometer-sized aerosol
particles have become an important issue. For this
purpose, nanoparticle sensors were developed to
monitoring indoor and outdoor aerosols for pollution
and process control industry. There are several
commercial instruments using various methods of
detecting particle number concentration. Available
instruments include a SMPS (Scanning Mobility
Particle Sizer) using electrical mobility of particles, a
CPC (Condensation Particle Counter) which uses
particle growth and optical property, an EAD (Electrical
Aecrosol Detector) which wuses -electrostatic charge
measurement technique, and an ELPI (Electrical Low
Pressure Impactor) using inertia impaction of particles
under low pressure [2]. These commercial instruments
are widely used for measuring airborne ultra fine
particles and provide high-resolution measurement, but
they are very expensive and larges sizes. In addition, the
CPC should be carefully moved in caution to protect the
optics contamination from working fluid like alcohol
(C4HyOH) [3]. The movability of instruments should be
considered in monitoring airborne acrosol particles.

To avoid this problem, an inexpensive sensor was
developed in this study, suitable for detection of particle

DC high voltage

power supply
Size selectve [~ ]
inlet
Aerosol oL o o =
—— [
inlet ——>pl >0 Corona
charger
Trap voltage
power supply
o rp 0o | L

HEPA filter

ump ass flow
P controller

o
T External Computer,

Faraday cup Data Logging

Fig. 1 Schematic diagram of the electrostatic sensor.

number concentration in the nanometer size range. This
sensor is based on unipolar corona charging and
electrostatic detection of highly charged particles. A
detailed description of the operating principle of the
sensor was presented. The sensor performance also was
evaluated and compared with a commercial instrument.

2. DESCRIPTION OF THE SENSOR

Figure 1 shows the schematic diagram of the
electrostatic sensor for detecting nanometer-sized
aerosol particles was developed in this study. The sensor
system is composed of a flow system is regulated and
controlled by means of mass flow controllers with a
vacuum pump, a size selective inlet to remove the
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particle outside the measurement range, a particle
charger using corona discharge technique, an ion trap to
remove the high electrical mobility of free ions after
charger, a Faraday cup to collect charged particles, an
electrometer for measuring signal current from the
Faraday cup, and a computer controlled data acquisition
and management system.

2.1 Size Selective Inlet

The inertial impactor was used to remove particles
larger than a known aerodynamic size, upstream of the
system. The aerodynamic particle size at which the
particles are separated is called the cut-point diameter.
In the impactor, the aerosol flow is accelerated through
a nozzle directed at a flat plate. The impaction plate
deflects the flow streamlines to a 90° bend. Particles
with sufficient inertia are unable to follow the
streamlines and impact on the plate. Smaller particles
are able to follow the streamlines and avoid contact with
the plate and exit the impactor.

2.2 Unipolar Corona Charger

The particle charger in the present study consists of
a coaxial corona-needle electrode placed along the axis
of a cylindrical tube with tapered ends [4]. The needle
electrode is made of a stainless steel rod 3 mm in
diameter and 49 mm in length, ended in a sharp tip. The
angle of the needle cone was approximately 9° and the
tip radius was approximately 50 um, as estimated under
a microscope. The outer cylindrical is made of
aluminum tube 30 mm in diameter and 25 mm in length
with conical shape. The angle of the cone was
approximately 30° and the orifice diameter was
approximately 4 mm. The distance between the needle
electrode and the cone apex is 2 mm. The corona
electrode head is connected to a DC high voltage supply,
while the outer electrode is grounded. An adjustable DC
high voltage power supply is used to maintain the
corona voltage difference, typically of the order of 3.0
kV. The corona discharge generates ions which move
rapidly in the strong corona discharge field toward the
outer electrode wall. Aerosol flow is directed across the
corona discharge field and is charged by ion-particle
collisions via diffusion charging and field charging
mechanisms.

2.3 lon Trap

The ion trap was used to remove the high electrical
mobility of free ions after the charger. As the free ions
can potentially reach the detector and ruin the
measurement, a trap field is introduced just after the
corona charger. The trap field is across the aerosol flow
and has a 200 V.

2.4 Faraday Cup

Figure 2 shows the schematic diagram of the
Faraday cup used in this study. It consists of an outer
housing, a HEPA (High Efficiency Particulate Air) filter,
a filter holder, and a Teflon insulator.

> Electrometer
::]

Fig. 2 Schematic diagram of the Faraday cup.

To completely shield the filter holder collecting the
charged particles, the outer housing is made of a
stainless steel, and filter holder is electrically isolated
from the outer housing with Teflon insulator stand,
while the outer housing is grounded. The Faraday cup
plays a role to prevent electric noise for measuring
ultra-low electric signal current (pA) from collected
charged particles on an internal HEPA filter inside the
Faraday cup corresponding to the total number
concentration of the particles. If the filter holder is not
shielded completely, noise which is 1000 times of
resolutions to be expected. To transfer charges gathered
at the HEPA filter to an electrometer circuit that is
outside the Faraday cup, BNC connector is connected to
HEPA filter. Because material of HEPA filter is a
conductor such as glass fiber, charges collected in the
filter can move to the electrometer via the BNC
connector and low noise cable without delay. In the case
of existing aerosol electrometer airflow is curved at 90°
while air is drifted from sampling probe to the filter. It
can become the cause of charge loss. To solve this
problem airflow into Faraday cup is straightened not to
change the direction of the flow and loss the charge. The
particle number concentration, [J,, is related to the
signal current, 7, at HEPA filter is given by

1

:I =
pet,

r

(M

where p is the number of elementary charge units, e is
the elementary unit of charge (1.6 x 10"’ C), and [, is
the volumetric aerosol sampling flow rate into a Faraday
cup.

2.5 Sensitive Electrometer

A sensitive electrometer is used to measure the
electric signal current, which are typically in the range 1
to 10pA, from the Faraday cup. The schematic
presentation of an electrometer circuit design for aerosol
detection system is shown in Figure 3. This circuit is a
simple current-to-voltage converter, where the voltage
drop caused by a current flowing through a resistor is
measured. The circuit adopted two cascaded negative
feedback amplifiers. The extra component in this circuit
is primarily for fine offset voltage adjustment and
input/output protection. A 12V power supply capable of
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Fig. 3 Schematic diagram of the sensitive electrometer
circuit.

providing 100 mA is required. The feedback capacitor
and RC low-pass filter were wused to reduce
high-frequency noise and to prevent oscillations of the
amplifier output [5]. In order to avoid expensive
construction, commercially-available low-cost
monolithic operational amplifiers were used. The
commercially-available operational amplifiers used in
this circuit is the LMC662, which was designed for low
current measurement and featured ultra-low input bias
current (2 fA maximum) and low offset voltage drift
(1.3 uV/°C) [6]. The output voltage, [, of this circuit is
given by the following equation:

0-1n [mgj 2
S
where /; is the input current, [ |5 and []; are the input

resistors of the first and second amplifiers, respectively,
[l-and [-are the feedback resistors of the first amplifier,
and [ is the feedback resistors of the second amplifier.
This circuit gives an output voltage of 10 mV per 1 pA
of input signal current.

2.6 Data Acquisition and Processing System

The output voltage of the electrometer circuit in the
range of 0 to +5V was connected to a unipolar 12-bit
analog to digital converter (ADC), controlled by I*C bus
from the external personal computer via RS-232 serial
port interface. The digital ADC signal was processed by
computer software, based on Microsoft Visual Basic
programming for all data processing. The software is
able to display the particle number concentration.

Adjustable — circui
J Calibration Electrometer circuit
voltage source . r ! .
fefljti)‘; ot } AMA } Digital
1 Input | voltmeter
[I] I 10G 1 current | | | Output
#l AAAA- 1 # 7
YW/ ! ! voltage | L1
o o L g >
T pa Ll 1 © ©
: I I
L | | T

Fig. 4 Schematic diagram of the experimental setup
for the electrometer test.

3. ELECTROMETER CALIBRATION AND

TESTING

The electrometer circuit is one of the most important
parts influencing accurate particle number concentration
measurement corresponding to signal current in the
sensor system. In the present paper, a laboratory test
facility was developed and constructed to evaluate
performance of a prototype electrometer circuit. Figure
4 shows the experimental setup used to evaluate the
fabricated electrometer circuit performance. In this
study, the electrometer circuit was calibrated with a
current injection circuit, high-impedance current source
[4]. This circuit consists of an appropriately
high-standard resistor (10 G) and a highly-accurate
adjustable voltage source in the range between 0 to +5 V.
The output current of this circuit can simply be
calculated from the Ohm’s law. The range of the output
current is from 1 pA to 10 pA. It should be noted that
the electrometer circuit input was operated at virtual
ground potential during calibration and subsequent
current measurement. The output voltage from the
electrometer circuit was measured and recorded by a
highly-accurate digital voltmeter. The voltage reading
was then translated into the current measurement.

Figure 5 provides comparison of measured current
from this work and a commercial electrometer, Keithley
model 6517A, with a high-accuracy current source. It
can be found that the measured current was rising
linearly as input current increased. Generally, the
currents measured from this work were found to agree
very well with those measured by the Keithley model
6517A. A very small difference of about 5% was
obtained. It is worthy to point out that there were some
interferences on the connector at small potentials.
Additionally, leakage of currents through the body of
the connector can potentially impair the performance of
the electrometer significantly. A detailed investigation
of this problem may be improved and experimental
studied further [5].

10F | ------ theoretical I 7
——0— this work y
—O— Keithley 6517A

measured current, pA

input current, pA

Fig.5 Performance comparison between the prototype
and commercial electrometer
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4. CONCLUSION AND FUTURE WORK

The electrostatic sensor for detecting
nanometer-sized aerosol particles developed at
Rajamangala University of Technology Lanna and
Chiang Mai University has been presented and
described in this paper. The detecting method was based
on unipolar corona charging and electrostatic detection
of highly charged particles. It was able to detect particle
number concentration in the nanometer size range. A
prototype of the prototype electrometer circuit has been
constructed, evaluated, and compared against a
commercial electrometer, Keithley model 6517A. The
results obtained were very promising. It was
demonstrated that the electrometer can be used
successfully in  detecting the signal current
corresponding the particle number concentration.

Among the various techniques and devices exist for
producing aerosol samples to testing and calibration of
any instrument that measures aerosol particles. One of
the most widely used techniques of generating
monodisperse aerosol particles is by using a Tandem
DMA method. The main advantage of this method is the
wide range of particle sizes it can generate. Further
research, may involve a Tandem DMA method. Finally,
calibration and comparison of the instrument with other
particle measuring devices (e.g. SMPS, CPC, EAD, and
ELPI) should be conducted further.
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ABSTARCT

In this study, an electrostatic sensor was developed for detecting the
number concentration of nanometer-sized asrosol particles. It consists of a
size selective inlet, a corona charger, an ion trap. a Faraday cup. an

a signal i and ing system, and an VO
control and human-computer interface. In the present sensor, aerosol flow
is reguiated and controlled by means of mass flow meters and controllers
with a vacuum pump. An aeroscl sample first passes through the size
selective inlet to remove particles outside the measurement size range
based on their aerodynamic diameter, and then pass through the unipolar
corona charger that sets a charge on the particles and enter the lon trap
to remave the free ions. After the ion trap, the charged particles then enter
the Faraday cup electrometer for measuring ultra low current about 10772
A induced by charged particles collected on the filter in Faraday cup
comresponding to the number concentration of particles. Finally, signal

cumrent s then and p by a data lsition system. A
detailed description of the operating principle of the system as well as
main was p The per of the

electrometer circuit used in this work was also evaluated and compared
with a commercial electrometer, Keithley model B517A, and good
agreament was found from the comparison.

INTRODUCTION

Nanometer-sized aerosol particles in air have sig
effects on the human health, global climate, air quality and processes in
various industries such as food, and medical,
and [1]}. D and of
nanometer-sized aerosol particles have become an Important issue. For
this purpose. D sensors were developed to indoor
and outdoor aercsols for pollution and process control industry, There are
several commercial instruments using various methods of detecting particle
number Available include a SMPS (Scanning
Mobility Particle Sizer) using electrical mobility of particles, a CPC
{Condensation Particle Counter) which uses particle growth and optical
property, an EAD (Electrical Aerosol Detector) which uses electrostatic
charge measurement technique, and an ELP| (Electrical Low Pressure
Impactor) using inertia impaction of particles under low pressure [2]. These
commercial instruments are widely used for measuring airbome ultra fine
particles and provide high-resolution measurement, but they are very
expensive and larges sizes. To avoid this problem, an inexpensive sensor
was developed in this study, sultable for detection of particle number
concentration in the nanometer size range based on unipolar corona
charging and electrostatic detection of highly charged particies. A detailed
description of the operating principle of the sensor was presented. The
SBNSOF Por also was with a
instrument.

Extamal Compurtsr,
e

Figure 1: Schematle diagram of the elecirostatic sensor.

DESCRIPTION OF THE SENSOR

Figure 1 shows the schematic diagram of the electrostatic sensor for
detecting nanometer-sized aercsol particles was developed in this study.
The sensor system s composed of a flow system is regulated and
controfled by means of mass flow controllers with a vacuum pump. a size
selective inlet to remove the particle outside the measurement range, a
particle charger using corona discharge technique, an ion trap to remove
the high electrical mobdity of free ions after charger, a Faraday cup to
mmmmmmmm«mtamms&wmm
from the Faraday cup, and a data and
management system.

Size Selective Inlet

The inertial impactor was used to remove particles larger than a
known aerodynamic size, upsiream of the system. The aerodynamic
particle size at which the particles are separated s called the cut-point
diamater. In the impactor, the aercsol flow Is accelerated through a nozzle
directed at a flat plate. The impaction plate deflects the flow streamlines
to a 90° bend. Particles with sufficient inertia are unable to follow the
streamlines and impact on the plate. Smaller particles are able to follow
the streamiines and avoid contact with the plate and exit the impactor.

Unipolar Corona Charger

The particle charger in the present study consists of a coaxial
corona-needle electrode placed along the axis of a cylindrical tubs with
taperad ends [4]. The needle electroda is made of a stainless steal rod 3
mm in diameter and 48 mm in length, ended in a sharp tip. The angie of
the needle cone was approximately 9° and the tip radius was
approximately 50 pum, as estimated under a microscope. The outer
cylindrical is made of aluminum tube 30 mm in diameter and 25 mm in
length with conical shape. The angle of the cone was approximately 30°
and the orifice diameter was approximately 4 mm. The distance between
the neadle slectrode and the cone apex is 2 mm. The corona electrode
head is connected to a DC high voltage supply, while the outer slectrode
is g ded. The corona lens which move rapidly in
memmdmmmwlmmmmwmmw
flow Is directed across the corona discharge field and is charged by lon-
jparticle colisions via diffusion charging and field charging mechanisms.

Figure 2: Schematic disgram of the Faraday cup.

lon Trap

The lon trap was used to remove the high electrical mobility of free
ions after the charger. As the free jons can potentially reach the detector
and ruin the a trap field is i just after the corona
charger. The trap field is across the asrosol flow and has a 200 V.

Faraday Cup

Figure 2 shows the schematic diagram of the Faraday cup used in
this study. It consists of an outer housing, a HEPA (High Efficiency
Particulate Alr) filter, a filter holder, and a Teflon insulator. To completely
shield the filter holder collecting the charged particles, the outer housing is
made of a stainless steel, and filter holder is electrically isclated from the
outer housing with Teflon insulator stand, while the outer housing is
grounded. The Faraday cup plays a role to prevent electric noise for
measuring ultra-low electric signal current (pA) from collected charged
particles on an internal HEPA filter inside the Faraday cup comesponding
to the total number concentration of the particles To transfer charges
gathered at the HEPA filter to an electrometer circuit that is outside the
Faraday cup, BNC connector is connected to HEPA filter. Because material
of HEPA filter is a conductor such as glass fiber, charges collected In the
filter can move to the electrometer via the BNC connector and low noise
cable without delay. The particle number concentration, N, is related to
the signal current, J, at HEPA filter is given by

where p is the number of elementary charge units. € is the elementary
unit of charge (1.6 x 10™° C), and O, s the volumetric aerosol sampling
flow rate into a Faraday cup.

Sensitive Electrometer

A sensitive electrometer is used to measure the electric signal cumrent,
which are typically in the range 1 to 10pA. from the Faraday cup. The
ion of an circuit design for aerosol
detaction system is shown in Figure 3. This circuit is a simple curment-to-
voltage converter, where the voltage drop caused by a curent flowing
through a resistor is measured. The circuit adopted two cascaded negative

ELECTROMETER CALIBRATION AND TESTING

Thedemrwnalwmhmdmmmmlpammﬂmlm
accurate particle number ta
signal current in the sensor system. In the present paper, a laboratory test
faciity was developed and constructed to evaluate performance of a
prototype electrometer circult. Figure 4 shows the experimental setup used
to evaluate the circult per In this study,
the circuit was with a current injection circuit, high-
impedance curent source [4] This circuit consists of an appropriately
high-standard resistor (10 G) and a highly-accurate adjustable voltage
source in the range between 0 to +5 V. The output current of this circuit
can simply be calculated from the Ohm's law. The range of the output
current is from 1 pA to 10 pA. The output voltage from the electrometer
circult was measured and recorded by a highly-accurate digital voltmeter
and was then transiated into the curment measurement.

Adjustable
weltage source

|

i

Figurs 4: Schemalic diagram of the sxperimenial setup for ihe elecirometer fest

Figure 5 provides comparison of measured cument from this work and
a commercial electrometer, Keithley model B517A. with a high-accuracy
current scurce. it can be found that the measured current was rising
linearly as input cument increased. Generally, the cuments measured from
this work were found to agres very well with those measured by the
Keithley model 6517A. A very small difference of about 5% was oblained.
it Is worthy to point out that there were some Interferences on the

at small leakage of cuments through the
body of the can ty impair the of the
A detailed of this problem may be

Improved and experimental studied further [5].
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input current, pA
Fgure 5: Performance comparison between the profolype and commercial eleciromelsr

CONCLUSION AND FUTURE WORK

The sensor for sized aerosol
particles developed al Rajamangala University of Technology Lanna and

plifiers. The exira comp in this ircuit is primarily for fine  Chiang Mal University has been presented and described in this paper.
offset voltage adj and The The ing method was based on unipolar corona charging and
capacitor and RC low-pass filter were used to reduce high of highly charged particles. It was able to detect
mlaeandmprwuﬂmlmdﬁnampﬂﬁumm{ﬂlnmﬂu'm particle number ion in the size range. A prototype of
avoid dable low-cost i the circult has been constructed, evaluated. and
operational amplifiers wera used. The i itabi ! 1 against a The results ob were
amplifiers used in this circult Is the LMCB52, which was designed for low g It was that the can be used

current measurement and featured ulira-low Input blas cument (2 1A
maximum) and low offset voltage drift (1.3 pv/°C) [6]. The output voltage,
V. of this circuit is given by the following equation:

B K&

RI Rs
where ; is the input current, R, and R, are the input resistors of the first
and second ampiifiers, respectively, R, and R, are the feedback resistors
of the first amplifier, and [, is the fesdback resistors of the second

amplifier. This circuit gives an output voltage of 10 mV per 1 pA of input
signal cument.

V,=1R

Data Acquisition and Processing System

The output voltage of the electrometer circuit in the range of 0 to +5V
was connected to a unipolar 12-bit analog to digital converter (ADC),
controlled by I°C bus from the extemal personal computer via RS-232
serial port interface. The digital ADG signal was processed by computer
software, based on Microsoft Visual Basic programming for all data
processing. The software is able to display the particle number
concantration.

Minmmwwwlwmmmm
number concentration. There are various techniques and devices exist for
producing aercsol samples to testing and calibration of any instrument that
measures aerosol particles. One of the most widely used techniques of
genaerating monodispersa aerosol particles is by using the Tandem DMA
mathod. The main advantage of this method Is the wide range of particle
sizes [t can generate, Further research, may involve the Tandem DMA
method, Finally, and comp of the with other
particle measuring devices (e.g. SMPS, CPC, EAD, and ELP1) should be
conducted further.
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Abstract

Submicron-sized aerosol particles, defined as
aerosols with particle diameters less than 1 pm,
suspended in air have significant effects on the human
health, global climate, air quality and processes in various
industries such as food, pharmaceutical and medical,
electronic and semiconductor industries. Automotive
engines have long been recognized as a major source of
submicron-sized aerosol particles. Development of
aerosol detection and size distribution measurement
methods has been primarily motivated by the need to find
better means of monitoring and controlling indoor and
outdoor aerosols for pollution and process control
industry. In this study, a submicron electrical aerosol
detection system for measuring particle number
concentration in the size range between 1 nm — 1 um
using electrostatic charge measurement technique was
developed. It consists of a size selective inlet, a particle
charging system, an ion trap, a Faraday cup electrometer,
a signal conditioning and processing system, and an I/O
control and human-computer interface. In this system, an
acrosol sample first passes through the size selective inlet
to remove particles outside the measurement size range
based on their aerodynamic diameter, and then pass
through the unipolar corona charger that sets a charge on
the particles and enter the ion trap to remove the free
ions. After the ion trap, the charged particles then enter
the Faraday cup electrometer for measuring ultra low
current about 10"> A induced by charged particles
collected on the filter in Faraday cup corresponding to the
number concentration of particles. Signal current is then
recorded and processed by a data acquisition system. A
detailed description of the operating principle of the
system as well as main components was presented. The
performance of the prototype electrometer circuit used in
this work was evaluated and compared with a commercial
electrometer and good agreement was found from the
comparison. Finally, the preliminary experimental testing
results were also shown and discussed.

Keywords: aerosol, particle, Faraday cup, electrometer
1. Introduction

Detection and measurement of aerosol particles have
become an important topic in atmospheric pollution
monitoring and source characterization. In recent years
considerable interest has been shown to submicron-sized
aerosol particles, defined as aerosols with particle
diameters less than 1 pum, for two main reasons. First,
such particles have been associated with adverse health
effects in areas of high concentrations, and second,
aerosols are believed to have a significant influence on
atmospheric quality, climate at a local and global scale
and processes in various industries such as food,
pharmaceutical ~and  medical, electronic  and
semiconductor industries [1]. A submicron-sized aerosol
particle instruments have been developed to monitoring
indoor and outdoor aerosols for pollution and process
control industry for this purpose [2, 3].

There are several commercial instruments using
various methods of detecting and measuring the size
distribution and number concentration of particles.
Available instruments include a Scanning Mobility
Particle Sizer (SMPS) using electrical mobility of
particles [4], a Condensation Particle Counter (CPC)
which uses particle growth and optical property [5, 6], an
Electrical Aerosol Detector (EAD) which uses
electrostatic charge measurement technique [7], and an
Electrical Low Pressure Impactor (ELPI) using inertia
impaction of particles under low pressure [8]. These
commercial instruments are widely used for measuring
airborne ultra fine particles and provide high-resolution
measurement, but they are very expensive and larges
sizes. According to the instruction manual for CPC
(Model 3010, TSI Inc), a CPC does not operate in
ambient temperatures outside the control range of 10°C to
34°C, and the pump and flow sensor of a CPC cannot
control the flow when the pressure at the aerosol inlet, the
make up air inlet, or the pump exhaust is too high or too
low [6]. In addition, the CPC should be carefully moved
in caution to protect the optics contamination from
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working fluid like alcohol (C4HyOH) [6].
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Figure 1. Schematic diagram of the submicron electrical aerosol detection system.

The movability of instruments should be considered
in monitoring airborne aerosol particles. To avoid this
problem, an inexpensive detector, suitable for detection
of particle number concentration in the submicron size
range, was built and experimentally tested in this study.
This system is based on unipolar corona charging and
electrostatic detection of highly charged particles. A
detailed description of the operating principle of the
sensor was presented. The performance of the prototype
electrometer circuit used in this work as well as the
preliminary experimental testing results were also shown
and discussed.

2. A Submicron Electrical Aerosol Detection System

The following paragraphs give a detailed description
of main components of the detection system. Figure 1
shows the schematic diagram of the submicron electrical
acrosol detection system, developed in this study. The
system is composed of a flow system is regulated and
controlled by means of mass flow controllers with a
vacuum pump, a size selective inlet to remove the particle
outside the measurement range, a particle charger using
corona discharge technique to charge the particles, an ion
trap to remove the high electrical mobility of free ions
after charger, a Faraday cup to collect charged particles,
an electrometer for measuring signal current from the
Faraday cup, and a computer controlled data acquisition
and management system.

2.1 Size Selective Inlet

The inertial impactor was used to remove particles
larger than a known aerodynamic size, upstream of the
system. The aerodynamic particle size at which the
particles are separated is called the cut-point diameter. In
the impactor, the aerosol flow is accelerated through a
nozzle directed at a flat plate. The impaction plate
deflects the flow streamlines to a 90° bend. Particles with

sufficient inertia are unable to follow the streamlines and
impact on the plate. Smaller particles are able to follow
the streamlines and avoid contact with the plate and exit
the impactor. The particle collection efficiency of the
impactor, E, is determined from [9]

(M

where d, is the particle diameter, and d is the particle
cut-off diameter at 50% collection efficiency can be
calculated by [1]

971 (St
dSO = 4—
Pt

where [ is the Cunningham slip correction factor, 7 is

@)

the gas viscosity, [ is the acceleration nozzle diameter,
Stksy is the Stokes number for the particle cut-off
diameter at 50% collection efficiency, p, is the particle

density, and [, is the aerosol flow rate.

2.2 Particle Charger

The corona-needle charger used in the present study
consists of a coaxial corona-needle electrode placed along
the axis of a cylindrical tube with tapered ends [10]. The
needle electrode is made of a stainless steel rod 3 mm in
diameter and 49 mm length, ended in a sharp tip. The
angle of the needle cone was about 9° and the tip radius
was about 50 um, as estimated under a microscope. The
outer cylindrical is made of aluminum tube 30 mm in
diameter and 25 mm length with conical shape. The angle
of the cone was about 30° and the orifice diameter was
about 4 mm. The distance between the needle electrode
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and the cone apex is 2 mm.
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Figure 2. Schematic diagram of the Faraday cup.

The corona electrode head is connected to a DC high
voltage supply, while the outer electrode is grounded. An
adjustable DC high voltage power supply is used to
maintain the corona voltage difference, typically of the
order of 1.0 — 5.0 kV. The corona discharge generates
ions which move rapidly in the strong corona discharge
field toward the outer electrode wall. Aerosol flow is
directed across the corona discharge field and is charged
by ion-particle collisions via diffusion charging and field
charging mechanisms.

2.3 lon Trap

The ion trap was used to remove the high electrical
mobility of free ions after the charger. As the free ions
can potentially reach the detector and ruin the
measurement, a trap field is introduced just after the
corona charger. The trap field is across the aerosol flow
and has a 200 V, and the trap penetration, [, is given

by [1]

270

:a 1n(’”Z /rl) (3)

gmp =1-

where [} is the mobility of ion (equal to 0.00014 m*/V.s
for the positive ion), [ is the trap voltage, [!is the trap
length, and - and r are the inner and outer radii of the
electrode, respectively.

2.4 Faraday Cup

Figure 2 shows schematic diagram of the Faraday
cup. To completely shield the HEPA (high efficiency
particulate air) filter collecting the charged particles,
external case is made of a stainless steel, and HEPA filter
is electrically disconnected from the external case with
Teflon stand. The Faraday cup plays a role to prevent
electric noise to measure very low current caused by
charged particles, which are collected by an internal
HEPA filter. If the object of measurement is not shielded
completely, noise which is 1000 times of resolutions to

be expected. To transfer charges gathered at the HEPA
filter to an electrometer that is outside the faraday cage,
BNC connector is connected to HEPA filter. Because
material of HEPA filter is conductor such as glass fiber,
charges collected in the filter can move to the
electrometer through the low noise cable and BNC
connector without delay. In the case of existing aerosol
electrometer airflow is curved at 90 degrees while air is
drifted from sampling probe to the filter. It can become
the cause of charge loss. To solve this problem airflow
into faraday cage is straighten not to change the direction
of the flow and loss the charge. The particle number
concentration, [J,, is related to the signal current, /,, at
HEPA filter is given by [11]

1

= n(d))e’, “)

where 7, is the number of elementary charge units, e is
the elementary unit of charge (1.6 x 10" C), and [, is
the volumetric aerosol sampling flow rate into a Faraday
cup. The average number of elementary charges carried
by particles with diameter, d,, and is given by following
equation [1]

@) 4;T1 | wlpd,ce’ it 5)
n = nfl+—
PRt 20,e 20T

where ¢, is the mean thermal speed of the ions (240 m/s),

[is the Boltzmann’s constant (1.380658 x 10 J/K, for
air), 7 is the temperature, [z is the constant of
proportionality, [; is the ion concentration, and ¢ is the
residence time of the particle charger. For the corona-
needle charger, an approximate expression for the [
product can be derived [10]:

o Id ©)

2 rn)(r-n) + Rel

where /; is the charging current, d is the distance between
the electrode tip and the cone apex, 7 and 7 are the inner
and outer radii of a conical frustum, respectively, [is the
length of the charging zone, and []is the corona voltage.

2.5 Sensitive Electrometer

The schematic presentation of an electrometer circuit
design for acrosol detection system is shown in Figure 3.
This circuit is a simple current-to-voltage converter,
where the voltage drop caused by a current flowing
through a resistor is measured. The circuit adopted two
cascaded negative feedback amplifiers. Extra component
in this circuit is primarily for fine offset voltage
adjustment and input/output protection. A 12V power
supply capable of providing 100 mA is required. The
feedback capacitor and RC low-pass filter were used to
reduce high-frequency noise and to prevent oscillations of
the amplifier output [12]. In order to avoid expensive
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construction, commercially-available low-cost monolithic
operational amplifiers were used.

1T
R2 R3
10M 10M
WW—WW R6
20k
+12V W
c2 +12V
Input RI 0.1uF
current 200k
Camniiia 2 R
2
vy R8 Output
3 2k voltage

C6

IO.IuF

-12v

Figure 3. Schematic diagram of the sensitive
electrometer circuit.

The commercially-available operational amplifiers used
in this circuit is the LMC662, which was designed for
low current measurement and featured ultra-low input
bias current (2 fA maximum) and low offset voltage drift
(1.3 uV/°C) [13]. The output voltage, [, of this circuit is
given by the following equation:

. 0+ 0 0
O=LI| —— 7
0 ,ﬂ[ﬂﬂ J ™)

where /; is the input current, [5 and [}, are the input
resistors of the first and second amplifiers, respectively,
[;and [J- are the feedback resistors of the first amplifier,
and [, is the feedback resistors of the second amplifier.
This circuit gives an output voltage of 10 mV per 1 pA of
input signal current. The electrometer circuit was
calibrated with a current injection circuit, high-impedance
current source [12]. It consists of an appropriately high-
standard resistor (10 GQ) and an adjustable voltage
source in the range between 0 — 5 V. The output current
of this circuit can simply be calculated from the Ohm’s
law.

100F | ------ theoretical
—0— this work
—0— Keithley 6517A

]
T

measured current, pA

input current, pA

Figure 4. Performance comparison between the
prototype and commercial electrometer.
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Figure 5. Schematic diagram of the experimental setup
for preliminary testing of the submicron electrical aerosol
detection system.

The range of the output current is from 1 pA to 10 pA. It
should be noted that the electrometer circuit input was
operated at virtual ground potential during calibration and
subsequent current measurement. The output voltage
from the electrometer circuit was measured and recorded
by a highly-accurate digital voltmeter. The voltage
reading was then translated into the current measurement.
The comparison of measured current from this work and
a commercial electrometer, Keithley model 6517A, with
high-accuracy current source is shown in Figure 4. It was
shown that the measured current was rising linearly as
input current increased. Generally, the currents measured
from this work were found to agree very well with those
measured by the Keithley model 6517A. Very small
difference about 5% was obtained.

2.6 Data Acquisition and Processing System

The measurement is controlled and data sampled by
an external personal computer via RS-232 serial port
cable. Software running on an external computer was
developed, based on Microsoft Visual Basic
programming for all data processing. The software is able
to display the particle number concentration.

3. Preliminary Experimental Testing

Figure 5 shows the schematic diagram of the
experimental setup for preliminary testing of the
submicron electrical aerosol detection system. The
combustion aerosol generator was used to generate a
polydisperse carbonaceous diffusion flame aerosol for
this experiment. Stable polydisperse aerosols with
particle number concentrations of approximately 10" —
10'* particles/m’ were obtained [14]. The particle size
obtained by scanning electron microcopy (SEM) was in
the range between approximately 10 nm — 10 pm. Figure
6 shows the particle morphologies of agglomerates
obtained from the scanning electron micrograph, taken
with a JEOL JSM-6335F Field Emission Scanning
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Electron Microscope,
magnification of 5,000X.
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1 WD 150mm

Figure 6. Scanning electron micrograph of sampling
particle from the generator.

The particles were first dried with the diffusion drier.
Thus, any remaining water was removed. Before aerosol
particles entering the system, the particles were diluted
and mixed with clean air, which had been filtered through
a HEPA filter, in the mixing chamber. The system was
operated at aerosol flow rate in the range of 1.0 — 4.0
L/min. To reduce errors due to time variations in the
aerosol concentrations, repeat measurements were
commenced at least 5 min after the introduction of the
aerosol into the measurement system.

In this paper, four different operating conditions of
the aerosol flow rate were preliminary experimental
tested on the particle number concentration
measurements of the system. Variation of aerosol flow
rate was carried out by adjusting the inlet mass flow
controller in the range of 1.0 to 4.0 I/min and the
operating pressure was about 1000 mbar. Figure 7 shows
variation of measured particle number concentration and
signal current with aerosol flow rates. The measured
signal current and the particle number concentration were
found in the range of approximately 90 — 700 pA and 3 —
7 x 10" particles/m’, respectively. It was found that an
increase in the aerosol flow rate resulted in an increase in
measured signal current corresponding to the particle
number concentration because the signal current was
approximately proportional to the aerosol flow rate.

4. Conclusions and Future Work

The system for detecting the number concentration
of submicron-sized acrosol particles with a Faraday cup
electrometer has been presented and described in this
paper. The detecting method was based on unipolar
corona charging and electrostatic detection of highly
charged particles. It was able to detect particle number
concentration in the submicron size range. A prototype of
the system has been constructed and evaluated.
Preliminary experimental testing results obtained were
very promising. It was demonstrated that the system can
be used in detecting the number concentration of the
particles.

The  following  paragraphs  give  specific
recommendations for further research work on both the

theoretical and experimental parts of the detector
development.
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Figure 7. Variation of measured particle number
concentration and current with aerosol flow rates.

o There are various techniques and devices exist
for generating aerosol samples to testing and
calibration of any instrument that measures
aerosol particles. One of the most widely used
techniques of generating monodisperse aerosol
particles is by using the Tandem DMA method.
The main advantage of this method is the wide
range of particle sizes it can generate. Further
research, may involve the Tandem DMA.

e Calibration and comparison of the instrument
with other particle measuring devices such as
SMPS, CPC, EAD, and ELPI should be
conducted further.

e In order to measure transient behavior of
airborne particles, such as those found in
automotive exhaust gas, the time response of the
instrument should be further improved.
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Abstract

An electrostatic precipitator (ESP) is widely used to
work as an ion precipitator for removing the excess
ions mixing with the charged particles after charging
process of the electrical mobility spectrometer. In this
paper, the ion precipitator for the electrical mobility
spectrometer was  designed, constructed, and
analytical investigated. An analytical model was
developed to investigate the ions transport inside the
ion precipitator to give a better understanding on the
operation of the ion precipitator in this study. The
analysis was carried out for positive ions, positively
applied voltage at the wire electrode between 10 and
100 V, total flow rate of 1 and 5 L/min, operating
pressure of 1000 mbar and radial distance of the inlet
between 0.15 and 14 mm at a fixed radial of wire and
outer electrodes. It was found that higher applied wire
electrode voltage caused ions to deposit closer to the
entrance. Conversely, faster flow rate forced ions to
impact the wall further downstream. It was shown that
all charged particles of 10 nm in diameter can pass
through the ion precipitator smoothly without
precipitated at the outer electrode. It can be concluded
that the prediction of ion and particle trajectories was
particularly useful in the ion precipitator design.
Keywords: Ton, Electrostatic Precipitator, Electrical
Mobility

1. Introduction

The ion precipitator is one of the most important
components in the aerosol particle sizing and
measurement system by the electrical mobility
technique [1]. The aim of the ion precipitator for the
electrical mobility spectrometer was to remove the
high electrical mobility of the excess free ions mixing
with the charged particles after the particle charging
process. As the free ions can potentially reach the
detector and ruin the measurement, an ion precipitator
is introduced just after the particle charger.

It is well known that ESPs are widely used for
removing particles from gas streams in various
industrial processes and room air-conditioning system
[2 — 4]. Figure 1 shows the basic principle of a typical
ESP. It consists of a discharge electrode placed along

the axis of the collecting electrode. A dc high
electrical voltage is applied to the discharge electrode,
while the collecting electrode is grounded. The high
voltage produces an electric field and a flow of
electric charges (ions) from discharge electrode to the
collecting electrode. Dirty gas containing particulate
pollutants is introduced into ESP. The particulates are
bombarded by monopolar ions from the discharge
electrode and are strongly charged; they are driven by
electrostatic force toward the collecting electrode and
are deposited in its inner surface. In this way the
outgoing gas flow would become particle-free.
Although ESPs are initially designed to precipitate
particles, they are also proper for depositing ions
under certain conditions. This is because ions are, just
like the charged particles, carrying charges, therefore
they can be precipitated within an electric field. The
key to changing an ESP into an ion precipitator lies in
applying a proper voltage to the ESP, such only ions
are precipitated while charged particles can pass
through smoothly.

The aim of the present paper is to develop the
mathematical model to predict the ion trajectory
inside the ion precipitator. The analysis was carried
out for positive ions, positively applied voltage at the
wire electrode between 10 to 100 V, total flow rate of
1 to 5 L/min, operating pressure of 1000 mbar and
radial distance of the inlet between 0.15 to 14 mm at a
fixed radial of wire and outer electrodes. A detail
description of the ion precipitator design was also
presented in this paper.

2. Description of the lon Precipitator

A schematic diagram of the ion precipitator used
in this study is shown in Figure 2. It has a geometrical
configuration similar to that used by Lethtimaki [5],

[ discharge electrode |
> —
Charged particle —
gasinler —> clean gas
- > outlet
—
—

[ collection electrode ]

Figure 1. Basic principle of a typical ESP
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Figure 2. Schematic diagram of the ion precipitator

and Keskinen et al. [6]. It consists of a coaxial wire
electrode placed along the axis of a metallic cylinder
tube. The outer electrode is made of aluminum tube
28 mm in diameter and 15 mm in length. The wire
electrode is made of stainless steel wire 300 um in
diameter and 15 mm in length. DC voltage supply
was applied to the wire electrode, typically in the
range between 10 — 100 V, while the outer metallic
electrode is grounded.

3. Modeling of lons Transport inside the lon
Precipitator

The transportation of ions and charged particles
inside the electrostatic precipitator have been studied
and presented in the published literature [7 — 12]. As
shown in Figure 1, the axial motion of ion was
influenced by the fluid velocity profile in the axial
flow. The radial motion of ion is due to electric force
which is by far greater than other forces. When the
ions introduced into the ion precipitator, any ions
under the influence of an electric field will have an
electrical mobility. It is assumed that the flow and
electric fields are axisymmetric and steady, the flow
in the precipitator is laminar, fully developed and
incompressible, the space charge effect is negligible,
and Brownian diffusion effects are negligible. For the
particular case of annular geometries where the ions
enters the precipitator on an axial flow and the ions
migrate along the radial direction of electric field,
motion of the ions within the precipitator can be
described by the system of differential equations as

[7]

ﬂzur +LE, (1)
dr

dr
o =t E @)

where 7 and [are the radial and axial dimensions of
the classifier, u, and u, are the radial and axial
components of the air flow velocity. Similarly, £, and
E - are the radial and axial components of the electric
field and [} is the electrical mobility of ions. Based on
the work of Reischl et al. [13], the average value for
the positive ion electrical mobility at atmospheric
pressure was (= 1.425 x 10" m*V s. When a

uniform electric field is established between the two
electrodes of the precipitator, the electric field
components are given by the following relations

E S and E =0 3)

. rin(r, /1)

where 7 and 7 are the radii of the wire and outer
electrodes, respectively. Assuming that the radial
velocity component for a laminar annular flow is zero
(u, = 0) and combining the above equations, the ions
trajectories can be described by [11]

dr oo

g 4
dt rin(n/n) @
j—tﬂ:u )= Ar’ + Uln(r) + U 5)
where:
4= ©)
4u dll

2 2
L. 2l Dl ) )

440 d0\ In(r, /r)

_ldp B 2
_4y dJ(ln(rz/rl)ln(r]) { ]’ ®

dp/dIdenotes the constant pressure gradient is given
by the following equations

dp _ pl°f
do 20, ©)
where:
0, =2n,(1=(5 /1)), (10)
P 1+ (i /r) e(ifn) |
Re (1—(}’]/}3))2 (1—(”1/”2))111(”1/”2)
(1)

200



Reo 2r, (l—(rl/rz))D_p’
u

(12)

[, is the hydraulic diameter for an annular flow area,

fis the friction factor, (] is the mean axial flow
velocity, p is the gas density and Re is the Reynolds
number in the annular flow. Using Equations (4) and
(5), the trajectory of the ions is given by

dr

dr @ _ 0O

dﬂ_%tm_ru (r)ln(rz/r]) 13

Integrating Equation (13), the migration paths of the
ions can be determined as

Tru (r)dr:jid[ (14)

0 111(1”2/}’1)

where 7;, is the radial position at which the ions enters
the precipitator. Therefore, the ions entering the
precipitator at a radial position of 7, has trajectory
taking it to an axial position of [J which can be
obtained as

_g(,)In(r/r)
401,

0= (15)

Ar) = Ar} + T — 0 2007 In(ry)
80, =

=200 In(r, )+ 200 =200

(16)

4. Calculation Procedure

An analytical model was developed to
investigate the ions transport inside the ion
precipitator to give a better understanding on the
operation of the ion precipitator. Calculations have
been performed for positive ions and charged
particles. These calculations were carried out at
varying positively applied voltage at the wire
electrode between 10 and 100 V, total air flow rate
between 1 and 5 L/min, and the radial distance of the
inlet between 0.15 to 14 mm at a fixed radial of wire
and outer electrodes (7~ = 0.15 mm and = 14 mm).
The parameters and operating conditions used are
shown in Table 1. Air density and viscosity are 1.225
kg/m® and 1.7894 x 10 kg/m/s, respectively.
Operating temperature and pressure are 294 K and
1000 mbar, respectively. In this study, the flow
conditions inside the ion precipitator are assumed to
be steady, incompressible and laminar. The electric
field distribution inside the ion precipitator is also
assumed to be uniform in the axial direction. The ion
and particle trajectories were calculated using
Equations (15) and (16) with Microsoft Visual Basic
programming.

Table 1 Model parameter and operating condition
values

Parameter and operating conditions Values

Diameter of wire electrode, - (mm)  0.15
Diameter of outer electrode, - (mm) 14
Length of precipitator, [J(mm) 15

Wire electrode voltage, [1(V) 10, 50, 100
Toal flow rate, (L/min) 1,3,5
Nature of flow Laminar
Operating temperature, 7 (K) 294

Operating pressure, [ | (atm) 1

Gas density, (kg/m®) 1.225
Gas viscosity, p (kg/m/s) 1.7894 x 107
Polarity of ions Positive
Electrical mobility of ion, [} (m*%V/s) 1.425 x 10™
Particle size range, d, (nm) 10
5. Results and Discussion

Comparison of ion trajectories along the

precipitator between the existing models and the
present model is shown in Figure 3. The operating
conditions of these models were: 10 V wire electrode
voltage and 1 L/min total flow rate. It was shown that
the ion trajectory of the present model agreed very
well with that proposed by Hagwood et al. [8] and
Williams [9]. However, it was also observed that the
large difference between this model and the models
that developed by Kulon et al. [10] and Wei [12]. It
was expected to point out that their models were not
taken into account the constant pressure gradient into
the annular flow velocity profile which can result in
significant errors. Figure 4 shows a number of
trajectories of the positively ions as a function of wire
electrode voltage. The ions were deflected radially
toward the inner surface of the outer electrode of the
precipitator. It was found that higher applied wire
electrode voltage caused ions to deposit closer to the
entrance. This was expected because the motion of
ions was mainly influenced by the applied electrical
force. Increase in applied voltage resulted in the
increase of the ions collecting efficiency. It is clear
from the Figure that the optimal wire electrode
voltage was about 100 V. After the optimal wire
electrode voltage was found, the optimal total flow
rate through the precipitator was determined. Figure 5
show variation of ion trajectories along the
precipitator with total flow rate. It was shown that
faster flow rate forced ions to impact the wall further
downstream (Figure 5).

It is still necessary to prove that the chosen
voltage has barely minimum influence on the charged
particles. This can be easily done by calculating
particle trajectories with the ion precipitator at the
identical voltage. In the calculations, particle
governing equations are identical to ion governing
Equations (15) with the only exception of the ion
electrical mobility [} in the Equation (15), with should
be replaced by particle electrical mobility [}. The
electrical mobility of particle can be calculated as
[14]:
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Figure 3. Comparison of ion trajectories along the

precipitator between the existing models and the

present model (10 V wire electrode voltage, and 1
L/min total flow rate)
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Figure 4. Variation of ion trajectories along the
precipitator with wire electrode voltage (1 L/min total
flow rate)

[ = e (17)
" 3mud,

where 7, is the net number of elementary charges on
the particle, e is the value of elementary charge on an
electron, [, is the Cunningham slip correction factor,
4 is the gas viscosity, and d, is the particle diameter.

Consider an extreme case in which a particle diameter
of 10 nm (the lower limit of particle size in this study)
is singly charged, thus the particle tends to have the
largest electrical mobility. Figure 6 plots the charged
particle trajectories within the ion precipitator,
starting from different initial radial locations. It was
shown that all charged particles can pass through the
ion precipitator smoothly without precipitated at the
outer electrode.
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— 1 L/min

00125k | T 3 L/min i

5 L/min
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Figure 5. Variation of ion trajectories along the

precipitator with total flow rate (100 V wire electrode
voltage)

0.0150 . T T T T

00125 F : I
0.0100 |- : 4
0.007s |

0.0050 : i

axial distance from inlet, m

0.0025 : E

0.0000

L i L L L L i
0.002  0.004 0.006 0.008 0.010 0.012 0.014

radial distance from axis of symmetry, m

Figure 6. Variation of charged particle trajectories
along the precipitator with inlet radial distance (100 V
wire electrode voltage, 10 nm particle diameter, and 5

L/min total flow rate)

6. Conclusion

The ion precipitator for the electrical mobility
spectrometer was  designed, constructed, and
analytical investigated in this paper. In this study, an
analytical model was developed to investigate the ions
transport inside the ion precipitator to give a better
understanding on the operation of the ion precipitator.
The analysis was carried out for positive ions,
positively applied voltage at the wire electrode
between 10 and 100 V, total flow rate of 1 and 5
L/min, operating pressure of 1000 mbar and radial
distance of the inlet between 0.15 and 14 mm at a
fixed radial of wire and outer electrodes. It was found
that higher applied wire electrode voltage caused ions
to deposit closer to the entrance. Conversely, faster
flow rate forced ions to impact the wall further
downstream. It was shown that all charged particles of
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10 nm in diameter can pass through the ion
precipitator smoothly without precipitated at the outer
electrode.

Future ongoing research will experiment on the
effects of the design parameters on the ion
precipitator performance. The particle penetration
efficiency of the precipitator downstream of the
precipitator should be further theoretically and
experimentally studied.
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An Electrical Detector for Nanometer-Sized Aerosol Particles Detection:
Development of the Equipment and Preliminary Results
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Abstract

An electrical detection system for measuring number concentration of nanometer-sized aerosol
particles in the size range between 1 nm — 1 pm using electrostatic charge measurement
technique was developed in this study. It consists of a size selective inlet, a particle charging
system, an ion trap, a Faraday cup electrometer, a signal conditioning and processing system, and
an I/O control and human-computer interface. In this system, an aerosol sample first passes
through the size selective inlet to remove particles outside the measurement size range based on
their aerodynamic diameter, and then pass through the unipolar corona charger that sets a charge
on the particles and enter the ion trap to remove the free ions. After the ion trap, the charged
particles then enter the Faraday cup electrometer for measuring ultra low current about 107 A
induced by charged particles collected on the filter in Faraday cup corresponding to the number
concentration of particles. Signal current is then recorded and processed by a data acquisition
system. The performance of the prototype electrometer circuit used in this work was evaluated
and compared with a commercial electrometer and good agreement was found from the
comparison. Finally, the preliminary experimental testing results were also shown and discussed.

Keywords: aerosol, particle, electrostatic, Faraday cup, electrometer
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