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ABSTRACT This paper proposes two novel algorithms: the improved observation model and 
the several robust norms for SRR algorithm. The proposed observation model assumes the 
affine motion as the relationship between blocked images (the current frame and the reference 
frame). It is applicable to not only the standard sequences but also real sequences with 
complex motion hence it can be implemented in the previous SRR algorithms. Moreover, it 
can be implemented in motion estimation algorithm. To realize the implementation of the 
proposed sub-pixel image registration, the fast algorithm is designed to reduce the 
computational load for the proposed sub-pixel registration. Due to its high performance and 
low complexity, this paper considers the use of a regularized maximum likelihood estimator 
in the image estimation process. The real noise models that corrupt the measure sequence are 
unknown therefore SRR algorithm using L1 or L2 norm may degrade the image sequence 
rather than enhance it. The novel robust (Hampel, Andrew’s Sine, Geman&McClure and 
Leclerc) are proposed into the model of the SRR framework using the proposed registration. 
The experimental results demonstrate the effectiveness of proposed methods and its 
superiority to other SRR algorithms based on L1 and L2 norm with classical observation 
model for several noise models (such as Noiseless, AWGN, Poisson Noise, Salt&Pepper 
Noise and Speckle Noise) at different noise power. 
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1. INTRODUCTION 

1.1 INTRODUCTION

Several distorting processes affect the quality of image sequences or video 
acquired by commercial digital cameras. Some of the more important distorting effects 
include warping, blurring, down sampling and additive noise. The term SRR (Super-
Resolution Reconstruction) ranges from blur removal by Interframe in single image to the 
creation of a single high resolution image from multiple low resolution images having relative 
sub-pixel displacements. In all cases, the goal of SRR is to remove the effect of possible 
blurring and noise in the LR images and to obtain images with resolutions that go beyond the 
conventional limits of the uncompensated imaging system. Thus, the major advantage of this 
approach is that the cost of implementation is reduced and the existing low resolution (LR) 
imaging systems can still be utilized. Therefore, applications for the SRR techniques from 
image sequences grow rapidly as the theory gains exposure. Continuing researches and the 
availability of fast computational machineries have made these methods increasingly 
attractive in applications requiring the highest restoration performance. SRR techniques have 
already been applied to problems in a number of applications such as satellite imaging, 
astronomical imaging, video enhancement and restoration, video standards conversion, 
confocal microscopy, digital mosaicing, aperture displacement cameras, medical imaging, 
diffraction tomography and video freeze frame. 

The spatial resolution that represents the number of pixels per unit area in an 
image is the principal factor in determining the quality of an image. With the development of 
image processing applications, there is a great demand for high-resolution (HR) images since 
HR images offer not only the viewer a pleasing picture but also additional details that are 
important for the analysis in many applications. The most direct solution to increase spatial 
resolution is to reduce the pixel size (i.e., increase the number of pixels per unit area) by 
sensor manufacturing techniques. As the pixel size decreases, however, the amount of light 
available also decreases. It generates shot noise that severely degrades the image quality. To 
reduce the pixel size without suffering the effects of shot noise, therefore, there exists the 
limitation of the pixel size reduction, and the optimally limited pixel size is estimated at about 
40 μm2 for a 0.35 μm CMOS processor [57, 95]. The current image sensor technology has 
almost reached this level. Another approach for enhancing the spatial resolution is to increase 
the chip size, which leads to an increase in capacitance. Since large capacitance makes it 
difficult to speed up a charge transfer rate, this approach is not considered effective. The high 
cost for high precision optics and image sensors is also an important concern in many 
commercial applications regarding HR imaging therefore many digital image restoration 
techniques have been proposed since 1970s. 

Image restoration techniques are broadly categorized into two classes based on 
the number of observed frames. Specifically, the categorization is into the classes of single-
frame and multi-frame restoration methods. The classical image restoration problem is 
concerned with restoration of a single output image from a single degraded observed image 
and the literature on the restoration of a single input frame is extensive and spans several 
decades [15, 16, 17, 33, 64, 80, 83]. While the field of single frame image restoration appears 
to have matured, digital video has raised many new restoration problems for image processing 
researchers [125]. Since video typically consists of a sequence of similar, though not identical 
frames, it becomes possible to utilize the inter-frame motion information in processing the 
video data. This led to the development of image sequence processing techniques such as 
motion estimation [11, 39, 45, 94, 106, 108, 124, 125], image sequence interpolation [80], 
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image registration [3, 6, 18] and standards conversion [125]. Image restoration researchers 
also recognized the potential of image restoration in increasing spatial resolution using the 
information totally contained in an image sequence as compared with that available from a 
single image. This led naturally to algorithms which apply motion compensation and image 
restoration techniques to produce high-quality and high-resolution still images from image 
sequences called Super-Resolution Reconstruction (SRR). 

In the last two decades, the enlargement in the extensive use of digital imaging 
technologies in consumer (e.g., digital video) and other markets (e.g., security and military) 
has brought with it a simultaneous demand for higher-resolution (HR) images. The demand 
for such images can be partially met by algorithmic advances in SRR technology in addition 
to hardware development. Such HR images not only give the viewer a more pleasing picture 
but also offer additional details that are important for subsequent analysis in many 
applications. SRR algorithms [9, 20, 57, 63, 95] investigate the relative motion information 
between multiple low-resolution (LR) images or a video sequence and increase the spatial 
resolution by fusing them into a single frame. In doing so, it also removes the effect of 
possible blurring and noise in the LR images. In summary, the SRR algorithm estimates an 
HR image with finer spectral details from multiple LR observations degraded by blur, noise, 
and aliasing. 

The major advantage of this approach is that the cost of implementation is 
reduced and the existing LR imaging systems can still be utilized. Thus, applications for the 
techniques of SRR from image sequences grow rapidly as the theory gains exposure. 
Continuing researches and the availability of fast computational machineries have made these 
methods increasingly attractive in applications requiring the highest restoration performance. 
SRR techniques have already been applied to problems in a number of applications such as 
satellite imaging, astronomical imaging, video enhancement and restoration, video standards 
conversion, confocal microscopy, digital mosaicing, aperture displacement cameras, medical 
computed tomographic imaging, diffraction tomography, video freeze frame and hard copy.  

In SRR, typically, the LR images represent different “looks” at the same scene 
[95]. That is, LR images are subsampled (aliased) as well as shifted with sub-pixel precision. 
If the LR images are shifted by integer units, then each image contains the same information, 
and thus there is no new information that can be used to reconstruct a HR image. If the LR 
images have different sub-pixel shifts from each other and if aliasing is present, however, then 
each image cannot be obtained from the others. In this case, the new information contained in 
each LR image can be exploited to obtain a HR image. To obtain different looks at the same 
scene, some relative scene motions must exist from frame to frame via multiple scenes or 
video sequences. Multiple scenes can be obtained from one camera with several captures or 
from multiple cameras located in different positions. These scene motions can occur due to 
the controlled motions in imaging systems, e.g., images acquired from orbiting satellites. The 
same is true of uncontrolled motions, e.g., movement of local objects or vibrating imaging 
systems. If these scene motions are known or can be estimated within sub-pixel accuracy and 
if we combine these LR images then SRR is possible.  

Most of the SRR registration techniques [95] are based on the sub-pixel 
translation motion assumption. This implies the observed images or sequences can be 
modeled by global or local uniform translation thus the traditional sub-pixel registration can 
not be applied on the real complex motion sequences and super-resolution applications can be 
applied only on the sequences that have simple translation motion. In addition to image 
registration, the robust estimation and high accurate image estimation is also required. The 
traditional estimated techniques for SRR, proposed in the past literatures [9, 20, 57, 63, 94, 
95] are based on the simple estimation techniques such as L1 Norm or L2 Norm 
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Minimization. From these points of view, the SRR estimation technique and SRR sub-pixel 
registration for the real complex sequences is a very challenging topic because the 
performance of the registration and estimation techniques have a major impact on the 
performance of the SRR system. 

In this section, the fundamental knowledge of the SRR algorithm is described. 
This includes a block diagram of observation model and SRR algorithm. The first step to 
comprehensively review the SRR problem is to formulate an observation model that relates 
the original HR image to the observed LR images. Several observation models have been 
explored in [95], and they can be broadly divided into the models for still images and for 
video sequence. To present a basic concept of SR reconstruction techniques, we employ the 
observation model for still images in [95] as shown in Figure 1.1, since it is rather 
straightforward to extend the still image model to the video sequence model. 
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Figure 1.1: Block Diagram of Observation Model. 

The motion that occurs during the image acquisition is represented by warping 
processes. It may contain global or local translation, rotation, and so on. Since this 
information is generally unknown, we need to estimate the scene motion for each frame with 
reference to one particular frame. The warping process performed on HR image is actually 
defined in terms of LR pixel spacing when we estimate it. Thus, this step requires 
interpolation when the fractional unit of motion is not equal to the HR sensor grid.

Blur may be caused by an optical system (e.g., out of focus, diffraction limit, 
aberration, etc.), relative motion between the imaging system and the original scene, and the 
point spread function (PSF) of the LR sensor. It can be modeled as linear space invariant 
(LSI) or linear space variant (LSV). In single image restoration applications, the optical or 
motion blur is usually considered. In the SRR, however, the finiteness of a physical 
dimension in LR sensors is an important factor of blur.. In the use of SRR algorithms, the 
characteristics of the blur are assumed to be known. However, if it is difficult to obtain this 
information, blur identification should be incorporated into the reconstruction procedure. 
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The downsampling process generates aliased LR images from the warped and 
blurred HR image. Although the size of LR images is the same here, in more general cases, 
we can address the different size of LR images by using a different downsampling matrix. 
Although the blur acts more or less as an anti-aliasing filter, in SR image reconstruction, it is 
assumed that aliasing is always present in LR images. 

Most of the explored SRR algorithms [95] consist of the three stages illustrated 
in Figure 1.2: registration, interpolation and restoration (i.e., inverse procedure). These steps 
can be implemented separately or simultaneously according to the reconstruction methods 
adopted. The estimation methods of motion information [11, 12, 39, 40, 45, 74-78, 106, 108, 
122] are referred to as registration methods [3, 6, 18], and it is extensively studied in various 
fields of image processing. In the registration stage, the relative shifts between LR images 
compared to the reference LR image are estimated with fractional pixel accuracy. Obviously, 
accurate sub-pixel motion estimation is a very important factor in the success of the SRR 
algorithm. Since the shifts between LR images are arbitrary, the registered HR image will not 
always match up to a uniformly spaced HR grid. Thus, nonuniform interpolation is necessary 
to obtain a uniformly spaced HR image from a composite of nonuniformly spaced LR images. 
Finally, image restoration is applied to the upsampled image to remove blurring and noise. 
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Figure 1.2: Super-Resolution Reconstruction (SRR) Block Diagram. 
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1.2 LITERATURE REVIEW 

In this section, the relevant research papers, published in the conferences and 
journals are comprehensively reviewed. The Super-Resolution Reconstruction (SRR) idea 
was first presented by T. S. Huang and R. Y. Tsan [107] in 1984. They used the frequency 
domain approach to demonstrate the ability to reconstruct one improved resolution image 
from several downsampled noise-free versions of it, based on the spatial aliasing effect. Next, 
a frequency domain recursive algorithm for the restoration of super-resolution images from 
noisy and blurred measurements is proposed by S. P. Kim, N. K. Bose, and H. M. Valenzuela 
[102] in 1990. The algorithm using a weighted recursive least squares algorithm, is based on 
sequential estimation theory in the frequency-wavenumber domain, to achieve simultaneous 
improvement in signal-to-noise ratio and resolution from available registered sequence of 
low-resolution noisy frames. In 1993, S. P. Kim and Wen-Yu Su [103] also incorporated 
explicitly the deblurring computation into the high-resolution image reconstruction process 
because separate deblurring of input frames would introduce the undesirable phase and high 
wavenumber distortions in the DFT of those frames. Subsequently, M. K. Ng and N. K. Bose 
[62] proposed the analysis of the displacement errors on the convergence rate to the iterative 
approach for solving the transform based preconditioned system of equation in 2002 hence it 
is established that the used of the MAP, L2 Norm or H1 Norm regularization functional leads 
to a proof of linear convergence of the conjugate gradient method in terms of the 
displacement errors caused by the imperfect subpixel locations. Later, N. K. Bose, M. K. Ng 
and A. C. Yau [69] proposed the fast SRR algorithm, using MAP with MRF for blurred 
observation in 2006. This algorithm uses the reconditioned conjugated gradient method and 
FFT. Although the frequency domain methods are intuitively simple and computationally 
cheap, the observation model is restricted to only global translational motion and LSI blur. 
Due to the lack of data correlation in the frequency domain, it is also difficult to apply the 
spatial domain a priori knowledge for regularization. 

The POCS formulation of the SRR was first suggested by Stark and Oskoui 
[95] in 1987. Their method was extended by Tekalp [95] to include observation noise in 1992. 
Although POCS is simple and can utilize a convenient inclusion of a priori information, this 
method has the disadvantages of nonuniqueness of solution, slow convergence and a high 
computational cost. Next, A. J. Patti and Y. Altunbasak proposed [2] a SRR (Super-
Resolution Reconstruction) using ML estimator with POCS-based regularization in 2001 and 
Y. Altunbasak, A. J. Patti, and R. M. Mersereau [126] proposed a Super-Resolution 
Reconstruction (SRR) for the MPEG sequences in 2002. They proposed a motion-
compensated, transform-domain super-resolution procedure that directly incorporates the 
transform-domain quantization information by working with the compressed bit stream. Later, 
B. K. Gunturk and Y. Altunbasak and R. M. Mersereau [7] proposed a ML super-resolution 
with regularization based on compression quantization, additive noise and image prior 
information in 2004. Next, H. Hasegawa, T. Ono, I. Yamada and K. Sakaniwa proposed 
iterative SSR using the Adaptive Projected Subgradient method for MPEG sequences in 2005 
[27].

The MRF or Markov/Gibbs Random Fields [35-38, 43-44, 90-91] are proposed 
and developed for modeling image texture during 1990-1994. Due to MRF (Markov Random 
Field) that can model the image characteristic especially on image texture, C. Bouman and K. 
Sauer [10] proposed the single image restoration algorithm using MAP estimator with the 
GGMRF (Generalized Gaussian-Markov Random Field) prior in 1993. Later, R. L. 
Stevenson, B. E. Schmitz and E. J. Delp [82] proposed the single image restoration algorithm 
using ML estimator with the Discontinuity Persevering Regularization in 1994. R. R. Schultz 
and R. L. Stevenson [88] proposed the single image restoration algorithm using MAP 
estimator with the HMRF (Huber-Markov Random Field) prior in 1994. Next, the Super-
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Resolution Reconstruction algorithm using MAP estimator (or the Regularized ML 
estimator), with the HMRF prior was proposed by R. R. Schultz and R. L. Stevenson [89] in 
1996. The blur of the measured images is assumed to be simple averaging and the 
measurements additive noise is assumed to be independent and identically distributed (i.i.d.) 
Gaussian vector. In 2006, R. Pan and S. J. Reeves [87] proposed single image MAP estimator 
restoration algorithm with the efficient HMRF prior using decomposition-enabled edge-
preserving image restoration in order to reduce the computational demand. 

Typically, the regularized ML estimation (or MAP) [15, 16, 24, 64] is used in 
image restoration therefore the determination of the regularization parameter is an important 
issue in the image restoration. A. M. Thompson, J. C. Brown, J. W. Kay and D. M. 
Titterington [1] proposed the Methods of choosing the smoothing parameter in image 
restoration by regularized ML in 1991. Next, V. Z. Mesarovic, N. P. Galatsanos, A. K. 
Katsaggelos [123] proposed the single image restoration using regularized ML for unknown 
linear space-invariant (LSI) point spread function (PSF) in 1995. Subsequently, D. Geman 
and C. Yang [14] proposed single image restoration using regularized ML with robust 
nonlinear regularization in 1995. This approach can be done efficiently by Monte Carlo 
Methods, for example by annealing FFT domain using Markov chain that alternates between 
(global) transitions from one array to the other. Later, M. G. Kang and A. K. Katsaggelos 
proposed the use of a single image regularization functional [55], which is defined in terms of 
restored image at each iteration step, instead of a constant regularization parameter in 1995 
and proposed regularized ML for SRR [56], in which no prior knowledge of the noise 
variance at each frame or the degree of smoothness of the original image is required in 1997. 
In 1999, R. Molina, A. K. Katsaggelos, and J. Mateos [85] proposed the application of the 
hierarchical ML with Laplacian regularization to the single image restoration problem and 
derived expressions for the iterative evaluation of the two hyperparameters (regularized 
parameter) applying the evidence and maximum a posteriori (MAP) analysis within the 
hierarchical regularized ML paradigm. In 2003, R. Molina, M. Vega, J. Abad and A. K. 
Katsaggelos [86] proposed the mutiframe super-resolution reconstruction using ML with 
Laplacian regularization. The regularized parameter is defined in terms of restored image at 
each iteration step. Next, D. Rajan and S. Chaudhuri [21] proposed super-resolution approach, 
based on ML with MRF regularization, to simultaneously estimate the depth map and the 
focused image of a scene, both at a super-resolution from its defocused observed images in 
2003. Subsequently, H. He and L. P. Kondi [29-30] proposed image resolution enhancement 
with adaptively weighted low-resolution images (channels) and simultaneous estimation of 
the regularization parameter in 2004 and proposed a generalized framework [31] of 
regularized image/video Iterative Blind Deconvolution/Super-Resolution (IBD-SR) algorithm 
using some information from the more matured blind Deconvolution techniques form image 
restoration in 2005. Later, they [32] proposed SRR algorithm that takes into account 
inaccurate estimates of the registration parameters and the point spread function in 2006. In 
2006, M. Vega, R. Molina and A. K. Katsaggelos [67] proposed the problem of deconvolving 
color images observed with a single coupled charged device (CCD) from the super-resolution 
point of view. Utilizing the regularized ML paradigm, an estimate of the reconstructed image 
and the model parameters is generated. 

M. Elad and A. Feuer [49] proposed the hybrid method combining the ML and 
nonellipsoid constraints for the super-resolution restoration in 1997 and the adaptive filtering 
approach for the Super-Resolution Reconstruction in 1999 [50, 51]. Next, they proposed two 
iterative algorithms, the R-SD and the R-LMS [51], to generate the desired image sequence at 
the practically computational complexity in 1999. These algorithms assume the knowledge of 
the blur, the down-sampling, the sequences motion, and the measurements noise 
characteristics, and apply a sequential reconstruction process. Subsequently, the special case 
of Super-Resolution Reconstruction (where the warps are pure translations, the blur is space 
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invariant and the same for all the images and the noise is white) are proposed for a fast Super-
Resolution Reconstruction in 2001 [52]. Later, N. Nguyen, P. Milanfar and G. Golub [70] 
proposed fast SRR algorithm using regularized ML by using efficient block circulant 
preconditioners and the conjugate gradient method in 2001. In 2002, M. Elad [54] proposed 
the Bilateral Filter theory, showed how the bilateral filter can be improved and extended to 
treat more general reconstruction problems. Consequently, the alternate super-resolution 
approach, L1 Norm estimator and robust regularization based on a Bilateral Total Variance 
(BTV), was presented by S. Farsiu and D. Robinson [97-98] in 2004. This approach 
performance is superior to what proposed earlier in [49], [50] and [51] and this approach has 
fast convergence but this SRR algorithm effectively apply only on AWGN models. Next, they 
proposed a fast SRR of color images [99] using ML estimator with BTV regularization for 
luminance component and Tikhonov regularization for chrominance component in 2006. 
Subsequently, they proposed the dynamic super-resolution problem of reconstructing a high-
quality set of monochromatic or color super-resolved images from low-quality 
monochromatic, color or mosaiced frames [100]. This approach includes a joint method for 
simultaneous SR, deblurring and Demosaicing. It takes into account practical color 
measurements encountered in video sequences. Later, we [112] proposed the SRR using a 
regularized ML estimator with affine block-based registration for the real image sequence. 
Moreover, G. Rochefort, F. Champagnat, G. L. Besnerais and Jean-Francois Giovannelli [25] 
proposed super-resolution approach based on regularized ML [49] for the extended original 
observation model devoted to the case of nonisometirc � nterframe motion such as affine 
motion in 2006. 

S. Baker and T. Kanade [92] proposed another super-resolution algorithm 
(hallucination or recognition-based super-resolution) in 2002 that attempts to recognize local 
features in the low-resolution image and then enhances their resolution in an appropriate 
manner. Due to the training data base, therefore, this algorithm performance depends on the 
image type (such as face or character) and this algorithm is not robust enough to be sued in 
typical surveillance video. J. Sun, N. N. Zheng, H. Tao and H. Y. Shum [41] proposed 
hallucination super-resolution (for single image) using regularization ML with primal 
sketches as the basic recognition elements in 2003. 

During 2004 to 2006, P. Vandewalle, S. Susstrunk and M. Vetterli [75-78] 
have proposed a fast super-resolution reconstruction based on a non-uniform interpolation 
using a frequency domain registration. This method has low computation and can use in the 
real-time system but the degradation models are limited therefore this algorithm can apply on 
few applications. In 2006, M. Trimeche, R. C. Bilcu and J. Yrjanainen [65] proposed SRR 
algorithm using an integrated adaptive filtering method to reject the outlier image regions for 
which registration has failed. 

1.2.1 SSR Estimation Technique Problem 

This section reviews the literature from the estimation point of view because 
the SRR estimation is one of the most crucial parts of the SRR research areas and directly 
impact to the SRR performance. Though the SRR algorithms from the reviews literature use 
various techniques, there are only two kinds of norm estimation (L1 and L2). L2 norm 
estimation has the advantage of lower variance than the L1 norm; whereas, L1 performs better 
in robust to outliers because the influence function is constant and bounded. 

C. Bouman and K. Sauer [10] proposed the single image restoration algorithm 
using ML estimator (L2 Norm) with the GGMRF (Generalized Gaussian-Markov Random 
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Field) regularization in 1993. R. R. Schultz and R. L. Stevenson [88] proposed the single 
image restoration algorithm using ML estimator (L2 Norm) with the HMRF (Huber-Markov 
Random Field) regularization in 1994 and proposed the SRR algorithm [89] using ML 
estimator (L2 Norm) with the HMRF regularization in 1996. The blur of the measured images 
is assumed to be simple averaging and the measurements additive noise is assumed to be 
independent and identically distributed (i.i.d.) Gaussian vector. M. Elad and A. Feuer [49] 
proposed the hybrid method combining the ML estimator (L2 Norm) and nonellipsoid 
constraints for the Super-Resolution Reconstruction in 1997 [50]. Next, they proposed two 
iterative algorithms, the R-SD and the R-LMS (L2 Norm) [50, 53], to generate the desired 
image sequence at the practically computational complexity in 1999. These algorithms 
assume the knowledge of the blur, the down-sampling, the sequences motion, and the 
measurements noise characteristics, and apply a sequential reconstruction process. 
Subsequently, the special case of Super-Resolution Reconstruction (where the warps are pure 
translations, the blur is space invariant and the same for all the images and the noise is white) 
are proposed for a fast Super-Resolution Reconstruction using ML estimator (L2 Norm) in 
2001 [52]. Later, N. Nguyen, P. Milanfar and G. Golub [70] proposed fast SRR algorithm 
using regularized ML (L2 Norm) by using efficient block circulant preconditioners and the 
conjugate gradient method in 2001. In 2002, A. J. Patti and Y. Altunbasak proposed [2] a 
SRR algorithm using ML (L2 Norm) estimator with POCS-based regularization. Y. 
Altunbasak, A. J. Patti, and R. M. Mersereau [126] proposed a SRR algorithm using ML (L2 
Norm) estimator for the MPEG sequences in 2002. Deepu Rajan and S. Chaudhuri [21] 
proposed SRR using ML (L2 Norm) with MRF regularization to simultaneously estimate the 
depth map and the focused image of a scene in 2003. Later, we [112] proposed the SRR using 
a regularized ML estimator (L2 Norm) with affine block-based registration for the real image 
sequence. Moreover, G. Rochefort, F. Champagnat, G. L. Besnerais and Jean-Francois 
Giovannelli [25] proposed super-resolution approach based on regularized ML (L2 Norm) 
[49] for the extended original observation model devoted to the case of nonisometirc 
� nterframe motion such as affine motion in 2006. In 2006, R. Pan and S. J. Reeves [87] 
proposed single image restoration algorithm using ML estimator (L2 Norm) with the efficient 
HMRF regularization and using decomposition-enabled edge-preserving image restoration in 
order to reduce the computational demand. 

The novel super-resolution approach, ML estimator (L1 Norm) and robust 
regularization based on a Bilateral Total Variance (BTV), was presented by S. Farsiu and D. 
Robinson [97-98] in 2004. Next, they proposed a fast SRR of color images [99] using ML 
estimator (L1 Norm) with BTV regularization for luminance component and Tikhonov 
regularization for chrominance component in 2006. Subsequently, they proposed the dynamic 
super-resolution problem of reconstructing a high-quality set of monochromatic or color 
super-resolved images from low-quality monochromatic, color or mosaiced frames [100]. 
This approach includes a joint method for simultaneous SR, deblurring and Demosaicing, this 
way taking into account practical color measurements encountered in video sequences.  

The success of SRR algorithm is highly dependent on the accuracy of the 
model of the imaging process. However, these models are not supposed to be exactly true, as 
they are merely mathematically convenient formulations of some general prior information. 
When the data or noise model assumptions do not faithfully describe the measure data, the 
estimator performance degrades rapidly. Furthermore, existence of outliers defined as data 
points with different distributional characteristics than the assumed model will produce 
erroneous estimates. Most of noise models used in SRR algorithms is based on AWGN 
(Additive White Gaussian Noise) model; therefore, SRR algorithms can effectively apply 
only on the image sequence that is corrupted by AWGN. Due to this noise model, L1 norm or 
L2 norm error are effectively used in SRR algorithm. Unfortunately, the real noise models 
that corrupt the measure sequence are unknown therefore SRR algorithm using L1 norm or L2 
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norm may degrade the image sequence rather than enhance it. Therefore, the robust norm 
error is desired for SRR algorithm. This norm should be strong against several noise models. 
For normally distributed data, the L1 norm produces estimates with higher variance than the 
optimal L2 (quadratic) norm but the L2 norm is very sensitive to outliers because the 
influence function increases linearly and without bound.
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2. FUNDAMENTAL TECHIQUES FOR SUPER-RESOLUTION 
RECONSTRUCTION

2.1 METHODOLOGY: SUPER RESOLUTION RECONSTRUCTION ALGORITHM 

2.1.1 Super-Resolution Reconstruction as an Ill-Posed Inverse Problem 

In SRR, typically, the LR images represent different “looks” at the same scene 
[95]. That is, LR images are subsampled (aliased) as well as shifted with sub-pixel precision. 
If the LR images are shifted by integer units, then each image contains the same information, 
and thus there is no new information that can be used to reconstruct a HR image. If the LR 
images have different sub-pixel shifts from each other and aliasing is present, however, then 
each image cannot be obtained from others. In this case, the new information contained in 
each LR image can be exploited to obtain a HR image. To obtain different looks at the same 
scene, some relative scene motions must exist from frame to frame via multiple scenes or 
video sequences. Multiple scenes can be obtained from one camera with several captures or 
from multiple cameras located in different positions. These scene motions can occur due to 
the controlled motions in imaging systems, e.g., images acquired from orbiting satellites. The 
same is true for uncontrolled motions, e.g., movement of local objects or vibrating imaging 
systems. If these scene motions are known or can be estimated within sub-pixel accuracy and 
we combine these LR images then SRR is possible. One of the recurring issues in this work is 
that multiframe Super-Resolution Reconstruction is usually an ill-posed inverse problem. 

2.1.1.1 Super-Resolution Reconstruction is an Inverse Problem 

SRR refers to the restoration of a sequence of observed low-resolution images 
that has information content beyond the spatial and/or temporal bandlimit of the imaging 
system (bandwidth extrapolation). Hence, the corresponding inverse problem is that of 
determining estimate(s) of the scene given the observed image sequence and the 
characterization of the imaging process. Given the characteristics of the imaging process and 
system, the forward problem is the simulation, while the inverse problem is the restoration. 

2.1.1.2 Super-Resolution Reconstruction is an Ill-Posed Problem 

Recall that ill-posedness implies failure of one or more of the Hadamard 
conditions. The multiframe SRR problem may fail to satisfy one or more of these conditions. 
The failure may result from either the characteristics of the imaging system, or the observed 
data.

1. Nonexistence of the solution: the presence of noise in the observation 
process may result in an observed image sequence which, given the imaging system 
characterization, is inconsistent with any scene. The result is that the system is noninvertible 
and the scene cannot be estimated from the observations. 

2. Nonuniqueness of the solution: when the operator which characterizes the 
imaging process is many-to-one, there exists a nontrivial space of solutions consistent with 
any given observed image sequence, that is, the solution to the inverse problem is nonunique. 
For example, in bandlimited imaging systems, all out-of-band scene data represent the null 
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space of the imaging process operator. Even if the imaging operator is nonsingular, a simple 
lack of data, which represent constraints on the solution space, is sufficient to result in the 
nonuniqueness of the solution. For example, consider a discretized imaging scenario with P 
observed low-resolution images each consisting of N pixels. These observed data provide a 
maximum of PN independent constraints. Assume a single superresolution image containing 
M > PN pixels is to be estimated from the data. Since the number of unknowns exceeds the 
number of constraints, it is clear that there are insufficient constraints for the existence of a 
unique solution to the inverse problem. Furthermore, since superresolution, by definition, 
requires the restoration of information that is lost in the imaging process it should be expected 
that the solution to the superresolution restoration problem is likely to be nonunique. 

3. Discontinuous dependence of the solution on the data: depending on the 
characteristics of the imaging system, the inverse problem may be highly sensitive to 
perturbations of the data. For example, consider an imaging system with a spectral response 
which decreases asymptotically toward zero with increasing frequency. While such a system 
is invertible in theory, in practice the inverse is unstable. An arbitrarily small noise 
component at a sufficiently high frequency leads to an arbitrarily large spurious signal in the 
computed restoration. In practice such restorations are typically overwhelmed by the 
amplification of the noise. 

While, in rare circumstances, it happens that the Hadamard conditions are 
satisfied, in general, practical applications involving multiframe SRR are invariably ill-posed. 
Despite the difficulties caused by the ill-posedness, regularized solution methods enable high 
quality SRR as is shown in later section. The inclusion of a-priori information is crucial to 
achieving this. 
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2.1.2 The Classical SRR Algorithm 

In this section, the classical SRR algorithm is presented. First, the SRR 
observation model is described and, consequently, the classical regularized ML for the SRR 
algorithm is stated. 

2.1.2.1 The SRR Observation Model 

The first step to comprehensively analyze the SRR problem is to formulate an 
observation model that relates the original HR image to the observed LR images. The 
observation models can be broadly divided into the models for still images and for video 
sequence. To present a basic concept of SRR algorithms, we first employ the observation 
model for still images and, later, we extend it to the observation model for the video sequence 
model.

Define that a low-resolution image sequence is kY , 1 2N N  pixels, as our 
measured data. A original high-resolution image X , 1 2qN qN  pixels, is to be estimated from 
the LR sequences, where q  is an integer-valued interpolation factor in both the horizontal and 
vertical directions. To reduce the computational complexity, each frame is separated into 
overlapping blocks (the shadow blocks as shown in Fig. 5.1(a) and Fig. 5.1(b)). 

For convenience of notation, all overlapping blocked frames will be presented 
as vector, ordered column-wise lexicographically. Namely, the overlapping blocked LR frame 
is

2M
kY  ( 2 1M ) and the overlapping blocked HR frame is 

2 2q MX
( 2 2 21 or 1L q M ). We assume that the two images are related via the following equation 

; 1, 2, ,k k k k kY D H F X V k N     (2.1) 

where

X  (vector format) is the original high-resolution blocked image. 

kY t  (vector format) is the blurred, decimated, down sampled and noisy blocked 
image 

kF   (
2 2 2 2q M q MF  and matrix format) stands for the geometric warp (Typically, 

Translational Motion) between the images X  and kY .

kH  (
2 2 2 2q M q M

kH  and matrix format)is the blur matrix which is a space and time 
invariant.

kD  (
2 2 2M q M

kD  and matrix format) is the decimation matrix assumed constant. 

kV  (
2M

kV  and vector format) is a system noise. 
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2.1.2.2 The Classical Regularized ML for SRR Algorithm 

A popular family of estimators is the ML-type estimators (M estimators) [50, 
70]. We rewrite the definition of these estimators in the super resolution reconstruction 
framework as the following minimization problem: 

1

ˆ ArgMin
N

k k k k
X k

X D H F X Y      (2.2) 

where  is a norm estimation. To minimize (2.2), the intensity at each pixel 
of the expected image must be close to those of the original image. 

SRR (Super-Resolution Reconstruction), described in Section 5.1, is an ill-
posed problem [98]. For the under-determined cases (i.e., when fewer than required frames 
are available), there exist an infinite number of solutions which satisfy (2.2). The solution for 
squared and over-determined cases is not stable, which means small amounts of noise in 
measurements will result in large perturbations in the final solution. Therefore, considering 
regularization in SRR algorithm as a mean for picking a stable solution is very useful, if not 
necessary. Also, regularization can help the algorithm to remove artifacts from the final 
answer and improve the rate of convergence. A regularization term compensates the missing 
measurement information with some general prior information about the desirable HR 
solution, and is usually implemented as a penalty factor in the generalized minimization cost 
function. Unfortunately, certain types of regularization cost functions work efficiently for 
some special types of images but are not suitable for general images. 
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2.1.2.3 L2 Norm Estimation with Laplacian Regularization for SRR Algorithm [98-100] 

By using L2 norm estimation, we rewrite the definition of these estimators in 
the super resolution context as the following minimization problem: 

2 2

1
ArgMin

N

kk k k
X k

X D H F X Y X    (2.3)
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By the steepest descent method, the solution of above Equation is defined as 
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2.1.2.4 L1 Norm Estimation with Laplacian Regularization for SRR Algorithm [98-100] 

By using L1 norm estimation, the definition of these estimators in the super 
resolution context is rewritten as the following minimization problem: 

2

1
ArgMin

N

kk k k
X k

X D H F X Y X    (2.5)

02

1
1

XYXFHD
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k
kkkk
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k
kkkk X

X
YXFHD

X

By the steepest descent method, the solution of Equation (2.5) is defined as 

1
1

ˆ ˆ ˆ ˆsign
N

T T T T
n n n k nk k k k k k

k
X X F H D D H F X Y X

           (2.6) 

2.1.2.5 L2 Norm Estimation with MRF Regularization for SRR Algorithm [87-89] 

By using L2 norm estimation, the definition of these estimators in the super 
resolution context is defined as the following minimization problem: 

2

1

1ArgMin
2
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By the steepest descent method, the solution of Equation (2.7) is defined as 
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where  is defined as

2 ; is a quadratic functionx if     (2.9a) 

2 ;
; is a Huber function

2 sign ;
HUBER

HUBER HUBER

x x T
if

T x x T
           (2.9b) 

2.1.2.6 L1 Norm Estimation with MRF Regularization for SRR Algorithm [87-89] 

By using L1 norm estimation, the definition of these estimators in the super 
resolution context is defined s the following minimization problem: 
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1ArgMin
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By the steepest descent method, the solution of Equation (2.10) is defined as 
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2.1.2.7 L2 Norm Estimation with BTV Regularization for SRR Algorithm [98-100] 

By using L2 norm estimation, we rewrite the definition of these estimators in 
the super resolution context as the following minimization problem: 

2

1

0

ArgMin

N

kk k k
k

P PX m l l m
x y

l P m

D H F X Y
X

X S S X
   (2.12) 

By the steepest descent method, the solution of Equation (12) is defined as 
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  (2.13) 

2.1.2.8 L1 Norm Estimation with BTV Regularization for SRR Algorithm [98-100] 

By using L1 norm estimation, the definition of these estimators in the super 
resolution context is defined as the following minimization problem: 

1
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By the steepest descent method, the solution of Equation (15) is defined as 
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3. THE PROPOSED ROBUST ESTIMATION TECHNIQUES 
FOR SUPER RESOLUTION RECONSTRUCTION

3.1 Robust Norm Estimation for SRR [58-61] 

The success of SRR algorithm is highly dependent on the accuracy of the 
imaging process model. Unfortunately, these models are not supposed to be exactly true, as 
they are merely mathematically convenient formulations of some general prior information. 
When the data or noise model assumptions do not faithfully describe the measure data, the 
estimator performance degrades. Furthermore, existence of outliers defined as data points 
with different distributional characteristics than the assumed model will produce erroneous 
estimates. Almost all noise models used in SRR algorithms are based on Additive White 
Gaussian Noise (AWGN) model; therefore, SRR algorithms can effectively apply only on the 
image sequence that is corrupted by AWGN. Due to this noise model, L1 norm or L2 norm 
error are effectively used in SRR algorithm. Unfortunately, the real noise models that corrupt 
the measure sequence are unknown therefore SRR algorithm using L1 norm or L2 norm may 
degrade the image sequence rather than enhance it. The robust norm error is necessary for 
SRR algorithm applicable to several noise models. For normally distributed data, the L1 norm 
produces estimates with higher variance than the optimal L2 (quadratic) norm but the L2 
norm is very sensitive to outliers because the influence function increases linearly and without 
bound. From the robust statistical estimation [58-61], Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc Norm are designed to be more robust than L1 and L2. While 
these robust norms are designed to reject outliers, these norms must be more forgiving about 
the remaining outliers; that is, it should increase less rapidly than L2.  

3.1.1 Hampel Norm Estimation for SRR  

A robust estimation is estimated technique that is resistance to such outliers. In 
SRR framework, outliers are measured images or corrupted images that are highly 
inconsistent with the high resolution original image. Outliers may arise from several reasons 
such as procedural measurement error, noise or inaccurate mathematical model. Outliers 
should be investigated carefully; therefore, we need to analyze the outlier in a way which 
minimizes their effect on the estimated model. L2 norm estimation is highly susceptible to 
even a small number of discordant observations or outliers. For L2 norm estimation, the 
influence of the outlier is much larger than the other measured data because L2 norm 
estimation weights the error quadraticly.  Consequently, the robustness of L2 norm estimation 
is poor. 

Hampel’s norm [58-61] is one of error norm from the robust statistic literature. 
It is equivalent to the L1 norm for large value. But, for normally distributed data, the L1 norm 
produces estimates with higher variance than the optimal L2 (quadratic) norm, so Hampel’s 
norm is designed to be quadratic for small values and its influence does not descend all the 
way to zero. The Hampel norm function ( ) and its influence function ( ) are shown 
in Figure 3.1 (a) and Figure 3.1 (b), respectively 
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3.1.1.1 Hampel Norm Estimation Definition 

In this section, we propose the novel robust SRR using Huber error norm. 
From (2.2), we rewrite the definition of these robust estimators in the super resolution context 
as the following minimization problem:  

1
ArgMin

N

kHAMPEL k k k
X k

X D H F X Y     (3.5) 

2

2

22

2

;
2 ; 2

4 3 ;2 3

4 ; 3
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x x T
T x T T x T

x
T T x T x T

T x T

   (3.6) 

where T  is norm constant parameter that is a soft threshold value.

3.1.1.2 Hampel Norm Estimation for SRR

By the steepest descent method, the solution of Equation (3.5) is defined as 

1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k HAMPEL k k k

k
X X F H D Y D H F X   (3.7) 
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3.1.1.3 Hampel Norm Estimation for SRR with Laplacian Regularization [114, 115] 

Combining the Laplacian regularization, we propose the solution of the super-
resolution problem as follows: 

2

1

ArgMin
N

kHAMPEL k k k
X k

X D H F X Y X   (3.9) 

By the steepest descent method, the solution of Equation (3.9) is defined as 
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3.1.1.4 Hampel Norm Estimation for SRR with Hampel -Laplacian Regularization  

Combining the Hampel-Laplacian regularization, we propose the solution of 
the super-resolution problem as follows: 
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N
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By the steepest descent method, the solution of Equation (3.12) is defined as 
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3.2.2 Andrew’s Sine Norm Estimation for SRR  

This section first reviews the main concepts of Lorentzian norm estimation 
technique and later develops the Lorentzian norm estimation for SRR framework. 

3.2.2.1 Andrew’s Sine Norm Estimation Definition 

Much can be improved if the influence is bounded in one way or another. This 
is exactly the general idea of applying a robust error norm. Instead of using the sum of 
squared differences (2.6), this error norm should be selected such that above a given level of 
x , its influence is ruled out. In addition, one would like to have x  being smooth so that 
numerical minimization of (2.2) is not too difficult. The one of suitable choices (among other) 
is so-called Andrew’s Sine error norm [58-61]. In this section, we propose the novel robust 
SRR using Andrew’s Sine error norm. From (2.2), the definition of these robust estimators in 
the super resolution is defined context as the following minimization problem: 

1
ArgMin

N

kANDREW k k k
X SINEk

X D H F X Y     (3.15) 

2 2

2

sin 2 ;

;
ANDREW
SINE

T x T x T
x

T x T
    (3.16) 

For values of x  smaller than T , the function follows the L2 norm. For values larger than 
T , the function gets saturated. Consequently for small value of x , the derivative of 

x x x  of x  is nearly a constant. But for large values of x  (for outliers), it 
becomes nearly zero. Therefore, in a Gauss-Newton style of optimization, the Jacobian matrix is 
virtually zero for outliers. Only residuals that are about as large as T  or smaller than that play a 
role.

From L1 and L2 norm estimation point of view, Andrew’s Sine norm is 
equivalent to the L1 norm for large value. But, for normally distributed data, the L1 norm 
produces estimates with higher variance than the optimal L2 (quadratic) norm, so Andrew’s 
Sine norm is designed to be quadratic for small values and be bound for large values. The 
Andrew’s Sine norm function ( ) and it influence function ( ) are shown in Figure 
3.3 (c-1) and Figure 3.3 (c-2) respectively.
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3.2.2.2 Andrew’s Sine Norm Estimation for SRR [113, 115, 116, 120] 

By the steepest descent method, the solution of Equation (3.15) is defined as 

1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k ANDREW k k k

SINEk
X X F H D Y D H F X   (3.17) 

sin ;
0 ;ANDREW

SINE

T x T x T
x

x T
    (3.18) 

3.2.2.3 Andrew’s Sine Norm Estimation for SRR with Laplacian Regularization [113, 
115, 116, 120] 

Combining the Laplacian regularization, we propose the solution of the super-
resolution problem as follows: 

2

1
ArgMin

N

kANDREW k k k
X SINEk

X D H F X Y X    (3.19) 

By the steepest descent method, the solution of Equation (3.19) is defined as 

11

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k ANDREW k k k
SINEkn n

T
n

F H D Y D H F X
X X

X
  (3.20) 

3.2.2.4 Andrew’s Sine Norm Estimation for SRR with Andrew’s Sine-Laplacian 
Regularization [113, 120] 

Combining the Andrew’s Sine-Laplacian regularization, we propose the 
solution of the super-resolution problem as follows:  

1
ArgMin

N

kANDREW k k k ANDREW
X SINE SINEk

X D H F X Y X  (3.21) 

2 2

2

sin 2 ;

;
g g g

ANDREW
SINE g

T x T x T
x

T x T
    (3.22) 

By the steepest descent method, the solution of Equation (3.21) is defined as 

1
1

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k ANDREW k k k
SINEk

n n
T

nANDREW
SINE

F H D Y D H F X
X X

X
 (3.23) 

sin ;

0 ;
g g g

ANDREW
SINE g

T x T x T
x

x T
    (3.24) 
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3.2.3 Geman&McClure Estimation Norm for SRR  

This section first reviews the main concepts of Geman&McClure norm 
estimation technique and later develops the Geman&McClure norm estimation for SRR 
framework. 

3.2.3.1 Geman&McClure Norm Estimation Definition 

Geman&McClure norm [58-61] is another error norm from the robust statistic 
literature. It is more robust than L1 and L2 norm. We propose the novel robust SRR using 
Geman&McClure error norm. From (2.2), we rewrite the definition of these robust estimators 
in the super resolution context as the following minimization problem: 

1
ArgMin

N

kGM k k k
X k

X D H F X Y     (3.25) 

2
2

2 2GM
xx T

T x
      (3.26) 
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3.2.3.2 Geman&McClure Norm Estimation for SRR 

By the steepest descent method, the solution of Equation (3.25) is defined as 

1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k GM k k k

k
X X F H D Y D H F X   (3.27) 

4
22 2

2
GM

xx T
T x

      (3.28) 

3.2.3.3 Geman&McClure Norm Estimation for SRR with Laplacian Regularization 

Combining the Laplacian regularization, we propose the solution of the super-
resolution problem as follows: 

2

1
ArgMin

N

kGM k k k
X k

X D H F X Y X    (3.29) 

By the steepest descent method, the solution of Equation (3.29) is defined as 

11

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k GM k k k
kn n

T
n

F H D Y D H F X
X X

X
  (3.30) 
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3.2.3.4 Geman&McClure Norm Estimation for SRR with Geman&McClure 
Regularization 

Combining the Tukey-Laplacian regularization, we propose the solution of the 
super-resolution problem as follows:  

1
ArgMin

N

kGM k k k GM
X k

X D H F X Y X   (3.31) 

2
2

2 2GM g
g

xx T
T x

      (3.32) 

By the steepest descent method, the solution of Equation (3.31) is defined as 

1
1

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k GM k k k
k

n n
T

nGM

F H D Y D H F X
X X

X
  (3.33) 

4
22 2

2
GM

xx T
T x

      (3.34) 
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3.2.4 Leclerc Estimation Norm for SRR  

This section first reviews the main concepts of Leclerc norm estimation 
technique and later develops the Leclerc norm estimation for SRR framework. 

3.2.4.1 Leclerc Norm Estimation Definition 

Leclerc norm [58-61] is another error norm from the robust statistic literature. 
It is more robust than L1 and L2 norm. While the Lorentzian norm is more robust than L2 
(quadratic norm), its influence does not descend all the way to zero. Tukey’s Biweight norm 
is a more robust from the robust statistics literature whose value does descend to zero. We 
propose the novel robust SRR using Tukey’s Biweigth error norm. From (2.2), we rewrite the 
definition of these robust estimators in the super resolution context as the following 
minimization problem: 

1

ArgMin
N

kLEC k k k
X k

X D H F X Y     (3.35) 

2

21 expLEC
xx
T

      (3.36) 
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3.2.3.2 Leclerc Norm Estimation for SRR 

By the steepest descent method, the solution of Equation (3.35) is defined as 

1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k LEC k k k

k
X X F H D Y D H F X   (3.37) 

2

2 2

2 expLEC
x xx
T T

      (3.38) 

3.2.3.3 Leclerc Norm Estimation for SRR with Laplacian Regularization 

Combining the Laplacian regularization, we propose the solution of the super-
resolution problem as follows: 

2

1
ArgMin

N

kLEC k k k
X k

X D H F X Y X    (3.39) 

By the steepest descent method, the solution of Equation (3.29) is defined as 

11

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k LEC k k k
kn n

T
n

F H D Y D H F X
X X

X
  (3.40) 
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3.2.3.4 Leclerc Norm Estimation for SRR with Leclerc Regularization 

Combining the Leclerc-Laplacian regularization, we propose the solution of 
the super-resolution problem as follows:  

1
ArgMin

N

kLEC k k k LEC
X k

X D H F X Y X   (3.41) 

2

21 expLEC
g

xx
T

      (3.42) 

By the steepest descent method, the solution of Equation (3.41) is defined as 

1
1

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k LEC k k k
k

n n
T

nLEC

F H D Y D H F X
X X

X
  (3.43) 

2

2 2

2 expLEC
g g

x xx
T T

      (3.34) 
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4. THE PROPOSED IMPROVED OBSERVATION MODEL 
FOR SUPER RESOLUTION RECONSTRUCTION

4.1 Fast Affine Block-Based Registration/Motion Estimation [109, 112] 

Almost SRR (Super-Resolution Reconstruction) algorithms reviewed in 
previous section are restricted to globally or locally uniform translational displacement 
between the measured images or sequences. This implies the measured images or sequences 
are observed at a high temporal frequency sampling (or high frame rate) but the measured 
images or sequences are usually observed by the real commercial cameras at low temporal 
frequency sampling (or low frame rate) such as standard sequences (Foreman, Carphone, 
Susie, etc.). The measured images or sequences have many complex motions instead of only a 
simple translational motion therefore the pure translation model can not well represent the 
real complex motion effectively and image super-resolution applications can apply only on 
the sequences that have simple translation motion.  

This section proposed the novel improved SRR observation model to 
overcome the insufficient temporal sampling frequency and to model the real complex motion 
sequence that the traditional SSR observation model can not support. To realize the 
implementation of the proposed SRR observation model, the sub-pixel image registration is 
designed to calculate the nonisometric inter-frame motion parameter. Moreover, the fast 
algorithm is proposed to reduce the computational load for the proposed sub-pixel registration 
[109, 112]. 

This section aims to propose novel general SRR observation model (Affine 
Block-Based Motion Estimation) describing the complex motion more efficiently and gives 
excellent result on a highly accurate motion vectors in section 4.1, and to propose fast 
algorithm (M3SS or Modified Three Step Search) algorithm that is designed to reduce a 
computational load in section 4.2. This algorithm starts by partitioning the image domain into 
non-overlapping small regions, called blocks, and computing the motion vector within each 
block by an affine model, instead of a conventional translation model. Therefore, the motion 
vector (MV) of each block consists of six motion (instead of two) parameters. 

4.1 Improved Observation Model (Affine Block-Based Registration) 

Traditionally, the classical motion estimation [109, 112] can detect only pure 
translational motion along the image plane and fails to consider any complex motions that 
arise due to rotation, zooming, etc. An efficient way of detecting several complex motions is 
by using the combination of a block-base technique and an affine model. In this section, we 
propose a scheme for estimating affine block-based motion vectors suitable for several 
complex motions. The estimation can be separated to 2 stages. At the first stage of the 
estimation algorithm, the current and reference frames are divides into overlapping blocks 
(16x16). This stage divides the image into small areas in order to detect and estimate the local 
motions. The advantage of this stage is to reduce the computational load and allow the 
parallel processing. Next, the second stage computes the affine motion vector of each block 
between the current and the reference frame. 

4.2 Modified Three Step Search Algorithm 

The M3SS is proposed to reduce a very high computational load in affine 
motion vector estimation. The 3SS (Three Step Search) is one of the popular and fast 
algorithms used in the translational registration; therefore, this paper develops the M3SS (6 
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motion parameter estimation, Equation (4.1)) based on 3SS (2 motion parameter estimation 
Equation (4.2)). 

, ( , )x affinemv x y ax by c  and 

, ( , )y affinemv x y dx ey f       (4.1) 

, ( , )x tranmv x y a  and , ( , )y tranmv x y b     (4.2) 

For the 7x7 displacement window (translational deformation) and 20  degree 
(rotation, extraction or expansion deformation), the proposed M3SS algorithm utilizes a 
search pattern with 72936  check points on a search window in the first step. The point 
having the minimum error is used as the center of the search area in the subsequent step. The 
search window is reduced by half in the subsequent step until the search window equals to 
pre-determined resolution. (The criterion for parameter selection in this paper was based on 
experiments and the chosen parameters produce the highest PSNR result on 3 standard 
sequences: Foreman, Carphone and Stefan [109].) The process of M3SS is described as 
follow: 

Step 1 : Initialized the dimension of the searching area to the value depicted in 
Equation (4.3). 

, , , , , [ 0.16, 0.16, 2 0.16, 0.16, 2]a b c d e f    (4.3) 

Step 2 : A minimum BDM (Block Distortion Measure) point is found from a 
729  check point pattern at the center of the searching area as shown in (4.3) and this process 
is shown in Fig. 4.1. 

Step 3 : If the search window is equal to (4.4) then the process stop otherwise 
go to step 4 and this process is shown in Fig. 4.2. 

, , , , , [ 0.01, 0.01, 0.125 0.01, 0.01, 0.125]a b c d e f  (4.4) 

Step 4 : The search window is reduced by half in all dimensions of the 
previous search window and a minimum BDM (Block Distortion Measure) point is found 
from a 729  check point pattern at the center of the new searching area. It will go to step 2. 

From Table 4.1, the total number of the M3SS check points is fixed at 
3.65E+3. Compared with the classical block-based estimation method (translation block-
based estimation method) at 0.25 pixel accuracy and w=9, the total number of the M3SS 
check points has just approximately 3 times more computational load than the classical FS 
approach.

Table 4.1 : Performance Comparison of Registration Method 

Block-Based BMA The Number of  
Registration Method (Block Matching Algorithm) Search Points 

Affine FS (Full Search) 1.29E+09 
  M3SS 3.65E+03 

Translation FS (Full Search : 0.25 Pixel) 1.09E+03 
  FS (Full Search : 1 Pixel) 2.56E+02 
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 MIN_MAD = INF

 For each block

For c = -2 : 2 : 2

For f = -2 : 2 : 2

For a = -0.16 : 0.16 : 0.16

For b = -0.16 : 0.16 : 0.16

For d = -0.16 : 0.16 : 0.16

For e = -0.16 : 0.16 : 0.16

- The Reference frame is transformed

       by affine MV (a,b,c,d,e,f) to be

       the transformed Frame.

- Compute the MAD value between the 

       transformed frame and current frame.

- If the MAD is less than MIN_MAD

       then MIN_MAD is equal the MAD

       and the 1st level affine MV is

       (a,b,c,d,e,f).

ENDfor

ENDfor

ENDfor

ENDfor

ENDfor

ENDfor

 ENDfor

Figure 4.1 :  The Algorithm of the M3SS at Step 2 

0 0 0 0 0 0

0 0

0 0

0 0

0 0

(a ,b ,c ,d ,e ,f) = previous affine MV 

 MIN_MAD = INF

 For each block

For c = c -0.125 : 0.125 :c + 0.125

For f = f -0.125 : 0.125 :f + 0.125

For a = a -0.01 : 0.01 : a +0.01

For b = b -0.01 : 0.01 : b

0 0

0 0

+0.01

For d = d -0.01 : 0.01 : d +0.01

For e = e -0.01 : 0.01 : e +0.01

- The Reference frame is transformed

       by affine MV (a,b,c,d,e,f) to be

       the transformed Frame.

- Compute the MAD value between the 

       transformed frame and current frame.

- If the MAD is less than MIN_MAD

       then MIN_MAD is equal the MAD

       and the best affine MV is

       (a,b,c,d,e,f).

ENDfor

ENDfor

ENDfor

ENDfor

ENDfor

ENDfor

 ENDfor

Figure 4.2 :  The Algorithm of the M3SS at Step 4 
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5. THE EXPERIMENTAL 

The purpose of this chapter is to analyze how the proposed improved 
observation model (fast affine block-based) and the proposed robust norm estimation 
(Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm) can affect the performance of 
the SRR algorithm. 

In this chapter, three cases are studies. In the first case, Section 5.1 analyzes 
how the proposed robust norm estimation impacts the performance of SRR algorithm. This 
section presents the experiments and results obtained the SRR algorithms using the proposed 
robust norm estimation (Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm) 
compared with the classical SRR algorithm using L1 and L2 norm. Section 5.2 analyzes the 
performance of proposed norm estimation hence this section presents the experiments and 
results obtained the SRR algorithms using the proposed robust norm estimation with the 
classical registration compared with the classical SRR algorithm using L1 and L2 norm. 
Finally, Section 5.3 presents the experiments and results obtained by the SRR algorithm using 
the proposed robust norm estimation with improved observation model (fast affine block-
based).
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5.1 THE EXPERIMENTAL RESULT OF PROPOSED ROBUST 
ESTIMATION TECHNIQUES 

The purpose of this section is to analyze how the proposed robust norm 
estimation (Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm) can affect the 
performance of the SRR algorithm. This section presents the experiments and results obtained 
the SRR algorithms using the proposed robust norm estimation (Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc Norm) compared with the classical SRR algorithm using L1 
and L2 norm [113-117, 119-120]. 

This section presents the experiments and results obtained by the SRR 
algorithm methods using the proposed robust estimation (Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc Norm) with Laplacian, Hampel -Laplacian and Andrew’s Sine-
Laplacian,  Geman&McClure-Laplacian and Leclerc-Laplacian regularization that are 
calculated by Equation (3.10), (3.13), (3.20), (3.23), (3.30), (3.33), (3.40) and (3.43) 
respectively. To demonstrate the performance of the SRR algorithm using proposed robust 
estimation, the results of SRR algorithm using classical L2 norm SRR with Laplacian and 
BTV regularization calculated by Equation (2.4) and (2.13) and the results of SRR algorithm 
using classical L1 norm SRR with Laplacian and BTV regularization calculated by Equation 
(2.8) and (2.15) are presented in order to compare the performance. 
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   - Horizontal

- Gaussian 
 low-pass filter

- size 3 3
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HR Image

Warping Blur

1Noise

Blur

Blur

Blur

Undersampling

Blur

Undersampling

Undersampling

Undersampling

+1Warping
: No Translation

2Warping
:Vertical Translation

4Warping
:Vertical Translation

:Horizontal Translation

3Warping
:Horizontal Translation

2Noise

+

3Noise

+

4Noise

+

1LR Image

2LR Image

3LR Image

4LR Image

Down Sampling
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Figure 5.1 :  The block diagram of LR image sequence synthesis algorithm for the SRR 
algorithm using proposed robust estimation. 

These experiments are implemented in MATLAB and the block size is fixed at 
8x8 (or 16x16 for overlapping block). The 40th frame Susie sequence in QCIF format 
(176x144) and the Lena (Standard Image : 256x256) are used in these experiments. For the 
LR image sequence generation, we shifted this original HR image by a pixel in the vertical 
direction. Then, to simulate the effect of camera PSF, this shifted image was convolved with a 
symmetric Gaussian low-pass filter of the size 3x3 with the standard deviation equal to one. 
The resulting image was subsampled by the factor of 2 in each direction. The same approach 
with different motion vectors (shifts) in vertical and horizontal directions was used to produce 
four LR images from the original scene. We added difference noise model to the resulting LR 
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frames. The LR image sequence algorithm is shown in Figure 5.1. For the SRR algorithm, we 
use four LR frames to generate the high resolution image by the different SRR methods. 

The criterion for parameter selection in this experiment was to choose 
parameters which produce both most visually appealing results and highest PSNR. Therefore, 
to ensure fairness, each experiment was repeated several times with different parameters and 
the best result of each experiment was chosen [97-100]. 

5.1.1 Experimental Result of Susie Sequence (The 40th Frame) 

5.1.1.1 Noiseless 

The original HR image is shown in Fig. 5.2(a-1) and one of corrupted LR 
images is shown in Fig. 5.2(a-2). Next, the result of implementing the SRR algorithm using 
L1 estimator with Laplacian Regularization, L1 estimator with BTV Regularization, L2 
estimator with Laplacian Regularization, L2 estimator with BTV Regularization are shown in 
Figs. 5.2(a-3) - 5.2(a-6) respectively. The result of the SRR algorithm using Hampel estimator 
with Laplacian Regularization, Hampel estimator with Hampel-Laplacian Regularization, 
Andrew’s Sine estimator with Laplacian Regularization, Andrew’s Sine estimator with 
Andrew’s Sine-Laplacian Regularization, Geman&McClure estimator with Laplacian 
Regularization, Geman&McClure estimator with Geman&McClure-Laplacian Regularization, 
Leclerc estimator with Laplacian Regularization and Leclerc estimator with Leclerc-Laplacian 
Regularization are shown in Figs. 5.2(a-7) - 5.2(a-14) respectively. 

The results indicates that Hampel, Andrew’s Sine, Geman&McClure and 
Leclerc Norm estimator efficiently reconstruct the noiseless image than L1 and L2 estimator 
about 1-3 dB respectively.

5.1.1.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 17.5 and 15dB 
respectively and the original HR images are shown in Fig. 5.2(b-1) - Fig. 5.2(f-1) 
respectively. The corrupted images at SNR=25, 22.5, 20, 17.5 and 15dB are showed in Fig. 
5.2(b-2) - Fig. 5.2(f-2) respectively.

At the high SNR (SNR=25dB, 22.5dB and 20dB) or low noise power, the L2 
estimator result (with Laplacian and BTV Regularization) give slightly higher PSNR than 
Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm estimator result. However, L2, 
Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm estimator result have higher 
PSNR than L1 estimator result. At SNR=25dB, SNR=22.5dB, SNR=20dB, the result of L1 
estimator with Laplacian Regularization, L1 estimator with BTV Regularization, L2 estimator 
with Laplacian Regularization, L2 estimator with BTV Regularization, Hampel estimator with 
Laplacian Regularization, Hampel estimator with Hampel-Laplacian Regularization, 
Andrew’s Sine estimator with Laplacian Regularization, Andrew’s Sine estimator with 
Andrew’s Sine-Laplacian Regularization, Geman&McClure estimator with Laplacian 
Regularization, Geman&McClure estimator with Geman&McClure-Laplacian Regularization, 
Leclerc estimator with Laplacian Regularization and Leclerc estimator with Leclerc-Laplacian 
Regularization are shown in Fig. 5.2(b-3) - Fig. 5.2(b-14), Fig. 5.2(c-3) - Fig. 5.2(c-14) and 
Fig. 5.2(d-3) - Fig. 5.2(d-14) respectively.

At low SNR (SNR=17.5dB and SNR=15dB) or high noise power, the Hampel, 
Andrew’s Sine, Geman&McClure and Leclerc Norm result give the best performance than L2 
estimator result (with Laplacian and BTV Regularization) and L1 estimator result (with 
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Laplacian and BTV Regularization). At SNR=17.5dB and SNR=15dB, the result of L1 
estimator with Laplacian Regularization, L1 estimator with BTV Regularization, L2 estimator 
with Laplacian Regularization, L2 estimator with BTV Regularization, Hampel estimator with 
Laplacian Regularization, Hampel estimator with Hampel-Laplacian Regularization, 
Andrew’s Sine estimator with Laplacian Regularization, Andrew’s Sine estimator with 
Andrew’s Sine-Laplacian Regularization, Geman&McClure estimator with Laplacian 
Regularization, Geman&McClure estimator with Geman&McClure-Laplacian Regularization, 
Leclerc estimator with Laplacian Regularization and Leclerc estimator with Leclerc-Laplacian 
Regularization are shown in Fig. 5.2(e-3) - Fig. 5.2(e-14) and  Fig. 5.2(f-3) - Fig. 5.2(f-14) 
respectively. 

From the result, the L2 estimator gives the best result for SRR estimating at 
low noise power because the AWGN distributional characteristic is a quadratic model that 
similar to L2 model. However, at high noise power, the Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc Norm estimator give the better result than L2 estimator since 
the L2 norm is very sensitive to outliers where the influence function increases linearly and 
without bound. 

5.1.1.3 Poisson Noise 

The original HR image is shown in Fig. 5.2(g-1) and one of corrupted LR 
images is shown in Fig. 5.2(g-2). The L2, estimator, Hampel estimator (with Hampel-
Laplacian Regularization) and Andrew’s Sine estimator (with Andrew’s Sine-Laplacian 
Regularization) give the highest PSNR from experimental results.  

The result of L1 estimator with Laplacian Regularization, L1 estimator with 
BTV Regularization, L2 estimator with Laplacian Regularization, L2 estimator with BTV 
Regularization, Hampel estimator with Laplacian Regularization, Hampel estimator with 
Hampel-Laplacian Regularization, Andrew’s Sine estimator with Laplacian Regularization, 
Andrew’s Sine estimator with Andrew’s Sine-Laplacian Regularization, Geman&McClure 
estimator with Laplacian Regularization, Geman&McClure estimator with Geman&McClure-
Laplacian Regularization, Leclerc estimator with Laplacian Regularization and Leclerc 
estimator with Leclerc-Laplacian Regularization are shown in Fig. 5.2(g-3) - Fig. 5.2(g-14) 
respectively. 

From the result, the Hampel, Andrew’s Sine, Geman&McClure and Leclerc 
Norm estimator give the best result since the power of noise is slightly high and the 
distribution of noise is not a quadratic model (the L2 estimator can not estimate the 
nonquadratic model effectively).  

5.1.1.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, D=0.010 and 
D=0.015 respectively and the original HR images are shown in Fig. 5.2(h-1) – Fig. 5.2(j-1) 
respectively. The corrupted images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 
5.2(h-2), Fig. 5.2(i-2) and Fig. 5.2(j-2) respectively. The Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc Norm estimator results give dramatically higher PSNR than L1 
estimator result (with Laplacian and BTV Regularization result) and L2 estimator result (with 
Laplacian and BTV Regularization result). 

At D=0.005, D=0.010 and D=0.015, the result of L1 estimator with Laplacian 
Regularization, L1 estimator with BTV Regularization, L2 estimator with Laplacian 
Regularization, L2 estimator with BTV Regularization, Hampel estimator with Laplacian 
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Regularization, Hampel estimator with Hampel-Laplacian Regularization, Andrew’s Sine 
estimator with Laplacian Regularization, Andrew’s Sine estimator with Andrew’s Sine-
Laplacian Regularization, Geman&McClure estimator with Laplacian Regularization, 
Geman&McClure estimator with Geman&McClure-Laplacian Regularization, Leclerc 
estimator with Laplacian Regularization and Leclerc estimator with Leclerc-Laplacian 
Regularization are shown in Fig. 5.2(h-3) - Fig. 5.2(h-14), Fig. 5.2(i-3) - Fig. 5.2(i-14) and 
Fig. 5.2(j-3) - Fig. 5.2(j-14) respectively. 

From the results, the Hampel, Andrew’s Sine, Geman&McClure and Leclerc 
Norm estimator outperform the other estimators when the image is corrupted by Salt&Pepper 
Noise about 4-5 dB. The Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm 
estimators give the better result for SRR estimating than L1 or L2 estimator because these 
robust estimators are designed to be robust and reject outliers. Their norms are more forgiving 
outliers; that is, the norm should increases less rapidly than L2. 

5.1.1.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th frame Susie sequence 
at V=0.01, V=0.02 and V=0.03 respectively. The original HR images are shown in Fig. 5.2(k-
1) – Fig. 5.2(m-1) respectively. The corrupted images at V=0.01, V=0.02 and V=0.03 are 
shown in Fig. 5.2(k-2), Fig. 5.2(l-2) and Fig. 5.2(m-2) respectively.  

At low noise power (V=0.01), the L2 estimator result (with Laplacian and 
BTV Regularization) give slightly higher PSNR than Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc Norm estimator results. However, L2, Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc Norm estimator result have higher PSNR than L1 estimator 
result (with Laplacian and BTV Regularization). The result of L1 estimator with Laplacian 
Regularization, L1 estimator with BTV Regularization, L2 estimator with Laplacian 
Regularization, L2 estimator with BTV Regularization, Hampel estimator with Laplacian 
Regularization, Hampel estimator with Hampel-Laplacian Regularization, Andrew’s Sine 
estimator with Laplacian Regularization, Andrew’s Sine estimator with Andrew’s Sine-
Laplacian Regularization, Geman&McClure estimator with Laplacian Regularization, 
Geman&McClure estimator with Geman&McClure-Laplacian Regularization, Leclerc 
estimator with Laplacian Regularization and Leclerc estimator with Leclerc-Laplacian 
Regularization are shown in Fig. 5.2(k-3) - Fig. 5.2(k-14) respectively. 

At high noise power (V=0.02 and V=0.03), the Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc Norm estimator result give the best performance than L2 
estimator result (with Laplacian and BTV Regularization), L1 estimator result (with Laplacian 
and BTV Regularization). At V=0.02 and V=0.03, the result of L1 estimator with Laplacian 
Regularization, L1 estimator with BTV Regularization, L2 estimator with Laplacian 
Regularization, L2 estimator with BTV Regularization, Hampel estimator with Laplacian 
Regularization, Hampel estimator with Hampel-Laplacian Regularization, Andrew’s Sine 
estimator with Laplacian Regularization, Andrew’s Sine estimator with Andrew’s Sine-
Laplacian Regularization, Geman&McClure estimator with Laplacian Regularization, 
Geman&McClure estimator with Geman&McClure-Laplacian Regularization, Leclerc 
estimator with Laplacian Regularization and Leclerc estimator with Leclerc-Laplacian 
Regularization are shown in Fig. 5.2(l-3) - Fig. 5.2(l-14) and  Fig. 5.2(m-3) - Fig. 5.2(m-14) 
respectively. 

From the results, the Hampel, Andrew’s Sine, Geman&McClure and Leclerc 
Norm estimator efficiently reconstruct the image that is corrupted by Speckle Noise at high 
noise power. It performs better than L1 and L2 estimator because Hampel, Andrew’s Sine, 
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Geman&McClure and Leclerc Norm estimator is more robust against the high power outliers 
than L1 and L2 estimators. 

(a-1, ,m-1)
Original HR Image

(Frame 40)

(a-2)
Corrupted LR Image

(Noiseless)
(PSNR=32.1687dB)

(a-3) L1 SRR Image
with Lap Reg.

(PSNR=32.1687dB)
1.00, 0

(a-5) L2 SRR Image
with Lap Reg.

(PSNR=34.2000dB)
1.00, 0

(a-4) L1 SRR Image
with BTV Reg.

(PSNR=32.1687dB)
1, 0, 1, 0.7P

(a-6) L2 SRR Image
with BTV Reg.

(PSNR=34.2000dB)
1, 0, 1, 0.7P

(b-2)
Corrupted LR Image
(AWGN:SNR=25dB)
(PSNR=30.1214dB)

(b-3) L1 SRR Image
with Lap Reg.

(PSNR=30.3719dB)
0.5, 1

(b-5) L2 SRR Image
with Lap Reg.

(PSNR=32.3688dB)
0.5, 1

(b-4) L1 SRR Image
with BTV Reg.

(PSNR=30.3295dB)
0.5, 0.4, 2, 0.7P

(b-6) L2 SRR Image
with BTV Reg.

(PSNR=32.1643dB)
0.5, 0.4, 1, 0.7P

(a-7) Hampel SRR Image
with Lap Reg.

(PSNR=34.7470dB)
0.5, 0, 9T

(a-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=34.7470dB)

0.5, 0, 9, 19gT T

(a-9) AS. SRR Image
with Lap Reg.

(PSNR=34.7837dB)
1, 0, 9T

(a-10) AS. SRR Image
with AS-Lap Reg.

(PSNR=34.7837dB)

1, 0, 9, 19gT T

(a-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=35.1087dB)

0.25, 0, 9, 19gT T

(a-11) G&M SRR Image
with Lap Reg.

(PSNR=35.1087dB)
0.25, 0, 9T

(a-14) Lec. SRR Image
with Lec.-Lap Reg.
(PSNR=34.9449dB)

0.5, 0, 15, 19gT T

(a-13) Lec. SRR Image
with Lap Reg.

(PSNR=34.9449dB)
0.5, 0, 15T

(b-7) Hampel SRR Image
with Lap Reg.

(PSNR=31.6115dB)
0.5, 1, 19T

(b-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=32.4026dB)

0.5, 1, 19, 9gT T

(b-9) AS. SRR Image
with Lap Reg.

(PSNR=32.3923dB)
0.5, 1, 19T

(b-10) AS. SRR Image
with AS.-Lap Reg.

(PSNR=32.4309dB)

0.5, 1, 19, 5gT T

(b-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=32.2301dB)

0.5, 0.5, 19, 9gT T

(b-11) G&M SRR Image
with Lap Reg.

(PSNR=32.058dB)
0.5, 1, 19T

(b-14) Lec. SRR Image
with Lec.-Lap Reg.

(PSNR=32.3204dB)

0.5, 1, 5, 19gT T

(b-13) Lec. SRR Image
with Lap Reg.

(PSNR=32.2053dB)
0.5, 1, 19T

Figure 5.2 :  The experimental result of SRR algorithm using the proposed robust estimation 
technique (Susie Sequence : The 40th Frame) 
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(d-2)
Corrupted LR Image
(AWGN:SNR=20dB)
(PSNR=27.5316dB)

(c-2)
Corrupted LR Image

(AWGN:SNR=22.5dB)
(PSNR=29.0233dB)

(d-3) L1 SRR Image
with Lap Reg.

(PSNR=28.7003dB)
0.50, 1.0

(d-5) L2 SRR Image
with Lap Reg.

(PSNR=30.6898dB)
0.5, 1

(c-3) L1 SRR Image
with Lap Reg.

(PSNR=29.6481dB)
0.50, 1.0

(c-5) L2 SRR Image
with Lap Reg.

(PSNR=31.6384dB)
1.00, 1.0

(c-4) L1 SRR Image
with BTV Reg.

(PSNR=29.5322dB)
0.5, 0.4, 1, 0.7P

(c-6) L2 SRR Image
with BTV Reg.

(PSNR=31.5935dB)
0.5, 0.4, 1, 0.7P

(d-4) L1 SRR Image
with BTV Reg.

(PSNR=28.9031dB)
0.5, 0.4, 2, 0.7P

(d-6) L2 SRR Image
with BTV Reg.

(PSNR=31.0056dB)
0.5, 0.3, 2, 0.7P

(d-9) AS. SRR Image
with Lap Reg.

(PSNR=30.7257dB)
0.5, 1, 19T

(d-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=30.7257dB)

0.5, 1, 19, 15gT T

(d-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=30.346dB)

0.5, 0.75, 15, 19gT T

(d-11) G&M SRR Image
with Lap Reg.

(PSNR=29.8789dB)
0.5, 1, 19T

(d-14) Lec. SRR Image
with Lec.-Lap Reg.
(PSNR=30.48dB)

0.5, 1, 19, 19gT T

(d-13) Lec. SRR Image
with Lap Reg.

(PSNR=30.0717dB)
0.5, 1, 19T

(c-7) Hampel SRR Image
with Lap Reg.

(PSNR=31.6813dB)
0.5, 1, 19T

(c-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=31.6862dB)

0.5, 1, 19, 9gT T

(c-9) AS. SRR Image
with Lap Reg.

(PSNR=31.7038dB)
0.5, 1, 19T

(c-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=31.7222dB)

0.5, 1, 19, 5gT T

(c-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=31.3711dB)

0.5, 0.75, 9, 19gT T

(c-11) G&M SRR Image
with Lap Reg.

(PSNR=31.0733dB)
0.5, 1, 19T

(c-14) Lec. SRR Image
with Lec.-Lap Reg.

(PSNR=31.4945dB)

0.5, 1, 9, 19gT T

(c-13) Lec. SRR Image
with Lap Reg.

(PSNR=31.2254dB)
0.5, 1, 19T

(d-7) Hampel SRR Image
with Lap Reg.

(PSNR=30.6642dB)
0.5, 1, 19T

(d-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=30.6655dB)

0.5, 1, 19, 19gT T

Figure 5.2 :  The experimental result of SRR algorithm using the proposed robust estimation 
technique (Susie Sequence : The 40th Frame) (Con.) 
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(e-2)
Corrupted LR Image

(AWGN:SNR=17.5dB)
(PSNR=25.7332dB)

(e-3) L1 SRR Image
with Lap Reg.

(PSNR=27.5771dB)
1, 1

(e-4) L1 SRR Image
with BTV Reg.

(PSNR=27.7575dB)
0.5, 0.5, 1, 0.7P

(e-5) L2 SRR Image
with Lap Reg.

(PSNR=29.3375dB)
0.5, 1

(e-6) L2 SRR Image
with BTV Reg.

(PSNR=29.4085dB)
0.5, 0.5, 1, 0.7P

(f-2)
Corrupted LR Image
(AWGN:SNR=15dB)
(PSNR=23.7086dB)

(f-3) L1 SRR Image
with Lap Reg.

(PSNR=26.2641dB)
0.5, 1

(f-5) L2 SRR Image
with Lap Reg.

(PSNR=27.6671dB)
0.5, 1

(f-4) L1 SRR Image
with BTV Reg.

(PSNR=26.9064dB)
0.5, 0.8, 1, 0.7P

(f-6) L2 SRR Image
with BTV Reg.

(PSNR=27.8418dB)
0.5, 0.3, 2, 0.7P

(e-9) AS. SRR Image
with Lap Reg.

(PSNR=29.4251dB)
0.5, 1, 19T

(e-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=29.4251dB)

0.5, 1, 19, 19gT T

(e-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=29.0842dB)

0.5, 0.75, 19, 19gT T

(e-11) G&M SRR Image
with Lap Reg.

(PSNR=28.6165dB)
0.5, 1, 5T

(e-14) Lec. SRR Image
with Lec.-Lap Reg.

(PSNR=29.2135dB)

0.5, 1, 19, 19gT T

(e-13) Lec. SRR Image
with Lap Reg.

(PSNR=28.6075dB)
0.5, 1, 19T

(e-7) Hampel SRR Image
with Lap Reg.

(PSNR=29.3112dB)
0.5, 1, 19T

(e-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=29.3112dB)

0.5, 1, 19, 19gT T

(f-7) Hampel SRR Image
with Lap Reg.

(PSNR=27.6565dB)
0.5, 1, 1T

(f-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=27.6565dB)

0.5, 1, 1, 19gT T

(f-9) AS. SRR Image
with Lap Reg.

(PSNR=27.7981dB)
0.5, 1, 19T

(f-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=27.7981dB)

0.5, 1, 19, 19gT T

(f-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=27.6848dB)

0.5, 1, 1, 19gT T

(f-11) G&M SRR Image
with Lap Reg.

(PSNR=27.6848dB)
0.5, 1, 1T

(f-14) Lec. SRR Image
with Lec.-Lap Reg.

(PSNR=27.6858dB)

0.5, 1, 1, 19gT T

(f-13) Lec. SRR Image
with Lap Reg.

(PSNR=27.6858dB)
0.5, 1, 1T

Figure 5.2 :  The experimental result of SRR algorithm using the proposed robust estimation 
technique (Susie Sequence : The 40th Frame) (Con.) 
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(g-2)
Corrupted LR Image

(Poisson)
(PSNR=27.9071dB)

(g-3) L1 SRR Image
with Lap Reg.

(PSNR=28.9197dB)
1, 1

(g-5) L2 SRR Image
with Lap Reg.

(PSNR=30.7634dB)
0.5, 1

(g-4) L1 SRR Image
with BTV Reg.

(PSNR=29.1201dB)
0.5, 4.0, 2, 0.7P

(g-6) L2 SRR Image
with BTV Reg.

(PSNR=30.8631dB)
0.5, 0.5, 1, 0.7P

(h-2)
Corrupted LR Image

(S&P:D=0.005)
(PSNR=29.0649dB)

(h-3) L1 SRR Image
with Lap Reg.

(PSNR=29.5041dB)
1, 1

(h-5) L2 SRR Image
with Lap Reg.

(PSNR=31.5021dB)
0.5, 1

(h-4) L1 SRR Image
with BTV Reg.

(PSNR=29.0649dB)
1, 0.5, 2, 0.7P

(h-6) L2 SRR Image
with BTV Reg.

(PSNR=30.4617dB)
0.5, 0.4, 1, 0.7P

(g-7) Hampel SRR Image
with Lap Reg.

(PSNR=30.7853dB)
0.5, 1, 19T

(g-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=30.7859dB)

0.5, 1, 15, 19gT T

(g-9) AS. SRR Image
with Lap Reg.

(PSNR=30.836dB)
0.5, 1, 19T

(g-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=30.8353dB)

0.5, 1, 19, 15gT T

(g-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=30.513dB)

0.5, 0.75, 19, 15gT T

(f-11) G&M SRR Image
with Lap Reg.

(PSNR=30.0703dB)
0.5, 1, 19T

(g-14) Lec. SRR Image
with Lec.-Lap Reg.

(PSNR=30.6872dB)

0.5, 1, 15, 15gT T

(g-13) Lec. SRR Image
with Lap Reg.

(PSNR=30.288dB)
0.5, 1, 19T

(h-7) Hampel SRR Image
with Lap Reg.

(PSNR=34.4785dB)
0.5, 0.25, 9T

(h-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=34.4785dB)

0.5, 0.25, 9, 19gT T

(h-9) AS. SRR Image
with Lap Reg.

(PSNR=34.4748dB)
1, 0.25, 9T

(h-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=34.4854dB)

0.5, 1, 9, 5gT T

(h-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=35.2115dB)

0.5, 0.25, 9, 19gT T

(h-11) G&M SRR Image
with Lap Reg.

(PSNR=35.2115dB)
0.5, 0.25, 9T

(h-14) Lec. SRR Image
with Lec.-Lap Reg.

(PSNR=34.9323dB)

1, 0.25, 15, 19gT T

(h-13) Lec. SRR Image
with Lap Reg.

(PSNR=34.9323dB)
1, 0.25, 15T

Figure 5.2 :  The experimental result of SRR algorithm using the proposed robust estimation 
technique (Susie Sequence : The 40th Frame) (Con.) 
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(i-2)
(S&P:D=0.010)

Corrupted LR Image
(PSNR=26.4446dB)

(i-3) L1 SRR Image
with Lap Reg.

(PSNR=27.7593dB)
1, 1

(i-4) L1 SRR Image
with BTV Reg.

(PSNR=26.4446dB)
1, 0.5, 1, 0.7P

(i-5) L2 SRR Image
with Lap Reg.

(PSNR=29.8395dB)
0.5, 1

(i-6) L2 SRR Image
with BTV Reg.

(PSNR=28.0337dB)
0.5, 0.4, 1, 0.7P

(j-2)
Corrupted LR Image

(S&P:D=0.015)
(PSNR=25.276dB)

(j-3) L1 SRR Image
with Lap Reg.

(PSNR=26.9247dB)
1.00, 1.0

(j-5) L2 SRR Image
with Lap Reg.

(PSNR=28.7614dB)
0.5, 1

(j-4) L1 SRR Image
with BTV Reg.

(PSNR=25.276dB)
1, 0.5, 1, 0.7P

(j-6) L2 SRR Image
with BTV Reg.

(PSNR=26.8671dB)
0.5, 0.4, 1, 0.7P

(i-7) Hampel SRR Image
with Lap Reg.

(PSNR=34.4803dB)
1, 0.25, 9T

(i-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=34.4803dB)

1, 0.25, 9, 19gT T

(i-9) AS. SRR Image
with Lap Reg.

(PSNR=34.4742dB)
0.5, 0.25, 9T

(i-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=34.4838dB)

1, 0.25, 9, 9gT T

(i-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=35.2115dB)

0.5, 0.25, 9, 19gT T

(i-11) G&M SRR Image
with Lap Reg.

(PSNR=35.1929dB)
0.5, 0.25, 9T

(i-14) Lec. SRR Image
with Lec.-Lap Reg.
(PSNR=35.151dB)

0.5, 0.25, 15, 19gT T

(i-13) Lec. SRR Image
with Lap Reg.

(PSNR=35.151dB)
0.5, 0.25, 15T

(j-7) Hampel SRR Image
with Lap Reg.

(PSNR=34.4483dB)
0.5, 0.25, 9T

(j-8) Hampel SRR Image
with Hampel-Lap Reg.
(PSNR=34.4778dB)

0.5, 0.25, 9, 19gT T

(j-9) AS. SRR Image
with Lap Reg.

(PSNR=34.4497dB)
1, 0.25, 9T

(j-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=34.4497dB)

1, 0.25, 9, 19gT T

(j-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=35.1752dB)

0.5, 0.25, 9, 19gT T

(j-11) G&M SRR Image
with Lap Reg.

(PSNR=35.1752dB)
0.5, 0.25, 9T

(j-14) Lec. SRR Image
with Lec.-Lap Reg.
(PSNR=35.151dB)

0.5, 0.25, 15, 19gT T

(j-13) Lec. SRR Image
with Lap Reg.

(PSNR=35.151dB)
0.5, 0.25, 15T

Figure 5.2 :  The experimental result of SRR algorithm using the proposed robust estimation 
technique (Susie Sequence : The 40th Frame) (Con.) 
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(k-2)
(Speckle:V=0.01)

Corrupted LR Image
(PSNR=27.6166dB)

(k-3) L1 SRR Image
with Lap Reg.

(PSNR=28.8289dB)
0.5, 1

(k-5) L2 SRR Image
with Lap Reg.

(PSNR=30.6139dB)
0.5, 1

(l-2)
(Speckle:V=0.02)

Corrupted LR Image
(PSNR=25.3563dB)

(l-3) L1 SRR Image
with Lap Reg.

(PSNR=27.5527dB)
0.5, 1

(l-5) L2 SRR Image
with Lap Reg.

(PSNR=28.9409dB)
0.5, 1

(k-4) L1 SRR Image
with BTV Reg.

(PSNR=28.8656dB)
0.5, 0.7, 1, 0.7P

(l-4) L1 SRR Image
with BTV Reg.

(PSNR=27.8283dB)
0.5, 0.6, 1, 0.7P

(k-6) L2 SRR Image
with BTV Reg.

(PSNR=30.6130dB)
0.5, 0.5, 1, 0.7P

(l-6) L2 SRR Image
with BTV Reg.

(PSNR=28.8859dB)
0.5, 0.5, 1, 0.7P

(k-7) Hampel SRR Image
with Lap Reg.

(PSNR=30.415dB)
1, 0.25, 19T
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0.5, 1, 19T

(l-10) AS. SRR Image
with AS.-Lap Reg

(PSNR=28.6021dB)

0.5, 1, 19, 19gT T

(l-12) G&M SRR Image
with G&M-Lap Reg.
(PSNR=28.8734dB)
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0.5, 1, 1T

(l-14) Lec. SRR Image
with Lec.-Lap Reg.

(PSNR=28.6768dB)
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with Lap Reg.
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0.5, 1, 1T

Figure 5.2 :  The experimental result of SRR algorithm using the proposed robust estimation 
technique (Susie Sequence : The 40th Frame) (Con.) 



May 15, 2012                                             Report of Research Project of Thailand Research Fund (V. Patanavijit) 

48

(m-2)
(Speckle:V=0.03)

Corrupted LR Image
(PSNR=24.0403dB)

(m-3) L1 SRR Image
with Lap Reg.

(PSNR=26.8165dB)
0.5, 1

(m-5) L2 SRR Image
with Lap Reg.

(PSNR=27.7654dB)
0.5, 1

(m-6) L2 SRR Image
with BTV Reg.

(PSNR=27.3751dB)
0.5, 0.4, 1, 0.7P

(m-4) L1 SRR Image
with BTV Reg.

(PSNR=27.2429dB)
0.50, 0.5, 1, 0.7P
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with Lap Reg.

(PSNR=27.9544dB)
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(m-14) Lec. SRR Image
with Lec.-Lap Reg.

(PSNR=28.1731dB)
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(m-13) Lec. SRR Image
with Lap Reg.

(PSNR=27.9614dB)
0.5, 1, 1T

Figure 5.2 :  The experimental result of SRR algorithm using the proposed robust estimation 
technique (Susie Sequence : The 40th Frame) (Con.) 

5.1.1.6 Experimental Conclusion on Susie Sequence (40th Frame) 

From all experimental results of Susie Sequence (40th Frame) are shown in Fig. 
5.2 respectively, all comparatively experimental results are concluded as follow: 

The SRR algorithm using Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm 
norm with the proposed registration gives the highest PSRN especially for high power 
noise.

For Salt&Pepper Noise cases, the Hampel, Andrew’s Sine, Geman&McClure and Leclerc 
Norm estimator give the far better reconstruction than L1 and L2 estimator because these 
robust estimators are designed to be robust and reject outliers. The norms are more 
forgiving on outliers; that is, they should increase less rapidly than L2. 

The SRR algorithm using L1 norm with the proposed registration gives the lowest PSRN 
because the L1 norm is excessively robust against the outliers. 


