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From the result, all proposed robust estimators gives the better result for SRR 
estimating than classical L1 and L2 estimator. The proposed robust estimators result 
demonstrated the higher resistance to the registration error and noise.

5.3.1.3 Poisson Noise 

The original HR image is shown in Fig. 5.9 (g-1) and one of corrupted LR 
images is shown in Fig. 5.9 (g-2). Hampel, Andrew’s Sine, Geman&McClure and Leclerc 
estimator result have higher PSNR than L1 and L2 estimator result. The result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc estimator are shown in Figs. 5.9 (g-3) - 5.9 (g-8) respectively. 

From the result, all proposed robust estimators gives the better SRR result than 
L1 and L2 estimators because all proposed robust estimators are more resistant to the 
registration error and noise error. 

5.3.1.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, D=0.010 and 
D=0.015 respectively and the original HR images are shown in Fig. 5.9 (h-1) – Fig. 5.9 (j-1) 
respectively. The corrupted images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 5.9 
(h-2), Fig. 5.9 (i-2) and Fig. 5.9 (j-2) respectively. The results of Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc estimator have higher PSNR than these of L1 and L2 
estimator. At D=0.005, D=0.010 and D=0.015, the result of implementing the SRR algorithm 
using L1 estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey estimator 
are shown in Figs. 5.9 (h-3) - 5.9 (h-8),  Figs. 5.9 (i-3) - 5.9 (i-8) and Figs 5.9 (j-4) - 5.9 (j-8) 
respectively. 

From the result, all proposed robust estimators give the better result for SRR 
estimating than L1 and L2 estimator because all proposed robust estimators are more resistant 
to the registration error and noise error. 

5.3.1.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th frame Susie sequence 
at V=0.02 and V=0.03 respectively and the original HR images are shown in Figs. 5.9 (k-1) –
5.9 (l-1) respectively. The corrupted images at V=0.02 and V=0.03 are showed in Fig. 5.9 (k-
2) and Fig. 5.9 (l-2) respectively. The Hampel, Andrew’s Sine, Geman&McClure and Leclerc 
give higher PSNR than L1 and L2 estimator results. At V=0.02 and V=0.03, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc estimator are shown in Figs. 5.9 (k-3) - 5.9 (k-8) and Figs. 5.9 
(l-3) - 5.9 (l-8) respectively. 

 From the result, all proposed robust estimators give the better SRR result than 
L1 and L2 estimator because all proposed robust estimators are more resistance to the 
registration error. Moreover, L2 estimator can not enhancement the image corrupted by 
Speckle noise because the L2 norm is very sensitive to outliers (registration error) where the 
influence function increases linearly and without bound. 
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Figure 5.9 :  The experimental result of the SRR algorithm using proposed robust estimation 
technique with proposed registration (Susie Sequence: The 40th Frame) 
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Figure 5.9 :  The experimental result of the SRR algorithm using proposed robust estimation 
technique with proposed registration (Susie Sequence: The 40th Frame) (Con.) 
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Figure 5.9 :  The experimental result of the SRR algorithm using proposed robust estimation 
technique with proposed registration (Susie Sequence: The 40th Frame) (Con.) 
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5.2.2 Experimental Result of Foreman Sequence (The 110th Frame) 

5.2.2.1 Noiseless 

The original HR image is shown in Fig. 5.10 (a-1) and one of corrupted LR 
images is shown in Fig. 5.10 (a-2). Next, the result of implementing the SRR algorithm using 
L1 estimator, L2 estimator, Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm are 
shown in Figs. 5.10 (a-3) - 5.10 (a-8) respectively. From the results, Huber estimator can 
reconstruct the noiseless image slightly better than L1 and L2 estimator respectively. 

5.2.2.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 17.5 and 15dB 
respectively and the original HR images are shown in Fig. 5.10 (b-1) - Fig. 5.10 (f-1) 
respectively. The corrupted images at SNR=25, 22.5, 20, 17.5 and 15dB are showed in Fig. 
5.10 (b-2) - Fig. 5.10 (f-2) respectively. From the experimental results, the Hampel, Andrew’s 
Sine, Geman&McClure and Leclerc estimator result gives higher PSNR than L1 and L2 
estimator result. At SNR=25, 22.5, 20, 17.5 and 15dB, the result of implementing the SRR 
algorithm using L1 estimator, L2 estimator, Hampel, Andrew’s Sine, Geman&McClure and 
Leclerc estimator are shown in Figs. 5.10 (b-3) - 5.10 (b-8), 5.10 (c-3) - 5.10 (c-8), 5.10 (d-3) 
- 5.10 (d-8), 5.10 (e-3) - 5.10 (e-8) and Figs. 5.10 (f-3) - 5.10 (f-8) respectively. 

From the result, all proposed robust estimators gives the better result for SRR 
estimating than classical L1 and L2 estimator. The proposed robust estimators result 
demonstrated the higher resistance to the registration error and noise.

5.2.2.3 Poisson Noise 

The original HR image is shown in Fig. 5.10 (g-1) and one of corrupted LR 
images is shown in Fig. 5.10 (g-2). Hampel, Andrew’s Sine, Geman&McClure and Leclerc 
estimator result have higher PSNR than L1 and L2 estimator result. The result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Hampel, Andrew’s Sine, 
Geman&McClure and Leclerc estimator are shown in Figs. 5.10 (g-3) - 5.10 (g-8) 
respectively. 

From the result, all proposed robust estimators gives the better SRR result than 
L1 and L2 estimators because all proposed robust estimators are more resistant to the 
registration error and noise error. 

5.2.2.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, D=0.010 and 
D=0.015 respectively and the original HR images are shown in Fig. 5.10 (h-1) – Fig. 5.10 (j-
1) respectively. The corrupted images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 
5.10 (h-2), Fig. 5.10 (i-2) and Fig. 5.10 (j-2) respectively. The results of Hampel, Andrew’s 
Sine, Geman&McClure and Leclerc estimator have higher PSNR than these of L1 and L2 
estimator. At D=0.005, D=0.010 and D=0.015, the result of implementing the SRR algorithm 
using L1 estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey estimator 
are shown in Figs. 5.10 (h-3) - 5.10 (h-8),  Figs. 5.10 (i-3) - 5.10 (i-8) and Figs 5.10 (j-4) - 
5.10 (j-8) respectively. 

From the result, all proposed robust estimators give the better result for SRR 
estimating than L1 and L2 estimator because all proposed robust estimators are more resistant 
to the registration error and noise error. 
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5.2.2.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th frame Susie sequence 
at V=0.01, V=0.02 and V=0.03 respectively and the original HR images are shown in Figs. 
5.10 (k-1) – 5.10 (m-1) respectively. The corrupted images at V=0.01, V=0.02 and V=0.03 
are showed in Fig. 5.10 (k-2), Fig. 5.10 (l-2) and Fig. 5.10 (m-2) respectively. The Hampel, 
Andrew’s Sine, Geman&McClure and Leclerc give higher PSNR than L1 and L2 estimator 
results. At V=0.01, V=0.02 and V=0.03, the result of implementing the SRR algorithm using 
L1 estimator, L2 estimator, Hampel, Andrew’s Sine, Geman&McClure and Leclerc estimator 
are shown in Figs. 5.10 (k-3) - 5.10 (k-8), Figs. 5.10 (l-3) - 5.10 (l-8) and  Figs. 5.10 (m-3) - 
5.10 (m-8) respectively. 

 From the result, all proposed robust estimators give the better SRR result than 
L1 and L2 estimator because all proposed robust estimators are more resistance to the 
registration error. Moreover, L2 estimator can not enhancement the image corrupted by 
Speckle noise because the L2 norm is very sensitive to outliers (registration error) where the 
influence function increases linearly and without bound. 
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Figure 5.10 :  The experimental result of the SRR algorithm using proposed robust estimation 
technique with classical registration (Foreman Sequence: The 110th Frame)  
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Figure 5.10 :  The experimental result of the SRR algorithm using proposed robust estimation 
technique with classical registration (Foreman Sequence: The 110th Frame) (Con.) 
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(i-3) L1 SRR Image
with Lap Reg.

(PSNR=25.3920dB)
0.5, 1

(i-4) L2 SRR Image
with Lap Reg.

(PSNR=24.8303dB)
0.5, 1

(j-3) L1 SRR Image
with Lap Reg.

(PSNR=24.8592dB)
1, 1

(j-4) L2 SRR Image
with Lap Reg.

(PSNR=24.2964dB)
0.5, 1

(k-3) L1 SRR Image
with Lap Reg.

(PSNR=25.0185dB)
0.5, 1

(k-4) L2 SRR Image
with Lap Reg.

(PSNR=24.1172dB)
0.5, 1

(l-3) L1 SRR Image
with Lap Reg.

(PSNR=24.0958dB)
0.5, 1

(l-4) L2 SRR Image
with Lap Reg.

(PSNR=22.7284dB)
0.5, 1

(i-2)
Corrupted LR Image

(S&P:D=0.010)
(PSNR=24.6287dB)

(j-2)
Corrupted LR Image

(S&P:D=0.015)
(PSNR=23.6269dB)

(k-2)
Corrupted LR Image

(Speckle:V=0.01)
(PSNR=23.7767dB)

(l-2)
Corrupted LR Image

(Speckle:V=0.02)
(PSNR=21.8538dB)

(i-6) AS. SRR Image
with Lap Reg.

(PSNR=25.4367dB)
0.5, 0.5, 1T

(i-5) Hampel SRR Image
with Lap Reg.

(PSNR=25.4357dB)
0.5, 0.5, 1T

(i-7) G&M SRR Image
with Lap Reg.

(PSNR=25.4344dB)
0.5, 0.25, 1T

(i-8) Lec. SRR Image
with Lap Reg.

(PSNR=25.4315dB)
1, 0.25, 1T

(j-6) AS. SRR Image
with Lap Reg.

(PSNR=25.0199dB)
1, 0.5, 1T

(j-5) Hampel SRR Image
with Lap Reg.

(PSNR=25.0201dB)
1, 0.5, 1T

(j-7) G&M SRR Image
with Lap Reg.

(PSNR=25.0202dB)
0.5, 0.25, 1T

(j-8) Lec. SRR Image
with Lap Reg.

(PSNR=25.0170dB)
1, 0.25, 1T

(k-6) AS. SRR Image
with Lap Reg.

(PSNR=25.0505dB)
0.5, 1, 1T

(k-5) Hampel SRR Image
with Lap Reg.

(PSNR=25.0509dB)
0.5, 1, 1T

(k-7) G&M SRR Image
with Lap Reg.

(PSNR=25.0538dB)
0.5, 1, 1T

(k-8) Lec. SRR Image
with Lap Reg.

(PSNR=25.0537dB)
0.5, 1, 1T

(l-6) AS. SRR Image
with Lap Reg.

(PSNR=24.2250dB)
1, 0.5, 1T

(l-5) Hampel SRR Image
with Lap Reg.

(PSNR=24.2254dB)
1, 0.5, 1T

(l-7) G&M SRR Image
with Lap Reg.

(PSNR=24.2254dB)
1, 0.25, 1T

(l-8) Lec. SRR Image
with Lap Reg.

(PSNR=24.2258dB)
1, 0.25, 1T

Figure 5.10 :  The experimental result of the SRR algorithm using proposed robust estimation 
technique with classical registration (Foreman Sequence: The 110th Frame) (Con.) 
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(m-3) L1 SRR Image
with Lap Reg.

(PSNR=23.3854dB)
0.5, 1

(m-4) L2 SRR Image
with Lap Reg.

(PSNR=21.7708dB)
0.5, 1

(m-2)
Corrupted LR Image

(Speckle:V=0.03)
(PSNR=20.5570dB)

(m-6) AS. SRR Image
with Lap Reg.

(PSNR=23.6246dB)
1, 0.75, 1T

(m-5) Hampel SRR Image
with Lap Reg.

(PSNR=23.6247dB)
1, 0.75, 1T

(m-7) G&M SRR Image
with Lap Reg.

(PSNR=23.6239dB)
1, 0.25, 1T

(m-8) Lec. SRR Image
with Lap Reg.

(PSNR=23.6223dB)
1, 0.75, 1T

Figure 5.10 :  The experimental result of the SRR algorithm using proposed robust estimation 
technique with classical registration (Foreman Sequence: The 110th Frame) (Con.) 
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6. CONCLUSIONS 

6.1 Conclusion

This paper presents four robust norm estimators for the SRR framework and 
presents four robust regularized functions. Several images and noise models were tested for 
their effectiveness. The performance was analyzed both in terms of the PSNR and visually 
appealing results. 

This paper propose an novel approach using a novel robust estimation norm 
function (Hampel, Andrew’s Sine, Geman&McClure and Leclerc) for SRR and the proposed 
robust SRR can be effectively applied on the images that are corrupted by various noise 
models. Therefore, this experiment is examined how the estimation techniques impact to the 
SRR performance by ignoring the registration error. (All corrupted low resolution images are 
synthesized from the same original high resolution image.) From the experimental result, the 
SRR algorithm using Hampel, Andrew’s Sine, Geman&McClure and Leclerc norm gives the 
highest PSRN especially for high power noise. For Salt&Pepper Noise cases, the Hampel, 
Andrew’s Sine, Geman&McClure and Leclerc estimator give the far better reconstruction 
than L1 and L2 estimator because these robust estimators are designed to be robust and reject 
outliers. The norms are more forgiving on outliers; that is, they should increase less rapidly 
than L2. Next, Finally, The SRR algorithm using L1 norm gives the lowest PSRN because the 
L1 norm is excessively robust against the outliers. 

Later, this paper examines the performance of the SRR algorithm using 
proposed estimation norms (Hampel, Andrew’s Sine, Geman&McClure and Leclerc norm 
function) when the SRR algorithm is used for the real image sequence. The 38th- 42nd frame 
Susie sequence and the 108th- 112th frame Foreman sequence are used in these experiments to 
generate the super-resolution image. Hence, the SRR algorithm for this experiment is used the 
COM (Classical Observation Model or translational block-based). From the experimental 
result, the SRR algorithm using Hampel, Andrew’s Sine, Geman&McClure and Leclerc norm 
with the classical registration gives the highest PSRN because these robust estimators are 
designed to be robust and reject outliers (registration error). The norms are more forgiving on 
outliers; that is, they should increase less rapidly than L1 and L2. Next, The SRR algorithm 
using L1 norm gives the higher PSRN than the SRR algorithm using L2 norm because L2 
norm is more sensitive the outliers such as the registration error (and the L2 influence 
function increases linearly and without bound) than L1 norm. Finally, L2 estimator fails to 
enhance the image in the inaccurate registration because the L2 norm is very sensitive to 
outliers (registration error) where the influence function increases linearly and without bound. 

Finally, this paper examines the performance of the SRR algorithm using 
proposed estimation norms (Hampel, Andrew’s Sine, Geman&McClure and Leclerc norm 
function) with proposed registration (GOM) when the SRR algorithm is used for the real 
image sequence. The 38th- 42nd frame Susie sequence and the 108th- 112th frame Foreman 
sequence are used in these experiments to generate the super-resolution image. Hence, the 
SRR algorithm for this experiment is used the GOM (General Observation Model or fast 
affine block-based). From the experimental result, the SRR algorithm using Hampel, 
Andrew’s Sine, Geman&McClure and Leclerc norm with the proposed registration gives the 
highest PSRN because these robust estimators are designed to be robust and reject outliers 
(registration error). 
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6.2 Future Research on SRR algorithms 

The high accuracy and fast registration must be developed to incorporate with 
SRR framework to cope with the real sequence or standard sequence. 

Several parameters (such as Regularized Parameter, step size, norm constant 
parameter) are still manually specified. The optimal values are found by experiments for most 
visually appealing results with highest PSNR. Automatic parameter specification is necessary 
for the practical SRR algorithms in the future research. 
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