
รายงานโครงการวิจัยMRG5180227 Final Report 

 

(รายงานในชวงตั้งแตวันที่  15 พ.ค. 2551   ถึงวันที่         14 พ.ค. 2553                               ) 

 

  โครงการ การศึกษาสมบัติของสสารนิวเคลียรโดยการประยุกตใชหลักความสมมูล AdS/CFT จากทฤษฎีสตริง 

(String Theory) 

 

 

 

 

 

 

            ปยบุตร บุรีคํา                     จุฬาลงกรณมหาวิทยาลัย 

 

                         ดร. อภิสิทธิ์ อ้ึงกิจจานุกิจ              จุฬาลงกรณมหาวิทยาลัย 

 

 

 

 

 

สนับสนุนโดยสํานักงานคณะกรรมการการอุดมศึกษา และสํานักงานกองทุนสนับสนุนการวิจัย 



Abstract 
 
 

 เราศึกษาสมบัติของสสารนิวเคลียรโดยใชความสมมูล AdS/CFT  เราเสนอโครงรูปสตริงอันชัดเจนของ
สถานะมัลติควารกในควารกกลูออนพลาสมาเมื่อกลูออนเปนอิสระแตสมมาตรไครัลยังคงสลายอยู  แมวาสสารค
วารกอิสระจะไมเสถียรเชิงความรอนแตสสารแบบมัลติควารกซึ่งเกิดจากการแลกเปลี่ยนกลูออนระหวางควารก
อิสระจะมีเสถียรภาพเชิงความรอนนชวงอุณหภูมิปานกลางและความหนาแนนสูงมากพอ  น่ีหมายความวา
สถานะมัลติควารกนิวเคลียรมีเสถียรภาพเชิงความรอนมากกวาสถานะนิวเคลียรอ่ืนๆเมื่อความหนาแนนสูงๆ
มากพอ  จากน้ันสมบัติเชิงแมเหล็กของสถานมัลติควารกนิวเคลียรจึงถูกศึกษา  เราพบวาสนามแมเหล็กภายนอก
ความแรงสูงจะทําใหโครงรูปมัลติควารกสองรูปแบบมีเสถียรภาพขึ้นได  มัลติควารกหนึ่งในสองโครงรูปน้ีไมมี
เสถียรภาพในกรณีท่ีไมมีสนามแมเหล็ก  สนามความแรงสูงและอุณหภูมิสูงๆทําใหโครงรูปท้ังสองแบบลูเขาหากัน  
เมื่อถึงสนามหรืออุณหภูมิคาวิกฤตที่มัลติควารกท้ังสองผสานเปนโครงรูปเดียวกัน มัลติควารกก็จะกลายเปนไม
เสถียร  เมื่อความหนาแนนถูกกําหนดใหคงท่ี มัลติควารกจะเปลี่ยนไปมัลติควารกท่ีมีประจุเชิงรงคตํ่าลงหรือ
ละลายไปในควารกกลูออนพลาสมาท่ีสมมาตรไครัลถูกอนุรักษคืนมา  สถานะทางนิวเคลียรอ่ืนๆภายใต
สนามแมเหล็กถูกพิจารณาศึกษาในกรณีท่ัวไปที่สุดของแบบจําลองแบบซาไกกับซึกิโมโตะ  ในชวงอุณหภูมิปาน
กลาง สถานะมัลติควารกภายใตสนามแมเหล็กจะมีเสถียรภาพเชิงความรอนมากกวาสถานะอื่นๆ เชน สถานะพื้น
ภายใตสนามแมเหล็ก สถานะไพออนเกรเดี่ยน และสถานะควารกกลูออนพลาสมาภายใตสนามแมเหล็กท่ี
สมมาตรไครัลอนุรักษ หากความหนาแนนสูงมากพอและสนามแมเหล็กไมแรงจนเกินไป  สุดทาย เราพิจารณา
สมบัติเชิงความรอนของสถานะมัลติควารกนิวเคลียรและผลกระทบของมันตอฟสิกสของดาวอุนเล็กๆความ
หนาแนนสูงๆ  การศึกษาเชิงตัวเลขแสดงใหเห็นวาอัตราเร็วเสียงในสสารมัลติควารกนิวเคลียรมีคาตํ่ากวา
อัตราเร็วแสงในสุญญากาศและดังน้ันมันจึงสามารถถูกกดอัดไดแมแตท่ีสภาวะความหนาแนนสูงๆเชนน้ัน 
 
 

We study the properties of nuclear matter using the AdS/CFT correspondence.  We propose 
rigorous string configurations of the multiquark states in the quark-gluon plasma when the gluons are 
deconfined but the chiral symmetry is still broken.  Even though the pure quark matter is unstable 
thermodynamically, the multiquark matter resulted from the gluon exchanges between quarks are 
thermodynamically stable for intermediate temperatures and sufficiently large densities.  This implies that 
the multiquark nuclear phase is thermodynamically preferred over other phases provided that the density 
is sufficiently large.  The magnetic properties of the multiquark nuclear phase are then investigated.  We 
found that the strong external magnetic fields stabilize two possible multiquark configurations.  One of the 
configurations was unstable in the zero field situation.  Strong field and large temperature converge the 
two configurations together.  Around the critical field or temperature where the two configurations merge, 
the multiquarks become unstable.  At a fixed density, the multiquarks either change into multiquarks with 
smaller colour charges or melt away into the chiral-symmetric quark-gluon plasma phase (QGP).  The other 



possible magnetic nuclear phases are explored in the most general case of Sakai-Sugimoto model.  In the 
intermediate range of temperature, the magnetized multiquark phase is thermodynamically preferred over 
other phases such as the magnetized vacuum, the pion-gradient phase, and the magnetized chiral-
symmetric QGP, provided that the density is sufficiently high and the magnetic field is not too strong.  
Lastly, we consider the thermodynamical properties of the multiquark nuclear phase and its implications to 
the physics of densed warm compact star.  Numerical studies reveal that the sound speed within the 
multiquark nuclear matter does not exceed the speed of light in the vacuum and thus the multiquark matter 
is compressible even at extremely large nuclear densities.
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2.2.  เวลาที่ใชในโครงการวิจัย:  2 ป 
 

ความจําเปนท่ีตองใชผูชวยวิจัยและหนาท่ี :  การจางผูชวยวิจัยเปนส่ิงธรรมดาที่เห็นไดทั่วไปในกลุมวิจัยที่มีผลงานวิจัย
เปนรูปธรรมเดนชัด โดยเฉพาะในประเทศอยางสหรัฐอเมริกา กลุมประเทศในยุโรป และ ญี่ปุน  โดยจะทําการจางนักศึกษา
หรือคนที่มีความสนใจและมีความสามารถในการวิจัยมาเขารวม  นักศึกษาที่ถูกวาจางมาเปนผูชวยวิจัยก็มักจะเปนนักศึกษา
ปรญิญาเอกในกลุมวิจัยที่มีความรูความสามารถเพียงพอตอหัวขอวิจัยที่จะทํา  ในที่นี้ เอกพงษ หิรัญสิริสวัสดิ์ ซึ่งไดรับ
ปริญญาโทสาขาฟสิกสทฤษฎีจากกลุมวิจัยนี้ ไดเขารวมศึกษาใน study group มาตั้งแตตนและไดชวยทําการคํานวณไดผล
ลัพธเปนที่นาพอใจซึ่งทําใหเห็นไดวาผลที่ไดจากบางกลุมวิจัยในตางประเทศที่ตีพิมพมาแลวนั้นมีความผิดพลาด  เขาจึงเปน
คนที่เหมาะสมที่สุดในการชวยทํางานวิจัยชิ้นนี้ 
 หนาที่ของผูชวยวิจัยรวมถึงการเตรียมคอมพิวเตอรและโปรมแกรมที่ใชคํานวณ  การสืบคน
เอกสารอางอิงที่เกี่ยวของ การตรวจเช็คผลการคํานวณ การริเริ่มหัวขอใหมๆที่เกี่ยวของในงานวิจัย  อีกทั้งยังรวมถึงการไป
นําเสนอผลงานยังที่ประชุมวิชาการตางๆ  ในขณะที่กําลังเขียนเอกสารนี้ ผูชวยวิจัยเอกพงษก็มีกําหนดการไปเสนอผลงาน
บางสวนที่ Siam Physics Congress 2008 ที่จังหวัดนครราชสีมาอีกดวย 
 



3.  สาขาวิชาที่ทําการวิจัย:  การศึกษาสมบัติของสสารนิวเคลียรโดยการประยุกตใชหลักความสมมูล AdS/CFT จาก
ทฤษฎีสตริง (String Theory) 

 
4.  ความสําคัญและที่มาของปญหาท่ีทําการวิจัย:  
  
   การประยุกตใชทฤษฎีสตริงในการศึกษาอันตรกิริยาอยางเขม (strong interaction) เปนพัฒนาการทางทฤษฎีที่นา

จับตามองที่สุดในวงการทฤษฎีฟสิกสในปจจุบัน  เพราะอันตรกิริยาที่ควารก  และกลูออนยึดเหนี่ยวกันอยูในสสาร
นิวเคลียร เชน ฮาดรอน (hadron) และภายในแกนกลางของดาวความหนาแนนสูงอยางดาวนิวตรอนหรือแมกระทั่ง
ภายในหลุมดํา เปนอันตรกิริยาที่มีความแรงสูงมากจนกระทั่งการศึกษาโดยใชกระบวนวิธีแบบ perturbation theory 
หรือ perturbative expansion ไมมีความแนนอนท่ีเชื่อถือได การศึกษาโดยใชทางเลือกทางทฤษฎีอ่ืนๆจึงมีความสําคัญ
และสามารถใหผลที่มีประโยชนตอความรูความเขาใจของสสารนิวเคลียรเหลานี้อยางมาก   

  ทางเลือกหนึ่งก็คือการใชหลักความสมมูล AdS/CFT [1] ที่ไดจากทฤษฎีสตริง  โดยใชความสมมูลระหวางทฤษฎี
อันตรกิริยาอยางเขมที่มีความแรงมากกับทฤษฎสีตริงในอวกาศโคงแบบ Anti de Sitter (AdS) ที่มีความแรงนอยซึ่งทํา
ใหเราทําการใช perturbation theory คํานวณได เราสามารถคํานวณปริมาณหลายๆปริมาณที่บอกสมบัติทางฟสิกสของ
ควารก-กลูออน พลาสมา (quark-gluon plasma) เชน คาความหนืด [2] คาความเร็วเสียง drag force [3,4]ที่ควารกรับรู
ขณะว่ิงผานควารก-กลูออน พลาสมา ศักย (potential) ทางอันตรกิริยาอยางเขมที่ยึดเหนี่ยวควารกและกลูออนที่อยูในพ
ลาสมา [5,6,7] และ screening length [4,5,6,7] 

  ในแงของทางทฤษฎี การประยุกตใชทฤษฎีสตริงในการศึกษาทฤษฎีเกจ (gauge theory) ที่มีความแรงมากยัง
นับเปนพัฒนาการที่นาตื่นตาตื่นใจ  ในปจจุบัน ความสัมพันธระหวางทฤษฎีเกจอยางแรง (strongly coupled gauge 
theory) และทฤษฎีความโนมถวงอยางออน (weakly coupled gravity) ที่ไดจากความสมมูลนี้ยังเปนหัวขอที่มีการศึกษา
กันอยางแพรหลายและยังคงใหผลที่ชวยใหความรูความเขาใจของเราตออันตรกิริยาทั้งสองเพ่ิมพูนขึ้นอยางมากมาย  
นักฟสิกสชั้นนําหลายๆคนเชื่อวาความรูใหมๆทีไ่ดจากความสมมูลนี้จะชวยใหเราสรางทฤษฎีควอนตัมความโนมถวงที่
ถูกตองไดในอนาคต  งานวิจัยในเรื่องนี้จึงเกี่ยวพันกับปญหาที่ย่ิงใหญที่สุดปญหาหนึ่งในฟสิกส นั่นก็คือการสรางทฤษฎี
ควอนตัมสนามความโนมถวงที่ถูกตองและปราศจากปริมาณอนันต (infinity) 

 
5.  วัตถุประสงคของโครงการ 
 
  1.) ประยุกตใชความสมมูล AdS/CFT ในการศึกษาสมบัติของควารก-กลูออน พลาสมาที่อุณหภูมิสูงกวา 175 

MeV ซึ่งเปนอุณหภูมิการเปล่ียนสถานะจากสภาพที่ควารกและกลูออนถูกกักขังในฮาดรอนไปสูสถานะที่มันกลายเปนพ
ลาสมารอนที่ควารกและกลูออนเปนอิสระ ศึกษาปริมาณ transport coefficients ในพลาสมานี้โดยใช dual string theory 
ในอวกาศโคงชนิดตางๆ 

  2.) ศึกษาสมบัติของสสารนิวเคลียรที่สภาวะสุดโตงอื่นๆ เชน เมื่อความหนาแนนสูงมากๆ เชน ภายในดาว
นิวตรอนโดยใชสมมูล AdS/CFT 

  3.) ศึกษาสมบัติของทฤษฎีเกจและทฤษฎีความโนมถวงจากมุมมองของความสมมูล AdS/CFT ศึกษาอันตรกิริยา
ใหมๆที่อาจจะมไีดจากสมมูลของอันตรกิริยาของสตริงแบบเปดและแบบปด (open-closed string duality) [8] 

  4.) ศึกษาสมบัติของโพเมอรอน (pomeron) [9,10]ในอันตรกิริยาแบบเขมโดยใชมมุมองของทฤษฎีสตริง 



เปรียบเทียบผลกับผลที่ไดจากทฤษฎี S-matrix [11]และท่ีไดจากการคํานวณใน Quantum Chromodynamics (QCD) 
[12] 

 
  
6.  ระเบียบวิธีวิจัย ใหแสดงการวางแผนการวิจัย และลําดับข้ันตอนการวิจัย (ถามี) 
 
  1.) พิจารณาวัตถุทางคณิตศาสตรที่เรียกวา baryon vertex [13]ของทฤษฎีสตริงในอวกาศโคงแบบ Anti de Sitter 

และ แบบ Sakai-Sugimoto [14]ที่สมมูลกับฮาดรอน (hadronic bound state) ในทฤษฎีแบบเกจ คํานวณ Nambu-Goto 
action เพ่ือศึกษาศักยระหวางควารกเมื่อมันอยูในสถานะของควารก-กลูออน พลาสมาและดูวามีความเปลี่ยนแปลงไป
ตามอุณหภูมอิยางไร เปรียบเทียบความแตกตางระหวางแบบจําลองที่มาจาก dual string theory แบบตางๆ  ใชการ
คํานวณเชิงตัวเลข (numerical methods) ในการศึกษาเปรียบเทียบผลที่ไดจากการประมาณเชิง analytic  ขยายผลไปสู
กรณีที่ฮาดรอนมีโมเมนตัมเชิงมุมและเปรียบเทียบผลกับฮาดรอนที่อยูที่สถานะพ้ืนที่ไมมีโมเมนตัมเชิงมุม  ศึกษาการขึ้น
ของศักยตอมวลของฮาดรอนโดยใช asymptotic expansion ของศักย 

  2.) ศึกษาปริมาณอื่นๆที่คํานวณไดจากสมมูล AdS/CFT เชน ความหนืดและ transport coefficient ตางๆของ
สสารนิวเคลียรที่อุณหภูมิที่สูงมากๆเชนที่ LHC  หาลักษณะจําเพาะของสถานะทางนิวเคลียรที่จะยืนยันผลที่ทํานายได
จากทฤษฎีสตริง เชน การขึ้นกับอุณหภูมิของ jet quenching (การตรวจพบ jet ที่นอยลงมากกวาปกติ) และ 
charmonium suppression (การตรวจพบ charmonium ที่นอยลงกวาปกติ) 

  3.) ศึกษาฟสิกสของควารก-กลูออนพลาสมาเมื่อความหนาแนนของมันมีคาสูงมากๆ เชนในดาวนิวตรอนโดยการ
คํานวณโดยใชสมมูล AdS/CFT  เปรียบเทียบผลกับที่ไดจากสมบัติที่ไดจากการสังเกตการณของดาวนิวตรอน 

  4.) ใชสมมูลของสตริงแบบเปดและแบบปดพิจารณาหาอันตรกริิยาแบบใหมที่เกิดจากการแลกเปลี่ยน open-string 
singlet ที่มีมวลซึ่ง dual ของมันคือ massive gravitons [10]ในมุมมองของทฤษฎีสตริงในอวกาศที่โคงซึ่งนําไปบรรยาย
โพเมอรอนในอันตรกิริยาอยางเขมได  เราสามารถใชขอมูลของ total cross section [15]และ diffractive scattering ใน
การศึกษาฟสิกสของโพเมอรอนและเปรียบเทียบกับที่บรรยายโดยอันตรกิริยาที่มาจาก open-string singlet       

 
7.  ขอบเขตของการวิจัย 
 
 ศึกษาการประยุกตใชทฤษฎีสตริงตอฟสิกสของสสารนิวเคลียร เชน ควารก-กลูออน พลาสมา และฟสิกส

ใหมๆที่ไดจากสมมูล AdS/CFT ในทฤษฎีสตริง 
 
8.  การเชื่อมโยงกับนักวิจัยท่ีเปนผูเชี่ยวชาญในสาขาวิชาที่ทําการวิจัย 
 
  ดร. อรรถกฤต ฉัตรภูติ เปนอาจารยที่กลุมวิจัยฟสิกสทฤษฎีเกี่ยวกับฟสิกสพลังงานสูงและมีความรูความ

เชี่ยวชาญเกี่ยวกับทฤษฎีสตริงและเอกภพวิทยาเปนอยางดี และยังมีความสนใจในการศึกษาการประยุกตใช ความ
สมมูล AdS/CFT ในการศึกษาสมบัติของควารกและกลูออนในควารก-กลูออน พลาสมา รวมถึงคําทํานายของทฤษฎี
สตริงในทางเอกภพวิทยาและสมบัติของสสารนิวเคลียรในยุคแรกเริ่มของเอกภพอีกดวย 

  ในปจจุบัน ตัวผูเสนอโครงการ ดร. อรรถกฤต และ ดร. อภิสิทธ อ้ึงกิจจานุกิจ ไดสรางกลุมศึกษา (study 



group) เกี่ยวกับเอกภพวิทยาและทฤษฎีฟสิกสพลังงานสูงขึ้นและมีการพบปะอภิปรายกันสัปดาหละสองครั้งเพ่ือศึกษา
และตอยอดงานวิจัยที่นาสนใจ  กลุมศึกษาประกอบไปดวยนักศึกษาที่สนใจที่จุฬาลงกรณมหาวิทยาลัยหลายคนและ
อาจารยบางทานจากมหาวิทยาลัยอื่น อาทิเชน อาจารยกุลพันธ พิมพสมาน จากมหาวิทยาลัยเกษตรศาสตร  ทุกคนมี
ความเปนไปไดที่จะเขาเปนสวนหนึ่งของงานวิจัยที่เสนอนี้ 

 
9.  ผลงานวิจัยท่ีเกี่ยวของ (Iiterature review) และเอกสารอางอิง 
 
            ดูขอ 4, 5, 6 สําหรับงานวิจัยที่เกี่ยวของ   
  
                 อนึ่ง เกี่ยวกับความสัมพันธของสมมูล AdS/CFT ตออวกาศที่มีมิติเพ่ิมเติม (extra dimensions)  
แบบRandall-Sundrum [16] นัน้อยูที่การที่อวกาศสวน Anti de Sitter (AdS) ใน 5 มิติที่อยูใน 10 มิติของทฤษฎีสตริงนั้น

ถูก 
ใชเปนอวกาศที่บรรยายแบบจําลองที่ความโนมถวงมีสเกลระดับ TeV (103 GeV) ซึ่งต่ํากวาแพลงคสเกล (1019 GeV) ที่เปน 
สเกลของความโนมถวงในส่ีมิติดั้งเดิมอยูมาก  ในแบบจําลองของเอกภพแบบมี extra dimensions พวกนี้ extra  
dimensions จะเปนมิติทางกายภาพที่มีอยูจริง ตางกับการประยุกตใชสมมูล AdS/CFT ในการศึกษาสมบัติของสสาร 
นิวเคลียรที่ไมไดสมมติการมีอยูจริงของextra dimensions ในเอกภพของเรา เพียงแตใชการคํานวณของทฤษฎีสตริงใน 
อวกาศ 10 มิติแบบ AdS5xS

5 เพ่ือคํานวณปริมาณทางกายภาพบางปริมาณของสสารนิวเคลียรในทฤษฎีเกจอยางแรงในส่ี 
มิติ ที่มีความสมมูลกับทฤษฎีสตริงในสิบมิตินี้ 
 ดังนั้นจึงกลาวไดวา การศึกษาสมมูล AdS/CFT เปนแรงบันดาลใจใหมีการสรางแบบจําลองเอกภพแบบมี  
extra dimensions เชนแบบจําลองของ Randall และ Sundrum แตไมไดหมายความวาการประยุกตใชAdS/CFT ในดาน 
ตางๆรวมถึงการศึกษาสมบัติของสสารนิวเคลียรจะตองเกี่ยวของกับแบบจําลอง Randall-Sundrum แตอยางใด 
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10.  อุปกรณท่ีใชในการวิจัย 
 
          10.1. เครื่องคอมพิวเตอร Notebook ขนาดหนวยความจํา RAM มากกวา 1,024 MB และ หนวยความจํา harddisk 

มากกวา 100 GB เพ่ือการใชศึกษาทางตัวเลข (numerical analysis) เตรียม presentation และตีพิมพงาน 
paper ทางวิชาการ  

          10.2. เครื่อง printer สําหรับพิมพงานและเอกสารที่จําเปน 
            10.3. เอกสารอางอิงและอุปกรณสํานักงาน ไดแก กระดาษพิมพงาน กระดาษทด สมุดบันทึก เครื่องเขียน 
            10.4. โปรแกรม Antivirus และ AntiSpyware โปรแกรม Mathematica โปรแกรม Microsoft Offices 
 
11.  แผนการดําเนินงานตลอดโครงการ และผล (output) ท่ีจะได (ใหระบุผลงานคาดวาจะตีพิมพไดดวย) 
 
         แผนการดําเนินการจะประกอบดวยวัฏจักรที่มีความยาวประมาณ 6 เดือนประมาณ 4 ครั้ง ดังตอไปนี้  
         11.1. เดือนแรกจะเปนการศึกษางานที่เกี่ยวของรวมถึงความเปนไปไดในการขยายผลสูหัวขอที่นาสนใจ  
       11.2. สองเดือนถัดมาจะเปนการศึกษาและคํานวณหัวขอที่นาสนใจและสามารถตอยอดความรูไดและสรุป   เปน
ผลการวิจัย 
         11.3. สามเดือนถัดมาจะเปนการเขียนเปนเอกสารตีพิมพ (paper)  การสงเพ่ือการตีพิมพ และการติดตอ   
อภิปรายกับ Referees ของ journal ที่สงตีพิมพ 
 
         ผลงานท่ีคาดวาจะตีพิมพได 
ปท่ี 1: 1. Properties of baryon in quark gluon plasma from gravity dual models, จะสงตีพิมพตอ      
Journal of High Energy Physics (impact factor ป 2006 5.393) 
ปท่ี 2:  2. Transport coefficients in extreme nuclear states by gravity dual models, จะสงตีพิมพตอ Journal of High 
Energy Physics 
        3. Description of pomeron by open-string singlet interactions, จะสงตีพิมพตอ Journal of High Energy Physics   
 



12.  ประโยชนท่ีคาดวาจะไดรับ 
 
           คาดไดวาจะมีงานตีพิมพ 2-3 paper ในระยะเวลาสองป  ความรูที่ไดจะทําใหเรามีความเขาใจในสมบัติของสสาร
นิวเคลียรมากขึ้น รวมถึงความรูความเขาใจทางทฤษฎีตอความสัมพันธระหวางทฤษฎีเกจและความโนมถวงที่ลึกซึ้งยิ่งขึ้น
ซึ่งอาจนําไปสูความเขาใจตอธรรมชาติของความโนมถวงทางควอนตัมที่เปนปญหาที่สําคัญที่สุดปญหาหนึ่งในฟสิกสยุค
ปจจุบัน   
 
 
14.  จดหมายรับรอง (recommendation) ในกรณีท่ีนักวิจัยท่ีปรึกษาอยูตางประเทศ 
 
หมายเหตุ ใหจัดทํารายละเอียดตามหัวขอตางๆ  ขางตนนี้ พรอมประวัติผลงาน (CV) ของผูสมัครขอรับทุน สงพรอมกับ

แบบสมัครขอรับทุนพัฒนาศักยภาพในการทํางานวิจัยของอาจารยรุนใหม (จํานวน 5 ชุด) 
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Abstract: In the deconfined phase of quark-gluon plasma, it seems that most of the

quarks, antiquarks and gluons should be effectively free in the absence of the linear confining

potential. However, the remaining Coulomb-type potential between quarks in the plasma

could still be sufficiently strong that certain bound states, notably of heavy quarks such

as J/ψ are stable even in the deconfined plasma up to a certain temperature. Baryons

can also exist in the deconfined phase provided that the density is sufficiently large. We

study three kinds of exotic multi-quark bound states in the deconfined phase of quark-gluon

plasma from gravity dual models in addition to the normal baryon. They are k-baryon,

(N + k̄)-baryon and a bound state of j mesons which we call “j-mesonance”. Binding

energies and screening lengths of these exotic states are studied and are found to have

similar properties to those of mesons and baryons at the leading order. Phase diagram

for the exotic nuclear phases is subsequently studied in the Sakai-Sugimoto model. Even

though the exotics are less stable than normal baryons, in the region of high chemical

potential and low temperature, they are more stable thermodynamically than the vacuum

and chiral-symmetric quark-gluon plasma phases (χS-QGP).
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1 Introduction

The discovery of AdS/CFT correspondence [1, 2] provides a new tool for studying the

strongly coupled gauge theories. Although the original setup and most of the systems that

string theorists have been investigating so far are highly supersymmetric and conformal, a

lot of progress has been made in constructing more realistic models. Now we have examples

of QCD-like gauge theory with known gravity dual that share most of the qualitative

features of QCD. These holographic models allow us to perform analytic calculations in the

regimes which are too difficult to implement for the real QCD even for lattice calculations.

The properties of quark-gluon plasma from Relativistic Heavy Ion Collisions and QCD at

finite baryon density are two examples of such regimes.

The gravity dual of baryons can be described via baryon vertex [3, 4], a D-brane

wrapping higher dimensional sphere in 10-dimensional curved background with N strings

attached to it and ending at the boundary. These strings are required to cancel an N

charge in the world-volume of the wrapped brane due to the presence of RR flux in the

background. The endpoint of fundamental string that ends on D-brane is electrically

charged with respect to world-volume U(1) gauge field. Its charge is +1 or −1 depend-

ing on the orientation of the string and D-brane. Moreover, strings stretching from the

baryon vertex to the boundary of AdS or the corresponding background spacetime (e.g. in

Sakai-Sugimoto model) behave as fermions, giving antisymmetricity of the baryon vertex.

This fact allows us to construct an SU(N) gauge-invariant combination of N quarks as

– 1 –
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required by the group theory. Baryon configurations were investigated further in [5]–[7].

The authors in [8] extended the consideration in confining background where it was found

that the binding energy is linear in N and in the size of the baryon on the boundary.

And furthermore, they found that in NSUSY = 4 theory there are stable configurations for

baryons which are made of k quarks, or “k-baryon”, if 5N/8 < k ≤ N . Such configurations

can be realized by considering the usual baryon vertex with k strings stretched up to the

boundary and the rest N − k strings stretched down to the horizon. These baryons are

not colour singlet and transform as N !
k!(N−k)! representation under SU(N) gauge group, for

example the case k = N − 1 gives rise to a baryonic configuration in the anti-fundamental

representation. In a confining theory we do not expect to find such a bound state. It was

proposed in [9, 10] that the k < N bound states can exist in a deconfined phase.

In general, we could imagine that there would be more exotic baryon states in the

deconfined phase where bound states of quarks need not be the colour singlet. Some

attempts have been made in constructing holographic description of exotic multi-quarks

bound states [9]–[12]. The author in [12] considered exotic quark configurations formed

by combining two or more baryon vertices together. However, it might be possible to

construct an exotic baryon from a single baryon vertex which should be more energetically

preferable. One useful observation is that there are infinite combinations of string charges

that can cancel the charge from the background RR flux. Hence, the total number of strings

attached to the baryon vertex need not to be equal to N . For example, if the orientation

of D-branes is fixed in such a way that there is +N units of charge on its world-volume, we

can attach N + k strings, each with −1 charge and k strings with +1 charge to make the

total charge vanishes. As long as the conservation of charge is concerned, k could be any

integer. In this case, we can construct a k > N baryon. Such baryon could be the lightest

bound state in some irreducible representation of the underlying gauge theory, thus it may

be stable and can be observed in the deconfined phase. We would like to investigate this

possibility further in this paper.

It is also interesting to study exotic baryons in more realistic model such as Sakai-

Sugimoto model [13, 14]. This model is based on Witten’s model [15] which uses the

D4-brane wrapping a Scherk-Schwarz circle and adds a stack of Nf probe D8-branes and

a stack of Nf probe anti-D8-branes transverse to the circle. This model contains mass-

less chiral fermions and the flavour symmetry. The most striking feature of this model

is that it introduces geometrical mechanism for spontaneous chiral symmetry breaking.

Using the fact that the circle vanishes at a finite radial coordinates in the near horizon

limit, D8-branes and anti-D8-branes are connected in a U-shaped configuration. At low

temperature the model describes a confining gauge theory with broken chiral symmetry.

Above a deconfinement temperature, gluons become effectively free. However, both the

connected U-shape D8-branes configuration and the separated parallel brane-anti-brane

configuration are possible in the intermediate temperature. The chiral symmetry is still

broken even though the gluons are already deconfined. At higher temperature the chiral

symmetry is restored, which is illustrated geometrically by the separation of the D8-branes

and anti-D8-branes [16]. This corresponds to the branes being in parallel configuration.

– 2 –
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The model also has an interesting phase structure. Finite baryon density in the Sakai-

Sugimoto model has been studied in [17, 18] and extended to the full parameter space in [19]

where baryon matter is represented by D4-branes in the D8-brane (nuclear matters) or by

strings stretched from the D8-brane down to the horizon (quark matters). It was shown that

the former configuration is always preferred to the latter and quark matters are unstable

to density fluctuations. In the deconfined phase there are three regions corresponding to

the vacuum, quark-gluon plasma, and nuclear matter, with a first-order and a second-order

phase transition separating these three phases. The author in [19] found that for a large

baryon number density, and at low temperatures, the dominant phase has broken chiral

symmetry in agreement with QCD at high density. It is interesting to see how exotic

baryon states fit into the phase structure.

This paper is organized as the following. In section 2, we discuss some classes of exotic

baryon configurations and investigate their static configurations in section 3. Binding en-

ergy and screening length of the configurations are calculated in section 4. The dependence

on free quark mass of exotic baryon configuration is discussed in section 5. The phase dia-

gram of Sakai-Sukimoto model with exotic baryons is investigated in section 6. We discuss

our results in section 7 and conclude in section 8.

2 Some classes of multi-quark states

In the deconfined phase of QGP, coloured states of a number of quarks and antiquarks can

exist in the medium as long as it is energetically more favoured than the free quarks and

antiquarks or other mesonic states. We will call these multi-quark states as “baryons” in

this article. In the confined phase, the only allowed baryons are those with colour singlet

combinations such as nucleons and pentaquarks. For the deconfined phase, baryons can

have colour and thus can have more varieties than the situation in the confined phase.

In general, a D(8− p)-brane wrapping the subspace S8−p of the background spacetime

sources the gauge field A(1) on its world volume. This gauge field will couple with the

antisymmetric (8− p)-form field strength G(8−p) and induce the charge upon the wrapping

D(8−p)-brane. If the background is generated by a stack of N Dp-branes, then the charge

being induced upon the wrapping D(8 − p)-brane will be exactly N . This charge needs to

be cancelled by external charges brought about by strings. Each of the strings stretching

out from the wrapping brane to the spacetime boundary or probe branes carries −1 unit

of charge. Therefore it is required that the total number of “quark” strings stretching out

from the wrapping brane must be N . The configuration of wrapping D(8 − p)-brane with

totally N strings stretching out is called a baryon vertex [3, 4].

For the confined phase, since quarks cannot exist as free-quark strings with one end

falling behind the horizon, therefore they can only start from the baryon vertex and go to

the probe branes. On the other hand, in the deconfined phase, a radial string configuration

lying along the radial coordinate is also a classical solution of the Nambu-Goto action [20]

and it represents the free (anti)quark state in the QGP medium. A string can either start

from the baryon vertex and go radially to the horizon of the background spacetime or it can

– 3 –
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. . .  

.     .     .

 (a) (b)  (c)

.  .  .

Figure 1. The gravity dual configurations of the hypothetical exotic states (a) k-baryon with

the number of hanging strings kh = k < N and the number of radial strings kr = N − k. (b)

(N + k̄)-baryon with kh = N + k̄ and kr = k̄. (c) j-mesonance with kh = 2j and kr = N .

come from the horizon and end at the baryon vertex. We will call this string configuration

which is allowed in the deconfined phase as the “radial string”.

In the deconfined phase of QGP, it is possible to have kh strings hanging from the

spacetime boundary down to the baryon vertex and another kr strings stretching radi-

ally from the baryon vertex down to the horizon. The total number kh + kr = N is

the charge conservation constraint on the configuration. This configuration is known as

“k-baryon” [8].

Another possible configuration is when there are N quark-strings and k̄ antiquark-

strings hanging down to the vertex from the probe branes. To conserve the charge, there

are additional k quark-strings hanging from the vertex down to the horizon. We will

call this configuration “(N + k̄)-baryon” (e.g. pentaquark could be represented by one of

this kind).

An even more interesting configuration allowed in the deconfined phase is when there

are j pairs of quark and antiquark strings hanging from the probe branes down to the

vertex. Again, to conserve charges, we need N radial strings stretching from the vertex

down to the horizon. This configuration obviously can decay into j mesons when it is less

energetically favoured. Therefore we will call this state, a “j-mesonance”, representing a

binding state of j mesons in the QGP.

In summary, the charge conservation constraint for each case can be expressed as

the following.

For k-baryon,

kh + kr = N ; kh = k. (2.1)

For (N + k̄)-baryon,

kh − kr = N ; kh = N + k̄. (2.2)
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For j-mesonance,

kh = 2j; kr = N. (2.3)

Note that kh is the number of strings hanging from the boundary down to the baryon

vertex and kr is the number of strings hanging from the vertex down to the horizon. The

value of k̄ and j can be as large as N × Nf . However, in this article, we will take this

number to be large and ignore the upper bound on k̄ and j. Each configuration of exotic

baryons is illustrated in figure 1.

3 Force conditions

In this section, we will consider the force condition for each exotic configuration of the

quarks and antiquarks in a deconfined phase. The calculation will be performed in the

gravity background similar to those of Sakai and Sugimoto’s [13]. Even though the chiral

symmetry restoration can be addressed within this model, we will not consider the aspect in

this section but rather focus our attention on the high temperature phase where quarks and

antiquarks are effectively free in the absence of the linear confining potential. The positions

of D8/D8 will be taken to be large and we will approximate it to be infinity in this section

as well as in the discussion of binding energy and screening length in section 4. Analysis in

this heavy-quark limit provides us with valuable physical understanding of certain essential

features of the exotic states. Generalized results for a near-horizon background metric of

the Dp-branes solution and its dependence on positions of the probe branes will be given

in section 5.

Even in the deconfined phase, quarks and antiquarks feel effective (screened) potential

from other constituents. Therefore, a number of population of them will exist in various

forms of bound states, some of which are exotic in the sense that they cannot be formed

in the confined phase at low temperature.

Start with the following background metric

ds2 =

(

u

RD4

)3/2
(

f(u)dt2 + δijdx
idxj + dx4

2
)

+

(

RD4

u

)3/2(

u2dΩ2
4 +

du2

f(u)

)

(3.1)

F(4) =
2πN

V4
ǫ4, eφ = gs

(

u

RD4

)3/4

, R3
D4 ≡ πgsNl

3
s ,

where f(u) ≡ 1 − u3
T /u

3, uT = 16π2R3
D4T

2/9. Note that the compactified x4 coordinate

(x4 transverse to the probe D8 branes), with arbitrary periodicity 2πR, never shrinks to

zero. The volume of the unit four-sphere Ω4 is denoted by V4 and the corresponding volume

4-form by ǫ4. F(4) is the 4-form field strength, ls is the string length and gs is the string

coupling. The dilaton in this background has u-dependence and its value changes along

the radial direction u. This is a crucial difference in comparison to the AdS-Schwarzschild

metric case where dilaton contribution is constant.

The action of the baryon configuration is given by

S = SD4 + khSF1 + krS̃F1, (3.2)
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where SD4 represents the action of the D4-brane. SF1 is the action of a stretched string

from the boundary down to the baryon vertex and S̃F1 is the action of a radial string

hanging from the baryon vertex down to the horizon. Recall that SD4 can be obtained

from the Dirac-Born-Infeld action.1 After some calculations, we obtain

SD4 =
τNuc

√

f(uc)

6πα′
, SF1 =

τ

2πα′

∫ L

0
dσ

√

u′2 + f(u)
( u

R

)3
, S̃F1 =

τ

2πα′
(uc − uT),

(3.3)

where τ is the total time over which we evaluate the action and uc is the position where

the D4-brane vertex is located.

The variation of the action with respect to u gives the volume term and the sur-

face term. The volume term leads to the usual Euler-Lagrange equation for the classi-

cal configuration of strings. As an approximation, we assume the baryon vertex to be a

point (not being distorted by the connecting strings) located at a fixed value of u = uc as

in ref. [8]. Under this assumption, the surface terms provide additional zero-force condition

on the configuration,
N

3
G0(x) − khB + kr = 0 (3.4)

where

G0(x) ≡
1 + x3

2√
1 − x3

, x ≡ uT

uc
< 1, and B ≡ u′c

√

u′c
2 + f(uc)(

uc
RD4

)3
. (3.5)

Notice that these conditions occur at the location of the vertex at u = uc, at which there

exists the balance between the pull-up force (toward the direction of increasing u) due to

the tension of hanging strings and the pull-down force due to the “weight”2 of D4-brane

plus the tension of radial strings.

Since B ≤ 1, we obtain

kh ≥ N

3
G0(x) + kr, (3.6)

which expresses the lower bound of the number of hanging strings. In other words, the

number of hanging strings cannot be less than this critical value, otherwise the no-force

condition is not satisfied. The equality of (3.6) is held only when all hanging strings are

stretched straight, otherwise we require more hanging strings to balance the pull-down

force. Let us now consider each class of the multi-quark states.

In the case of k-baryon, plugging the condition (2.1) into (3.6), we obtain

kh = k ≥ N

6
(G0(x) + 3) . (3.7)

1

SDBI =

Z

dx
0
dξ

p
Tp; Tp =

“

e
−φ(2π)p

α
′(p+1)/2

”

−1 p

−det(g)

2This is not exactly the weight in the usual sense since the direct gravitational force on Dbrane is already

balanced by the force from the RR-flux, but it is the force originated from minimization of self-energy due

to the brane tension caused by the background metric and the gauge interaction. This is very similar to

the self-energy of a spring under gravity where the spring potential energy changes with the tidal force

from gravity in the background. The DBI action of the D4∼ uc

p

f(uc) which is positive for uc > uT and

becomes zero (minimum) at uc = uT and thus it represents the “weight” on D4 towards the horizon.

– 6 –
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Apart from the lower bound, we also have the upper bound, k ≤ N , therefore G0(x) cannot

be larger than 3, resulting in

x . 0.922. (3.8)

Notice that this restriction on x is a result from the conditions of the force balance and

conservation of string charges. This shows that there is an upper-bound on the temperature,

over which the horizon is too near to the point vertex that the pull-down force always

overcomes the pull-up one.

In the case of (N + k̄)-baryon, in the same way as the preceding case, plugging the

condition of charge conservation (2.2) into (3.6), we have the following condition,

kh = N + k̄ ≥ N

3
G0(x) + k̄.

Unlike the case of k-baryon, the upper-bound of the number of hanging strings does not

exist. However, we still obtain the same condition G0(x) ≤ 3, hence x . 0.922.

Finally, in the case of j-mesonance, similarly, eq. (2.3) results in

j ≥ N

6
(G0(x) + 3) . (3.9)

The lower-bound of the value of j is 2N/3 at zero temperature (x = 0) and it will be larger

as the temperature grows. Nevertheless, the upper-bound of the limit on j does not exist.

Finally, we would like to comment on the limits on the value of k, k̄, j when the temper-

ature is zero. In terms of n ≡ 7−p (of the spacetime background generated by Dp-branes),

the condition (3.6) becomes

kh ≥ N

n
+ kr (3.10)

which leads to
k

N
,
j

N
≥ n+ 1

2n
, (3.11)

and no conditions on k̄. This critical numbers are 5/8, 2/3 for n = 4, 3 (the AdS-

Schwarzschild and Sakai-Sugimoto model) respectively. It is an interesting coincidence

that the critical numbers are the same for both k-baryon and j-mesonance. Even though it

appears from eq. (3.10) that there should also be a constraint on the (N+ k̄) configuration,

it turns out that there is none.

4 Binding energy and the screening length

In this section we will calculate the binding energies of the k-baryon, (N + k̄)-baryon,

and j-mesonance in the deconfined phase. These binding energies are taken to be the

differences between the total energies of each configuration and the corresponding energies

of the free strings configuration which represents the free quarks and/or antiquarks state.

The number of free strings in the free quarks state is determined solely by the total number

of strings hanging from the boundary, kh.
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The total energy of each configuration is given by E = S/τ of the corresponding action

S for each configuration. The binding energy for each hanging string is consequently,

EF1 =
1

2π

∫ L

0
dσ

√

u′2 +

(

u

RD4

)3

f(u) − 1

2π

∫ ∞

uT

du. (4.1)

Due to the no-force condition in the surface term, we impose eq. (3.4) and eq. (3.5), or

u′c
2

=
f(uc)B

2

1 −B2

(

uc

RD4

)3

(4.2)

where the tension of each hanging string at uc is constrained by

B = B(kh, kr, x) =
N

3kh
G0(x) +

kr

kh
. (4.3)

Since the Lagrangian L does not depend on σ explicitly, the conserved Hamiltonian

can be defined to be

H ≡ L− u′
∂L
∂u′

= const, (4.4)

leading to
f(uc)(

uc
RD4

)3
√

u′c
2 + f(uc)(

uc
RD4

)3
=

f(u)( u
RD4

)3
√

u′2 + f(u)( u
RD4

)3
. (4.5)

Then substituting eq. (4.2) into this equation, we obtain

u′
2

=
f(u)2( u

RD4
)6

f(uc)(
uc

RD4
)3(1 −B2)

− f(u)

(

u

RD4

)3

. (4.6)

This gives the size (radius) of the baryon as seen on the gauge theory side,

L =
R

3/2
D4

u
1/2
c

∫ ∞

1
dy

√

(1 − x3)(1 −B2)

(y3 − x3)(y3 − x3 − (1 − x3)(1 −B2))
. (4.7)

Note that uc ≈ R3
D4

L2 at the leading order.

Using eq. (4.6) and let y ≡ u/uc, the regulated binding energy now becomes

EF1 =
uc

2π

{

∫ ∞

1
dy

[

√

y3 − x3

(y3 − x3) − (1 − x3)(1 −B2)
− 1

]

− (1 − x)

}

. (4.8)

Hence, we obtain the total energy of the configurations as

E =
NuT

2π

(√
1 − x3

3x
+

(

kh

N

) E
x

+

(

kr

N

)

1 − x

x

)

(4.9)

∼
N2

L2
(4.10)

where E represents the terms within the brace of (4.8).
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Figure 2. Comparison of the potential per N between N -baryon, k-baryon, and (N + k̄)-baryon

for k/N = 0.8, k̄1/N = 2/3, k̄2/N = 2 at temperature T = 0.25.

To obtain the relations between the total energy of the configurations E(x) and L(x),

we eliminate the parameter x = uT /uc. By numerical calculations, the results are shown in

figure 2, 3. The binding energy of N -baryon is the deepest, suggesting that it is the most

tightly bound state. For (N+k̄)-baryon, increasing k̄ makes the binding energy smaller and

the bound state is less tightly bound. The case of j-mesonance is quite similar. Generically,

a j-mesonance has shallower binding potential than the total energy of j mesons. However,

as j grows, the difference gets smaller and smaller.

The screening radius or screening length of exotic multi-quark state is defined to be

the value of radius L∗ at which the binding energy becomes zero from negative values

at smaller distances. This screening radius is therefore one-half of the usual definition of

screening length in the discussion of mesonic state where it is defined as the zero-potential

distance between quark and antiquark.

Numerical results suggest that the screening length of baryons and mesonance decrease

as the temperature increases, i.e. L∗ ∼ 1/T for a fixed value of k, k̄, j as is shown in

figure 4-6. This is the generic form for the screening length in both the AdS-Schwarzschild

and Sakai-Sugimoto models because it is the quantity which does not depend on the ’t

Hooft coupling at the leading order [21]. It is also an increasing function of k and j.

Interestingly, (N+ k̄)-baryon has the opposite tendency with the screening length decreases

as k̄ grows. On the other hand, the screening length of j-mesonance has a saturation value

L∗
j−mesonance → L∗

meson as j → ∞.
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Figure 3. Comparison of the potential per N between j-mesonance and j mesons for j1/N =

0.8, j2/N = 3 at temperature T = 0.25.
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Figure 4. Screening length with respect to k for the temperatures in 0.15 − 0.35 range.
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Figure 5. Screening length with respect to k̄ for the temperatures in 0.15 − 0.35 range.
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Figure 6. Screening length with respect to j for the temperatures in 0.15 − 0.35 range.

5 Dependence on the free quark mass

In this section, we will study dependence of the binding potential on the position of the

probe branes. This is useful when position of the probe branes are at finite distance from
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the black hole horizon and the corresponding quarks have finite mass. For example, the

probe branes are D8 and D8 flavour branes in the Sakai-Sugimoto model.

The calculation of binding energy as a function of the radius L of the multi-quark

states in the previous sections can be generalized to the case where the background metric

is generated by a stack of Dp-branes as the following. Start with the energy of a hanging

fundamental string with n = 7 − p,

EF1 =
uc

2π

{

∫ ∞

1
dy

[

√

yn − xn

(yn − xn) − (1 − xn)(1 −A(n)2)
− 1

]

− (1 − x)

}

(5.1)

and the radius,

L =
Rn/2

uc
(n−2)/2

∫ ∞

1
dy

√

(1 − xn)(1 −A(n)2)

(yn − xn)(yn − xn − (1 − xn)(1 −A(n)2))
. (5.2)

The total regulated binding energy of the configuration then becomes

Etot =
Nuh

2π

{√
1 − xn

nx
+

(

kh

N

) E
x

+

(

kr

N

)

1 − x

x

}

(5.3)

where

E =

∫ ∞

1
dy

[

√

yn − xn

(yn − xn) − (1 − xn)(1 −A(n)2)
− 1

]

− (1 − x), (5.4)

and

A(n) =
u′c

√

u′c
2 + f(uc)(

uc
RDp

)n
=

N

nkh

(

1 + n−2
2 xn

√
1 − xn

)

+
kr

kh
. (5.5)

The parameter x is again given by

x =
uT (n)

uc
, uT (n = 3, 4) =

16

9
π2R3T 2, πR2T. (5.6)

Note that the case n = 3 and n = 4 corresponds to the case of Sakai-Sugimoto and

AdS-Schwarzschild gravity dual model respectively.

Introduction of quark masses into the configuration can be done by terminating hanging

strings at certain radial distance umax < ∞. The universal behaviour of heavy-quark

potential comes from the limit umax → ∞. We can split the total binding potential of the

string into two parts. The first part is the binding potential in the umax → ∞ limit and

the second part is the mass dependent potential. Therefore, the mass dependence part of

the binding potential, EF1(umax) (m = umax/2π), can be expressed as

EF1(finite mass) = EF1(umax → ∞) + EF1(umax), (5.7)

EF1(umax) = − uc

2π

∫ ∞

umax/uc
dy

[

√

yn − xn

(yn − xn) − (1 − xn)(1 −A(n)2)
− 1

]

(5.8)

= −umax(1 −A(n)2)

4π(n− 1)

(

un
c − un

T

un
max

)

+O(u1−2n
max ). (5.9)
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Eliminate uc by using

L =
Rn/2

uc
(n−2)/2

∫ umax/uc

1
dy

√

(1 − xn)(1 −A(n)2)

(yn − xn)(yn − xn − (1 − xn)(1 −A(n)2))
. (5.10)

The result involves complicated functions of A which can be cast in the following form,

EF1(umax) ∼ −u1−n
max

(

Rn2/(n−2)f1(A) + un
T f2(A)

)

, (5.11)

where f1,2(A) are some functions of A.

Interestingly, the mass dependence of multiquark potentials has similar form as the

mass dependence of mesonic state ∼ m1−n in ref. [20]. This is natural due to the fact that

most of the mass of constituent quarks come from the tail part of strings which extend

to the large-u region. The mass dependence of the binding potential at the leading order

is therefore determined only by the contribution of the hanging strings from the large-u

region. As long as the background spacetime of the gravity dual is asymptotically similar

to the background considered here in the large-u limit, we would expect the same mass

dependence as the form we obtained in this section.

6 Phase diagram

A natural question to ask is whether we have a phase where the exotic multiquark states

are preferred over the normal nuclear matter (namely the gas of N -baryons), vacuum, and

the chiral-symmetric quark-gluon plasma phase. To consider a realistic model where these

three phases are distinct, we focus our consideration on the Sakai-Sugimoto model with

n = 3. To calculate the phase diagram involving exotic states, it is necessary to consider

the contribution from D8 and D8-branes in the Sakai-Sugimoto model in addition to the

contributions from strings and D4-branes. We will assume that the characteristic distance

between D8 and D8 in x4 direction is L0. The relevant scales of the model therefore depend

on both uT and L0.

When there is no radial string pulling the vertex down towards the horizon, it was

demonstrated in ref. [7] by numerical method that the vertex will be pulled all the way up

to the position of the flavour branes if the temperature is not very high. Addition of radial

strings to the vertex would pull the vertex and the flavour branes towards the horizon. As

temperature rises, the radial strings pull the vertex down with stronger force since they are

closer to the horizon. It is possible that the vertex then starts to separate from the flavour

branes and we might need to consider the configuration where vertex and flavour branes

are separated. However, we can see that the difference between the two configurations

should be relatively small (namely, only the force conditions will be slightly different) and

we should be able to approximate the situation by considering the configuration where the

vertex is not separated from the flavour branes. It is also shown in the appendix that this

configuration satisfies the force condition and thus is allowed. Therefore, it will be assumed

that the vertex is always in the flavour branes for the discussion in this section. Moreover,

the vertex will be treated as a static configuration and any distortion caused by the strings

attached to it will be ignored.
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The calculations presented in this section are adapted from ref. [19] except that we

add radial strings hanging from the vertex down to the horizon for the consideration of

exotic nuclear phase. We also use position of the D4, uc, instead of u0 (where x′4(u0) →
∞) in our calculation concerning the exotics. This approach allows us to deal with the

contribution from radial strings more conveniently. As is shown in figure 7, the vacuum

phase with broken chiral symmetry corresponds to the configuration where D8 and D8 are

connected into a curve in the x4−u projection. The chiral-symmetric phase of quark-gluon

plasma (χS-QGP) corresponds to the configuration with the parallel D8 and D8 stretching

from the spacetime boundary down to the horizon. Finally, the nuclear (including exotics)

phase corresponds to the configuration where the D4 vertex is located at the D8-D8 curve,

pulling it down towards the horizon by its “weight” in the background. Each vertex has

radial strings attached to it, pulling it further towards the horizon. When there is no radial

strings attached, the nuclear phase is of normal N -baryons. The chiral symmetry is also

broken in this phase.

Under the above assumptions, the contribution from the strings hanging down from

the spacetime boundary to the vertex is negligible. The only contribution of strings is from

the radial strings hanging down from the vertex to the horizon. The total action of the

configuration is given by

S = SD8 + SD4 + S̃F1. (6.1)

Generically, the DBI action of the D8-branes is given by

SD8 = −µ8

∫

d9Xe−φTr
√

−det(gMN + 2πα′FMN ) (6.2)

where the field strength of the flavour group U(Nf ) is

F = dA + iA ∧A. (6.3)

The flavour branes provide “global” quantum numbers such as baryon number to the

string and subsequently to the strings-brane configuration dual to baryon in the gauge

theory side. The diagonal part of the representation matrix of U(Nf ) is the U(1) subgroup

which induces baryon number to the end of string attached to the flavour branes. Redefine

the U(1) part so that

A = ASU(Nf ) +
1

√

2Nf

Â (6.4)

with Â represents the U(1) piece of the gauge field. The DBI action of the D8-brane

coupled to the diagonal gauge field is then given by

SD8 = N
∫

du u4
√

f(u)(x′4(u))
2 + u−3(1 − (â′0(u))

2) (6.5)

where the constant scales linearly with Nf as

N =
µ8τNfΩ4V3R

5

gs
, (6.6)
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and the rescaled U(1) diagonal field,

â =
2πα′Â
R
√

2Nf

. (6.7)

The action does not depend on â0(u) explicitly and therefore a constant of motion can be

defined as

d =
uâ′0(u)

√

f(u)(x′4(u))
2 + u−3(1 − (â′0(u))

2)
. (6.8)

We will see below that the constant d can be interpreted as the baryon number density

sourced by the D4-branes once we introduce the Chern-Simon action of the gauge field.

Note that d plays the role of the electric displacement field [19]. In the confined phase,

the only possible source for d is the D4-brane wrapped on S4 in the D8-branes. In the

deconfined phase, either D4-brane or strings which stretch from the D8-brane down to the

horizon can serve as the sources for d. Here, in the study of exotic baryons, we consider

the case where both D4-brane and strings are present as the sources. This possibility was

not investigated in [19].

Similarly, the constant of motion with respect to x4(u) leads to

(x′4(u))
2 =

1

u3f(u)

[

f(u)(u8 + u3d2)

f(u0)(u
8
0 + u3

0d
2)

− 1

]−1

(6.9)

where u0 is the position when x′4(u0) = ∞.

Instead of using u0 as the reference position, the radial position of the D4 on the

D8-branes, uc, can be used to calculate x′4(u),

(x′4(u))
2 =

1

u3f(u)

[

f(u)(u8 + u3d2)

F 2
− 1

]−1

(6.10)

where

F =
f(uc)

√

u8
c + u3

cd
2

√

f(uc)(x′4(uc))2 + u−3
c

x′4(uc) (6.11)

=

√

u3
cf(uc)

3

[

1 +
1

2

(

uT

uc

)3

+ 3ns

√

f(uc)

]

√

9(u5
c + d2)

1 + 1
2 (uT

uc
)3 + 3ns

√

f(uc)
− d2

f(uc)
.

The number of radial strings ns represents the number of strings hanging down from D4-

branes to the horizon in unit of 1/N . For k, (N + k̄)-baryon and j-mesonance, the values

of ns are 1 − k/N, k̄/N, 1 respectively. Calculation of x′4(uc) is performed by minimizing

the action with respect to the variation of uc (see appendix). For a fixed L0, increasing

the number of strings ns results in D4-D8 configuration being pulled down more towards

the horizon.

The U(Nf ) gauge field A also generates Chern-Simon term,

SCS =
N

24π2

∫

M4×R
ω5(A). (6.12)
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For A = Aµdx
µ + Audu, the 5-form field strength is given by

ω5(A) = Tr

(

AF2 − 1

2
A3F +

1

10
A5

)

. (6.13)

Only the first term contains non-vanishing contribution from the U(1) part which would

be identified with the number density of baryon. We will assume a uniform distribution n4

of the gas of D4-branes in R
3 at u = uc in the radial direction. This leads to the relation

between the number density of D4-branes, n4, and baryon number density d [19],

n4 =
2πα′R2N
τV3N

d. (6.14)

Phase transition for a system where the number of particles varies is most conveniently

described by the grand canonical ensemble. The grand canonical potential of each phase

can be defined using the corresponding action of the D8-branes as

Ω(µ) =
1

N SD8[x4(u), â0(u)]cl. (6.15)

The baryon chemical potential is given by the U(1) diagonal field at the boundary,

µ = â0(∞), (6.16)

from which the baryon number density is determined,

d = −∂Ω(µ)

∂µ
. (6.17)

This justifies the association of grand canonical potential with the D8 action. When addi-

tional sources of the baryon number are introduced, the free energy, FE, from the sources

will also contribute to the baryon chemical potential,

µ =
∂

∂d

1

N
(

S̃D8[x4(u), d(u)]cl + Ssource(d, uc)
)

≡ ∂FE

∂d
, (6.18)

where the Legendre-transformed action S̃D8 is given by

S̃D8 = SD8 + N
∫ ∞

uc

d(u)â′0 du, (6.19)

= N
∫ ∞

uc

du u4
√

f(u)(x′4(u))
2 + u−3

√

1 +
d2

u5
. (6.20)

In our case, the additional sources are D4 and radial strings. These relations can also be

applied to the vacuum phase (with broken chiral symmetry) where uc is replaced with u0.

Setting L0 = 2
∫∞

ui=u0,uc
x′4(u)du = 1, the expressions for the grand canonical potential

and the chemical potential for each phase are given by

vacuum phase, d = 0:

Ωvac =

∫ ∞

u0

du
u5/2

√

f(u)
√

f(u) − u8
0

u8 f(u0)

, (6.21)
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Figure 7. Configurations of χS-QGP (a), vacuum (b) and exotic nuclear phase (c) in x4 − u

projection.

χS-QGP phase, x′4(u) = 0:

Ωqgp =

∫ ∞

uT

du
u5

√
u5 + d2

, (6.22)

µqgp =

∫ ∞

uT

du
d√

u5 + d2
, (6.23)

nuclear (including exotics) phase:

Ωnuc =

∫ ∞

uc

du

[

1 − F 2

f(u)(u8 + u3d2)

]−1/2 u5

√
u5 + d2

, (6.24)

µnuc =

∫ ∞

uc

du

[

1 − F 2

f(u)(u8 + u3d2)

]−1/2 d√
u5 + d2

+
1

3
uc

√

f(uc) + ns(uc − uT ).

(6.25)

At a fixed temperature T and chemical potential µ, a first order phase transition line

between phase 1 and 2 is obtained when Ω1 = Ω2, µ1 = µ2 = µ. Transitions between

vacuum ↔ χS-QGP and χS-QGP ↔ nuclear phases are of this kind. On the other hand,

phase transition between nuclear ↔ vacuum is second order in nature, at least for this

case when there is no interaction between each D4. The second order phase transition line

occurs when

∂µ

∂d
=
∂2FE

∂d2
(6.26)

has discontinuity at d = 0.

In the Sakai-Sugimoto model, there is a phase transition temperature above which

gluons become deconfined. However, it does not necessarily imply that everything including

quark and antiquark is totally free and chiral symmetry is completely restored above this

temperature. When the baryon chemical potential is sufficiently high, baryons can exist

even when the temperature is higher than the deconfinement temperature [19]. Only when

the temperature increases even further that everything will be completely dissolved and the
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Figure 8. The phase diagram of exotic nuclear matters above the deconfinement temperature.

Nuclear phase including exotics is shown as the region on the lower right corner where it is divided

into 3 parts for representative purpose. A,B,C represents the region where exotic baryon phase

with ns = 0 (N -baryon), 0.1, 0.3 is preferred over vacuum and χS-QGP respectively.

chiral symmetry is also restored. We also see this behavior in the phase diagram in figure 8

where we ignore the confined region at low temperature and present only the deconfined

part of the phase diagram.

The phase diagram of vacuum with broken chiral symmetry, χS-QGP and phase of

nuclear including exotic multi-quark states is shown in figure 8. The phase diagram involv-

ing vacuum and χS-QGP phases was first obtained in ref. [18] and the full phase diagram

without the exotics was obtained in ref. [19]. Since the strings pull down the D4-D8

configuration towards the horizon, the configuration with ns > 0 is less stable than the

normal N -baryon (ns = 0). This is shown in figure 8 where the region of ns > 0 nuclear

phase (B,C) is smaller than the region of N -baryon phase (A). They are actually less

stable than the N -baryon since the grand canonical potential Ωns>0(T, µ) > Ωns=0(T, µ)

for 0.5 > ns > 0. Above ns > 0.3, the exotic phase becomes unstable to density fluctu-

ations (∂µ
∂d < 0) at high temperatures in certain range of d but still remains stable in a

region of parameter space. Numerical studies reveal that for approximately ns > 0.5, the

multiquark states become unstable thermodynamically with respect to density fluctuations

for most of the temperatures.

Addition of radial strings introduces extra source of the baryonic chemical potential.

We can see from figure 8 that the value of µonset for the exotic nuclear phase increases with

the value of ns. Nevertheless, once emerged (i.e. µ > µonset), the exotic phases are more

stable than the vacuum at any temperature, but less stable than χS-QGP at sufficiently

high temperatures above which chiral symmetry is restored.
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7 Discussions

It is desirable to compare the binding energy of each multi-quark state in order to discuss

the stability of each configuration as well as their relative abundances in the deconfined

phase. At a fixed temperature T , we can compare numerically the binding energies E as

functions of the size L of the configuration as is shown in figure 2, 3. For k-baryon and

(N + k̄)-baryon, we compare the energy with N -baryon. For j-mesonance, we compare the

energy with the energy of j mesons.

From figure 2, N -baryon is more energetically favoured than k-baryon and (N + k̄)-

baryon for any value of k, k̄. Since there are less hanging strings from the spacetime

boundary and more radial strings pulled down into the horizon in the case of k-baryon,

the vertex is located closer to the horizon and consequently becomes less energetically

favoured comparing to the N -baryon. Similarly in the case of (N + k̄), even though not as

obvious, adding k̄ hanging and radial strings to the configuration of N -baryon results in

positive energy increase in the binding potential, making this configuration less favoured

energetically. An (N + k̄)-baryon naturally tends to decay into N -baryon plus k̄ free

antiquark strings. A k-baryon also has the tendency to fuse with (N − k) quarks to form

an N -baryon with lower energy.

The situation of j-mesonance is somewhat similar. Even though j mesons are always

energetically preferred over j-mesonance for all value of j, j-mesonance with higher value

of j has stronger binding force than the lower ones as is shown in figure 3. From the energy

viewpoint, j-mesonance will prefer to split into a number of j mesons. It is notable that

the screening length of j-mesonance will approach the value of meson, L∗
meson, but it will

never exceed L∗
meson.

For the case of (N + k̄)-baryon and j-mesonance, there exist the limits k̄ → ∞ and

j → ∞. The first limit for (N + k̄)-baryon leads to the zero-size configuration which

saturates the zero-force condition. The second limit for j-mesonance leads to the mesonic

limit where the configuration is similar to the system of j mesons as we will see in the

following.

From eq. (5.5), since A(n) ∼ (j/N )−1, A(n) becomes negligible for large j/N . There-

fore, we can neglect A(n) and obtain that EF1 does not depend on j/N . Using asymptotic

expansions, eq. (5.4) becomes

E ≃
{

∫ ∞

1
dy

[
√

yn − xn

yn − 1
− 1

]

− (1 − x)

}

=

{

uT − Γ
(

1
2

)

Γ
(

1 − 1
n

)

Γ
(

1
2 − 1

n

)

C2/(n−2)

L2/(n−2)

}

+ O(xn), (7.1)

where

C(n) ≡ Rn/2

n

Γ(1 − 1
n)Γ(1

2 )

Γ(3
2 − 1

n)
.

Now, consider eq. (5.3), we find the screening length L∗ (half the distance between

quarks at which the binding energy is zero) by setting Etot = 0. In the limit of j/N
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becoming very large, we can obtain L∗ from the condition

E(L∗) = 0, (7.2)

leading to

L∗ ≃
[

Γ(1
2 )Γ(1 − 1

n)

uT (n)Γ(1
2 − 1

n)

](n−2)/2

C(n). (7.3)

Again, the case n = 3 and n = 4 correspond to the Sakai-Sugimoto and the AdS-

Schwarzschild gravity dual model respectively. This expression is exactly the same as

the screening length of meson in the deconfined phase from ref. [20].3 It is no surprise since

in the j → ∞ limit, the hanging strings from the boundary exert force overwhelmingly,

therefore the “weight” of the baryon vertex plus the tension of radial strings become negli-

gible. Effectively, the end of hanging string at the vertex will feel zero force down and thus

the slope u′c will be zero. As a result, the strings from the boundary will hang smoothly

and appear similar to hanging strings in the case of the mesonic state.

Even in the deconfined phase, we therefore perceive that in addition to free quarks,

antiquarks, and gluons, there will also be mesons and multi-quark states. Due to the

lower energy, there are more N -baryons than (N + k̄)-baryons and k-baryons. The relative

populations can be estimated using the Boltzmann factor

exp

(

− E

kBT

)

, (7.4)

determined by the corresponding binding energy E for each state.

A more precise way of considering the deconfined phase is to use the grand canonical

potential as the indicator for the stable phase. Following Bergman, Lifschytz, and Lip-

pert [19], we consider three phases of the deconfined soup, a vacuum phase and a nuclear

phase with broken chiral symmetry, and a χS-QGP. For sufficiently high chemical potential

and moderate temperature, the nuclear phase of the multiquark states is preferred over the

vacuum and χS-QGP phase. Exotic nuclear states such as k-baryon, (N + k̄)-baryon, and

j-mesonance are characterized by the number of radial strings ns hanging down from the

D4-branes to the horizon. It is found that the multiquark states with ns > 0.5 are unstable

thermodynamically. However, all of these exotic states with 0.5 ≥ ns > 0 are less stable

than the normal N -baryon with ns = 0.

For each value of ns, there exists a triple point where the grand canonical poten-

tials of the three phases are equivalent. Varying ns, this triple point will move along the

phase transition line between vacuum and the χS-QGP as is shown in figure 8. The sta-

ble region of the nuclear phase shrinks as ns increases. As ns > 0.5, the nuclear phase

becomes thermodynamically unstable with respect to the density fluctuations for most of

the parameter space.

8 Conclusion

The gravity dual picture of the deconfined phase suggests that the binding energy or

potential between quarks and antiquarks in this phase is nonzero due to the Coulombic

3Our definition of the screening length is one-half of the definition in ref. [20].
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piece of the interaction. Since the colorless condition is not required in the deconfined

phase, exotic configurations of the multiquark states are possible. We investigate three

classes of these configurations, k-baryon, (N + k̄)-baryon, and j-mesonance. It is found

that all of these configurations are less energetically favoured than the normal N -baryon

as well as being less stable thermodynamically.

The dependence of the screening length on the parameters k, k̄, j is studied and the

results are shown in figure 4-6. The screening length of k-baryon and j-mesonance are

notably increasing with the values of k and j whereas the screening length of (N + k̄)-

baryon is a decreasing function of k̄. Interestingly, j-mesonance has saturated value of

screening length equal to the screening length of meson as j → ∞.

The dependence on the quark mass of the binding potential at the leading order is

derived and found to be ∼ m1−n (n = 3, 4 for the Sakai-Sugimoto, AdS-Schwarzschild

model). The linear quark-mass dependence of the rest energy that we naturally expect is

included in the regulator and therefore not present in the binding potential.

In order to consider phase diagram involving exotic nuclear phase, we consider the

Sakai-Sugimoto model where the flavour branes D8 and D8 are introduced. The flavour

D8-branes action is identified with the grand canonical potential of the relevant phase. The

nuclear phase is considered in the limit when the D4-branes are pulled all the way up to the

flavour branes. Exotic multiquark states with a number of strings stretched down to the

horizon, i.e. ns > 0, become less stable than normal N -baryon (ns = 0) since radial strings

attached to the D4-branes pull the D4-D8 configuration closer to the horizon. Nevertheless,

comparing to the vacuum and χS-QGP phase, the nuclear phase of exotic multiquark states

can be more stable in a region of phase diagram with high chemical potential and low

temperature as is shown in figure 8. In this region, we expect to have a nuclear phase

where N -baryons, k-baryons, and (N + k̄)-baryons coexist. For j-mesonance with ns = 1,

our consideration of the grand canonical potential suggests that it is thermodynamically

unstable to density fluctuations since ∂µ
∂d < 0. Generically, numerical studies reveal that

exotic baryons with ns > 0.5 (namely k-baryon with k/N < 0.5, (N + k̄)-baryon with

k̄/N > 0.5 and any j-mesonance) in the deconfined phase are thermodynamically unstable

to density fluctuations.
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A Force condition at the D8-branes

There are three forces acting on a D4 locating inside the D8-branes, one from the D8,

another from the radial strings pulling down towards horizon and lastly the force from its

own “weight” in the background. The equilibrium can be sustained only when these three

forces are balanced. As is shown in ref. [19], variation of the total action with respect to

uc and the constant of motion with respect to x4(u) lead to

x′4(uc) =

(

L̃(uc) −
∂Ssource

∂uc

)

/

∂S̃D8

∂x′4

∣

∣

∣

∣

uc

, (A.1)

=
1

d

√

√

√

√

9u2
c(1 + d2

u5
c
)

1 + 1
2 (uT

uc
)3 + 3ns

√

f(uc)
− d2u−3

c

f(uc)
(A.2)

where the Legendre transformed action is

S̃D8 =

∫ ∞

uc

L̃(x′4(u), d) du, (A.3)

= N
∫ ∞

uc

du u4
√

f(u)(x′4(u))
2 + u−3

√

1 +
d2

u5
, (A.4)

and the source term is given by

Ssource = Nd

[

1

3
uc

√

f(uc) + ns(uc − uT )

]

. (A.5)

There are two contributions from the D-branes and strings as the sources for the baryon

chemical potential. Additional strings increase the baryonic chemical potential of the exotic

multiquark states. Since the number of total charge on each D4 is N which is absorbed

into N , the number of radial strings stretched down to the horizon, ns, is thus given in

unit of 1/N .
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Abstract: We study the magnetic properties of the coloured multiquark states in the

quark-gluon plasma where the gluons are deconfined and the chiral symmetry is still bro-

ken, using the Sakai-Sugimoto model. There are two possible magnetized multiquark con-

figurations. Both configurations converge to the same configuration at the critical field

and temperature before they dissociate altogether either into less coloured multiquarks or

into other phases for a fixed density. It is also found that the multiquarks with higher

colour charges respond more to the external magnetic field in both the magnetization and

the degree of chiral symmetry breaking. Magnetic field also makes it more difficult for

multiquark states with large colour charges to satisfy the equilibrium condition of the con-

figuration in the gravity dual picture. As long as the chemical potential µ > µonset, the

magnetized multiquark phase is thermodynamically preferred over the magnetized vacuum.

Pure pion gradient and the chiral-symmetric quark-gluon plasma (χS-QGP) phase for the

general Sakai-Sugimoto model are discussed and compared with the multiquark phase in

the presence of the magnetic field. It is found that at large densities and moderate fields,

the mixed phase of multiquarks and the pion gradient is thermodynamically preferred over

the χS-QGP.
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1 Introduction

There has been increasing interest in the study of nuclear phase structure as well as prop-

erties of a number of nuclear phases, especially the quark-gluon plasma in the recent few

years. This is due to the new perspective in the nature of strongly interacting gauge theory

from the holographic principle. Motivated by the AdS/CFT correspondence [1, 2], a num-

ber of gravity models was constructed to provide shadow gauge theories which share certain

essential features with the QCD in the strong coupling regime. Sakai and Sugimoto [3, 4]

proposed a toy holographic model of QCD where chiral symmetry breaking can be ad-

dressed. In Sakai-Sugimoto model, gluon deconfinement and chiral symmetry restoration

are two distinct phase transitions. For non-antipodal case, the chiral symmetry restoration

occurs at higher temperature than the gluon deconfinement [5], therefore it is possible to

have a nuclear phase where gluons are deconfined while the quarks and antiquarks could

still form colour bound states.

Bergman, Lifschytz, and Lippert [6] shows that when the baryon density is sufficiently

large and the temperature is not too high, gluon-deconfined phase with broken chiral

symmetry accommodates a nuclear phase where baryons can exist with thermodynamical

stability. Even though the baryons can exist within the phase, the quark matters containing

only free quarks or antiquarks do not share the same thermodynamical stability. This can

be understood as a sign of chiral symmetry breaking, the quarks prefer to be bound together

by gluon exchanges in this highly-densed thermal soup. Interestingly, further investigations

into whether colour multiquark states in general could exist within this nuclear phase give

positive results [7].

It was suggested quite a while ago in ref. [8] that it is possible to have k < N -baryons

in NSUSY = 4 background. In the gluon-deconfined phase, since free strings solution is

– 1 –
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allowed in the corresponding gravity dual theories [9], the coloured states could also exist

in the plasma. Various possibilities of exotic multiquark states are studied in ref. [10]–[13].

Colour multiquark states in the gluon-deconfined plasma are studied in ref. [7] where k > N -

baryons as well as other classes of exotic multiquark states including N + k̄-baryons and

bound state of j mesons are investigated. The phase diagram of the colour multiquarks

nuclear phase, chiral-symmetric (χS-QGP) phase, and the vacuum nuclear phase reveals

that colour multiquarks are thermodynamically stable in the region where the temperature

is not too high and the density is sufficiently large (figure 8 of ref. [7]).

In certain situations such as in the core of the neutron stars or other enormously densed

astrophysical objects, exceptionally strong magnetic field is produced in addition to the

high temperature and density. Under these fierce conditions, nuclear matters are pressed

together so tightly that deconfinement phase transition could occur. As is shown in the

phase diagram of ref. [7], coloured multiquark states can exist in the intermediate range

of temperature and sufficiently high baryon chemical potential (implying high baryon den-

sity). They are thermodynamically preferred over the other phases such as the vacuum

and the chiral-symmetric deconfined phase of quark-gluon plasma (χS-QGP). It is therefore

interesting to explore magnetic properties of the nuclear phase where coloured exotic mul-

tiquarks exist under these extreme situations. It is possible that certain classes of densed

stars are in the range of temperature and density suitable for the coloured multiquarks in

the gluon-deconfined soup and the magnetic properties of these states thus significantly

determine their stellar structures.

Responses of the holographic nuclear matter to the external magnetic field have been

intensively investigated in ref. [14]–[19]. It was found in ref. [14] that the external magnetic

field makes gluon-deconfined vacuum more stable thermodynamically than the case when

there is no magnetic field, i.e. the transition temperature into the chiral-symmetric quark-

gluon plasma increases with the magnetic field and saturates in the limit of an infinite field.

Authors of ref. [19] found a phase transition induced by the external magnetic field in the

χS-QGP phase. This could be traced back to the nonlinearity of the DBI action used to

describe the holographic nuclear matter. Since this transition occurs when the magnetic

field changes from small to large strength, the Yang-Mills approximation approach [17] is no

longer valid and similar transition is not found without consideration of the full DBI action.

We take the full DBI approach and investigate the magnetic responses of the multiquark

nuclear phase with broken chiral symmetry in this article. We found that the magnetized

multiquark phase are always thermodynamically preferred over the magnetized vacuum.

At a fixed density, it is also found that the multiquark states can satisfy the scale fixing

condition up to certain critical values beyond which they would change into multiquarks

with smaller colour charges. For higher magnetic fields, all of the multiquarks cannot

satisfy the scale fixing condition at the same density and we would expect other phases

to set in or the density has to be increased for the multiquark configuration to be able to

satisfy the scale fixing condition.

There are two multiquark configurations found below a critical field. The two con-

figurations merge into one at the critical field and temperature for a fixed density. By

comparing to the pure pion gradient and the χS-QGP phase, the multiquark phase is

found to be preferred thermodynamically at large densities and moderate fields.

– 2 –
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In section 2, the essential features of the multiquarks are reviewed. Magnetic responses

and relevant magnetic phases of the colour multiquarks are studied in section 3 using the

DBI action. Comparison to the pure pion gradient and the χS-QGP phase is discussed in

section 4. We discuss the results and make some conclusions in section 5.

2 Exotic multiquark states in the Sakai-Sugimoto model

In the Sakai-Sugimoto model, gluon deconfinement and the chiral-symmetry restoration

are two distinct phase transitions. Generically they occur at different temperatures. When

the gluons become deconfined at the deconfinement phase transition, quarks could still be

bound together by the free gluons due to the fact that the coupling is still strong (provided

that the density is sufficiently high) and therefore the chiral symmetry could still be bro-

ken. Due to the deconfinement, the bound states of multiquarks are not colour singlet in

general. Certain properties of the coloured multiquarks are studied in ref. [7] where it is

demonstrated that the coloured states could exist with thermodynamical stability. When

the temperature rises further, the bound states become less and less stable and finally

completely dissolved into the quark-gluon plasma. The chiral symmetry is restored and

everything becomes completely deconfined.

It was proposed by Witten [20], Gross and Ooguri [21] that a D-brane wrapping internal

subspace of a holographic background could describe a colour-singlet bound state of N

quarks in the dual U(N) gauge theory. A wrapping D-brane sources U(1) gauge field on

its world volume and induces an N units of U(1) charge upon itself. This charge needs to

be cancelled by N external strings connecting to the wrapping brane. The wrapping brane

with N strings attached is called a baryon vertex.

In the gluon-deconfined phase, more strings can be attached to the baryon vertex

provided that there are equal number of strings stretching out and go to the background

horizon. This configuration still conserves the U(1) charge of the brane and solve the

equation of motion of the Nambu-Goto action [9]. We can parameterize the number of

radial strings stretching from the vertex to the horizon as kr and the number of strings

connecting the vertex to the boundary of the background as kh. For the k > N -baryon,

kh − kr = N whilst for k < N -baryon, kh + kr = N . Other classes of exotic multiquark

states can be constructed by adding more strings in and out of the vertex. Few examples

are given in ref. [7] where some interesting properties are also discussed.

There could exist an interaction among the multiquarks in the form of connecting

strings between each vertex very similar to the string connecting two end points of quark

and antiquark in the holographic meson configuration. A multiquark can use one of the

radial strings to merge with another radial string from neighbouring multiquark and form

a colour binding interaction (while keeping kh fixed). Therefore the number of radial

strings represents the colour charges of the multiquark. When the gluons are deconfined,

the “direct” colour interaction would be approximately the same as the meson and baryon

binding potential of the Coulomb type plus some screening effect. Neglecting the direct

interaction and considering only the DBI-induced collective behaviour of the gas of multi-

quarks [6, 7], an approximate phase diagram can be obtained showing exotic nuclear phase

– 3 –
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Figure 1. Configurations of χS-QGP (separate D8, D8)(a), vacuum (merging D8 and D8)(b) and

exotic nuclear phase (vertex attached to the D8-D8 with radial strings stretch down to horizon)(c).

where multiquarks can exist with thermodynamic stability. Schematic configurations of

the three gluon-deconfined phases are given in figure 1 where the direction along the circle

is the compactified coordinate x4 and the vertical direction is the radial coordinate u.

3 Magnetic properties of the coloured multiquarks in the nuclear phase

The setup we use is the Sakai-Sugimoto (SS) model with the source terms from the in-

stanton embedded in the D8 − D8 configuration, and the radial strings similar to the

configuration used in ref. [7]. The instanton (the baryon vertex being pulled up all the

way to the position of the D8-branes by the strings connecting between the vertex and

the flavour branes) is embedded within the D8-branes and acts as a source for the baryon

density, d. The radial strings stretching from the instanton down to the horizon of the

background act as another source. The number of radial strings is parameterized by ns =

(number of radial strings)/N . It also tells us how much colour charges a multiquark has.

The baryon chemical potential is also generated on the D8-branes by the vector part,

aV
0 , of the U(1) subgroup of the U(nf ) flavour group of the D8-branes. The magnetic field

is then turned on by another part of the U(1). We choose the direction of the magnetic

field so that the vector potential is

aV
3 = Bx2. (3.1)

The vector part aV
0 is related to the baryon chemical potential µ by

µ = aV
0 (u → ∞),

aV
0 (uc) = µsource,

µsource =
1

N
∂Ssource

∂d
. (3.2)

The contributions from the sources, µsource, are from the baryon vertex and the radial

strings. The full expressions are given in the appendix. The contribution from the U(1)

vector gauge field in the D8-branes, µ, corresponds to the baryon chemical potential from

– 4 –
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the content of the plasma. The five-dimensional Chern-Simon term of the D8-branes gen-

erates another axial part of the U(1), aA
1 , by coupling it with B and aV

0 . In this way, the

external magnetic field induces the axial current jA associated with the axial field aA
1 .

The background metric of the Sakai-Sugimoto model is

ds2 =

(

u

RD4

)3/2
(

f(u)dt2 + δijdxidxj + dx4
2
)

+

(

RD4

u

)3/2 (

u2dΩ2
4 +

du2

f(u)

)

F(4) =
2πN

V4
ǫ4, eφ = gs

(

u

RD4

)3/4

, R3
D4 ≡ πgsNl3s ,

where f(u) ≡ 1 − u3
T /u3, uT = 16π2R3

D4T
2/9. The volume of the unit four-sphere Ω4 is

denoted by V4 and the corresponding volume 4-form by ǫ4. ls and gs are the string length

scale and the string coupling. The x4 coordinate is compactified with radius R which is

generically different from the curvature RD4 of the background.

The DBI and the Chern-Simon actions of the D8-branes in this background can be

computed to be

SD8 = N
∫ ∞

uc

du u5/2

√

1 +
B2

u3

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4 (3.3)

SCS = −3

2
N

∫ ∞

uc

du (∂2a
V
3 aV

0 aA′
1 − ∂2a

V
3 aV ′

0 aA
1 ). (3.4)

The normalization factor, N = NR2
D4/(6π

2(2πα′)3), represents the brane tension. The ex-

planation of the factor 3/2 is given in ref. [16] where it could be understood as representing

the edge effect of the finite region with uniform magnetic field. The equations of motion

with respect to aV
0 , aA

1 are
√

u5 + B2u2 f(u)a′A1
√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

= jA − 3

2
Bµ + 3BaV

0 , (3.5)

√
u5 + B2u2 a′V0

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

= d − 3

2
BaA

1 (∞) + 3BaA
1 . (3.6)

The quantities d, jA are the corresponding density and current density at the boundary of

the background (u → ∞), they are defined to be

jµ(x, u → ∞) =
δSeom

δAµ

∣

∣

∣

∣

u→∞

(3.7)

= (d, ~jA). (3.8)

Explicitly, they are

d =

√
u5 + B2u2 a′V0

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

∣

∣

∣

∣

∣

∞

− 3

2
BaA

1 (∞), (3.9)

jA =

√
u5 + B2u2 f(u)a′A1

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

∣

∣

∣

∣

∣

∞

− 3

2
Bµ. (3.10)
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For our multiquark configuration, the D8-branes starts from u = uc and extends to u → ∞.

At the boundary (u → ∞), the chiral symmetry is broken and therefore the value of aA
1 (∞)

is taken to be a physical field, ▽ϕ [16], describing the degree of chiral symmetry breaking.

The total action is minimized with respect to aA
1 (∞) if the axial current jA (also defined

at the boundary) is zero.

The total action does not depend on x4(u) explicitly, therefore the constant of motion

leads to

(x′
4(u))2 =

1

u3f(u)

[

u3
[

f(u)(C(u) + D(u)2) −
(

jA − 3
2Bµ + 3BaV

0

)2]

F 2
− 1

]−1

, (3.11)

where

F =
u3

c

√

f(uc)
√

f(uc)(C(uc) + D(uc)2) −
(

jA − 3
2Bµ + 3BaV

0 (uc)
)2

x′
4(uc)

√

1 + f(uc)u3
c x′2

4 (uc)
(3.12)

and C(u) ≡ u5 + B2u2,D(u) ≡ d + 3BaA
1 (u)− 3B▽ϕ/2. The expression of x′

4(uc) is given

in the appendix. It is determined from the force condition and the scale fixing condition

L0 = 2

∫ ∞

uc

x′
4(u) du = 1. (3.13)

Since x′
4(u) depends on both aV

0 (u), aA
1 (u), we need to solve the differential equa-

tions (3.5) and (3.6) with x′
4(u) substituted into the equations of motion and check whether

the solutions satisfy the scale fixing condition eq. (3.13). The values of the vector and axial

field at the vertex are also chosen so that aV
0 (uc) = µsource, a

A
1 (uc) = 0. We basically

perform the shooting algorithm by choosing the value of µ and ▽ϕ in the expression for

x′
4(uc) until we hit aV

0 (∞) = µ and aA
1 (∞) = ▽ϕ. If the resulted solution satisfies the

scale fixing condition L0 = 1, we keep the solution. If not, we adjust the value of uc and

perform the shooting procedure again. The position uc for ns = 0 is given as a function of

the density, the magnetic field, and the temperature in figure 2.

From the solutions of the equations of motion, the relations between baryon chemical

potential (µ) and the baryon density (d), the magnetic field (B), and the temperature (T )

are obtained for the choice of parameters ns = 0 (normal baryon), jA = 0, as are shown in

figure 3. There are two types of solution corresponding to the two holographic multiquark

configurations. One is the configuration with uc close to uT (configuration-A) and another

is the configuration with a large separation between uc and uT (configuration-B).

The baryon chemical potential is found to be an increasing function of the density for

most range of d for both configuration A,B. As is shown in figure 2, configuration-A has

the position of vertex uc closer to the horizon uT than configuration-B. At very small d,

the two configurations emerge separately as two distinct configurations. Interestingly, as

the magnetic field and temperature increase, the two configurations converge into a single

configuration as we can see the position uc approaches the same value at the critical field and

temperature (see figure 2). However, when the two configurations merge, the configuration

no longer satisfies the scale fixing condition L0 = 1 and we expect it to change into other
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Figure 2. Position uc of the vertex for ns = 0 (normal baryon) and fixed jA = 0 as a function of (a)

d with fixed B = 0.10, T = 0.10,(b) B with fixed d = 1, T = 0.10,(c) T with fixed B = 0.10, d = 1.

The lower (blue) line is the configuration-A with uc close to uT and the upper (red) line is the

configuration-B with large separation between uc and uT .

phases such as the chiral-symmetric quark-gluon plasma for a fixed density. It turns out

that if the density is allowed to change, the multiquark configuration can continue to satisfy

the scale fixing condition at higher fields provided that the density is sufficiently large. This

will be discussed more in section 4.

In figure 3, the baryon chemical potential is an increasing function of d, this is true for

both configuration-A and B. It is roughly a linear function of the density, showing that the

DBI-induced collective interaction between the multiquarks are negligible. As d gets larger,

the DBI-induced effect sets in and the negative binding interaction makes µ grows with d

less quickly than the linear progression. Note that this DBI-induced interaction occurs even

when the baryon is colour singlet due to the nonlinear nature of the DBI action. The origin

of this DBI-induced interaction is the “tidal weight” of the DBI action contributed from

both the branes’ worldsheet metric and the background gauge field strength. Naturally,

any form of energy contributes to the tidal weight even the colour singlets.

For configuration-B, there seems to be minimal density dmin below which the shooting

algorithm could not find other valid solutions. We are not certain what happens below

these values. It is possible that when the field is turned on, the D8-branes acquire higher

tension and therefore the configuration requires minimal density to pull it down in order

for the distance between D8 and D8 to reach L0 = 1. For T = 0.10, B = 0.10, ns = 0, the

value of dmin for multiquark configuration B is approximately 0.086.

Figure 3 shows that the chemical potential is a decreasing function with respect to the

magnetic field. This is similar to the behaviour of baryons in chiral-symmetric quark-gluon
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Figure 3. The baryon chemical potential µ for ns = 0 (normal baryon) and fixed jA = 0 as

a function of (a) d with fixed B = 0.10, T = 0.10,(b) B with fixed d = 1, T = 0.10,(c) T with

fixed B = 0.10, d = 1. The upper (blue) line is the configuration-A with uc close to uT and the

lower (red) line is the configuration-B with large separation between uc and uT .
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Figure 4. Comparison between the baryon chemical potential as a function of B at fixed jA =

0, d = 1, T = 0.10 and (a) ns = 0 (normal baryon), the bottom graph,(b) ns = 0.10, the middle

graph, (c) ns = 0.20, the top graph. The upper (blue) lines are the configuration-A with uc close

to uT and the lower (red) lines are the configuration-B with large separation between uc and uT .

plasma studied in ref. [16]. When the field gets stronger up to certain values, the field

becomes too strong for the force condition to hold at the scale fixing L0 = 1. This strange

behaviour is shown in figure 4 where multiquarks with smaller ns are shown to be able to

exist up to stronger fields.

As is also shown in figure 3, the relationship between µ and T is as we expect, a
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Figure 5. The gradient of the scalar field ▽ϕ ≡ aA

1
(∞) for ns = 0 (normal baryon) and fixed

jA = 0 as a function of (a) d with fixed B = 0.10, T = 0.10,(b) B with fixed d = 1, T = 0.10,(c)

µ with fixed B = 0.10, T = 0.10,(d) T with fixed B = 0.10, d = 1. The lower (blue) line is the

configuration-A with uc close to uT and the upper (red) line is the configuration-B with large

separation between uc and uT .

decreasing function of T for fixed density d since higher temperature will melt the mul-

tiquarks away. For fixed d and B, the multiquark configuration satisfies the scale fixing

condition up to a maximum temperature above which we expect it to melt into the plasma.

For ns = 0, this critical temperature is about 0.159 for d = 1.

It is interesting to note that the baryon chemical potential of ns = 0 multiquarks

for both configurations converge to the same value at critical field (≃ 0.63) and tempera-

ture (≃ 0.159) for d = 1. This behaviour also shows up in the gradient scalar field as is

shown in figure 5.

Figure 5 shows the relations between the field ▽ϕ and the density, the magnetic field,

the baryon chemical potential, and the temperature. The pion gradient ▽ϕ represents

the domain wall of the scalar field induced by the magnetic field on the nuclear vac-

uum [22]. Roughly speaking, it quantifies the degree of chiral symmetry breaking. The

domain wall carries baryon charge and thus contributes to the baryon density. For mul-

tiquark configuration-B, it increases with B for a fixed density. From figure 5, the pion

gradient field increases linearly with respect to the field for small fields. Then it starts to

saturate closed to the critical field. This is somewhat similar to the behaviour of the pion

gradient in the confined phase studied in ref. [16]. For configuration-B, the pion gradient

field is a decreasing function of the density when the field is fixed. This implies that for

a fixed magnetic field, the population of the domain wall becomes lesser as the density

of the baryon (including multiquarks and other bound states) increases. We will see this
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Figure 6. Comparison between the gradient of the scalar field ▽ϕ as a function of B at fixed

jA = 0, d = 1, T = 0.10 and (a) ns = 0 (normal baryon), the bottom graph,(b) ns = 0.10, the

middle graph, (c) ns = 0.20, the top graph. The lower (blue) lines are the configuration-A with uc

close to uT and the upper (red) lines are the configuration-B with large separation between uc and

uT .

behaviour again in section 4 when we consider the pure pion gradient phase. Finally from

figure 5, the degree of chiral symmetry breaking ▽ϕ decreases as temperature rises for

multiquark configuration-B.

For configuration-A, the pion gradient field decreases at first for small magnetic fields,

but turns to rise with the field around B ≈ 0.16 until it converges to configuration-B at the

critical field. The dependence of the field ▽ϕ on the density at a fixed B = 0.10, T = 0.10

shows a minimum at d ≈ 0.7, corresponding to µ ≈ 1.18. Then as the density grows, the

pion gradient increases and saturates, implying limited contribution of the domain wall for

large baryon density. The temperature dependence of the pion gradient field for multiquark

configuration-A shows some peculiar behaviour. First, it becomes more negative at low

temperatures then turns to rise and converge to configuration-B at the critical temperature.

Figure 6 shows how the pion gradient field ▽ϕ varies with the magnetic field B for

ns = 0, 0.10, 0.20. For the same B, multiquarks with higher ns responds more to the

magnetic field by inducing larger ▽ϕ, implying higher degree of chiral symmetry breaking.

The pion gradient field for both multiquark configuration-A,B forms a butterfly-wing shape

graph for each ns. The edge of the wing is at the critical field where the configuration

converges and barely satisfies the scale fixing condition.

The magnetization of the multiquarks nuclear matter can be defined using the regulated

free energy, FE = Ω(µ,B) + µd, in the canonical ensemble as

M(d,B) = −∂FE(d,B)

∂B

∣

∣

∣

∣

d

, (3.14)

where Ω(µ,B) = S[a0(u), a1(u)](e.o.m.)−S[magnetized vacuum]. The action with a′V0 , a′A1
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Figure 7. Relation between u0 and external magnetic field B of the vacuum for the temperature

T = 0.10, u0 saturates to the approximate value of 1.23 at large field.

eliminated is given by S[a0(u), a1(u)](e.o.m.) = SD8 + SCS where

SD8 = N
∫ ∞

uc

du C(u)

√

f(u)(1 + f(u)u3x′2
4 )

f(u)(C(u) + D(u)2) −
(

jA − 3
2Bµ + 3BaV

0

)2 ,

and SCS is given in the appendix. The grand canonical potential is regulated with respect

to the magnetized vacuum. The action of the magnetized vacuum with non-vanishing x′
4

is

S[magnetized vacuum] =

∫ ∞

u0

√

C(u)(1 + f(u)u3x′2
4 )

∣

∣

∣

∣

vac

du,

where

x′
4(u)|vac =

1
√

f(u)u3
(

f(u)u3C(u)
f(u0)u3

0C(u0)
− 1

)

. (3.15)

The position u0 where x′
4(u0) = ∞ of the magnetized vacuum can be solved numerically

from L0 = 1 (with u0 replacing uc in the limit of integration). The relation between u0 and

the magnetic field is shown in figure 7 for T = 0.10. As the magnetic field gets stronger,

the position of the lowest position of the D8-D8 configuration, u0, becomes larger, in order

to satisfy the condition L0 = 1 (implying heavier branes due to magnetic field energy). At

T = 0.10, position of u0 saturates to the value of about 1.23 (The number changes with

temperature, of course) in the limit of an infinite field.

The magnetization of the multiquark nuclear matter is shown in figure 8 for ns =

0 (red), 0.10 (green), 0.20 (blue). The magnetization is positive and increases as B increases

until the field is close to the critical value then it starts to drop. Generically, configuration-

A of multiquarks has larger magnetization than configuration-B. For the configuration-

B (A), multiquarks with higher (lower) ns have higher magnetizations. As the magnetic

field gets stronger beyond the critical field for each ns, the multiquarks will undergo a

transition into the ones with smaller ns. For even larger fields, even the ns = 0 multiquarks

cannot satisfy the scale fixing condition if the density is not allowed to change.

Interestingly, numerical studies reveal that the grand canonical potential of the multi-

quark phase is always lower than the grand canonical potential of the magnetized vacuum,
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Figure 8. The magnetization of the multiquarks nuclear matter at fixed jA = 0, d = 1, and

T = 0.10 for ns = 0 (red), 0.10 (green), 0.20 (blue). The upper lines are the configuration-A with

uc close to uT and the lower lines are the configuration-B with large separation between uc and uT .
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Figure 9. The free energy of the multiquarks nuclear matter at fixed jA = 0, d = 1, and T = 0.10

for ns = 0 (red), 0.10 (green), 0.20 (blue). The upper lines are the configuration-A with uc close

to uT and the lower lines are the configuration-B with large separation between uc and uT .

i.e. S[a0(u), a1(u)](e.o.m.) − S[magnetized vacuum] < 0, for the entire range of B. This

suggests that once µ > µonset, the magnetized multiquark phase is always thermodynami-

cally preferred over the magnetized vacuum, the situation similar to the case when there

is no magnetic field investigated in ref. [7]. Among the two configurations, we found from

figure 9 that the free energy of configuration-B is always lower than configuration-A and

thus more stable thermodynamically. These two multiquark configurations-A,B are the

long and short cusp configurations discussed in ref. [6], being extended to the general case

with nonzero magnetic fields. It is found here that for a fixed density, strong field and/or

high temperature (see figure 3 and 5) converge the two into a single configuration right

before dissociating them altogether.

Figure 9 shows how the free energy changes with the magnetic field for ns = 0 (red),

0.10 (green), 0.20 (blue) at the temperature T = 0.10 and the density d = 1. For each ns,
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both configurations converge to the same configuration (with the same baryon chemical

potential, degree of chiral symmetry breaking and free energy) at the critical fields. The

critical fields for ns = 0, 0.1, 0.2 are roughly 0.63, 0.48, 0.38 respectively.

4 Comparison to other phases

In this section we compare the baryon chemical potential and free energy of the magne-

tized multiquarks to the pure pion gradient phase and the chiral symmetric quark-gluon

plasma (χS-QGP) phase, both under the external magnetic field with gluons deconfined.

The pure pion gradient phase is defined to be the phase with µsource = 0 (sourceless case)

and the baryon chemical potential comes purely from the induced gradient field, ▽ϕ, in

response to the external field. The baryon density also comes purely from the pion gradient

field (d = 3B▽ϕ/2). A similar situation in the confined phase of the antipodal SS model

has been studied in ref. [16]. The χS-QGP under the presence of the external magnetic

field has been explored in ref. [16, 19] but again only limited to the antipodal case of the

SS model. In this section we explore some of their magnetic properties in more general

case where x′
4(u) is not zero and the scale is fixed to L0 = 1. Even though the extra con-

straints are irrelevant to the χS-QGP (since x′
4 = 0 for this configuration), it makes crucial

difference in the case of pure pion gradient phase. The scale fixing condition is found to

be very difficult for the pure pion gradient configuration to satisfy for most of the density

as we will discuss below.

All three phases under consideration obey the same set of equations of motion,

eq. (3.5), (3.6) with each specific set of the boundary conditions and parameters as the

following,

multiquark phase: jA = 0, µsource = aV
0 (uc),▽ϕ = aA

1 (∞), aA
1 (uc) = 0,

pure pion gradient phase: all the same with the multiquark phase with the following

exceptions, µsource = 0, aV
0 (uc) 6= 0, d = 3

2B▽ϕ,

χS-QGP : x′
4(u) = 0 and ▽ϕ = aA

1 (∞) = 0, µsource = aV
0 (uc = uT ) = 0, jA = 3

2Bµ (since

the configuration extends to uT and f(uT ) = 0 so that eq. (3.5) is zero).

First, we will explore certain properties of the pure pion gradient phase and show that

it does not exist in the range of parameters (d ≥ 1, B ≤ 1 − 2) under consideration. Then

comparison between the multiquark and the χS-QGP phases will be discussed.

4.1 Pure pion gradient phase

For pure pion gradient configuration, the contribution of the sources, the vertex and strings,

is set to zero. Effectively, we set µsource = 0, d = 3B▽ϕ/2. This is because when ▽ϕ is

zero, the density d should represent the density of the sources, i.e. the pure multiquark or

pure baryon configuration, therefore the source density should be given by d − 3
2B▽ϕ on

the right-hand side of eq. (3.6). When we fix the value of the density at a fixed magnetic

field, ▽ϕ is also fixed. For example, when d = 1, B = 0.1, ▽ϕ ≃ 6.667, a relatively large

value. This large value of ▽ϕ = aA
1 (∞) leads to a generically large value of aA

1 (u) for
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Figure 10. The position uc, the pion gradient field, and the baryon chemical potential of the pure

pion gradient phase at d = 0.10, T = 0.10 as a function of the magnetic field.

the most range of u. From eq. (3.11) and (3.12), we see that for the pure pion phase,

D(u) = 3BaA
1 (u) and thus it must be large for the most range of u as well. In the

multiquark configuration, the d dependence of D(uc) in the expression of F , eq. (3.12),

will compensate the largeness of D(u) and x′
4 can be made sufficiently large so that L0 = 1

could still be satisfied. However, in pure pion phase, D(uc) is simply zero. This makes x′
4

getting smaller as the density gets larger and the scale fixing condition L0 = 1 would not

be satisfied above certain value of the density for a fixed B.

As a result, we wish to keep ▽ϕ sufficiently small in order to satisfy the scale fixing

condition. This implies that higher densities require larger magnetic fields. To demonstrate

this, we fix baryon density to d = 0.1 and plot the position uc of the vertex and the baryon

chemical potential as a function of the magnetic field in figure 10. The graph of uc shows a

minimal field at about B ≈ 0.229 below which L0 < 1 for all solutions. For a larger density

d ≥ 1, the required field strengths are B >> 1 in order for the scale fixing condition to be

satisfied. For the range of parameters d = 1.0, B ≤ 1.0, we therefore need to consider only

the two phases of the multiquark and the χS-QGP. The same situation occurs for the range

of parameters d = 10, B ≤ 1− 2 where the pure pion gradient phase does NOT satisfy the

scale fixing condition and therefore does not exist as well.

4.2 Multiquark-domain wall versus χS-QGP phase

The baryon chemical potential µ is to be found by shooting algorithm for a fixed d,B, T , for

each phase. For d = 1, B = 0.10, T = 0.10, they are shown in figure 11. Observe that there

are two possible solutions for the χS-QGP phase. As the magnetic field increases beyond

a certain value (in this case around B ≈ 0.25), there will be phase transition to another
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Figure 11. Comparison between the baryon chemical potential for T = 0.10 at a fixed density

d = 1 of (a) ns = 0 (normal baryon) multiquark configuration-A, the top (blue) graph,(b) χS-QGP,

the middle (black) graph,(c) ns = 0 (normal baryon) multiquark configuration-B, the bottom (red)

graph.
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Figure 12. Comparison between the baryon chemical potential for T = 0.10 at a fixed density

d = 10 of (a) ns = 0 (normal baryon) multiquark configuration-A, the top (blue) curve,(b) χS-QGP,

the black curve,(c) ns = 0.2 multiquark configuration-B, the dashed red curve,(d) ns = 0 (normal

baryon) multiquark configuration-B, the red curve.

solution within this phase. This behaviour is explored in details in ref. [19]. When the

density is raised to d = 10, the transition occurs at higher field around B ≈ 0.86 (figure 12).

The transitions can also be seen in the plots of the free energy, figure 13, 14, where the

slopes of the graphs change abruptly around the critical fields. For d = 1, this is quite

small and somewhat hard to see but it becomes apparent for d = 10.

From the plots of the free energy, figure 14, the multiquark configuration-A is the

least preferred phase when the density is small (d = 1). Its free energy is larger than the

χS-QGP phase for all fields. For B ≤ 0.196, the most preferred phase is the multiquark

configuration-B phase with the lower free energy. The χS-QGP phase is more stable

for d = 1, B > 0.196. Nevertheless, the multiquark configurations can exist up to only
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Figure 13. Comparison between the free energy for T = 0.10 at a fixed density d = 10 of (a)

ns = 0 (normal baryon) multiquark configuration-A, the top (blue) curve,(b) χS-QGP, the black

curve,(c) ns = 0.2 multiquark configuration-B, the dashed red curve,(d) ns = 0 (normal baryon)

multiquark configuration-B, the red curve.
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Figure 14. Comparison between the free energy for T = 0.10 at a fixed density d = 1 of (a) ns =

0 (normal baryon) multiquark configuration-A, the top (blue) graph,(b) χS-QGP, the middle (black)

graph,(c) ns = 0 (normal baryon) multiquark configuration-B, the bottom (red) graph .

about the critical fields beyond which they cannot satisfy the scale fixing condition at that

particular density.

However, this does not mean that the multiquarks phase cannot exist in the range of

field larger than the critical value. Stronger field gives the D8-branes larger tension and thus

it requires sufficiently heavier vertex and strings to pull it down in order for the distance

between D8 and D8 to reach L0 = 1. This implies that we need larger d in order to make the

configuration satisfy the scale fixing condition at stronger fields. Figures 12, 13, 15 confirm

this insight. They show the plots of the multiquarks configurations when the density is

large (d = 10). Multiquark configurations can exist far beyond the critical field B ≈ 0.63

of the small d case (d = 1). In particular, figure 13 demonstrates that at d = 10, the

multiquark configurations (ns = 0, 0.2), with lower free energies, are thermodynamically

preferred over the χS-QGP for B < 0.61 and B < 0.348 respectively.
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Figure 15. The position of the vertex uc as a function of B at a fixed density d = 1 (lower) and

d = 10 (upper) for T = 0.10 of ns = 0 (normal baryon) multiquark configuration-B phase.
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Figure 16. Plots between the pion gradient field of the multiquark phase and the magnetic field

for T = 0.10, ns = 0 at d = 1 (shorter) and d = 10 (longer).

It is thus reasonable to conclude that for larger densities, the multiquarks phase will

be more and more preferred over the χS-QGP phase, in a larger and larger range of

the field. Magnetized multiquarks and the induced pion gradient field are thus stable

thermodynamically and they will mix together in the magnetized nuclear (multiquark-

domain wall) phase provided that the density is sufficiently large and the temperature is

not too high.

Finally for completeness, we present the plots of the pion gradient field of the multi-

quark phase (figure 16), the pion gradient field becomes smaller for a given B as the density

increases. However, it extends to larger range of fields for larger density. We can therefore

conclude that at the large densities (and baryon chemical potential), contribution of the

pion gradient becomes lesser and the multiquarks contribute dominantly to the baryon

density and chemical potential. This is also shown in figure 5.
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5 Discussions and conclusion

In Sakai-Sugimoto model, chiral symmetry restoration and gluon deconfinement are two

distinct phase transitions. Generically, with an exception of the antipodal case with x′
4 = 0,

gluon deconfinement occurs at lower temperature than the chiral symmetry restoration. For

the region of the phase diagram between the two transitions, coloured multiquarks can exist

with thermodynamical stability (the phase diagram is shown in figure 8 of ref. [7]).

Magnetic responses of the nuclear phase with colour multiquarks are studied here by

using one component of the U(1) subgroup of U(Nf ) as the vector potential of the external

magnetic field. The Chern-Simon action of the D8-branes couples the magnetic field to

an axial vector component, aA
1 , of the U(1), inducing axial current jA. When the chiral

symmetry is broken, we effectively set jA to zero. The value of aA
1 (∞) then describes the

degree of chiral symmetry breaking of the phase.

There are two possible multiquark configurations A and B. Configuration-A is the

configuration where the baryon vertex is close to the horizon. Configuration-B, on the

other hand, has the baryon vertex more separated from the horizon. By comparing the free

energy of the two configurations in figure 9, we found that configuration-B is more stable

themodynamically. We establish relations between the baryon chemical potential and the

baryon density, the external magnetic field, and the temperature for both configurations

as are shown in figure 3. Baryon chemical potential is an increasing function of the density

when the field is turned on. This is the same behaviour to the case when there is no field.

On the other hand, the relation between chemical potential and the magnetic field

is rather interesting. The baryon chemical potential is a decreasing function of the field.

For multiquarks with high value of ns (number of radial strings), the configuration finds

it more difficult to satisfy the scale fixing condition at large fields. There is a maximum

field strength for each ns above which the multiquark configuration cannot exist (figure 4).

This is in contrast to the behaviour of the chiral-symmetric quark-gluon plasma (in the

antipodal case of the Sakai-Sugimoto model with no instantons, i.e. x′
4(u) = 0 case) studied

in ref. [16] where chemical potential is always a decreasing function with respect to B and

the configuration continues to exist at arbitrarily large fields. This is due to the fixation

of the density. Stronger field gives the flavour branes more tension and when the field is

too strong, a fixed density source would not be sufficiently heavy to pull the branes down

for the distance between D8 and D8 to reach L0 = 1. Temperature also has effect on

the multiquarks, sufficiently high temperature will melt away the multiquarks even in the

presence of an external field.

The gradient of the scalar field representing the chiral symmetry breaking, ▽ϕ =

aA
1 (∞), is found to roughly increase in magnitude with the field. For the same field strength

and fixed density, multiquarks with higher ns (i.e. larger colour charges) show higher degree

of chiral symmetry breaking (larger magnitude of aA
1 (∞)), but can only sustain the force

condition up to smaller fields as is shown in figure 6.

The mixing of pion gradient with the miltiquark in the multiquark phase decreases

as the density increases (figure 5). It is found that the pure pion gradient phase (no

multiquark contribution) does not satisfy the scale fixing condition for large densities and

moderate fields.

– 18 –



J
H
E
P
0
4
(
2
0
1
0
)
0
4
5

What would happen if the magnetic field increases beyond the point where the multi-

quarks can satisfy the scale fixing condition L0 = 1? We would expect the multiquarks to

change into the multiquarks with lower ns as is shown in figure 4 for a fixed d and T since

they can still satisfy the scale fixing condition. This induces a sudden drop in the baryon

chemical potential. Also in the situation where µ is kept fixed instead of d, the multiquarks

are forced to jump to the larger d in order to change into the multiquarks with lower ns as

the field increases beyond the critical point. For even larger fields, all of the multiquarks

cannot satisfy the scale fixing condition for a fixed density. There would be phase transition

to other phase. For a fixed density, the phase will change into the χS-QGP. However, if we

allow the density to change (in a more realistic situation), the system could change into the

multiquark (with pion gradient mixing) phase for a sufficiently large density. The phase

of multiquark with pion gradient mixing is found to be more preferred than the χS-QGP

at large densities (implying large baryon chemical potentials) and moderate fields. This is

shown in figure 13.

For configuration-B multiquarks, The magnetization of the multiquark nuclear matter

is found to be an increasing function of B for ns = 0, 0.10, 0.20 except when the fields

get close to the critical points. Close to the critical fields, the magnetizations saturate

and even start to decrease. The magnetized multiquarks phases are thermodynamically

preferred over the magnetized vacuum once the baryon chemical potential is higher than

the onset value (µ > µonset). This is similar to the case when there is no magnetic field

investigated in ref. [7].
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A Force condition of the multiquark configuration

The forces on the D4-brane in the flavour D8-branes are balanced among three forces from

the tidal weight of the D4-brane, the force from the strings attached to the D4, and the

force from the D8-branes. Varying the total action with respect to uc gives the surface

term. Together with the scale-fixing condition 2
∫ ∞

uc
dux′

4(u) = L0 = 1, we obtain [6]

x′
4(uc) =

(

L̃(uc) −
∂Ssource

∂uc

)

/

∂S̃

∂x′
4

∣

∣

∣

∣

uc

, (A.1)

as the condition on uc.
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The Legendre transformed action is given by

S̃ =

∫ ∞

uc

L̃(x′
4(u), d) du,

= N
∫ ∞

uc

du

√

1

f(u)
+ u3x′2

4

×
√

f(u)(C(u) + D(u)2) −
(

jA − 3

2
Bµ + 3BaV

0

)2
, (A.2)

where C(u) ≡ u5 + B2u2,D(u) ≡ d + 3BaA
1 (u) − 3B▽ϕ/2. It is calculated by performing

Legendre transformation with respect to aV ′
0 and aA′

1 respectively. Note that the Chern-

Simon action is also included in the total action during the transformations.

The Chern-Simon term with the derivatives aV ′, aA′ eliminated is

SCS = −N 3

2
B

∫ ∞

uc

du

(

aV
0

(

jA − 3
2Bµ + 3BaV

0

)

− f(u)D(u)aA
1

)
√

1
f(u) + u3x′2

4
√

f(u)(C(u) + D(u)2) −
(

jA − 3
2Bµ + 3BaV

0

)2
. (A.3)

Lastly, in order to compute x′
4(uc) we consider the source term [7]

Ssource = Nd

[

1

3
uc

√

f(uc) + ns(uc − uT )

]

, (A.4)

= Ndµsource (A.5)

where ns = kr/N is the number of radial strings in the unit of 1/N .

From eq. (A.1), (A.2), (A.3), (A.5), and setting aV
0 (uc) = µsource, a

A
1 (uc) = 0 we can

solve to obtain

(x′
4(uc))

2 =
1

fcu3
c

[

9

d2

(

fc(Cc + D2
c ) −

(

jA − 3
2Bµ + 3BaV

0 (uc)
)2)

(

1 + 1
2

(

uT
uc

)3
+ 3ns

√
fc

)2 − 1

]

where fc ≡ f(uc), Cc ≡ C(uc),Dc ≡ D(uc).

When we fix the parameter ns, the temperature T , the baryon density d, the axial

current jA = 0 (by minimizing the action with respect to aA
1 (∞)), and setting aA

1 (uc) =

0, aV
0 (uc) = µsource, then the position uc of the D4-brane is completely determined as a

function of the magnetic field B. Once the equations of motion are solved, the value of

µ = aV
0 (∞) and aA

1 (∞) are determined.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[SPIRES].

[2] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

– 20 –

http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9905111


J
H
E
P
0
4
(
2
0
1
0
)
0
4
5

[3] T. Sakai and S. Sugimoto, Low Energy Hadron Physics in Holographic QCD

Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

[4] T. Sakai and S. Sugimoto, More on a Holographic Dual of QCD,

Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [SPIRES].

[5] O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and

chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [SPIRES].

[6] O. Bergman, G. Lifschytz and M. Lippert, Holographic Nuclear Physics,

JHEP 11 (2007) 056 [arXiv:0708.0326] [SPIRES].

[7] P. Burikham, A. Chatrabhuti and E. Hirunsirisawat, Exotic Multi-quark States in the

Deconfined Phase from Gravity Dual Models, JHEP 05 (2009) 006 [arXiv:0811.0243]

[SPIRES].

[8] A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Baryons from supergravity,

JHEP 07 (1998) 020 [hep-th/9806158] [SPIRES].

[9] O. Antipin, P. Burikham and J. Li, Effective Quark Antiquark Potential in the Quark Gluon

Plasma from Gravity Dual Models, JHEP 06 (2007) 046 [hep-ph/0703105] [SPIRES].

[10] K. Ghoroku, M. Ishihara, A. Nakamura and F. Toyoda, Multi-quark baryons and color

screening at finite temperature, Phys. Rev. D 79 (2009) 066009 [arXiv:0806.0195]

[SPIRES].

[11] K. Ghoroku and M. Ishihara, Baryons with D5 Brane Vertex and k-Quarks,

Phys. Rev. D 77 (2008) 086003 [arXiv:0801.4216] [SPIRES].

[12] M.V. Carlucci, F. Giannuzzi, G. Nardulli, M. Pellicoro and S. Stramaglia, AdS-QCD

quark-antiquark potential, meson spectrum and tetraquarks, Eur. Phys. J. C 57 (2008) 569

[arXiv:0711.2014] [SPIRES].

[13] W.-Y. Wen, Multi-quark potential from AdS/QCD, Int. J. Mod. Phys. A 23 (2008) 4533

[arXiv:0708.2123] [SPIRES].

[14] O. Bergman, G. Lifschytz and M. Lippert, Response of Holographic QCD to Electric and

Magnetic Fields, JHEP 05 (2008) 007 [arXiv:0802.3720] [SPIRES].

[15] C.V. Johnson and A. Kundu, External Fields and Chiral Symmetry Breaking in the

Sakai-Sugimoto Model, JHEP 12 (2008) 053 [arXiv:0803.0038] [SPIRES].

[16] O. Bergman, G. Lifschytz and M. Lippert, Magnetic properties of dense holographic QCD,

Phys. Rev. D 79 (2009) 105024 [arXiv:0806.0366] [SPIRES].

[17] E.G. Thompson and D.T. Son, Magnetized baryonic matter in holographic QCD,

Phys. Rev. D 78 (2008) 066007 [arXiv:0806.0367] [SPIRES].

[18] C.V. Johnson and A. Kundu, Meson Spectra and Magnetic Fields in the Sakai-Sugimoto

Model, JHEP 07 (2009) 103 [arXiv:0904.4320] [SPIRES].

[19] G. Lifschytz and M. Lippert, Holographic Magnetic Phase Transition,

Phys. Rev. D 80 (2009) 066007 [arXiv:0906.3892] [SPIRES].

[20] E. Witten, Baryons and branes in anti de Sitter space, JHEP 07 (1998) 006

[hep-th/9805112] [SPIRES].

[21] D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string

theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [SPIRES].

[22] D.T. Son and M.A. Stephanov, Axial anomaly and magnetism of nuclear and quark matter,

Phys. Rev. D 77 (2008) 014021 [arXiv:0710.1084] [SPIRES].

– 21 –

http://dx.doi.org/10.1143/PTP.113.843
http://arxiv.org/abs/hep-th/0412141
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412141
http://dx.doi.org/10.1143/PTP.114.1083
http://arxiv.org/abs/hep-th/0507073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507073
http://dx.doi.org/10.1016/j.aop.2006.11.002
http://arxiv.org/abs/hep-th/0604161
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0604161
http://dx.doi.org/10.1088/1126-6708/2007/11/056
http://arxiv.org/abs/0708.0326
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.0326
http://dx.doi.org/10.1088/1126-6708/2009/05/006
http://arxiv.org/abs/0811.0243
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.0243
http://dx.doi.org/10.1088/1126-6708/1998/07/020
http://arxiv.org/abs/hep-th/9806158
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9806158
http://dx.doi.org/10.1088/1126-6708/2007/06/046
http://arxiv.org/abs/hep-ph/0703105
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0703105
http://dx.doi.org/10.1103/PhysRevD.79.066009
http://arxiv.org/abs/0806.0195
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0195
http://dx.doi.org/10.1103/PhysRevD.77.086003
http://arxiv.org/abs/0801.4216
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.4216
http://dx.doi.org/10.1140/epjc/s10052-008-0687-2
http://arxiv.org/abs/0711.2014
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.2014
http://dx.doi.org/10.1142/S0217751X08041475
http://arxiv.org/abs/0708.2123
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.2123
http://dx.doi.org/10.1088/1126-6708/2008/05/007
http://arxiv.org/abs/0802.3720
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.3720
http://dx.doi.org/10.1088/1126-6708/2008/12/053
http://arxiv.org/abs/0803.0038
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.0038
http://dx.doi.org/10.1103/PhysRevD.79.105024
http://arxiv.org/abs/0806.0366
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0366
http://dx.doi.org/10.1103/PhysRevD.78.066007
http://arxiv.org/abs/0806.0367
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0367
http://dx.doi.org/10.1088/1126-6708/2009/07/103
http://arxiv.org/abs/0904.4320
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.4320
http://dx.doi.org/10.1103/PhysRevD.80.066007
http://arxiv.org/abs/0906.3892
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.3892
http://dx.doi.org/10.1088/1126-6708/1998/07/006
http://arxiv.org/abs/hep-th/9805112
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9805112
http://dx.doi.org/10.1103/PhysRevD.58.106002
http://arxiv.org/abs/hep-th/9805129
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9805129
http://dx.doi.org/10.1103/PhysRevD.77.014021
http://arxiv.org/abs/0710.1084
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.1084


R
E
P
O
R
T
 
J
H
E
P
_
0
4
3
P
_
0
4
1
0

Report on JHEP 043P 0410
Date: May 21, 2010

Author(s): P. Burikham, E. Hirunsirisawat, S. Pinkanjanarod

Title: Thermodynamic Properties of Holographic Multiquark and the Multiquark Star

Received: 2010-04-08 07:44:36.0

Referee report

Dear Editor:

I accepted the second and corrected version of the authors.

Sincerely the referee



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
0
4
3
P
_
0
4
1
0
 
v
2

Thermodynamic Properties of Holographic

Multiquark and the Multiquark Star

P. Burikham1,2∗, E. Hirunsirisawat1†,S. Pinkanjanarod1,3‡
1 Theoretical High-Energy Physics and Cosmology Group, Department of Physics,

Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
2 Thailand Center of Excellence in Physics, Ministry of Education, Bangkok, Thailand

3 Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

April 21, 2010

Abstract

We study thermodynamic properties of the multiquark nuclear matter. The de-
pendence of the equation of state on the colour charges is explored both analytically
and numerically in the limits where the baryon density is small and large at fixed
temperature between the gluon deconfinement and chiral symmetry restoration. The
gravitational stability of the hypothetical multiquark stars are discussed using the
Tolman-Oppenheimer-Volkoff equation. Since the equations of state of the multiquarks
can be well approximated by different power laws for small and large density, the con-
tent of the multiquark stars has the core and crust structure. We found that most
of the mass of the star comes from the crust region where the density is relatively
small. The mass limit of the multiquark star is determined as well as its relation to
the star radius. For typical energy density scale of 10 GeV/fm3, the converging mass
and radius of the hypothetical multiquark star in the limit of large central density are
approximately 2.6−3.9 solar mass and 15-27 km. The adiabatic index and sound speed
distributions of the multiquark matter in the star are also calculated and discussed.
The sound speed never exceeds the speed of light and the multiquark matters are thus
compressible even at high density and pressure.
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1 Introduction

All of the high energy experiments which fail to produce a free quark are strong evidences

that the coupling constant of the strong interaction becomes nonperturbatively large at low

energy and large distance. Quarks and gluons are said to be confined within hadrons and the

colourless condition becomes a requirement of an assembly of quarks at low energy. However,

when the energy or temperature scale of a system of quarks and gluons increases, the coupling

of the strong interaction tends to be weaker and finally we expect the deconfinement to occur.

In addition, if the quarks and gluons are compressed extremely tightly together, quarks could

interact with neighbouring quarks and gluons equally and become effectively deconfined from

the mesonic or baryonic bound state. In the latter case, the coupling could still be strong

despite of the deconfinement. Nevertheless, we could also have the situation where gluons

are deconfined but the quarks are not completely free due to the remaining Coulomb-type

potential from gluon exchanges between quarks.

Recently, the experimental results from collision of heavy ions suggested that the nuclear

deconfinement phase might have been created in the laboratory and we might have pro-

duced the quark-gluon plasma (QGP). The RHIC experiment revealed that the produced

QGP behaves like fluid with very small viscosity. However, this property of small viscosity

fluid is hard to be understood in the picture of QGP as the gas of free quarks and gluons.

Additionally, lattice simulations show that QGP has relatively high pressure right above the

deconfinement temperature Tc which is again difficult to explain using the weakly coupled

quarks and gluons gas [1, 2]. It is possible that various coloured and colour-singlet bound

states of quarks and gluons could exist in the plasma at the temperature (1− 3)Tc [3, 2, 4].

The existence of the coloured bound states could explain the problems of high pressure,

small viscosity, and the jet quenching of the QGP at once.

Due to the large coupling of the strong interaction at low energies, a perturbative method

has limited applicability to the high energy processes and phenomena. The development of

the holographic principle and AdS/CFT correspondence [5] provides us with a new method to

investigate the physics of strongly coupled nuclear matter both in the low energy regime and

in the energy scale close to the deconfinement temperature. Holographic models of meson

were proposed by Juan Maldacena, Soo-Jong Rey, Stefan Theisen, Jung-Tay Yee [6, 7, 8].

The Coulomb potential plus screening effect of quark and antiquark are calculated from the

Nambu-Goto action of the string in the bulk spacetime at zero and finite temperature. For

baryons, Witten, Gross and Ooguri [9, 10] proposed a holographic baryon to be a D-brane

wrapping internal subspace of the background spacetime with Nc strings connected and

stretching out to the boundary. For AdS5 × S5, the baryon vertex is a D5-brane wrapping

the S5. The basic requirement is that a total of Nc charges from the endpoint of the strings

cancel with the charge of the vertex itself. A generalization of this condition allows more

strings to go in and come out of the vertex, as long as the total charges from all of the string

endpoints add up to Nc [11, 12, 13, 14, 15, 16]. Baryon vertex plus strings configuration in

this case represent the holographic multiquark states. Generically they have colour charges

but because of the confinement, they can only exist in the deconfined phase.

The coloured multiquark phase can be studied in the general Sakai-Sugimoto model (SS)[17,

2
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18] in the intermediate temperature above the gluon deconfinement but below the chiral

symmetry restoration temperature [19]. It was found that the multiquark phase is ther-

modynamically stable and preferred over the other phases in the gluon-deconfined plasma

provided that the density is sufficiently large [16]. The situation of high density and moder-

ate temperature could exist inside certain classes of compact stars and it is thus interesting

to investigate the thermodynamical properties of the multiquark nuclear matter as well as

their contributions to the stability of the dense stars. In this article, we will consider the

hypothetical multiquark star which obeys the equation of state derived from the holographic

multiquarks in the SS model. With the power-law approximation of the equations of state, we

study its gravitational stability using the Tolman-Oppenheimer-Volkoff equation (TOV)[20].

The mass, density and pressure distributions are obtained numerically. The mass-radius

relation and the mass limit are also discussed. Corresponding hydrodynamical properties

such as the sound speed of the multiquark nuclear matter are explored within the star. The

multiquark matters are found to be compressible throughout the entire multiquark star.

This article is organized as the following. Section 2 describes the holographic setup for

the multiquarks and the multiquark phase in the gluon-deconfined SS model. The thermo-

dynamic relations and the equations of state of the multiquark nuclear matter are calculated

and discussed in Section 3 and 4. In Section 5, the Einstein field equation for the spheri-

cally symmetric star is solved to obtain the TOV equation. Assuming the equations of state

derived in Section 3 and 4 for the multiquark nuclear matter, we explore the gravitational

physics of a hypothetical multiquark star. A mass-radius relation is derived and some dis-

cussion on the more realistic situation is commented. The adiabatic index and the sound

speed of the multiquark nuclear matter within the star are studied. Section 6 concludes the

article.

2 Holographic multiquark configuration

Since string theories in the bulk spacetime correspond to certain gauge theories on the

boundary of that space, it is natural to find construction of the bound states of quarks in

the form of strings and branes. While the meson is proposed to be the string hanging in the

bulk with both ends locating at the boundary of the AdS space [6], the baryon is proposed to

be the Dp-brane wrapped on the Sp with Nc strings attached and extending to the boundary

of the bulk space [9, 10].

On the gauge theory side, hadrons exist in the confined phase as a result of the linear

part of the binding potential. However, the bound states of quarks can actually exist in the

deconfined phase at the intermediate temperatures above the deconfinement as well. Even

though gluons are free to propagate and the linear potential is absent, the quarks can form

bound state through the remaining Coulomb-type potential due to the colour charges of the

quarks.

The holographic model of non-singlet bound state was also proposed. As is demonstrated

in Ref. [16], we can modify the Witten’s baryon vertex by attaching more strings to the vertex

provided that the total number of charges of all of the strings are preserved to Nc. Some

3
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strings may extend along radial direction of the AdS space down to the horizon and some

can extend to the boundary. We define the number of strings that extend to the boundary to

be kh and the number of strings extending radially to the horizon to be kr. The restriction of

kh and kr is due to the force condition of the string configuration (see Ref. [16] for details).

In this article, we consider the holographic model of multiquarks in the Sakai-Sugimoto

(SS) model [17, 18] similar to the configurations considered in Ref. [16]. The background

metric of the bulk spacetime in the SS model in a deconfined phase at finite temperature is

given by

ds2 =

(

u

RD4

)3/2
(

f(u)dt2 + δijdxidxj + dx4
2
)

+

(

RD4

u

)3/2(

u2dΩ2
4 +

du2

f(u)

)

.

The four-form field strength, the dilaton, and the curvature radius of the spacetime are

F(4) =
2πN

V4

ǫ4, eφ = gs

(

u

RD4

)3/4

, R3
D4 ≡ πgsNl3s ,

respectively, where f(u) ≡ 1−u3
T/u3, uT = 16π2R3

D4T
2/9. x4 is the compactified coordinate

transverse to the probe D8/D8 branes with arbitrary periodicity 2πR. The volume of the

unit four-sphere Ω4 is denoted by V4 and the corresponding volume 4-form by ǫ4. F(4) is the

4-form field strength, ls is the string length and gs is the string coupling.

In the SS model, the chiral symmetry dynamics is taken into account, by construction,

in the form of the dynamics of the flavour branes, D8 and D8. The DBI action of D8-D8 is

SD8 = −µ8

∫

d9Xe−φTr
√

−det(gMN + 2πα′FMN) (1)

where FMN is the field strength of the flavour group U(Nf ) on the branes. It is given by

F = dA + iA ∧A. (2)

The U(Nf ) gauge field A can be decomposed into SU(Nf ) part A and U(1) part Â:

A = A +
1

√

2Nf

Â, (3)

where only the diagonal U(1) will be turned on here. Lastly, gMN is the induced metric on

the D8-branes world volume.

In the deconfined phase, the equation of motion from the action of D8-D8 provides 3

possible configurations: (i) connected D8-D8 without sources in the bulk representing the

vacuum state and (ii) the parallel configuration of both D8-branes and D8 representing the

χS-QGP. Another stable configuration (iii) is the connected D8-D8 branes with the D4-

brane as the baryon vertex submerged and localized in the middle of the D8 and D8.1 In

1Actually, the quark matter, represented by the connected D8-D8 branes with radial strings stretching
out to the horizon, is another possible configuration satisfying the equation of motion. However, it was
found that this phase is thermodynamically unstable to density fluctuations by Bergman, Lifschytz, and
Lippert [21].
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L0L0
L0

 uc

 u0

 u0

uT uT uT

(a) (b) (c)

Figure 1: Different configurations of D8 and D8-branes in the background field following

the Sakai-Sugimoto model that are dual to the phases of (a) χS-QGP, (b) vacuum and (c)

multiquark phase.

this model, we assume that the hanging strings shrink to approximately zero and the only

apparent strings are the kr radial strings. The three configurations are shown in Fig. 1. We

will consider the thermodynamic properties of only the last multiquark configuration. The

action of the exotic multiquark phase is given by

S = SD8 + SD4 + S̃F1, (4)

where SD8 is the DBI action of the connected D8-branes, SD4 represents the DBI action of

the D4-brane wrapped on S4 and S̃F1 is the action of kr radial strings extending from the

baryon vertex down to the horizon. For simplicity, we ignore the distortion of the baryon

vertex due to the Chern-Simon term [22, 23].

The DBI action of the D8-D8-brane coupled to the diagonal U(1) gauge field is given by

SD8 = N
∫ ∞

uc

du u4
√

f(u)(x′
4(u))2 + u−3(1 − (â′

0(u))2), (5)

where the constant N = (µ8τNfΩ4V3R
5)/gs, and the rescaled U(1) diagonal field â =

2πα′Â/(R
√

2Nf). Position of the vertex is denoted by uc, it is determined from the equilib-

rium condition of the D8-D4-strings configuration (see Appendix A of Ref. [16]). The source

action of the D4 and strings, SD4 + S̃F1, are given by

Ssource = N d

[

1

3
uc

√

f(uc) + ns(uc − uT )

]

, (6)

where ns is the number of radial strings kr in the unit of Nc. The number of radial strings

ns represents the colour charges of a multiquark. For a fixed number of kh, one of the radial

5
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strings can merge with another radial string from another multiquark and form a colour-

binding potential between the two in a similar way holographic meson is formed between a

quark and an antiquark.

The UB(1) symmetry corresponds to the U(1)-diagonal part of the global flavor symmetry,

U(Nf ), which is provided by the Nf flavor branes. Naturally, the baryon chemical potential,

conjugating to the UB(1) charge, in the gauge theory side can be identified with the boundary

value of the zero component of the gauge field in the flavor branes, i.e. A0, conjugating to

the U(1) “electric” charge. For convenience, our normalized baryon chemical potential is [24]

µ = â0(∞). (7)

In gauge-gravity duality, we identify the grand canonical potential density in the gauge

theory side in the form of the D8-branes action evaluated with the classical solution [25]:

Ω(µ) =
1

N SD8[T, x′
4(u), â0(u)]cl (8)

With the additional source term, the free energy is in the form of the combination of the

Legendre-transform of the grand potential and the source action, Eqn. (6). The baryon

chemical potential is simply the derivative of the free energy with respect to its conjugate,

i.e. the baryon number density, at a particular temperature:

µ =
∂

∂d

1

N
(

S̃D8[T, x′
4(u), d(u)]cl + Ssource(d, uc)

)

(9)

where the Legendre-transformed action S̃D8 is given by

S̃D8[T, x′
4(u), d(u)] = SD8[T, x′

4(u), â0(u)] + N
∫ ∞

uc

d(u)â′
0du (10)

=

∫ ∞

uc

duu4
√

f(u)(x′
4(u))2 + u−3

√

1 +
d(u)2

u5
, (11)

where d(u) is the electric displacement. It is a constant of the configuration given by

d(u) = − 1

N
δSD8

δâ′
0(u)

=
uâ′

0(u)
√

f(u)(x′
4(u))2 + u−3(1 − (â′

0(u))2)
= const. (12)

Note that the Legendre transformation changes the dependence on the variable â0(u) in

SD8 to d(u) in S̃D8. As a result, the grand potential as a function of the baryon chemical

potential is transformed into the free energy as a function of the baryon number density.

Another constant of the configuration is

(x′
4(u))2 =

1

u3f(u)

[f(u)(u8 + u3d2)

F 2
− 1
]−1

= const., (13)

where F is a function of uc, d, T and ns, given by

F 2 = u3
cfc

(

u5
c + d2 − d2η2

c

9fc

)

, (14)

6
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where ηc ≡ 1 + 1
2

(

uT

uc

)3

+ 3ns

√
fc. For convenience, here and henceforth, f , fc and f0 are

used to represent f(u), f(uc) and f(u0), respectively. Note that this form of F is derived

from the force condition at the cusp uc. The detailed calculations are given in the Appendix

of Ref. [16].

With the equation of motion for x4, Eqn. (13), and the separation between D8- and

D8-branes L0 being fixed to L0 = 2
∫∞

uc
x′

4(u)du = 1, we obtain [21]

µ =

∫ ∞

uc

â′
0(u) +

1

N
∂Ssource

∂d

∣

∣

∣

∣

T,L0,uc

, (15)

where the second term is the contribution from the sources, µsource. From these relations, we

can then study the thermodynamic properties of the multiquark phase. The phase diagram

of the multiquark nuclear phase is studied in Ref. [16] when the colour-binding interaction

is neglected. It is found that multiquarks are preferred thermodynamically over the other

gluon-deconfined phases for the large density and intermediate temperature below the chiral

symmetry restoration temperature.

3 Calculations of the equation of state

Thermodynamic properties of the nuclear/exotic matter phase can be described by the equa-

tion of state. First, we will investigate the relations between the pressure and the number

density. From the previous section (see also Ref. [16]), the grand potential density and the

chemical potential of the nuclear/exotic matters are given by

Ω =

∫ ∞

uc

du

[

1 − F 2

f(u)(u8 + u3d2)

]−1/2
u5

√
u5 + d2

, (16)

µ =

∫ ∞

uc

du

[

1 − F 2

f(u)(u8 + u3d2)

]−1/2
d√

u5 + d2
+

1

3
uc

√

f(uc) + ns(uc − uT ) (17)

respectively.

Since the differential of the grand potential GΩ can be written as

dGΩ = −PdV − SdT − Ndµ (18)

where the state parameters describing the system P , V , S, T , N are the pressure, volume,

entropy, temperature, the total number of particles of the system respectively. Since the

change of volume is not our concern, we define the volume density of GΩ, S and N to be Ω,

s and d, respectively. Therefore, we have, at a particular T and µ,

P = −GΩ/V ≡ −Ω(T, µ). (19)

By assuming that the multi-quark states are spatially uniform, we obtain

d =
∂P

∂µ
(T, µ). (20)
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Using the chain rule,

∂P

∂d

∣

∣

∣

∣

∣

T

=
∂µ

∂d

∣

∣

∣

∣

∣

T

d, (21)

so that

P (d, T, ns) = µ(d, T, ns) d −
∫ d

0

µ(d′, T, ns) d(d′), (22)

where we have assumed that the regulated pressure is zero when there is no nuclear matter,

i.e. d = 0.

In the limit of very small d, uc approaches u0, ηc becomes η0 +O(d), where η0 is defined

to be ηc with uc replaced by u0. From Eqn. (17), the baryon chemical potential can then be

approximated to be

µ−µsource ≃ d

{

∫ ∞

uc

du



1 − u8
0f0

fu8
−

f0u
3
0

(

1 − η2
0

9f0
− u5

0

u5

)

d2

fu8





−1/2

u−5/2

(

1 − d2

2u5

)

}

, (23)

where µsource = 1
3
uc

√

f(uc) + ns(uc − uT ), and we have neglected the higher order terms of

d. By using the binomial expansion, the above equation becomes

µ − µsource ≃ d

{

∫ ∞

u0

du
u−5/2

√

1 − f0u8
0

fu8

[

1 +

(

f0u
3
0

fu8 − f0u8
0

(

1 − η2
0

9f0
− u5

0

u5

)

− 1

u5

)

d2

2

]

}

= α0d − β0(ns)d
3, (24)

where

α0 ≡
∫ ∞

u0

du
u−5/2

1 − f0u8
0

fu8

, (25)

β0(ns) ≡
∫ ∞

u0

du
u−5/2

2

√

1 − f0u8
0

fu8

(

f0u
3
0

fu8 − f0u8
0

(

1 − η2
0

9f0
− u5

0

u5

)

+
1

u5

)

. (26)

By substituting Eqn.(24) into Eqn.(22), we can determine the pressure in the limit of very

small d as

P ≃ α0

2
d2 − 3β0(ns)

4
d4. (27)

In the limit of very large d and relatively small T ,

µ − µsource =

∫ ∞

uc

du

[

1 − fcu
3
c

fu3

(

u5
c + d2 − d2η2

c

9fc

u5 + d2

)]−1/2

d√
u5 + d2

(28)

≈
∫ ∞

uc

du
d√

u5 + d2
+

1

2
u3

cfcd
2

(

1 − η2
c

9fc

)
∫ ∞

uc

du
d

fu3(u5 + d2)3/2
(29)

≈ d2/5

5

Γ
(

1
5

)

Γ
(

3
10

)

Γ
(

1
2

) +
u3

cfc

10

(

1 − η2
c

9fc

)

d−4/5 Γ
(

−2
5

)

Γ
(

19
10

)

Γ
(

3
2

) (30)
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where we have used the fact that the lower limit of integration u5
c/d

2 is approximately zero

as d is very large. Again by using Eqn.(22), we obtain

P ≃ 2

35

(

Γ
(

1
5

)

Γ
(

3
10

)

Γ
(

1
2

)

)

d7/5. (31)

And the energy density can then be found via the relation dρ = µd(d).

Next we consider the entropy of the multiquarks phase. From the differential of the free

energy,

dFE = −PdV − SdT + µdN, (32)

the entropy is given by

S = −∂FE

∂T
. (33)

The entropy density can then be written as

s = −∂FE

∂T
, (34)

where FE is the free energy density which relates to the grand potential density as FE =

Ω + µd. Since we have the pressure P = −Ω, we can write

s =
∂P

∂T
−
(

∂µ

∂T

)

d. (35)

For both small d and large d, we can see from the formula of the pressure (see Eqn.(27),(31),

noting that α0, β0 is insensitive to temperature) and the chemical potential (see Eqn.(24),(30)),

that the dominant contribution comes only from µsource, thus

s ≃ −
(

∂µsource

∂T

)

d. (36)

The baryon chemical potential from the D8-branes is insensitive to the changes of temper-

ature. This implies that the main contribution to the entropy density of the multiquark

nuclear phase comes from the source term namely the vertex and strings.

Since

∂µsource

∂T
=

∂

∂T

(

1

3
uc

√

f(uc) + ns(uc − uT )

)

, (37)

∂µsource

∂T
≈ −

(

16π2

9

)3

T 5

u2
0

√

1 −
(

uT

u0

)3
− ns

32π2T

9
, (38)

where we have used the fact that uc is approximately constant with respect to the tempera-

ture in the range between the gluon deconfinement and the chiral symmetry restoration (see

9
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1.6885
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uc

T

Figure 2: The graphs show the relations between uc and T at small density (left) and at

large density (right).

Fig. 2). Therefore, we obtain

s ≈

(

16π2

9

)3

T 5d

u2
0

√

1 −
(

uT

u0

)3
+ ns

32π2Td

9
. (39)

For small ns, the entropy density is proportional to T 5. When ns gets larger (carrying

colour charge), the entropy density becomes dominated by the colour term s ∝ nsT . This

is confirmed numerically in Section 4. It has been found that the entropy density of the

χS-QGP scales as T 6 [21] corresponding to the fluid of mostly free quarks and gluons. We

can see that the effect of the colour charge of the multiquarks as quasi-particles is to make

them less like free particles with the temperature dependence ∼ nsT , i.e. much less sensitive

to the temperature.

It is interesting to compare the dependence of pressure on the number density, Eqn. (27)

and (31), to the confined case at zero temperature studied in Ref. [27]. The power-law rela-

tions for both small and large density of the confined and deconfined multiquark phases are

in the same form (for ns = 0). The reason is that the main contributions to the pressure

for both phases are given by the D8-branes parts and they have similar dependence on the

density for both phases. For the deconfined multiquark phase, the additional contributions

from the source terms in Eqn. (17), µsource, are mostly constant with respect to the den-

sity (this is because uc becomes approximately independent of d for small and large d limits).

10
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Consequently, when we substitute into Eqn. (22), the constant contributions cancel out and

affect nothing on the pressure.

On the contrary, the entropy density for the deconfined phase is dominated by the contri-

butions from the sources namely the vertex and strings. The contribution of the D8-branes

is insensitive to the change of temperature and therefore does not affect the entropy density

significantly. The additional source terms, however, depend on the temperature and thus

contribute dominantly to the entropy density. Once the temperature rises beyond the gluon-

deconfined temperature, entropy density will rise abruptly (for sufficiently large density d)

and become sensitive to the temperature according to Eqn. (39), due to the release of quarks

from colourless confinement appearing as the sources. However, we will see later on using

the numerical study in Section 4 that for low densities and for small ns, the numerical value

of the entropy density is yet relatively small.

4 Numerical studies of the thermodynamic relations

From the analytic approximations in the previous section, we expect the pressure to appear

as straight line in the logarithmic scale for small and large d with the slope approximately 2

and 7/5 respectively. The relation between pressure and density of the multiquarks from the

full expressions can be plotted numerically as are shown in Fig. 3-5. The pressure does not

really depend much on the temperature and we therefore present only the plots at T = 0.03.

Remarkably, the transition from small to large d is clearly visible in the logarithmic-scale

plots. The transition occurs around dc ≃ 0.072. Interestingly, as is shown in Fig. 5, the

multiquarks with larger ns has lower pressure than the ones with smaller ns for d < dc

and vice versa. The dependence on ns remains to be seen for small d as we can see from

Eqn. (27). For large d, the ns-dependence is highly suppressed as predicted by Eqn. (31).

The entropy density as a function of the temperature for various ranges of the density is

shown in Fig. 6. The temperature dependence for both small and large d are the same, ≃ T 5

at the leading order. The d-dependence is linear and thus appears as separation of straight

lines in the logarithmic-scale plot. For ns > 0, we can see from Eqn. (39) that the linear

term in T should become increasingly important. This is confirmed numerically as is shown

in Fig. 6. The slope of the graph between the entropy density s and T in the double-log scale

for ns = 0 (the left plot) and ns = 0.3 (the right plot) is approximately 5 and 1 respectively.

Regardless of the temperature dependence, it should be noted that the numerical value of

the entropy density for small densities and low ns in Fig. 6 is quite small.

Lastly, the relations between the baryon number density and chemical potential are shown

in Fig. 7. Temperature has very small effect on these curves and negligible for the range

of temperature between the gluon deconfinement and the chiral-symmetry restoration. The

baryon chemical potential depends linearly on the number density for small d. For large d, the

relation between the chemical potential and number density becomes µ ≈ d2/5. Interestingly,

the multiquark quasi-particles behave more like fermions as a result of being the electric

response of the DBI action [21].
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Figure 3: Pressure and density in logarithmic scale at T = 0.03.
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Figure 4: Pressure and density in logarithmic scale at T = 0.03, zoomed in around the

transition region.
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Figure 7: The baryon chemical potential and number density in logarithmic scale at T = 0.03.

5 Gravitational stability of the dense multiquark star

When a dying star collapses under its own gravity, it is generically believed that the degen-

eracy pressure of either electrons or neutrons would be able to stop the collapse to form a

white dwarf or a neutron star. If the star is more massive than the upper mass limit of the

neutron star, it would collapse into a black hole eventually. The mass limit of the neutron

star is sensitive to the physics of warm dense nuclear matter but little is known about the

equation of state of nuclear matter under high temperature and large density. Even though

the original mass limit of the neutron star estimated by Oppenheimer, and Volkoff was only

0.7 solar mass [20], the new limit when the nuclear interactions are included could be as large

as 2.5 solar mass [26]. Under extreme pressure and density, the quarks within hadrons could

be freed and wander around the interior of the star. In other words, quarks are effectively

deconfined from the localized hadrons but confined by gravity within the star. Using the bag

model to describe the state of being confined by gravity but possibly deconfined from the

hadrons, it turns out that quark matter phase, e.g. strange star, is possible under extreme

pressure and density.

However, physics of the deconfinement is largely unknown due to the non-perturbative

nature of the strong interaction and the difficulty of lattice approach to deal with finite

baryon density situation. The bag model are not always served as a reliable theoretical tool

to explore the behaviour of quarks in the dense star when the deconfinement exists. It is

therefore interesting to use the equation of state of the deconfined nuclear matter from the

holographic model to investigate the behaviour of the dense star as a complementary tool

14
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to the bag model and other approaches.

In this section, we will consider a hypothetical multiquark star containing only the mul-

tiquark matter with uniform constant temperature. The relations between pressure and

density will be adopted directly from the holographic model as the equations of state of the

quasi-particles. Since the pressure and density have very small temperature dependence for

the range of temperatures under consideration, the results are valid generically.

A study into the gravitational stability of a spherically symmetric dense star can be

performed using the Tolman-Oppenheimer-Volkoff equation [20]. It is known that the spher-

ically symmetric dense star has metric in a form

ds2 = A(r)dt2 − B(r)dr2 − r2dΩ2. (40)

After substituting into the Einstein field equation, we obtain the following relations,

B(r) =

(

1 − A∗(r)

r

)−1

, (41)

dA∗(r)

dr
= 8πρr2, (42)

and
dP (r)

dr
= −(ρ + P )

2

A′(r)

A(r)
= −(ρ + P )

2

8πPr3 + A∗(r)

r(r − A∗(r))
. (43)

The last equation is known as the Tolman-Oppenheimer-Volkoff (TOV) equation. The accu-

mulated mass of the star, M(r), is given by A∗(r) = 2M(r). It has been shown in Ref. [28]

that the chemical potential can be defined through the background metric in the form of

µ(r) = ǫF√
A(r)

. It will automatically solve the TOV equation. Note that the constant ǫF is

arbitrary. Since
µ′(r)

µ(r)
= −1

2

A′(r)

A(r)
, (44)

the TOV equation becomes
dP (r)

dr
= (ρ + P )

µ′(r)

µ(r)
. (45)

Together with the first law of thermodynamics ρ + P = µd, the TOV equation then takes

the following form,

dµ =
1

d

(

∂P

∂d

)

d(d). (46)

Obviously, the chemical potential can be determined, as a function of the number density:

µ(d) =

∫ d

0

1

η

(

∂P

∂η

)

dη + µonset, (47)

where µonset ≡ µ(d = 0). Additionally, considering from the TOV equation together with

the first law of thermodynamics, the density dρ = µd(d) can be integrated to

ρ(d) =

∫ d

0

[
∫ η

0

1

η′

(

∂P

∂η′

)

dη′ + µonset

]

dη. (48)
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For a power-law equation of state, P = kdλ, the chemical potential, Eqn. (47), becomes

µ(d) =
λk

λ − 1
dλ−1 + µonset, (49)

and eventually the equation of state is given by

ρ =
1

λ − 1
P + µonset

(

P

k

)1/λ

. (50)

In our holographic model of multiquarks, the relation between pressure and density has a

unique power-law behaviour, as is also found in Ref. [21] for the case of normal baryon (ns =

0). This is shown in Fig. 3-4. For small d, P ∝ d2 (ns = 0) and for large d, P ∝ d7/5.

The dependence on ns becomes significant when the density d is small and the equation of

state can be approximated by P ≃ αd2 + βd4. Since there are two power-laws governing, we

need to match the solutions from the two regions together (i.e. core and crust). The number

density where the equation of state changes from the large-d to the small-d is denoted by dc.

For ns = 0, at the transition point d = dc, the energy density is given by Eqn. (50),

ρc =
k′dλ′

c

λ′ − 1
+ µonsetdc, (51)

where P = k′dλ′

(Eqn. (27) suggests that λ′ = 2) is the equation of state of the small d
region. We recalculate the relation Eqn. (47), (48) for the large d region which match with

this ρc to be

µ = µc + λk

(

dλ−1

λ − 1
− dλ−1

c

λ − 1

)

, (52)

ρ = ρc +
1

λ − 1
P + µc

[

(

P

k

)1/λ

− dc

]

+ kdλ
c −

λk

λ − 1
dλ−1

c

(

P

k

)1/λ

. (53)

Numerical results and Eqn. (31) suggest that λ = 7/5 for the large d region.

For ns > 0, assume the equation of state for small d is in the form of P = adλ1 +

bdλ2 (Eqn. (27) suggests that λ1,2 = 2, 4), the chemical potential and energy density for the

small d region become

µ = µonset +
λ1adλ1−1

λ1 − 1
+

λ2bd
λ2−1

λ2 − 1
, (54)

ρ = µonsetd +
adλ1

λ1 − 1
+

bdλ2

λ2 − 1
. (55)

We obtain the transition density in the similar fashion,

ρc = µonsetdc +
adλ1

c

λ1 − 1
+

bdλ2
c

λ2 − 1
. (56)
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Numerical results show that for large d, the effect of ns is negligible. Therefore, the

baryon chemical potential and the density for the large d region are again given by Eqn. (52)

and (53). The equations of state, Eqn. (50),(53) as well as the corresponding relations for

ns > 0 case, are in the mixed form containing both the quasi-particle nonlinear terms and

the linear term. The linear term is roughly ρlinear ≈ 2.5P and the quasi-particle term is

approximately ρquasi ≈ P 5/7.

We can solve the TOV equation when the equations of state are given as above by starting

from the core of the star out to the surface. As we go from the center towards the surface of

the star, the density decreases until it reaches a critical value ρc. This density corresponds

to the number density dc where the power-law changes from P ≃ d7/5 to P ≃ d2 (see Fig. 3-

4). For the crust region where the density ρ < ρc, multiquarks obey a different equation

of state given by Eqn. (50). The radius of the core is defined to be the distance Rcore

where ρ(Rcore) = ρc and the surface of the star is defined to be the radial distance R where

ρ(R) = 0.

-4 -2 2 4
log Ρ0

0.2

0.4

0.6

0.8

M

Figure 8: The relation between mass and central density of the multiquark star for multi-

quarks with ns = 0 (upper), 0.3 (lower).

For ns = 0, numerical fittings suggest that k = 10−0.4, λ = 7/5, dc = 0.215443, µc =

0.564374 (core) and k′ = 1, λ′ = 2, µonset = 0.17495 (crust). For ns = 0.3, good fit parameters

are k = 10−0.4, λ = 7/5, dc = 0.086666, µc = 0.490069 (core) and a, b = 0.375, 180.0, ; λ1,2 =

2, 4; µonset = 0.32767 (crust). Varying the central density ρ0 of the star, we obtain the mass-

density relation in Fig. 8. Each curve has two maxima, a larger one in the small density

region and a smaller one in the large density region. Each maximum corresponds to each

power-law of the equation of state, the low density to the crust and the large density to

the core. Interestingly, the contribution to the total mass of the multiquark star comes

dominantly from the crust. This is shown in Fig. 9. Even though the density is much lower,

the volume of the crust is proportional to the second power of the radius and thus makes

the contribution of the crust to the total mass larger than the core’s.
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Figure 9: The accumulated mass distribution in the hypothetical multiquark star for the

central density ρ0 = 20 and ns = 0. The inner (outer) red (dashed-blue) line represents the

core (crust) region.
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Figure 10: The density, and pressure distribution in the hypothetical multiquark star for the

central density ρ0 = 20 and ns = 0. The inner (outer) red (dashed-blue) line represents the

core (crust) region.
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Figure 11: The adiabatic index at constant entropy (Γ) and the sound speed (cs) distribution

in the hypothetical multiquark star for the central density ρ0 = 20 and ns = 0. The

inner (outer) red (dashed-blue) line represents the core (crust) region.
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Figure 12: Comparison of the accumulated mass distribution in the hypothetical multiquark

star for the central density ρ0 = 20 between ns = 0 and 0.3. The (dashed) blue line represents

the crust region of multiquark star with ns = 0.3 (0). The red lines represent the core region

of which both cases are almost the same.
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Figure 13: Comparison of the density, and pressure distribution in the hypothetical multi-

quark star for the central density ρ0 = 20 between ns = 0 and 0.3. The (dashed) blue line

represents the crust region of multiquark star with ns = 0.3 (0). The red lines represent the

core region of which both cases are almost the same.
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Figure 14: Comparison of the baryon chemical distributions in the hypothetical multiquark

star for the central density ρ0 = 20 between ns = 0 (left) and 0.3 (right). The solid (dashed)

red (blue) line represents the core (crust) region.
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Figure 15: The adiabatic index at constant entropy (Γ) and the sound speed (cs) distribution

in the hypothetical multiquark star for the central density ρ0 = 20 and ns = 0.3. The

inner (outer) red (dashed-blue) line represents the core (crust) region.
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Figure 10 shows the pressure and density distribution within the multiquark star for the

case of ns = 0 for the central density ρ0 = 20. Even though the density and pressure decrease

rapidly with respect to the radius of the star, they never quite reach zero. It turns out that

when the density and pressure reach the critical values where the equation of state changes

into the different power-law for small d, the crust region continues for a large fraction of the

total radius of the star. This makes the crust mass contribution to the total mass of the star

dominant as is shown in Fig. 9.

Some remarks should be made regarding the hydrodynamic properties of the multiquark

phase (taken as nuclear liquid). At constant temperature and entropy, we can define the

adiabatic index

Γ ≡ ρ

P

∂P

∂ρ
, (57)

=
ρ

P
c2
s (58)

where cs is the sound speed in the multiquark liquid. They depend on the equation of state

of the multiquark and their distributions within the multiquark star are shown in Fig. 11

for ns = 0. The sound speed never exceeds the speed of light in vacuum. It is also found

that the adiabatic index and the sound speed change within a small fraction as the central

densities are varied for a given ns.

The multiquark star with ns = 0.3 (having colour charges) converge to a smaller mass

and radius at high central density (Fig. 12). Multiquarks with colour charges has lower

pressure (and therefore smaller density) than the colourless ones for small density (Fig. 13).

This smaller pressure makes the coloured multiquark star smaller and thus less massive than

the colourless one. In more realistic situations, all of the possible multiquarks with varying

ns coexist in the multiquark phase. The mass limit and mass radius relation will vary

between the two typical cases we consider here. Since the equations of state are found NOT

to be sensitive to the temperature within the range between the gluon deconfinement and

the chiral symmetry restoration, our results should also be valid even when the temperature

varies within the star (but not too high and too low, of course).
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1
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Figure 16: The relation between mass and radius of the multiquark star with (a) ns = 0, (b)

ns = 0 (red) and ns = 0.3 (black).
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Figure 17: The relation between mass and radius of the core of the multiquark star with (a)

ns = 0, (b) ns = 0 (blue) and ns = 0.3 (black).

The baryon chemical potential distributions in the multiquark star for ns = 0, 0.3 are

shown in Fig. 14. In the core region, the chemical potential distributions of both cases are

similar due to the similarity of the equations of state for large density. A small jump of the

chemical potential at the transition radius between core and crust region is the artifact from

the power-law approximation. The value of the chemical potential at the transition radius

from the full expression which we used in the numerical simulations is slightly different from

the approximated value using the power-law.

The adiabatic index and sound speed of the multiquark phase for ns = 0.3 are shown in

Fig. 15. The adiabatic index is higher than ns = 0 case but the sound speed in the low density

region is distinctively higher. Around the transition density, the sound speed reaches the

maximum value of about 0.986 of the speed of light in vacuum. For both ns = 0, 0.3 cases, it

is obvious that the adiabatic index is closer to 1 in the core reflecting the fact that the density

distribution is more condensed in the core region. The adiabatic index reaches λ′ = 2 at the

star surface since the the equation of state at zero density is P ∝ ρλ′

(i.e. Γ(ρ → 0) = λ′

for Eqn. (50)).

The spiral relation between mass and radius of the multiquark star is shown in Fig. 16.

As the central density is increasing, the mass and radius of the ns = 0 (0.3) multiquark

star converge to the value of 0.659 (0.440) and 3.132 (1.704) respectively. For the core, the

mass and radius of the core for ns = 0 (0.3) converge to the value of 0.108 (0.169) and

0.471 (0.737).

Finally, we would like to estimate these limits of mass and radius in the physical units.

Since our dimensionless quantities are related to the physical quantities through conversion

factors given in Table 1 (Appendix A), both physical mass and radius vary with the energy

density of the nuclear matter phase as ∝ 1/
√

energy density scale. For a multiquark nuclear

phase with energy density scale 10 GeV/fm
3
, the conversion factor of the mass and radius

are 5.91Msolar and 8.71 km respectively. This would correspond to the converging mass and

radius (in the limit of very large central density) of 3.89 (2.60)Msolar and 27.29 (14.85) km

for ns = 0 (0.3) multiquark star respectively.

In realistic situation, the nuclear phase in the outer region could lose heat out to the

space in the form of radiation. The nuclear matter in the outer region of the crust will cool
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down and mostly become confined into neutrons and hadrons (e.g. hyperons, pions). This

would make the multiquark crust to end at shorter radius than the estimated value and

render the multiquark star to be smaller and less massive than the estimated values in the

hypothetical prototype. For example, for the energy density scale 10 GeV/fm
3
, the critical

density is ρc ≈ 1.5 × 1018 kg/m3 (ns = 0). This is still a sufficiently large density for the

neutron layer to be formed. If the temperature of the nuclear matter in the crust region

falls below the deconfinement temperature, the multiquarks will be confined into extremely

dense neutrons and hadrons instead. For a typical neutron star, the distance of the neutron

layer out to the star surface is roughly 5-6 km [29]. If we add this number to the radius of

the multiquark core, 0.471 × 8.71 ≃ 4.10 km, we end up with a more realistic estimation

for the multiquark star with radius ∼ 10 km. Regardless of the name, only the core region

is in the deconfined multiquark phase and the content of the outer layers are the confined

nucleons.

6 Discussions and conclusion

In the gluon-deconfined phase of the general Sakai-Sugimoto model, multiquark states can

exist in the intermediate temperatures below the chiral symmetry restoration temperature

provided that the density is sufficiently large. They are stable and preferred thermodynam-

ically over other phases and thus they can play important role in the physics of compact

warm stars. By analytic and numerical methods, we demonstrate that the equation of state

of the multiquark nuclear matter can be approximated by two power-laws in the small and

large density region. Roughly speaking, the pressure is proportional to d2 and d7/5 for the

small and large number density (d) regions respectively.

It is also found that the effect of the colour charges of the multiquark is to reduce the

pressure of the multiquarks when the density is small. At higher densities, multiquarks

with colour charges exert slightly larger pressure than the colourless ones. The temperature

dependence of the entropy density shows an s ∝ T 5 relation and the colour charge dependence

scolour ∝ nsT (see Fig. 6 and Eqn. (39)). This implies that the multiquarks with colour

charges have larger entropy but their number of degrees of freedom depend less sensitively

on the temperature. Multiquarks in the deconfined phase behave like quasi-particles with

the entropy density being less sensitive to the temperature than the gas of mostly free gluons

and quarks in the χS-QGP phase.

Using the power-law equations of state for both small and large density regions, a spheri-

cally symmetric Einstein field equation is solved to obtain the Tolman-Oppenheimer-Volkoff

equation. By solving this equation numerically, we establish the mass, density and pressure

distribution of the hypothetical multiquark star. It turns out that the multiquark star is

separated into two layers, a core with higher density and a crust with lower density. Mass

limit curve is also obtained as well as the mass sequence plot between the mass and radius

of the multiquark star. They show typical spiral behaviour of the star sequence plots. The

mass limit curve shows two peaks corresponding to the equation of state of the small and

the large density. Analyses show that the most contribution to the total mass is mainly
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from the crust. The adiabatic index at constant entropy, Γ, and the sound speed, cs, of the

multiquark nuclear phase within the star are calculated numerically. For large density, Γ is

approximately close to 1 and cs is roughly within range 0.6 − 0.7 of the speed of light. For

small density, Γ is in the range 1.3− 2.0 (2.0− 3.0) and cs is roughly 0− 0.85 (0− 0.99) for

multiquark with ns = 0 (0.3).
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A Dimensional translation table

quantity dimensionless variable physical variable

pressure P c4

Gr2
0
P

density ρ c2

Gr2
0
ρ

mass M r0c2

G
M

radius r r0r

Table 1: Dimensional translation table of relevant physical quantities, r0 ≡
(

GN
c4τV3

)−1/2

=
(

G
c4

(energy density scale)
)−1/2

.
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