

Abstract (บทคัดย่อ)

Project Code : MRG5180240

Project Title : การศึกษาการตอบสนองทางภูมิคุ้มกันต่อแอนติเจนจำลองของเชื้อ *Mycobacterium tuberculosis* เพื่อสร้างโครงสร้างแอนติเจนที่เหมาะสมสำหรับใช้ในการผลิตวัคซีนต้านวัณโรค

Investigator : ศิวรัตน์ บุณยรัตกลิน

ภาควิชาวิศวกรรมและเทคโนโลยีเคมีชีวภาพ

สถาบันเทคโนโลยีนาโนไซร์นาร์ วิทยาเขตธรรมศาสตร์รังสิต

99 หมู่ 18 ถนนพหลโยธิน กม.41 ต.คลองหนึ่ง อ.คลองหลวง

จ. ปทุมธานี 12120 ชื่อนักวิจัย และสถาบัน

E-mail Address : siwarutt.siit@gmail.com

Project Period : 2 years

Keywords : TB, oligosaccharides, glycosylation, carbohydrate microarray, PIM

Abstract: The emergence of multidrug-resistant tuberculosis as well as the increasing failure of the BCG vaccine to protect humans against TB have prompted investigations into alternative approaches to combat these problems by exploring novel bacterial drug targets and vaccines. Phosphatidylinositol mannosides (PIMs) are biologically important glycoconjugates and represent common essential precursors of more complex mycobacterial cell wall glycolipids including lipomannan (LM), lipoarabinomannan (LAM), and mannan capped lipoarabinomannan (ManLAM). Synthetic PIMs constitute important biochemical tools to elucidate their biosynthesis, reveal their interactions with host cells, and investigate their function as potential antigens and/or adjuvants for vaccine development. Here, we report the efficient synthesis of all PIMs including phosphatidylinositol (PI) and phosphatidylinositol mono- to hexa-mannoside (PIM₁ to PIM₆). The robust and practical synthetic protocols were developed by utilizing bicyclic and tricyclic orthoesters as well as mannosyl phosphates as glycosylating agents. Rapid and scalable syntheses of mannoside building blocks involved orthoesters as key intermediates and glycosylations of mannosyl phosphates reliably resulted in excellent yields and selectivity. Each synthetic PIM was equipped with a thiol-linker for immobilization on surfaces and carrier proteins for biological and immunological studies. The synthetic compounds were immobilized on a glass slide microarray and were recognized by the dendritic cell specific intercellular adhesion molecule-grabbing non-

integrin (DC-SIGN) receptor in a specific manner. Immunization experiments in Balb/c mice with the synthetic PIMs coupled to the model antigen keyhole-limpet hemocyanin (KLH) highlight the potential of synthetic PIMs to serve as immune stimulators.

บทคัดย่อ (Executive Summary):

การปราบภัยของเชื้อรังโรคดื้อยาหลายชนิด (multidrug-resistant tuberculosis) และปัญหาเกี่ยวกับวัคซีนบีชีจีที่ใช้ป้องกันรังโรครได้ทำให้เกิดการเสาะหาทางเลือกใหม่ในการต่อต้านโรคนี้ โดยการค้นหาเป้าหมายและวัคซีนจากแบคทีเรียตัวใหม่ phosphatidylinositol mannosides (PIMs) เป็น glycoconjugate ที่สำคัญทางชีววิทยา และเป็นส่วนประกอบหลักที่สำคัญของส่วนประกอบของ glycolipid ที่ผิวของเชื้อในตระกูล Mycobacteria ที่ซับซ้อนมากขึ้น ซึ่งประกอบด้วย lipomannan (LM) lipoarabiomannan (LAM) และ mannan capped lipoarabiomannan (manLAM) สารประกอบ PIM ที่ได้จากการสังเคราะห์เป็นเครื่องมือทางชีวเคมีที่สำคัญที่ใช้อธิบายชีวสังเคราะห์ของโมเลกุลที่อยู่ในกลุ่มนี้ นอกจากนี้ยังใช้เพื่อแสดงอันตรกิริยาระหว่าง PIM กับเซลล์เจ้าบ้าน และเพื่อสังเกตกลไกของ PIM ในการเป็นแอนติเจน และ/หรือ adjuvant ที่มีประสิทธิภาพในการพัฒนาวัคซีน ผู้จัยได้รายงานการสังเคราะห์ที่มีประสิทธิภาพของสารประกอบ PIM ทั้งหมด ซึ่งประกอบด้วย phosphatidylinositol (PI) และ phosphatidylinositol mono- to hexa-mannosides (PIM₁ to PIM₆) วิธีการสังเคราะห์ที่มีประสิทธิภาพถูกพัฒนาเพื่อใช้ bicyclic และ tricyclic orthoester รวมทั้ง mannosyl phosphate เป็น glycosylating agent สารประกอบ PIM ที่สังเคราะห์ได้แต่ละตัวถูกเชื่อมต่อกับ thiol-linker สำหรับตรึงอยู่บนพื้นผิวและโปรตีนนำพาเพื่อการศึกษาทางชีววิทยาและระบบภูมิคุ้มกัน สารประกอบ PIM ถูกตรึงอยู่บน microarray ชิ้นเดียว เพื่อสังเกตความแตกต่างในการเชื่อมกับ dendritic cell specific intracellular adhesion molecule-grabbing nonintegrin (DC-SIGN) receptor สารประกอบ PIM สามารถใช้เป็นสารกระตุ้นระบบภูมิคุ้มกันในการทดลองในหนู C57BL/6 เมื่อต่อเข้ากับ model antigen keyhole limpet hemocyanin (KLH)