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We study the properties of nuclear matter using the AdS/CFT correspondence. We propose
rigorous string configurations of the multiquark states in the quark-gluon plasma when the gluons are
deconfined but the chiral symmetry is still broken. Even though the pure quark matter is unstable
thermodynamically, the multiquark matter resulted from the gluon exchanges between quarks are
thermodynamically stable for intermediate temperatures and sufficiently large densities. This implies that
the multiquark nuclear phase is thermodynamically preferred over other phases provided that the density
is sufficiently large. The magnetic properties of the multiquark nuclear phase are then investigated. We
found that the strong external magnetic fields stabilize two possible multiquark configurations. One of the
configurations was unstable in the zero field situation. Strong field and large temperature converge the
two configurations together. Around the critical field or temperature where the two configurations merge,
the multiquarks become unstable. At a fixed density, the multiquarks either change into multiquarks with

smaller colour charges or melt away into the chiral-symmetric quark-gluon plasma phase (QGP). The other



possible magnetic nuclear phases are explored in the most general case of Sakai-Sugimoto model. In the
intermediate range of temperature, the magnetized multiquark phase is thermodynamically preferred over
other phases such as the magnetized vacuum, the pion-gradient phase, and the magnetized chiral-
symmetric QGP, provided that the density is sufficiently high and the magnetic field is not too strong.
Lastly, we consider the thermodynamical properties of the multiquark nuclear phase and its implications to
the physics of densed warm compact star. Numerical studies reveal that the sound speed within the
multiquark nuclear matter does not exceed the speed of light in the vacuum and thus the multiquark matter

is compressible even at extremely large nuclear densities.
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ABSTRACT: In the deconfined phase of quark-gluon plasma, it seems that most of the
quarks, antiquarks and gluons should be effectively free in the absence of the linear confining
potential. However, the remaining Coulomb-type potential between quarks in the plasma
could still be sufficiently strong that certain bound states, notably of heavy quarks such
as J/1 are stable even in the deconfined plasma up to a certain temperature. Baryons
can also exist in the deconfined phase provided that the density is sufficiently large. We
study three kinds of exotic multi-quark bound states in the deconfined phase of quark-gluon
plasma from gravity dual models in addition to the normal baryon. They are k-baryon,
(N + k)-baryon and a bound state of j mesons which we call “j-mesonance”. Binding
energies and screening lengths of these exotic states are studied and are found to have
similar properties to those of mesons and baryons at the leading order. Phase diagram
for the exotic nuclear phases is subsequently studied in the Sakai-Sugimoto model. Even
though the exotics are less stable than normal baryons, in the region of high chemical
potential and low temperature, they are more stable thermodynamically than the vacuum
and chiral-symmetric quark-gluon plasma phases (yS-QGP).
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1 Introduction

The discovery of AdS/CFT correspondence [1, 2] provides a new tool for studying the
strongly coupled gauge theories. Although the original setup and most of the systems that
string theorists have been investigating so far are highly supersymmetric and conformal, a
lot of progress has been made in constructing more realistic models. Now we have examples
of QCD-like gauge theory with known gravity dual that share most of the qualitative
features of QCD. These holographic models allow us to perform analytic calculations in the
regimes which are too difficult to implement for the real QCD even for lattice calculations.
The properties of quark-gluon plasma from Relativistic Heavy Ion Collisions and QCD at
finite baryon density are two examples of such regimes.

The gravity dual of baryons can be described via baryon vertex [3, 4], a D-brane
wrapping higher dimensional sphere in 10-dimensional curved background with N strings
attached to it and ending at the boundary. These strings are required to cancel an N
charge in the world-volume of the wrapped brane due to the presence of RR flux in the
background. The endpoint of fundamental string that ends on D-brane is electrically
charged with respect to world-volume U(1) gauge field. Its charge is +1 or —1 depend-
ing on the orientation of the string and D-brane. Moreover, strings stretching from the
baryon vertex to the boundary of AdS or the corresponding background spacetime (e.g. in
Sakai-Sugimoto model) behave as fermions, giving antisymmetricity of the baryon vertex.
This fact allows us to construct an SU(N) gauge-invariant combination of N quarks as



required by the group theory. Baryon configurations were investigated further in [5]-[7].
The authors in [8] extended the consideration in confining background where it was found
that the binding energy is linear in N and in the size of the baryon on the boundary.
And furthermore, they found that in Nsysy = 4 theory there are stable configurations for
baryons which are made of k quarks, or “k-baryon”, if 5N/8 < k < N. Such configurations
can be realized by considering the usual baryon vertex with k strings stretched up to the
boundary and the rest N — k strings stretched down to the horizon. These baryons are
not colour singlet and transform as k,(Nle), representation under SU(N) gauge group, for
example the case kK = N — 1 gives rise to a baryonic configuration in the anti-fundamental
representation. In a confining theory we do not expect to find such a bound state. It was
proposed in [9, 10] that the k < N bound states can exist in a deconfined phase.

In general, we could imagine that there would be more exotic baryon states in the
deconfined phase where bound states of quarks need not be the colour singlet. Some
attempts have been made in constructing holographic description of exotic multi-quarks
bound states [9]-[12]. The author in [12] considered exotic quark configurations formed
by combining two or more baryon vertices together. However, it might be possible to
construct an exotic baryon from a single baryon vertex which should be more energetically
preferable. One useful observation is that there are infinite combinations of string charges
that can cancel the charge from the background RR flux. Hence, the total number of strings
attached to the baryon vertex need not to be equal to N. For example, if the orientation
of D-branes is fixed in such a way that there is +/N units of charge on its world-volume, we
can attach N + k strings, each with —1 charge and k strings with +1 charge to make the
total charge vanishes. As long as the conservation of charge is concerned, k could be any
integer. In this case, we can construct a kK > N baryon. Such baryon could be the lightest
bound state in some irreducible representation of the underlying gauge theory, thus it may
be stable and can be observed in the deconfined phase. We would like to investigate this
possibility further in this paper.

It is also interesting to study exotic baryons in more realistic model such as Sakai-
Sugimoto model [13, 14]. This model is based on Witten’s model [15] which uses the
D4-brane wrapping a Scherk-Schwarz circle and adds a stack of Ny probe D8-branes and
a stack of N; probe anti-D8-branes transverse to the circle. This model contains mass-
less chiral fermions and the flavour symmetry. The most striking feature of this model
is that it introduces geometrical mechanism for spontaneous chiral symmetry breaking.
Using the fact that the circle vanishes at a finite radial coordinates in the near horizon
limit, D8-branes and anti-D8-branes are connected in a U-shaped configuration. At low
temperature the model describes a confining gauge theory with broken chiral symmetry.
Above a deconfinement temperature, gluons become effectively free. However, both the
connected U-shape D8-branes configuration and the separated parallel brane-anti-brane
configuration are possible in the intermediate temperature. The chiral symmetry is still
broken even though the gluons are already deconfined. At higher temperature the chiral
symmetry is restored, which is illustrated geometrically by the separation of the D8-branes
and anti-D8-branes [16]. This corresponds to the branes being in parallel configuration.



The model also has an interesting phase structure. Finite baryon density in the Sakai-
Sugimoto model has been studied in [17, 18] and extended to the full parameter space in [19]
where baryon matter is represented by D4-branes in the D8-brane (nuclear matters) or by
strings stretched from the D8-brane down to the horizon (quark matters). It was shown that
the former configuration is always preferred to the latter and quark matters are unstable
to density fluctuations. In the deconfined phase there are three regions corresponding to
the vacuum, quark-gluon plasma, and nuclear matter, with a first-order and a second-order
phase transition separating these three phases. The author in [19] found that for a large
baryon number density, and at low temperatures, the dominant phase has broken chiral
symmetry in agreement with QCD at high density. It is interesting to see how exotic
baryon states fit into the phase structure.

This paper is organized as the following. In section 2, we discuss some classes of exotic
baryon configurations and investigate their static configurations in section 3. Binding en-
ergy and screening length of the configurations are calculated in section 4. The dependence
on free quark mass of exotic baryon configuration is discussed in section 5. The phase dia-
gram of Sakai-Sukimoto model with exotic baryons is investigated in section 6. We discuss
our results in section 7 and conclude in section 8.

2 Some classes of multi-quark states

In the deconfined phase of QGP, coloured states of a number of quarks and antiquarks can
exist in the medium as long as it is energetically more favoured than the free quarks and
antiquarks or other mesonic states. We will call these multi-quark states as “baryons” in
this article. In the confined phase, the only allowed baryons are those with colour singlet
combinations such as nucleons and pentaquarks. For the deconfined phase, baryons can
have colour and thus can have more varieties than the situation in the confined phase.

In general, a D(8 — p)-brane wrapping the subspace Sg_,, of the background spacetime
sources the gauge field A on its world volume. This gauge field will couple with the
antisymmetric (8 — p)-form field strength G(s—p) and induce the charge upon the wrapping
D(8 — p)-brane. If the background is generated by a stack of N Dp-branes, then the charge
being induced upon the wrapping D(8 — p)-brane will be exactly N. This charge needs to
be cancelled by external charges brought about by strings. Each of the strings stretching
out from the wrapping brane to the spacetime boundary or probe branes carries —1 unit
of charge. Therefore it is required that the total number of “quark” strings stretching out
from the wrapping brane must be N. The configuration of wrapping D(8 — p)-brane with
totally N strings stretching out is called a baryon vertex [3, 4].

For the confined phase, since quarks cannot exist as free-quark strings with one end
falling behind the horizon, therefore they can only start from the baryon vertex and go to
the probe branes. On the other hand, in the deconfined phase, a radial string configuration
lying along the radial coordinate is also a classical solution of the Nambu-Goto action [20]
and it represents the free (anti)quark state in the QGP medium. A string can either start

from the baryon vertex and go radially to the horizon of the background spacetime or it can
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Figure 1. The gravity dual configurations of the hypothetical exotic states (a) k-baryon with
the number of hanging strings k, = k& < N and the number of radial strings k, = N — k. (b)
(N + k)-baryon with k;, = N + k and k, = k. (c) j-mesonance with ky, = 25 and k, = N.

come from the horizon and end at the baryon vertex. We will call this string configuration
which is allowed in the deconfined phase as the “radial string”.

In the deconfined phase of QGP, it is possible to have k;, strings hanging from the
spacetime boundary down to the baryon vertex and another k, strings stretching radi-
ally from the baryon vertex down to the horizon. The total number &k, + k& = N is
the charge conservation constraint on the configuration. This configuration is known as
“k-baryon” [8].

Another possible configuration is when there are N quark-strings and k antiquark-
strings hanging down to the vertex from the probe branes. To conserve the charge, there
are additional k quark-strings hanging from the vertex down to the horizon. We will
call this configuration “(IV + k)-baryon” (e.g. pentaquark could be represented by one of
this kind).

An even more interesting configuration allowed in the deconfined phase is when there
are j pairs of quark and antiquark strings hanging from the probe branes down to the
vertex. Again, to conserve charges, we need N radial strings stretching from the vertex
down to the horizon. This configuration obviously can decay into j mesons when it is less
energetically favoured. Therefore we will call this state, a “j-mesonance”, representing a
binding state of j mesons in the QGP.

In summary, the charge conservation constraint for each case can be expressed as
the following.

For k-baryon,
kn + k. =N; ky=k. (2.1)

For (N + k)-baryon,
kn—k=N; ky,=N+Ek. (2.2)



For j-mesonance,
ky = 27; k. = N. (2.3)

Note that ky is the number of strings hanging from the boundary down to the baryon
vertex and k, is the number of strings hanging from the vertex down to the horizon. The
value of k and j can be as large as N x N ¢. However, in this article, we will take this
number to be large and ignore the upper bound on k and j. Each configuration of exotic

baryons is illustrated in figure 1.

3 Force conditions

In this section, we will consider the force condition for each exotic configuration of the
quarks and antiquarks in a deconfined phase. The calculation will be performed in the
gravity background similar to those of Sakai and Sugimoto’s [13]. Even though the chiral
symmetry restoration can be addressed within this model, we will not consider the aspect in
this section but rather focus our attention on the high temperature phase where quarks and
antiquarks are effectively free in the absence of the linear confining potential. The positions
of D8 /D_8 will be taken to be large and we will approximate it to be infinity in this section
as well as in the discussion of binding energy and screening length in section 4. Analysis in
this heavy-quark limit provides us with valuable physical understanding of certain essential
features of the exotic states. Generalized results for a near-horizon background metric of
the Dp-branes solution and its dependence on positions of the probe branes will be given
in section 5.

Even in the deconfined phase, quarks and antiquarks feel effective (screened) potential
from other constituents. Therefore, a number of population of them will exist in various
forms of bound states, some of which are exotic in the sense that they cannot be formed
in the confined phase at low temperature.

Start with the following background metric

2 u )\ 2 i 5 d 2 Rpa\*? ([ o o du?
ds* = | — dt® + 6;;dz"dx? +d + <—> ( Yy + —> 3.1
= () (wa vouias vaad) + (T2) 7 (et 55) o)

3/4
Fo=Tra c=a(ge) o Bhi= e,
where f(u) =1 —ud/u?, up = 167°R},T?/9. Note that the compactified x4 coordinate
(x* transverse to the probe D8 branes), with arbitrary periodicity 27 R, never shrinks to
zero. The volume of the unit four-sphere €24 is denoted by V; and the corresponding volume
4-form by €. Fly is the 4-form field strength, [ is the string length and g; is the string
coupling. The dilaton in this background has u-dependence and its value changes along
the radial direction u. This is a crucial difference in comparison to the AdS-Schwarzschild
metric case where dilaton contribution is constant.
The action of the baryon configuration is given by

S = Spa + knSr1 + ke Sr1, (3.2)



where Sp4 represents the action of the D4-brane. Sgj is the action of a stretched string
from the boundary down to the baryon vertex and Spp is the action of a radial string
hanging from the baryon vertex down to the horizon. Recall that Sps can be obtained
from the Dirac-Born-Infeld action.! After some calculations, we obtain

N cV c L 3 -
Spy = eV I e ‘{C(u ), Sr1 = Ta, / do \/U/2 + f(u) <%> , Sk =
0

(e — uT),

(3.3)

where 7 is the total time over which we evaluate the action and wu,. is the position where

6T o o2ral

the D4-brane vertex is located.

The variation of the action with respect to u gives the volume term and the sur-
face term. The volume term leads to the usual Euler-Lagrange equation for the classi-
cal configuration of strings. As an approximation, we assume the baryon vertex to be a
point (not being distorted by the connecting strings) located at a fixed value of u = u, as
in ref. [8]. Under this assumption, the surface terms provide additional zero-force condition
on the configuration,

N
EGO(.%') —knB+k =0 (3.4)
where .
1+ % ur ul
Go(z)= ——2=, z=-—<1,and B= < . (3.5)
— 3 u
vica e Vi + Fud) ()P

Notice that these conditions occur at the location of the vertex at u = u., at which there
exists the balance between the pull-up force (toward the direction of increasing u) due to
the tension of hanging strings and the pull-down force due to the “weight”? of D4-brane
plus the tension of radial strings.

Since B < 1, we obtain

by > gGo(x) bk, (3.6)

which expresses the lower bound of the number of hanging strings. In other words, the
number of hanging strings cannot be less than this critical value, otherwise the no-force
condition is not satisfied. The equality of (3.6) is held only when all hanging strings are
stretched straight, otherwise we require more hanging strings to balance the pull-down
force. Let us now consider each class of the multi-quark states.

In the case of k-baryon, plugging the condition (2.1) into (3.6), we obtain

by = k> % (Gol(z)+3). (3.7)

-1
SpBI = /dm0d§pr, Tp — (67¢(27r)po¢l(p+l)/2) —det(g)

2This is not exactly the weight in the usual sense since the direct gravitational force on Dbrane is already
balanced by the force from the RR-flux, but it is the force originated from minimization of self-energy due
to the brane tension caused by the background metric and the gauge interaction. This is very similar to
the self-energy of a spring under gravity where the spring potential energy changes with the tidal force
from gravity in the background. The DBI action of the D4~ u.+/ f(uc) which is positive for u. > ur and
becomes zero (minimum) at u. = ur and thus it represents the “weight” on D4 towards the horizon.



Apart from the lower bound, we also have the upper bound, k£ < N, therefore Gy(z) cannot
be larger than 3, resulting in

z <0.922. (3.8)

Notice that this restriction on x is a result from the conditions of the force balance and
conservation of string charges. This shows that there is an upper-bound on the temperature,
over which the horizon is too near to the point vertex that the pull-down force always
overcomes the pull-up one.

In the case of (N + k)-baryon, in the same way as the preceding case, plugging the
condition of charge conservation (2.2) into (3.6), we have the following condition,

_ N _

kn=N+k> 3Go(:n)Jrle.

Unlike the case of k-baryon, the upper-bound of the number of hanging strings does not
exist. However, we still obtain the same condition Go(z) < 3, hence x < 0.922.

Finally, in the case of j-mesonance, similarly, eq. (2.3) results in

j 2 % (Gola) +3). (3.9

The lower-bound of the value of j is 2N /3 at zero temperature (z = 0) and it will be larger
as the temperature grows. Nevertheless, the upper-bound of the limit on j does not exist.

Finally, we would like to comment on the limits on the value of k, k, j when the temper-
ature is zero. In terms of n = 7—p (of the spacetime background generated by Dp-branes),
the condition (3.6) becomes

N
kp > — +ky (3.10)
n
which leads to
k j n+1
— = > 3.11
NN~ 2n’ ( )

and no conditions on k. This critical numbers are 5/8,2/3 for n = 4,3 (the AdS-
Schwarzschild and Sakai-Sugimoto model) respectively. It is an interesting coincidence
that the critical numbers are the same for both k-baryon and j-mesonance. Even though it
appears from eq. (3.10) that there should also be a constraint on the (N + k) configuration,
it turns out that there is none.

4 Binding energy and the screening length

In this section we will calculate the binding energies of the k-baryon, (N + k)-baryon,
and j-mesonance in the deconfined phase. These binding energies are taken to be the
differences between the total energies of each configuration and the corresponding energies
of the free strings configuration which represents the free quarks and/or antiquarks state.
The number of free strings in the free quarks state is determined solely by the total number
of strings hanging from the boundary, kj,.



The total energy of each configuration is given by E = S/7 of the corresponding action
S for each configuration. The binding energy for each hanging string is consequently,

1 o0
Epp = do\/ 2 (L f(u) . / du. (4.1)
D4 27T Jur

Due to the no-force condition in the surface term, we impose eq. (3.4) and eq. (3.5), or

JB? (e )’
w? =R () (4.2)

where the tension of each hanging string at u. is constrained by

ks

— B, ke, 7) = ——Go(a) + 2.
ky,

T (4.3)

Since the Lagrangian £ does not depend on o explicitly, the conserved Hamiltonian
can be defined to be

H=L—-u % = const, (4.4)

leading to

s’ Fa)
Vi + Fud G\ + f)(F)?
Then substituting eq. (4.2) into this equation, we obtain
U 2/(_u \6 3
o2 fw)*(75) —f(u)<L> ‘ (4.6)

flue) (g5 )?(1 = B?) Rpa

This gives the size (radius) of the baryon as seen on the gauge theory side,

R} (1—a3)(1 — B2)
Lo \/ P — a9~ (1~ a1~ B9’ o

3
Note that u. ~ % at the leading order.

Using eq. (4.6) and let y = u/u,, the regulated binding energy now becomes

By = —< /Ood y -z 1 - (1-2) (4.8)
-1 —-(1—-x) ;. .
7 W A D B D D)
Hence, we obtain the total energy of the configurations as
N V1—a3 kn\ € ke 1—
g - Nur () ey () =2 (4.9)
27 3x N ) «x N T
N2
Nl

(4.5)

where & represents the terms within the brace of (4.8).
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Figure 2. Comparison of the potential per N between N-baryon, k-baryon, and (N + k)-baryon
for k/N = 0.8,k /N = 2/3,ky/N = 2 at temperature T = 0.25.

To obtain the relations between the total energy of the configurations E(z) and L(x),
we eliminate the parameter © = up/u.. By numerical calculations, the results are shown in
figure 2, 3. The binding energy of N-baryon is the deepest, suggesting that it is the most
tightly bound state. For (N +k)-baryon, increasing k makes the binding energy smaller and
the bound state is less tightly bound. The case of j-mesonance is quite similar. Generically,
a j-mesonance has shallower binding potential than the total energy of j mesons. However,

as j grows, the difference gets smaller and smaller.

The screening radius or screening length of exotic multi-quark state is defined to be
the value of radius L* at which the binding energy becomes zero from negative values
at smaller distances. This screening radius is therefore one-half of the usual definition of
screening length in the discussion of mesonic state where it is defined as the zero-potential

distance between quark and antiquark.

Numerical results suggest that the screening length of baryons and mesonance decrease
as the temperature increases, i.e. L* ~ 1/T for a fixed value of k,k,j as is shown in
figure 4-6. This is the generic form for the screening length in both the AdS-Schwarzschild
and Sakai-Sugimoto models because it is the quantity which does not depend on the 't
Hooft coupling at the leading order [21]. It is also an increasing function of k and j.
Interestingly, (NN + k)-baryon has the opposite tendency with the screening length decreases
as k grows. On the other hand, the screening length of j-mesonance has a saturation value

* * —
Ljfmesonance - Lmeson as j — o0.
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5 Dependence on the free quark mass

In this section, we will study dependence of the binding potential on the position of the
probe branes. This is useful when position of the probe branes are at finite distance from

— 11 —



the black hole horizon and the corresponding quarks have finite mass. For example, the
probe branes are D8 and D8 flavour branes in the Sakai-Sugimoto model.

The calculation of binding energy as a function of the radius L of the multi-quark
states in the previous sections can be generalized to the case where the background metric
is generated by a stack of Dp-branes as the following. Start with the energy of a hanging
fundamental string with n =7 — p,

Uc o yn — "
e 2W{/1 " [\/@n —en) — (=21 - A@?) 1] 0 @} oy
and the radius,
R"/? (I—2m)(1—A(n)?)
“ ), dy\/ e (D (e 1) N

The total regulated binding energy of the configuration then becomes

Etot:NUh{m+<@>§+<ﬁ> 1_”6} (5.3)
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where
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The parameter x is again given by

and

e ) ms = W prp (5.6)
Ue 9
Note that the case n = 3 and n = 4 corresponds to the case of Sakai-Sugimoto and
AdS-Schwarzschild gravity dual model respectively.

Introduction of quark masses into the configuration can be done by terminating hanging
strings at certain radial distance wumax < 00. The universal behaviour of heavy-quark
potential comes from the limit up,x — 00. We can split the total binding potential of the
string into two parts. The first part is the binding potential in the uy,ax — oo limit and
the second part is the mass dependent potential. Therefore, the mass dependence part of
the binding potential, Ep1(umax) (M = tmax/27), can be expressed as

Er (finite mass) = Epi(umax — 0) + Ep1(tmax), (5.7)
Ue * Yy = xm
Epl(umax) = —— dy[ -1 (5.8)
27T umax/uc (yn - xn) - (1 - xn)(]‘ - A(n)2)
Umax (1 — A(n)Q) ug — urp 1-2n
- 47T(’I’L _ 1) uglax + O(umax ) (59)
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Eliminate u. by using

RM? - [umax/ue (1—am)(1— A(n)?)
L=——+ d . 5.10
= R \/ =y e — (A —a) (1= Ay 10
The result involves complicated functions of A which can be cast in the following form,
i (tmax) ~ ~ubatt (R™/ 07 [1(4) + 12 £2(4) ) (5.11)

where fi2(A) are some functions of A.

Interestingly, the mass dependence of multiquark potentials has similar form as the
mass dependence of mesonic state ~ m!~™ in ref. [20]. This is natural due to the fact that
most of the mass of constituent quarks come from the tail part of strings which extend
to the large-u region. The mass dependence of the binding potential at the leading order
is therefore determined only by the contribution of the hanging strings from the large-u
region. As long as the background spacetime of the gravity dual is asymptotically similar
to the background considered here in the large-u limit, we would expect the same mass
dependence as the form we obtained in this section.

6 Phase diagram

A natural question to ask is whether we have a phase where the exotic multiquark states
are preferred over the normal nuclear matter (namely the gas of N-baryons), vacuum, and
the chiral-symmetric quark-gluon plasma phase. To consider a realistic model where these
three phases are distinct, we focus our consideration on the Sakai-Sugimoto model with
n = 3. To calculate the phase diagram involving exotic states, it is necessary to consider
the contribution from D8 and D8-branes in the Sakai-Sugimoto model in addition to the
contributions from strings and D4-branes. We will assume that the characteristic distance
between D8 and D8 in z* direction is Lg. The relevant scales of the model therefore depend
on both up and L.

When there is no radial string pulling the vertex down towards the horizon, it was
demonstrated in ref. [7] by numerical method that the vertex will be pulled all the way up
to the position of the flavour branes if the temperature is not very high. Addition of radial
strings to the vertex would pull the vertex and the flavour branes towards the horizon. As
temperature rises, the radial strings pull the vertex down with stronger force since they are
closer to the horizon. It is possible that the vertex then starts to separate from the flavour
branes and we might need to consider the configuration where vertex and flavour branes
are separated. However, we can see that the difference between the two configurations
should be relatively small (namely, only the force conditions will be slightly different) and
we should be able to approximate the situation by considering the configuration where the
vertex is not separated from the flavour branes. It is also shown in the appendix that this
configuration satisfies the force condition and thus is allowed. Therefore, it will be assumed
that the vertex is always in the flavour branes for the discussion in this section. Moreover,
the vertex will be treated as a static configuration and any distortion caused by the strings
attached to it will be ignored.
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The calculations presented in this section are adapted from ref. [19] except that we
add radial strings hanging from the vertex down to the horizon for the consideration of
exotic nuclear phase. We also use position of the D4, u,, instead of uy (where /) (ug) —
o0) in our calculation concerning the exotics. This approach allows us to deal with the
contribution from radial strings more conveniently. As is shown in figure 7, the vacuum
phase with broken chiral symmetry corresponds to the configuration where D8 and D8 are
connected into a curve in the x4 —u projection. The chiral-symmetric phase of quark-gluon
plasma (xS-QGP) corresponds to the configuration with the parallel D8 and D8 stretching
from the spacetime boundary down to the horizon. Finally, the nuclear (including exotics)
phase corresponds to the configuration where the D4 vertex is located at the D8-DS8 curve,
pulling it down towards the horizon by its “weight” in the background. Each vertex has
radial strings attached to it, pulling it further towards the horizon. When there is no radial
strings attached, the nuclear phase is of normal N-baryons. The chiral symmetry is also
broken in this phase.

Under the above assumptions, the contribution from the strings hanging down from
the spacetime boundary to the vertex is negligible. The only contribution of strings is from
the radial strings hanging down from the vertex to the horizon. The total action of the
configuration is given by

S:SD8+SD4+SF1. (6.1)

Generically, the DBI action of the D8-branes is given by

Spg = —Mg/d9X6_¢Tr\/—d€t(gMN + 2w/ Fyrn) (6.2)
where the field strength of the flavour group U(Ny) is
F=dA+iANA. (6.3)

The flavour branes provide “global” quantum numbers such as baryon number to the
string and subsequently to the strings-brane configuration dual to baryon in the gauge
theory side. The diagonal part of the representation matrix of U(Ny) is the U(1) subgroup
which induces baryon number to the end of string attached to the flavour branes. Redefine
the U(1) part so that

1
2N,

.A - ASU(Nf) + ./Zt (64)

with A represents the U(1) piece of the gauge field. The DBI action of the D8-brane
coupled to the diagonal gauge field is then given by

Sps = N [ du (@) ()2 + 071 = @ (w)?) (6:5)

where the constant scales linearly with Ny as

N psTN Q4 V3 R

. , (6.6)
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and the rescaled U(1) diagonal field,

.
o= 2rad (6.7)

R\/2N;
The action does not depend on ag(u) explicitly and therefore a constant of motion can be
defined as

uip(u)

d= :
V) (@)(w)? + w31 = (ah(w))?)

We will see below that the constant d can be interpreted as the baryon number density

(6.8)

sourced by the D4-branes once we introduce the Chern-Simon action of the gauge field.
Note that d plays the role of the electric displacement field [19]. In the confined phase,
the only possible source for d is the D4-brane wrapped on S* in the D8-branes. In the
deconfined phase, either D4-brane or strings which stretch from the D8-brane down to the
horizon can serve as the sources for d. Here, in the study of exotic baryons, we consider
the case where both D4-brane and strings are present as the sources. This possibility was
not investigated in [19].
Similarly, the constant of motion with respect to z4(u) leads to

1 [f(u)(u8+u3d2) _1]—1
u? f () £ (uo)(uf + ugd?)

where ug is the position when z/j(ug) = oo.

(23 (w)* = (6.9)

Instead of using ug as the reference position, the radial position of the D4 on the
D8-branes, u., can be used to calculate xj(u),

1 w)(ud + udd? -t
usf<u>[f( ¢ >_1] 6.10)

(h(w)? =

where
o fue)/ud + udd? (1) (6.11)
VI @) 2+
_ Ve [ 1 (e ) 7
= v [1+2<uc> +3ns f(“‘l)}\/1+§(1;—f)3+3ns\/m flue)

The number of radial strings ns represents the number of strings hanging down from D4-

branes to the horizon in unit of 1/N. For k, (N + k)-baryon and j-mesonance, the values
of ng are 1 — k/N,k/N,1 respectively. Calculation of x/;(u.) is performed by minimizing
the action with respect to the variation of u. (see appendix). For a fixed Lo, increasing
the number of strings ng results in D4-D8 configuration being pulled down more towards
the horizon.

The U(Ny) gauge field A also generates Chern-Simon term,

N
247’(’2 M4Ax R

Scg = ws(A). (6.12)
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For A = A,dx" 4 A,du, the 5-form field strength is given by
1 1
ws(A) = Tr (AfQ - §A3}'+ 1—0A5> . (6.13)

Only the first term contains non-vanishing contribution from the U(1) part which would
be identified with the number density of baryon. We will assume a uniform distribution 74
of the gas of D4-branes in R? at u = wu, in the radial direction. This leads to the relation
between the number density of D4-branes, n4, and baryon number density d [19],

21/ RPN

A 14
1 TVaN (6.14)

Phase transition for a system where the number of particles varies is most conveniently

described by the grand canonical ensemble. The grand canonical potential of each phase
can be defined using the corresponding action of the D8-branes as

p) = - Spslea (), o). (6.15)

The baryon chemical potential is given by the U(1) diagonal field at the boundary,

= ig(c0), (6.16)
from which the baryon number density is determined,

O n)

==

(6.17)

This justifies the association of grand canonical potential with the D8 action. When addi-
tional sources of the baryon number are introduced, the free energy, Fp, from the sources
will also contribute to the baryon chemical potential,

o1 /- 0FE
rce\W, e =77 1
1= 557 (Spslea(u). dwla + Seouce(d ue) ) = S (6.18)
where the Legendre-transformed action Spg is given by
SDg = Sps —i—/\// du (6.19)

_N/ duu\/f +u3\/1+5—z. (6.20)

In our case, the additional sources are D4 and radial strings. These relations can also be
applied to the vacuum phase (with broken chiral symmetry) where u. is replaced with w.

Setting Lo =2 [ o,
and the chemical potential for each phase are given by

2}y (u)du = 1, the expressions for the grand canonical potential

vacuum phase, d = 0:

o2/ ()

Qe = [ du—rt = ) (6.21)
Lou¢ﬂw—%<

up)
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Figure 7. Configurations of yS-QGP (a), vacuum (b) and exotic nuclear phase (c) in z* — u

projection.

xS-QGP phase, zj(u) = 0:

Qagp (6.22)

/oo u5
dy—o
up Vv ud + d?
& d
A . — 6.23
Hagp /uT Vu® + d? (6.23)

nuclear (including exotics) phase:

2 —1/2 5
al } - (6.24)

e = / d“ [1 IR ) BTk
o0 F? S g
Hnue = / du |:1 - ] 3 12 :|
e f@+v@)] Vot e

+ éuc V f(uc) + ns(uc - UT)'
(6.25)

At a fixed temperature 1" and chemical potential u, a first order phase transition line
between phase 1 and 2 is obtained when Q = o, uy = puo = p. Transitions between
vacuum < xS-QGP and xS-QGP < nuclear phases are of this kind. On the other hand,
phase transition between nuclear «+» vacuum is second order in nature, at least for this
case when there is no interaction between each D4. The second order phase transition line
occurs when

o  PFp
od &

(6.26)

has discontinuity at d = 0.

In the Sakai-Sugimoto model, there is a phase transition temperature above which
gluons become deconfined. However, it does not necessarily imply that everything including
quark and antiquark is totally free and chiral symmetry is completely restored above this
temperature. When the baryon chemical potential is sufficiently high, baryons can exist
even when the temperature is higher than the deconfinement temperature [19]. Only when
the temperature increases even further that everything will be completely dissolved and the
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Figure 8. The phase diagram of exotic nuclear matters above the deconfinement temperature.
Nuclear phase including exotics is shown as the region on the lower right corner where it is divided
into 3 parts for representative purpose. A, B, C represents the region where exotic baryon phase
with ng = 0 (N-baryon), 0.1,0.3 is preferred over vacuum and xS-QGP respectively.

chiral symmetry is also restored. We also see this behavior in the phase diagram in figure 8
where we ignore the confined region at low temperature and present only the deconfined
part of the phase diagram.

The phase diagram of vacuum with broken chiral symmetry, xyS-QGP and phase of
nuclear including exotic multi-quark states is shown in figure 8. The phase diagram involv-
ing vacuum and xS-QGP phases was first obtained in ref. [18] and the full phase diagram
without the exotics was obtained in ref. [19]. Since the strings pull down the D4-D8
configuration towards the horizon, the configuration with ng; > 0 is less stable than the
normal N-baryon (ns = 0). This is shown in figure 8 where the region of ng > 0 nuclear
phase (B,(C) is smaller than the region of N-baryon phase (A). They are actually less
stable than the N-baryon since the grand canonical potential Q, ~o(T, 1) > Qp.—o(T, 1)
for 0.5 > ng > 0. Above ng > 0.3, the exotic phase becomes unstable to density fluctu-
ations (% < 0) at high temperatures in certain range of d but still remains stable in a
region of parameter space. Numerical studies reveal that for approximately ns > 0.5, the
multiquark states become unstable thermodynamically with respect to density fluctuations
for most of the temperatures.

Addition of radial strings introduces extra source of the baryonic chemical potential.
We can see from figure 8 that the value of pionget for the exotic nuclear phase increases with
the value of ng. Nevertheless, once emerged (i.e. ft > ponset), the exotic phases are more

stable than the vacuum at any temperature, but less stable than xS-QGP at sufficiently
high temperatures above which chiral symmetry is restored.
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7 Discussions

It is desirable to compare the binding energy of each multi-quark state in order to discuss
the stability of each configuration as well as their relative abundances in the deconfined
phase. At a fixed temperature T, we can compare numerically the binding energies E as
functions of the size L of the configuration as is shown in figure 2, 3. For k-baryon and
(N + k)-baryon, we compare the energy with N-baryon. For j-mesonance, we compare the
energy with the energy of j mesons.

From figure 2, N-baryon is more energetically favoured than k-baryon and (N + k)-
baryon for any value of k,k. Since there are less hanging strings from the spacetime
boundary and more radial strings pulled down into the horizon in the case of k-baryon,
the vertex is located closer to the horizon and consequently becomes less energetically
favoured comparing to the N-baryon. Similarly in the case of (N + k), even though not as
obvious, adding & hanging and radial strings to the configuration of N-baryon results in
positive energy increase in the binding potential, making this configuration less favoured
energetically. An (N + k)-baryon naturally tends to decay into N-baryon plus k free
antiquark strings. A k-baryon also has the tendency to fuse with (N — k) quarks to form
an N-baryon with lower energy.

The situation of j-mesonance is somewhat similar. Even though j mesons are always
energetically preferred over j-mesonance for all value of j, j-mesonance with higher value
of j has stronger binding force than the lower ones as is shown in figure 3. From the energy
viewpoint, j-mesonance will prefer to split into a number of j mesons. It is notable that
the screening length of j-mesonance will approach the value of meson, L but it will

meson?
never exceed L} ...
For the case of (N + k)-baryon and j-mesonance, there exist the limits k — oo and
j — oo. The first limit for (N + k)-baryon leads to the zero-size configuration which
saturates the zero-force condition. The second limit for j-mesonance leads to the mesonic
limit where the configuration is similar to the system of j mesons as we will see in the
following.
From eq. (5.5), since A(n) ~ (j/N)~1, A(n) becomes negligible for large j/N. There-
fore, we can neglect A(n) and obtain that Er; does not depend on j/N. Using asymptotic
expansions, eq. (5.4) becomes

5:{/100@[ %—1}—(1—@}

_ {uT i) 1; (=) G20 } + 0@, (7.1)
2

r(-1 e

where 2 ) )
RY2I(1 - )I(3)
C(n) = T 2

Now, consider eq. (5.3), we find the screening length L, (half the distance between
quarks at which the binding energy is zero) by setting Fiot = 0. In the limit of j/N
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becoming very large, we can obtain L, from the condition

E(L,) =0, (7.2)
leading to
(3 5
ur(n)l(3 = )

Again, the case n = 3 and n = 4 correspond to the Sakai-Sugimoto and the AdS-

_ 1y 7(n=2)/2
G ) ] C(n). (7.3)

L*:[

Schwarzschild gravity dual model respectively. This expression is exactly the same as
the screening length of meson in the deconfined phase from ref. [20].3 It is no surprise since
in the j — oo limit, the hanging strings from the boundary exert force overwhelmingly,
therefore the “weight” of the baryon vertex plus the tension of radial strings become negli-
gible. Effectively, the end of hanging string at the vertex will feel zero force down and thus
the slope u. will be zero. As a result, the strings from the boundary will hang smoothly
and appear similar to hanging strings in the case of the mesonic state.

Even in the deconfined phase, we therefore perceive that in addition to free quarks,
antiquarks, and gluons, there will also be mesons and multi-quark states. Due to the
lower energy, there are more N-baryons than (N + k)-baryons and k-baryons. The relative
populations can be estimated using the Boltzmann factor

exp< - @%) (7.4)

determined by the corresponding binding energy E for each state.

A more precise way of considering the deconfined phase is to use the grand canonical
potential as the indicator for the stable phase. Following Bergman, Lifschytz, and Lip-
pert [19], we consider three phases of the deconfined soup, a vacuum phase and a nuclear
phase with broken chiral symmetry, and a xS-QGP. For sufficiently high chemical potential
and moderate temperature, the nuclear phase of the multiquark states is preferred over the
vacuum and yS-QGP phase. Exotic nuclear states such as k-baryon, (N + k)-baryon, and
j-mesonance are characterized by the number of radial strings ns hanging down from the
D4-branes to the horizon. It is found that the multiquark states with ns > 0.5 are unstable
thermodynamically. However, all of these exotic states with 0.5 > ng; > 0 are less stable
than the normal N-baryon with ng = 0.

For each value of ng, there exists a triple point where the grand canonical poten-
tials of the three phases are equivalent. Varying ng, this triple point will move along the
phase transition line between vacuum and the yS-QGP as is shown in figure 8. The sta-
ble region of the nuclear phase shrinks as ng increases. As ng > 0.5, the nuclear phase
becomes thermodynamically unstable with respect to the density fluctuations for most of
the parameter space.

8 Conclusion

The gravity dual picture of the deconfined phase suggests that the binding energy or
potential between quarks and antiquarks in this phase is nonzero due to the Coulombic

30ur definition of the screening length is one-half of the definition in ref. [20].
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piece of the interaction. Since the colorless condition is not required in the deconfined
phase, exotic configurations of the multiquark states are possible. We investigate three
classes of these configurations, k-baryon, (N + k)-baryon, and j-mesonance. It is found
that all of these configurations are less energetically favoured than the normal N-baryon
as well as being less stable thermodynamically.

The dependence of the screening length on the parameters k, k, j is studied and the
results are shown in figure 4-6. The screening length of k-baryon and j-mesonance are
notably increasing with the values of k and j whereas the screening length of (N + k)-
baryon is a decreasing function of k. Interestingly, j-mesonance has saturated value of
screening length equal to the screening length of meson as j — oo.

The dependence on the quark mass of the binding potential at the leading order is
derived and found to be ~ m!~" (n = 3,4 for the Sakai-Sugimoto, AdS-Schwarzschild
model). The linear quark-mass dependence of the rest energy that we naturally expect is

included in the regulator and therefore not present in the binding potential.

In order to consider phase diagram involving exotic nuclear phase, we consider the
Sakai-Sugimoto model where the flavour branes D8 and D8 are introduced. The flavour
D8-branes action is identified with the grand canonical potential of the relevant phase. The
nuclear phase is considered in the limit when the D4-branes are pulled all the way up to the
flavour branes. Exotic multiquark states with a number of strings stretched down to the
horizon, i.e. ng > 0, become less stable than normal N-baryon (ns = 0) since radial strings
attached to the D4-branes pull the D4-D8 configuration closer to the horizon. Nevertheless,
comparing to the vacuum and xS-QGP phase, the nuclear phase of exotic multiquark states
can be more stable in a region of phase diagram with high chemical potential and low
temperature as is shown in figure 8. In this region, we expect to have a nuclear phase
where N-baryons, k-baryons, and (N + k)-baryons coexist. For j-mesonance with ng = 1,
our consideration of the grand canonical potential suggests that it is thermodynamically
unstable to density fluctuations since %% < 0. Generically, numerical studies reveal that
exotic baryons with ng > 0.5 (namely k-baryon with k/N < 0.5, (N + k)-baryon with
k/N > 0.5 and any j-mesonance) in the deconfined phase are thermodynamically unstable
to density fluctuations.
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A Force condition at the D8-branes

There are three forces acting on a D4 locating inside the D8-branes, one from the DS,
another from the radial strings pulling down towards horizon and lastly the force from its
own “weight” in the background. The equilibrium can be sustained only when these three
forces are balanced. As is shown in ref. [19], variation of the total action with respect to
u. and the constant of motion with respect to z4(u) lead to

7 aSsource aSDS

oy (ue) = (L(uc) ~ ) / o, |, (A.1)
- b+ i) el (A2)

A\ 1+ 1(4)3 4+ 3ng/flue)  flue) '

where the Legendre transformed action is
Son = [ Lieh(u).a)du (43)
e’} d?

= /u du u4\/f(u)(a:ﬁl(u))2 +u3y 1+ o5 (A4)

and the source term is given by

Sanmee = M| e/ + e = ur)|. (A5)

There are two contributions from the D-branes and strings as the sources for the baryon
chemical potential. Additional strings increase the baryonic chemical potential of the exotic
multiquark states. Since the number of total charge on each D4 is N which is absorbed
into NV, the number of radial strings stretched down to the horizon, ng, is thus given in
unit of 1/N.
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ABSTRACT: We study the magnetic properties of the coloured multiquark states in the
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the degree of chiral symmetry breaking. Magnetic field also makes it more difficult for
multiquark states with large colour charges to satisfy the equilibrium condition of the con-
figuration in the gravity dual picture. As long as the chemical potential © > ponset, the
magnetized multiquark phase is thermodynamically preferred over the magnetized vacuum.
Pure pion gradient and the chiral-symmetric quark-gluon plasma (xs-QGP) phase for the
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1 Introduction

There has been increasing interest in the study of nuclear phase structure as well as prop-
erties of a number of nuclear phases, especially the quark-gluon plasma in the recent few
years. This is due to the new perspective in the nature of strongly interacting gauge theory
from the holographic principle. Motivated by the AdS/CFT correspondence [1, 2], a num-
ber of gravity models was constructed to provide shadow gauge theories which share certain
essential features with the QCD in the strong coupling regime. Sakai and Sugimoto [3, 4]
proposed a toy holographic model of QCD where chiral symmetry breaking can be ad-
dressed. In Sakai-Sugimoto model, gluon deconfinement and chiral symmetry restoration
are two distinct phase transitions. For non-antipodal case, the chiral symmetry restoration
occurs at higher temperature than the gluon deconfinement [5], therefore it is possible to
have a nuclear phase where gluons are deconfined while the quarks and antiquarks could
still form colour bound states.

Bergman, Lifschytz, and Lippert [6] shows that when the baryon density is sufficiently
large and the temperature is not too high, gluon-deconfined phase with broken chiral
symmetry accommodates a nuclear phase where baryons can exist with thermodynamical
stability. Even though the baryons can exist within the phase, the quark matters containing
only free quarks or antiquarks do not share the same thermodynamical stability. This can
be understood as a sign of chiral symmetry breaking, the quarks prefer to be bound together
by gluon exchanges in this highly-densed thermal soup. Interestingly, further investigations
into whether colour multiquark states in general could exist within this nuclear phase give
positive results [7].

It was suggested quite a while ago in ref. [8] that it is possible to have k < N-baryons
in Nsusy = 4 background. In the gluon-deconfined phase, since free strings solution is



allowed in the corresponding gravity dual theories [9], the coloured states could also exist
in the plasma. Various possibilities of exotic multiquark states are studied in ref. [10]-[13].
Colour multiquark states in the gluon-deconfined plasma are studied in ref. [7] where k > N-
baryons as well as other classes of exotic multiquark states including N + k-baryons and
bound state of j mesons are investigated. The phase diagram of the colour multiquarks
nuclear phase, chiral-symmetric (xS-QGP) phase, and the vacuum nuclear phase reveals
that colour multiquarks are thermodynamically stable in the region where the temperature
is not too high and the density is sufficiently large (figure 8 of ref. [7]).

In certain situations such as in the core of the neutron stars or other enormously densed
astrophysical objects, exceptionally strong magnetic field is produced in addition to the
high temperature and density. Under these fierce conditions, nuclear matters are pressed
together so tightly that deconfinement phase transition could occur. As is shown in the
phase diagram of ref. [7], coloured multiquark states can exist in the intermediate range
of temperature and sufficiently high baryon chemical potential (implying high baryon den-
sity). They are thermodynamically preferred over the other phases such as the vacuum
and the chiral-symmetric deconfined phase of quark-gluon plasma (xS-QGP). It is therefore
interesting to explore magnetic properties of the nuclear phase where coloured exotic mul-
tiquarks exist under these extreme situations. It is possible that certain classes of densed
stars are in the range of temperature and density suitable for the coloured multiquarks in
the gluon-deconfined soup and the magnetic properties of these states thus significantly
determine their stellar structures.

Responses of the holographic nuclear matter to the external magnetic field have been
intensively investigated in ref. [14]-[19]. It was found in ref. [14] that the external magnetic
field makes gluon-deconfined vacuum more stable thermodynamically than the case when
there is no magnetic field, i.e. the transition temperature into the chiral-symmetric quark-
gluon plasma increases with the magnetic field and saturates in the limit of an infinite field.
Authors of ref. [19] found a phase transition induced by the external magnetic field in the
xS-QGP phase. This could be traced back to the nonlinearity of the DBI action used to
describe the holographic nuclear matter. Since this transition occurs when the magnetic
field changes from small to large strength, the Yang-Mills approximation approach [17] is no
longer valid and similar transition is not found without consideration of the full DBI action.
We take the full DBI approach and investigate the magnetic responses of the multiquark
nuclear phase with broken chiral symmetry in this article. We found that the magnetized
multiquark phase are always thermodynamically preferred over the magnetized vacuum.
At a fixed density, it is also found that the multiquark states can satisfy the scale fixing
condition up to certain critical values beyond which they would change into multiquarks
with smaller colour charges. For higher magnetic fields, all of the multiquarks cannot
satisfy the scale fixing condition at the same density and we would expect other phases
to set in or the density has to be increased for the multiquark configuration to be able to
satisfy the scale fixing condition.

There are two multiquark configurations found below a critical field. The two con-
figurations merge into one at the critical field and temperature for a fixed density. By
comparing to the pure pion gradient and the xS-QGP phase, the multiquark phase is
found to be preferred thermodynamically at large densities and moderate fields.



In section 2, the essential features of the multiquarks are reviewed. Magnetic responses
and relevant magnetic phases of the colour multiquarks are studied in section 3 using the
DBI action. Comparison to the pure pion gradient and the xS-QGP phase is discussed in
section 4. We discuss the results and make some conclusions in section 5.

2 Exotic multiquark states in the Sakai-Sugimoto model

In the Sakai-Sugimoto model, gluon deconfinement and the chiral-symmetry restoration
are two distinct phase transitions. Generically they occur at different temperatures. When
the gluons become deconfined at the deconfinement phase transition, quarks could still be
bound together by the free gluons due to the fact that the coupling is still strong (provided
that the density is sufficiently high) and therefore the chiral symmetry could still be bro-
ken. Due to the deconfinement, the bound states of multiquarks are not colour singlet in
general. Certain properties of the coloured multiquarks are studied in ref. [7] where it is
demonstrated that the coloured states could exist with thermodynamical stability. When
the temperature rises further, the bound states become less and less stable and finally
completely dissolved into the quark-gluon plasma. The chiral symmetry is restored and
everything becomes completely deconfined.

It was proposed by Witten [20], Gross and Ooguri [21] that a D-brane wrapping internal
subspace of a holographic background could describe a colour-singlet bound state of N
quarks in the dual U(N) gauge theory. A wrapping D-brane sources U(1) gauge field on
its world volume and induces an N units of U(1) charge upon itself. This charge needs to
be cancelled by N external strings connecting to the wrapping brane. The wrapping brane
with N strings attached is called a baryon vertex.

In the gluon-deconfined phase, more strings can be attached to the baryon vertex
provided that there are equal number of strings stretching out and go to the background
horizon. This configuration still conserves the U(1) charge of the brane and solve the
equation of motion of the Nambu-Goto action [9]. We can parameterize the number of
radial strings stretching from the vertex to the horizon as k, and the number of strings
connecting the vertex to the boundary of the background as kj. For the k > N-baryon,
kp — k. = N whilst for kK < N-baryon, kj + k. = N. Other classes of exotic multiquark
states can be constructed by adding more strings in and out of the vertex. Few examples
are given in ref. [7] where some interesting properties are also discussed.

There could exist an interaction among the multiquarks in the form of connecting
strings between each vertex very similar to the string connecting two end points of quark
and antiquark in the holographic meson configuration. A multiquark can use one of the
radial strings to merge with another radial string from neighbouring multiquark and form
a colour binding interaction (while keeping kj, fixed). Therefore the number of radial
strings represents the colour charges of the multiquark. When the gluons are deconfined,
the “direct” colour interaction would be approximately the same as the meson and baryon
binding potential of the Coulomb type plus some screening effect. Neglecting the direct
interaction and considering only the DBI-induced collective behaviour of the gas of multi-
quarks [6, 7], an approximate phase diagram can be obtained showing exotic nuclear phase
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Figure 1. Configurations of xS-QGP (separate D8, D8)(a), vacuum (merging D8 and D8)(b) and
exotic nuclear phase (vertex attached to the D8-D8 with radial strings stretch down to horizon)(c).

where multiquarks can exist with thermodynamic stability. Schematic configurations of
the three gluon-deconfined phases are given in figure 1 where the direction along the circle
is the compactified coordinate x4 and the vertical direction is the radial coordinate wu.

3 Magnetic properties of the coloured multiquarks in the nuclear phase

The setup we use is the Sakai-Sugimoto (SS) model with the source terms from the in-
stanton embedded in the D8 — D8 configuration, and the radial strings similar to the
configuration used in ref. [7]. The instanton (the baryon vertex being pulled up all the
way to the position of the D8-branes by the strings connecting between the vertex and
the flavour branes) is embedded within the D8-branes and acts as a source for the baryon
density, d. The radial strings stretching from the instanton down to the horizon of the
background act as another source. The number of radial strings is parameterized by nys =
(number of radial strings)/N. It also tells us how much colour charges a multiquark has.

The baryon chemical potential is also generated on the D8-branes by the vector part,
ay , of the U(1) subgroup of the U(n ) flavour group of the D8-branes. The magnetic field
is then turned on by another part of the U(1). We choose the direction of the magnetic
field so that the vector potential is

a¥ = Bus. (3.1)
The vector part ag is related to the baryon chemical potential u by

1= al (u — oo),

ag(uc) = Msource;

1 08,
Hsource = N ;);rce. (32)
The contributions from the sources, psource, are from the baryon vertex and the radial
strings. The full expressions are given in the appendix. The contribution from the U(1)

vector gauge field in the D8-branes, u, corresponds to the baryon chemical potential from



the content of the plasma. The five-dimensional Chern-Simon term of the D8-branes gen-

erates another axial part of the U(1), a’f‘, by coupling it with B and ag . In this way, the

external magnetic field induces the axial current j4 associated with the axial field a‘f‘.
The background metric of the Sakai-Sugimoto model is

) u \3/? ) o ) Rpu 3/2 Y du?
ds® = w)dt” + 0;:dxtda? + dxs”) + < ) <u dQg + >
<RD4> (f( ) J 4 ) U 4 f(U)

3/4
Flyy = 27‘r/i\f€4, e? = gs <R2;4> ; R}, =g NI,
where f(u) =1 — ud/u?, ur = 1672R3,T%/9. The volume of the unit four-sphere )y is
denoted by V4 and the corresponding volume 4-form by €e4. Is and g, are the string length
scale and the string coupling. The x4 coordinate is compactified with radius R which is
generically different from the curvature Rp4 of the background.

The DBI and the Chern-Simon actions of the D8-branes in this background can be
computed to be

oo B2
Sow = 7 [T o214 Bk e - 2+ s 53)
3 o0
Scg = —2/\// du (920 al af¥ — dva¥ al'ald). (3.4)

The normalization factor, N'= NR%,/(67?(2ma/)3), represents the brane tension. The ex-
planation of the factor 3/2 is given in ref. [16] where it could be understood as representing
the edge effect of the finite region with uniform magnetic field. The equations of motion

with respect to ag , a‘f‘ are

Vud + B2u? f(u)a} = ja— 2B,u +3Bay, (3.5)
\/1 + f(u)(@fh)? = (af)? + f(u)ubal?
51 B2y2 oV 3
Vub + B2u ag —d— 2B(;L‘f‘(oo) + 3Baf‘. (3.6)

U+ SRR — @2 + T iag

The quantities d, j4 are the corresponding density and current density at the boundary of
the background (u — o0), they are defined to be

65601’11

jH(x,u — o0) = oA, | (3.7)
= (d, 7). (3.8)
Explicitly, they are
5 B22 A%

d = Vil + B2u? aj - ;)Baf(oo), (3.9)

VI ) @) — (@) + fuyuda? |

5 B22 1A

ja = vl + B2u? f(u)ai - ;)BM. (3.10)

VI )@ — (@) + fyuda? |




For our multiquark configuration, the D8-branes starts from v = u. and extends to u — oo.
At the boundary (u — o), the chiral symmetry is broken and therefore the value of a{'(c0)
is taken to be a physical field, 7¢ [16], describing the degree of chiral symmetry breaking,.
The total action is minimized with respect to a{'(co) if the axial current j4 (also defined
at the boundary) is zero.

The total action does not depend on z4(u) explicitly, therefore the constant of motion
leads to

a1 [W[f)(C(w) + DW)?) ~ (ja— Bu+3Bay)?] 17
(y(w))? =

B 2 —1| ,(3.11)
where

o BV £ (o) + Do) = (ia — §Bu-+ 3Bl (uc))” e
1+ Flue)ud 272(u)

and C(u) = u® + B*u?, D(u) = d + 3Bai'(u) — 3B<y¢/2. The expression of 2/ (u,) is given
in the appendix. It is determined from the force condition and the scale fixing condition

(3.12)

o0
Ly = 2/ 2 (u) du = 1. (3.13)
e

Since 2/(u) depends on both al (u),ai'(u), we need to solve the differential equa-
tions (3.5) and (3.6) with 2/; (u) substituted into the equations of motion and check whether
the solutions satisfy the scale fixing condition eq. (3.13). The values of the vector and axial
field at the vertex are also chosen so that ag (ue) = psource,a‘f‘(uc) = 0. We basically
perform the shooting algorithm by choosing the value of  and /¢ in the expression for
7!y (ue) until we hit af (00) = p and aj'(cc) = . If the resulted solution satisfies the
scale fixing condition Ly = 1, we keep the solution. If not, we adjust the value of u. and
perform the shooting procedure again. The position u. for ny = 0 is given as a function of
the density, the magnetic field, and the temperature in figure 2.

From the solutions of the equations of motion, the relations between baryon chemical
potential () and the baryon density (d), the magnetic field (B), and the temperature (7")
are obtained for the choice of parameters ns = 0 (normal baryon), j4 = 0, as are shown in
figure 3. There are two types of solution corresponding to the two holographic multiquark
configurations. One is the configuration with u. close to up (configuration-A) and another
is the configuration with a large separation between u, and up (configuration-B).

The baryon chemical potential is found to be an increasing function of the density for
most range of d for both configuration A,B. As is shown in figure 2, configuration-A has
the position of vertex u, closer to the horizon ur than configuration-B. At very small d,
the two configurations emerge separately as two distinct configurations. Interestingly, as
the magnetic field and temperature increase, the two configurations converge into a single
configuration as we can see the position u. approaches the same value at the critical field and
temperature (see figure 2). However, when the two configurations merge, the configuration
no longer satisfies the scale fixing condition Ly = 1 and we expect it to change into other
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Figure 2. Position u, of the vertex for ns = 0 (normal baryon) and fixed j4 = 0 as a function of (a)
d with fixed B = 0.10,7 = 0.10,(b) B with fixed d = 1, T = 0.10,(c) T with fixed B = 0.10,d = 1.
The lower (blue) line is the configuration-A with u. close to upr and the upper (red) line is the
configuration-B with large separation between u, and urp.

phases such as the chiral-symmetric quark-gluon plasma for a fixed density. It turns out
that if the density is allowed to change, the multiquark configuration can continue to satisfy
the scale fixing condition at higher fields provided that the density is sufficiently large. This
will be discussed more in section 4.

In figure 3, the baryon chemical potential is an increasing function of d, this is true for
both configuration-A and B. It is roughly a linear function of the density, showing that the
DBI-induced collective interaction between the multiquarks are negligible. As d gets larger,
the DBI-induced effect sets in and the negative binding interaction makes p grows with d
less quickly than the linear progression. Note that this DBI-induced interaction occurs even
when the baryon is colour singlet due to the nonlinear nature of the DBI action. The origin
of this DBI-induced interaction is the “tidal weight” of the DBI action contributed from
both the branes’ worldsheet metric and the background gauge field strength. Naturally,
any form of energy contributes to the tidal weight even the colour singlets.

For configuration-B, there seems to be minimal density dp;, below which the shooting
algorithm could not find other valid solutions. We are not certain what happens below
these values. It is possible that when the field is turned on, the D8-branes acquire higher
tension and therefore the configuration requires minimal density to pull it down in order
for the distance between D8 and D8 to reach Lo = 1. For T"'= 0.10, B = 0.10,ns = 0, the
value of dp, for multiquark configuration B is approximately 0.086.

Figure 3 shows that the chemical potential is a decreasing function with respect to the
magnetic field. This is similar to the behaviour of baryons in chiral-symmetric quark-gluon
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Figure 4. Comparison between the baryon chemical potential as a function of B at fixed j4 =
0,d = 1,7 = 0.10 and (a) ns = 0 (normal baryon), the bottom graph,(b) ns = 0.10, the middle

graph, (c¢) ny = 0.20, the top graph. The upper (blue) lines are the configuration-A with wu, close
to up and the lower (red) lines are the configuration-B with large separation between . and urp.

plasma studied in ref. [16]. When the field gets stronger up to certain values, the field
becomes too strong for the force condition to hold at the scale fixing Ly = 1. This strange
behaviour is shown in figure 4 where multiquarks with smaller ns are shown to be able to
exist up to stronger fields.

As is also shown in figure 3, the relationship between p and T is as we expect, a



Vo Vo

0.06 0.15
0.04 \\ 0.125
0.1
0.02 0.075
0.05
NI SE————— 002
~0.02 T—02-03 04 05 06
Vo
0.03 \
0.02
0.01 /
0.0250:05.0.075 0.1 0.1256.15
—~0.01
Vo
~0.02 002 004 0.6 —0.02

Figure 5. The gradient of the scalar field 7 = af!(c0) for ny = 0 (normal baryon) and fixed

ja = 0 as a function of (a) d with fixed B = 0.10,T = 0.10,(b) B with fixed d = 1,T = 0.10,(c)
u with fixed B = 0.10,7 = 0.10,(d) T with fixed B = 0.10,d = 1. The lower (blue) line is the
configuration-A with u. close to ur and the upper (red) line is the configuration-B with large
separation between u. and ur.

decreasing function of 7' for fixed density d since higher temperature will melt the mul-
tiquarks away. For fixed d and B, the multiquark configuration satisfies the scale fixing
condition up to a maximum temperature above which we expect it to melt into the plasma.
For ng = 0, this critical temperature is about 0.159 for d = 1.

It is interesting to note that the baryon chemical potential of ny = 0 multiquarks
for both configurations converge to the same value at critical field (~ 0.63) and tempera-
ture (=~ 0.159) for d = 1. This behaviour also shows up in the gradient scalar field as is
shown in figure 5.

Figure 5 shows the relations between the field 57 and the density, the magnetic field,
the baryon chemical potential, and the temperature. The pion gradient 7y represents
the domain wall of the scalar field induced by the magnetic field on the nuclear vac-
uum [22]. Roughly speaking, it quantifies the degree of chiral symmetry breaking. The
domain wall carries baryon charge and thus contributes to the baryon density. For mul-
tiquark configuration-B, it increases with B for a fixed density. From figure 5, the pion
gradient field increases linearly with respect to the field for small fields. Then it starts to
saturate closed to the critical field. This is somewhat similar to the behaviour of the pion
gradient in the confined phase studied in ref. [16]. For configuration-B, the pion gradient
field is a decreasing function of the density when the field is fixed. This implies that for
a fixed magnetic field, the population of the domain wall becomes lesser as the density
of the baryon (including multiquarks and other bound states) increases. We will see this
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behaviour again in section 4 when we consider the pure pion gradient phase. Finally from
figure 5, the degree of chiral symmetry breaking 7@ decreases as temperature rises for
multiquark configuration-B.

For configuration-A, the pion gradient field decreases at first for small magnetic fields,
but turns to rise with the field around B ~ 0.16 until it converges to configuration-B at the
critical field. The dependence of the field /¢ on the density at a fixed B = 0.10,7 = 0.10
shows a minimum at d = 0.7, corresponding to u ~ 1.18. Then as the density grows, the
pion gradient increases and saturates, implying limited contribution of the domain wall for
large baryon density. The temperature dependence of the pion gradient field for multiquark
configuration-A shows some peculiar behaviour. First, it becomes more negative at low
temperatures then turns to rise and converge to configuration-B at the critical temperature.

Figure 6 shows how the pion gradient field \y¢ varies with the magnetic field B for
ng = 0,0.10,0.20. For the same B, multiquarks with higher ng responds more to the
magnetic field by inducing larger 7, implying higher degree of chiral symmetry breaking.
The pion gradient field for both multiquark configuration-A ,B forms a butterfly-wing shape
graph for each ns. The edge of the wing is at the critical field where the configuration
converges and barely satisfies the scale fixing condition.

The magnetization of the multiquarks nuclear matter can be defined using the regulated
free energy, Frp = Q(u, B) + pd, in the canonical ensemble as

M(d, B) = _M%(g’B) ; (3.14)

where Q(u, B) = Sag(u), a1 (u)](e.0.m.) — S[magnetized vacuum]. The action with af)’, a

,10,



U Up
0.8

0.75 1.2 fr
0.7 B

20 40 60 80 100

0.65 08

B
3 04 06 08 1
0.55 / 0.6

Figure 7. Relation between uy and external magnetic field B of the vacuum for the temperature
T = 0.10, ug saturates to the approximate value of 1.23 at large field.

eliminated is given by S[ag(u), ai(u)](e.0.m.) = Spg + Scs where
> Flu)(1 + fu)udaf)
Sps = du C
= (u)\/f(u)(c‘(u) 4 D(u)) — (ja— Bu+ 3Bal)*

and Scg is given in the appendix. The grand canonical potential is regulated with respect
to the magnetized vacuum. The action of the magnetized vacuum with non-vanishing

is

S[magnetized vacuum] = / \/C(u)(l + flwyudzf)|  du,

uo vac
where
, 1
x4(u)‘Vac = FupBC(u) . (315)
3 u)u u _
\/ Faye (e —1)

The position ug where z/j(ug) = co of the magnetized vacuum can be solved numerically
from Ly =1 (with ug replacing u, in the limit of integration). The relation between gy and
the magnetic field is shown in figure 7 for T' = 0.10. As the magnetic field gets stronger,
the position of the lowest position of the D8-D8 configuration, ug, becomes larger, in order
to satisfy the condition Ly = 1 (implying heavier branes due to magnetic field energy). At
T = 0.10, position of ug saturates to the value of about 1.23 (The number changes with
temperature, of course) in the limit of an infinite field.

The magnetization of the multiquark nuclear matter is shown in figure 8 for ny =
0 (red), 0.10 (green), 0.20 (blue). The magnetization is positive and increases as B increases
until the field is close to the critical value then it starts to drop. Generically, configuration-
A of multiquarks has larger magnetization than configuration-B. For the configuration-
B (A), multiquarks with higher (lower) ns have higher magnetizations. As the magnetic
field gets stronger beyond the critical field for each ng, the multiquarks will undergo a
transition into the ones with smaller n,. For even larger fields, even the ngy = 0 multiquarks
cannot satisfy the scale fixing condition if the density is not allowed to change.

Interestingly, numerical studies reveal that the grand canonical potential of the multi-
quark phase is always lower than the grand canonical potential of the magnetized vacuum,
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Figure 8. The magnetization of the multiquarks nuclear matter at fixed j4 = 0,d = 1, and
T = 0.10 for ny = 0 (red), 0.10 (green), 0.20 (blue). The upper lines are the configuration-A with
u. close to up and the lower lines are the configuration-B with large separation between u, and ur.
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Figure 9. The free energy of the multiquarks nuclear matter at fixed j4 = 0,d =1, and 7" = 0.10
for ng = 0 (red), 0.10 (green), 0.20 (blue). The upper lines are the configuration-A with u. close
to ur and the lower lines are the configuration-B with large separation between u,. and uyp.

ie. Slag(u),ai(u)](e.o.m.) — S[magnetized vacuum| < 0, for the entire range of B. This
suggests that once p > fionset, the magnetized multiquark phase is always thermodynami-
cally preferred over the magnetized vacuum, the situation similar to the case when there
is no magnetic field investigated in ref. [7]. Among the two configurations, we found from
figure 9 that the free energy of configuration-B is always lower than configuration-A and
thus more stable thermodynamically. These two multiquark configurations-A,B are the
long and short cusp configurations discussed in ref. [6], being extended to the general case
with nonzero magnetic fields. It is found here that for a fixed density, strong field and/or
high temperature (see figure 3 and 5) converge the two into a single configuration right
before dissociating them altogether.

Figure 9 shows how the free energy changes with the magnetic field for ns = 0 (red),
0.10 (green), 0.20 (blue) at the temperature T'= 0.10 and the density d = 1. For each ng,

- 12 —



both configurations converge to the same configuration (with the same baryon chemical
potential, degree of chiral symmetry breaking and free energy) at the critical fields. The
critical fields for ng = 0,0.1,0.2 are roughly 0.63,0.48,0.38 respectively.

4 Comparison to other phases

In this section we compare the baryon chemical potential and free energy of the magne-
tized multiquarks to the pure pion gradient phase and the chiral symmetric quark-gluon
plasma (xs-QGP) phase, both under the external magnetic field with gluons deconfined.
The pure pion gradient phase is defined to be the phase with pisource = 0 (sourceless case)
and the baryon chemical potential comes purely from the induced gradient field, /¢, in
response to the external field. The baryon density also comes purely from the pion gradient
field (d = 3B</¢/2). A similar situation in the confined phase of the antipodal SS model
has been studied in ref. [16]. The xs-QGP under the presence of the external magnetic
field has been explored in ref. [16, 19] but again only limited to the antipodal case of the
SS model. In this section we explore some of their magnetic properties in more general
case where z/j(u) is not zero and the scale is fixed to Ly = 1. Even though the extra con-
straints are irrelevant to the xs-QGP (since z; = 0 for this configuration), it makes crucial
difference in the case of pure pion gradient phase. The scale fixing condition is found to
be very difficult for the pure pion gradient configuration to satisfy for most of the density
as we will discuss below.

All three phases under consideration obey the same set of equations of motion,
eq. (3.5), (3.6) with each specific set of the boundary conditions and parameters as the
following,

multiquark phase: ja = 0, tisource = a(‘)/(uc), Ve = af(oo), a‘f‘(uc) =0,

pure pion gradient phase: all the same with the multiquark phase with the following
exceptions, fisource = 0, ay (ue) # 0,d = ngap,

Xs-QGP: zj(u) = 0 and yp = a’f‘(oo) = 0, tsource = a(‘)/(uc =up) =0,j4 = gB,u (since
the configuration extends to uz and f(ur) = 0 so that eq. (3.5) is zero).

First, we will explore certain properties of the pure pion gradient phase and show that
it does not exist in the range of parameters (d > 1, B < 1 — 2) under consideration. Then
comparison between the multiquark and the xg-QGP phases will be discussed.

4.1 Pure pion gradient phase

For pure pion gradient configuration, the contribution of the sources, the vertex and strings,
is set to zero. Effectively, we set psource = 0,d = 3Bw/p/2. This is because when /¢ is
zero, the density d should represent the density of the sources, i.e. the pure multiquark or
pure baryon configuration, therefore the source density should be given by d — gBVQD on
the right-hand side of eq. (3.6). When we fix the value of the density at a fixed magnetic
field, ¢ is also fixed. For example, when d = 1, B = 0.1, sy ~ 6.667, a relatively large

value. This large value of 7 = afl(co) leads to a generically large value of af'(u) for
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Figure 10. The position u., the pion gradient field, and the baryon chemical potential of the pure
pion gradient phase at d = 0.10,7 = 0.10 as a function of the magnetic field.

the most range of u. From eq. (3.11) and (3.12), we see that for the pure pion phase,
D(u) = 3Baf!(u) and thus it must be large for the most range of u as well. In the
multiquark configuration, the d dependence of D(u.) in the expression of F', eq. (3.12),
will compensate the largeness of D(u) and z; can be made sufficiently large so that Ly = 1
could still be satisfied. However, in pure pion phase, D(u.) is simply zero. This makes 2,
getting smaller as the density gets larger and the scale fixing condition Ly = 1 would not
be satisfied above certain value of the density for a fixed B.

As a result, we wish to keep v/ sufficiently small in order to satisfy the scale fixing
condition. This implies that higher densities require larger magnetic fields. To demonstrate
this, we fix baryon density to d = 0.1 and plot the position u, of the vertex and the baryon
chemical potential as a function of the magnetic field in figure 10. The graph of u. shows a
minimal field at about B = 0.229 below which Ly < 1 for all solutions. For a larger density
d > 1, the required field strengths are B >> 1 in order for the scale fixing condition to be
satisfied. For the range of parameters d = 1.0, B < 1.0, we therefore need to consider only
the two phases of the multiquark and the yg-QGP. The same situation occurs for the range
of parameters d = 10, B < 1 — 2 where the pure pion gradient phase does NOT satisfy the
scale fixing condition and therefore does not exist as well.

4.2 Multiquark-domain wall versus ys-QGP phase

The baryon chemical potential 4 is to be found by shooting algorithm for a fixed d, B, T, for
each phase. For d =1, B = 0.10,7 = 0.10, they are shown in figure 11. Observe that there
are two possible solutions for the xs-QGP phase. As the magnetic field increases beyond
a certain value (in this case around B =~ 0.25), there will be phase transition to another
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Figure 11. Comparison between the baryon chemical potential for T = 0.10 at a fixed density
d =1 of (a) ns = 0 (normal baryon) multiquark configuration-A, the top (blue) graph,(b) xs-QGP,
the middle (black) graph,(c) ns = 0 (normal baryon) multiquark configuration-B, the bottom (red)
graph.

02 04 06 038 1

Figure 12. Comparison between the baryon chemical potential for 7" = 0.10 at a fixed density
d =10 of (a) ns = 0 (normal baryon) multiquark configuration-A, the top (blue) curve,(b) xs-QGP,
the black curve,(c) ns = 0.2 multiquark configuration-B, the dashed red curve,(d) ns = 0 (normal
baryon) multiquark configuration-B, the red curve.

solution within this phase. This behaviour is explored in details in ref. [19]. When the
density is raised to d = 10, the transition occurs at higher field around B = 0.86 (figure 12).
The transitions can also be seen in the plots of the free energy, figure 13, 14, where the
slopes of the graphs change abruptly around the critical fields. For d = 1, this is quite
small and somewhat hard to see but it becomes apparent for d = 10.

From the plots of the free energy, figure 14, the multiquark configuration-A is the
least preferred phase when the density is small (d = 1). Its free energy is larger than the
xs-QGP phase for all fields. For B < 0.196, the most preferred phase is the multiquark
configuration-B phase with the lower free energy. The ys-QGP phase is more stable
for d = 1,B > 0.196. Nevertheless, the multiquark configurations can exist up to only
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Figure 13. Comparison between the free energy for 7' = 0.10 at a fixed density d = 10 of (a)
ns = 0 (normal baryon) multiquark configuration-A, the top (blue) curve,(b) xs-QGP, the black
curve,(c) ny = 0.2 multiquark configuration-B, the dashed red curve,(d) ny = 0 (normal baryon)
multiquark configuration-B, the red curve.
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Figure 14. Comparison between the free energy for T = 0.10 at a fixed density d =1 of (a) nys =
0 (normal baryon) multiquark configuration-A, the top (blue) graph,(b) xs-QGP, the middle (black)
graph,(c) ns = 0 (normal baryon) multiquark configuration-B, the bottom (red) graph .

about the critical fields beyond which they cannot satisfy the scale fixing condition at that
particular density.

However, this does not mean that the multiquarks phase cannot exist in the range of
field larger than the critical value. Stronger field gives the D8-branes larger tension and thus
it requires sufficiently heavier vertex and strings to pull it down in order for the distance
between D8 and D8 to reach Ly = 1. This implies that we need larger d in order to make the
configuration satisfy the scale fixing condition at stronger fields. Figures 12, 13, 15 confirm
this insight. They show the plots of the multiquarks configurations when the density is
large (d = 10). Multiquark configurations can exist far beyond the critical field B ~ 0.63
of the small d case (d = 1). In particular, figure 13 demonstrates that at d = 10, the
multiquark configurations (ns = 0,0.2), with lower free energies, are thermodynamically
preferred over the xs-QGP for B < 0.61 and B < 0.348 respectively.
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Figure 15. The position of the vertex u. as a function of B at a fixed density d = 1 (lower) and
d = 10 (upper) for T' = 0.10 of nsy = 0 (normal baryon) multiquark configuration-B phase.
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Figure 16. Plots between the pion gradient field of the multiquark phase and the magnetic field
for T =0.10,n, = 0 at d = 1 (shorter) and d = 10 (longer).

It is thus reasonable to conclude that for larger densities, the multiquarks phase will
be more and more preferred over the yg-QGP phase, in a larger and larger range of
the field. Magnetized multiquarks and the induced pion gradient field are thus stable
thermodynamically and they will mix together in the magnetized nuclear (multiquark-
domain wall) phase provided that the density is sufficiently large and the temperature is
not too high.

Finally for completeness, we present the plots of the pion gradient field of the multi-
quark phase (figure 16), the pion gradient field becomes smaller for a given B as the density
increases. However, it extends to larger range of fields for larger density. We can therefore
conclude that at the large densities (and baryon chemical potential), contribution of the
pion gradient becomes lesser and the multiquarks contribute dominantly to the baryon
density and chemical potential. This is also shown in figure 5.
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5 Discussions and conclusion

In Sakai-Sugimoto model, chiral symmetry restoration and gluon deconfinement are two
distinct phase transitions. Generically, with an exception of the antipodal case with 2/, = 0,
gluon deconfinement occurs at lower temperature than the chiral symmetry restoration. For
the region of the phase diagram between the two transitions, coloured multiquarks can exist
with thermodynamical stability (the phase diagram is shown in figure 8 of ref. [7]).

Magnetic responses of the nuclear phase with colour multiquarks are studied here by
using one component of the U(1) subgroup of U(NNy) as the vector potential of the external
magnetic field. The Chern-Simon action of the D8-branes couples the magnetic field to
an axial vector component, af, of the U(1), inducing axial current j4. When the chiral
symmetry is broken, we effectively set ja to zero. The value of a‘f‘(oo) then describes the
degree of chiral symmetry breaking of the phase.

There are two possible multiquark configurations A and B. Configuration-A is the
configuration where the baryon vertex is close to the horizon. Configuration-B, on the
other hand, has the baryon vertex more separated from the horizon. By comparing the free
energy of the two configurations in figure 9, we found that configuration-B is more stable
themodynamically. We establish relations between the baryon chemical potential and the
baryon density, the external magnetic field, and the temperature for both configurations
as are shown in figure 3. Baryon chemical potential is an increasing function of the density
when the field is turned on. This is the same behaviour to the case when there is no field.

On the other hand, the relation between chemical potential and the magnetic field
is rather interesting. The baryon chemical potential is a decreasing function of the field.
For multiquarks with high value of ns (number of radial strings), the configuration finds
it more difficult to satisfy the scale fixing condition at large fields. There is a maximum
field strength for each ns above which the multiquark configuration cannot exist (figure 4).
This is in contrast to the behaviour of the chiral-symmetric quark-gluon plasma (in the
antipodal case of the Sakai-Sugimoto model with no instantons, i.e. 2;(u) = 0 case) studied
in ref. [16] where chemical potential is always a decreasing function with respect to B and
the configuration continues to exist at arbitrarily large fields. This is due to the fixation
of the density. Stronger field gives the flavour branes more tension and when the field is
too strong, a fixed density source would not be sufficiently heavy to pull the branes down
for the distance between D8 and D8 to reach Ly = 1. Temperature also has effect on
the multiquarks, sufficiently high temperature will melt away the multiquarks even in the
presence of an external field.

The gradient of the scalar field representing the chiral symmetry breaking, 7 =
a{‘(oo), is found to roughly increase in magnitude with the field. For the same field strength
and fixed density, multiquarks with higher ng (i.e. larger colour charges) show higher degree
of chiral symmetry breaking (larger magnitude of a{'(c0)), but can only sustain the force
condition up to smaller fields as is shown in figure 6.

The mixing of pion gradient with the miltiquark in the multiquark phase decreases
as the density increases (figure 5). It is found that the pure pion gradient phase (no
multiquark contribution) does not satisfy the scale fixing condition for large densities and
moderate fields.
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What would happen if the magnetic field increases beyond the point where the multi-
quarks can satisfy the scale fixing condition Ly = 17 We would expect the multiquarks to
change into the multiquarks with lower n, as is shown in figure 4 for a fixed d and T since
they can still satisfy the scale fixing condition. This induces a sudden drop in the baryon
chemical potential. Also in the situation where p is kept fixed instead of d, the multiquarks
are forced to jump to the larger d in order to change into the multiquarks with lower n, as
the field increases beyond the critical point. For even larger fields, all of the multiquarks
cannot satisfy the scale fixing condition for a fixed density. There would be phase transition
to other phase. For a fixed density, the phase will change into the xg-QGP. However, if we
allow the density to change (in a more realistic situation), the system could change into the
multiquark (with pion gradient mixing) phase for a sufficiently large density. The phase
of multiquark with pion gradient mixing is found to be more preferred than the xs-QGP
at large densities (implying large baryon chemical potentials) and moderate fields. This is
shown in figure 13.

For configuration-B multiquarks, The magnetization of the multiquark nuclear matter
is found to be an increasing function of B for ny = 0,0.10,0.20 except when the fields
get close to the critical points. Close to the critical fields, the magnetizations saturate
and even start to decrease. The magnetized multiquarks phases are thermodynamically
preferred over the magnetized vacuum once the baryon chemical potential is higher than
the onset value (i > fionset). This is similar to the case when there is no magnetic field
investigated in ref. [7].
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A Force condition of the multiquark configuration

The forces on the D4-brane in the flavour D8-branes are balanced among three forces from
the tidal weight of the D4-brane, the force from the strings attached to the D4, and the
force from the D8-branes. Varying the total action with respect to u. gives the surface
term. Together with the scale-fixing condition 2 f;co duz!y(u) = Lo = 1, we obtain [6]

=g a“S'S()urce 85
siue) = (Bl = P / o

(A1)

)
Uc

as the condition on u..
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The Legendre transformed action is given by

S = /OO L(2)(u), d) du,

> 1
= du + ulz’?
[ \/ Fly T
2

fo(u)(C(u) + D))~ (a3 Bu+ 3Bl (A.2)

where C(u) = u® + B?u?, D(u) = d + 3Baf'(u) — 3By¢/2. Tt is calculated by performing
Legendre transformation with respect to ag " and a{‘/ respectively. Note that the Chern-
Simon action is also included in the total action during the transformations.

The Chern-Simon term with the derivatives a¥’,a? eliminated is

3 o0 <ag(jA — 5Bu+3Ba}) — f(u)D(u)a‘f‘) \/f(lu) + udz’?
Scs = —J\/zB/ du , (A.3)
“ e + D) - (ia - $Bu 35a)
Lastly, in order to compute z/;(u.) we consider the source term [7]
1
SSOurCe - Nd|:3u6\/f(uc) —"_ nS(uC - uT)} ) (A'4)
= Ndﬂsource (A5)

where ng = k./N is the number of radial strings in the unit of 1/N.
From eq. (A.1), (A.2), (A.3), (A.5), and setting a} (ue) = fisource; @1 (ue) = 0 we can
solve to obtain

1 9 (fo(Co+ D2) = (ja — 3Bu+3Bay (u))?)
feuz L (14500 + 3nav 1)

(mg‘(uc))Q

where f. = f(u.),Ce = C(ue), D. = D(uc).

When we fix the parameter ng, the temperature 7', the baryon density d, the axial
current j4 = 0 (by minimizing the action with respect to af'(c0)), and setting af'(u.) =
0,(1(‘)/ (u¢) = Hsource; then the position u. of the D4-brane is completely determined as a
function of the magnetic field B. Once the equations of motion are solved, the value of

p = a) (00) and af'(cc) are determined.
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Abstract

We study thermodynamic properties of the multiquark nuclear matter. The de-
pendence of the equation of state on the colour charges is explored both analytically
and numerically in the limits where the baryon density is small and large at fixed
temperature between the gluon deconfinement and chiral symmetry restoration. The
gravitational stability of the hypothetical multiquark stars are discussed using the
Tolman-Oppenheimer-Volkoff equation. Since the equations of state of the multiquarks
can be well approximated by different power laws for small and large density, the con-
tent of the multiquark stars has the core and crust structure. We found that most
of the mass of the star comes from the crust region where the density is relatively
small. The mass limit of the multiquark star is determined as well as its relation to
the star radius. For typical energy density scale of 10 GeV/ fm?, the converging mass
and radius of the hypothetical multiquark star in the limit of large central density are
approximately 2.6 — 3.9 solar mass and 15-27 km. The adiabatic index and sound speed
distributions of the multiquark matter in the star are also calculated and discussed.
The sound speed never exceeds the speed of light and the multiquark matters are thus
compressible even at high density and pressure.
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1 Introduction

All of the high energy experiments which fail to produce a free quark are strong evidences
that the coupling constant of the strong interaction becomes nonperturbatively large at low
energy and large distance. Quarks and gluons are said to be confined within hadrons and the
colourless condition becomes a requirement of an assembly of quarks at low energy. However,
when the energy or temperature scale of a system of quarks and gluons increases, the coupling
of the strong interaction tends to be weaker and finally we expect the deconfinement to occur.
In addition, if the quarks and gluons are compressed extremely tightly together, quarks could
interact with neighbouring quarks and gluons equally and become effectively deconfined from
the mesonic or baryonic bound state. In the latter case, the coupling could still be strong
despite of the deconfinement. Nevertheless, we could also have the situation where gluons
are deconfined but the quarks are not completely free due to the remaining Coulomb-type
potential from gluon exchanges between quarks.

Recently, the experimental results from collision of heavy ions suggested that the nuclear
deconfinement phase might have been created in the laboratory and we might have pro-
duced the quark-gluon plasma (QGP). The RHIC experiment revealed that the produced
QGP behaves like fluid with very small viscosity. However, this property of small viscosity
fluid is hard to be understood in the picture of QGP as the gas of free quarks and gluons.
Additionally, lattice simulations show that QGP has relatively high pressure right above the
deconfinement temperature 7, which is again difficult to explain using the weakly coupled
quarks and gluons gas [1, 2]. It is possible that various coloured and colour-singlet bound
states of quarks and gluons could exist in the plasma at the temperature (1 — 3)7, [3, 2, 4].
The existence of the coloured bound states could explain the problems of high pressure,
small viscosity, and the jet quenching of the QGP at once.

Due to the large coupling of the strong interaction at low energies, a perturbative method
has limited applicability to the high energy processes and phenomena. The development of
the holographic principle and AdS/CFT correspondence [5] provides us with a new method to
investigate the physics of strongly coupled nuclear matter both in the low energy regime and
in the energy scale close to the deconfinement temperature. Holographic models of meson
were proposed by Juan Maldacena, Soo-Jong Rey, Stefan Theisen, Jung-Tay Yee [6, 7, §].
The Coulomb potential plus screening effect of quark and antiquark are calculated from the
Nambu-Goto action of the string in the bulk spacetime at zero and finite temperature. For
baryons, Witten, Gross and Ooguri [9, 10] proposed a holographic baryon to be a D-brane
wrapping internal subspace of the background spacetime with N, strings connected and
stretching out to the boundary. For AdSs x S®, the baryon vertex is a D5-brane wrapping
the S°. The basic requirement is that a total of IV, charges from the endpoint of the strings
cancel with the charge of the vertex itself. A generalization of this condition allows more
strings to go in and come out of the vertex, as long as the total charges from all of the string
endpoints add up to N, [11, 12, 13, 14, 15, 16]. Baryon vertex plus strings configuration in
this case represent the holographic multiquark states. Generically they have colour charges
but because of the confinement, they can only exist in the deconfined phase.

The coloured multiquark phase can be studied in the general Sakai-Sugimoto model (SS)[17,



18] in the intermediate temperature above the gluon deconfinement but below the chiral
symmetry restoration temperature [19]. It was found that the multiquark phase is ther-
modynamically stable and preferred over the other phases in the gluon-deconfined plasma
provided that the density is sufficiently large [16]. The situation of high density and moder-
ate temperature could exist inside certain classes of compact stars and it is thus interesting
to investigate the thermodynamical properties of the multiquark nuclear matter as well as
their contributions to the stability of the dense stars. In this article, we will consider the
hypothetical multiquark star which obeys the equation of state derived from the holographic
multiquarks in the SS model. With the power-law approximation of the equations of state, we
study its gravitational stability using the Tolman-Oppenheimer-Volkoff equation (TOV)[20].
The mass, density and pressure distributions are obtained numerically. The mass-radius
relation and the mass limit are also discussed. Corresponding hydrodynamical properties
such as the sound speed of the multiquark nuclear matter are explored within the star. The
multiquark matters are found to be compressible throughout the entire multiquark star.

This article is organized as the following. Section 2 describes the holographic setup for
the multiquarks and the multiquark phase in the gluon-deconfined SS model. The thermo-
dynamic relations and the equations of state of the multiquark nuclear matter are calculated
and discussed in Section 3 and 4. In Section 5, the Einstein field equation for the spheri-
cally symmetric star is solved to obtain the TOV equation. Assuming the equations of state
derived in Section 3 and 4 for the multiquark nuclear matter, we explore the gravitational
physics of a hypothetical multiquark star. A mass-radius relation is derived and some dis-
cussion on the more realistic situation is commented. The adiabatic index and the sound
speed of the multiquark nuclear matter within the star are studied. Section 6 concludes the
article.

2 Holographic multiquark configuration

Since string theories in the bulk spacetime correspond to certain gauge theories on the
boundary of that space, it is natural to find construction of the bound states of quarks in
the form of strings and branes. While the meson is proposed to be the string hanging in the
bulk with both ends locating at the boundary of the AdS space [6], the baryon is proposed to
be the Dp-brane wrapped on the SP with N, strings attached and extending to the boundary
of the bulk space [9, 10].

On the gauge theory side, hadrons exist in the confined phase as a result of the linear
part of the binding potential. However, the bound states of quarks can actually exist in the
deconfined phase at the intermediate temperatures above the deconfinement as well. Even
though gluons are free to propagate and the linear potential is absent, the quarks can form
bound state through the remaining Coulomb-type potential due to the colour charges of the
quarks.

The holographic model of non-singlet bound state was also proposed. As is demonstrated
in Ref. [16], we can modify the Witten’s baryon vertex by attaching more strings to the vertex
provided that the total number of charges of all of the strings are preserved to N.. Some



strings may extend along radial direction of the AdS space down to the horizon and some
can extend to the boundary. We define the number of strings that extend to the boundary to
be kj, and the number of strings extending radially to the horizon to be k,. The restriction of
kp, and k, is due to the force condition of the string configuration (see Ref. [16] for details).

In this article, we consider the holographic model of multiquarks in the Sakai-Sugimoto
(SS) model [17, 18] similar to the configurations considered in Ref. [16]. The background
metric of the bulk spacetime in the SS model in a deconfined phase at finite temperature is
given by

2 u 3/2 2 : : 2 RD4 3/2 2 2 du2
= | — f drtdr? = 0 .
ds <R 4) ( (u)dt + 52]611’ dx’ + d!L’4 ) + < U ) (u d 4 + ( )>

The four-form field strength, the dilaton, and the curvature radius of the spacetime are

2N w \ 4
F(4) = 7464’ e’ = Js (R—m) ) R?ZM = WgSng’,

respectively, where f(u) =1 —ud/u?, ur = 16m*R3,T%/9. 14 is the compactified coordinate
transverse to the probe D8/DS8 branes with arbitrary periodicity 27 R. The volume of the
unit four-sphere €14 is denoted by Vj and the corresponding volume 4-form by €. Fiy) is the
4-form field strength, [, is the string length and g, is the string coupling.

In the SS model, the chiral symmetry dynamics is taken into account, by construction,
in the form of the dynamics of the flavour branes, D8 and D8. The DBI action of D8-DS is

Sps = —Iu8/d9X6_¢T’l“\/—d6t(gMN + 21/ Fyn) (1)

where Fjy is the field strength of the flavour group U(Ny) on the branes. It is given by

F=dA+iANA. (2)
The U(Ny) gauge field A can be decomposed into SU(Ny) part A and U(1) part A:
1 X
A=A+ —=A (3)

V2N

where only the diagonal U(1) will be turned on here. Lastly, gy is the induced metric on
the D8-branes world volume.

In the deconfined phase, the equation of motion from the action of D8-DS8 provides 3
possible configurations: (i) connected D8-D8 without sources in the bulk representing the
vacuum state and (ii) the parallel configuration of both D8-branes and D8 representing the
xs-QGP. Another stable configuration (iii) is the connected D8-D8 branes with the D4-
brane as the baryon vertex submerged and localized in the middle of the D8 and D8.! In

! Actually, the quark matter, represented by the connected D8-DS8 branes with radial strings stretching
out to the horizon, is another possible configuration satisfying the equation of motion. However, it was
found that this phase is thermodynamically unstable to density fluctuations by Bergman, Lifschytz, and
Lippert [21].



(a) (b) (©)

Figure 1: Different configurations of D8 and D8-branes in the background field following
the Sakai-Sugimoto model that are dual to the phases of (a) xs-QGP, (b) vacuum and (c)
multiquark phase.

this model, we assume that the hanging strings shrink to approximately zero and the only
apparent strings are the k, radial strings. The three configurations are shown in Fig. 1. We
will consider the thermodynamic properties of only the last multiquark configuration. The
action of the exotic multiquark phase is given by

S = Sps + Spa + Sp1, (4)

where Spg is the DBI action of the connected D8-branes, Sp, represents the DBI action of
the D4-brane wrapped on S* and Spy is the action of k, radial strings extending from the
baryon vertex down to the horizon. For simplicity, we ignore the distortion of the baryon
vertex due to the Chern-Simon term [22, 23].

The DBI action of the D8-D8-brane coupled to the diagonal U(1) gauge field is given by

Sps = N/wdu utV/f () (@ (w))? + u3(1 = (6 (w))?), (5)

where the constant N' = (us7N;QV3R%)/gs, and the rescaled U(1) diagonal field a =
21a/ A/(R+\/2N7). Position of the vertex is denoted by u,, it is determined from the equilib-
rium condition of the D8-D4-strings configuration (see Appendix A of Ref. [16]). The source
action of the D4 and strings, Sps + gpl, are given by

Ssource == Nd [%uc V f(uc) + ns(uc - UT) 5 (6)

where ng is the number of radial strings &, in the unit of N.. The number of radial strings
n, represents the colour charges of a multiquark. For a fixed number of kj,, one of the radial



strings can merge with another radial string from another multiquark and form a colour-
binding potential between the two in a similar way holographic meson is formed between a
quark and an antiquark.

The Ug(1) symmetry corresponds to the U(1)-diagonal part of the global flavor symmetry,
U(Ny), which is provided by the Ny flavor branes. Naturally, the baryon chemical potential,
conjugating to the Ug(1) charge, in the gauge theory side can be identified with the boundary
value of the zero component of the gauge field in the flavor branes, i.e. Ag, conjugating to
the U(1) “electric” charge. For convenience, our normalized baryon chemical potential is [24]

[ = ag(00). (7)
In gauge-gravity duality, we identify the grand canonical potential density in the gauge
theory side in the form of the D8-branes action evaluated with the classical solution [25]:

Q) = 3pSoelT 4w o)l ®)

With the additional source term, the free energy is in the form of the combination of the
Legendre-transform of the grand potential and the source action, Eqn. (6). The baryon
chemical potential is simply the derivative of the free energy with respect to its conjugate,
i.e. the baryon number density, at a particular temperature:

o1 /- ,
n= %N (SDS[T> [L’4(U), d(u)]cl + Ssource(da uc)) (9)
where the Legendre-transformed action Spg is given by
Sps|T, 2, (u),d(w)] = Sps|T, 2, (u),do(u)] +N/ d(u)agdu (10)
o0 d(u)?
- / duu/f (u) (2, (u))? + u=3y /1 + (u5) , (11)

where d(u) is the electric displacement. It is a constant of the configuration given by

~1
d(u) = —% (Sf/qm = uép(w) - = const. (12)
Oag(u)  /f(u) (@) (u)? + u=3(1 = (ap(w))?)
Note that the Legendre transformation changes the dependence on the variable ag(u) in
Sps to d(u) in Sps. As a result, the grand potential as a function of the baryon chemical
potential is transformed into the free energy as a function of the baryon number density.
Another constant of the configuration is

1 rf(u)(ud +ud?) -1
2 _
@W? = [ = . 1} — const., (13)
where F'is a function of u., d, T" and ng, given by
d2n2
F2 — 3 } 5 d2 o c 14
qu (uc + 9fc Y ( )

6



3
where 7, = 1 + % (Z—f) + 3nsy/f.. For convenience, here and henceforth, f, f. and f, are

used to represent f(u), f(u.) and f(ug), respectively. Note that this form of F' is derived
from the force condition at the cusp u.. The detailed calculations are given in the Appendix
of Ref. [16].

With the equation of motion for x4, Eqn. (13), and the separation between D8- and
D8-branes Ly being fixed to Lo =2 [ 2/,(u)du = 1, we obtain [21]

o 1 0S
_ i (u + = source : 15
G (15)
where the second term is the contribution from the sources, fisource- From these relations, we
can then study the thermodynamic properties of the multiquark phase. The phase diagram
of the multiquark nuclear phase is studied in Ref. [16] when the colour-binding interaction
is neglected. It is found that multiquarks are preferred thermodynamically over the other
gluon-deconfined phases for the large density and intermediate temperature below the chiral
symmetry restoration temperature.

3 Calculations of the equation of state

Thermodynamic properties of the nuclear/exotic matter phase can be described by the equa-
tion of state. First, we will investigate the relations between the pressure and the number
density. From the previous section (see also Ref. [16]), the grand potential density and the
chemical potential of the nuclear/exotic matters are given by

F? —1/2 5
] v (16)

@ = / d“{l_ fWd+vdd?)] Vot &

o0 2 —1/2 d 1
h Lcwb_fwmﬁ+WﬂJ T 3tV (e Fnslue—ur) (17)

respectively.
Since the differential of the grand potential G can be written as

dGo = —PdV — SdT — Ndy (18)

where the state parameters describing the system P, V', S, T, N are the pressure, volume,
entropy, temperature, the total number of particles of the system respectively. Since the
change of volume is not our concern, we define the volume density of G, S and N to be €2,
s and d, respectively. Therefore, we have, at a particular 7" and p,

P=—-Gq/V =—-QT,p). (19)
By assuming that the multi-quark states are spatially uniform, we obtain
oP
d=—/(T,pn). 20
5o ) (20)

7



Using the chain rule,

orP|  ou
T T
so that .
P(d, T,ny) = p(d, Ty my) d — / w(d, Ty ny) d(d), (22)
0

where we have assumed that the regulated pressure is zero when there is no nuclear matter,
ie. d=0.

In the limit of very small d, u. approaches wug, 7. becomes 1y + O(d), where 1 is defined
to be 1, with u, replaced by ug. From Eqn. (17), the baryon chemical potential can then be
approximated to be

Foud mo_ U 2 —1/2
o] 8 olUy ( — o — ﬁ) 2
10— lisource = d{/ du |1 - “fo _ oo w2 (1 - d—) } (23)

2ud

where fisource = e/ f(Ue) + ns(ue. — ug), and we have neglected the higher order terms of
d. By using the bmomlal expansion, the above equation becomes

= p ~ / " BN (L RO W N
source — fouo qu fOuo 9f0 ud u5 2
\/ fus

= apd — Bo(ny)d®, (24)

00 —5/2
/ du—— (25)
w o 1D

where

(&%)

_ OO w2 Jouy nooug 1
folna) = / . ks ( T = f0u0< ‘970‘5)+$)' (26)

By substituting Eqn.(24) into Eqn.(22), we can determine the pressure in the limit of very
small d as 360(1.)
Qo 1o 0\"s) 14
—d°— ——=d". 27
5 1 (27)

In the limit of very large d and relatively small T,

> fou? ((ul+ &= G T
fo Hsouree = /u dut= fu3 ub + d? Vi + & %)
U

P~

0o 2

Q

0 d
ot b gttt (1= g2 ) [

PO () L wh (B r T
5r@ 0 (1‘970)0” e .
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where we have used the fact that the lower limit of integration u2/d? is approximately zero
as d is very large. Again by using Eqn.(22), we obtain

P~ 3—25 (%) d7°. (31)

And the energy density can then be found via the relation dp = pd(d).
Next we consider the entropy of the multiquarks phase. From the differential of the free
energy,

dFg = —PdV — SdT + pudN, (32)
the entropy is given by
0Fg
S = 7 (33)
The entropy density can then be written as
0Fg
= —— 34
s=-2F, (34)

where Fg is the free energy density which relates to the grand potential density as Fp =
Q2 4+ pd. Since we have the pressure P = —(), we can write

oP ol
For both small d and large d, we can see from the formula of the pressure (see Eqn.(27),(31),

noting that ayg, Gy is insensitive to temperature) and the chemical potential (see Eqn.(24),(30)),
that the dominant contribution comes only from fi5ypce, thus

aMSOuT’Ce
s_—< 5T )d. (36)

The baryon chemical potential from the D8-branes is insensitive to the changes of temper-
ature. This implies that the main contribution to the entropy density of the multiquark
nuclear phase comes from the source term namely the vertex and strings.

Since

a source a
M@T = 37 <%uc\/f(uc) + ng(ue — uT)> , (37)

3
1672
a,Usource (T) T5 327T2T
9 )

~ —_— s

oT a1 (U_T)s

uo

where we have used the fact that u. is approximately constant with respect to the tempera-
ture in the range between the gluon deconfinement and the chiral symmetry restoration (see
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Figure 2: The graphs show the relations between u, and 7" at small density (left) and at
large density (right).

Fig. 2). Therefore, we obtain
1672 3T5d
(—9 ) 32727 d
+ .
2 1 ur 3 9
udy/1- (i)

For small n,, the entropy density is proportional to T°. When n, gets larger (carrying
colour charge), the entropy density becomes dominated by the colour term s o< ngsT". This
is confirmed numerically in Section 4. It has been found that the entropy density of the
Xs-QGP scales as T [21] corresponding to the fluid of mostly free quarks and gluons. We
can see that the effect of the colour charge of the multiquarks as quasi-particles is to make
them less like free particles with the temperature dependence ~ n,T', i.e. much less sensitive
to the temperature.

It is interesting to compare the dependence of pressure on the number density, Eqn. (27)
and (31), to the confined case at zero temperature studied in Ref. [27]. The power-law rela-
tions for both small and large density of the confined and deconfined multiquark phases are
in the same form (for ny, = 0). The reason is that the main contributions to the pressure
for both phases are given by the D8-branes parts and they have similar dependence on the
density for both phases. For the deconfined multiquark phase, the additional contributions
from the source terms in Eqn. (17), fisource, are mostly constant with respect to the den-
sity (this is because u. becomes approximately independent of d for small and large d limits).

(39)

10



Consequently, when we substitute into Eqn. (22), the constant contributions cancel out and
affect nothing on the pressure.

On the contrary, the entropy density for the deconfined phase is dominated by the contri-
butions from the sources namely the vertex and strings. The contribution of the D8-branes
is insensitive to the change of temperature and therefore does not affect the entropy density
significantly. The additional source terms, however, depend on the temperature and thus
contribute dominantly to the entropy density. Once the temperature rises beyond the gluon-
deconfined temperature, entropy density will rise abruptly (for sufficiently large density d)
and become sensitive to the temperature according to Eqn. (39), due to the release of quarks
from colourless confinement appearing as the sources. However, we will see later on using
the numerical study in Section 4 that for low densities and for small n,, the numerical value
of the entropy density is yet relatively small.

4 Numerical studies of the thermodynamic relations

From the analytic approximations in the previous section, we expect the pressure to appear
as straight line in the logarithmic scale for small and large d with the slope approximately 2
and 7/5 respectively. The relation between pressure and density of the multiquarks from the
full expressions can be plotted numerically as are shown in Fig. 3-5. The pressure does not
really depend much on the temperature and we therefore present only the plots at T' = 0.03.
Remarkably, the transition from small to large d is clearly visible in the logarithmic-scale
plots. The transition occurs around d. ~ 0.072. Interestingly, as is shown in Fig. 5, the
multiquarks with larger n, has lower pressure than the ones with smaller ng for d < d.
and vice versa. The dependence on n, remains to be seen for small d as we can see from
Eqn. (27). For large d, the ns,-dependence is highly suppressed as predicted by Eqn. (31).

The entropy density as a function of the temperature for various ranges of the density is
shown in Fig. 6. The temperature dependence for both small and large d are the same, ~ T
at the leading order. The d-dependence is linear and thus appears as separation of straight
lines in the logarithmic-scale plot. For ng, > 0, we can see from Eqn. (39) that the linear
term in 7" should become increasingly important. This is confirmed numerically as is shown
in Fig. 6. The slope of the graph between the entropy density s and 7" in the double-log scale
for ny = 0 (the left plot) and ny, = 0.3 (the right plot) is approximately 5 and 1 respectively.
Regardless of the temperature dependence, it should be noted that the numerical value of
the entropy density for small densities and low n, in Fig. 6 is quite small.

Lastly, the relations between the baryon number density and chemical potential are shown
in Fig. 7. Temperature has very small effect on these curves and negligible for the range
of temperature between the gluon deconfinement and the chiral-symmetry restoration. The
baryon chemical potential depends linearly on the number density for small d. For large d, the
relation between the chemical potential and number density becomes y ~ d?/®. Interestingly,
the multiquark quasi-particles behave more like fermions as a result of being the electric
response of the DBI action [21].

11
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5 Gravitational stability of the dense multiquark star

When a dying star collapses under its own gravity, it is generically believed that the degen-
eracy pressure of either electrons or neutrons would be able to stop the collapse to form a
white dwarf or a neutron star. If the star is more massive than the upper mass limit of the
neutron star, it would collapse into a black hole eventually. The mass limit of the neutron
star is sensitive to the physics of warm dense nuclear matter but little is known about the
equation of state of nuclear matter under high temperature and large density. Even though
the original mass limit of the neutron star estimated by Oppenheimer, and Volkoff was only
0.7 solar mass [20], the new limit when the nuclear interactions are included could be as large
as 2.5 solar mass [26]. Under extreme pressure and density, the quarks within hadrons could
be freed and wander around the interior of the star. In other words, quarks are effectively
deconfined from the localized hadrons but confined by gravity within the star. Using the bag
model to describe the state of being confined by gravity but possibly deconfined from the
hadrons, it turns out that quark matter phase, e.g. strange star, is possible under extreme
pressure and density.

However, physics of the deconfinement is largely unknown due to the non-perturbative
nature of the strong interaction and the difficulty of lattice approach to deal with finite
baryon density situation. The bag model are not always served as a reliable theoretical tool
to explore the behaviour of quarks in the dense star when the deconfinement exists. It is
therefore interesting to use the equation of state of the deconfined nuclear matter from the
holographic model to investigate the behaviour of the dense star as a complementary tool

14



to the bag model and other approaches.

In this section, we will consider a hypothetical multiquark star containing only the mul-
tiquark matter with uniform constant temperature. The relations between pressure and
density will be adopted directly from the holographic model as the equations of state of the
quasi-particles. Since the pressure and density have very small temperature dependence for
the range of temperatures under consideration, the results are valid generically.

A study into the gravitational stability of a spherically symmetric dense star can be
performed using the Tolman-Oppenheimer-Volkoff equation [20]. It is known that the spher-
ically symmetric dense star has metric in a form

ds* = A(r)dt* — B(r)dr? — r*dQy. (40)

After substituting into the Einstein field equation, we obtain the following relations,

B(r) — (1—’4*(7”))_1, (41)

”
dA*(r)
dr

= Smpr? (42)

and dP(r)  (p+P)A(r) _ (p+ P)8xPr+ A(r) "
dr 2 A(r) 2 r(r— A*(r))

The last equation is known as the Tolman-Oppenheimer-Volkoff (TOV) equation. The accu-

mulated mass of the star, M(r), is given by A*(r) = 2M (r). It has been shown in Ref. [2§]

that the chemical potential can be defined through the background metric in the form of

u(r) = \/jﬂ’ It will automatically solve the TOV equation. Note that the constant ep is

arbitrary. Since

pir)  1A(r)
W) 2 A )
the TOV equation becomes /
dP(r) _ (p+ P) pr) (45)
dr p(r)

Together with the first law of thermodynamics p + P = ud, the TOV equation then takes
the following form,

1 /0P
Obviously, the chemical potential can be determined, as a function of the number density:
d
1 /0P
d:/_<—)d+onsea 47
p(d) o\ ) A Honser (47)

where fignser = 1(d = 0). Additionally, considering from the TOV equation together with
the first law of thermodynamics, the density dp = pd(d) can be integrated to

p(d) = /0 ' { /0 n% (g—;) dn’ + uonset] dn. (48)
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For a power-law equation of state, P = kd”, the chemical potential, Eqn. (47), becomes

Ak
uld) = 377 pronser (49)

and eventually the equation of state is given by

1 P\
p= HP + Honset (E) . (50)
In our holographic model of multiquarks, the relation between pressure and density has a
unique power-law behaviour, as is also found in Ref. [21] for the case of normal baryon (ns =
0). This is shown in Fig. 3-4. For small d, P o d* (n, = 0) and for large d, P o d'/°.
The dependence on n, becomes significant when the density d is small and the equation of
state can be approximated by P ~ ad? + 3d*. Since there are two power-laws governing, we
need to match the solutions from the two regions together (i.e. core and crust). The number
density where the equation of state changes from the large-d to the small-d is denoted by d..
For ny = 0, at the transition point d = d,, the energy density is given by Eqn. (50),

K d
Pc = Y1 + ,Uonsetdca (51)

where P = k'd" (Eqn. (27) suggests that \' = 2) is the equation of state of the small d
region. We recalculate the relation Eqn. (47), (48) for the large d region which match with
this p. to be

d>\—1 dé\—l
po= “C+Ak<A—1_A—1)’ (52)

P\ VA N (P 1/X

Numerical results and Eqn. (31) suggest that A = 7/5 for the large d region.

For n, > 0, assume the equation of state for small d is in the form of P = ad +
bd*2 (Eqn. (27) suggests that A\; o = 2,4), the chemical potential and energy density for the
small d region become

1
p— c —P c
P ,0+)\_1 + u

)\1&d>\1_1 )\gbdAQ_l

= onse y 54
R s v i v (54)
ad™ bd*?
= onse d . 55
p= Howad+ gy (55)
We obtain the transition density in the similar fashion,
ad bd2?
Pec = Monsetdc + — + . (56)

A —1 -1
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Numerical results show that for large d, the effect of n, is negligible. Therefore, the
baryon chemical potential and the density for the large d region are again given by Eqn. (52)
and (53). The equations of state, Eqn. (50),(53) as well as the corresponding relations for
ns > 0 case, are in the mixed form containing both the quasi-particle nonlinear terms and
the linear term. The linear term is roughly pjineer =~ 2.5P and the quasi-particle term is
approximately pyuasi = P/

We can solve the TOV equation when the equations of state are given as above by starting
from the core of the star out to the surface. As we go from the center towards the surface of
the star, the density decreases until it reaches a critical value p.. This density corresponds
to the number density d. where the power-law changes from P ~ d"/® to P ~ d? (see Fig. 3-
4). For the crust region where the density p < p., multiquarks obey a different equation
of state given by Eqn. (50). The radius of the core is defined to be the distance Reoe
where p(Reore) = pe and the surface of the star is defined to be the radial distance R where
p(R) = 0.

M

‘ ‘ lo
5 4 d Po

Figure 8: The relation between mass and central density of the multiquark star for multi-
quarks with ng; = 0 (upper), 0.3 (lower).

For n, = 0, numerical fittings suggest that & = 10794 X\ = 7/5,d, = 0.215443, yu. =
0.564374 (core) and k' = 1, N = 2, ionser = 0.17495 (crust). For ny = 0.3, good fit parameters
are k = 107%* X\ = 7/5,d. = 0.086666, 1. = 0.490069 (core) and a,b = 0.375,180.0,; A1 2 =
2,4; ftonset = 0.32767 (crust). Varying the central density po of the star, we obtain the mass-
density relation in Fig. 8. Each curve has two maxima, a larger one in the small density
region and a smaller one in the large density region. Each maximum corresponds to each
power-law of the equation of state, the low density to the crust and the large density to
the core. Interestingly, the contribution to the total mass of the multiquark star comes
dominantly from the crust. This is shown in Fig. 9. Even though the density is much lower,
the volume of the crust is proportional to the second power of the radius and thus makes
the contribution of the crust to the total mass larger than the core’s.
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Figure 9: The accumulated mass distribution in the hypothetical multiquark star for the

central density po = 20 and ns = 0. The inner (outer) red (dashed-blue) line represents the
core (crust) region.
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Figure 10: The density, and pressure distribution in the hypothetical multiquark star for the
central density po = 20 and ng = 0. The inner (outer) red (dashed-blue) line represents the
core (crust) region.
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Figure 11: The adiabatic index at constant entropy (I') and the sound speed (c¢;) distribution
in the hypothetical multiquark star for the central density py = 20 and ny = 0. The
inner (outer) red (dashed-blue) line represents the core (crust) region.
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Figure 12: Comparison of the accumulated mass distribution in the hypothetical multiquark
star for the central density py = 20 between ng = 0 and 0.3. The (dashed) blue line represents

the crust region of multiquark star with ny = 0.3 (0). The red lines represent the core region
of which both cases are almost the same.
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Figure 13: Comparison of the density, and pressure distribution in the hypothetical multi-
quark star for the central density py = 20 between ng = 0 and 0.3. The (dashed) blue line
represents the crust region of multiquark star with ny = 0.3 (0). The red lines represent the
core region of which both cases are almost the same.
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Figure 14: Comparison of the baryon chemical distributions in the hypothetical multiquark
star for the central density py = 20 between ng = 0 (left) and 0.3 (right). The solid (dashed)
red (blue) line represents the core (crust) region.
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Figure 15: The adiabatic index at constant entropy (I') and the sound speed (c¢;) distribution

in the hypothetical multiquark star for the central density py = 20 and ns = 0.3. The
inner (outer) red (dashed-blue) line represents the core (crust) region.
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Figure 10 shows the pressure and density distribution within the multiquark star for the
case of ng = 0 for the central density pyg = 20. Even though the density and pressure decrease
rapidly with respect to the radius of the star, they never quite reach zero. It turns out that
when the density and pressure reach the critical values where the equation of state changes
into the different power-law for small d, the crust region continues for a large fraction of the
total radius of the star. This makes the crust mass contribution to the total mass of the star
dominant as is shown in Fig. 9.

Some remarks should be made regarding the hydrodynamic properties of the multiquark
phase (taken as nuclear liquid). At constant temperature and entropy, we can define the
adiabatic index

_ popP
L= 5%, (57)
- 5 (58)

where ¢, is the sound speed in the multiquark liquid. They depend on the equation of state
of the multiquark and their distributions within the multiquark star are shown in Fig. 11
for ng = 0. The sound speed never exceeds the speed of light in vacuum. It is also found
that the adiabatic index and the sound speed change within a small fraction as the central
densities are varied for a given n.

The multiquark star with ny = 0.3 (having colour charges) converge to a smaller mass
and radius at high central density (Fig. 12). Multiquarks with colour charges has lower
pressure (and therefore smaller density) than the colourless ones for small density (Fig. 13).
This smaller pressure makes the coloured multiquark star smaller and thus less massive than
the colourless one. In more realistic situations, all of the possible multiquarks with varying
ng coexist in the multiquark phase. The mass limit and mass radius relation will vary
between the two typical cases we consider here. Since the equations of state are found NOT
to be sensitive to the temperature within the range between the gluon deconfinement and
the chiral symmetry restoration, our results should also be valid even when the temperature
varies within the star (but not too high and too low, of course).

M M
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o.e?’ 0.6
0.4 0.4
0.2 0.2

R R

4 5 6 7 2 3 4 5 6 7

Figure 16: The relation between mass and radius of the multiquark star with (a) ny = 0, (b)
ns =0 (red) and ny = 0.3 (black).
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Figure 17: The relation between mass and radius of the core of the multiquark star with (a)
ns =0, (b) ny = 0 (blue) and ny = 0.3 (black).

The baryon chemical potential distributions in the multiquark star for n, = 0,0.3 are
shown in Fig. 14. In the core region, the chemical potential distributions of both cases are
similar due to the similarity of the equations of state for large density. A small jump of the
chemical potential at the transition radius between core and crust region is the artifact from
the power-law approximation. The value of the chemical potential at the transition radius
from the full expression which we used in the numerical simulations is slightly different from
the approximated value using the power-law.

The adiabatic index and sound speed of the multiquark phase for ny, = 0.3 are shown in
Fig. 15. The adiabatic index is higher than ny, = 0 case but the sound speed in the low density
region is distinctively higher. Around the transition density, the sound speed reaches the
maximum value of about 0.986 of the speed of light in vacuum. For both ny = 0, 0.3 cases, it
is obvious that the adiabatic index is closer to 1 in the core reflecting the fact that the density
distribution is more condensed in the core region. The adiabatic index reaches \' = 2 at the
star surface since the the equation of state at zero density is P o p* (i.e. T'(p — 0) = X
for Eqn. (50)).

The spiral relation between mass and radius of the multiquark star is shown in Fig. 16.
As the central density is increasing, the mass and radius of the ny = 0 (0.3) multiquark
star converge to the value of 0.659 (0.440) and 3.132 (1.704) respectively. For the core, the
mass and radius of the core for ny = 0 (0.3) converge to the value of 0.108 (0.169) and
0.471 (0.737).

Finally, we would like to estimate these limits of mass and radius in the physical units.
Since our dimensionless quantities are related to the physical quantities through conversion
factors given in Table 1 (Appendix A), both physical mass and radius vary with the energy
density of the nuclear matter phase as o< 1/y/energy density scale. For a multiquark nuclear
phase with energy density scale 10 GeV/ fm®, the conversion factor of the mass and radius
are 5.91 M. and 8.71 km respectively. This would correspond to the converging mass and
radius (in the limit of very large central density) of 3.89 (2.60) M, and 27.29 (14.85) km
for ng = 0 (0.3) multiquark star respectively.

In realistic situation, the nuclear phase in the outer region could lose heat out to the
space in the form of radiation. The nuclear matter in the outer region of the crust will cool
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down and mostly become confined into neutrons and hadrons (e.g. hyperons, pions). This
would make the multiquark crust to end at shorter radius than the estimated value and
render the multiquark star to be smaller and less massive than the estimated values in the
hypothetical prototype. For example, for the energy density scale 10 GeV/ fm®, the critical
density is p. &~ 1.5 x 10'8 kg/m3 (n, = 0). This is still a sufficiently large density for the
neutron layer to be formed. If the temperature of the nuclear matter in the crust region
falls below the deconfinement temperature, the multiquarks will be confined into extremely
dense neutrons and hadrons instead. For a typical neutron star, the distance of the neutron
layer out to the star surface is roughly 5-6 km [29]. If we add this number to the radius of
the multiquark core, 0.471 x 8.71 ~ 4.10 km, we end up with a more realistic estimation
for the multiquark star with radius ~ 10 km. Regardless of the name, only the core region
is in the deconfined multiquark phase and the content of the outer layers are the confined
nucleons.

6 Discussions and conclusion

In the gluon-deconfined phase of the general Sakai-Sugimoto model, multiquark states can
exist in the intermediate temperatures below the chiral symmetry restoration temperature
provided that the density is sufficiently large. They are stable and preferred thermodynam-
ically over other phases and thus they can play important role in the physics of compact
warm stars. By analytic and numerical methods, we demonstrate that the equation of state
of the multiquark nuclear matter can be approximated by two power-laws in the small and
large density region. Roughly speaking, the pressure is proportional to d? and d”/® for the
small and large number density (d) regions respectively.

It is also found that the effect of the colour charges of the multiquark is to reduce the
pressure of the multiquarks when the density is small. At higher densities, multiquarks
with colour charges exert slightly larger pressure than the colourless ones. The temperature
dependence of the entropy density shows an s oc 7% relation and the colour charge dependence
Scolour X N1 (see Fig. 6 and Eqn. (39)). This implies that the multiquarks with colour
charges have larger entropy but their number of degrees of freedom depend less sensitively
on the temperature. Multiquarks in the deconfined phase behave like quasi-particles with
the entropy density being less sensitive to the temperature than the gas of mostly free gluons
and quarks in the ys-QGP phase.

Using the power-law equations of state for both small and large density regions, a spheri-
cally symmetric Einstein field equation is solved to obtain the Tolman-Oppenheimer-Volkoff
equation. By solving this equation numerically, we establish the mass, density and pressure
distribution of the hypothetical multiquark star. It turns out that the multiquark star is
separated into two layers, a core with higher density and a crust with lower density. Mass
limit curve is also obtained as well as the mass sequence plot between the mass and radius
of the multiquark star. They show typical spiral behaviour of the star sequence plots. The
mass limit curve shows two peaks corresponding to the equation of state of the small and
the large density. Analyses show that the most contribution to the total mass is mainly
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from the crust. The adiabatic index at constant entropy, I', and the sound speed, ¢, of the
multiquark nuclear phase within the star are calculated numerically. For large density, I" is
approximately close to 1 and c¢; is roughly within range 0.6 — 0.7 of the speed of light. For
small density, I" is in the range 1.3 — 2.0 (2.0 — 3.0) and ¢, is roughly 0 — 0.85 (0 — 0.99) for
multiquark with ny = 0 (0.3).
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A Dimensional translation table

quantity | dimensionless variable | physical variable
pressure P Gc—% P
density p GC—T(% p
mass M % M
radius r ror

~1/2
Table 1: Dimensional translation table of relevant physical quantities, ro = (cfgf/é) =

(& (energy density scale)) 12,

4
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