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1 Introduction

Although there have been a lot of progresses on constructing phenomenologically viable

models based on theories with extra spatial dimensions, some fundamental questions have

not been completely solved. One of them is the moduli stabilization problem. The size

and shape of compact space described by dynamical moduli fields have to be fixed in

order to avoid any conflict with astronomical observations. In addition to these problems,

we also face the challenges from cosmology in explaining the accelerated expansion of

the universe. One possible solution for these problems may involve arguments based on

anthropic principle. However, the search for an alternative solution is still going on, for

example in [1].

Recently, it was suggested that Casimir energy from various field fluctuations in

compact extra dimensions could play a crucial role in addressing these significant prob-

lems [2, 3]. Greene and Levin [3] argued that if the total Casimir energy is properly chosen,

then it is possible, at least in the case of vacuum dominated universe, to stabilize the size

of the extra dimensions and drive the accelerated expansion of the three non-compacted

directions in which the Casimir energy plays the role of dark energy. The authors in [4]

employed the calculation of Casimir energy in the non-trivial space, M
1+3×T

2 and demon-

strated that the shape of extra dimensions can also be stabilized by the same mechanism.

Interestingly, predictions in this scenario such as radius of extra dimensions and quantum

gravity scale in the bulk are in agreement with those from the large extra dimensions or

ADD scenario [5, 6]. Hence, the moduli stabilization problem, dark energy problem and the

– 1 –



J
H
E
P
0
8
(
2
0
0
9
)
0
1
9

hierarchy problem may possibly be explained in the single unified framework. However, as

it was pointed out in [3], there are some crucial obstructions to realizing a phenomenological

viable version of this scenario. One of them is that the extra dimension fails to stabilize if

we include contribution from matter contents. During the matter dominant epoch, energy

density of non-relativistic matter was the dominant contribution in the effective potential

of the moduli fields and washed away the minimum of the effective potential. Although

the minimum reappears in the vacuum dominated epoch, the moduli (i.e. radion field)

has already passed the dynamical stable fixed point. This causes the extra dimension to

expand and contradicts with our observation. Thus, it would be interesting to investigate

whether this technical problem could be solved.

In this paper, we propose the new stabilization mechanism based on the Casimir energy

and the existence of the Lorentz violating “æther” field in the compact direction. Starting

with the simplest model with one extra dimension where the space-like æther field lives in

the compact circle similar to the model considered in [7, 8], we claim that non-vanishing

vacuum expectation value (vev) of the æther field would affect the dynamical equation of

background moduli field. It can reduce the gradient of the radion’s potential and slows

down the oscillation frequency. This ensures stability of extra dimension although there

is non-relativistic (dark) matter in the universe. As in the previous works, the Casimir

energy of massless and massive fields embedded in five-dimensional space play a role of

dark energy and drive the expansion of non-compact space as expected. Note that the

effect of a time-like æther field on slowing down the expansion rate of the universe was

pointed out in [9]. The effects of the æther fields on cosmological observable was studied

in [10]. The authors in [11, 12] also studied the role of æther field on the stability of the

extra dimension in the context of braneword scenario but in a different aspect.

It is important to state that we are aware of the stability issue for space-like æther

field [13, 14] which may cause difficulty in the construction of a more realistic model of

this scenario. However the interplay between the æther field and the dynamical moduli

field in our model may shed some light on the connection between the dimensionality of

spacetime and the violation of Lorentz symmetry. Perhaps nature allows us to observe

only the large three-dimensional space that preserves Lorentz symmetry but conceals the

Lorentz violating directions in the compact space.

This paper is organized as follows. In section 2, we start by reviewing the æther model

in 5-dimensional spacetime. In section 3, we derive cosmological equations of motion in

5-dimensional spacetime with æther field and write down effective 4-dimensional equations

of motion in the radion picture. Then we review the calculation of Casimir energy and

extend to the case involving interaction between æther field and bulk fields in section 4. In

section 5, we investigate the role of æther field in the context of stabilization of the extra

dimension both in the vacuum dominated universe and in the universe with non-relativistic

matter. Finally we summarize our results in section 6.

– 2 –
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2 Æther field and its interactions

We start by considering a 5-dimensional flat spacetime with coordinates xa = (xµ, y)

where µ = 0, . . . , 3 and with mostly plus metric signature. We assume that the fifth

direction is compactified on a circle. Now we consider a toy model in which Lorentz

symmetry is spontaneously broken by the æther field ua i.e. a vector field with a non-

vanishing expectation value. Most of the æther models contain kinetic term that makes

their Hamiltonian unbounded from below and their stability is a subtle issue [13]. Here we

consider the action with Maxwell-type kinetic term [8]

S =

∫
d5x

√−g
(
−1

4
VabV

ab − λ̄(uau
a − v2) +

∑

i

Li
)
. (2.1)

Here Vab = ∇aub−∇bua has a familiar form to the field strength tensor of electromagnetism.

However, the æther field ua is not related to the electromagnetic vector field Aa and its

dynamics does not respect U(1) gauge symmetry. In contrast, the second term in the above

action enforces the æther field to have a constant norm

uaua = v2, (2.2)

where λ̄ acts as a Lagrange multiplier and we take v2 > 0. In our unit ua has dimension of

mass3/2. The sum Li in (2.1) represent various interaction terms which couple the æther

field to matter fields that we will discuss later in this section. If we neglect the interaction

terms for the moment, the equations of motion for the æther field ua can be written as

∇aV
ab + v−2ubuc∇dV

cd = 0. (2.3)

Any solutions for which Vab = 0 will solve the equation of motion (2.3). In order to preserve

Lorentz invariance in the 4-dimensional non-compact space, we choose the background

solution such that the æther is a space-like vector field which has non-vanishing components

along the extra fifth dimension,

ua = (0, 0, 0, 0, v). (2.4)

It is important to note that there is a subtle stability issue here. Although our aim is to

investigate the role of the æther field on the stability of the extra dimension, the model of

space-like æther field with Maxwell-type kinetic term itself is unstable [13]. However, for

our purpose, we can consider it as a toy model and assume that there is some mechanism

which stabilizes the æther field.

The energy-momentum tensor of the æther field Tab|u takes the following form

Tab|u = VacV
c
b − 1

4
VcdV

cdgab + v−2uaubuc∇dV
cd. (2.5)

Note that properties of the æther field depend crucially on spacetime geometry. The flat

space background solution in equation (2.4) gives Tab|u = 0. However, in curved spacetime,

– 3 –
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the æther field can give rise to non-vanishing energy momentum tensor for example a time-

like æther field can produce energy density [9] while a space-like æther gives the stress

components [14]. The case of an æther field oriented along the compact extra dimension

was investigated in [8]. It was shown that such æther configuration can also give rise to non-

vanishing energy momentum tensor. However, Tab|u vanishes when the extra dimension is

stabilized. We will review this result in the next section.

We now consider the effect of the interaction term
∑

i Li in (2.1) which in general can

include the terms corresponding to the æther field coupled to scalars, fermions and gravity.

However, we will consider stabilization mechanism of the extra dimension involving Casimir

energy of gravitons, bulk scalars and bulk fermions. We will ignore the bulk vector terms.

Let us begin with the effect of the interaction of the æther with a real massive scalar field

φ. The Lagrangian for the scalar field with the minimal coupling term is

Lφ = −1

2
(∂aφ)2 − 1

2
m2φ2 − 1

2µ2
φ

uaub∂aφ∂bφ, (2.6)

where µφ is the coupling parameters with dimension of mass3/2. The corresponding equa-

tion of motion for the scalar field takes the form [8]

∂a∂
aφ−m2φ = −µ−2

φ ∂a(u
aub∂bφ). (2.7)

Expanding the scalar field in Fourier modes φ ∝ eikaxa

, we obtain the modified disper-

sion relation,

− kµkµ = m2 + (1 + α2
φ)k

2
5 , (2.8)

where the dimensionless parameter αφ = v/µφ is the ratio of the aether vev to the coupling

µφ. Next we consider the fermion terms. The Lagrangian for fermionic field with the

minimal coupling term can be written as [8]

Lψ = iψ̄γa∂aψ −mψ̄ψ − i

µ2
ψ

uaubψ̄γa∂bψ, (2.9)

where µφ is the fermionic coupling constant with the unit of mass3/2. In the same spirit

as in the scalar field case, the corresponding modification of the dispersion relation for the

fermionic case can be written as

− kµkµ = m2 + (1 + α2
ψ)2k2

5 , (2.10)

where the dimensionless parameter αψ = v/µψ. The form of this equation is different

from the analogous equation in the bosonic case: i.e. the second term on the right-handed

side increases by α4
ψ instead of α2

ψ. Finally, we consider the æther field which couples

non-minimally to gravity. This can be described by the action [8]

SGC =

∫
d5x

√−g
(
M3

∗
16π

R+ αgu
aubRab

)
, (2.11)

– 4 –
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where αg is the dimensionless graviton coupling constant and M∗ is the Planck mass in

5 dimensional space-time. By varying this action with respect to the metric tensor, we

obtain the equation of motion Gab = 8πGTab|(GC) with

Tab|(GC) =αg

(
Rcdu

cudgab+∇c∇a(ubu
c)+∇b∇c(uau

c)−∇c∇d(u
cud)gab−∇c∇c(uaub)

)
,

(2.12)

where G is the 5-dimensional gravitational constant. Let us consider small fluctuation of

the metric

gab = ηab + hab. (2.13)

Following the explanation in [8], the metric perturbation can be decomposed into

hµν = h̄µν + Φ̄ηµν , h55 = Ψ̄, (2.14)

where ηµν h̄µν = 0, h̄µν presents the propagating modes of the gravitational wave, Φ̄ denotes

the Newtonian gravitational field and Ψ̄ is a component associated with the radion field

describing the modes of the extra dimension. By setting Φ̄ = 0 = Ψ̄, and considering

transverse waves, ∂λh̄λµ = 0, the gravitational equation of motion becomes

− 1

2
∂c∂ch̄µν = 8π

αgv
2

M3∗
∂2

5 h̄µν . (2.15)

Let us define α̃2
g = 16π

αgv2

M3
∗

. The above equation gives the modified dispersion relation

for graviton

− kµkµ =
(
1 + α̃2

g

)
k2

5 . (2.16)

3 Cosmological dynamics and Æther field

3.1 Five-dimensional cosmological dynamics

In this section we consider cosmological dynamics of 5-dimensional spacetime by applying

Einstein general relativity to the product space, between 4-dimensional FRW-type space-

time and a circle S1. We assume the cosmological ansatz

ds2 = −dt2 + a(t)2dxidxjδij + b(t)2dy2, (3.1)

where i, j = 1, 2, 3, a(t) is the scale factor of non-compact 3-dimensional space, and b(t)

denotes the radius of the compact fifth direction. The coordinates on S1 are 0 ≤ y ≤ 2π.

For our metric (3.1), the background solution for the equation of motion (2.3) can be

written as

ua =
(
0, 0, 0, 0,

v

b(t)

)
. (3.2)

Using this background solution, the energy momentum tensor associated to the æther field

defined in (2.5) can be written as

T 0
0|u = −v

2

2
H2
b , T ij |u =

v2

2
H2
b δ

i
j , T 5

5|u = − b̈
b

+
1

2
H2
b − 3HaHb (3.3)

– 5 –
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We have defined the Hubble constants Ha = ȧ/a and Hb = ḃ/b, where dotted quantities

represent the corresponding time derivative. As we mentioned in the previous section,

Tab|u = 0 when the extra dimension is stabilized ḃ = 0. The fact that the æther field does

not contribute to the energy density at the stabilized point implies that the æther field will

not give any contribution to the effective potential of the radion. Hence other component

such as Casimir energy is needed for stabilization of the extra dimension. However, as

we shall see later on, the æther field can reduce the influence of the Casimir force. This

property is important for stabilization mechanism when non-relativistic matter is present.

Let us assume that the total energy-momentum tensor Tab|total is decomposed into

Tab|total = Tab|u + Tab|GC + Tab|ρ. (3.4)

The contribution from non-minimally coupling to gravity Tab|GC is defined in equa-

tion (2.12). The component T ab |ρ = diag(−ρ, pa, pa, pa, pb) represents contribution from

Casimir energy [3]. Casimir energy density ρ plays the role of 5-dimensional cosmological

constant. pa = −ρ and pb = −∂(ρ2πb)
∂(2πb) = −ρ− b∂bρ are the pressure density in non-compact

and compact direction respectively. By substituting Tab|total into the Einstein field equa-

tion, we get the 5-dimensional cosmological equations of motion

3H2
a + 3HaHb = 8πG

(
ρ+

1

2
v2H2

b

)
, (3.5)

3
ä

a
− 3HaHb = −8πG

{
ρ+ pb − (1 − 2αg)v

2A
}
, (3.6)

3
b̈

b
+ 9HaHb = 8πG

{
ρ+ 2pb − 3pa − 2(1 − 2αg)v

2A
}
, (3.7)

where A = ( b̈b + 3HaHb).

3.2 Dynamics in the radion picture

Since we are interested in our observed universe, it is useful to analyze the cosmological dy-

namics by considering 4-dimensional effective field theory. The equations of motion (3.5)–

(3.7) can be obtained by varying the 5-dimensional Einstein-Hilbert action

S5D =

∫
d5x

√−g
(
M3

∗
16π

R− 1

4
VabV

ab + αgu
aubRab − V (b)

)
. (3.8)

V (b) denotes the potential term in 5-dimensional spacetime. Note that we omit the La-

grange multiplier term. For simplicity, we will set αg = 0 in this section and this will not

affect our main results. Let us start with KK-dimensional reduction of the above action

from 5 to 4-dimensional spacetime. Then, in order to make the resulting effective action

in the canonical form, we apply Weyl rescaling gµνE = Ωgµν (µ, ν = 1, . . . , 3) and define

the new time variable dtE =
√

Ωdt, aE(tE) =
√

Ωa(t); Ω = 2πbM3
∗ /m

2
pl. Note that mpl

is the Planck mass in 4-dimensional spacetime defined via the relation m2
pl = (2πbmin)M

3
∗

where bmin denotes the stabilized radius of extra dimension. Thus Ω = 1 at b = bmin. The

effective action takes the form

S4D=

∫
d4x

√−gE
{
m2
pl

16π
RE−

1

2
gµνE ∇µΨ∇νΨ− 1

2

m2
pl

M3∗ b
2
min

e
−2

√
16π√

3mpl
Ψ
VµV

µ−U(Ψ)

}
, (3.9)

– 6 –
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where U(Ψ) = 2πbΩ−2V (b) is the 4-dimensional effective potential. Here we define the

radion field Ψ =
mpl√
16π

√
3ln(b/bmin) and Vµ = Vµ5 = ∇µu5. By using the background

solution in (3.2), the above 4-dimensional action can be rewritten as

S4D =

∫
d4x

√−gE
{
m2
pl

16π
RE − 1

2
(1 + α2)gµνE ∇µΨ∇νΨ − U(Ψ)

}

, (3.10)

where we define the dimensionless parameter α2 = 16πv2

3M3
∗

. This action gives rise to the

following set of equations:

H2
E =

8π

3m2
pl

{
U(Ψ) +

1

2
(1 + α2)

(
dΨ

dtE

)2
}
, (3.11)

d2Ψ

dt2E
+ 3HE

dΨ

dtE
= − 1

(1 + α2)

∂U

∂Ψ
. (3.12)

Note that HE = (daE/dtE)/aE is the Hubble constant in the Einstein frame. As we will

explain later, the factor 1/(1+α2) in the right-handed side of equation (3.12) weakens the

effect of the potential gradient −∂U/∂Ψ and it is crucial for stabilization mechanism of the

radion field Ψ. To make contact with previous section, we note that the energy-momentum

tensor associated with 5-dimensional action in (3.8) gives the relations

ρ =
Ω

Gm2
pl

U , 2ρ+ pb = − Ω

Gm2
pl

(b∂bU) . (3.13)

4 Æther field and Casimir energy

We will start this section by reviewing the mathematical formulation to determine the

Casimir energy for a scalar field, Êcas, and then investigating the effect of æther coupling

to the Casimir energy. First, we consider Casimir energy of a non-interacting scalar field

of mass, m, in M
1+n × S1 spacetime by following [15, 16]. We keep the number of non-

compact spatial directions to be n for the moment and will set n = 3 at the end of our

calculation. This scalar field obeys the free Klein-Gordon equation,

(∂a∂
a −m2)φ = 0. (4.1)

The scalar field satisfies the periodic boundary condition in the compact direction, φ(y =

0) = φ(y = 2π). Its associated dispersion relation can be written as

− kµkµ = m2 +
ñ2

b2
, (4.2)

where, ñ ∈ Z is the momentum number in the compact direction. Then, the total vacuum

energy contributing to Casimir energy can be written as

Êcas =
1

2

(
L

2π

)n ∫
dnk

∑

ñ

√
k2 +m2 +

ñ2

b2
, (4.3)

– 7 –
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where Vn = Ln is the spatial volume of non-compact spacetime. Using the fact that∫
f(k)dnk = 2πn/2/Γ(n/2)

∫
kn−1f(k)dk, we obtain

Êcas =
1

2

(
L

2π

)n 2πn/2

Γ(n/2)

∫
kn−1dk

∑

ñ

√
k2 +m2 +

ñ2

b2
, (4.4)

=
1

2

(
2

L

)2s+1 Γ(s)

Γ(−1/2)
b2sπ(2s+1)/2

∑

ñ

(
(bm)2 + ñ2

)−s
, (4.5)

where we define s = −(n + 1)/2. Let us consider the massless case, m = 0. By using the

zeta function regularization procedure, the Casimir energy density per one bosonic degree

of freedom for massless scalar field can be written as

ρ̂massless
cas =

Êcas

Vn2πb
=

Γ(−2s + 1)

Γ(−1/2)
22sb2s−1π3s−1ζ(−2s+ 1), (4.6)

where ζ denotes the zeta function and we take 2πb to be the volume of compact dimension.

For the massive case, we apply the Chowla-Selberg zeta function [16] in our regularization

procedure and obtain the Casimir energy density per one degree of freedom for the massive

scalar field:

ρ̂massive
cas = −2(2πb)2s−1(mb)(1−2s)/2

∞∑

n=1

n(2s−1)/2K(1−2s)/2(2πbmn), (4.7)

where Kν(x) is the modified Bessel function. The fermionic degrees of freedom will con-

tribute to the Casimir energy density with the same expression except for an extra mi-

nus sign.

Let us consider the case that a scalar field couples to an æther field with a coupling

constant αφ. In the previous section, we showed that interaction with the æther field

transforms the usual dispersion relation (4.2) into its modified version (2.8). Accordingly,

the Casimir energy will be written as

Ecas(αφ) =
1

2

(
L

2π

)n ∫
dnk

∑

ñ

√
k2 +m2 +

(
1 + α2

φ

) ñ2

b2
,

=
1

2

(
L

2π

)n 2πn/2

Γ(n/2)

∫
kn−1dk

∑

ñ

√
k2 +m2 +

(
1 + α2

φ

) ñ2

b2
,

=
(
1 + α2

φ

)(n+1)/2 1

2

(
L

2π

)n 2πn/2

Γ(n/2)

∫
k′n−1dk′

∑

ñ

√
k′2 +m′2 +

ñ2

b2
, (4.8)

where we rescale k and m in such a way that k2 = (1 + α2
φ)k

′2 and m2 = (1 + α2
φ)m

′2.

By comparing Ecas(αφ) with the non-interacting Casimir energy Êcas, we see that the

æther coupling rescales the Casimir energy and scalar mass by factors (1 +α2
φ)

(n+1)/2 and

(1+α2
φ)

−1/2 respectively. Thus, we can immediately write down the Casimir energy density
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per one bosonic degrees of freedom with the æther coupling αφ as

ρmassless
boson (αφ) =

Γ(−2s+ 1)

Γ(−1/2)

22sb2s−1π3s−1

(1 + α2
φ)
s

ζ(−2s+ 1), (4.9)

ρmassive
boson (αφ) =−2(2πb)2s−1

(1 + α2
φ)
s



 mb√
1 + α2

φ





(1−2s)

2 ∞∑

ñ=1

ñ(2s−1)/2K(1−2s)/2



 2πmbñ√
1 + α2

φ



 , (4.10)

for contributions from massless and massive scalar fields respectively. Other bosonic degrees

of freedom contribute to the total Casimir energy in a similar way but with different

coupling constants and masses. For example, the graviton in (n+2)-dimensional spacetime

has 1
2(n + 2)(n − 1) bosonic degrees of freedom with the æther coupling αg and mass

m = 0. Using the modified dispersion relation for graviton (2.16), we can show that the

graviton contributes (n+2)(n−1)
2 ρmassless

boson (α̃g) to the total Casimir energy density. Recall that,

apart from modification of graviton’s Casimir energy, non-minimal coupling of the æther

field to gravity can also affect the dynamical evolution through the energy momentum

tensor Tab|(GC).

For fermion case, we use the modified dispersion relation for the fermionic field

in (2.10). We can show that the associated Casmir energy density per one fermionic degree

of freedom, for both massless and massive case, is in the similar form of those from bosinic

degrees of freedom with the over all minus sign and (1 + α2
φ) → (1 + α2

ψ)2. The Casimir

energy densities for one degree of freedom of massless and massive fermion can be written

respectively as

ρmassless
fermion (αψ) = −Γ(−2s+ 1)

Γ(−1/2)

22sb2s−1π3s−1

(1 + α2
ψ)2s

ζ(−2s+ 1), (4.11)

ρmassive
fermion(αψ) =

2(2πb)2s−1

(1 + α2
ψ)2s

(
mb

1 + α2
ψ

)(1−2s)/2 ∞∑

n=1

n(2s−1)/2K(1−2s)/2

(
2πmbn

1 + α2
ψ

)
. (4.12)

The total Casimir energy density can be written in terms of sum over all degrees of freedom:

ρ = Nbρ
massless
boson (α̃g) +Nfρ

massless
fermion (αψ) + Ñbρ

massive
boson (αφ) + Ñfρ

massive
fermion(αψ), (4.13)

where Nb (Nf ) and Ñb (Ñf ) are the numbers of bosonic (fermionic) degrees of freedom for

massless and massive fields respectively. The nature of the total Casimir energy density

depends on the relative magnitude of Nb, Nf , Ñb and Ñf .

In our model, Nb > 5 since, at least, the graviton is always present and it has five

physical degrees of freedom in five-dimensional spacetime (n = 3). The compact fifth

direction would not be stable if there is only the graviton field in the bulk, i.e. it will collapse

to Planck size, due to the negative Casimir energy associated with quantum fluctuations

of the gravitation fields. Therefore, it is natural to add more positive contribution to the

Casimir energy by assuming that there are fermions in the bulk. However, we cannot

create the minimum of ρ by including only the massless fermionic fields i.e. the Casimir

force is attractive for Nf < Nb and becomes repulsive when Nf > Nb. Hence Nf = Nb

– 9 –
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Particles Degrees of freedom Mass Coupling constant

a bulk graviton field Nb = 5 0 α̃g = (16π
αgv2

M3
∗

)1/2

a massless bulk fermion field Nf = 8 0 αψ

a massive bulk fermion field Ñf = 8 mf αψ

8 massive bulk scalar fields Ñb = 8 ms = λmf αφ

Table 1. The particle spectrum in the bulk, their degrees of freedom, their mass and the cou-

pling constants characterizing their interaction with the æther field. For simplicity, we assume the

universal fermionic coupling αψ for both massless and massive Dirac fermion.

does not give us any stable fixed point. We should expect a minimum to be produced if

we include massive fermionic degree of freedom [17]. This can be explained qualitatively

as the following. Let us consider Casimir energy of a fermion with mass M . For the region

where b≪ 1/M , the vacuum energy should have the same form as in the massless case. In

particular, for Nf > Nb, the net Casimir force will be repulsive. In the other region where

b ≫ 1/M , the contribution from the massive fermion mode is negligible compared to that

of the graviton and the total Casimir force becomes attractive. Hence, there must be a

stable fixed point between these two regions.

In this paper, we consider a toy model where the particle spectrum in the bulk consists

of a bulk graviton, a massless Dirac fermion, a massive Dirac fermion with mass mf , and

eight massive scalars with equal masses ms = λmf . Here λ is the mass ratio. The presence

of the massless fermion and the massive scalars is to ensure that the vacuum energy at the

minimum has positive value, i.e. ρmin > 0. We summarize the particle content in the bulk

in table 1.

There is no unique choice of bulk particle spectrum for this purpose, the other combi-

nations of bulk fields, for example in ref. [3], can probably create minimum for the vacuum

energy. Our particular choice is convenient for investigating the effect of the æther-matter

interactions on the Casimir energy of the bulk fields. Note that we do not attempt to jus-

tify the existence of these bulk fields phenomenologically because we want to demonstrate

that stability of the extra dimension could be achieved, if these particles are present in

the bulk. The Dirac fermions in five dimensional spacetime have eight physical degrees of

freedom. For more realistic models which have chiral fermion on the brane, we can impose

the orbifold reflection symmetry: y → −y on the compact direction. However, this will not

affect our main results on stabilization of the extra dimension. We will ignore this issue

for simplicity.

5 Effects of The Æther field on stabilization of the extra dimension

5.1 Stabilization in vacuum dominated universe

We first consider the universe where there is no non-relativistic matter and the Casimir

energy density is the dominant contribution. Let us start with the case where there is no

– 10 –
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Figure 1. Left: Casimir enery density ρ is presented in the y-axis in units of (mf/40)5. The x-axis

is the radius of the fifth dimension b in units of 40/mf . Right: The 4-dimensional effective Casimir

potential UCas = 2π(b2
min

/b(Ψ))ρ(Ψ) in unit of (mf/40)4 is presented in the y-axis. The x-axis

denotes Ψ in the unit of mpl. Here we set α = αφ = αψ = αg = 0.

interaction between æther field and bulk matter i.e. setting αφ = αψ = αg = 0. The plot

of the total Casimir energy density in 5-dimensional spacetime ρ using the expression in

equation (4.13) and particle spectrum in table 1, with the mass ratio λ = 0.516, and its

corresponding 4-dimensional effective UCas = 2π(b2min/b(Ψ))ρ(Ψ) is given in figure 1. The

local minimum of Casimir energy density, ρmin = 23.4316(mf /40)
5 is located at bmin =

0.01461(40/mf ). In order to get the positive minimum and the radion can stabilize, we

must choose the value of λ from a very narrow range, 0.516 ≤ λ ≤ 0.527. By solving the

5-dimensional equations of motion (3.5)–(3.7) numerically, we can demonstrate that the

extra dimension is stabilized at the radius bmin as shown in figure 2. Notice that we set the

expansion time scale to be in the unit of Hubble time tH = H−1
a0 =

√
3m2

pl/8πρc ≈ 1010

years. The critical density ρc can be written in terms of the minimum value of Casimir

energy density ρmin as ρc = (1 + 0.24/0.76)(2πbmin)ρmin.

By comparing 4-dimensional effective Casimir energy density ρ
(4)
min = (2πbmin)ρmin with

the observed value of energy density for dark energy, ρ
(4)
obs ≈ (2.3×10−3 eV )4, we get mf ≈

4.18 × 10−2 eV . Then, the radius of extra dimension bmin ∼ 13.96 eV −1 ∼ 2.75 × 10−6 m.

This leads to the quantum gravity scale in the bulk, M∗ ≈ 1.19 × 109 GeV . Note that we

do not attempt to address the mass hierarchy problem in this paper. In order to compare

with the ADD brane world scenario, it is better to be demonstrated with 6-dimensional

models as shown in [3]. Since our aim is to study the role of æther fields on stabilization

of the extra dimension, the 5-dimensional model is good enough for our purpose. We will

leave the mass hierarchy problem for future works.

The role of æther field on dynamical evolution of the extra dimension is also illustrated

in figure 2. We can see that, as the value of v increase, the moduli field b feel less potential

gradient. Its oscillation frequency and amplitude decrease. In our caculation v is in the

unit of (mf/40)
5/2tH . From the previous paragraph mf = 4.18 × 10−2 eV , this gives 1

unit of v is equivalent to (1.02 × 108 GeV )3/2 ≈ (0.09M∗)3/2. At very high v, for example

v = 100 or approximately ≈ (9M∗)3/2, the period of oscillation is so long that b reaches

equilibrium before showing any oscillating behavior. The scale factor b rolls slowly to its

stable fixed point.

– 11 –
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Figure 2. The dynamics of the scale factor b(t) for the compact direction as a function of time with

different values of parameter v. In the absence of æther field v = 0, b(t) shows oscillation behavior

around its critical value bmin before stabilizing at this value. Non-vanish value of v reduces the

influence of Casimir force. As the value of v increases, the oscillation frequency and amplitude

decrease. If the vev of the æther field is large enough, for example v = 100, oscillation behavior

disappears. The extra dimension evolves smoothly to its stable fixed point. The time variable t is

presented in the unit of Hubble time tH . The time for stabilization to occur is around ∼ 6tH . The

condition for stabilization of b is δb

b
6 10−5.

Let us consider the situation where æther field couples to the bulk matters. As we

discussed earlier, interactions with the æther field reduce the effective mass of the bulk

fields. For example, the effective mass for scalar field of mass ms would be

m2
s(eff) = m2

s

(
1 + α2

φ

)−1
. (5.1)

This will alter the shape of the potential as we demonstrate in figure 3. Interestingly, there

is an advantage of coupling the bulk fields with the æther field. It seems that we get the

wider range of parameter space for the mass ratio λ that allows positive minima ρmin > 0,

i.e 0.05 . λ . 0.80.

5.2 Stabilization in the universe with non-relativistic matter

In this section we consider the role of æther field on stabilizing mechanism of the extra

dimension in the more realistic model of our universe i.e. a model containing non-relativistic

matter. Let us fist demonstrate the destabilizing effect due to non-relativistic matter by

following Greene and Levin in Ref [3]. We assume that there is matter living in the bulk.

– 12 –
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Figure 3. Interactions between bosons/fermions and æther field can affect the Casimir energy. In

this figure, we fix the mass ratio λ = 0.516. The Casimir enery density ρ is presented in the y-axis

in units of (mf/40)5. The solid, long dashed and short dashed line denote the Casimir energy

density when the coupling constant (αφ, αψ) = (0.0, 0.0), (1.0, 0.644), and (1.5, 0.897) respectively.

The value of bmin and ρmin increase as we increase the value of the coupling constants. The shape

of the potential well gets shallower as the coupling increases. We set α̃g = αφ for simplicity.

This can be done by adding a 5-dimensional matter term into the 5-dimensional action in

equation (3.8)

S = S5D +

∫
d5x

√−gLmatter. (5.2)

This is equivalent to adding the matter energy density ρm ∝ 1/2πa3b into the 5-dimensional

cosmological equations of motion (3.5)–(3.7). The matter energy density ρm includes con-

tribution from baryonic matter and cold dark matter. By comparing with the observational

data and supposing that all dark matter is cold, the matter density today ρm0 is roughly

26% of the total energy density of the universe. The Casimir energy density will be re-

sponsible for the other 74% of the total energy density today in the form of dark energy,

(ρΛ0). Thus, we have the relation, ρm0 = (2.6/7.4)ρΛ0 . Note that the energy density of

dark energy in our 4-dimensional observed universe today can be written in terms of the

minimum of 5-dimensional Casimir energy density and the stabilized radius of the extra

dimension as ρΛ0 = ρmin(2πbmin) = (2.3 × 10−3eV )4. By using (a0/a) = 1 + z, a0 is the

scale factor today and z is the red-shift, we get

ρm =
2.6

7.4
ρmin

(
bmin

b

)
(1 + z)3. (5.3)

In this case, the 5-dimensional equations of motion (3.5)–(3.7) become

3H2
a + 3HaHb = 8πG

(
ρ+ ρm +

1

2
v2H2

b

)
, (5.4)

3
ä

a
− 3HaHb = −8πG

{
ρ+ ρm + pb − (1 − 2αg)v

2A
}
, (5.5)

3
b̈

b
+ 9HaHb = 8πG

{
ρ+ ρm + 2pb − 3pa − 2(1 − 2αg)v

2A
}
. (5.6)
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Figure 4. This is the plot of the effective potential Ueff(Ψ) at red shift z = 0.0, 7.0, 9.0, 11.0, 13.0

in the unit of (mf/40)4 and λ = 0.516. The local minimum of Ueff(Ψ) no longer exists when the

red shift is increased.

From equation (5.6), the stability conditions (Ḣb = 0, Hb = 0 and A = 0) require

pb = −2ρ− 1

2
ρm. (5.7)

By using equation (5.5) and requiring that ä
a > 0 when b is stabilized, we get the constraint

ρm < 2ρ. This is the same constraint that we have for a (3 + 1)-dimensional vacuum

dominated universe. Thus, as pointed out in [3], this model describes the (3+1)-dimensional

vacuum dominated universe when the extra dimension is stabilized.

By using the conservasion of the energy-momentum tensor in four and five dimensions,

we can easily show that the radion field will be driven toward the minimum of the 4-

dimensional effective potential

Ueff = UCas +
m2
plG

Ω

ρm
4

= UCas +
ρ

(4)
m

4

(
bmin

b

)2

, (5.8)

where we define the 4-dimensional matter density ρ
(4)
m = ρm(2πb) = 2.6

7.4ρmin (2πbmin) (1+z)3

which is a function of (1+ z)3 and does not depend on the radius of the extra dimension b.

Numerical results for the effective potential Ueff are illustrated in figure 4. Here we

choose λ = 0.516, and ignore the interaction terms by setting αφ = αψ = αg = 0. At z = 0,

the presence of non-relativistic matter would lift up the minimum of Ueff slightly. However,

at early time, high red-shift, the 1/b2-term in (5.8) becomes dominant and destroys the

presence of the minimum. This effect will drive b to expand even though there is a minimum

today since the radion field Ψ has already rolled pass the minimum and cannot get back

to the stable point. Notice that this effect is the same if matter is confined to the brane.
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This can be shown by adding a 4-dimensional term into the 5-dimensional action (3.8)

S = S5D +

∫
d4x

√
−g(4)Lmatter. (5.9)

There is no dimension reduction in the matter term but the conformal transformation

rescale the matter energy density as ρ
(4)
m /Ω2. Thus, the total effective potential is the same

as in (5.8).

There is an interesting phenomena if we turn on the æther field. By carefully tuning

its norm, we can show that b can be stabilized even if there is non-relativistic matter in

the universe. This can be shown by solving equations of motion (5.4)–(5.6) numerically.

The result is shown in figure 5 where we choose λ = 0.516, mf = 40 and v = 10 (or

equivalent to v ≈ (0.9M∗)3/2). We set the initial conditions such that b(t = 0) = 0.60bmin

and ignore the effects of interaction terms by setting αφ = αψ = αg = 0. From figure 4, the

minimum of Ueff(Ψ) disappear when z & 11. So, in order to make sure that the minimum

of Ueff(Ψ) does not exist in the initial configuration, we choose the initial time to be at

z = 10, 000 which is approximately the time of matter-radiation equality (teq). Moreover

since the universe also contains radiation component which is not considered in this model,

it is reasonable to set tinitial = teq = 0. However, if we ignore the radiation part, we can

go back to the much earlier time and show that there are some values of v that the extra

dimension can be stabilized.

The role of the æther field can be explained qualitatively in the radion picture. The

æther factor 1/(1 + α2) on the right-handed side of equation (3.12) reduces the influence

of the potential gradient −∂Ueff/∂Ψ. As a consequence, it will slow down the oscillation

frequency of Ψ around the minimum of the potential Ueff(Ψ). If this factor is big enough, Ψ

will move down the potential at very slow speed. We can tune v such that there is enough

time for the universe to create the minimum of Ueff(Ψ) before the radion rolls pass it. By

this mechanism, stability of the extra dimension can be restored.

Let us compare the stabilization time tstab of the moduli field with the age of the

universe. The age of the universe in our model is

tage =
1

Ha0

∫ 1

0

dx

x
√

ΩCasimir + Ωmx3
=

1.5376

Ha0
≈ 1.5376tH , (5.10)

where we set ΩCasimir = 0.76 and Ωm = 0.24. From figure 5, the stabilization time tstab ≈
6tH . Then, tstab ≈ 3.90tage is greater than the age of the universe.

6 Conclusions and discussions

In our 5-dimensional model, we have shown that the æther field reduces the influence

of the potential gradient and slows down the oscillation frequency of the compact extra

dimension. For vacuum dominated universe, the Casimir energy from the extra dimension

acts as a stabilizing potential for the moduli field while driving accelerated expansion in

the non-compact directions. The æther field will slow down the oscillation behavior of the

moduli or even smooth it out. For the universe which non-relativistic matter is present,
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Figure 5. These graphs illustrate cosmological dynamics of the universe which includes non-

relativistic matter content and æther field in the extra dimension. Left: The scale factor a (upper)

and the Hubble constant for the non-compact dimensions Ha (lower) as the function of time. The

fact that Ha oscillates indicating the period of deceleration and acceleration before it settles down

to the constant value and a enters a de Sitter phase. Right: The scale factor b (upper) and the

Hubble constant for the compact extra dimension Hb (lower) as the function of time. Hb oscillates

between positive and negative region before settles down to zero. The extra dimension is stabilized

although non-relativistic matter is present.

this effect is proved to be crucial for stabilization of the extra dimension. If the vev of æther

field is of the order of the 5-dimensional Planck mass, v ∼ O(M
3/2
∗ ), it can slow down the

evolution of the moduli field such that there is enough time to create the minimum for the

effective potential.

In this paper we assume homogeneous and isotropic distribution of non-relativistic

matter. However, local matter distributions might perturb the radion and knock it over

the minimum, causing the (local) catastrophic expansion of the fifth dimension. In [3], it

was also noted that the minimum of the potential well is generally not deep enough to

prevent the quantum tunneling of the radion. At this stage, it is not clear whether these

two difficulties can be solved by the new mechanism. These aspects of instability in the

presence of the æther are still open questions.

Note that the constancy of the 4-dimensional cosmological constant up to very early

epoch of the universe will post strong constraint on the size of the extra dimension. The

oscillation behavior of the moduli field may contradict with astronomical observations. In

order to construct a more realistic cosmological model of this scenario, the extra dimension
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should reach its stable fixed point before the present time i.e. tstab . tage which require fine

tuning of many parameters. The new possible solution is that we assume very high value

of v so that the oscillation of b has a very long period. The moduli will evolve smoothly

with no oscillating behavior. We can choose the value of v such that the size of the extra

dimension changes so slowly and it cannot alter the results of the Big Bang model.

Another interesting idea is to imagine that the universe started with a very symmetric

state which all spatial dimensions are compactified with the equal radius, for example,

topologically an 4-dimensional torus. In general, the Casimir energies in this compact

universe generate stabilized potential for the radius of all directions. On the other hand,

at the very early time, the energy density of matter and radiation will be the dominant

contribution. This will destabilize the moduli fields and all directions will become large.

However, if the Lorentz symmetry is spontaneously broken in some direction i.e. there is a

non-vanishing æther field pointing in the fifth direction, it will slow down the dynamics of

moduli field associated to the broken direction. The broken direction will be compactified

at stabilized radius while the unbroken directions are allowed to expand. This cosmologi-

cal scenario may establish a connection between the dimensionality of spacetime and the

violation of Lorentz symmetry. We leave this issue for future investigation.
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minima stabilizes all the moduli and drives the accelerating expansion of the universe. The

cosmological dynamics both in the bulk and the radion pictures are derived and simulated.

The equations of state for the Casimir energy in a general torus are derived. Shear viscosity

in extra dimensions induced by the Casimir density in the late times is identified and

calculated, it is found to be proportional to the Hubble constant.
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1. Introduction

According to the latest data on Type Ia Supernovae [1] and Cosmic Microwave Back-

ground Radiation (CMBR) [2], it is strongly believed that the universe consists of a sort

of vacuum energy, namely dark energy, which contributes the accelerated expansion in

three-dimensional space. Unfortunately, the exact form of the dark energy has not yet

been uncovered until now. The prominent candidates for dark energy are the cosmological

constant, and models of scalar fields, such as the quintessence and moduli fields.

In the standard cosmological model where the acceleration of the universe is taken into

account by a positive cosmological constant term, dark energy contributes largely, more

than 70 % of the total density of the universe [2]. This number (roughly 10−11 eV4) seems

arbitrarily small and the known mechanisms, such as the popular TeV-scale supersymme-

try (SUSY) breaking scenario or any top-down high-scale particle physics mechanisms, fail

to produce it.

In recent years, theories with large extra dimensions have received an explosion of

interests as they provide new solution to the hierarchy problem. Recently, it was found

that Casimir energy of massless and massive fields embedded in higher-dimensional space-

time could play a crucial role of dark energy with additional significant properties [3, 4].

– 1 –
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The Casimir energy not only drives the expansion of universe acceleratedly, but also sta-

bilizes the volume moduli of extra dimensions. However, the shape moduli, τ1, τ2, were

not included in the work of Greene and Levin. In this work we therefore take into account

these moduli in the cosmological dynamics by assuming that the extra dimensions are T
2.

The phenomenological implications of nontrivial shape moduli were pointed out in [5 – 7].

Shape moduli can have dramatic effects on the Kaluza-Klein spectrum, for example, they

can induce level-crossings and varying mass gaps. They can also help to eliminate light

KK states. It should be interesting to investigate the role of shape moduli in cosmology.

Our work employed the calculation of Casimir energy in the non-trivial space M
4×T

2.

The Casimir energy is the vacuum energy contributed from the quantum fluctuation of

fields which satisfy certain boundary conditions. In fact, the Casimir energy in various

spaces including a distorted torus was studied in earlier works [8 – 10, 4]. The standard

approach for determining the Casimir energy is the zeta function regularization [11].

Our result shows that the minimum of potential in the previous work [3] (τ1 = 0, τ2 = 1)

was the unstable local minimum while the true local minimum locates at specific points

in the moduli space, τ1 = ±1/2, τ2 =
√

3/2, confirming the result of ref. [4]. At this local

minimum the potential stabilizes all moduli and also sources the accelerated expansion of

the four dimensional universe.

This paper is organized as follows. In section 2 we review cosmological dynamics on

M
1+n×T

p spacetime. In section 3 we present the mathematical calculation to determine the

Casimir energy of massive and massless fields in the spacetime with toroidally compactified

extra dimensions. Then we go on to construct effective potential contributed by Casimir

energy of massive and massless field in M
1+3 × T

2 spacetime in section 4. The numerical

evidences of the stability of moduli space are presented in section 5. In section 6 we present

our conclusions.

2. Cosmological dynamics in M
1+n

× T
p

Our study of cosmological dynamics is based upon the application of Einstein’s general

relativity on the product space M
1+n × T

p, between a (1 + n)-dimensional spacetime and

a p-dimensional toroidally-compactified space. As a whole, the total number of spatial

dimensions is d = n+ p. We assume the cosmological ansatz

ds2 = gµν(x)dxµdxν + hij(x)dy
idyj , (2.1)

where the metric hij represent the p-dimensional compact space with i, j = 1, . . . , p and gµν

for the (1 + n)-dimensional noncompact spacetime with µ, ν = 0, . . . , n. Let’s assume also

that the metric only depends on the noncompact coordinates xµ. The compact coordinates

are 0 ≤ yi ≤ 2π.

In this paper, we focus our effort on the cosmological dynamics of a 4-dimensional

spacetime with two extra dimensions (n = 3 and p = 2). The metric of two-dimensional

torus T
2 takes the form

(hij) =
b2

τ2

(
1 τ1
τ1 |τ |2

)
, (2.2)

– 2 –
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where τ = τ1 + iτ2 is the complex structure (or shape moduli) and b2 is the Kähler

structure (or volume moduli). In cosmology, it is customary to write gµν = a2(t)ηµν and

hij = hij(t). In the next sections, we will assume that Casimir energy in compact direction,

ρ(d+1)D , plays the roles of the dominant energy content in the universe. By using Einstein

equations in (1 + 5)-dimensional spacetime, we obtain the following equations governing

the cosmological dynamics:

3H2
a +H2

b +6HaHb−
1

4τ2
2

(τ̇2
1 +τ̇2

2 ) = 8πGρ6D, (2.3)

Ḣa + 3H2
a + 2HaHb =

8πG

4

{

2ρ6D+

[

1−
(
τ1
τ2

)2
]

b∂bρ6D

−2τ1∂τ1ρ6D+
2τ2

1

τ2
∂τ2ρ6D

}

, (2.4)

Ḣb+2H2
b +3HaHb =−8πG

4

{

− 2ρ6D+

[

1−
(
τ1
τ2

)2
]

b∂bρ6D

−2τ1∂τ1ρ6D+
2τ2

1

τ2
∂τ2ρ6D

}
, (2.5)

τ̈1 +

(
3Ha + 2Hb − 2

τ̇2
τ2

)
τ̇1 =−16πGτ2

2

{
bτ1
2τ2

2

∂bρ6D+2∂τ1ρ6D− τ1
τ2
∂τ2ρ6D

}
, (2.6)

τ̈2
τ2

+
τ̇2
1 − τ̇2

2

τ2
2

+ 3Ha
ḃ

τ2
+ 2Hb

τ̇2
τ2

= 8πG

{
bτ2

1

τ2
2

∂bρ6D + 2τ1∂τ1ρ6D

−2τ2

[
1 +

(
τ1
τ2

)2
]
∂τ2ρ6D

}
. (2.7)

where G is the 6-D gravitational constant. We have defined the Hubble constants Ha = ȧ/a

and Hb = ḃ/b, where a dotted quantity represents the corresponding time derivative and

ρ6D is the casimir energy density in six dimensional spacetime.

2.1 Dynamics in the radion picture

Equations of motion (2.3)–(2.7) can be obtained by varying the d+1-dimensional Einstein-

Hilbert action:

S =

∫
d1+nxdpy

√
−gh

{
Md−1

∗
16π

R(1+d) − ρ(1+d)D(hij)

}
, (2.8)

with n = 3 and p = 2, where ρ(1+d)D(hij), R(1+d) and M∗ are the Casimir energy density,

Ricci scalar and the Planck mass in (1 + d)-dimensional spacetime respectively. For later

purpose, it is useful to perform KK-dimensional reduction of the above action from (1+d)

to (1+n)-dimensional spacetime and Weyl rescaling gµνE
= Ω

2

n−1 gµν ; Ω = Md−1
∗ Vp/m

n−1
pl ,

the action takes the form

S=

∫
d1+nx

√−gE

{
mn−1

pl

16π

[
RE+gµν

E

(
1

1−n∇µ ln
√
h∇ν ln

√
h+

1

4
∇µh

ij∇νhij

)]
−U(hij)

}
. (2.9)
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Note that the subscript E denotes the Einstein frame variables. Here, Vp =
∫
dpy

√
h =

(2πb)p ≡ lp is the (invariant) volume of extra dimensions, mpl and U(hij) =

Ω
1+n
1−nVpρ(1+d)D(hij) = Ω

1+n
1−n ρ(1+n)D(hij) are the Planck mass and the effective potential

in 1 + n-dimensional spacetime respectively. We can also take ρ(1+n)D(hij) to be the

Casimir energy density in (1 + n)-dimensional spacetime.

Since we are interested in the n = 3, p = 2 case, by using the metric of two-dimensional

torus defined in eq. (2.2), the action in eq. (2.9) can be written as

S=

∫
d4x

√−gE

{
m2

pl

16π

[
RE − 1

2
gµν
E (∇µψ∇νψ+ e−2φ2∇µφ1∇νφ1 +∇µφ2∇νφ2)

]
−U(ψ, φ1, φ2)

}
,

(2.10)

where ψ ≡ 2
√

2 ln b, φ1 ≡ τ1, and φ2 ≡ ln τ2. Such action gives rise to the following set of

equations:

6H2
E − 1

2

(
ψ̇2 + e−2φ2 φ̇1

2
+ φ̇2

2
)

=
16π

m2
pl

U, (2.11)

ψ̈ + 3HEψ̇ = −16π

m2
pl

∂U

∂ψ
, (2.12)

φ̈1 + 3HEφ̇1 − 2φ̇1φ̇2 = −16π

m2
pl

e2φ2
∂U

∂φ1
, (2.13)

φ̈2 + 3HE φ̇2 + e−2φ2 φ̇1
2

= −16π

m2
pl

∂U

∂φ2
, (2.14)

and

4ḢE +
(
ψ̇2 + e−2φ2 φ̇1

2
+ φ̇2

2
)

= 0. (2.15)

Note that HE = (daE/dtE)/aE is the Hubble constant in the Einstein’s frame.

3. Casimir energy in M
1+n

× T
p

In this section, we will undergo the mathematical formulation to determine the Casimir

energy, Êcas, associated with a scalar field of mass M in a M
1+n ×T

p space. The fermionic

degree of freedom will contribute to the Casimir energy with the same expression except

for an extra minus sign. We then focus on the result from our phenomenological study

(n = 3, p = 2).

3.1 Casimir-energy calculation

Let Vn = Ln be the spatial volume of non-compact spacetime, and Vp = lp be the volume

of compact space. If we assume L≫ l, the zero-point energy of scalar fields in M
1+n × T

p

can be evaluated by

Êcas =
1

2

(
L

2π

)n ∑

ni,nj

∫ +∞

−∞
dnk

√
δabkakb + hijninj +M2, (3.1)

where ka; a = 1, . . . , n is the momentum in each non-compact spatial direction, ni ∈ Z;

i = 1, . . . , p is the momentum number in each compact direction.

– 4 –
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Using the property of integration in appendix A and changing variable of integration

as v = k2/(hijninj +M2), we can express the Casimir energy as

Êcas =
1

2

(
L

2π

)n πn/2

Γ(n/2)

∑

ni,nj

(hijninj +M2)
n+1

2

∫ ∞

0
dvv

n−2

2

√
1 + v. (3.2)

We can convert the integral into the Gamma function by using the formulae in appendix A;

as a consequence, we obtain the Casimir energy in a simple form

Êcas =
1

2

(
2π

L

)1+2s Γ(s)

π
1+2s

2 Γ(−1
2)

∑

ni,nj

(hijninj +M2)−s; s = −d− p+ 1

2
. (3.3)

In our case, the compact space is T
2 and hij is the inverse metric from eq. (2.2);

therefore, our next task is to regularize the infinite summation in the eq. (3.3)

F

(
s;

|τ |2
b2τ2

,− 2τ1
b2τ2

,
1

b2τ2
;M2

)
=
∑

n1,n2

( |τ |2
b2τ2

n2
1 −

2τ1
b2τ2

n1n2 +
1

b2τ2
n2

2 +M2

)−s

, (3.4)

which is known as extended Chowla-Selberg zeta function [9]. It is worth noting that

Vp = l2 = (2πb)2 in this case.

After a few steps of analytic manipulation by using Poisson resummation and property

of the modified Bessel function, we obtain

F

(
s;

|τ |2
b2τ2

,− 2τ1
b2τ2

,
1

b2τ2
;M2

)
= b2s

{
2τ s

2ζEH(s; τ2b
2M2) (3.5)

+2
√
π

Γ(s− 1
2)

Γ(s)
τ1−s
2 ζEH

(
s− 1/2;

b2M2

τ2

)

+

∞∑

m,k=1

8πs

Γ(s)

√
τ2k

s− 1

2
cos(2πτ1mk)

(√
m2 + b2M2

τ2

)s− 1

2

Ks− 1

2



2πτ2k

√

m2 +
b2M2

τ2




}

,

where the Epstein-Hurwitz zeta function ζEH(s; q) is expressed as

ζEH(s; q) =
1

2

∑

n∈Z

′
(n2 + q)−s

= −q
−s

2
+

√
πΓ(s− 1

2 )

2Γ(s)
q−s+ 1

2 +

∞∑

n=1

2πsq−s/2+1/4

Γ(s)
ns− 1

2Ks− 1

2

(2πn
√
q), (3.6)

where the prime at the first sum indicates that the term n = 0 is excluded. A similar

expression which manifests the periodicity of the Casimir energy with respect to τ1 is also

given in ref. [12].

The expression serves as an analytic continuation of the Casimir energy where s is

extended from positive to negative values. Inserting eq. (3.5) into eq. (3.3) and eliminating

the infinite terms due to the pole of Γ(s = −2) and Γ(s − 1 = −3) in this case, we conve-

niently reached the regularized Casimir energy. The dropped divergent terms correspond

– 5 –
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Figure 1: The magnitude of the Casimir energy density, |ρ4D|, in four dimension per degree of

freedom for M = 5, b = 0.133.

to the constant total energy and the constant energy density in the bulk. Both of them do

not depend on any parameters of the torus and therefore can be safely eliminated from the

physically relevant Casimir effects by renormalization. The final regulated Casimir energy

density ρ(hij) in (1 + 3)-dimensional spacetime can then be expressed as

ρ4D(b2, τ1, τ2) =
Êcas

Vm

= −(4π2b2)s

{

2τ s
2 (τ2b

2M2)−
s
2
+ 1

4

∞∑

k=1

ks− 1

2Ks− 1

2

(2πkbM
√
τ2)

+2τ1−s
2

(
b2M2

τ2

)− s
2
+ 1

2
∞∑

k=1

ks−1Ks−1

(
2πkbM√

τ2

)

+4
√
τ2

∞∑

k,m=1

ks− 1

2
cos(2πτ1km)

(√
m2+ b2M2

τ2

)s− 1

2

Ks− 1

2



2πkτ2

√

m2+
b2M2

τ2




}
.(3.7)

In the case of massless scalar fields (M = 0), the Casimir energy density becomes

ρ4D(b2, τ1, τ2) = −(4π2b2)s

{
τ s
2π

s− 1

2 Γ

(
1

2
− s

)
ζ(1 − 2s) + τ1−s

2 πs−1Γ(1 − s)ζ(2 − 2s)

+4
√
τ2

∞∑

m,k=1

(
k

m

)s− 1

2

cos(2πmkτ1)Ks− 1

2

(2πmkτ2)

}

. (3.8)

The Casimir density in (1+3+2) dimensions is given by ρ6D = ρ4D/(2πb)
2.

As it is pointed out in the work of Ponton and Poppitz [4]. Since the symmetry τ →
−1/τ, τ → τ + 1 of the torus is preserved in the Casimir energy expression, it is sufficient

– 6 –
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to consider only the fundamental region where τ ≥ 1,−1/2 ≤ τ1 ≤ 1/2 of the shape

moduli space. In the fundamental region, there are two minima and one saddle point of

the magnitude |ρ| of the Casimir energy density. The saddle point locates at τ1 = 0, τ2 = 1

and the two minima locate at τ1 = ±1/2, τ2 =
√

3/2. This is shown in figure 1.

3.2 Analysis for small bM

In the limit of bM ≪ 1, we recalculate the Casimir energy by performing the binomial

expansion with respect to small bM before regularization, and keep only the leading-order

terms. It can be demonstrated that the process of regularizing each term after performing

binomial expansion is NOT equivalent to the process of regularizing the whole expression at

once if s = −2 is set beforehand. When we set s = (1−d)/2 = −2, the binomial expansion

of eq. (3.4) gives only three terms with orders of (bM)0, (bM)2, and (bM)4, whereas the

regularization of the full expression before setting s = −2 as in eq. (3.5) ,which gives

eq. (3.7) as a result, generically leads to an infinite series of bM , even after setting s = −2

in the final expression.

Without setting s = −2 before regularization, the precise dependence of the coefficients

of the bM -binomial expansion to the moduli parameters τ1, τ2 will be determined. The

small bM expansion is obtained subsequently.

We begin by replacing hij with the form of the inverse metric of T
2 in eq. (3.3) and

using Mellin transform (see appendix A)

Êcas =
1

2

(
2π

L

)1+2s Γ(s)

π
1+2s

2 Γ(−1
2)

∑

n1,n2∈Z

∫ ∞

0
dt ts−1e

−{ 1

τ2b2
(|τ |2n2

1
−2τ1n1n2+n2

2
)+M2}t

(3.9)

=
1

2

(
2π

L

)1+2s Γ(s)

π
1+2s

2 Γ(−1
2)

∑

n1,n2∈Z

∫ ∞

0
dv vs−1e

−{ 1

τ2
(|τ |2n2

1−2τ1n1n2+n2
2)+(bM)2}v

=
1

2

(
2π

L

)1+2s b2s

π
1+2s

2 Γ(−1
2)

∞∑

j=0

(−1)m

m!
(bM)2jΓ(s+j)

∑

n1,n2∈Z

(|τ |2
τ2

n2
1−2

τ1
τ2
n1n2+

1

τ2
n2

2

)−(s+j)

,

where the second line is obtained by changing the dummy variable v = t/b2, and the final

line is obtained by expanding the Taylor series for e−(bM)2 . We can determine the double

summation in eq. (3.9) by using the result in eq. (3.4), (3.5); as a consequence, the Casimir

energy density in five spatial dimensions takes the form,

ρ6D(b2, τ1, τ2)=−(4π2b2)s−1
∞∑

j=0

(−1)j

j!
(bM)2j

×
{
4πj√τ2

∞∑

m,k=1

(
k

m

)s+j− 1

2

cos(2πmkτ1)Ks+j− 1

2

(2πmkτ2)

+πs+2j− 1

2 τ s+j
2 Γ

(
1

2
−s−j

)
ζ(1−2s−2j)+πs+2j−1τ1−s−j

2 Γ(1−s−j)ζ(2−2s−2j)
}
.

In the limit bM ≪ 1 for s = −2, the Casimir energy density then becomes

ρ6D(b2, τ1, τ2) ≃ − 1

(4π2b2)3

{
C1 − C2(bM)2 + C3(bM)4

}
(3.10)
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where

C1 ≡ π−
5

2 τ−2
2 Γ

(
5

2

)
ζ(5)+π−3τ3

2 Γ(3)ζ(6)+4
√
τ2

∞∑

m,k=1

(m
k

) 5

2

cos(2πmkτ1)K−5/2(2πmkτ2),

C2 ≡ π−
1

2 τ−1
2 Γ

(
3

2

)
ζ(3)+π−1τ2

2 Γ(2)ζ(4)+4π
√
τ2

∞∑

m,k=1

(m
k

) 3

2

cos(2πmkτ1)K−3/2(2πmkτ2),

C3 ≡ π

2
τ2Γ(1)ζ(2) + 2π2√τ2

∞∑

m,k=1

(m
k

) 1

2

cos(2πmkτ1)K−1/2(2πmkτ2). (3.11)

In the next section, the total Casimir density for small bM and the full expression will

be numerically compared. The true minimum of the potential, induced from the Casimir

energy density located at a point (τ1, τ2) = (±1/2,
√

3/2), appears only when the full

expression is evaluated.

4. Particle spectrum and effective potential for moduli fields

It is demonstrated in ref. [4] and ref. [3] that a careful mixing of massless and massive,

bosonic and fermionic degrees of freedom of the bulk fields can lead to a Casimir energy

density with local minimum with respect to the scale factor, b, of the compact extra

dimensions. In the torus case with the shape moduli τ1, τ2, it can be shown that the

true minimum of the mixed Casimir energy density (and thus the potential) locates at

τ1 = ±1/2, τ2 =
√

3/2, in contrast to the case of undistorted torus considered in the

previous work where the shape moduli are set to τ1 = 0, τ2 = 1.

The simplest model of the bulk fields in our M
1+3 × T

2 space consists of a massless

boson, a massless fermion, a massive fermion with mass M , and a massive boson with

mass λM . It was found that for the range 0.40 < λ < 0.42 and M = 5, the mixed Casimir

density has local minimum with respect to the scale factor b, and the moduli τ1, τ2. Since

the mass of the boson is different from the mass of the fermion, this is the scenario where

SUSY is broken in the bulk if it exists at higher scales. There is no particular reason for

why the ratio of the masses of the massive boson and fermion took the specific value in

this range. If it has anything to do with SUSY breaking, it is desirable that we are able

to establish a SUSY breaking mechanism where this specific ratio of the masses λ could

be explained or distinctively selected. From phenomenological point of view, it is desirable

that these massless and small-mass bulk fields are sterile neutrinos for they can explain the

smallness of neutrino masses in four dimensions. For further details, see ref. [13, 14].

An important issue in mixing bosonic and fermionic degrees of freedom to obtain the

total Casimir energy density with a local minimum is the positivity of the energy density.

Generally, the value of the total Casimir density at τ1 = ±1/2, τ2 =
√

3/2 is lower than the

value at the saddle point τ1 = 0, τ2 = 1, for all range of λ. However, for certain ranges of

λ (e.g. λ . 0.407), the density becomes negative around the true minimum and therefore

violates the positive energy condition. A negative value of the density will not stabilize

the dynamics and the size of the torus. We therefore choose the value λ = 0.408 for our

– 8 –
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Figure 2: The total Casimir energy density in six dimension for mixture of massless and massive

fields for M = 5, λ = 0.408, and τ =
√
τ2

1
+ τ2

2
is fixed to 1.

simulation of the cosmological dynamics. Figure 2 shows the total Casimir energy density

for the spectrum of massless and massive particles mentioned above.

The plot of the total Casimir density in (1+3+2)-dimensional spacetime using the

full expression, eq. (3.7), in comparison to the plot from the small bM approximation,

eq. (3.10), is given in figure 3. The true minimum at τ1 = ±1/2, τ2 =
√

3/2 only exist in

the full expression case. This can be understood considering bminM ≈ 0.67 and is somewhat

close to 1, resulting in a bad approximation of the expression due to higher powers of bM

being neglected. It is therefore required that we use the full expression of the total Casimir

energy density in the simulation of the cosmological dynamics.

5. Evidence of stability of the moduli space and cosmological dynamics

By numerically solving the field equations in section 2, the stabilization of the torus and the

accelerated expansion of large 4-dimensional spacetime can be demonstrated to occur at the

true minimum of the Casimir energy density in the moduli space. The point τ1 = 0, τ2 = 1

is a saddle point and it is an unstable equilibrium of the dynamics.

The rolling of the universe to the true minimum of the Casimir density is illustrated

in figure 4–7. When the cosmological dynamics is initiated even within a small vicinity of

the saddle point, τ1 = 0, τ2 = 1, of the Casimir energy density, it will roll down to the true

minimum at τ1 = ±1/2, τ2 =
√

3/2 even with minimal amount of perturbations. This is

shown in figure 4, 5. Observe that it tends to roll along the trail τ = 1 in the moduli space.

When the tossing initial conditions are at a distant away from the saddle point and

the true minimum, certain sets of the initial conditions still result in the stabilization

of the torus moduli, τ1, τ2, and the scale factor, b, of the extra dimension as is shown

in figure 6, 7. Naturally, as long as the Casimir energy density at the stabilized value is

– 9 –
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Figure 3: The Casimir energy density in six dimension from small bM approximation in the

upper figure in comparison to the full expression in the lower figure. Both are evaluated at their

corresponding bmin.

positive, the acceleration of the scale factor, a, of the 4-dimensional spacetime is guaranteed.

The positive Casimir density serves as the positive cosmological constant.

A natural consequence of the Casimir energy that is independent of the scale factor,

a(t), of the large dimension is the fact that it leads to wa = −1 for the pressure pa =

waρ. For the pressure in the compact extra dimensions, we can start by considering pb =

−∂(ρVb)/∂Vb = wbρ, wb of our Casimir energy density is then given by

wb = −1 − b

2ρ

∂ρ

∂b
(5.1)

where ρ is the total Casimir energy density. Due to the dynamics of shape moduli (or
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point τ1 = 0, τ2 = 1, it rolls along the trail τ = 1 to the true minimum at τ1 = ±1/2, τ2 =
√

3/2.

Casimir “viscosity” in the compact space, see appendix B), the value of wb at the stabilized

radius at the true minimum is fractionally smaller than −2 (around −2.16) as is shown in

figure 5.
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Figure 5: Rolling dynamics from saddle point to the true minimum.

A more appropriate definition of physical pressures in the distorted torus is

p∗K ≡ TK
K , (5.2)
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Figure 7: Rolling dynamics from other initial condition II.

where K = 4, 5. This definition gives the following expressions for wK = p∗K/ρ,

w4 = −1 +
b

2ρ
∂bρ

(
τ2
1 − τ2

2

τ2
2

)
+

2τ1
ρ
∂τ1ρ+

1

ρ

(
τ2
2 − τ2

1

τ2

)
∂τ2ρ (5.3)

w5 = −1 +
b

2ρ
∂bρ

(
τ2
1 − τ2

2

τ2
2

)
− 1

ρ

(
τ2

τ2

)
∂τ2ρ. (5.4)
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By directly solving the equations of motion in six dimensions at the stabilized point where

Ḣa = Ḣb = Hb = τ̇1 = τ̇2 = 0, it can be shown that w4,5 = −2, as is confirmed numerically

in figure 5. It is interesting to note that the value of w4,5 becomes −2 at both the saddle

point and the true minimum where the dynamics is stabilized.

The difference of the two definitions of pressure originates from the shear viscosity

induced by the Casimir energy in the off-diagonal components of the stress tensor. From

the equations of motion of the 6-D universe with viscosities, eq. (B.10) in appendix B,

shear viscosity at the stabilized point ηstab
b can be identified to be

ηstab
b =

3Ha,stab

16πG
(5.5)

=
ρ6D,min

2Ha,stab
(5.6)

where Ha,stab is the Hubble constant of the expanding four dimensions at the stabilized

point of the compactified space. Note that we can evaluate eq. (2.3), (B.8) and (B.9) at

the stabilized point and use the definition of ηstab
b to analytically confirm the numerical

results in which w4,5 = −2 at the stabilized point.

We should mention here that the time scale, ts, of the simulated figures is given by

ts =

√
23

2π

mpl

bmin
b3s, (5.7)

where bs is the scale of b, and bmin ≃ 0.1328bs as a result of numerical simulation. If we

require that the stabilization time ≃ 10ts is less than the age of the universe, 1010 years,

this will put constraint on the size bmin of the extra dimensions T
2,

bmin . 0.7µm. (5.8)

This is about few hundred times stronger than the constraints from table-top experi-

ments [15].

It is interesting that in this kind of cosmological model, the constancy of the 4-

dimensional gravitational constant, G4 = G/4π2b2 = 1/m2
pl, up to the early times of

the universe will give a very strong constraint on the size of the compactified extra di-

mensions. Any future observations of the universe from very early epoch could possibly

put constraints on the inconstancy of the gravitational constant. Such constraints will put

very strong limits on the size of compact extra dimensions in this kind of model where

oscillatory behaviour is significant in the early times.

Another important aspect of this model is the relationship between the effective cos-

mological constant in 4-dimensional spacetime, Λ4 = 8πG4ρ4D,min, and the size of extra

dimension, bmin,

Λ4 = 8πG4ρ4D,min (5.9)

= 3H2
E,stab. (5.10)

This leads to the typical value of bmin ≈ 2.4 µm for ρvac ≈ 10−11 eV4. The value of the

effective size of extra dimensions, 2πbmin ≈ 15µm, yields the quantum gravity scale in the

bulk, M∗ ≈ 12 TeV.
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6. Conclusions and discussion

The stabilization of compact extra dimensions and the acceleration of the other 4-

dimensional part of the spacetime can be simultaneously described by the dynamics of

the Einstein field equations in the bulk spacetime. The acceleration of the 4-dimensional

“universe” occurs naturally once the scale of the compact dimensions is stabilized and the

density of the Casimir energy in the bulk becomes a (positive) constant at that stabilized

value. As a result, the apparent positive “cosmological constant” that we seem to observe

in the four dimensional visible universe is effectively induced. This is demonstrated beau-

tifully in the work by Greene and Levin [3] when the Casimir density of the undistorted

torus satisfies wa = −1, wb = −2 condition.

Shape moduli of the torus can be added to the model. The true minimum of the

Casimir energy density of the torus with shape moduli is demonstrated to be located at τ1 =

±1/2, τ2 =
√

3/2. The cosmological dynamic shows that a minimally small perturbation to

the saddle point rolls the universe down to the true minimum. Other initial conditions also

suggest that the universe tends to roll around τ = 1 contour to reach the true minimum.

Note that it is also possible to stabilize the moduli at the saddle point τ1 = 0, τ2 = 1 but the

initial conditions of the shape moduli fields must be fine-tuned so that τ1 = 0, τ̇1 = 0. Some

extra-mechanisms such as Brandenberger-Vafa mechanism in string gas cosmology [16] is

needed for this purpose. However, as it was pointed out in [17], the stabilized point

τ1 = ±1/2 and τ2 =
√

3/2 is also the fixed point of T-duality and the the enhance symmetry

point hence Brandenberger-Vafa mechanism could also set the initial value of the moduli

precisely to be at the stabilized point.

The shear viscosity in the extra dimension is determined to be proportional to the

Hubble constant at the stabilized point, ηb = 3Ha,stab/16πG. Through the Einstein field

equations, this Hubble constant of the 4-D universe is determined by the value of the

Casimir energy density at the stabilized point. The effective four dimensional cosmological

constant is also given by 8πGρ6D,min.

In this kind of model, there is a relationship between the size of the compact dimensions

and the observed four dimensional cosmological constant. This remarkable connection is

induced by the nature of Casimir energy density which depends on the size of the compact

dimension, resulting in Λ4 ∼ b−6
min.

It is equally important to note that the constancy of the 4-D gravitational constant

up to very early time of the universe will provide strong constraint on the size of extra

dimension in this particular cosmological model which expresses oscillatory behaviour at

the early times.
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A. Useful formulae

Phase space integration.

∫
ddkf(k) =

2πd/2

Γ(d/2)

∫
kd−1f(k)dk. (A.1)

Poisson resummation.

∑

n∈Z

f(n) = f̃(k) =
√

2π
∑

m∈Z

f̃(2πm), (A.2)

where

f̃(k) =
1√
2π

∫ +∞

−∞
f(x)e−ikxdx. (A.3)

If f(x) = e−a(x+c)2 , then f̃(k) = 1√
2π

√
π
ae

− k2

4a
+ikc.

Integral representation of Gamma function.

Γ(x) =

∫ +∞

0
e−ttx−1dt. (A.4)

The integral representation of the modified Bessel function of the second kind.

Kν(z) =
1

2

(z
2

)ν
∫ +∞

0
t−ν−1e−t− z2

4t dt, (A.5)

where |arg(z)| < π
2 , Re(z2) > 0.

Mellin transform.

z−s =
1

Γ(s)

∫ ∞

0
dt e−ztts−1; Re(z) > 0, Re(s) > 0. (A.6)

B. Energy momentum tensor of viscous fluid

Let UA = (1, 0, 0, 0, 0, 0) be the 6-velocity of the cosmic fluid in comoving coordinates. In

terms of the projection tensor hAB = gAB + UAUB , the general energy momentum tensor

of fluid with bulk viscosity ζ and shear viscosity η is given by:

TAB = ρUAUB + (p− ζθ)hAB − 2ησAB . (B.1)

Here θ ≡ ∇AU
A is the scalar expansion and σAB = hC

Ah
D
B∇(CUD) − 1

5hABθ is the shear

tensor. By using metric defined in eq. (2.1) and (2.2), we can show that

T 0
0 = −ρ, (B.2)

T 1
1 = T 2

2 = T 3
3 = pa (B.3)
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T 4
4 = (pb − ζbθ)− 2ηb

[
3

5
(Hb −Ha) −

τ̇2
2τ2

− τ1τ̇1
2τ2

2

]
(B.4)

T 5
5 = (pb − ζbθ)− 2ηb

[
3

5
(Hb −Ha) +

τ̇2
2τ2

+
τ1τ̇1
2τ2

2

]
(B.5)

T 4
5 = 2ηb

[
τ1τ̇2
τ2

+ (τ2
1 − τ2

2 )
τ̇1
2τ2

2

]
(B.6)

T 5
4 = −ηb

τ̇1
τ2
2

(B.7)

Here we assume there is no viscosity in noncompact large dimensions (ζa = ηa = 0).

Einstein’s equations, eq. (2.4)–(2.7), can be written in terms of bulk and shear viscosity as

Ḣa + 3H2
a + 2HaHb =

8πG

4

{
ρ6D+pa−2(pb−ζbθ)+

12

5
ηb(Hb−Ha)

}
, (B.8)

Ḣb + 2H2
b + 3HaHb =

8πG

4

{
ρ6D−3pa+2(pb−ζbθ)−

12

5
ηb(Hb−Ha)

}
,(B.9)

τ̈1 +

(
3Ha + 2Hb − 2

τ̇2
τ2

)
τ̇1 = 16πG {ηbτ̇1} , (B.10)

τ̈2
τ2

+
τ̇2
1 − τ̇2

2

τ2
2

+ 3Ha
ḃ

τ2
+ 2Hb

τ̇2
τ2

= 48πG

{
ηb
τ̇2
τ2

}
. (B.11)

The conservation of energy is

ρ̇6D + 3Ha(ρ6D + pa) + 2Hb(ρ6D + pb)

+

(
12

5
ηb − 6ζb

)
HaHb −

(
12

5
ηb + 4ζb

)
H2

b − ηb

(
τ̇2
1

τ2
2

+
τ̇2
2

τ2
2

)
= 0. (B.12)
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