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From the result, all proposed robust estimators gives the better result for SRR
estimating than classical L1 and L2 estimator. The proposed robust estimators result
demonstrated the higher resistance to the registration error and noise.

5.3.1.3 Poisson Noise

The original HR image is shown in Fig. 5.9 (g-1) and one of corrupted LR
images is shown in Fig. 5.9 (g-2). Hampel, Andrew’s Sine, Geman&McClure and Leclerc
estimator result have higher PSNR than L1 and L2 estimator result. The result of
implementing the SRR algorithm using L1 estimator, L2 estimator, Hampel, Andrew’s Sine,
Geman&McClure and Leclerc estimator are shown in Figs. 5.9 (g-3) - 5.9 (g-8) respectively.

From the result, all proposed robust estimators gives the better SRR result than
L1 and L2 estimators because all proposed robust estimators are more resistant to the
registration error and noise error.

5.3.1.4 Salt&Pepper Noise

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, D=0.010 and
D=0.015 respectively and the original HR images are shown in Fig. 5.9 (h-1) — Fig. 5.9 (j-1)
respectively. The corrupted images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 5.9
(h-2), Fig. 5.9 (i-2) and Fig. 5.9 (j-2) respectively. The results of Hampel, Andrew’s Sine,
Geman&McClure and Leclerc estimator have higher PSNR than these of L1 and L2
estimator. At D=0.005, D=0.010 and D=0.015, the result of implementing the SRR algorithm
using L1 estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey estimator
are shown in Figs. 5.9 (h-3) - 5.9 (h-8), Figs. 5.9 (i-3) - 5.9 (i-8) and Figs 5.9 (j-4) - 5.9 (j-8)
respectively.

From the result, all proposed robust estimators give the better result for SRR
estimating than L1 and L2 estimator because all proposed robust estimators are more resistant
to the registration error and noise error.

5.3.1.5 Speckle Noise

The last experiment is a 3 Speckle Noise cases for 40th frame Susie sequence
at V=0.02 and V=0.03 respectively and the original HR images are shown in Figs. 5.9 (k-1) —
5.9 (I-1) respectively. The corrupted images at V=0.02 and V=0.03 are showed in Fig. 5.9 (k-
2) and Fig. 5.9 (1-2) respectively. The Hampel, Andrew’s Sine, Geman&McClure and Leclerc
give higher PSNR than L1 and L2 estimator results. At V=0.02 and V=0.03, the result of
implementing the SRR algorithm using L1 estimator, L2 estimator, Hampel, Andrew’s Sine,
Geman&McClure and Leclerc estimator are shown in Figs. 5.9 (k-3) - 5.9 (k-8) and Figs. 5.9
(1-3) - 5.9 (1-8) respectively.

From the result, all proposed robust estimators give the better SRR result than
L1 and L2 estimator because all proposed robust estimators are more resistance to the
registration error. Moreover, L2 estimator can not enhancement the image corrupted by
Speckle noise because the L2 norm is very sensitive to outliers (registration error) where the
influence function increases linearly and without bound.
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Figure 5.9 : The experimental result of the SRR algorithm using proposed robust estimation
technique with proposed registration (Susie Sequence: The 40th Frame)
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Figure 5.9 : The experimental result of the SRR algorithm using proposed robust estimation
technique with proposed registration (Susie Sequence: The 40th Frame) (Con.)
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Figure 5.9 : The experimental result of the SRR algorithm using proposed robust estimation
technique with proposed registration (Susie Sequence: The 40th Frame) (Con.)
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5.2.2 Experimental Result of Foreman Sequence (The 110th Frame)

5.2.2.1 Noiseless

The original HR image is shown in Fig. 5.10 (a-1) and one of corrupted LR
images is shown in Fig. 5.10 (a-2). Next, the result of implementing the SRR algorithm using
L1 estimator, L2 estimator, Hampel, Andrew’s Sine, Geman&McClure and Leclerc Norm are
shown in Figs. 5.10 (a-3) - 5.10 (a-8) respectively. From the results, Huber estimator can
reconstruct the noiseless image slightly better than L1 and L2 estimator respectively.

5.2.2.2 AWGN (Additive White Gaussian Noise)

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 17.5 and 15dB
respectively and the original HR images are shown in Fig. 5.10 (b-1) - Fig. 5.10 (f-1)
respectively. The corrupted images at SNR=25, 22.5, 20, 17.5 and 15dB are showed in Fig.
5.10 (b-2) - Fig. 5.10 (f-2) respectively. From the experimental results, the Hampel, Andrew’s
Sine, Geman&McClure and Leclerc estimator result gives higher PSNR than L1 and L2
estimator result. At SNR=25, 22.5, 20, 17.5 and 15dB, the result of implementing the SRR
algorithm using L1 estimator, L2 estimator, Hampel, Andrew’s Sine, Geman&McClure and
Leclerc estimator are shown in Figs. 5.10 (b-3) - 5.10 (b-8), 5.10 (c-3) - 5.10 (¢-8), 5.10 (d-3)
-5.10 (d-8), 5.10 (e-3) - 5.10 (e-8) and Figs. 5.10 (f-3) - 5.10 (f-8) respectively.

From the result, all proposed robust estimators gives the better result for SRR
estimating than classical L1 and L2 estimator. The proposed robust estimators result
demonstrated the higher resistance to the registration error and noise.

5.2.2.3 Poisson Noise

The original HR image is shown in Fig. 5.10 (g-1) and one of corrupted LR
images is shown in Fig. 5.10 (g-2). Hampel, Andrew’s Sine, Geman&McClure and Leclerc
estimator result have higher PSNR than L1 and L2 estimator result. The result of
implementing the SRR algorithm using L1 estimator, L2 estimator, Hampel, Andrew’s Sine,
Geman&McClure and Leclerc estimator are shown in Figs. 5.10 (g-3) - 5.10 (g-8)
respectively.

From the result, all proposed robust estimators gives the better SRR result than
L1 and L2 estimators because all proposed robust estimators are more resistant to the
registration error and noise error.

5.2.2.4 Salt&Pepper Noise

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, D=0.010 and
D=0.015 respectively and the original HR images are shown in Fig. 5.10 (h-1) — Fig. 5.10 (j-
1) respectively. The corrupted images at D=0.005, D=0.010 and D=0.015 are showed in Fig.
5.10 (h-2), Fig. 5.10 (i-2) and Fig. 5.10 (j-2) respectively. The results of Hampel, Andrew’s
Sine, Geman&McClure and Leclerc estimator have higher PSNR than these of L1 and L2
estimator. At D=0.005, D=0.010 and D=0.015, the result of implementing the SRR algorithm
using L1 estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey estimator
are shown in Figs. 5.10 (h-3) - 5.10 (h-8), Figs. 5.10 (i-3) - 5.10 (i-8) and Figs 5.10 (j-4) -
5.10 (j-8) respectively.

From the result, all proposed robust estimators give the better result for SRR
estimating than L1 and L2 estimator because all proposed robust estimators are more resistant
to the registration error and noise error.
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5.2.2.5 Speckle Noise

The last experiment is a 3 Speckle Noise cases for 40th frame Susie sequence
at V=0.01, V=0.02 and V=0.03 respectively and the original HR images are shown in Figs.
5.10 (k-1) — 5.10 (m-1) respectively. The corrupted images at V=0.01, V=0.02 and V=0.03
are showed in Fig. 5.10 (k-2), Fig. 5.10 (1-2) and Fig. 5.10 (m-2) respectively. The Hampel,
Andrew’s Sine, Geman&McClure and Leclerc give higher PSNR than L1 and L2 estimator
results. At V=0.01, V=0.02 and V=0.03, the result of implementing the SRR algorithm using
L1 estimator, L2 estimator, Hampel, Andrew’s Sine, Geman&McClure and Leclerc estimator
are shown in Figs. 5.10 (k-3) - 5.10 (k-8), Figs. 5.10 (I-3) - 5.10 (I-8) and Figs. 5.10 (m-3) -
5.10 (m-8) respectively.

From the result, all proposed robust estimators give the better SRR result than
L1 and L2 estimator because all proposed robust estimators are more resistance to the
registration error. Moreover, L2 estimator can not enhancement the image corrupted by
Speckle noise because the L2 norm is very sensitive to outliers (registration error) where the
influence function increases linearly and without bound.
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Figure 5.10 : The experimental result of the SRR algorithm using proposed robust estimation
technique with classical registration (Foreman Sequence: The 110th Frame)
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Figure 5.10 : The experimental result of the SRR algorithm using proposed robust estimation
technique with classical registration (Foreman Sequence: The 110th Frame) (Con.)
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Figure 5.10 : The experimental result of the SRR algorithm using proposed robust estimation
technique with classical registration (Foreman Sequence: The 110th Frame) (Con.)
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6. CONCLUSIONS

6.1 Conclusion

This paper presents four robust norm estimators for the SRR framework and
presents four robust regularized functions. Several images and noise models were tested for
their effectiveness. The performance was analyzed both in terms of the PSNR and visually
appealing results.

This paper propose an novel approach using a novel robust estimation norm
function (Hampel, Andrew’s Sine, Geman&McClure and Leclerc) for SRR and the proposed
robust SRR can be effectively applied on the images that are corrupted by various noise
models. Therefore, this experiment is examined how the estimation techniques impact to the
SRR performance by ignoring the registration error. (All corrupted low resolution images are
synthesized from the same original high resolution image.) From the experimental result, the
SRR algorithm using Hampel, Andrew’s Sine, Geman&McClure and Leclerc norm gives the
highest PSRN especially for high power noise. For Salt&Pepper Noise cases, the Hampel,
Andrew’s Sine, Geman&McClure and Leclerc estimator give the far better reconstruction
than L1 and L2 estimator because these robust estimators are designed to be robust and reject
outliers. The norms are more forgiving on outliers; that is, they should increase less rapidly
than L2. Next, Finally, The SRR algorithm using L1 norm gives the lowest PSRN because the
L1 norm is excessively robust against the outliers.

Later, this paper examines the performance of the SRR algorithm using
proposed estimation norms (Hampel, Andrew’s Sine, Geman&McClure and Leclerc norm
function) when the SRR algorithm is used for the real image sequence. The 38M- 42" frame
Susie sequence and the 108™- 112" frame Foreman sequence are used in these experiments to
generate the super-resolution image. Hence, the SRR algorithm for this experiment is used the
COM (Classical Observation Model or translational block-based). From the experimental
result, the SRR algorithm using Hampel, Andrew’s Sine, Geman&McClure and Leclerc norm
with the classical registration gives the highest PSRN because these robust estimators are
designed to be robust and reject outliers (registration error). The norms are more forgiving on
outliers; that is, they should increase less rapidly than L1 and L2. Next, The SRR algorithm
using L1 norm gives the higher PSRN than the SRR algorithm using L2 norm because L2
norm is more sensitive the outliers such as the registration error (and the L2 influence
function increases linearly and without bound) than L1 norm. Finally, L2 estimator fails to
enhance the image in the inaccurate registration because the L2 norm is very sensitive to
outliers (registration error) where the influence function increases linearly and without bound.

Finally, this paper examines the performance of the SRR algorithm using
proposed estimation norms (Hampel, Andrew’s Sine, Geman&McClure and Leclerc norm
function) with proposed registration (GOM) when the SRR algorithm is used for the real
image sequence. The 38"- 42™ frame Susie sequence and the 108" 112" frame Foreman
sequence are used in these experiments to generate the super-resolution image. Hence, the
SRR algorithm for this experiment is used the GOM (General Observation Model or fast
affine block-based). From the experimental result, the SRR algorithm using Hampel,
Andrew’s Sine, Geman&McClure and Leclerc norm with the proposed registration gives the
highest PSRN because these robust estimators are designed to be robust and reject outliers
(registration error).
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6.2 Future Research on SRR algorithms

The high accuracy and fast registration must be developed to incorporate with
SRR framework to cope with the real sequence or standard sequence.

Several parameters (such as Regularized Parameter, step size, norm constant
parameter) are still manually specified. The optimal values are found by experiments for most
visually appealing results with highest PSNR. Automatic parameter specification is necessary
for the practical SRR algorithms in the future research.
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