บทคัดย่อ

ในงานวิจัยนี้ ได้ออกแบบและสร้างเครื่องยนต์สเตอร์ลิงแบบลูกสูบเคลื่อนย้ายหมุนทั้งหมด จำนวน 3 เครื่อง โดยเครื่องยนต์เครื่องที่หนึ่งเป็นเครื่องยนต์ขนาดใหญ่ที่ใช้ลูกสูบกำลังทำงานสอง ด้าน แต่เครื่องยนต์นี้ไม่สามารถทำงานได้ เครื่องยนต์เครื่องที่สองเป็นเครื่องยนต์ที่ใช้ลูกสูบกำลังทำงานด้านเดียวในขนาดระดับห้องปฏิบัติการ ซึ่งเครื่องยนต์เครื่องนี้ทำงานได้ และเครื่องยนต์ เครื่องที่สามเป็นเครื่องยนต์ที่ใช้ลูกสูบกำลังทำงานด้านเดียวสองลูกสูบที่มีพารามิเตอร์ในการ ออกแบบเหมือนกับเครื่องยนต์เครื่องที่สอง และได้ทดสอบสมรรถนะของเครื่องยนต์เครื่องที่สองและ เครื่องที่สามเพื่อเป็นการศึกษาในเชิงการทดลอง

ผลการทดสอบเครื่องยนต์เครื่องที่สองโดยใช้หัวเผาก๊าซเป็นแหล่งให้ความร้อนพบว่า สมรรถนะของเครื่องยนต์จะสูงขึ้นเมื่ออัตราส่วนการอัดมีค่าน้อยลง ที่อัตราส่วนการอัดต่ำที่สุด คือ 3.24 เครื่องยนต์เครื่องที่สองสามารถผลิตแรงบิดสูงสุดได้ประมาณ 200 N mm ที่ 25.5 rpm, ผลิต กำลังเพลาสูงสุดได้ประมาณ 687 mW ที่ 38.6 rpm, และมีประสิทธิภาพความร้อนเพลาประมาณ 0.062% ที่ 38.6 rpm โดยใช้พลังงานความร้อนป้อนเข้าเครื่องยนต์ 1115 J/s ทำให้อุณหภูมิของสาร ทำงานในช่องร้อนกับช่องเย็นเป็น 625 °C และ 59 °C โดยประมาณ ตามลำดับ

ผลการทดสอบเครื่องยนต์เครื่องที่สามโดยใช้หัวเผาก๊าซเป็นแหล่งให้ความร้อนพบว่า เครื่องยนต์สามารถผลิตแรงบิดสูงสุดได้ประมาณ 400 N mm ที่ 25.7 rpm, ผลิตกำลังเพลาสูงสุดได้ ประมาณ 1392 mW ที่ 39.1 rpm, และมีประสิทธิภาพความร้อนเพลาประมาณ 0.062% ที่ 39.1 rpm โดยใช้พลังงานความร้อนป้อนเข้าเครื่องยนต์ 2230 J/s ทำให้อุณหภูมิของสารทำงานในช่อง ร้อนกับช่องเย็นเป็น 625 °C และ 60 °C โดยประมาณ ตามลำดับ

เมื่อทดสอบเครื่องยนต์เครื่องที่สามโดยใช้เครื่องจำลองรังสีอาทิตย์ที่สร้างจากหลอดฮาโล เจนเป็นแหล่งให้ความร้อนพบว่าเครื่องยนต์สามารถผลิตแรงบิดสูงสุดได้ประมาณ 123 N mm ที่ 34.4 rpm, ผลิตกำลังเพลาสูงสุดได้ประมาณ 444 mW ที่ 34.4 rpm, และมีประสิทธิภาพความร้อน เพลาประมาณ 0.047% ที่ 34.4 rpm โดยใช้พลังงานไฟฟ้าป้อนเข้า 937 W ทำให้อุณหภูมิของสาร ทำงานในช่องร้อนกับช่องเย็นเป็น 345 °C และ 38 °C โดยประมาณ ตามลำดับ

Keywords: Rotary displacer Stirling engine, Hot air engine, External combustion engine

Abstract

In this thesis, three rotary displacer Stirling engines have been designed and constructed. The first was the large scaled, double-acting engine. But the first engine was unworkable. The second was the laboratory scaled, single-acting engine. The second engine was workable. The third engine was the laboratory scaled, two-cylinder, single-acting engine that having the same design parameters as the second engine. The performances of the second and the third engines, using air as a working fluid, have been experimentally investigated.

The results of the second engine tested with a gas burner, seems to indicate that the engine performance increases as the compression ratio falls. At the lowest compression ratio of 3.24, the heat input to the engine of 1115 J/s, the heater temperature of 625 $^{\circ}$ C and the cooler temperature of 59 $^{\circ}$ C, the engine produces the maximum torque of 200 N mm at 25.5 rpm, the maximum brake power of 687 mW at 38.6 rpm, and the maximum overall brake thermal efficiency of 0.062% at 38.6 rpm, approximately.

The results of the third engine tested with a gas burner, seems to indicate that at the heat input to the engine of 2230 J/s, the heater temperature of 625 $^{\circ}$ C and the cooler temperature of 60 $^{\circ}$ C, the engine produces the maximum torque of 400 N mm at 25.7 rpm, the maximum brake power of 1392 mW at 39.1 rpm, and the maximum overall brake thermal efficiency of 0.062% at 39.1 rpm, approximately.

The results of the third engine tested with a solar simulator made from a halogen lamp, seems to indicate that at the electrical power input of 937 W, the heater temperature of 345 $^{\circ}$ C and the cooler temperature of 38 $^{\circ}$ C, the engine produces the maximum torque of 123 N mm at 34.4 rpm, the maximum brake power of 444 mW at 34.4 rpm, and the maximum overall brake thermal efficiency of 0.047% at 34.4 rpm, approximately.

Keywords: Rotary displacer Stirling engine, Hot air engine, External combustion engine